Science.gov

Sample records for bacterial water quality

  1. Comparison of Bacterial Communities in Sands and Water at Beaches with Bacterial Water Quality Violations

    PubMed Central

    Halliday, Elizabeth; McLellan, Sandra L.; Amaral-Zettler, Linda A.; Sogin, Mitchell L.; Gast, Rebecca J.

    2014-01-01

    Recreational water quality, as measured by culturable fecal indicator bacteria (FIB), may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality. PMID:24599478

  2. Suitability of Optical, Physical and Chemical Measurements for Detection of Changes in Bacterial Drinking Water Quality

    PubMed Central

    Ikonen, Jenni; Pitkänen, Tarja; Miettinen, Ilkka T.

    2013-01-01

    In this study, different optical, physical and chemical measurements were tested for their capacity to detect changes in water quality. The tests included UV-absorbance at 254 nm, absorbance at 420 nm, turbidity, particle counting, temperature, pH, electric conductivity (EC), free chlorine concentration and ATP concentration measurements. Special emphasis was given to investigating the potential for measurement tools to detect changes in bacterial concentrations in drinking water. Bacterial colony counts (CFU) and total bacterial cell counts (TBC) were used as reference methods for assessing the bacterial water quality. The study consists of a series of laboratory scale experiments: monitoring of regrowth of Pseudomonas fluorescens, estimation of the detection limits for optical measurements using Escherichia coli dilutions, verification of the relationships by analysing grab water samples from various distribution systems and utilisation of the measurements in the case of an accidentally contaminated distribution network. We found significant correlations between the tested measurements and the bacterial water quality. As the bacterial contamination of water often co-occurs with the intrusion of matrixes containing mainly non-bacterial components, the tested measurement tools can be considered to have the potential to rapidly detect any major changes in drinking water quality. PMID:24284353

  3. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification.

    PubMed

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-06-01

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities. PMID:26090607

  4. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-01-01

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities. PMID:26090607

  5. Impact of water quality on the bacterial populations and off-flavours in recirculating aquaculture systems.

    PubMed

    Auffret, Marc; Yergeau, Étienne; Pilote, Alexandre; Proulx, Émilie; Proulx, Daniel; Greer, Charles W; Vandenberg, Grant; Villemur, Richard

    2013-05-01

    A variety of factors affecting water quality in recirculating aquaculture systems (RAS) are associated with the occurrence of off-flavours. In this study, we report the impact of water quality on the bacterial diversity and the occurrence of the geosmin-synthesis gene (geoA) in two RAS units operated for 252 days. Unit 2 displayed a higher level of turbidity and phosphate, which affected the fresh water quality compared with unit 1. In the biofilter, nitrification is one of the major processes by which high water quality is maintained. The bacterial population observed in the unit 1 biofilter was more stable throughout the experiment, with a higher level of nitrifying bacteria compared with the unit 2 biofilter. Geosmin appeared in fish flesh after 84 days in unit 2, whereas it appeared in unit 1 after 168 days, but at a much lower level. The geoA gene was detected in both units, 28 days prior to the detection of geosmin in fish flesh. In addition, we detected sequences associated with Sorangium and Nannocystis (Myxococcales): members of these genera are known to produce geosmin. These sequences were observed at an earlier time in unit 2 and at a higher level than in unit 1. This study confirms the advantages of new molecular methods to understand the occurrence of geosmin production in RAS. PMID:23228051

  6. Bacterial pathogens in Hawaiian coastal streams--associations with fecal indicators, land cover, and water quality.

    PubMed

    Viau, Emily J; Goodwin, Kelly D; Yamahara, Kevan M; Layton, Blythe A; Sassoubre, Lauren M; Burns, Siobhán L; Tong, Hsin-I; Wong, Simon H C; Lu, Yuanan; Boehm, Alexandria B

    2011-05-01

    This work aimed to understand the distribution of five bacterial pathogens in O'ahu coastal streams and relate their presence to microbial indicator concentrations, land cover of the surrounding watersheds, and physical-chemical measures of stream water quality. Twenty-two streams were sampled four times (in December and March, before sunrise and at high noon) to capture seasonal and time of day variation. Salmonella, Campylobacter, Staphylococcus aureus, Vibrio vulnificus, and V. parahaemolyticus were widespread -12 of 22 O'ahu streams had all five pathogens. All stream waters also had detectable concentrations of four fecal indicators and total vibrio with log mean ± standard deviation densities of 2.2 ± 0.8 enterococci, 2.7 ± 0.7 Escherichia coli, 1.1 ± 0.7 Clostridium perfringens, 1.2 ± 0.8 F(+) coliphages, and 3.6 ± 0.7 total vibrio per 100 ml. Bivariate associations between pathogens and indicators showed enterococci positively associated with the greatest number of bacterial pathogens. Higher concentrations of enterococci and higher incidence of Campylobacter were found in stream waters collected before sunrise, suggesting these organisms are sensitive to sunlight. Multivariate regression models of microbes as a function of land cover and physical-chemical water quality showed positive associations between Salmonella and agricultural and forested land covers, and between S. aureus and urban and agricultural land covers; these results suggested that sources specific to those land covers may contribute these pathogens to streams. Further, significant associations between some microbial targets and physical-chemical stream water quality (i.e., temperature, nutrients, turbidity) suggested that organism persistence may be affected by stream characteristics. Results implicate streams as a source of pathogens to coastal waters. Future work is recommended to determine infectious risks of recreational waterborne illness related to O'ahu stream exposures and to

  7. Quantitative bacterial examination of domestic water supplies in the Lesotho Highlands: water quality, sanitation, and village health.

    PubMed Central

    Kravitz, J. D.; Nyaphisi, M.; Mandel, R.; Petersen, E.

    1999-01-01

    Reported are the results of an examination of domestic water supplies for microbial contamination in the Lesotho Highlands, the site of a 20-year-old hydroelectric project, as part of a regional epidemiological survey of baseline health, nutritional and environmental parameters. The population's hygiene and health behaviour were also studied. A total of 72 village water sources were classified as unimproved (n = 23), semi-improved (n = 37), or improved (n = 12). Based on the estimation of total coliforms, which is a nonspecific bacterial indicator of water quality, all unimproved and semi-improved water sources would be considered as not potable. Escherichia coli, a more precise indicator of faecal pollution, was absent (P < 0.001) in most of the improved water sources. Among 588 queried households, only 38% had access to an "improved" water supply. Sanitation was a serious problem, e.g. fewer than 5% of villagers used latrines and 18% of under-5-year-olds had suffered a recent diarrhoeal illness. The study demonstrates that protection of water sources can improve the hygienic quality of rural water supplies, where disinfection is not feasible. Our findings support the WHO recommendation that E. coli should be the principal microbial indicator for portability of untreated water. Strategies for developing safe water and sanitation systems must include public health education in hygiene and water source protection, practical methods and standards for water quality monitoring, and a resource centre for project information to facilitate programme evaluation and planning. PMID:10593031

  8. Evaluation of anthropogenic effects on water quality and bacterial diversity in Rawal Lake, Islamabad.

    PubMed

    Saeed, Asma; Hashmi, Imran

    2014-05-01

    Water quality and bacterial diversity in the surface water of Rawal Lake was investigated for a period of 8 months to evaluate the pollution load from anthropogenic effects of surrounding areas. Rawal Lake in Islamabad, Pakistan is an artificial reservoir that provides the water needs for the residents of Rawalpindi and Islamabad. Grabbed water samples were collected according to standard protocols from ten different locations of the lake and tributaries keeping in view the recharge points from adjacent areas. Temperature, pH, electrical conductivity, dissolved oxygen, total dissolved solids, hardness, alkalinity, and turbidity of water samples were determined to study the water quality characteristics. The physicochemical parameters showed higher values at the tributaries as compared to the sampling locations within the lake such as values of hardness and alkalinity were 298 and 244 mg/L, respectively, at the tributary of the Nurpur stream. Bacterial strains were isolated by streaking on differential and selective growth media by observing colony morphology and other biochemical tests such as Gram reaction, oxidase, and catalase test. Template DNA was prepared from pure cultivated bacteria and 16S rRNA gene analysis was performed using universal primers for bacteria. Sequencing was performed by using BigDye terminator cycle sequencing kit. Sequences of nearest relative microbial species were identified by using basic local alignment search tool and used as reference sequences for phylogenetic analysis. Phylogenetic trees were inferred using the neighbor-joining method. Sequencing and phylogenetic characterization of microbes showed various phylotypes, of which Firmicutes, Teobacteria, and Proteobacteria were predominant. PMID:24352868

  9. Irrigation water quality in southern Mexico City based on bacterial and heavy metal analyses

    NASA Astrophysics Data System (ADS)

    Solís, C.; Sandoval, J.; Pérez-Vega, H.; Mazari-Hiriart, M.

    2006-08-01

    Xochimilco is located in southern Mexico City and represents the reminiscence of the pre-Columbian farming system, the "chinampa" agriculture. "Chinampas" are island plots surrounded by a canal network. At present the area is densely urbanized and populated, with various contaminant sources contributing to the water quality degradation. The canal system is recharged by a combination of treated-untreated wastewater, and precipitation during the rainy season. Over 40 agricultural species, including vegetables, cereals and flowers, are produced in the "chinampas". In order to characterize the quality of Xochimilcos' water used for irrigation, spatial and temporal contaminant indicators such as microorganisms and heavy metals were investigated. Bacterial indicators (fecal coliforms, fecal enterococcus) were analyzed by standard analytical procedures, and heavy metals (such as Fe, Cu, Zn and Pb) were analyzed by particle induced X-ray emission (PIXE). The more contaminated sites coincide with the heavily populated areas. Seasonal variation of contaminants was observed, with the higher bacterial counts and heavy metal concentrations reported during the rainy season.

  10. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    PubMed

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management. PMID:25423586

  11. INTERRELATIONSHIP OF BACTERIAL COUNTS WITH OTHER FINISHED WATER QUALITY PARAMETERS WITHIN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    The objective of this research program was to obtain realistic information concerning the interrelationships between temperature, chlorine, turbidity, coliforms, and Standard Plate Count (SPC) densities present in finished water after treatment and distribution. Bacterial identif...

  12. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    NASA Astrophysics Data System (ADS)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  13. Influence of pre- and post-usage flushing frequencies on bacterial water quality of non-touch water fittings

    PubMed Central

    2013-01-01

    Background Non-touch fittings have been reported to be susceptible for Pseudomonas aeruginosa accumulation. A number of factors may contribute to this, including the frequency of usage, duration of water stagnation, or presence of plastic materials. Programmable non-touch fittings are appearing which allow regular automated post-flushing with cold water to prevent water stagnation. However, the ideal duration of post-flushing is unknown as well as the effect of pre-rinsing with cold water before use. Methods Eight non-touch fittings with brass valve blocks were mounted on a mobile test sink and connected to the same central water pipe source, differing only in presence or absence of water connection pipes, length of connection pipe, frequency of usage, and time intervals for pre- and post-usage water flush. The total bacteria colony-forming unit (cfu) counts were obtained by the spread plate technique. Results Low frequency of water use in combination with a long stagnating water column resulted in high bacterial cfu counts. Post-usage flushing for 2 seconds did not differ from no flushing. Flushing for 10 seconds with cold water after use or 30 seconds flush before use were both the most effective measures to prevent non-touch fittings from biofilm formation over a period of 20 weeks. Conclusion Further improvements in water fitting technology could possibly solve the problem of bacterial water contamination in health care settings. PMID:24000790

  14. Changes in the water quality and bacterial community composition of an alkaline and saline oxbow lake used for temporary reservoir of geothermal waters.

    PubMed

    Borsodi, Andrea K; Szirányi, Barbara; Krett, Gergely; Márialigeti, Károly; Janurik, Endre; Pekár, Ferenc

    2016-09-01

    Geothermal waters exploited in the southeastern region of Hungary are alkali-hydrogen-carbonate type, and beside the high amount of dissolved salt, they contain a variety of aromatic, heteroaromatic, and polyaromatic hydrocarbons. The majority of these geothermal waters used for heating are directed into surface waters following a temporary storage in reservoir lakes. The aim of this study was to gain information about the temporal and spatial changes of the water quality as well as the bacterial community composition of an alkaline and saline oxbow lake operated as reservoir of used geothermal water. On the basis of the water physical and chemical measurements as well as the denaturing gradient gel electrophoresis (DGGE) patterns of the bacterial communities, temporal changes were more pronounced than spatial differences. During the storage periods, the inflow, reservoir water, and sediment samples were characterized with different bacterial community structures in both studied years. The 16S ribosomal RNA (rRNA) gene sequences of the bacterial strains and molecular clones confirmed the differences among the studied habitats. Thermophilic bacteria were most abundant in the geothermal inflow, whereas the water of the reservoir was dominated by cyanobacteria and various anoxygenic phototrophic prokaryotes. In addition, members of several facultative anaerobic denitrifying, obligate anaerobic sulfate-reducing and syntrophic bacterial species capable of decomposition of different organic compounds including phenols were revealed from the water and sediment of the reservoir. Most of these alkaliphilic and/or halophilic species may participate in the local nitrogen and sulfur cycles and contribute to the bloom of phototrophs manifesting in a characteristic pink-reddish discoloration of the water of the reservoir. PMID:27240829

  15. Microbiological concerns and methodological approaches related to bacterial water quality in spaceflight

    NASA Technical Reports Server (NTRS)

    Pyle, Barry H.; Mcfeters, Gordon A.

    1992-01-01

    A number of microbiological issues are of critical importance to crew health and system performance in spacecraft water systems. This presentation reviews an army of these concerns which include factors that influence water treatment and disinfection in spaceflight such as biofilm formation and the physiological responses of bacteria in clean water systems. Factors associated with spaceflight like aerosol formation under conditions of microgravity are also discussed within the context of airborne infections such as Legionellosis. Finally, a spectrum of analytical approaches is reviewed to provide an evaluation of methodological alternatives that have been suggested or used to detect microorganisms of interest in water systems. These range from classical approaches employing colony formation on specific microbiological growth media to direct (i.e. microscopic) and indirect (e.g. electrochemical) methods as well as the use of molecular approaches and gene probes. These techniques are critically evaluated for their potential utility in determining microbiological water quality through the detection of microorganisms under the influence of ambient environmental stress inherent in spaceflight water systems.

  16. Terrestrial sources homogenize bacterial water quality during rainfall in two urbanized watersheds in Santa Barbara, CA.

    PubMed

    Sercu, Bram; Van De Werfhorst, Laurie C; Murray, Jill L S; Holden, Patricia A

    2011-10-01

    Microbiological contamination from runoff is a human health concern in urbanized coastal environments, but the contamination sources are often unknown. This study quantified fecal indicator bacteria and compared the distributions of human-specific genetic markers and bacterial community composition during dry and wet weather in urban creeks draining two neighboring watersheds in Santa Barbara, CA. In a prior study conducted during exclusively dry weather, the creeks were contaminated with human waste as indicated by elevated numbers of the human-specific Bacteroidales marker HF183 (Sercu et al. in Environ Sci Technol 43:293-298, 2009). During the storm, fecal indicator bacterial numbers and loads increased orders of magnitude above dry weather conditions. Moreover, bacterial community composition drastically changed during rainfall and differed from dry weather flow by (1) increased bacterial diversity, (2) reduced spatial heterogeneity within and between watersheds, and (3) clone library sequences more related to terrestrial than freshwater taxa. Finally, the spatial patterns of human-associated genetic markers (HF183 and Methanobrevibacter smithii nifH gene) changed during wet weather, and the contribution of surface soils to M. smithii nifH gene detection was suspected. The increased fecal indicator bacteria numbers during wet weather were likely associated with terrestrial sources, instead of human waste sources that dominated during dry weather flow. PMID:21617896

  17. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells.

    PubMed

    Yagur-Kroll, Sharon; Schreuder, Erik; Ingham, Colin J; Heideman, René; Rosen, Rachel; Belkin, Shimshon

    2015-02-15

    The use of live bacterial reporters as sensing entities in whole-cell biosensors allows the investigation of the biological effects of a tested sample, as well as the bioavailability of its components. Here we present a proof of concept for a new design for online continuous water monitoring flow-cell biosensor, incorporating recombinant reporter bacteria, engineered to generate an optical signal (fluorescent or bioluminescent) in the presence of the target compound(s). At the heart of the flow-cell is a disposable chip made of porous aluminum oxide (PAO), which retains the sensor microorganisms on its rigid planar surface, while its high porosity allows an undisturbed access both to the sample and to essential nutrients. The ability of the bacterial reporters to detect model toxic chemicals was first demonstrated using a "naked" PAO chip placed on solid agar, and later in a chip encased in a specially designed flow-through configuration which enables continuous on-line monitoring. The applicability of the PAO chip to simultaneous online detection of diverse groups of chemicals was demonstrated by the incorporation of a 6-member sensor array into the flow-through chip. The selective response of the array was also confirmed in spiked municipal wastewater effluents. Sensing activity was retained by the bacteria after 12-weeks storage of freeze-dried biochips, demonstrating the biochip potential as a simple minimal maintenance "plug-in" cartridge. This low-cost and easy to handle PAO-based flow-cell biosensor may serve as a basis for a future platform for water quality monitoring. PMID:25441411

  18. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  19. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  20. Bacterial conditions of water in dental units.

    PubMed

    Thé, S D; Van't Hof, M A

    1975-01-01

    Stagnant water in the boiler of a dental unit can cause a high bacterial density. A spiral unit is somewhat superior to a boiler in this respect. Normal unchlorinated tapwater is the main problem in achieving hygienic conditions in dental practice. The technical performance of the unit is only partly responsible for the water quality. PMID:1058859

  1. Water quality parameters and total aerobic bacterial and vibrionaceae loads in eastern oysters (Crassostrea virginica) from oyster gardening sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae conc...

  2. Principles of Water Quality

    SciTech Connect

    Waite, T.D.

    1984-01-01

    CONTENTS: Introduction to Water Quality Concepts. Natural Environmental Processes. Toxic Metals as Factors in Water Quality. Refractory Organic Compounds. Nutrients, Productivity, and Eutrophication. Microbes and Water Quality. Thermal Effects and Water Quality. Air Quality. Water Quality Interactions. Introduction to Water Quality Modeling. Water Quality Standards, and Management Approaches.

  3. Bacterial community composition of an urban river in the North West Province, South Africa, in relation to physico-chemical water quality.

    PubMed

    Jordaan, K; Bezuidenhout, C C

    2016-03-01

    The aim of this study was to determine the impacts of anthropogenic disturbances on bacterial community composition in an urban river (Mooi River). Physico-chemical analysis, bacterial enumeration and 454-pyrosequencing were conducted on the Mooi River system upstream and downstream of an urban settlement in the North West Province, South Africa. Pyrosequencing and multivariate analysis showed that nutrient inputs and faecal pollution strongly impacted the physico-chemical and microbiological quality at the downstream sites. Also, bacterial communities showed higher richness and evenness at the downstream sites. Multivariate analysis suggested that the abundances of Betaproteobacteria, Epsilonproteobacteria, Acidobacteria, Bacteroidetes and Verrucomicrobia are related to temperature, pH, dissolved oxygen (DO), sulphate and chlorophyll-a levels. These results suggest that urbanisation caused the overall water quality of this river to deteriorate, which in turn affected the bacterial community composition. In addition, our work identified potential indicator groups that may be used to track faecal and organic pollution in freshwater systems. PMID:26593724

  4. Well water quality in rural Nicaragua using a low-cost bacterial test and microbial source tracking.

    PubMed

    Weiss, Patricia; Aw, Tiong Gim; Urquhart, Gerald R; Galeano, Miguel Ruiz; Rose, Joan B

    2016-04-01

    Water-related diseases, particularly diarrhea, are major contributors to morbidity and mortality in developing countries. Monitoring water quality on a global scale is crucial to making progress in terms of population health. Traditional analytical methods are difficult to use in many regions of the world in low-resource settings that face severe water quality issues due to the inaccessibility of laboratories. This study aimed to evaluate a new low-cost method (the compartment bag test (CBT)) in rural Nicaragua. The CBT was used to quantify the presence of Escherichia coli in drinking water wells and aimed to determine the source(s) of any microbial contamination. Results indicate that the CBT is a viable method for use in remote rural regions. The overall quality of well water in Pueblo Nuevo, Nicaragua was deemed unsafe, and results led to the conclusion that animal fecal wastes may be one of the leading causes of well contamination. Elevation and depth of wells were not found to impact overall water quality. However rope-pump wells had a 64.1% reduction in contamination when compared with simple wells. PMID:27105405

  5. BACTERIAL INHIBITORS IN LAKE WATER

    EPA Science Inventory

    The populations of six bacterial genera fell rapidly after their addition to sterile lake water but not after their addition to buffer. The decline in numbers of two species that were studied further, Klebsiella pneumoniae and Micrococcus flavus, occurred even when the buffer was...

  6. Physicochemical water quality of the Mfoundi River watershed at Yaoundé, Cameroon, and its relevance to the distribution of bacterial indicators of faecal contamination.

    PubMed

    Djuikom, E; Jugnia, L B; Nola, M; Foto, S; Sikati, V

    2009-01-01

    Water quality of the Mfoundi River and four of its tributaries was studied by assessing some physicochemical variables (temperature, pH, conductivity, chlorides, phosphates and nitrogen ammonia, dissolved oxygen and carbon dioxide, organic matter content and Biological Oxygen Demand) and their influence on the distribution of bacterial indicators of faecal contamination (total coliform, faecal coliform and faecal streptococci). For this, standard methods for the examination of physicochemical parameters in water were followed, and statistical analysis (Pearson correlations) used to establish any relationships between physicochemical and biological variables. Our results revealed that almost all of the examined physicochemical variables exceeded World Health Organization (WHO) guidelines for recreational water. This was in agreement with a previous microbiological study indicating that these waters were not safe for human use or primary contact according to water quality standards established by the WHO. Results of our correlation analysis suggested that physicochemical and biological variables interact in complicated ways reflecting the complex processes occurring in the natural environment. It was also concluded that pollution in the Mfoundi River watershed poses an increased risk of infection for users and there exists an urgent need to control dumping of wastewater into this watershed. PMID:19934505

  7. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  8. Water quality deterioration at a karst spring (Gallusquelle, Germany) due to combined sewer overflow: evidence of bacterial and micro-pollutant contamination

    NASA Astrophysics Data System (ADS)

    Heinz, B.; Birk, S.; Liedl, R.; Geyer, T.; Straub, K. L.; Andresen, J.; Bester, K.; Kappler, A.

    2009-04-01

    The concurrent use of karst aquifers as drinking water resources and receptors of combined sewer overflow lacking appropriate pre-treatment may cause conflicts between drinking water supply and storm water management. A storm water tank (SWT) for combined wastewater is identified as the source of sporadic contamination of a karst spring (Gallusquelle, “Schwäbische Alb”, SW Germany) used for public water supply. Spring water quality was examined by routine and event sampling and by evaluating physicochemical and microbiological parameters. The total number of microbial colonies growing at 20°C and the number of Escherichia coli colonies rose to values up to four orders of magnitude higher than background, 2-5 days after overflow of the SWT. High concentrations of chloride, sodium, and total organic carbon (TOC) and high values of turbidity coincide with this increase. However, high bacterial contamination is also observed while turbidity and TOC are low. Several wastewater-related organic micro-pollutants such as chlorinated and non-chlorinated organophosphates were detected in the SWT and, depending on their K ow values and their biodegradability, in lower concentrations at the spring.

  9. Nowcasting recreational water quality

    USGS Publications Warehouse

    Boehm, Alexandria B.; Whitman, Richard L.; Nevers, Meredith; Hou, Deyi; Weisberg, Stephen B.

    2007-01-01

    Advances in molecular techniques may soon provide new opportunities to provide more timely information on whether recreational beaches are free from fecal contamination. However, an alternative approach is the use of predictive models. This chapter presents a summary of these developing efforts. First, we describe documented physical, chemical, and biological factors that have been demonstrated by researchers to affect bacterial concentrations at beaches and thus represent logical parameters for inclusion in a model. Then, we illustrate how various types of models can be applied to predict water quality at freshwater and marine beaches.

  10. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  11. Hemodialysis and Water Quality

    PubMed Central

    Coulliette, Angela D.; Arduino, Matthew J.

    2015-01-01

    Over 383,900 individuals in the U.S. undergo maintenance hemodialysis that exposes them to water, primarily in the form of dialysate. The quality of water and associated dialysis solutions have been implicated in adverse patient outcomes and is therefore critical. The Association for the Advancement of Medical Instrumentation has published both standards and recommended practices that address both water and the dialyzing solutions. Some of these recommendations have been adopted into Federal Regulations by the Centers for Medicare and Medicaid Services as part of the Conditions for Coverage, which includes limits on specific contaminants within water used for dialysis, dialysate, and substitution fluids. Chemical, bacterial, and endotoxin contaminants are health threats to dialysis patients, as shown by the continued episodic nature of outbreaks since the 1960s causing at least 592 cases and 16 deaths in the U.S. The importance of the dialysis water distribution system, current standards and recommendations, acceptable monitoring methods, a review of chemical, bacterial, and endotoxin outbreaks, and infection control programs are discussed. PMID:23859187

  12. Evaluation of land use and water quality in an agricultural watershed in the USA indicates multiple sources of bacterial impairment.

    PubMed

    Wittman, Jacob; Weckwerth, Andrew; Weiss, Chelsea; Heyer, Sharon; Seibert, Jacob; Kuennen, Ben; Ingels, Chad; Seigley, Lynette; Larsen, Kirk; Enos-Berlage, Jodi

    2013-12-01

    Pathogens are the number one cause of impairments of assessed rivers and streams in the USA and pose a significant human health hazard. The Dry Run Creek Watershed in Northeast Iowa has been designated as impaired by the State of Iowa because of high levels of Escherichia coli bacteria. To investigate the nature of this impairment, land use and stream bank assessments were coupled with comprehensive water quality monitoring. Physical, chemical, and biological parameters were measured at 13 different sites in the watershed, including pH, temperature, conductivity, dissolved oxygen, turbidity, total Kjeldahl nitrogen, ammonia-N, nitrate + nitrite-N, total phosphorus, and E. coli. In addition, benthic macroinvertebrate communities were analyzed at seven sites, and optical brightener tests were performed late in the season. Results identified segments of the watershed that were more prominent contributors of E. coli, and correlations were observed between levels of E. coli and several chemical parameters, including ammonia-N, total Kjeldahl nitrogen, and total phosphorus. Interestingly, distinct sites emerged as more prominent contributors of these elements during rain vs. non-rain events, suggesting different types of sources. Both the amount of rainfall and the time elapsed between the rain event and the sampling influenced E. coli levels during wet weather conditions. Nitrate + nitrite-N displayed a unique response to rain events compared with the other parameters, suggesting a different delivery route. Analyses of benthic macroinvertebrate communities were consistent with pollution trends. Collectively, these data suggest distinct agriculturally related E. coli contributions, as well as specific areas and practices for water quality improvement strategies. This study can serve as a resource for evaluating agricultural watersheds that are impaired for bacteria. PMID:23873513

  13. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  14. WATER QUALITY CRITERIA DOCUMENTS

    EPA Science Inventory

    Background

    Water quality standards and criteria are the foundation for a wide range of programs under the Clean Water Act. Specifically, under section 304(a)(1) of the Clean Water Act it requires EPA to develop criteria for water quality that accurately re...

  15. EPANET WATER QUALITY MODEL

    EPA Science Inventory

    EPA NET represents a third generation of water quality modeling software developed by the U.S. EPA's Drinking Water Research Division, offering significant advances in the state of the art for network water quality analysis. PANET performs extended period simulation of hydraulic ...

  16. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  17. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  18. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  19. Testing Water for Bacterial Pollution.

    ERIC Educational Resources Information Center

    Dillner, Harry

    This autoinstructional lesson deals with the study of water pollution control. It is a learning activity directed toward high school students of biology and/or ecology. A general knowledge of microbiology techniques is regarded as a prerequisite for the lesson. Behavioral objectives are given. Emphasis is placed on use of techniques and materials…

  20. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  1. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  2. Bacterial Community Analysis of Drinking Water Biofilms in Southern Sweden

    PubMed Central

    Lührig, Katharina; Canbäck, Björn; Paul, Catherine J.; Johansson, Tomas; Persson, Kenneth M.; Rådström, Peter

    2015-01-01

    Next-generation sequencing of the V1–V2 and V3 variable regions of the 16S rRNA gene generated a total of 674,116 reads that described six distinct bacterial biofilm communities from both water meters and pipes. A high degree of reproducibility was demonstrated for the experimental and analytical work-flow by analyzing the communities present in parallel water meters, the rare occurrence of biological replicates within a working drinking water distribution system. The communities observed in water meters from households that did not complain about their drinking water were defined by sequences representing Proteobacteria (82–87%), with 22–40% of all sequences being classified as Sphingomonadaceae. However, a water meter biofilm community from a household with consumer reports of red water and flowing water containing elevated levels of iron and manganese had fewer sequences representing Proteobacteria (44%); only 0.6% of all sequences were classified as Sphingomonadaceae; and, in contrast to the other water meter communities, markedly more sequences represented Nitrospira and Pedomicrobium. The biofilm communities in pipes were distinct from those in water meters, and contained sequences that were identified as Mycobacterium, Nocardia, Desulfovibrio, and Sulfuricurvum. The approach employed in the present study resolved the bacterial diversity present in these biofilm communities as well as the differences that occurred in biofilms within a single distribution system, and suggests that next-generation sequencing of 16S rRNA amplicons can show changes in bacterial biofilm communities associated with different water qualities. PMID:25739379

  3. Water-quality parameters and total aerobic bacterial and Vibrionaceae loads in Eastern oysters (Crassostrea virginica) from oyster-gardening sites.

    PubMed

    Fay, Johnna P; Richards, Gary P; Ozbay, Gulnihal

    2012-05-01

    Oyster gardening is a practice designed to restore habitat for marine life and to improve water quality. This study determined physical and chemical water-quality parameters at two oyster gardening sites in the Delaware Inland Bays and compared them with total aerobic bacteria and Vibrionaceae concentrations in Eastern oysters (Crassostrea virginica). One site was located at the end of a man-made canal, whereas the other was located in an open bay. Measured water parameters included temperature, dissolved oxygen (DO), salinity, pH, total nitrogen, nitrate, nitrite, total phosphorus, and total suspended solids. The highest Vibrionaceae levels, as determined by the colony overlay procedure for peptidases, were at the canal site in September (3.5 × 10(5) g(-1)) and at the bay site in August (1.9 × 10(5) g(-1)). Vibrionaceae levels were significantly greater during the duration of the study at the canal site (P = 0.01). This study provides the first baseline levels for total Vibrionaceae in the Delaware Inland Bays. Minimum DO readings at the bay and canal sites were 3.0 and 2.3 mg l(-1), respectively, far less than the state-targeted minimum threshold of 5.0 mg l(-1). Total phosphorus levels exceeded recommendations of ≤0.1 mg l(-1) at the bay and canal sites for all monthly samplings, with mean monthly highs at both sites ≥0.68 mg l(-1) in August. Nitrogen occasionally exceeded the recommended level of 1.0 mg l(-1) at both sites. Overall, waters were highly degraded from high phosphates, nitrogen, and total suspended solids as well as low DO. PMID:22183874

  4. STREAM WATER QUALITY MODEL

    EPA Science Inventory

    QUAL2K (or Q2K) is a river and stream water quality model that is intended to represent a modernized version of the QUAL2E (or Q2E) model (Brown and Barnwell 1987). Q2K is similar to Q2E in the following respects:

    • One dimensional. The channel is well-mixed vertically a...

    • TRIBAL WATER QUALITY STANDARDS WORKSHOP

      EPA Science Inventory

      Water quality standards are the foundation for water management actions. They provide the basis for regulating discharges of pollutants to surface waters, and provide a target for restoration of degraded waters. Water quality standards identify and protect uses of the water bod...

    • Water Quality Monitor

      NASA Technical Reports Server (NTRS)

      1982-01-01

      An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

    • Bacterial biota of Nigeen Lake waters (Kashmir Valley).

      PubMed

      Zaffar, Riasa M; Ganai, Bashir A

      2016-08-01

      One of the greatest apprehensions of water consumers all over the world with respect to the quality of drinking water is its contamination with pathogenic microorganisms. This research work determined the potential bacterial contaminants of the waters of Nigeen Lake, a subsidiary of Dal Lake and is regarded as a separate lake in Kashmir. The study was carried out from May 2014 to November 2014 excluding August and September at four different sites. During the study the bacterial flora showed variation in relation to the conditions prevailing at different sites. The highest viable count of bacteria was observed at Site:2 (surrounded by residential hamlets) followed by Site:1 (inlet) and Site:4 (centre) followed by Site:3 (outlet). Based on the examination of morphological features of bacterial colonies on nutrient agar plates after 48 h of incubation period, 40 different strains were isolated. The isolates were identified with the help of Gram's staining and DNA sequencing, 55% of the strains were Gram negative and 45% of the strains were Gram positive. With the help of 16S rRNA sequencing, out of the 40 isolates of bacteria, 7 strains were different at the genetic level. The bacteria which were identified with the help of DNA sequencing are Pseudomonas synxantha, Delftia acidovorans, Bacillus pumilus, Bacillus licheniformis, Macrococcus caseolyticus, Azotobacter vinelandii, and Stenotrophomonas maltophiria. PMID:27165539

    • Wautersia: The Contingency Water Container Bacterial Contamination Investigation

      NASA Technical Reports Server (NTRS)

      Shkedi, Brienne; Labuda, Laura; Bruce, Rebekah

      2009-01-01

      The Orbiter delivers water to the International Space Station (ISS) in Contingency Water Containers (CWCs) on each flight to the ISS. These CWCs are routinely sampled during each mission to verify the quality of the delivered water. Of the 5 samples returned on STS118/ 13A.1 in August 2007, two exhibited microbial growth exceeding potable water acceptability limits and historical data by orders of magnitude . The microbe was identified as Wautersia species and an investigation was launched to find the source of the contamination. Since then, samples collected on subsequent flights indicated additional CWCs had the same bacteria, as well as several on-orbit systems. An investigation was launched to try to find and address the source of the bacterial contamination. This paper will discuss how Wautersia was found, what Wautersia is, the investigation, and resolution.

    • Spectrophotometric Analysis of Bacterial Contamination in Water

      NASA Astrophysics Data System (ADS)

      Spence, Sarah

      2010-10-01

      Bacterial contamination in water is a hazard everywhere from wells in third world countries to reclaimed water on the International Space Station. Traditional lab techniques detect bacteria in approximately 48 hours, while optical techniques can detect bacteria in as little as six hours. The Beer-Lambert Law states that absorption of light is directly correlated to the concentration of a solute in a solution. By passing light through a sample of contaminated broth, the transmittance and in turn the absorption of the solution can be observed. The transmittance data alone follows the inverse of the bacterial growth curve. A sharp drop in transmittance represents the exponential growth phase of bacteria. This drop is observed between six and eight hours following the inoculation of the laboratory samples with Escherichia coli, using both a standard lab monochrometer as well as a device designed for this study. The Optical Bacteria Detection (OBD) was designed to be effective and inexpensive, with a limited use of consumables and minimum waste generation. The OBD device uses a phototransistor as a sensor and an LED with wavelength of approximately 500 nm. Data from the monochrometer shows the sudden decrease in transmittance is most pronounced at this wavelength. The OBD can be tuned to test for other bacteria, such as Salmonella and Vibrio fisheri by changing the wavelength of the LED light source.

    • Handbook for aquaculture water quality

      Technology Transfer Automated Retrieval System (TEKTRAN)

      Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

    • CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

      EPA Science Inventory

      This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

    • Bacteriological Methods in Water Quality Control Programs. Instructor's Guide.

      ERIC Educational Resources Information Center

      Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

      This instructor's manual presents material on basic bacteriological laboratory procedures as required by Federal Register Water Quality Guidelines. Course topics include: characteristics, occurrences, and significance of bacterial indicators of pollution; bacteriological water quality standards and criteria; collection and handling of samples;…

    • Bacteriological Methods in Water Quality Control Programs. Training Manual.

      ERIC Educational Resources Information Center

      Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

      This training manual presents material on basic bacteriological laboratory procedures as required by Federal Register Water Quality Guidelines. Course topics include: characteristics, occurrences, and significance of bacterial indicators of pollution; bacteriological water quality standards and criteria; collection and handling of samples;…

    • Effects of phosphate addition on biofilm bacterial communities and water quality in annular reactors equipped with stainless steel and ductile cast iron pipes.

      PubMed

      Jang, Hyun-Jung; Choi, Young-June; Ro, Hee-Myong; Ka, Jong-Ok

      2012-02-01

      The impact of orthophosphate addition on biofilm formation and water quality was studied in corrosion-resistant stainless steel (STS) pipe and corrosion-susceptible ductile cast iron (DCI) pipe using cultivation and culture-independent approaches. Sample coupons of DCI pipe and STS pipe were installed in annular reactors, which were operated for 9 months under hydraulic conditions similar to a domestic plumbing system. Addition of 5 mg/L of phosphate to the plumbing systems, under low residual chlorine conditions, promoted a more significant growth of biofilm and led to a greater rate reduction of disinfection by-products in DCI pipe than in STS pipe. While the level of THMs (trihalomethanes) increased under conditions of low biofilm concentration, the levels of HAAs (halo acetic acids) and CH (chloral hydrate) decreased in all cases in proportion to the amount of biofilm. It was also observed that chloroform, the main species of THM, was not readily decomposed biologically and decomposition was not proportional to the biofilm concentration; however, it was easily biodegraded after the addition of phosphate. Analysis of the 16S rDNA sequences of 102 biofilm isolates revealed that Proteobacteria (50%) was the most frequently detected phylum, followed by Firmicutes (10%) and Actinobacteria (2%), with 37% of the bacteria unclassified. Bradyrhizobium was the dominant genus on corroded DCI pipe, while Sphingomonas was predominant on non-corroded STS pipe. Methylobacterium and Afipia were detected only in the reactor without added phosphate. PCR-DGGE analysis showed that the diversity of species in biofilm tended to increase when phosphate was added regardless of the pipe material, indicating that phosphate addition upset the biological stability in the plumbing systems. PMID:22367933

    • Bacterial pollution of Messina coastal waters: a one year study.

      PubMed

      Caruso, G; Zaccone, R; Monticelli, L; Crisafi, E; Zampino, D

      2000-07-01

      A year's monitoring of faecal pollution of marine coastal waters surrounding Messina was carried out in 1996/97. The distribution of faecal coliforms was evaluated in 15 stations located along the Sicilian coastline, sampled monthly in coincidence of the two opposing current phases ("montante" and "scendente" currents) which characterise the Straits of Messina. The data obtained provided a complete picture of hygienic-sanitary conditions of the area and highlighted the presence of heavily polluted sites in correspondence with river outflows. Higher bacterial counts were associated with lower salinity values and higher ammonia concentrations; over an annual study, they occurred during the coldest months, showing the negative impact of continental water inputs on the bacteriological quality of coastal waters. PMID:10939045

    • Protein quality control in the bacterial periplasm.

      PubMed

      Merdanovic, Melisa; Clausen, Tim; Kaiser, Markus; Huber, Robert; Ehrmann, Michael

      2011-01-01

      Protein quality control involves sensing and treatment of defective or incomplete protein structures. Misfolded or mislocalized proteins trigger dedicated signal transduction cascades that upregulate the production of protein quality-control factors. Corresponding proteases and chaperones either degrade or repair damaged proteins, thereby reducing the level of aggregation-prone molecules. Because the periplasm of gram-negative bacteria is particularly exposed to environmental changes and respective protein-folding stresses connected with the presence of detergents, low or high osmolarity of the medium, elevated temperatures, and the host's immune response, fine-tuned protein quality control systems are essential for survival under these unfavorable conditions. This review discusses recent advances in the identification and characterization of the key cellular factors and the emerging general principles of the underlying molecular mechanisms. PMID:21639788

    • Water chemistry and poultry processing water quality

      Technology Transfer Automated Retrieval System (TEKTRAN)

      This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

    • WATER QUALITY ASSESSMENT METHODOLOGY (WQAM)

      EPA Science Inventory

      The Water Quality Assessment Methodology (WQAM) is a screening procedure for toxic and conventional pollutants in surface and ground waters and is a collection of formulas, tables, and graphs that planners can use for preliminary assessment of surface and ground water quality in ...

    • RECREATIONAL WATER QUALITY AND HEALTH

      EPA Science Inventory

      The overall objective of this pilot study was to develop and evaluate methods to determine the effect of quality of recreational waters on the health of persons bathing in those waters. There is little scientific evidence upon which to base water quality standards for the safety ...

    • Bacterial Cyanuric Acid Hydrolase for Water Treatment.

      PubMed

      Yeom, Sujin; Mutlu, Baris R; Aksan, Alptekin; Wackett, Lawrence P

      2015-10-01

      Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  1. Bacterial Cyanuric Acid Hydrolase for Water Treatment

    PubMed Central

    Yeom, Sujin; Mutlu, Baris R.; Aksan, Alptekin

    2015-01-01

    Di- and trichloroisocyanuric acids are widely used as water disinfection agents, but cyanuric acid accumulates with repeated additions and must be removed to maintain free hypochlorite for disinfection. This study describes the development of methods for using a cyanuric acid-degrading enzyme contained within nonliving cells that were encapsulated within a porous silica matrix. Initially, three different bacterial cyanuric acid hydrolases were compared: TrzD from Acidovorax citrulli strain 12227, AtzD from Pseudomonas sp. strain ADP, and CAH from Moorella thermoacetica ATCC 39073. Each enzyme was expressed recombinantly in Escherichia coli and tested for cyanuric acid hydrolase activity using freely suspended or encapsulated cell formats. Cyanuric acid hydrolase activities differed by only a 2-fold range when comparing across the different enzymes with a given format. A practical water filtration system is most likely to be used with nonviable cells, and all cells were rendered nonviable by heat treatment at 70°C for 1 h. Only the CAH enzyme from the thermophile M. thermoacetica retained significant activity under those conditions, and so it was tested in a flowthrough system simulating a bioreactive pool filter. Starting with a cyanuric acid concentration of 10,000 μM, more than 70% of the cyanuric acid was degraded in 24 h, it was completely removed in 72 h, and a respike of 10,000 μM cyanuric acid a week later showed identical biodegradation kinetics. An experiment conducted with water obtained from municipal swimming pools showed the efficacy of the process, although cyanuric acid degradation rates decreased by 50% in the presence of 4.5 ppm hypochlorite. In total, these experiments demonstrated significant robustness of cyanuric acid hydrolase and the silica bead materials in remediation. PMID:26187963

  2. Bacterial community composition in low-flowing river water with different sources of pollutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollution of water resources is a major risk to human health and water quality throughout the world. The purpose of this study was to determine the influence of pollutant sources from agricultural activities, urban runoffs, and runoffs from wastewater treatment plants (WWTPs) on bacterial communitie...

  3. Bacteriological Assessment of Spoon River Water Quality

    PubMed Central

    Lin, Shundar; Evans, Ralph L.; Beuscher, Davis B.

    1974-01-01

    Data from a study of five stations on the Spoon River, Ill., during June 1971 through May 1973 were analyzed for compliance with Illinois Pollution Control Board's water quality standards of a geometric mean limitation of 200 fecal coliforms per 100 ml. This bacterial limit was achieved about 20% of the time during June 1971 through May 1972, and was never achieved during June 1972 through May 1973. Ratios of fecal coliform to total coliform are presented. By using fecal coliform-to-fecal streptococcus ratios to sort out fecal pollution origins, it was evident that a concern must be expressed not only for municipal wastewater effluents to the receiving stream, but also for nonpoint sources of pollution in assessing the bacterial quality of a stream. PMID:4604145

  4. Atmospheric cloud water contains a diverse bacterial community

    SciTech Connect

    Kourtev, P. S.; Hill, Kimberly A.; Shepson, Paul B.; Konopka, Allan

    2011-06-15

    Atmospheric cloud water contains an active microbial community which can impact climate, human health and ecosystem processes in terrestrial and aquatic systems. Most studies on the composition of microbial communities in clouds have been performed with orographic clouds that are typically in direct contact with the ground. We collected water samples from cumulus clouds above the upper U.S. Midwest. The cloud water was analyzed for the diversity of bacterial phylotypes by denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rRNA gene amplicons. DGGE analyses of bacterial communities detected 17e21 bands per sample. Sequencing confirmed the presence of a diverse bacterial community; sequences from seven bacterial phyla were retrieved. Cloud water bacterial communities appeared to be dominated by members of the cyanobacteria, proteobacteria, actinobacteria and firmicutes.

  5. Water availability, water quality water governance: the future ahead

    NASA Astrophysics Data System (ADS)

    Tundisi, J. G.; Matsumura-Tundisi, T.; Ciminelli, V. S.; Barbosa, F. A.

    2015-04-01

    The major challenge for achieving a sustainable future for water resources and water security is the integration of water availability, water quality and water governance. Water is unevenly distributed on Planet Earth and these disparities are cause of several economic, ecological and social differences in the societies of many countries and regions. As a consequence of human misuse, growth of urbanization and soil degradation, water quality is deteriorating continuously. Key components for the maintenance of water quantity and water quality are the vegetation cover of watersheds, reduction of the demand and new water governance that includes integrated management, predictive evaluation of impacts, and ecosystem services. Future research needs are discussed.

  6. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  7. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  8. WATER QUALITY ANALYSIS SIMULATION PROGRAM

    EPA Science Inventory

    The Water Quality Analysis Simulation Program (WASP6), an enhancement of the original WASP (Di Toro et al., 1983; Connolly and Winfield,1984; Ambrose, R.B. et al.,1988). This model helps users interpret and predict water quality responses to natural phenomena and man-made polluti...

  9. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  10. Primer on Water Quality

    MedlinePlus

    ... streams and ground water. After decades of use, pesticides are now widespread in streams and ground water, ... and guidelines established to protect human health. Some pesticides have not been used for 20 to 30 ...

  11. Space Station Water Quality

    NASA Technical Reports Server (NTRS)

    Willis, Charles E. (Editor)

    1987-01-01

    The manned Space Station will exist as an isolated system for periods of up to 90 days. During this period, safe drinking water and breathable air must be provided for an eight member crew. Because of the large mass involved, it is not practical to consider supplying the Space Station with water from Earth. Therefore, it is necessary to depend upon recycled water to meet both the human and nonhuman water needs on the station. Sources of water that will be recycled include hygiene water, urine, and cabin humidity condensate. A certain amount of fresh water can be produced by CO2 reduction process. Additional fresh water will be introduced into the total pool by way of food, because of the free water contained in food and the water liberated by metabolic oxidation of the food. A panel of scientists and engineers with extensive experience in the various aspects of wastewater reuse was assembled for a 2 day workshop at NASA-Johnson. The panel included individuals with expertise in toxicology, chemistry, microbiology, and sanitary engineering. A review of Space Station water reclamation systems was provided.

  12. Microbiological evaluation of water quality from urban watersheds for domestic water supply improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, one has received little attention to date; that is, because soils ...

  13. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  14. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  15. GREENROOF RUNOFF WATER QUALITY

    EPA Science Inventory

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs was compared. Evapotranspiration from planted green roofs and evaporation unplanted media roofs was also compared, and the influence of ...

  16. Caenorhabditis elegans: a model to monitor bacterial air quality

    PubMed Central

    2011-01-01

    Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test. PMID:22099854

  17. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  18. Water Quality Monitoring Manual.

    ERIC Educational Resources Information Center

    Mason, Fred J.; Houdart, Joseph F.

    This manual is designed for students involved in environmental education programs dealing with water pollution problems. By establishing a network of Environmental Monitoring Stations within the educational system, four steps toward the prevention, control, and abatement of water pollution are proposed. (1) Train students to recognize, monitor,…

  19. OPERATION OF WATER QUALITY DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. n order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wate...

  20. NEUSE RIVER WATER QUALITY DATABASE

    EPA Science Inventory

    The Neuse River water quality database is a Microsoft Access application that includes multiple data tables and some associated queries. The database was developed by Prof. Jim Bowen's research group.

  1. Detection and Composition of Bacterial Communities in Waters using RNA-based Methods

    EPA Science Inventory

    In recent years, microbial water quality assessments have shifted from solely relying on pure culture-based methods to monitoring bacterial groups of interest using molecular assays such as PCR and qPCR. Furthermore, coupling next generation sequencing technologies with ribosomal...

  2. Using Amplicon Sequencing To Characterize and Monitor Bacterial Diversity in Drinking Water Distribution Systems

    PubMed Central

    Shaw, Jennifer L. A.; Weyrich, Laura S.; Sawade, Emma; Drikas, Mary; Cooper, Alan J.

    2015-01-01

    Drinking water assessments use a variety of microbial, physical, and chemical indicators to evaluate water treatment efficiency and product water quality. However, these indicators do not allow the complex biological communities, which can adversely impact the performance of drinking water distribution systems (DWDSs), to be characterized. Entire bacterial communities can be studied quickly and inexpensively using targeted metagenomic amplicon sequencing. Here, amplicon sequencing of the 16S rRNA gene region was performed alongside traditional water quality measures to assess the health, quality, and efficiency of two distinct, full-scale DWDSs: (i) a linear DWDS supplied with unfiltered water subjected to basic disinfection before distribution and (ii) a complex, branching DWDS treated by a four-stage water treatment plant (WTP) prior to disinfection and distribution. In both DWDSs bacterial communities differed significantly after disinfection, demonstrating the effectiveness of both treatment regimes. However, bacterial repopulation occurred further along in the DWDSs, and some end-user samples were more similar to the source water than to the postdisinfection water. Three sample locations appeared to be nitrified, displaying elevated nitrate levels and decreased ammonia levels, and nitrifying bacterial species, such as Nitrospira, were detected. Burkholderiales were abundant in samples containing large amounts of monochloramine, indicating resistance to disinfection. Genera known to contain pathogenic and fecal-associated species were also identified in several locations. From this study, we conclude that metagenomic amplicon sequencing is an informative method to support current compliance-based methods and can be used to reveal bacterial community interactions with the chemical and physical properties of DWDSs. PMID:26162884

  3. Quality assurance/quality control manual; National Water Quality Laboratory

    USGS Publications Warehouse

    Pritt, J.W.; Raese, J.W.

    1995-01-01

    Quality-control practices are established for the operation of the U.S. Geological Survey's National Water Quality Laboratory. These practices specify how samples are preserved, shipped, and analyzed in the Laboratory. This manual documents the practices that are currently (1995) used in the Laboratory.

  4. Water Quality Field Guide.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Nonpoint source pollution is both a relatively recent concern and a complex phenomenon with many unknowns. Knowing the extent to which agricultural sources contribute to the total pollutant load, the extent to which various control practices decrease this load, and the effect of reducing the pollutants delivered to a water body are basic to the…

  5. Water Quality Control, Curriculum Guide.

    ERIC Educational Resources Information Center

    Washington City Board of Education, NC.

    Activities which study how water is used, contaminated, and treated or purified are presented in this curriculum guide, culminating in the investigation of a local water quality problem. Designed as a 12 week mini-course for students in grades eight and nine, the guide first presents a review of the content, objectives, major concepts, and sources…

  6. CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

  7. Impact of disinfection on drinking water biofilm bacterial community.

    PubMed

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. PMID:26574105

  8. WATER QUALITY AND SWIMMING-ASSOCIATED HEALTH EFFECTS

    EPA Science Inventory

    Evidence from various sources around the world indicate that there is a relationship between gastroenteritis in swimmers and the quality of the bathing water as measured with bacterial indicators of fecal contamination. Current EPA guidelines recommend the use of cultural method...

  9. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  10. Water quality for freshwater fish

    SciTech Connect

    Howells, G. )

    1994-01-01

    This timely and up-to-date volume brings together recent critical reviews on water quality requirements for freshwater fish commissioned by the European Inland Fisheries Advisory Commission, an agency of the United Nations Food and Agriculture Organization. It provides a unique and authoritative source of critically evaluated water quality data concerning the effects of chromium, nickel, aluminum and nitrite on freshwater fish and includes an assessment of the toxicity of mixtures. The reports presented in this volume cover all stages of the life cycle and relevant trophic levels, including aquatic invertebrates and plants and potential bioaccumulation through the food chain. An extensive bibliography is provided for each chapter as well as a glossary of terms and a list of fish species mentioned in the text. This compilation of papers is the definitive reference volume for chemists, biologists, ecologists and toxicologists as well as for water resource managers concerned with management and control of pollution in fresh waters.

  11. Bacterial community structure and variation in a full-scale seawater desalination plant for drinking water production.

    PubMed

    Belila, A; El-Chakhtoura, J; Otaibi, N; Muyzer, G; Gonzalez-Gil, G; Saikaly, P E; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-05-01

    Microbial processes inevitably play a role in membrane-based desalination plants, mainly recognized as membrane biofouling. We assessed the bacterial community structure and diversity during different treatment steps in a full-scale seawater desalination plant producing 40,000 m(3)/d of drinking water. Water samples were taken over the full treatment train consisting of chlorination, spruce media and cartridge filters, de-chlorination, first and second pass reverse osmosis (RO) membranes and final chlorine dosage for drinking water distribution. The water samples were analyzed for water quality parameters (total bacterial cell number, total organic carbon, conductivity, pH, etc.) and microbial community composition by 16S rRNA gene pyrosequencing. The planktonic microbial community was dominated by Proteobacteria (48.6%) followed by Bacteroidetes (15%), Firmicutes (9.3%) and Cyanobacteria (4.9%). During the pretreatment step, the spruce media filter did not impact the bacterial community composition dominated by Proteobacteria. In contrast, the RO and final chlorination treatment steps reduced the Proteobacterial relative abundance in the produced water where Firmicutes constituted the most dominant bacterial group. Shannon and Chao1 diversity indices showed that bacterial species richness and diversity decreased during the seawater desalination process. The two-stage RO filtration strongly reduced the water conductivity (>99%), TOC concentration (98.5%) and total bacterial cell number (>99%), albeit some bacterial DNA was found in the water after RO filtration. About 0.25% of the total bacterial operational taxonomic units (OTUs) were present in all stages of the desalination plant: the seawater, the RO permeates and the chlorinated drinking water, suggesting that these bacterial strains can survive in different environments such as high/low salt concentration and with/without residual disinfectant. These bacterial strains were not caused by contamination during

  12. Molecular analysis for bacterial contamination in dental unit water lines.

    PubMed

    Watanabe, Akari; Tamaki, Naofumi; Matsuyama, Miwa; Kokeguchi, Susumu

    2016-04-01

    Bacterial contamination in dental unit waterlines (DUWLs) was evaluated by molecular techniques in addition to the conventional culture method. Water samples (n=8) from DUWLs were investigated for heterotrophic bacteria by culture method using R2A agar. The selected bacterial antibiotic-resistance genes and Legionella species-specific 16SrDNA were identified by PCR. The profiles of bacterial contamination in DUWLs were further identified by PCR-DGGE. In this study, no antibiotic-resistant or Legionella genes were detected. Polycyclic aromatic hydrocarbon-degrading bacterium, Novosphingobium sp. was the most prevalent in DUWLs. Conventional PCR and PCR-DGGE were shown to be potentially useful for monitoring of bacterial contamination in DUWLs. PMID:27196554

  13. Water quality . . . potential sources of pollution

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank, (artist)

    1996-01-01

    What is water quality? To most students, water quality may suggest only "clean" water for drinking, swimming, and fishing. But to the farmer or manufacturer, water quality may have an entirely different meaning. One of the most important issues concerning the quality of water is how that water will be used. Water that is perfectly fine for irrigation might not be suitable for drinking or swimming.

  14. Impact of hydraulic well restoration on native bacterial communities in drinking water wells.

    PubMed

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229

  15. Impact of Hydraulic Well Restoration on Native Bacterial Communities in Drinking Water Wells

    PubMed Central

    Karwautz, Clemens; Lueders, Tillmann

    2014-01-01

    The microbial monitoring of drinking water production systems is essential to assure water quality and minimize possible risks. However, the comparative impact of microbes from the surrounding aquifer and of those established within drinking water wells on water parameters remains poorly understood. High pressure jetting is a routine method to impede well clogging by fine sediments and also biofilms. In the present study, bacterial communities were investigated in a drinking water production system before, during, and after hydraulic purging. Variations were observed in bacterial communities between different wells of the same production system before maintenance, despite them having practically identical water chemistries. This may have reflected the distinct usage practices of the different wells, and also local aquifer heterogeneity. Hydraulic jetting of one well preferentially purged a subset of the dominating taxa, including lineages related to Diaphorobacter, Nitrospira, Sphingobium, Ralstonia, Alkanindiges, Janthinobacterium, and Pseudomonas spp, suggesting their tendency for growth in well-associated biofilms. Lineages of potential drinking water concern (i.e. Legionellaceae, Pseudomonadaceae, and Acinetobacter spp.) reacted distinctly to hydraulic jetting. Bacterial diversity was markedly reduced in drinking water 2 weeks after the cleaning procedure. The results of the present study provide a better understanding of drinking water wells as a microbial habitat, as well as their role in the microbiology of drinking water systems. PMID:25273229

  16. Pesticide Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred

    This publication describes in nontechnical language the problem of pesticide use and how it affects water quality. It provides information on laws affecting pesticide use and the reasons for them, as well as giving directions for the proper use of pesticides. The booklet is divided into five chapters, each of which concludes with a list of study…

  17. Water quality in organic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-point source contamination is a major water quality concern in the upper Midwestern USA, where plant nutrients, especially NO3-N, are susceptible to leaching due to extensive subsurface draining of the highly productive, but poorly drained, soils found in this region. Environmental impacts assoc...

  18. VERIFICATION OF WATER QUALITY MODELS

    EPA Science Inventory

    The basic concepts of water quality models are reviewed and the need to recognize calibration and verification of models with observed data is stressed. Post auditing of models after environmental control procedures are implemented is necessary to determine true model prediction ...

  19. Solid Wastes and Water Quality.

    ERIC Educational Resources Information Center

    DeWalle, F. B.; Chian, E. S. K.

    1978-01-01

    Presents a literature review of solid wastes and water quality, covering publications of 1976-77. This review covers areas such as: (1) environmental impacts and health aspects for waste disposal, and (2) processed and hazardous wastes. A list of 80 references is also presented. (HM)

  20. BACTERIAL SOURCE TRACKING IN MISSISSIPPI COASTAL WATERS

    EPA Science Inventory

    The primary objective of the proposed study is to apply secretory immunoglobulin A (sIgA) analysis to surface waters in eastern Mississippi and to clarify the source(s) of pollution entering the Wolf and Jordan River watersheds. The method would attempt to determine if bovine fe...

  1. Bacterial community of iron tubercles from a drinking water distribution system and its occurrence in stagnant tap water.

    PubMed

    Chen, Lu; Jia, Rui-Bao; Li, Li

    2013-07-01

    Bacteria in drinking water distribution systems can cause deterioration of the water quality, and the microbial quality of tap water is closely related to consumer health. In the present study, the potential effects of bacteria attached to cast iron pipes on tap water in a distribution system were investigated. Comparison of the bacterial community composition of pipe tubercles with that of stagnant tap water samples based on a denaturing gradient gel electrophoresis analysis of the 16S rRNA gene revealed that the communities were related. Specifically, the main bacterial members were identical to each other. The bacterial community was found to be dominated by Firmicutes, Actinobacteria, and Proteobacteria, which included Rhizobium, Pseudomonas, Lactococcus, Brevundimonas, Rheinheimera, Arthrobacter, Bacillus, and Herbaspirillum. Heterotrophic bacteria proliferation was observed during the period of stagnation, followed by a decrease of assimilable organic carbon and a slight increase of microbially available phosphorus. These findings indicated that the regrowth of bacteria might be boosted by the release of nutrients such as phosphorus from the pipe walls, as well as the decline of residual chlorine during stagnation. Inorganic contaminants at low levels, including Al, Mn, Zn, Pb, Cr, Cu, and Ni, were detected in tubercles and were concentrated in particulates from tap water following the release of iron during stagnation. PMID:23702591

  2. Quality criteria for water, 1986

    SciTech Connect

    Not Available

    1986-05-01

    Section 304(a) (1) of the Clean Water Act 33 U.S.C. 1314(a) (1) requires the Environmental Protection Agency (EPA) to publish and periodically update ambient water-quality criteria. These criteria are to accurately reflect the latest scientific knowledge (a) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish shellfish, wildlife, plant life, shorelines, beaches, aesthetics, and recreation that may be expected from the presence of pollutants in any body of water including ground water; (b) on the concentration and dispersal of pollutants, or their byproducts, through biological, physical, and chemical processes; and (c) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and organic and inorganic sedimentation for varying types of receiving waters. In a continuing effort to provide those who use EPA's water-quality and human-health criteria with up-to-date criteria values and associated information, the document was assembled. The document includes summaries of all the contaminants for which EPA has developed criteria recommendations.

  3. EFFECTS OF MIXING AND AGING ON WATER QUALITY IN DISTRIBUTION SYSTEM STORAGE FACILITIES

    EPA Science Inventory

    Aging of water in distribution system storage facilities can lead to deterioration of the water quality due to loss of disinfectant residual and bacterial regrowth. Facilities should be operated to insure that the age of the water is not excessive taking into account the quality...

  4. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  5. SWQM: Source Water Quality Modeling Software

    Energy Science and Technology Software Center (ESTSC)

    2008-01-08

    The Source Water Quality Modeling software (SWQM) simulates the water quality conditions that reflect properties of water generated by water treatment facilities. SWQM consists of a set of Matlab scripts that model the statistical variation that is expected in a water treatment facility’s water, such as pH and chlorine levels.

  6. Quality of water in hemodialysis centers in Baghdad, Iraq.

    PubMed

    Al-Naseri, Saadi K; Mahdi, Zinah Mohammed; Hashim, Mohammed Fawzi

    2013-10-01

    Dialysis water quality is one of the important parameters all over the world because of its direct influence on the health of kidney patients. In Iraq, there are more than 20 dialysis centers; most of them contain identical units for the production of dialysis water. In this work, the quality of water used for dialysis in six dialysis centers located within Baghdad hospitals was evaluated. Samples of product water from each of the six dialysis centers were examined for total heterotrophic bacteria, endotoxin, and chemical contaminants. Endotoxin was measured on-site using a portable instrument. Bacteriological and chemical examinations were done in the laboratory after collecting samples from each dialysis center. The results showed a fluctuation in the produced water quality that makes the produced water unaccepted when compared with international standards. Bacterial counts for 60% of the analyzed samples were above the action level (50 colony-forming units[CFU]/mL), while five out of the six dialysis centers showed values higher than the maximum value (100 CFU/mL). Chemical analysis showed that the dialysis water quality suffers from elevated aluminum concentration for all dialysis centers. All hemodialysis centers need thorough monitoring and preventive maintenance to ensure good water quality. In addition, it is important to revise the design of the water treatment units according to the feed and product water quality. PMID:23461710

  7. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  8. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  9. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  10. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  11. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  12. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality....

  13. Dam water quality study. Report to Congress

    SciTech Connect

    Not Available

    1989-05-01

    The objective of the report is to identify water quality effects attributable to the impoundment of water by dams as required by Section 524 of the Water Quality Act of 1987. The document presents a study of water quality effects associated with impoundments in the U.S.A.

  14. Bacterial indicators of risk of diarrhoeal disease from drinking-water in the Philippines.

    PubMed Central

    Moe, C. L.; Sobsey, M. D.; Samsa, G. P.; Mesolo, V.

    1991-01-01

    Inadequate measures of water quality have been used in many studies of the health effects associated with water supplies in developing countries. The present 1-year epidemiological-microbiological study evaluated four bacterial indicators of tropical drinking-water quality (faecal coliforms, Escherichia coli, enterococci and faecal streptococci) and their relationship to the prevalence of diarrhoeal disease in a population of 690 under-2-year-olds in Cebu, Philippines. E. coli and enterococci were better predictors than faecal coliforms of the risk of waterborne diarrhoeal disease. Methods to enumerate E. coli and enterococci were less subject to interference from the thermotolerant, non-faecal organisms that are indigenous to tropical waters. Little difference was observed between the illness rates of children drinking good quality water (less than 1 E. coli per 100 ml) and those drinking moderately contaminated water (2-100 E. coli per 100 ml). Children drinking water with greater than 1000 E. coli per 100 ml had significantly higher rates of diarrhoeal disease than those drinking less contaminated water. This threshold effect suggests that in developing countries where the quality of drinking-water is good or moderate other transmission routes of diarrhoeal disease may be more important; however, grossly contaminated water is a major source of exposure to faecal contamination and diarrhoeal pathogens. PMID:1893505

  15. Water quality monitor. [spacecraft potable water

    NASA Technical Reports Server (NTRS)

    West, S.; Crisos, J.; Baxter, W.

    1979-01-01

    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system.

  16. Bacteriological water quality status of River Yamuna in Delhi.

    PubMed

    Anand, Chetna; Akolkar, Pratima; Chakrabarti, Rina

    2006-01-01

    Bacteriological water quality status in terms of total coliform and faecal coliform count was studied on both--east and west banks of river Yamuna in Delhi. Membrane filtration technique was adopted for enumeration of total coliform and faecal coliform count in the river water sample collected on monthly basis for 2 years--2002 and 2003. The study reveals the impact of diverse anthropogenic activities as well as the monsoon effect on the bacterial population of river Yamuna in Delhi stretch. Microbial population contributed mainly through human activities prevailed in the entire stretch of Yamuna river with reduction in bacterial counts during monsoon period due to flushing effect. Bacteriological assessment does not provide an integrated effect of pollution but only indicate the water quality at the time of sampling. Hence, this parameter is time and space specific. PMID:16850884

  17. REAL-TIME WATER QUALITY MONITORING AND MODELING FOR EQUITABLE RECREATION ON THE MYSTIC RIVER

    EPA Science Inventory

    City of Somerville, Massachusetts, in collaboration with Tufts University and the Mystic River Watershed Association, proposes this project that combines advanced technology for real-time water quality and meteorological monitoring with sampling of bacterial levels...

  18. Water quality in Lake Lanier

    SciTech Connect

    Callaham, M.A. )

    1991-04-01

    Thirteen water quality tests measuring five categories of pollution were conducted twice monthly from May, 1987 to April, 1990 at eight locations on Lake Sidney Lanier to establish baseline data and detect trends. Additionally, sediment and water samples were analyzed for ten toxic metals. Sampling stations were located at or near the point of entry of streams into the Lake. Oxygen demanding pollutants were highest in urban streams and phosphorus and nitrogen concentrations were highest in streams having poultry processing operations within their watersheds. Indicators of siltation increased coincidentally with highway construction in one watershed. Fecal coliform bacteria counts decreased at Flat Creek and increased in the Chattahoochee River. Zinc and copper occurred in water samples at levels of detectability. Sediment samples from several locations contained metal concentrations which warrant further study.

  19. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    air by increasing microbial aerosol settling rates and enhancing viability of aerosolized marine microbes. Using methods developed for the non-urban site, the role of local environment and winds in mediating water-air connections was further investigated in the urban environment. The local environment, including water surfaces, was an important source of microbial aerosols at urban sites. Large portions of the urban waterfront microbial aerosol communities were aquatic and, at a highly polluted Superfund waterfront, were closely related to bacteria previously described in environments contaminated with hydrocarbons, heavy metals, sewage and other industrial waste. Culturable urban aerosols and surface waters contained bacterial genera known to include human pathogens and asthma agents. High onshore winds strengthened this water-air connection by playing both a transport and production role. The microbial connection between water and air quality outlined by this dissertation highlights the need for information on the mechanisms that deliver surface water materials to terrestrial systems on a much larger scale. Moving from point measurements to landscape-level analyses will allow for the quantitative assessment of implications for this microbial water-air-land transfer in both urban and non-urban arenas.

  20. Water absorption in a refractive index model for bacterial spores

    NASA Astrophysics Data System (ADS)

    Siegrist, K. M.; Thrush, E.; Airola, M.; Carr, A. K.; Limsui, D. M.; Boggs, N. T.; Thomas, M. E.; Carter, C. C.

    2009-05-01

    The complexity of biological agents can make it difficult to identify the important factors impacting scattering characteristics among variables such as size, shape, internal structure and biochemical composition, particle aggregation, and sample additives. This difficulty is exacerbated by the environmentally interactive nature of biological organisms. In particular, bacterial spores equilibrate with environmental humidity by absorption/desorption of water which can affect both the complex refractive index and the size/shape distributions of particles - two factors upon which scattering characteristics depend critically. Therefore accurate analysis of experimental data for determination of refractive index must take account of particle water content. First, spectral transmission measurements to determine visible refractive index done on suspensions of bacterial spores must account for water (or other solvent) uptake. Second, realistic calculations of aerosol scattering cross sections should consider effects of atmospheric humidity on particle water content, size and shape. In this work we demonstrate a method for determining refractive index of bacterial spores bacillus atropheus (BG), bacillus thuringiensis (BT) and bacillus anthracis Sterne (BAs) which accounts for these effects. Visible index is found from transmission measurements on aqueous and DMSO suspensions of particles, using an anomalous diffraction approximation. A simplified version of the anomalous diffraction theory is used to eliminate the need for knowledge of particle size. Results using this approach indicate the technique can be useful in determining the visible refractive index of particles when size and shape distributions are not well known but fall within the region of validity of anomalous dispersion theory.

  1. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  2. MOST CURRENT WATER QUALITY STANDARDS - WATERBODY SHAPEFILES

    EPA Science Inventory

    State Water Quality Standards' Designated Uses for river segments, lakes, and estuaries. 2000 Water Quality Standards coded onto the National Hydrography Dataset (NHD) Waterbody Reaches (region.rch) to create Waterbody Shapefiles.

  3. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  4. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  5. MOST CURRENT WATER QUALITY STANDARDS - LINEAR EVENTS

    EPA Science Inventory

    Designated uses (from State Water Quality Standards) for river segments, lakes, and estuaries. Most current Water Quality Standards Waterbodies coded onto route.rch (Transport and Coastline Reach) feature of the National Hydrography Dataset (NHD) to create Linear Events.

  6. Understanding water quality trading: the basics.

    PubMed

    Kibler, Virginia M; Kasturi, Kavya P

    2007-12-01

    The United States has entered a new era in water quality protection: the era of market-based incentives. In January 2003, the United States Environmental Protection Agency (EPA) issued its National Water Quality Trading Policy (Trading Policy) (USEPA, 2003). This action has generated greater interest in water quality trading and has prompted EPA to develop tools and training to assist interested parties in understanding what water quality trading is and what constitutes a successful trading program. PMID:18049767

  7. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    NASA Astrophysics Data System (ADS)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  8. Water quality management plan for Cherokee Reservoir

    SciTech Connect

    Not Available

    1984-01-01

    The management plan provides an assessment of Cherokee Reservoir's current water quality, identifies those factors which affect reservoir water quality, and develops recommendations aimed at restoring or maintaining water quality at levels sufficient to support diverse beneficial uses. 20 references, 8 figures, 15 tables. (ACR)

  9. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  10. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays.

    PubMed

    Lin, Yi-wen; Li, Dan; Gu, April Z; Zeng, Si-yu; He, Miao

    2016-02-01

    Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages. PMID:26595310

  11. Optimal calibration method for water distribution water quality model.

    PubMed

    Wu, Zheng Yi

    2006-01-01

    A water quality model is to predict water quality transport and fate throughout a water distribution system. The model is not only a promising alternative for analyzing disinfectant residuals in a cost-effective manner, but also a means of providing enormous engineering insights into the characteristics of water quality variation and constituent reactions. However, a water quality model is a reliable tool only if it predicts what a real system behaves. This paper presents a methodology that enables a modeler to efficiently calibrate a water quality model such that the field observed water quality values match with the model simulated values. The method is formulated to adjust the global water quality parameters and also the element-dependent water quality reaction rates for pipelines and tank storages. A genetic algorithm is applied to optimize the model parameters by minimizing the difference between the model-predicted values and the field-observed values. It is seamlessly integrated with a well-developed hydraulic and water quality modeling system. The approach has provided a generic tool and methodology for engineers to construct the sound water quality model in expedient manner. The method is applied to a real water system and demonstrated that a water quality model can be optimized for managing adequate water supply to public communities. PMID:16854809

  12. What can data assimilation do for water quality forecasting?

    NASA Astrophysics Data System (ADS)

    Kim, S.; Riazi, H.; Seo, D. J.; Shin, C.; Kim, K.

    2014-12-01

    Proactive water quality management through preventive actions requires predictive information. Water quality forecasting can provide such information, e.g., to protect public health from harmful water quality conditions such as algal blooms or bacterial pollution and to allow the decision makers to respond more quickly to emergency situations such as oil spills for protection of water resources systems. Operational water quality forecasting is a large challenge due to the complexities and large uncertainties associated with various physiobiochemical processes involved. As such, there is an added impetus to utilize real-time observations effectively in the forecast process. In this work, we apply data assimilation (DA) to the Hydrologic Simulation Program - Fortran (HSPF) model to improve accuracy of watershed water quality forecast. The DA technique used is based on maximum likelihood ensemble filter (MLEF).The resulting DA module, MLEF-HSPF, has been implemented in the Water Quality Forecast System at the National Institute of Environmental Research (WQFS-NIER) in Korea. In this presentation, we describe MLEF-HSPF, share multi-catchment evaluation results for the Nakdong River Basin in Korea, and identify science and operational challenges.

  13. Sterilization Resistance of Bacterial Spores Explained with Water Chemistry.

    PubMed

    Friedline, Anthony W; Zachariah, Malcolm M; Middaugh, Amy N; Garimella, Ravindranath; Vaishampayan, Parag A; Rice, Charles V

    2015-11-01

    Bacterial spores can survive for long periods without nutrients and in harsh environmental conditions. This survival is influenced by the structure of the spore, the presence of protective compounds, and water retention. These compounds, and the physical state of water in particular, allow some species of bacterial spores to survive sterilization schemes with hydrogen peroxide and UV light. The chemical nature of the spore core and its water has been a subject of some contention and the chemical environment of the water impacts resistance paradigms. Either the spore has a glassy core, where water is immobilized along with other core components, or the core is gel-like with mobile water diffusion. These properties affect the movement of peroxide and radical species, and hence resistance. Deuterium solid-state NMR experiments are useful for examining the nature of the water inside the spore. Previous work in our lab with spores of Bacillus subtilis indicate that, for spores, the core water is in a more immobilized state than expected for the gel-like core theory, suggesting a glassy core environment. Here, we report deuterium solid-state NMR observations of the water within UV- and peroxide-resistant spores from Bacillus pumilus SAFR-032. Variable-temperature NMR experiments indicate no change in the line shape after heating to 50 °C, but an overall decrease in signal after heating to 100 °C. These results show glass-like core dynamics within B. pumilus SAFR-032 that may be the potential source of its known UV-resistance properties. The observed NMR traits can be attributed to the presence of an exosporium containing additional labile deuterons that can aid in the deactivation of sterilizing agents. PMID:26435315

  14. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  15. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  16. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  17. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  18. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin...

  19. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  20. Inactivation of bacterial biothreat agents in water, a review

    PubMed Central

    Rice, E. W.

    2016-01-01

    Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed. PMID:25473971

  1. Inactivation of bacterial biothreat agents in water, a review.

    PubMed

    Rose, L J; Rice, E W

    2014-12-01

    Water supplies and water distribution systems have been identified as potential targets for contamination by bacterial biothreat agents. Since the 2001 Bacillus anthracis bioterrorist attacks, additional efforts have been aimed at research to characterize biothreat organisms in regards to their susceptibility to disinfectants and technologies currently in use for potable water. Here, we present a review of research relevant to disinfection of bacteria with the potential to pose a severe threat to public health and safety, and their potential surrogates. The efficacy of chlorine, monochloramine, chlorine dioxide, and ultraviolet light to inactivate each organism in suspension is described. The complexities of disinfection under varying water conditions and when the organisms are associated with biofilms in distribution systems are discussed. PMID:25473971

  2. Pollution and the protection of water quality

    SciTech Connect

    Risebrough, R.

    1986-01-01

    This book reports on research and development in the study of pollution and methodologies to protect water quality, with emphasis on arid countries. Topics covered include overview of the effects of pollution on natural and human environments; water cycle and groundwater resources in arid countries; salinization; standards and technologies for waste water treatment; uses of recycled water; solid waste disposal; assessment of wastes from industry, agriculture, and shipping; methodologies of quality control; synthetic organic pollutants, including pesticides and PCBs; analytical techniques; quality control; sampling methodologies for organics, metals, and trace elements, including data acquisition techniques and instrumentation; data management; bioindicator organisms; assimilative capacity of receiving waters; application of appropriate water quality standards.

  3. Water transport by the bacterial channel alpha-hemolysin

    NASA Technical Reports Server (NTRS)

    Paula, S.; Akeson, M.; Deamer, D.

    1999-01-01

    This study is an investigation of the ability of the bacterial channel alpha-hemolysin to facilitate water permeation across biological membranes. alpha-Hemolysin channels were incorporated into rabbit erythrocyte ghosts at varying concentrations, and water permeation was induced by mixing the ghosts with hypertonic sucrose solutions. The resulting volume decrease of the ghosts was followed by time-resolved optical absorption at pH 5, 6, and 7. The average single-channel permeability coefficient of alpha-hemolysin for water ranged between 1.3x10-12 cm/s and 1.5x10-12 cm/s, depending on pH. The slightly increased single-channel permeability coefficient at lower pH-values was attributed to an increase in the effective pore size. The activation energy of water transport through the channel was low (Ea=5.4 kcal/mol), suggesting that the properties of water inside the alpha-hemolysin channel resemble those of bulk water. This conclusion was supported by calculations based on macroscopic hydrodynamic laws of laminar water flow. Using the known three-dimensional structure of the channel, the calculations accurately predicted the rate of water flow through the channel. The latter finding also indicated that water permeation data can provide a good estimate of the pore size for large channels.

  4. Water Behavior in Bacterial Spores by Deuterium NMR Spectroscopy

    PubMed Central

    2015-01-01

    Dormant bacterial spores are able to survive long periods of time without nutrients, withstand harsh environmental conditions, and germinate into metabolically active bacteria when conditions are favorable. Numerous factors influence this hardiness, including the spore structure and the presence of compounds to protect DNA from damage. It is known that the water content of the spore core plays a role in resistance to degradation, but the exact state of water inside the core is a subject of discussion. Two main theories present themselves: either the water in the spore core is mostly immobile and the core and its components are in a glassy state, or the core is a gel with mobile water around components which themselves have limited mobility. Using deuterium solid-state NMR experiments, we examine the nature of the water in the spore core. Our data show the presence of unbound water, bound water, and deuterated biomolecules that also contain labile deuterons. Deuterium–hydrogen exchange experiments show that most of these deuterons are inaccessible by external water. We believe that these unreachable deuterons are in a chemical bonding state that prevents exchange. Variable-temperature NMR results suggest that the spore core is more rigid than would be expected for a gel-like state. However, our rigid core interpretation may only apply to dried spores whereas a gel core may exist in aqueous suspension. Nonetheless, the gel core, if present, is inaccessible to external water. PMID:24950158

  5. Produced water exposure alters bacterial response to biocides.

    PubMed

    Vikram, Amit; Lipus, Daniel; Bibby, Kyle

    2014-11-01

    Microbial activity during the holding and reuse of wastewater from hydraulic fracturing operations, termed produced water, may lead to issues with corrosion, sulfide release, and fouling. Biocides are applied to control biological activity, often with limited efficacy, which is typically attributed to chemical interactions with the produced water. However, it is unknown whether there is a biologically driven mechanism to biocide tolerance in produced water. Here, we demonstrate that produced water exposure results in an enhanced tolerance against the typically used biocide glutaraldehyde and increased susceptibility to the oxidative biocide hypochlorite in a native and a model bacteria and that this altered resistance is due to the salinity of the produced water. In addition, we elucidate the genetic response of the model organism Pseudomonas fluorescens to produced water exposure to provide a mechanistic interpretation of the altered biocide resistance. The RNA-seq data demonstrated the induction of genes involved in osmotic stress, energy production and conversion, membrane integrity, and protein transport following produced water exposure, which facilitates bacterial survival and alters biocide tolerance. Efforts to fundamentally understand biocide resistance mechanisms, which enable the optimization of biocide application, hold significant implications for greening of the fracturing process through encouraging produced water recycling. Specifically, these results suggest the necessity of optimizing biocide application at the level of individual shale plays, rather than historical experience, based upon produced water characteristics and salinity. PMID:25279933

  6. Phosphorus and Water Quality Paradox

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2008-12-01

    Paradoxically, phosphorus (P) is one of the major nutrients for higher agricultural production, as well as it causes eutrophication/algal blooms in aquatic and semi-aquatic systems. Phosphorus loadings from agricultural/urban runoffs into lakes and rivers are becoming a global concern for the protection of water quality. Artificial wetlands are considered as a low cost alternative for treating wastewater including removal of P from sources such as agricultural and urban runoffs. However, the selection of the construction site may well determine the effectiveness of these wetlands. Studies show that P transformations in sediments/ soils are crucial for P sequestration in a wetland rather than the amounts of native P. Using 31Phosphorus Nuclear Magnetic Resonance Spectroscopy (31P NMR), previously unreported an active organic P form, phosphoarginine, was identified, and the study indicates that abandonment of P impacted sites may not solve the P loading problem to the water bodies as the organic P compounds would not be as stable as they were thought, thus, can play a detrimental role in eutrophication of water bodies, after all.

  7. NUTRIENTS FOR BACTERIAL GROWTH IN DRINKING WATER: BIOASSAY EVALUATION

    EPA Science Inventory

    The regrowth of bacteria in drinking water distribution systems can lead to the deterioration of water quality. Pathogenic bacteria are heterotrophs, and heterotrophs are probably the dominant bacteria associated with the regrowth phenomenon. Only a portion of the total organic c...

  8. Bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and the surrounding brackish waters and sediment.

    PubMed

    Dabadé, D Sylvain; Wolkers-Rooijackers, Judith C M; Azokpota, Paulin; Hounhouigan, D Joseph; Zwietering, Marcel H; Nout, M J Rob; den Besten, Heidy M W

    2016-02-01

    This study aimed at determining bacterial concentration and diversity in fresh tropical shrimps (Penaeus notialis) and their surrounding brackish waters and sediment. Freshly caught shrimp, water and sediment samples were collected in Lakes Nokoue and Aheme in Benin (West Africa) during two periods with different water salinity and temperature. We used complementary culture-dependent and culture-independent methods for microbiota analysis. During both sampling periods, total mesophilic aerobic counts in shrimp samples ranged between 4.4 and 5.9 log CFU/g and were significantly higher than in water or sediment samples. In contrast, bacterial diversity was higher in sediment or water than in shrimps. The dominant phyla were Firmicutes and Proteobacteria in shrimps, Firmicutes, Proteobacteria, and Actinobacteria in water, and Proteobacteria and Chloroflexi in sediment. At species level, distinct bacterial communities were associated with sediment, water and shrimps sampled at the same site the same day. The study suggests that the bacterial community of tropical brackish water shrimps cannot be predicted from the microbiota of their aquatic environment. Thus, monitoring of microbiological quality of aquatic environments might not reflect shrimp microbiological quality. PMID:26656527

  9. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  10. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water. PMID:27483985

  11. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  12. Assessment of bacterial contamination of drinking water provided to mice.

    PubMed

    Haist, Carrie; Cadillac, Joan; Dysko, Robert

    2004-11-01

    The objective of this study was to evaluate whether an 240-ml water bottle provided to individually housed mice would remain potable for a 2-week interval (based on absence of coliforms). The study used inbred C57BL/6 mice and CB6F1 x C3D2F1 hybrid mice. Test groups were assigned to minimize the variables of strain, caging type (non-ventilated static versus ventilated) and building location. A 3-cc sample of drinking water was removed aseptically from the bottles and vacuum-filtered using a 250-ml filter funnel with a 0.45-mum pore size. The membrane filter was removed using sterile forceps and placed on a blood agar plate for 10 min. The plate was streaked and incubated at 37 degrees C for 5 days. The plates were observed daily, and if growth had occurred, further testing was done to determine specific organisms. Of the 148 samples only 23 had any bacterial growth. Typical bacteria were unspeciated gram-positive bacilli and Staphylococcus, Micrococcus, Streptococcus, and Pantoea species. The absence of coliforms and low percentage of bacterial contamination suggest that drinking water will remain potable for 2 weeks when supplied to an individual mouse. PMID:15636548

  13. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  14. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  15. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  16. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  17. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained...

  18. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  19. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  20. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  1. Effect of catchment land use and soil type on the concentration, quality, and bacterial degradation of riverine dissolved organic matter.

    PubMed

    Autio, Iida; Soinne, Helena; Helin, Janne; Asmala, Eero; Hoikkala, Laura

    2016-04-01

    We studied the effects of catchment characteristics (soil type and land use) on the concentration and quality of dissolved organic matter (DOM) in river water and on the bacterial degradation of terrestrial DOM. The share of organic soil was the strongest predictor of high concentrations of dissolved organic carbon, nitrogen, and phosphorus (DOC, DON, and DOP, respectively), and was linked to DOM quality. Soil type was more important than land use in determining the concentration and quality of riverine DOM. On average, 5-9 % of the DOC and 45 % of the DON were degraded by the bacterial communities within 2-3 months. Simultaneously, the proportion of humic-like compounds in the DOM pool increased. Bioavailable DON accounted for approximately one-third of the total bioavailable dissolved nitrogen, and thus, terrestrial DON can markedly contribute to the coastal plankton dynamics and support the heterotrophic food web. PMID:26596969

  2. Fecal indicators and bacterial pathogens in bottled water from Dhaka, Bangladesh

    PubMed Central

    Ahmed, W.; Yusuf, R.; Hasan, I.; Ashraf, W.; Goonetilleke, A.; Toze, S.; Gardner, T.

    2013-01-01

    Forty-six bottled water samples representing 16 brands from Dhaka, Bangladesh were tested for the numbers of total coliforms, fecal indicator bacteria (i.e., thermotolerant Escherichia coli and Enterococcus spp.) and potential bacterial pathogens (i.e., Aeromonas hydrophila, Pseudomonas aeruginosa, Salmonella spp., and Shigella spp.). Among the 16 brands tested, 14 (86%), ten (63%) and seven (44%) were positive for total coliforms, E. coil and Enterococcus spp., respectively. Additionally, a further nine (56%), eight (50%), six (37%), and four (25%) brands were PCR positive for A. hydrophila lip, P. aeruginosa ETA, Salmonella spp. invA, and Shigella spp. ipaH genes, respectively. The numbers of bacterial pathogens in bottled water samples ranged from 28 ± 12 to 600 ± 45 (A. hydrophila lip gene), 180 ± 40 to 900 ± 200 (Salmonella spp. invA gene), 180 ± 40 to 1,300 ± 400 (P. aeruginosa ETA gene) genomic units per L of water. Shigella spp. ipaH gene was not quantifiable. Discrepancies were observed in terms of the occurrence of fecal indicators and bacterial pathogens. No correlations were observed between fecal indicators numbers and presence/absence of A. hydrophila lip (p = 0.245), Salmonella spp. invA (p = 0.433), Shigella spp. ipaH gene (p = 0.078), and P. aeruginosa ETA (p = 0.059) genes. Our results suggest that microbiological quality of bottled waters sold in Dhaka, Bangladesh is highly variable. To protect public health, stringent quality control is recommended for the bottled water industry in Bangladesh. PMID:24159289

  3. IMPLEMENTATION GUIDANCE FOR AMBIENT WATER QUALITY CRITERIA FOR BACTERIA

    EPA Science Inventory

    The Implementation Guidance for Ambient Water Quality Criteria for Bacteria is a guidance document to assist state, territory, and authorized tribal water quality programs in adopting and implementing bacteriological water quality criteria into their water quality standards to pr...

  4. Flow cytometric determination of bacterial populations in bottled natural mineral waters

    NASA Astrophysics Data System (ADS)

    Beisker, Wolfgang; Meier, H.

    1998-04-01

    In order to enhance the quality and safety of bottled natural mineral waters, new methodologies besides classical bacteriology have been evaluated. Multi laser flow cytometry has been used to identify bacterial populations based on their DNA content, physiological activity and phylogeny from in situ hybridization with rRNA targeted DNA probes. Due to the low content of organic material in these waters, the bacterial population are under conditions (low ribosome content, low activity, etc.) which makes it hard to detect them flow cytometrically. The numbers of bacteria are in the range between 1000 and 100,000 per ml (for uncarbonated waters). Filtration techniques to enrich the bacterial population have been developed in combination with specific staining and hybridization protocols. First results on some selected brands show, that most bacteria belong to the beta subclass of proteobacteria. If the DNA containing cells (DAPI staining) are counted as 100%, 84% could be stained with a eubacteria probe. From these 84% 68% belong to the beta subclass, 8.2% to the alpha and 0.3% to the gamma subclass of roteobacteria. 8.5% could be identified as cytophaga flexibacter. By optimizing DNA staining with cyanine dyes and enhancing the sensitivity of light scatter detection, the detection limit could be considerably lowered.

  5. Protecting water quality in the watershed

    SciTech Connect

    James, C.R.; Johnson, K.E. ); Stewart, E.H. )

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships to each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.

  6. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  7. WATER QUALITY EFFECTS RELATED TO BLENDING WATERS IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    This study was conducted to evaluate the effects of blending two or more waters of different quality and to relate their composition to the corrosive effects and calcium carbonate deposition tendency of the water on distribution systems. The EPA mobile water quality monitoring la...

  8. Harlem River water quality improvement

    NASA Astrophysics Data System (ADS)

    Wang, J.

    2011-12-01

    Harlem River is a navigable tidal strait, which flows 8 miles connecting the Hudson River and the East River. In wet weather condition, there is untreated sewage mixed rainfall discharged to the river directly at CSO's discharge point. These raw sewer contain bacteria such as Fecal Coliform, E. Coli, Entercocci those can cause illness. There are total 37 CSOs dicharge point along the Harlem River. Water samples were collected from five sites and analyzed on a weekly basis in spring from March to May 2011, and on a monthly basis in July and August. Results showed that ammonia concentrations were ranged from 0.25 to 2.2 mg/L, and there was an increased pattern in summer when temperature increases; soluble reactive phosphorus (SRP) ranged from 0.04 to 0.2 mg/L; total P (TP) ranged from 0.03 to 0.7 mg/L; organic P (OP) ranged from 0.006 to 0.5 mg/L. In rain storm (wet weather condition), untreated sewer discharged into the river with distinguished higher nutrient concentrations (ammonia=2.9 mg/L, TP=3.1 mg/L, OP=2.9 mg/L) and extremely high bacteria levels (fecal coliform-millions, countless colonies; E. Coli-thousands). Results showed spatial variations among the five sites, seasonal variations from spring to summer, and variations under different weather conditions (temperature, storms). The raw sewer discharge during heavy rainstorms resulted in higher nutrients and bacteria levels, and the water quality was degraded.

  9. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  10. Onshore Winds and Coastal Fog Enhance Bacterial Connections Between Water and Air In the Coastal Environment (Invited)

    NASA Astrophysics Data System (ADS)

    Dueker, M.; O'Mullan, G. D.; Juhl, A. R.; Weathers, K. C.; Uriarte, M.

    2013-12-01

    Globally, bacteria suspended in the atmosphere, or microbial aerosols, can range in concentration from 10^4 to 10^5 cells m^-3. They can be either attached to ambient aerosol particles or exist singly in the air, and can serve as ice, cloud and fog nucleators. To better understand sources for bacterial aerosols in the coastal environment, we assessed the effect of onshore wind speed on bacterial aerosol production and fallout in urban and non-urban coastal settings. We found that the fallout rate of culturable (viable) bacterial aerosols increased with onshore wind speeds. Furthermore, molecular characterization of the 16S rRNA gene diversity of bacteria from aerosols and surface waters revealed a similar species-level bacterial composition. This bacterial connection between water and air quality was strengthened at wind speeds above 4 m s^-1, with similar temporal patterns for coarse aerosol concentrations, culturable bacterial fallout rates, and presence of aquatic bacteria in near-shore aerosols. The water-air connection created by onshore winds in the coastal environment may be further modulated by coastal fog. Previous work has shown that the deposition of viable microbial aerosols increases by several orders of magnitude when fog is present in the coastal environment. Also, molecular analyses of bacteria in fog provide evidence that coastal fog enhances the viability of aerosolized marine bacteria, potentially allowing these bacteria to be transported further inland in a viable state with onshore winds. Implications for the coupling of wind-based aerosol production from surface waters with fog presence in the coastal environment include bi-directional atmospheric feedbacks between terrestrial and coastal ocean systems and the potential for water quality to affect air quality at coastal sites.

  11. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest. PMID:12830937

  12. ORD Studies of Water Quality in Hospitals

    EPA Science Inventory

    Presentation descibes results from two studies of water quality and pathogen occurrence in water and biofilm samples from two area hospitals. Includes data on the effectiveness of copper/silver ionization as a disinfectant.

  13. DRINKING WATER MICROBIOLOGY - NEW DIRECTIONS TOWARD WATER QUALITY ENHANCEMENT

    EPA Science Inventory

    Many concerns result from information on new waterborne agents, treatment problems of raw water qualities, biofilm development in some distribution systems, and special quality needs unique to hospitals and industries. Protozoan cyst penetration after some disinfection practices ...

  14. A water quality index for recreation in Brazilian freshwaters.

    PubMed

    Azevedo Lopes, F W; Davies-Colley, R J; Von Sperling, E; Magalhães, A P

    2016-04-01

    Use of water for leisure activities has long been prevalent in human societies, especially where the climate is favorable. Water resources with appealing conditions for primary contact recreational activities include rivers, waterfall plunge pools, dams and lakes, as well as sea coasts. Recreational use has specific demands for water quality, particularly as regards risks to human health such as exposure to pathogenic organisms, toxic substances, and submerged hazards. In Brazil, there is insufficient monitoring of bathing water conditions and currently used methodology has some limitations particularly the lack of guidance on interpretation of variables other than faecal bacterial indicators. The objectives of this study were: (1) to establish variables contributing to assessment of freshwater bathing conditions in Brazil; (2) to develop an integrated index of suitability-for-use for bathing in Brazil; and (3) to improve the methodology for assessing bathing water quality in Brazil. Based on a metadata analysis and consultation with Brazilian water professionals, a water quality index was developed incorporating the variables: Escherichia coli, cyanobacterial density, turbidity (visual clarity) and pH. This index should advance the management of recreational waters in Brazil, by improving the evaluation of freshwater bathing conditions and protecting the health of frequent users. PMID:27105410

  15. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system.

    PubMed

    Douterelo, I; Sharpe, R L; Boxall, J B

    2013-02-01

    Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this

  16. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  17. MEASURING & MODELING VARIATIONS IN DISTRIBUTION WATER QUALITY

    EPA Science Inventory

    Until recently most interest in drinking water quality has been in the finished water as it leaves the treatment plant. he Safe Drinking Water requires that MCLs be met at the consumers tap. ecause finished water may undergo substantial changes while being transported through the...

  18. Metagenomic Analysis of Water Distribution System Bacterial Communities

    EPA Science Inventory

    The microbial quality of drinking water is assessed using culture-based methods that are highly selective and that tend to underestimate the densities and diversity of microbial populations inhabiting distribution systems. In order to better understand the effect of different dis...

  19. WATER QUALITY IN OPEN FINISHED WATER RESERVOIRS - ALLEGHENY COUNTY, PENNSYLVANIA

    EPA Science Inventory

    The purpose of this investigation was to study water quality changes occurring in open reservoirs in the distribution systems of five water supplies located in Allegheny County, Pennsylvania. Results of chemical, bacteriological, and biological analyses showed deterioration of wa...

  20. Drainage water management for water quality protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land drainage has been central to the development of North America since colonial times. Increasingly, agricultural drainage is being targeted as a conduit for pollution, particularly nutrient pollution. The export of agricultural drainage water and associated pollutants to surface water can be mana...

  1. MOBILE BAY AND WATERSHED WATER QUALITY MODELING

    EPA Science Inventory

    Two major products will come out of this project. The first is a compilation of 2001 water quality data for the Mobile bay area. The second is to develop and run a water quality moded for the bay to assist with development of TMDLs for the Bay

  2. Professional Development for Water Quality Control Personnel.

    ERIC Educational Resources Information Center

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  3. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  4. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  5. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  6. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  7. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality....

  8. WATER QUALITY OF THE MIDDLE SNAKE RIVER

    EPA Science Inventory

    Clear Spring Foods, Inc., conducted a year-long study in the Middle Snake River to provide a perspective on water quality issues and the impact of aquaculture activities on water quality. The study area extended from Shoshone Falls Park to below Box Canyon. Physical and chemical ...

  9. MOST CURRENT WATER QUALITY STANDARDS - POINT EVENTS

    EPA Science Inventory

    State Water Quality Standards' Designated Uses for river segments, lakes, and estuaries. Most current Water Quality Standards coded onto route.rch (Transport and Coastline Reach) feature of the National Hydrography Dataset (NHD) to create NHD - Point Events. Point events are...

  10. Bacteria that Travel: The Quality of Aircraft Water.

    PubMed

    Handschuh, Harald; O'Dwyer, Jean; Adley, Catherine C

    2015-11-01

    The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine) and physical (temperature) quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015). Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies. PMID:26529000

  11. Bacteria that Travel: The Quality of Aircraft Water

    PubMed Central

    Handschuh, Harald; Dwyer, Jean O’; Adley, Catherine C.

    2015-01-01

    The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine) and physical (temperature) quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015). Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies. PMID:26529000

  12. Little Big Horn River Water Quality Project

    SciTech Connect

    Bad Bear, D.J.; Hooker, D.

    1995-10-01

    This report summarizes the accomplishments of the Water Quality Project on the Little Big horn River during the summer of 1995. The majority of the summer was spent collecting data on the Little Big Horn River, then testing the water samples for a number of different tests which was done at the Little Big Horn College in Crow Agency, Montana. The intention of this study is to preform stream quality analysis to gain an understanding of the quality of selected portion of the river, to assess any impact that the existing developments may be causing to the environment and to gather base-line data which will serve to provide information concerning the proposed development. Citizens of the reservation have expressed a concern of the quality of the water on the reservation; surface waters, ground water, and well waters.

  13. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  14. Water spectral pattern as holistic marker for water quality monitoring.

    PubMed

    Kovacs, Zoltan; Bázár, György; Oshima, Mitsue; Shigeoka, Shogo; Tanaka, Mariko; Furukawa, Akane; Nagai, Airi; Osawa, Manami; Itakura, Yukari; Tsenkova, Roumiana

    2016-01-15

    Online water quality monitoring technologies have been improving continuously. At the moment, water quality is defined by the respective range of few chosen parameters. However, this strategy requires sampling and it cannot provide evaluation of the entire water molecular system including various solutes. As it is nearly impossible to monitor every single molecule dissolved in water, the objective of our research is to introduce a complimentary approach, a new concept for water screening by observing the water molecular system changes using aquaphotomics and Quality Control Chart method. This approach can continuously provide quick information about any qualitative change of water molecular arrangement without taking into account the reason of the alteration of quality. Different species and concentrations of solutes in aqueous systems structure the water solvent differently. Aquaphotomics investigates not the characteristic absorption bands of the solute in question, but the solution absorption at vibrational bands of water's covalent and hydrogen bonds that have been altered by the solute. The applicability of the proposed concept is evaluated by monitoring the water structural changes in different aqueous solutions such as acid, sugar, and salt solutions at millimolar concentration level and in ground water. The results show the potential of the proposed approach to use water spectral pattern monitoring as bio marker of water quality. Our successful results open a new venue in water quality monitoring by offering a quick and cost effective method for continuous screening of water molecular arrangement. Instead of the regular analysis of individual physical or chemical parameters, with our method - as a complementary tool - the structural changes of water molecular system used as a mirror reflecting even small disturbances in water can indicate the necessity of further detailed analysis by conventional methods. PMID:26592651

  15. Microbes and Water Quality in Developed Countries

    EPA Science Inventory

    Safe drinking water has been a concern for mankind through out the world for centuries. In the developed world, governments consider access to safe and clean drinking water to be a basic human right. Government regulations generally address the quality of the source water, adequ...

  16. ION SELECTIVE ELECTRODES IN WATER QUALITY ANALYSIS

    EPA Science Inventory

    The maintenance of water quality whether at the treatment plant or out in the distribution system is predicated on accurately knowing the condition of the water at any particular moment. Ion selective electrodes have shown tremendous potential in the area of continuous water qual...

  17. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  18. Water quality in Lis river, Portugal.

    PubMed

    Vieira, Judite; Fonseca, André; Vilar, Vítor J P; Boaventura, Rui A R; Botelho, Cidália M S

    2012-12-01

    In the past 30 years, the Lis river basin has been subjected to constant ecological disasters mainly due to piggery untreated wastewater discharges. The aim of this study was to evaluate the effect of existing domestic, agricultural, and industrial activities on the water quality, and to propose a watershed plan to protect and manage surface water resources within the Lis river basin. For this purpose, 16 monitoring stations have been strategically selected along the Lis river stretch and its main tributaries to evaluate the water quality in six different sampling periods (2003–2006). All samples were characterized in terms of organic material, nutrients, chlorophyll, and pathogenic bacteria. Generally, the Lis river presents poor water quality, according to environmental quality standards for surface water, principally in terms of dissolved oxygen, biochemical oxygen demand, total nitrogen, and fecal coliform, which can be associated mainly with the contamination source from pig-breeding farms. PMID:22286837

  19. Control of bacterial contamination in microfiltered water dispensers (MWDs) by disinfection.

    PubMed

    Zanetti, Franca; De Luca, Giovanna; Sacchetti, Rossella

    2009-01-15

    Three microfiltered water dispensers (MWDs) for domestic use were bacteriologically monitored over a period of 1 year to evaluate their hygienic status and to compare the ability of two disinfectants (peracetic acid and hydrogen peroxide) to ensure adequate bacteriological quality of the dispensed water. To this end, two dispensers were purposely contaminated with a strain of Pseudomonas aeruginosa of environmental origin. A total of 324 samples of input and output water were analyzed. Heterotrophic plate count (HPC) bacteria at 22 degrees C and 36 degrees C, total coliforms (CT), Escherichia coli (EC), enterococci (ENT), P. aeruginosa and Staphylococcus aureus were enumerated. Throughout the study period, the supply water was always of excellent bacteriological quality. All water samples taken from the MWDs complied with the legal requirements for drinking water: CT, EC, ENT and S. aureus were all consistently absent. P. aeruginosa was never isolated from the uncontaminated dispenser. However, an increase in HPCs up to levels of 10(3)-10(4) cfu/mL was found in the dispensed water. Under the present operative conditions, hydrogen peroxide was seen to be more effective than peracetic acid in controlling bacterial contamination in the water circuits. Periodic disinfection with hydrogen peroxide made it possible to obtain water with HPC levels conforming to Italian regulations for drinking water (< or =100 cfu/mL) as well as to the levels recommended by the American Dental Association (ADA) (< or =200 cfu/mL). Furthermore, in the contaminated circuits, H(2)O(2) disinfection led to a reduction in the concentrations of P. aeruginosa to only a few colony forming units/100 mL or to a complete, albeit temporary, disappearance of the microorganism. In conclusion, hydrogen peroxide at 3% can be proposed as a suitable product for periodic disinfection of domestic MWDs, taking into consideration also its low cost and easy availability. PMID:19017550

  20. Quality assessment of plant transpiration water

    NASA Technical Reports Server (NTRS)

    Macler, Bruce A.; Janik, Daniel S.; Benson, Brian L.

    1990-01-01

    It has been proposed to use plants as elements of biologically-based life support systems for long-term space missions. Three roles have been brought forth for plants in this application: recycling of water, regeneration of air and production of food. This report discusses recycling of water and presents data from investigations of plant transpiration water quality. Aqueous nutrient solution was applied to several plant species and transpired water collected. The findings indicated that this water typically contained 0.3-6 ppm of total organic carbon, which meets hygiene water standards for NASA's space applications. It suggests that this method could be developed to achieve potable water standards.

  1. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  2. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  3. Principles of Water Quality Control.

    ERIC Educational Resources Information Center

    Tebbutt, T. H. Y.

    This book is designed as a text for undergraduate civil engineering courses and as preliminary reading for postgraduate courses in public health engineering and water resources technology. It is also intended to be of value to workers already in the field and to students preparing for the examinations of the Institute of Water Pollution Control…

  4. The social ecology of water in a Mumbai slum: failures in water quality, quantity, and reliability

    PubMed Central

    2013-01-01

    Background Urban slums in developing countries that are not recognized by the government often lack legal access to municipal water supplies. This results in the creation of insecure “informal” water distribution systems (i.e., community-run or private systems outside of the government’s purview) that may increase water-borne disease risk. We evaluate an informal water distribution system in a slum in Mumbai, India using commonly accepted health and social equity indicators. We also identify predictors of bacterial contamination of drinking water using logistic regression analysis. Methods Data were collected through two studies: the 2008 Baseline Needs Assessment survey of 959 households and the 2011 Seasonal Water Assessment, in which 229 samples were collected for water quality testing over three seasons. Water samples were collected in each season from the following points along the distribution system: motors that directly tap the municipal supply (i.e., “point-of-source” water), hoses going to slum lanes, and storage and drinking water containers from 21 households. Results Depending on season, households spend an average of 52 to 206 times more than the standard municipal charge of Indian rupees 2.25 (US dollars 0.04) per 1000 liters for water, and, in some seasons, 95% use less than the WHO-recommended minimum of 50 liters per capita per day. During the monsoon season, 50% of point-of-source water samples were contaminated. Despite a lack of point-of-source water contamination in other seasons, stored drinking water was contaminated in all seasons, with rates as high as 43% for E. coli and 76% for coliform bacteria. In the multivariate logistic regression analysis, monsoon and summer seasons were associated with significantly increased odds of drinking water contamination. Conclusions Our findings reveal severe deficiencies in water-related health and social equity indicators. All bacterial contamination of drinking water occurred due to post

  5. Water quality and restoration in a coastal subdivision stormwater pond.

    PubMed

    Serrano, Lorimar; DeLorenzo, Marie E

    2008-07-01

    Stormwater ponds are commonly used in residential and commercial areas to control flooding. The accumulation of urban contaminants in stormwater ponds can lead to a number of water quality problems including high nutrient, chemical contaminant, and bacterial levels. This study examined the interaction between land use and coastal pond water quality in a South Carolina residential subdivision pond. Eutrophic levels of chlorophyll and phosphorus were present in all seasons. Harmful cyanobacterial blooms were prevalent during the summer months. Microcystin toxin and fecal coliform bacteria levels were measured that exceeded health and safety standards. Low concentrations of herbicides (atrazine and 2,4-D) were also detected during summer months. Drainage from the stormwater pond may transport contaminants into the adjacent tidal creek and estuary. A survey of residents within the pond's watershed indicated poor pet waste management and frequent use of fertilizers and pesticides as possible contamination sources. Educational and outreach activities were provided to community members to create an awareness of the water quality conditions in the pond. Pond management strategies were then recommended, and selected mitigation actions were implemented. Water quality problems identified in this study have been observed in other coastal stormwater ponds of varying size and salinity, leading this project to serve as a potential model for coastal stormwater pond management. PMID:17368919

  6. Characterization of effluent water qualities from satellite membrane bioreactor facilities.

    PubMed

    Hirani, Zakir M; Bukhari, Zia; Oppenheimer, Joan; Jjemba, Patrick; LeChevallier, Mark W; Jacangelo, Joseph G

    2013-09-15

    Membrane bioreactors (MBRs) are often a preferred treatment technology for satellite water recycling facilities since they produce consistent effluent water quality with a small footprint and require little or no supervision. While the water quality produced from centralized MBRs has been widely reported, there is no study in the literature addressing the effluent quality from a broad range of satellite facilities. Thus, a study was conducted to characterize effluent water qualities produced by satellite MBRs with respect to organic, inorganic, physical and microbial parameters. Results from sampling 38 satellite MBR facilities across the U.S. demonstrated that 90% of these facilities produced nitrified (NH4-N <0.4 mg/L-N) effluents that have low organic carbon (TOC <8.1 mg/L), turbidities of <0.7 NTU, total coliform bacterial concentrations <100 CFU/100 mL and indigenous MS-2 bacteriophage concentrations <21 PFU/100 mL. Multiple sampling events from selected satellite facilities demonstrated process capability to consistently produce effluent with low concentrations of ammonia, TOC and turbidity. UV-254 transmittance values varied substantially during multiple sampling events indicating a need for attention in designing downstream UV disinfection systems. Although enteroviruses, rotaviruses and hepatitis A viruses (HAV) were absent in all samples, adenoviruses were detected in effluents of all nine MBR facilities sampled. The presence of Giardia cysts in filtrate samples of two of nine MBR facilities sampled demonstrated the need for an appropriate disinfection process at these facilities. PMID:23871258

  7. National Water-Quality Assessment Program - Source Water-Quality Assessments

    USGS Publications Warehouse

    Delzer, Gregory C.; Hamilton, Pixie A.

    2007-01-01

    In 2002, the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) implemented Source Water-Quality Assessments (SWQAs) to characterize the quality of selected rivers and aquifers used as a source of supply to community water systems in the United States. These assessments are intended to complement drinking-water monitoring required by Federal, State, and local programs, which focus primarily on post-treatment compliance monitoring.

  8. Algal-bacterial treatment facility removes selenium from drainage water

    SciTech Connect

    Quinn, Nigel W.T.; Lundquist, Tryg J.; Green, F. Bailey; Zarate, Max A.; Oswald, William J.; Leighton, Terrance

    2000-01-25

    A demonstration algal-bacterial selenium removal (ABSR) facility has been treating agricultural drainage water in the Panoche Drainage District on the west side of the San Joaquin Valley since 1997. The project goals are to demonstrate the effectiveness of the ABSR technology for selenium removal, to investigate potential wildlife exposure to selenium at full-scale facilities, and to develop an operational plant configuration that will minimize the life-cycle cost for each pound of selenium removed. The facility consists of a series of ponds designed to promote native microorganisms that remove nitrate and selenium. Previous treatment research efforts sought to reduce selenium concentrations to less than 5 mu g/L, but the ABSR Facility demonstration focuses on providing affordable reduction of the selenium load that is discharged to the San Joaquin River. During 1997 and 1998, the best-performing ABSR plant configuration reduced nitrate by more than 95 percent and reduced total soluble selenium mass by 80 percent. Ongoing investigations focus on optimizing operational parameters and determining operational costs and scale-up engineering requirements. The preliminary total cost estimate for a 10-acre-foot per day ABSR facility is less than $200 per acre-foot of treated drainage water.

  9. Factors affecting water quality in Cherokee Reservoir

    SciTech Connect

    Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

    1980-07-01

    The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

  10. Fecal pollution source tracking in waters intended for human supply based on archaeal and bacterial genetic markers.

    PubMed

    Bianco, Kayo; Barreto, Camila; Oliveira, Samara Sant'Anna; Pinto, Leonardo Henriques; Albano, Rodolpho Mattos; Miranda, Catia Chaia; Clementino, Maysa Mandetta

    2015-12-01

    The determination of fecal pollution sources in aquatic ecosystems is essential to estimate associated health risks. In this study, we evaluate eight microbial source tracking (MST) markers including host-specific Bacteroidales and Methanobrevibacter spp. for discrimination between human, bovine, equine, and swine fecal contamination in waters intended for human supply. Overall, the novel host-specific archaeal and bacterial primers proposed in this study demonstrated high sensitivity and specificity. Markers for the Archaea domain were more prevalent in the fecal and water samples studied. We conclude that the investigations regarding the sources of fecal pollution in public water supplies can contribute to improve the quality of human health. To our knowledge, this is the first analysis using both archaeal and bacterial fecal MST markers on tropical water bodies of Rio de Janeiro city, Brazil. PMID:26608760

  11. Microbiological Evaluation of fecal bacterial Composition from surface water through Aquifer Sand Material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When bacterial pathogens from livestock contaminate drinking water supplies, they can cause outbreaks of different forms of gastroenteritis. Of the different pathways by which bacterial pathogens can enter drinking water, one has received little attention to date; that is, because soils are often co...

  12. Quality assessment of various bottled waters marketed in Lebanon.

    PubMed

    Semerjian, Lucy A

    2011-01-01

    Thirty-two domestic bottled water brands were analyzed for various physico-chemical as well as bacterial water quality parameters. Recorded results were compared with the Lebanese Standards Institution standards of quality and standards of identity as well as various international water standards for bottled waters. Results showed a widespread in the characteristics of investigated bottled waters, yet the majority met the different bottled water standards for physico-chemical parameters except for pH (4 brands), hardness (2 brands), and calcium (2 brands). All samples showed negative growth for fecal coliforms, yet 18.8% (N = 6) and 59.4% (N = 19) of the samples revealed positive results for total coliforms and heterotrophic plate count at 37°C, respectively. Generated Piper diagrams revealed that the majority of investigated waters are of calcium-magnesium bicarbonate type; some brands were rich in sodium-potassium chloride, and few were of the mixed type. Comparison of the study results with reported label values indicated good agreement with stated pH values but considerable variation for dry residue, Mg, Na, K, Ca, Mg, HCO₃, Cl, and SO₄. Identification labels showed varying compliance with the Lebanese Standards Institution standards of identity. PMID:20148363

  13. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS. PMID:26670120

  14. Quantification, Distribution, and Possible Source of Bacterial Biofilm in Mouse Automated Watering Systems

    PubMed Central

    Meier, Thomas R; Maute, Carrie J; Cadillac, Joan M; Lee, Ji Young; Righter, Daniel J; Hugunin, Kelly MS; Deininger, Rolf A; Dysko, Robert C

    2008-01-01

    The use of automated watering systems for providing drinking water to rodents has become commonplace in the research setting. Little is known regarding bacterial biofilm growth within the water piping attached to the racks (manifolds). The purposes of this project were to determine whether the mouse oral flora contributed to the aerobic bacterial component of the rack biofilm, quantify bacterial growth in rack manifolds over 6 mo, assess our rack sanitation practices, and quantify bacterial biofilm development within sections of the manifold. By using standard methods of bacterial identification, the aerobic oral flora of 8 strains and stocks of mice were determined on their arrival at our animal facility. Ten rack manifolds were sampled before, during, and after sanitation and monthly for 6 mo. Manifolds were evaluated for aerobic bacterial growth by culture on R2A and trypticase soy agar, in addition to bacterial ATP quantification by bioluminescence. In addition, 6 racks were sampled at 32 accessible sites for evaluation of biofilm distribution within the watering manifold. The identified aerobic bacteria in the oral flora were inconsistent with the bacteria from the manifold, suggesting that the mice do not contribute to the biofilm bacteria. Bacterial growth in manifolds increased while they were in service, with exponential growth of the biofilm from months 3 to 6 and a significant decrease after sanitization. Bacterial biofilm distribution was not significantly different across location quartiles of the rack manifold, but bacterial levels differed between the shelf pipe and connecting elbow pipes. PMID:18351724

  15. GKI water quality studies. Progress report

    SciTech Connect

    Hutchinson, D L

    1980-01-01

    GKI water quality data collected in 1978 and early 1979 was evaluated with the objective of developing preliminary characterizations of native groundwater and retort water at Kamp Kerogen, Uintah County, Utah. Restrictive analytical definitions were developed to describe native groundwater and GKI retort water in an effort to eliminate from the sample population both groundwater samples affected by retorting and retort water samples diluted by groundwater. Native groundwater and retort water sample analyses were subjected to statistical manipulation and testing to summarize the data to determine the statistical validity of characterizations based on the data available, and to identify probable differences between groundwater and retort water based on available data. An evaluation of GKI water quality data related to developing characterizations of native groundwater and retort water at Kamp Kerogen was conducted. GKI retort water and the local native groundwater both appeared to be of very poor quality. Statistical testing indicated that the data available is generally insufficient for conclusive characterizations of native groundwater and retort water. Statistical testing indicated some probable significant differences between native groundwater and retort water that could be determined with available data. Certain parameters should be added to and others deleted from future laboratory analyses suites of water samples.

  16. WATER QUALITY ASSESSMENT OF AMERICAN FALLS RESERVOIR

    EPA Science Inventory

    A water quality model was developed to support a TMDL for phosphorus related to phytoplankton growth in the reservoir. This report documents the conceptual model, available data, model evaluation, and simulation results.

  17. RECREATIONAL WATER QUALITY AND SWIMMER HEALTH - CAN FASTER METHODS OF MEASURING RECREATIONAL WATER HELP PREVENT SWIMMING ASSOCIATED ILLNESS?

    EPA Science Inventory

    Evidence from various sources around the world indicate that there is a relationship between gastroenteritis in swimmers and the quality of the bathing water as measured with bacterial indicators of fecal contamination. Current EPA guidelines recommend the use of cultural method...

  18. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  19. Bacterial community in the biofilm of granular activated carbon (GAC) PreBiofilter in bench-scale pilot plants for surface water pretreatment.

    PubMed

    Wu, Tiehang; Fu, George Yuzhu; Sabula, Michael; Brown, Tommy

    2014-12-01

    Biofilters of granular activated carbon (GAC) are responsible for the removal of organic matters in drinking water treatments. PreBiofilters, which operate as the first unit in a surface water treatment train, are a cost-effective pretreatment for conventional surface water treatment and provide more consistent downstream water quality. This study investigated bacterial communities from the samples of raw surface water, biofilm on the PreBiofilter, and filtrates for surface water pretreatment. A bench-scale pilot plant of PreBiofilter was constructed to pretreat surface water from the Canoochee River, GA, USA. PreBiofilter exhibited a significant reduction of total organic carbon and dissolved organic carbon. The evenness and Shannon diversity of bacterial operational taxonomic units (OTUs) were significantly higher on the biofilm of PreBiofilter than in raw water and filtrates. Similar bacteria communities were observed in the raw water and filtrates using relative abundance of bacterial OTUs. However, the bacterial communities in the filtrates became relatively similar to those in the biofilm using presence/absence of bacterial OTUs. GAC biofilm or raw water and filtrates greatly contributed to the abundance of bacteria; whereas, bacteria sheared from colonized biofilm and entered filtrates. Evenly distributed, diverse and unique bacteria in the biofilm played an important role to remove organic matters from surface water for conventional surface water pretreatment. PMID:25267475

  20. Producing Quality Water for Industrial Use.

    ERIC Educational Resources Information Center

    Schaezler, Donald J.

    1978-01-01

    This article discusses the quality of water demanded by industrial plants and the techniques which are currently employed to achieve them. Both quality and quantity requirements are considered including total plant operation, physical and chemical operating controls, and systems monitoring. (CS)

  1. Physico-Chemical and Bacterial Evaluation of Packaged Drinking Water Marketed in Delhi - Potential Public Health Implications

    PubMed Central

    Singla, Ashish; Kundu, Hansa; P., Basavaraj; Singh, Shilpi; Singh, Khushboo; Jain, Swati

    2014-01-01

    Introduction: Quality of drinking water is a powerful environmental determinant of health. The main objective of introduction of bottled water in the society was its better safety, taste and convenience over tap water. The present study was conducted to assess physicochemical and bacterial qualities of bottled water and sachet water which were available in various markets of Delhi. Materials and Methods: Sixteen water bottles and four water sachets were selected through stratified random sampling from various public places in Delhi and their analysis was done at National Test House, Ghaziabad. Results were then compared with national (IS10500, IS14543) and international (WHO, FDA, USEPA) standards. Results: Bottled water showed better quality than sachet water. The mean value of copper (0.0746mg/l) in bottles exceeded the standard values of IS10500 and IS14543(0.05), while the mean value of lead (0.008mg/l) exceeded the FDA standard value (0.005). When the results of sachets were compared with those of standards, the mean values of selenium (0.1195mg/l) and lead (0.862mg/l) were found to exceed values of both Indian and International standards. For the biological parameter i.e. coliform count, the mean value for bottles was 0 (nil), whereas the mean value for sachets was 16.75, which showed the unhealthy nature of sachets. Conclusion: The parameters which were tested in the present study showed excess of various chemical and bacterial parameters in drinking water, which could pose serious threats to consumers. Thus, these results suggest a more stringent standardization of bottled water market with special attention to quality, identity and licensing by concerned authorities, to safeguard health of consumers. PMID:24783149

  2. BIOMONITORING OF SOURCE WATER QUALITY

    EPA Science Inventory

    Living organisms are commonly used to determine the toxicity of environmental samples but are usually limited to survival, growth, or reproduction. With advances in electronic and computer technology, biomonitors are being developed that can assess the toxicity of water by monit...

  3. Instruments for Water Quality Measurements

    ERIC Educational Resources Information Center

    Phillips, Sidney L.; Mack, Dick A.

    1975-01-01

    This discussion gives a general picture of the instrumentation available or being developed for measuring the four major categories of water pollutants: metals, nutrients, pesticides and oxygen demand. The instruments are classified as follows: manually operated laboratory analyzers, automated laboratory instrumentation, manual field monitors, and…

  4. Establishment and early succession of bacterial communities in monochloramine-treated drinking water biofilms.

    PubMed

    Revetta, Randy P; Gomez-Alvarez, Vicente; Gerke, Tammie L; Curioso, Claudine; Santo Domingo, Jorge W; Ashbolt, Nicholas J

    2013-12-01

    Monochloramine is an increasingly used drinking water disinfectant and has been shown to increase nitrifying bacteria and mycobacteria in drinking waters. The potential successions and development of these bacteria were examined by 16S rRNA gene clone libraries generated from various biofilms within a water distribution system simulator. Biofilms were obtained from in-line and off-line devices using borosilicate glass beads, along with polycarbonate coupons from annular reactors incubated for up to 8 months in monochloramine-treated drinking water. No significant difference in community structures was observed between biofilm devices and coupon material; however, all biofilm communities that developed on different devices underwent similar successions over time. Early stages of biofilm formation were dominated by Serratia (29%), Cloacibacterium (23%), Diaphorobacter (16%), and Pseudomonas (7%), while Mycobacterium-like phylotypes were the most predominant populations (> 27%) in subsequent months. The development of members of the nontuberculous mycobacteria (NTM) after 3 months may impact individuals with predisposing conditions, while nitrifiers (related to Nitrospira moscoviensis and Nitrosospira multiformis) could impact water quality. Overall, 90% of the diversity in all the clone library samples was associated with the phyla Proteobacteria, Actinobacteria, and Bacteroidetes. These results provide an ecological insight into biofilm bacterial successions in monochloramine-treated drinking water. PMID:23789638

  5. Baseline water quality of Iowa's coal region

    USGS Publications Warehouse

    Slack, Larry J.

    1979-01-01

    To assist the Iowa Department of Environmental Quality in determining the effects that coal mining and attendant activities will have on the water quality of Iowa streams, the U.S. Geological Survey collected three sets of water-quality samples (representative of high, average, and low streamflow) in the White Breast, English,aand Cedar Creek basins in south-central Iowa. These samples were analyzed by the U.S. Geological Survey Central Laboratory at Denver, Colorado, and by the Iowa State Hygienic Laboratory (Iowa City and Des Moines). The report presents the data collected from May to November 1978 at 15 stations in the study area. (Woodard-USGS)

  6. WATER QUALITY MULTI-YEAR PLAN

    EPA Science Inventory

    The water quality research program provides approaches and methods the Agency and its partners need to develop and apply criteria to support designated uses, tools to diagnose and assess impairment in aquatic systems, and tools to restore and protect aquatic systems. Water qualit...

  7. WQM: A Water Quality Management Simulation Game.

    ERIC Educational Resources Information Center

    Sharda, Ramesh; And Others

    1988-01-01

    Description of WQM, a simulation game designed to introduce students to the water quality management function, emphasizes the decision-making process involved in various facets of business. The simulation model is described, computer support is explained, and issues in water resource management are discussed. (13 references) (LRW)

  8. Water Quality Standards for Coral Reef Protection

    EPA Science Inventory

    The U.S. Clean Water Act provides a legal framework to protect coastal biological resources such as coral reefs, mangrove forests, and seagrass meadows from the damaging effects of human activities. Even though many resources are protected under this authority, water quality stan...

  9. SAMPLING DESIGN FOR ASSESSING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    Current U.S. EPA guidelines for monitoring recreatoinal water quality refer to the geometric mean density of indicator organisms, enterococci and E. coli in marine and fresh water, respectively, from at least five samples collected over a four-week period. In order to expand thi...

  10. Synthesis of bacterial cellulose using hot water extracted wood sugars.

    PubMed

    Erbas Kiziltas, Esra; Kiziltas, Alper; Gardner, Douglas J

    2015-06-25

    Bacterial cellulose (BC), a type of nanopolymer produced by Acetobacter xylinum is a nanostructured material with unique properties and wide applicability. However, a standard medium used for the cultivation of BC, the Hestrin-Schramm medium, is expensive and prevents wide scale extension of BC applications. In this research, a relatively low-cost culture media was successfully developed from wood hot water extracts for the Acetobacter xylinus 23769 strain. Hot water extract (HWE) is a residual material originating from pulp mills and lignocellulosic biorefineries and consists of mainly monomeric sugars, organic acids and organics. The effects of different pH (5, 6, 7 and 8) and temperatures (26, 28 and 30°C) were also examined in this research. There were no significant differences in the crystallinity and the recorded Iα fraction of cellulose produced between Hestrin-Schramm and the HWE medium. The maximum production of 0.15g/l of BC was obtained at a pH of 8 and temperature of 28°C. Glucose and xylose in the HWE were the main nutrient sources utilized in all BC cultivations based on high-pressure liquid chromatography (HPLC) results. HWE was shown to be a suitable carbon source for BC production, and a process was established for BC production from lignocellulosic feedstocks without using any modification of the HWE. HWE is an abundant and relatively inexpensive forest by-product. Using HWE for BC production could reduce burdens on the environment and also, achieve the goal of large scale BC production at low cost without using added culture nutrients. PMID:25839803

  11. Drinking water quality monitoring using trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Eteläniemi, Mira; Leiviskä, Kauko

    2014-06-01

    One of the common quality parameters for drinking water is residual aluminium. High doses of residual aluminium in drinking water or water used in the food industry have been proved to be at least a minor health risk or even to increase the risk of more serious health effects, and cause economic losses to the water treatment plant. In this study, the trend index is developed from scaled measurement data to detect a warning of changes in residual aluminium level in drinking water. The scaling is based on monotonously increasing, non-linear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. The severity of the situations is evaluated by deviation indices. The trend episodes and the deviation indices provide good tools for detecting changes in water quality and for process control. PMID:24937217

  12. Water-quality indices for specific water uses

    USGS Publications Warehouse

    Stoner, J.D.

    1978-01-01

    Water-quality indices were developed to assess waters for two specific uses--public water supply and irrigation. The assessment for a spcific water use is based on the availability f (of (1) a set of limits for each water quality property selected, (2) a rationale for selection, and (3) information that permits one to appraise the relationship of the concentration of the selected property to the suitability of the specific water use. The selected properties are divided into two classes: Type-I properties, those normaly considered toxic at low concentrations, and type-II properties, those which affect aesthetic conditions or which at high concentrations can be considered toxic or would otherwise render the water unfit for its intended use. (Woodard-USGS)

  13. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  14. Quality of water, Quillayute River basin, Washington

    SciTech Connect

    Fretwell, M.O.

    1984-01-01

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers of the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.

  15. Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs.

    PubMed

    Kamjunke, Norbert; Oosterwoud, Marieke R; Herzsprung, Peter; Tittel, Jörg

    2016-04-01

    Enhanced concentrations of dissolved organic matter (DOM) in freshwaters are an increasing problem in drinking water reservoirs. In this study we investigated bacterial DOM degradation rates in the tributaries of the reservoirs and tested the hypotheses that (1) DOM degradation is high enough to decrease DOM loads to reservoirs considerably, (2) DOM degradation is affected by stream hydrology, and (3) phosphorus addition may stimulate bacterial DOM degradation. Bacterial biomass production, which was used as a measure of DOM degradation, was highest in summer, and was usually lower at upstream than at downstream sites. An important proportion of bacterial production was realized in epilithic biofilms. Production of planktonic and biofilm bacteria was related to water temperature. Planktonic production weakly correlated to DOM quality and to total phosphorus concentration. Addition of soluble reactive phosphorus did not stimulate bacterial DOM degradation. Overall, DOM was considerably degraded in summer at low discharge levels, whereas degradation was negligible during flood events (when DOM load in reservoirs was high). The ratio of DOM degradation to total DOM release was negatively related to discharge. On annual average, only 0.6-12% of total DOM released by the catchments was degraded within the tributaries. PMID:26799807

  16. Water quality analysis of surface water: a Web approach.

    PubMed

    Prasad, Poonam; Chaurasia, Meenal; Sohony, R A; Gupta, Indrani; Kumar, R

    2013-07-01

    The chemical, physical and biological characteristics of water with respect to its suitability describe its quality. Concentration of pesticides or fertilisers degrades the water quality and affects marine life. A comprehensive environmental data information system helps to perform and complete common tasks in less time with less effort for data verification, data calculations, graph generation, and proper monitoring, which helps in the further mitigation step. In this paper, focus is given to a web-based system developed to express the quality of water in the imprecise environment of monitoring data. Water samples were analyzed for eight different surface water parameters, in which four parameters such as pH, dissolved oxygen, biochemical oxygen demand, and fecal coliform were used for the water quality index calculation following MPCB Water Quality Standards of class A-II for best designated use. The analysis showed that river points in a particular year were in very bad category with certainty level of 0-38% which is unsuitable for drinking purposes; samples in bad category had certainty level that ranged from 38 to 50%; samples in medium to good category had certainty levels from 50 to 100%, and the remaining samples were in good to excellent category, suitable for drinking purposes, with certainty levels from 63 to 100%. PMID:23238782

  17. Microbiological water quality in a large in-building, water recycling facility.

    PubMed

    Birks, R; Colbourne, J; Hills, S; Hobson, R

    2004-01-01

    The Thames Water recycling plant at the Millennium Dome, London, reclaimed three sources of water: greywater from the washbasins, rainwater from the Dome roof and groundwater from a borehole on site. These were pre-treated separately, and the mixed stream filtered using ultrafiltration and reverse osmosis membranes. Monitoring for indicator microorganisms was undertaken throughout the plant and in the reclaimed water distribution system, as well as ad-hoc monitoring for the presence of pathogens in the raw waters. Treatment to the level of ultrafiltration was more than adequate to produce a water quality meeting existing worldwide reclaimed water guidelines for toilet flushing. Owing to the excellent quality of the water leaving the plant, no significant microbiological growth was observed in the reclaimed water distribution system during the year. The raw greywater exhibited a higher faecal bacterial load than the rainwater and groundwater, as predicted from more human contact (i.e. hand washing). Environmental strains of Legionella were observed in the three raw greywater samples analysed for pathogens, as was Cryptosporidium, Giardia and faecal enterococci. The rainwater had relatively high levels of faecal bacteria, probably of avian origin. Giardia was detected in one rainwater sample confirming the potential for this water source to contain pathogens. PMID:15344787

  18. Rare Event Detection Algorithm Of Water Quality

    NASA Astrophysics Data System (ADS)

    Ungs, M. J.

    2011-12-01

    A novel method is presented describing the development and implementation of an on-line water quality event detection algorithm. An algorithm was developed to distinguish between normal variation in water quality parameters and changes in these parameters triggered by the presence of contaminant spikes. Emphasis is placed on simultaneously limiting the number of false alarms (which are called false positives) that occur and the number of misses (called false negatives). The problem of excessive false alarms is common to existing change detection algorithms. EPA's standard measure of evaluation for event detection algorithms is to have a false alarm rate of less than 0.5 percent and a false positive rate less than 2 percent (EPA 817-R-07-002). A detailed description of the algorithm's development is presented. The algorithm is tested using historical water quality data collected by a public water supply agency at multiple locations and using spiking contaminants developed by the USEPA, Water Security Division. The water quality parameters of specific conductivity, chlorine residual, total organic carbon, pH, and oxidation reduction potential are considered. Abnormal data sets are generated by superimposing water quality changes on the historical or baseline data. Eddies-ET has defined reaction expressions which specify how the peak or spike concentration of a particular contaminant affects each water quality parameter. Nine default contaminants (Eddies-ET) were previously derived from pipe-loop tests performed at EPA's National Homeland Security Research Center (NHSRC) Test and Evaluation (T&E) Facility. A contaminant strength value of approximately 1.5 is considered to be a significant threat. The proposed algorithm has been able to achieve a combined false alarm rate of less than 0.03 percent for both false positives and for false negatives using contaminant spikes of strength 2 or more.

  19. Water quality assessment in Ecuador

    SciTech Connect

    Chudy, J.P.; Arniella, E.; Gil, E.

    1993-02-01

    The El Tor cholera pandemic arrived in Ecuador in March 1991, and through the course of the year caused 46,320 cases, of which 692 resulted in death. Most of the cases were confined to cities along Ecuador's coast. The Water and Sanitation for Health Project (WASH), which was asked to participate in the review of this request, suggested that a more comprehensive approach should be taken to cholera control and prevention. The approach was accepted, and a multidisciplinary team consisting of a sanitary engineer, a hygiene education specialist, and an institutional specialist was scheduled to carry out the assessment in late 1992 following the national elections.

  20. Water quality and the grazing animal.

    PubMed

    Hubbard, R K; Newton, G L; Hill, G M

    2004-01-01

    Grazing animals and pasture production can affect water quality both positively and negatively. Good management practices for forage production protect the soil surface from erosion compared with conventionally produced crops. Grazing animals and pasture production can negatively affect water quality through erosion and sediment transport into surface waters, through nutrients from urine and feces dropped by the animals and fertility practices associated with production of high-quality pasture, and through pathogens from the wastes. Erosion and sediment transport is primarily associated with high-density stocking and/or poor forage stands. The two nutrients of primary concern relating to animal production are N and P. Nitrogen is of concern because high concentrations in drinking water in the NO(3) form cause methemoglobinemia (blue baby disease), whereas other forms of N (primarily nitrite, NO(2)) are considered to be potentially carcinogenic. Phosphorus in the PO(4) form is of concern because it causes eutrophication of surface water bodies. The effect of grazing animals on soil and water quality must be evaluated at both the field and watershed scales. Such evaluation must account for both direct input of animal wastes from the grazing animal and also applications of inorganic fertilizers to produce quality pastures. Watershed-scale studies have primarily used the approach of nutrient loadings per land area and nutrient removals as livestock harvests. A number of studies have measured nutrient loads in surface runoff from grazed land and compared loads with other land uses, including row crop agriculture and forestry. Concentrations in discharge have been regressed against standard grazing animal units per land area. Watersheds with concentrated livestock populations have been shown to discharge as much as 5 to 10 times more nutrients than watersheds in cropland or forestry. The other major water quality concern with grazing animals is pathogens, which may move

  1. Development of reclaimed potable water quality criteria

    NASA Technical Reports Server (NTRS)

    Flory, D. A.; Weir, F. W.

    1979-01-01

    In order to minimize launch requirements necessary to meet the demands of long-term spaceflight, NASA will reuse water reclaimed from various on-board sources including urine, feces, wash water and humidity condensate. Development of reclamation systems requires the promulgation of water quality standards for potable reuse of the reclaimed water. Existing standards for domestic U.S. potable water consumption were developed, but do not consider the peculiar problems associated with the potable reuse of recycled water. An effort was made to: (1) define a protocol by which comprehensive reclaimed water potability/palatability criteria can be established and updated; and (2) continue the effort to characterize the organic content of reclaimed water in the Regenerative Life Support Evaluation.

  2. Efficiency of ciprofloxacin for bacterial control, post-thaw quality, and in vivo fertility of buffalo spermatozoa.

    PubMed

    Akhter, S; Ansari, M S; Rakha, B A; Andrabi, S M H; Qadeer, S; Iqbal, R; Ullah, N

    2013-09-01

    Ciprofloxacin (CP) was evaluated for bacterial control, post-thaw quality, and fertility of buffalo semen. Pseudomonas aeruginosa, Escherichia coli, Proteus sp., Corynebacterium sp., Micrococcus sp., and Staphylococcus sp. were isolated from buffalo semen. Pseudomonas aeruginosa, Corynebacterium sp., and Micrococcus sp. were resistant to streptomycin, whereas P. aeruginosa and Proteus sp. were resistant to penicillin. All bacteria were susceptible to CP. In vitro dose toxicity was assessed in sodium citrate buffer containing 0, 200 to 2000 μg/mL of CP. CP up to 1000 μg/mL was found nontoxic to motility and viability of buffalo sperm. For post-thaw quality, buffalo semen was frozen in Tris-citric acid extender containing streptomycin-penicillin (SP; 1000 μg/mL-1000 IU/mL) or CP 600 μg/mL and was assessed for total aerobic bacterial count (post-thaw), motility, plasma membrane integrity, viability at 0, 2, and 4 hours post-thaw. At 4 hours post-thaw, plasma membrane integrity (%) was higher (P < 0.05) in extender containing CP than SP. Total aerobic bacterial count was 0.00 in extender containing CP compared with 0.07 × 10(4) cfu/mL with SP. To assess the in vivo fertility rate, semen (two bulls) frozen in Tris-citric acid extender containing SP or CP was used to inseminate, and 400 inseminations (200/group) were recorded. Higher (P ≤ 0.05) fertility rate was recorded with CP (55%) compared with SP (41%). In conclusion, use of CP in extender was efficient to control the bacterial contamination without compromising the post-thaw quality and fertility of cryopreserved water buffalo bull semen. PMID:23746693

  3. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM) plans. WQM plans consist of...

  4. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM) plans. WQM plans consist of...

  5. WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER PROTECTION

    EPA Science Inventory

    Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as both a drinking water and ecological media. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic ...

  6. OPERATION OF WATER DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. In order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wat...

  7. Multidimensional Measurement of Household Water Poverty in a Mumbai Slum: Looking Beyond Water Quality

    PubMed Central

    Subbaraman, Ramnath; Nolan, Laura; Sawant, Kiran; Shitole, Shrutika; Shitole, Tejal; Nanarkar, Mahesh; Patil-Deshmukh, Anita; Bloom, David E.

    2015-01-01

    Objective A focus on bacterial contamination has limited many studies of water service delivery in slums, with diarrheal illness being the presumed outcome of interest. We conducted a mixed methods study in a slum of 12,000 people in Mumbai, India to measure deficiencies in a broader array of water service delivery indicators and their adverse life impacts on the slum’s residents. Methods Six focus group discussions and 40 individual qualitative interviews were conducted using purposeful sampling. Quantitative data on water indicators—quantity, access, price, reliability, and equity—were collected via a structured survey of 521 households selected using population-based random sampling. Results In addition to negatively affecting health, the qualitative findings reveal that water service delivery failures have a constellation of other adverse life impacts—on household economy, employment, education, quality of life, social cohesion, and people’s sense of political inclusion. In a multivariate logistic regression analysis, price of water is the factor most strongly associated with use of inadequate water quantity (≤20 liters per capita per day). Water service delivery failures and their adverse impacts vary based on whether households fetch water or have informal water vendors deliver it to their homes. Conclusions Deficiencies in water service delivery are associated with many non-health-related adverse impacts on slum households. Failure to evaluate non-health outcomes may underestimate the deprivation resulting from inadequate water service delivery. Based on these findings, we outline a multidimensional definition of household “water poverty” that encourages policymakers and researchers to look beyond evaluation of water quality and health. Use of multidimensional water metrics by governments, slum communities, and researchers may help to ensure that water supplies are designed to advance a broad array of health, economic, and social outcomes for

  8. Water quality in sugar catchments of Queensland.

    PubMed

    Rayment, G E

    2003-01-01

    Water quality condition and trend are important indicators of the impact of land use on the environment, as degraded water quality causes unwelcome changes to ecosystem composition and health. These concerns extend to the sea, where discharges of nutrients, sediments and toxicants above natural levels are unwelcome, particularly when they drain to the Great Barrier Reef World Heritage Area and other coastal waters of Queensland. Sugarcane is grown in 26 major river catchments in Queensland, most in environmentally sensitive areas. This puts pressure on the Queensland Sugar Industry to manage the land in ways that have minimum adverse off-site impacts. Sugar researchers including CRC Sugar have been associated with water quality studies in North Queensland. These include investigations and reviews to assess the role of groundwater as a pathway for nitrate loss from canelands in the Herbert Catchment, to find causes of oxygen depletion in water (including irrigation runoff) from Ingham to Mackay, to use residues of superseded pesticides as indicators of sediment loss to the sea, and to assemble information on water quality pressure and status in sugar catchments. Key findings, plus information on input pressures are described in this paper, and areas of concern and opportunities discussed. PMID:14653632

  9. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  10. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.