Science.gov

Sample records for bacteriophage phi29 dna

  1. Fingerprinting of Peptides with a Large Channel of Bacteriophage Phi29 DNA Packaging Motor.

    PubMed

    Ji, Zhouxiang; Wang, Shaoying; Zhao, Zhengyi; Zhou, Zhi; Haque, Farzin; Guo, Peixuan

    2016-09-01

    Nanopore technology has become a highly sensitive and powerful tool for single molecule sensing of chemicals and biopolymers. Protein pores have the advantages of size amenability, channel homogeneity, and fabrication reproducibility. But most well-studied protein pores for sensing are too small for passage of peptide analytes that are typically a few nanometers in dimension. The funnel-shaped channel of bacteriophage phi29 DNA packaging motor has previously been inserted into a lipid membrane to serve as a larger pore with a narrowest N-terminal constriction of 3.6 nm and a wider C-terminal end of 6 nm. Here, the utility of phi29 motor channel for fingerprinting of various peptides using single molecule electrophysiological assays is reported. The translocation of peptides is proved unequivocally by single molecule fluorescence imaging. Current blockage percentage and distinctive current signatures are used to distinguish peptides with high confidence. Each peptide generated one or two distinct current blockage peaks, serving as typical fingerprint for each peptide. The oligomeric states of peptides can also be studied in real time at single molecule level. The results demonstrate the potential for further development of phi29 motor channel for detection of disease-associated peptide biomarkers. PMID:27435806

  2. Supercoiled DNA wraps around the bacteriophage phi 29 head-tail connector.

    PubMed Central

    Turnquist, S; Simon, M; Egelman, E; Anderson, D

    1992-01-01

    Supercoiled pBR322 DNA wraps around the outside of the isolated Bacillus subtilis bacteriophage phi 29 head-tail connector, the crux of the DNA packaging machine of the viral precursor capsid or prohead. The contour length of the supercoiled DNA, determined by EM, decreased by approximately 180 base pairs for each connector bound. Mass and radial density determinations by scanning transmission EM showed that the increased mass of the connector-DNA complex relative to the connector alone was equivalent to approximately 170 base pairs of DNA and was located around the outside of the connector. Topoisomerase I treatment of the complexes followed by deproteinization suggested that supercoils were restrained by the connectors. Connectors bound linear and open-circular plasmid DNAs inefficiently but were not wrapped by these DNAs. The wrapping of supercoiled DNA around the isolated phi 29 connector is hypothesized to reflect the initiation phase of the normal process of DNA packaging. Packaging substrates would be supercoiled, wrapped by the connector, linearized, and translocated by rotation of the connector relative to the viral capsid with the aid of ATP hydrolysis. Images PMID:1438237

  3. Structural changes of bacteriophage [phi]29 upon DNA packaging and release

    SciTech Connect

    Xiang, Y.; Morais, M.C.; Battisti, A.J.; Grimes, S.; Jardine, P.J.; Anderson, D.L.; Rossmann, M.G.

    2008-04-24

    Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage {phi}29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the {phi}29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a structure homologous to the bacteriophage P22 tailspikes. Two of the appendages are extended radially outwards, away from the long axis of the virus, whereas the others are around and parallel to the phage axis. The appendage orientations are correlated with the symmetry-mismatched positions of the five-fold related head fibers, suggesting a mechanism for partial cell wall digestion upon rotation of the head about the tail when initiating infection. The narrow end of the head-tail connector is expanded in the mature virus. Gene product 3, bound to the 5-foot ends of the genome, appears to be positioned within the expanded connector, which may potentiate the release of DNA-packaging machine components, creating a binding site for attachment of the tail.

  4. Experimental test of connector rotation during DNA packaging into bacteriophage phi29 capsids.

    PubMed

    Hugel, Thorsten; Michaelis, Jens; Hetherington, Craig L; Jardine, Paul J; Grimes, Shelley; Walter, Jessica M; Falk, Wayne; Anderson, Dwight L; Bustamante, Carlos

    2007-03-01

    The bacteriophage phi29 generates large forces to compact its double-stranded DNA genome into a protein capsid by means of a portal motor complex. Several mechanical models for the generation of these high forces by the motor complex predict coupling of DNA translocation to rotation of the head-tail connector dodecamer. Putative connector rotation is investigated here by combining the methods of single-molecule force spectroscopy with polarization-sensitive single-molecule fluorescence. In our experiment, we observe motor function in several packaging complexes in parallel using video microscopy of bead position in a magnetic trap. At the same time, we follow the orientation of single fluorophores attached to the portal motor connector. From our data, we can exclude connector rotation with greater than 99% probability and therefore answer a long-standing mechanistic question. PMID:17311473

  5. The bacteriophage straight phi29 portal motor can package DNA against a large internal force.

    PubMed

    Smith, D E; Tans, S J; Smith, S B; Grimes, S; Anderson, D L; Bustamante, C

    2001-10-18

    As part of the viral infection cycle, viruses must package their newly replicated genomes for delivery to other host cells. Bacteriophage straight phi29 packages its 6.6-microm long, double-stranded DNA into a 42 x 54 nm capsid by means of a portal complex that hydrolyses ATP. This process is remarkable because entropic, electrostatic and bending energies of the DNA must be overcome to package the DNA to near-crystalline density. Here we use optical tweezers to pull on single DNA molecules as they are packaged, thus demonstrating that the portal complex is a force-generating motor. This motor can work against loads of up to 57 pN on average, making it one of the strongest molecular motors reported to date. Movements of over 5 microm are observed, indicating high processivity. Pauses and slips also occur, particularly at higher forces. We establish the force-velocity relationship of the motor and find that the rate-limiting step of the motor's cycle is force dependent even at low loads. Notably, the packaging rate decreases as the prohead is filled, indicating that an internal force builds up to approximately 50 pN owing to DNA confinement. Our data suggest that this force may be available for initiating the ejection of the DNA from the capsid during infection. PMID:11607035

  6. Construction of Bacteriophage Phi29 DNA Packaging Motor and its Applications in Nanotechnology and Therapy

    PubMed Central

    Lee, Tae Jin; Schwartz, Chad; Guo, Peixuan

    2010-01-01

    Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications. PMID:19495981

  7. Signals at the bacteriophage phi 29 DNA replication origins required for protein p6 binding and activity.

    PubMed Central

    Serrano, M; Gutiérrez, J; Prieto, I; Hermoso, J M; Salas, M

    1989-01-01

    Protein p6 of Bacillus subtilis phage phi 29 binds specifically to the ends of the viral DNA that contain the replication origins, giving rise to a nucleoprotein structure. DNA regions recognized by protein p6 have been mapped by deletion analysis and DNase I footprinting. Main protein p6-recognition signals have been located between nucleotides 62 and 125 at the right phi 29 DNA end and between nucleotides 46 and 68 at the left end. In addition, recognition signals are also present at other sites within 200-300 bp at each phi 29 DNA end. Protein p6 does not seem to recognize a specific sequence in the DNA, but rather a structural feature, which could be bendability. The formation of the protein p6-DNA nucleoprotein complex is likely to be the structural basis for the protein p6 activity in the initiation of replication. Images PMID:2767056

  8. Circularly permuted viral pRNA active and specific in the packaging of bacteriophage phi 29 DNA.

    PubMed

    Zhang, C; Trottier, M; Guo, P

    1995-03-10

    A viral-encoded 120-base pRNA has been shown to have an essential role in the packaging of bacteriophage phi 29 DNA. The finding that both the 5'- and 3'-termini of the pRNA are proximate and crucial for biological function (C. Zhang, C. Lee, and P. Guo, 1994, Virology, 201, 77-85) prompted investigation of the activity of circularly permuted pRNAs (cpRNA) and of the expandability and essentiality of bases extending from the termini. A 117-base pRNA with a deletion of three bases downstream of the proximal terminus was active in DNA packaging. Concatemeric DNAs containing two tandem pRNA genes separated by a short or a long loop sequence were constructed. The cpRNAs from these DNA templates were transcribed in vitro and shown to be active in phi 29 DNA packaging, with activity comparable to the parental (noncircularly permuted) pRNA, indicating that neither of the loops tested affected the activity and folding of the cpRNA. As few as four bases were sufficient to serve as a loop for the terminal 180 degree turn, and a loop as long as 27 bases did not affect the cpRNA structure and function. Eight cpRNAs were constructed to assess the effect of openings within the wild-type pRNA structure. Opening of the bulge at residue 38 did not affect cpRNA activity, but opening the bulge at residue 55 greatly reduced it. Although the sequence of the 5',3'-terminal loop was not important for the folding and activity of the cpRNA, the activities of cpRNAs with openings at individual bulges or hairpins were different, indicating that each region plays a different role in pRNA folding and function. Our results indicate that it is possible to generate active circularly permuted pRNA by assigning internal sites of the pRNA as new 3'- and 5'-termini. The creation of new variable ends makes the labeling of internal bases of the pRNA molecule possible and will facilitate the analysis of pRNA secondary and tertiary structure. PMID:7533964

  9. Single pore translocation of folded, double-stranded, and tetra-stranded DNA through channel of bacteriophage phi29 DNA packaging motor.

    PubMed

    Haque, Farzin; Wang, Shaoying; Stites, Chris; Chen, Li; Wang, Chi; Guo, Peixuan

    2015-01-01

    The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ∼35-fold slower speed of translocation per base-pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ∼32% of channel current blockage and with ∼64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine. PMID:25890769

  10. Single Pore Translocation of Folded, Double-Stranded, and Tetra-stranded DNA through Channel of Bacteriophage Phi29 DNA Packaging Motor

    PubMed Central

    Haque, Farzin; Wang, Shaoying; Stites, Chris; Chen, Li; Wang, Chi; Guo, Peixuan

    2015-01-01

    The elegant architecture of the channel of bacteriophage phi29 DNA packaging motor has inspired the development of biomimetics for biophysical and nanobiomedical applications. The reengineered channel inserted into a lipid membrane exhibits robust electrophysiological properties ideal for precise sensing and fingerprinting of dsDNA at the single-molecule level. Herein, we used single channel conduction assays to quantitatively evaluate the translocation dynamics of dsDNA as a function of the length and conformation of dsDNA. We extracted the speed of dsDNA translocation from the dwell time distribution and estimated the various forces involved in the translocation process. A ~35-fold slower speed of translocation per base pair was observed for long dsDNA, a significant contrast to the speed of dsDNA crossing synthetic pores. It was found that the channel could translocate both dsDNA with ~32% of channel current blockage and ~64% for tetra-stranded DNA (two parallel dsDNA). The calculation of both cross-sectional areas of the dsDNA and tetra-stranded DNA suggested that the blockage was purely proportional to the physical space of the channel lumen and the size of the DNA substrate. Folded dsDNA configuration was clearly reflected in their characteristic current signatures. The finding of translocation of tetra-stranded DNA with 64% blockage is in consent with the recently elucidated mechanism of viral DNA packaging via a revolution mode that requires a channel larger than the dsDNA diameter of 2 nm to provide room for viral DNA revolving without rotation. The understanding of the dynamics of dsDNA translocation in the phi29 system will enable us to design more sophisticated single pore DNA translocation devices for future applications in nanotechnology and personal medicine. PMID:25890769

  11. Morphogenesis of bacteriophage phi 29 of Bacillus subtilis: prohead restoration for DNA-gp3 packaging and assembly.

    PubMed Central

    Bjornsti, M A; Reilly, B E; Anderson, D L

    1985-01-01

    The DNA-protein complex DNA-gp3 of phi 29 is efficiently packaged into purified proheads with the aid of plasmid-derived gp16. The filled heads can be assembled to phage by addition of an extract providing the products for neck-tail assembly (Bjornsti et al., J. Virol. 50:766-772, 1984). However, purified proheads lost their competence to package DNA-gp3 upon storage for 2 months at 4 degrees C. Competence was restored by complementation with extracts of certain mutant-infected cells, and these experiments demonstrated that late proteins were not involved; restoration obtained with 4-8-14--infected cells was indistinguishable from that obtained with 7-8-14--infected cells. 2-8-14- and 3-8-14- extracts restored about one-third of the capacity to package exogenous DNA-gp3. A 1-8-14- extracts restored activity to package 20.6% of the DNA-gp3 added, but phage were not produced. PMID:3919187

  12. My life with bacteriophage phi29.

    PubMed

    Salas, Margarita

    2012-12-28

    This article is a survey of my scientific work over 52 years. During my postdoctoral stay in Severo Ochoa's laboratory, I determined the direction of reading of the genetic message, and I discovered two proteins that I showed to be involved in the initiation of protein synthesis. The work I have done in Spain with bacteriophage ϕ29 for 45 years has been very rewarding. I can say that I was lucky because I did not expect that ϕ29 would give so many interesting results, but I worked hard, with a lot of dedication and enthusiasm, and I was there when the luck arrived. I would like to emphasize our work on the control of ϕ29 DNA transcription and, in particular, the finding for the first time of a protein covalently linked to the 5'-ends of ϕ29 DNA that we later showed to be the primer for the initiation of phage DNA replication. Very relevant was the discovery of the ϕ29 DNA polymerase, with its properties of extremely high processivity and strand displacement capacity, together with its high fidelity. The ϕ29 DNA polymerase has become an ideal enzyme for DNA amplification, both rolling-circle and whole-genome linear amplification. I am also very proud of the many brilliant students and collaborators with whom I have worked over the years and who have become excellent scientists. This Reflections article is not intended to be the end of my scientific career. I expect to work for many years to come. PMID:23124207

  13. Structure and Function Study of Phi29 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Fang, Huaming

    A powerful nanomotor is employed by the tailed dsDNA virus to package the genome into a preformed protein shell during the process of replication. The bacteriophage phi29 is an excellent model for investigating the viral DNA packaging mechanism. The phi29 DNA packaging motor is composed of three ring structures: the dodecameric connector ring, the hexameric pRNA ring and the hexameric ATPase gp16 ring. The connector is the central hub for the DNA to enter and to exit. There are four positively charged lysine rings scattered inside the highly negatively charged connector channel. It is speculated that these positive charged lysine rings may play active roles during DNA packaging in many models. To test this prevalent view, the basic lysine residues were mutated to neutral alanines and the pH environment was altered. Amazingly, the results were beyond expectation. Neither the DNA translocation nor the one-way traffic property of the channel were measurably influenced by the alteration of the charge of lysine residues when the basic lysine residues mutated to neutral alanines or the pH environment changed to acid or basic. The ATPase or the terminase is the central part of the viral DNA packaging motor. The phi29 ATPase is highly hydrophobic and tends to aggregate in solution. A green fluorescent protein tag (eGFP) fused to the N-terminus of gp16 enhanced its solubility and stability. The eGFP-gp16 showed similar activity to wild type gp16 and was easily detected by fluorescent instruments. The interaction between eGFP-gp16 and DNA in the various conditions were investigated by electrophoretic mobility shift assay, FRET and sucrose gradient. gamma-S-ATP dramatically increased gp16 binding affinity to DNA and ATP, ADP, phosphate could release gp16 from gp16-DNA-gamma-S-ATP complex. The sliding of gp16 out of the gp16-DNA-gamma-S-ATP complex could be blocked by addition of Steptavidin to ends of dsDNA which is conjugated with biotins. Also, we found that six eGFP-gp16

  14. Construction of RNA nanocages by re-engineering the packaging RNA of Phi29 bacteriophage

    NASA Astrophysics Data System (ADS)

    Hao, Chenhui; Li, Xiang; Tian, Cheng; Jiang, Wen; Wang, Guansong; Mao, Chengde

    2014-05-01

    RNA nanotechnology promises rational design of RNA nanostructures with wide array of structural diversities and functionalities. Such nanostructures could be used in applications such as small interfering RNA delivery and organization of in vivo chemical reactions. Though having impressive development in recent years, RNA nanotechnology is still quite limited and its programmability and complexity could not rival the degree of its closely related cousin: DNA nanotechnology. Novel strategies are needed for programmed RNA self-assembly. Here, we have assembled RNA nanocages by re-engineering a natural, biological RNA motif: the packaging RNA of phi29 bacteriophage. The resulting RNA nanostructures have been thoroughly characterized by gel electrophoresis, cryogenic electron microscopy imaging and dynamic light scattering.

  15. Robust properties of membrane-embedded connector channel of bacterial virus phi29 DNA packaging motor.

    PubMed

    Jing, Peng; Haque, Farzin; Vonderheide, Anne P; Montemagno, Carlo; Guo, Peixuan

    2010-10-01

    Biological systems contain highly-ordered macromolecular structures with diverse functions, inspiring their utilization in nanotechnology. A motor allows linear dsDNA viruses to package their genome into a preformed procapsid. The central component of the motor is the portal connector that acts as a pathway for the translocation of dsDNA. The elegant design of the connector and its channel motivates its application as an artificial nanopore (Nature Nanotechnology, 4, 765-772). Herein, we demonstrate the robust characteristics of the connector of the bacteriophage phi29 DNA packaging motor by single pore electrophysiological assays. The conductance of each pore is almost identical and is perfectly linear with respect to the applied voltage. Numerous transient current blockade events induced by dsDNA are consistent with the dimensions of the channel and dsDNA. Furthermore, the connector channel is stable under a wide range of experimental conditions including high salt and pH 2-12. The robust properties of the connector nanopore made it possible to develop a simple reproducible approach for connector quantification. The precise number of connectors in each sheet of the membrane was simply derived from the slopes of the plot of voltage against current. Such quantifications led to a reliable real time counting of DNA passing through the channel. The fingerprint of DNA translocation in this system has provided a new tool for future biophysical and physicochemical characterizations of DNA transportation, motion, and packaging. PMID:20523933

  16. The effect of N- or C-terminal alterations of the connector of bacteriophage phi29 DNA packaging motor on procapsid assembly, pRNA binding, and DNA packaging

    PubMed Central

    Cai, Ying; Xiao, Feng; Guo, Peixuan

    2010-01-01

    Double-stranded DNA viruses package their genomes into procapsids via an ATP-driven nanomotor. This ingenious motor configuration has inspired the development of biomimetics in nanotechnology. Bacteriophage ϕ29 DNA-packaging motor has been a popular tool in nanomedicine. To provide information for further motor modification, conjugation, labeling, and manufacturing, the connector protein gp10 of the ϕ29 DNA packaging motor was truncated, mutated, and extended. A 25-residue deletion or a 14-residue extension at the C terminus of gp10 did not affect procapsid assembly. A 42–amino acid extension at the N terminus did not interfere with the procapsid assembly but significantly decreased the DNA-packaging efficiency. DNA-packaging activity was restored upon protease cleavage of the extended region. Replacing the N-terminal peptide containing arginine and lysine with a histidine-rich peptide did not affect procapsid assembly but completely inhibited the packaging RNA (pRNA) binding to the connector and hindered subsequent DNA packaging. These results indicate that (1) the N-terminal arginine-lysine residues play a critical role in pRNA binding but are not essential for procapsid assembly; (2) the connector core, but not the flexible N- or C-terminal domains, is responsible for signaling the procapsid assembly; (3) pRNA binds to the connector as a result of electrostatic interactions between the polyanionic nature of nucleic acids and the cationic side groups of the amino acids, similar to RNA binding to Tat or polyArg. PMID:18201942

  17. Rapid Detection and Identification of a Pathogen's DNA Using Phi29 DNA Polymerase

    SciTech Connect

    Xu, Y.; Dunn, J.; Gao, S.; Bruno, J. F.; Luft, B. J.

    2008-10-31

    Zoonotic pathogens including those transmitted by insect vectors are some of the most deadly of all infectious diseases known to mankind. A number of these agents have been further weaponized and are widely recognized as being potentially significant biothreat agents. We describe a novel method based on multiply-primed rolling circle in vitro amplification for profiling genomic DNAs to permit rapid, cultivation-free differential detection and identification of circular plasmids in infectious agents. Using Phi29 DNA polymerase and a two-step priming reaction we could reproducibly detect and characterize by DNA sequencing circular DNA from Borrelia burgdorferi B31 in DNA samples containing as little as 25 pg of Borrelia DNA amongst a vast excess of human DNA. This simple technology can ultimately be adapted as a sensitive method to detect specific DNA from both known and unknown pathogens in a wide variety of complex environments.

  18. Structure of bacteriophage [phi]29 head fibers has a supercoiled triple repeating helix-turn-helix motif

    SciTech Connect

    Xiang, Ye; Rossmann, Michael G.

    2011-12-22

    The tailed bacteriophage {phi}29 capsid is decorated with 55 fibers attached to quasi-3-fold symmetry positions. Each fiber is a homotrimer of gene product 8.5 (gp8.5) and consists of two major structural parts, a pseudohexagonal base and a protruding fibrous portion that is about 110 {angstrom} in length. The crystal structure of the C-terminal fibrous portion (residues 112-280) has been determined to a resolution of 1.6 {angstrom}. The structure is about 150 {angstrom} long and shows three distinct structural domains designated as head, neck, and stem. The stem region is a unique three-stranded helix-turn-helix supercoil that has not previously been described. When fitted into a cryoelectron microscope reconstruction of the virus, the head structure corresponded to a disconnected density at the distal end of the fiber and the neck structure was located in weak density connecting it to the fiber. Thin section studies of Bacillus subtilis cells infected with fibered or fiberless {phi}29 suggest that the fibers might enhance the attachment of the virions onto the host cell wall.

  19. Duality of polynucleotide substrates for Phi29 DNA polymerase: 3′→5′ RNase activity of the enzyme

    PubMed Central

    Lagunavicius, Arunas; Kiveryte, Zivile; Zimbaite-Ruskuliene, Vilma; Radzvilavicius, Tomas; Janulaitis, Arvydas

    2008-01-01

    Phi29 DNA polymerase is a small DNA-dependent DNA polymerase that belongs to eukaryotic B-type DNA polymerases. Despite the small size, the polymerase is a multifunctional proofreading-proficient enzyme. It catalyzes two synthetic reactions (polymerization and deoxynucleotidylation of Phi29 terminal protein) and possesses two degradative activities (pyrophosphorolytic and 3′→5′ DNA exonucleolytic activities). Here we report that Phi29 DNA polymerase exonucleolyticaly degrades ssRNA. The RNase activity acts in a 3′ to 5′ polarity. Alanine replacements in conserved exonucleolytic site (D12A/D66A) inactivated RNase activity of the enzyme, suggesting that a single active site is responsible for cleavage of both substrates: DNA and RNA. However, the efficiency of RNA hydrolysis is ∼10-fold lower than for DNA. Phi29 DNA polymerase is widely used in rolling circle amplification (RCA) experiments. We demonstrate that exoribonuclease activity of the enzyme can be used for the target RNA conversion into a primer for RCA, thus expanding application potential of this multifunctional enzyme and opening new opportunities for RNA detection. PMID:18230765

  20. The bacteriophage phi29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution.

    PubMed

    Müller, D J; Engel, A; Carrascosa, J L; Vélez, M

    1997-05-15

    The surfaces of two- and three-dimensional phi29 connector crystals were imaged in buffer solution by atomic force microscopy (AFM). Both topographies show a rectangular unit cell with dimensions of 16.5 nm x 16.5 nm. High resolution images of connectors from the two-dimensional crystal surface show two connectors per unit cell confirming the p42(1)2 symmetry. The height of the connector was estimated to be at least 7.6 nm, a value close to that found in previous studies using different techniques. The 12 subunits of the wide connector domain were clearly resolved and showed a right-handed vorticity. The channel running along the connector had a diameter of 3.7 nm in the wide domain, while it was 1.7 nm in the narrow domain end, thus suggesting a tronco-conical channel shape. Moreover, the narrow connector end appears to be rather flexible. When the force applied to the stylus was between 50 and 100 pN, the connector end was fully extended. At forces of approximately 150 pN, these ends were pushed towards the crystal surface. The complementation of the AFM data with the three-dimensional reconstruction obtained from electron microscopy not only confirmed the model proposed, but also offers new insights that may help to explain the role of the connector in DNA packing. PMID:9184202

  1. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase.

    PubMed

    Manrao, Elizabeth A; Derrington, Ian M; Laszlo, Andrew H; Langford, Kyle W; Hopper, Matthew K; Gillgren, Nathaniel; Pavlenok, Mikhail; Niederweis, Michael; Gundlach, Jens H

    2012-04-01

    Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ∼28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing. PMID:22446694

  2. Preparation of Phi29 DNA Polymerase Free of Amplifiable DNA Using Ethidium Monoazide, an Ultraviolet-Free Light-Emitting Diode Lamp and Trehalose

    PubMed Central

    Takahashi, Hirokazu; Yamazaki, Hiroyuki; Akanuma, Satoshi; Kanahara, Hiroko; Saito, Toshiyuki; Chimuro, Tomoyuki; Kobayashi, Takayoshi; Ohtani, Toshio; Yamamoto, Kimiko; Sugiyama, Shigeru; Kobori, Toshiro

    2014-01-01

    We previously reported that multiply-primed rolling circle amplification (MRPCA) using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3′-5′ exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents. PMID:24505243

  3. Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA

    PubMed Central

    Lagunavicius, Arunas; Merkiene, Egle; Kiveryte, Zivile; Savaneviciute, Agne; Zimbaite-Ruskuliene, Vilma; Radzvilavicius, Tomas; Janulaitis, Arvydas

    2009-01-01

    We present a novel Phi29 DNA polymerase application in RCA-based target RNA detection and analysis. The 3′→5′ RNase activity of Phi29 DNA polymerase converts target RNA into a primer and the polymerase uses this newly generated primer for RCA initiation. Therefore, using target RNA-primed RCA, padlock probes may be targeted to inner RNA sequences and their peculiarities can be analyzed directly. We demonstrate that the exoribonucleolytic activity of Phi29 DNA polymerase can be successfully applied in vitro and in situ. These findings expand the potential for detection and analysis of RNA sequences distanced from 3′-end. PMID:19244362

  4. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization.

    PubMed Central

    Bernad, A; Lázaro, J M; Salas, M; Blanco, L

    1990-01-01

    The alpha-like DNA polymerases from bacteriophage phi 29 and other viruses, prokaryotes and eukaryotes contain an amino acid consensus sequence that has been proposed to form part of the dNTP binding site. We have used site-directed mutants to study five of the six highly conserved consecutive amino acids corresponding to the most conserved C-terminal segment (Tyr-Gly-Asp-Thr-Asp-Ser). Our results indicate that in phi 29 DNA polymerase this consensus sequence, although irrelevant for the 3'----5' exonuclease activity, is essential for initiation and elongation. Based on these results and on its homology with known or putative metal-binding amino acid sequences, we propose that in phi 29 DNA polymerase the Tyr-Gly-Asp-Thr-Asp-Ser consensus motif is part of the dNTP binding site, involved in the synthetic activities of the polymerase (i.e., initiation and polymerization), and that it is involved particularly in the metal binding associated with the dNTP site. Images PMID:2191296

  5. Genetic analysis of bacteriophage phi 29 of Bacillus subtilis: integration and mapping of reference mutants of two collections.

    PubMed Central

    Mellado, R P; Moreno, F; Viñuela, E; Salas, M; Reilly, B E; Anderson, D L

    1976-01-01

    Reference mutants of Bacillus subtilis phage phi 29 of the Madrid and Minneapolis collections were employed to construct a genetic map. Suppressor-sensitive and temperature-sensitive mutants were assigned to 17 cistrons by quantitative complementation. Three-factor crosses were used to assign an unambiguous order for the 17 cistrons. Recombination frequencies determined by two-factor crosses were used to construct a linear genetic map of 24.4 recombination units. The genes were numbered sequentially from left to right (1 to 17) according to their relative map position. PMID:822174

  6. In vitro transcription of the Bacillus subtilis phage phi 29 DNA by Bacillus subtilis and Escherichia coli RNA polymerases.

    PubMed Central

    Sogo, J M; Lozano, M; Salas, M

    1984-01-01

    The Escherichia coli RNA polymerase bound to phage phi 29 DNA has been visualized by electron microscopy. Thirteen specific binding sites have been observed at 1.7,2.6,5.5,10.4,13.7,25.2,25.7,26.3,33.5,59.5,69.2,91.7 and 99.6 DNA length units and they have been named A1,A1I,A1II,A1III,A1IV,A2,A2I, A3, A4,B1,B1I,C1 and C2, respectively. The binding sites A1,A2,A3,B1,C1 and C2 coincide with those found with Bacillus subtilis RNA polymerase. The transcription of phage phi 29 DNA with B. subtilis or E. coli RNA polymerases has been studied. With the B. subtilis RNA polymerase eight transcripts were found, starting at positions corresponding to the binding sites A1, A1III, A2,A3,B1I,B2,C1 and C2, respectively. With the E. coli RNA polymerase the same transcripts were found and a new one starting at position corresponding to the A4 binding site. The RNAs starting at binding sites A1,A1III,A2,B1I, B2,C1 and C2 are transcribed from right to left, as expected for early RNA. The RNAs which initiate at positions A3 and A4 are transcribed from left to right and probably correspond to late RNAs. Images PMID:6322128

  7. Phi29 Connector-DNA Interactions Govern DNA Crunching and Rotation, Supporting the Check-Valve Model.

    PubMed

    Kumar, Rajendra; Grubmüller, Helmut

    2016-01-19

    During replication of the ϕ29 bacteriophage inside a bacterial host cell, a DNA packaging motor transports the viral DNA into the procapsid against a pressure difference of up to 40 ± 20 atm. Several models have been proposed for the underlying molecular mechanism. Here we have used molecular dynamics simulations to examine the role of the connector part of the motor, and specifically the one-way revolution and the push-roll model. We have focused at the structure and intermolecular interactions between the DNA and the connector, for which a near-complete structure is available. The connector is found to induce considerable DNA deformations with respect to its canonical B-form. We further assessed by force-probe simulations to which extent the connector is able to prevent DNA leakage and found that the connector can act as a partial one-way valve by a check-valve mechanism via its mobile loops. Analysis of the geometry, flexibility, and energetics of channel lysine residues suggested that this arrangement of residues is incompatible with the observed DNA packaging step-size of ∼2.5 bp, such that the step-size is probably determined by the other components of the motor. Previously proposed DNA revolution and rolling motions inside the connector channel are both found implausible due to structural entanglement between the DNA and connector loops that have not been resolved in the crystal structure. Rather, in the simulations, the connector facilitates minor DNA rotation during the packaging process compatible with recent optical-tweezers experiments. Combined with the available experimental data, our simulation results suggest that the connector acts as a check-valve that prevents DNA leakage and induces DNA compression and rotation during DNA packaging. PMID:26789768

  8. Construction and 3-D computer modeling of connector arrays with tetragonal to decagonal transition induced by pRNA of phi29 DNA-packaging motor.

    PubMed

    Guo, Yin Yin; Blocker, Forrest; Xiao, Feng; Guo, Peixuan

    2005-06-01

    The bottom-up assembly of patterned arrays is an exciting and important area in current nanotechnology. Arrays can be engineered to serve as components in chips for a virtually inexhaustible list of applications ranging from disease diagnosis to ultrahigh-density data storage. In attempting to achieve this goal, a number of methods to facilitate array design and production have been developed. Cloning and expression of the gene coding for the connector of the bacterial virus phi29 DNA-packaging motor, overproduction of the gene products, and the in vitro construction of large-scale carpet-like arrays composed of connector are described in this report. The stability of the arrays under various conditions, including varied pH, temperature and ionic strength, was tested. The addition of packaging RNA (pRNA) into the array caused a dramatic shift in array structure, and resulted in the conversion of tetragonal arrays into larger decagonal structures comprised of both protein and RNA. RNase digestion confirmed that the conformational shift was caused by pRNA, and that RNA was present in the decagons. As has been demonstrated in biomotors, conformational shift of motor components can generate force for motor motion. The conformational shift reported here can be utilized as a potential force-generating mechanism for the construction of nanomachines. Three-dimensional computer models of the constructed arrays were also produced using a variety of connector building blocks with or without the N- or C-terminal sequence, which is absent from the current published crystal structures. Both the connector array and the decagon are ideal candidates to be used as templates to build patterned suprastructures in nanotechnology. PMID:16060143

  9. Programmable folding of fusion RNA in vivo and in vitro driven by pRNA 3WJ motif of phi29 DNA packaging motor

    PubMed Central

    Shu, Dan; Khisamutdinov, Emil F.; Zhang, Le; Guo, Peixuan

    2014-01-01

    Misfolding and associated loss of function are common problems in constructing fusion RNA complexes due to changes in energy landscape and the nearest-neighbor principle. Here we report the incorporation and application of the pRNA-3WJ motif of the phi29 DNA packaging motor into fusion RNA with controllable and predictable folding. The motif included three discontinuous ∼18 nucleotide (nt) fragments, displayed a distinct low folding energy (Shu D et al., Nature Nanotechnology, 2011, 6:658–667), and folded spontaneously into a leading core that enabled the correct folding of other functionalities fused to the RNA complex. Three individual fragments dispersed at any location within the sequence allowed the other RNA functional modules to fold into their original structures with authentic functions, as tested by Hepatitis B virus ribozyme, siRNA, and aptamers for malachite green (MG), spinach, and streptavidin (STV). Only nine complementary nucleotides were present for any two of the three ∼18-nt fragments, but the three 9 bp branches were so powerful that they disrupted other double strands with more than 15 bp within the fusion RNA. This system enabled the production of fusion complexes harboring multiple RNA functionalities with correct folding for potential applications in biotechnology, nanomedicine and nanotechnology. We also applied this system to investigate the principles governing the folding of RNA in vivo and in vitro. Temporal production of RNA sequences during in vivo transcription caused RNA to fold into different conformations that could not be predicted with routine principles derived from in vitro studies. PMID:24084081

  10. Oriented single directional insertion of nanochannel of bacteriophage SPP1 DNA packaging motor into lipid bilayer via polar hydrophobicity.

    PubMed

    Zhou, Zhi; Ji, Zhouxiang; Wang, Shaoying; Haque, Farzin; Guo, Peixuan

    2016-10-01

    Insertion of biological nanopore into artificial membrane is of fundamental importance in nanotechnology. Many applications require control and knowledge of channel orientation. In this work, the insertion orientation of the bacteriophage SPP1 and phi29 DNA packaging motors into lipid membranes was investigated. Single molecule electrophysiological assays and Ni-NTA-nanogold binding assays revealed that both SPP1 and phi29 motor channels exhibited a one-way traffic property for TAT peptide translocation from N- to C-termini of the protein channels. SPP1 motor channels preferentially inserts into liposomes with their C-terminal wider region facing inward. Changing the hydrophobicity of the N- or C-termini of phi29 connector alters the insertion orientation, suggesting that the hydrophobicity and hydrophilicity of the termini of the protein channel governs the orientation of the insertion into lipid membrane. It is proposed that the specificity in motor channel orientation is a result of the hydrophilic/hydrophobic interaction at the air/water interface when the protein channels are incorporating into liposome membranes. PMID:27529454

  11. Crystal structure of 3WJ core revealing divalent ion-promoted thermostability and assembly of the Phi29 hexameric motor pRNA

    PubMed Central

    Zhang, Hui; Endrizzi, James A.; Shu, Yi; Haque, Farzin; Sauter, Claude; Shlyakhtenko, Lyudmila S.; Lyubchenko, Yuri; Guo, Peixuan; Chi, Young-In

    2013-01-01

    The bacteriophage phi29 DNA packaging motor, one of the strongest biological motors characterized to date, is geared by a packaging RNA (pRNA) ring. When assembled from three RNA fragments, its three-way junction (3WJ) motif is highly thermostable, is resistant to 8 M urea, and remains associated at extremely low concentrations in vitro and in vivo. To elucidate the structural basis for its unusual stability, we solved the crystal structure of this pRNA 3WJ motif at 3.05 Å. The structure revealed two divalent metal ions that coordinate 4 nt of the RNA fragments. Single-molecule fluorescence resonance energy transfer (smFRET) analysis confirmed a structural change of 3WJ upon addition of Mg2+. The reported pRNA 3WJ conformation is different from a previously published construct that lacks the metal coordination sites. The phi29 DNA packaging motor contains a dodecameric connector at the vertex of the procapsid, with a central pore for DNA translocation. This portal connector serves as the foothold for pRNA binding to procapsid. Subsequent modeling of a connector/pRNA complex suggests that the pRNA of the phi29 DNA packaging motor exists as a hexameric complex serving as a sheath over the connector. The model of hexameric pRNA on the connector agrees with AFM images of the phi29 pRNA hexamer acquired in air and matches all distance parameters obtained from cross-linking, complementary modification, and chemical modification interference. PMID:23884902

  12. The bacteriophage DNA packaging machine.

    PubMed

    Feiss, Michael; Rao, Venigalla B

    2012-01-01

    Large dsDNA bacteriophages and herpesviruses encode a powerful ATP-driven DNA-translocating machine that encapsidates a viral genome into a preformed capsid shell or prohead. The key components of the packaging machine are the packaging enzyme (terminase, motor) and the portal protein that forms the unique DNA entrance vertex of prohead. The terminase complex, comprised of a recognition subunit (small terminase) and an endonuclease/translocase subunit (large terminase), cuts viral genome concatemers. The terminase-viral DNA complex docks on the portal vertex, assembling a motor complex containing five large terminase subunits. The pentameric motor processively translocates DNA until the head shell is full with one viral genome. The motor cuts the DNA again and dissociates from the full head, allowing head-finishing proteins to assemble on the portal, sealing the portal, and constructing a platform for tail attachment. A body of evidence from molecular genetics and biochemical, structural, and biophysical approaches suggests that ATP hydrolysis-driven conformational changes in the packaging motor (large terminase) power DNA motion. Various parts of the motor subunit, such as the ATPase, arginine finger, transmission domain, hinge, and DNA groove, work in concert to translocate about 2 bp of DNA per ATP hydrolyzed. Powerful single-molecule approaches are providing precise delineation of steps during each translocation event in a motor that has a speed as high as a millisecond/step. The phage packaging machine has emerged as an excellent model for understanding the molecular machines, given the mechanistic parallels between terminases, helicases, and numerous motor proteins. PMID:22297528

  13. Current advances in Phi29 pRNA biology and its application in drug delivery.

    PubMed

    Ye, Xin; Hemida, Maged; Zhang, Huifang M; Hanson, Paul; Ye, Qiu; Yang, Decheng

    2012-01-01

    Bacteriophage 29 (Phi29) packaging RNA (pRNA) is one of the key components in the viral DNA-packaging motor. It contains two functional domains facilitating the translocation of DNA into the viral capsid by interacting with other elements in the motor and promoting adenosine triphosphates hydrolysis. Through the connection between interlocking loops in adjacent pRNA monomers, pRNA functions in the form of multimer ring in the motor. Previous studies have addressed the unique structure and conformation of pRNA. However, there are different DNA-packaging models proposed for the viral genome transportation mechanism. The DNA-packaging ability and the unique features of pRNA have been attracting efforts to study its potential applications in nanotechnology. The pRNA has been proved to be a promising tool for delivering nucleic acid-based therapeutic molecules by covalent linkage with ribozymes, small interfering RNAs, aptamers, and artificial microRNAs. The flexibility in constructing dimers, trimers, and hexamers enables the assembly of polyvalent nanoparticles to carry drug molecules for therapeutic purposes, cell ligands for target delivery, image detector for drug entry monitoring, and endosome disrupter for drug release. Besides these fascinating pharmacological advantages, pRNA-based drug delivery has also been demonstrated to prolong the drug half life with minimal induction of immune response and toxicity. PMID:22362726

  14. In vitro incorporation of the phage Phi29 connector complex

    SciTech Connect

    Fu Chiyu; Prevelige, Peter E.

    2009-11-10

    The incorporation of the DNA packaging connector complex during lambdoid phage assembly in vivo is strictly controlled-one and only one of the twelve identical icosahedral vertices is differentiated by the inclusion of a portal or connector dodecamer. Proposed control mechanisms include obligate nucleation from a connector containing complex, addition of the connector as the final step during assembly, and a connector-mediated increase in the growth rate. The inability to recapitulate connector incorporation in vitro has made it difficult to obtain direct biochemical evidence in support of one model over another. Here we report the development an in vitro assembly system for the well characterized dsDNA phage Phi29 which results in the co-assembly of connector with capsid and scaffolding proteins to form procapsid-like particles (PLPs). Immuno-electron microscopy demonstrates the specific incorporation of connector vertex in PLPs. The connector protein increases both the yield and the rate of capsid assembly suggesting that the incorporation of the connector in Phi29 likely promotes nucleation of assembly.

  15. Nucleotide sequence of bacteriophage fd DNA.

    PubMed Central

    Beck, E; Sommer, R; Auerswald, E A; Kurz, C; Zink, B; Osterburg, G; Schaller, H; Sugimoto, K; Sugisaki, H; Okamoto, T; Takanami, M

    1978-01-01

    The sequence of the 6,408 nucleotides of bacteriophage fd DNA has been determined. This allows to deduce the exact organisation of the filamentous phage genome and provides easy access to DNA segments of known structure and function. PMID:745987

  16. Bacteriophage replication modules.

    PubMed

    Weigel, Christoph; Seitz, Harald

    2006-05-01

    Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online). PMID:16594962

  17. Crystal and cryoEM structural studies of a cell wall degrading enzyme in the bacteriophage [psi]29 tail

    SciTech Connect

    Xiang, Ye; Morais, Marc C.; Cohen, Daniel N.; Bowman, Valorie D.; Anderson, Dwight L.; Rossmann, Michael G.

    2009-08-28

    The small bacteriophage {phi}29 must penetrate the {approx}250-{angstrom} thick external peptidoglycan cell wall and cell membrane of the Gram-positive Bacillus subtilis, before ejecting its dsDNA genome through its tail into the bacterial cytoplasm. The tail of bacteriophage {phi}29 is noncontractile and {approx}380 {angstrom} long. A 1.8-{angstrom} resolution crystal structure of gene product 13 (gp13) shows that this tail protein has spatially well separated N- and C-terminal domains, whose structures resemble lysozyme-like enzymes and metallo-endopeptidases, respectively. CryoEM reconstructions of the WT bacteriophage and mutant bacteriophages missing some or most of gp13 shows that this enzyme is located at the distal end of the {phi}29 tail knob. This finding suggests that gp13 functions as a tail-associated, peptidoglycan-degrading enzyme able to cleave both the polysaccharide backbone and peptide cross-links of the peptidoglycan cell wall. Comparisons of the gp13{sup -} mutants with the {phi}29 mature and emptied phage structures suggest the sequence of events that occur during the penetration of the tail through the peptidoglycan layer.

  18. Forces during Bacteriophage DNA Packaging and Ejection

    PubMed Central

    Purohit, Prashant K.; Inamdar, Mandar M.; Grayson, Paul D.; Squires, Todd M.; Kondev, Jané; Phillips, Rob

    2005-01-01

    The conjunction of insights from structural biology, solution biochemistry, genetics, and single-molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this article we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure. PMID:15556983

  19. The Conformation of DNA Packaged in Bacteriophage G

    PubMed Central

    Sun, Mao; Serwer, Philip

    1997-01-01

    When packaged in a bacteriophage capsid, double-stranded DNA occupies a cavity whose volume is roughly twice the volume of the DNA double helix. The data thus far have not revealed whether the compactness of packaged bacteriophage DNA is achieved by folding of the DNA, unidirectional winding of the DNA, or a combination of both folding and winding. To assist in discriminating among these possibilities, the present study uses electron microscopy, together with ultraviolet light-induced DNA-DNA cross-linking, to obtain the following information about the conformation of DNA packaged in the comparatively large bacteriophage, G: 1) At the periphery of some negatively stained particles of bacteriophage G, electron microscopy reveals strands of DNA that are both parallel to each other and parallel to the polyhedral bacteriophage G capsid. However, these strands are not visible toward the center of the zone of packaged DNA. 2) Within some positively stained particles, electron microscopy reveals DNA-associated stain in relatively high concentration at comers of the polyhedral bacteriophage G capsid. 3) When cross-linked DNA is expelled from its capsid during preparation for electron microscopy, some DNA molecules consist primarily of a compacted central region, surrounded by DNA strands that appear to be unraveling at multiple positions uniformly distributed around the compacted DNA region. The above results are explained by a previously presented model in which DNA is compacted by folding to form 12 icosahedrally arranged pear-shaped rings. ImagesFIGURE 1FIGURE 2FIGURE 4 PMID:9017221

  20. Global Structure of a Three-Way Junction in a Phi29 Packaging RNA Dimer Determined Using Site-Directed Spin Labeling

    SciTech Connect

    Zhang, Xiaojun; Tung, Chang-Shung; Sowa, Glenna; Hatmal, Ma'mon M.; Haworth, Ian S.; Qin, Peter Z.

    2012-02-08

    The condensation of bacteriophage phi29 genomic DNA into its preformed procapsid requires the DNA packaging motor, which is the strongest known biological motor. The packaging motor is an intricate ring-shaped protein/RNA complex, and its function requires an RNA component called packaging RNA (pRNA). Current structural information on pRNA is limited, which hinders studies of motor function. Here, we used site-directed spin labeling to map the conformation of a pRNA three-way junction that bridges binding sites for the motor ATPase and the procapsid. The studies were carried out on a pRNA dimer, which is the simplest ring-shaped pRNA complex and serves as a functional intermediate during motor assembly. Using a nucleotide-independent labeling scheme, stable nitroxide radicals were attached to eight specific pRNA sites without perturbing RNA folding and dimer formation, and a total of 17 internitroxide distances spanning the three-way junction were measured using Double Electron-Electron Resonance spectroscopy. The measured distances, together with steric chemical constraints, were used to select 3662 viable three-way junction models from a pool of 65 billion. The results reveal a similar conformation among the viable models, with two of the helices (HT and HL) adopting an acute bend. This is in contrast to a recently reported pRNA tetramer crystal structure, in which HT and HL stack onto each other linearly. The studies establish a new method for mapping global structures of complex RNA molecules, and provide information on pRNA conformation that aids investigations of phi29 packaging motor and developments of pRNA-based nanomedicine and nanomaterial.

  1. Determinants of Bacteriophage 933W Repressor DNA Binding Specificity

    PubMed Central

    Bullwinkle, Tammy J.; Samorodnitsky, Daniel; Rosati, Rayna C.; Koudelka, Gerald B.

    2012-01-01

    We reported previously that 933W repressor apparently does not cooperatively bind to adjacent sites on DNA and that the relative affinities of 933W repressor for its operators differ significantly from that of any other lambdoid bacteriophage. These findings indicate that the operational details of the lysis-lysogeny switch of bacteriophage 933W are unique among lambdoid bacteriophages. Since the functioning of the lysis-lysogeny switch in 933W bacteriophage uniquely and solely depends on the order of preference of 933W repressor for its operators, we examined the details of how 933W repressor recognizes its DNA sites. To identify the specificity determinants, we first created a molecular model of the 933W repressor-DNA complex and tested the predicted protein-DNA interactions. These results of these studies provide a picture of how 933W repressor recognizes its DNA sites. We also show that, opposite of what is normally observed for lambdoid phages, 933W operator sequences have evolved in such a way that the presence of the most commonly found base sequences at particular operator positions serves to decrease, rather than increase, the affinity of the protein for the site. This finding cautions against assuming that a consensus sequence derived from sequence analysis defines the optimal, highest affinity DNA binding site for a protein. PMID:22509323

  2. Infection by choleraphage phi 138: bacteriophage DNA and replicative intermediates.

    PubMed Central

    Chowdhury, R; Das, J

    1986-01-01

    Choleraphage phi 138 contains a linear, double-stranded, circularly permuted DNA molecule of 30 X 10(6) daltons or 45 kilobase pairs. Upon infection, the host DNA is degraded, and synthesis of phage-specific DNA is detectable 20 min after infection. The phage utilizes primarily the host DNA degradation products for its own DNA synthesis. A physical map of phi 138 DNA was constructed with the restriction endonucleases Bg/II, HindIII, and PstI. A concatemeric replicative DNA intermediate equivalent to eight mature genome lengths was identified. The concatemer was shown to be the precursor for the synthesis of mature bacteriophage DNA which is subsequently packaged by a headful mechanism. Images PMID:3951021

  3. Capstan Friction Model for DNA Ejection from Bacteriophages

    NASA Astrophysics Data System (ADS)

    Ghosal, Sandip

    2012-12-01

    Bacteriophages infect cells by attaching to the outer membrane and injecting their DNA into the cell. The phage DNA is then transcribed by the cell’s transcription machinery. A number of physical mechanisms by which DNA can be translocated from the phage capsid into the cell have been identified. A fast ejection driven by the elastic and electrostatic potential energy of the compacted DNA within the viral capsid appears to be used by most phages, at least to initiate infection. In recent in vitro experiments, the speed of DNA translocation from a λ phage capsid has been measured as a function of ejected length over the entire duration of the event. Here, a mechanical model is proposed that is able to explain the observed dependence of exit velocity on ejected length, and that is also consistent with the accepted picture of the geometric arrangement of DNA within the viral capsid.

  4. DNA Poised for Release in Bacteriophage ø29

    PubMed Central

    Tang, Jinghua; Olson, Norman; Jardine, Paul J.; Grimes, Shelley; Anderson, Dwight L.; Baker, Timothy S.

    2008-01-01

    SUMMARY We present here the first asymmetric, three-dimensional reconstruction of a tailed dsDNA virus, the mature bacteriophage ϕ29, at sub-nanometer resolution. This structure reveals the rich detail of the asymmetric interactions and conformational dynamics of the ϕ29 protein and DNA components, and provides novel insight into the mechanics of virus assembly. For example, the dodecameric head-tail connector protein undergoes significant rearrangement upon assembly into the virion. Specific interactions occur between the tightly packed dsDNA and the proteins of the head and tail. Of particular interest and novelty, a ~60Å diameter toroid of dsDNA was observed in the connector-lower collar cavity. The extreme deformation that occurs over a small stretch of DNA is likely a consequence of the high pressure of the packaged genome. This toroid structure may help retain the DNA inside the capsid prior to its injection into the bacterial host. PMID:18547525

  5. The DNA ejection process in bacteriophage lambda

    NASA Astrophysics Data System (ADS)

    Grayson, Paul

    Bacteriophages have long served as model systems through which the nature of life may be explored. From a physical or mechanical point of view, phages are excellent examples of natural nanotechnology: they are nanometer-scale systems which depend critically on forces, pressures, velocities, and other fundamentally physical quantities for their biological functions. The study of the physical properties of phages has therefore provided an arena for application of physics to biology. In particular, recent studies of the motor responsible for packaging a phage gnome into a capsid showed a buildup of pressure within the capsid of tens of atmospheres. This thesis reports a combined theoretical and experimental study on various aspects of the genome ejection process, so that a comparison may be drawn with the packaging experiments. In particular, we examine various theoretical models of the forces within a phage capsid, deriving formulas both for the force driving genome ejection and for the velocity at which the genome is translocated into a host cell. We describe an experiment in which the force was measured as a function of the amount of genome within the phage capsid, and another where the genome ejection velocity was measured for single phages under the microscope. We make direct quantitative comparisons between the theory and experiments, stringently testing the extent to which we are able to model the genome ejection process.

  6. Evidence for bacteriophage T7 tail extension during DNA injection

    PubMed Central

    Serwer, Philip; Wright, Elena T; Hakala, Kevin W; Weintraub, Susan T

    2008-01-01

    Background Electron micrographs of bacteriophage T7 reveal a tail shorter than needed to reach host cytoplasm during infection-initiating injection of a T7 DNA molecule through the tail and cell envelope. However, recent data indicate that internal T7 proteins are injected before the DNA molecule is injected. Thus, bacteriophage/host adsorption potentially causes internal proteins to become external and lengthen the tail for DNA injection. But, the proposed adsorption-induced tail lengthening has never been visualized. Findings In the present study, electron microscopy of particles in T7 lysates reveals a needle-like capsid extension that attaches partially emptied bacteriophage T7 capsids to non-capsid vesicles and sometimes enters an attached vesicle. This extension is 40–55 nm long, 1.7–2.4× longer than the T7 tail and likely to be the proposed lengthened tail. The extension is 8–11 nm in diameter, thinner than most of the tail, with an axial hole 3–4 nm in diameter. Though the bound vesicles are not identified by microscopy, these vesicles resemble the major vesicles in T7 lysates, found to be E. coli outer membrane vesicles by non-denaturing agarose gel electrophoresis, followed by mass spectrometry. Conclusion The observed lengthened tail is long enough to reach host cytoplasm during DNA injection. Its channel is wide enough to be a conduit for DNA injection and narrow enough to clamp DNA during a previously observed stalling/re-starting of injection. However, its outer diameter is too large to explain formation by passing of an intact assembly through any known capsid hole unless the hole is widened. PMID:18710489

  7. REDOR NMR Characterization of DNA Packaging in Bacteriophage T4

    PubMed Central

    Yu, Tsyr-Yan; Schaefer, Jacob

    2008-01-01

    Bacteriophage T4 is a large-tailed E. coli virus whose capsid is 120 × 86 nm. ATP-driven DNA packaging of the T4 capsid results in the loading of a 171-kb genome in less than 5 minutes during viral infection. We have isolated 50-mg quantities of uniform 15N and [ε-15N]lysine-labeled bacteriophage T4. We have also introduced 15NH4+ into filled, unlabeled capsids from synthetic medium by exchange. We have examined lyo- and cryoprotected lyophilized T4 using 15N{31P} and 31P{15N} rotational-echo double resonance. The results of these experiments have shown that: (i) packaged DNA is in an unperturbed duplex B-form conformation; (ii) the DNA phosphate negative charge is balanced by lysyl amines (3.2%), polyamines (5.8%), and monovalent cations (40%); and (iii) 11% of lysyl amines, 40% of –NH2 groups of polyamines, and 80% of monovalent cations within the lyophilized T4 capsid, are involved in the DNA charge balance. The NMR evidence suggests that DNA enters the T4 capsid in a charge-unbalanced state. We propose that electrostatic interactions may provide free energy to supplement the nanomotor-driven T4 DNA packaging. PMID:18703073

  8. Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    NASA Astrophysics Data System (ADS)

    Lee, Sell; Tran, C. V.; Nguyen, T. T.

    2011-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and nonmonotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2 multivalent counterions. As Mg+2 concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA-DNA short range attraction energies, mediated by Mg+2, is found to be -0.004 kBT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in agreement qualitatively with values for tri- and tetravalent counterions.

  9. DNA Packaging Motor Assembly Intermediate of Bacteriophage ϕ29

    PubMed Central

    Koti, Jaya S.; Morais, Marc C.; Rajagopal, Raj; Owen, Barbara A. L.; McMurray, Cynthia T.; Anderson, Dwight L.

    2008-01-01

    Unraveling the structure and assembly of the DNA packaging ATPases of the tailed, double-stranded DNA bacteriophages is integral to understanding the mechanism of DNA translocation. Here the bacteriophage ϕ29 packaging ATPase, gene product gp16 (gp16), was over-expressed in soluble form in Bacillus subtilis (pSAC), purified to near homogeneity, and assembled to the ϕ29 precursor capsid (prohead) to produce a packaging motor intermediate that was fully active in in vitro DNA packaging. The formation of higher oligomers of the gp16 from monomers was concentration dependent and was characterized by analytical ultracentrifugation, gel filtration and electron microscopy. The binding of multiple copies of gp16 to the prohead was dependent upon the presence of an oligomer of 174- or 120-base prohead RNA (pRNA) fixed to the head-tail connector at the unique portal vertex of the prohead. The use of mutant pRNAs demonstrated that gp16 bound specifically to the A-helix of pRNA, and ribonuclease footprinting of gp16 on pRNA showed that gp16 protected the CC residues of the CCA bulge (residues 18–20) of the A-helix. The binding of gp16 to the prohead/pRNA to constitute the complete and active packaging motor was confirmed by cryo-electron microscopy three-dimensional reconstruction of the prohead/pRNA/gp16 complex. The complex was capable of supercoiling DNA-gp3 as observed previously for gp16 alone, and therefore the binding of gp16 to the prohead, rather than first to DNA-gp3, represents an alternative packaging motor assembly pathway. PMID:18674782

  10. Cloning and characterization of bacteriophage-like DNA from Haemophilus somnus homologous to phages P2 and HP1.

    PubMed Central

    Pontarollo, R A; Rioux, C R; Potter, A A

    1997-01-01

    In an attempt to identify and characterize components of a heme uptake system of Haemophilus somnus, an Escherichia coli cosmid library of H. somnus genomic DNA was screened for the ability to bind hemin (Hmb+). The Hmb+ phenotype was associated with a 7,814-bp HindIII fragment of H. somnus DNA that was subcloned and sequenced. Thirteen open reading frames (orfs) were identified, all transcribed in one direction, and transposon mutagenesis identified orf7 as the gene associated with the Hmb+ phenotype. Orf7 (178 amino acids) has extensive homology with the lysozymes of bacteriophages P-A2, P21, P22, PZA, phi-29, phi-vML3, T4, or HP1. The orf7 gene complemented the lytic function of the K gene of phage P2 and the R gene of phage lambda. A lysozyme assay using supernatants from whole-cell lysates of E. coli cultures harboring plasmid pRAP501 or pGCH2 (both of which express the orf7 gene product) exhibited significant levels of lysozyme activity. The orf6 gene upstream of orf7 has the dual start motif common to the holins encoded by lambdoid S genes, and the orf6 gene product has significant homology to the holins of phages HP1 and P21. When expressed from a tac promoter, the orf6 gene product caused immediate cell death without lysis, while cultures expressing the orf7 gene product grew at normal rates but lysed immediately after the addition of chloroform. Based on this data, we concluded that the Hmb+ phenotype was an artifact resulting from the expression of cloned lysis genes which were detrimental to the E. coli host. The DNA flanking the cloned lysis genes contains orfs that are similar to structural and DNA packaging genes of phage P2. Polyclonal antiserum against Orf2, which is homologous to the major capsid precursor protein (gpN) of phage P2, detected a 40,000-M(r) protein expressed from pRAP401 but did not detect Orf2 in H. somnus, lysates. The phage-like DNA was detected in the serum-susceptible preputial strains HS-124P and HS-127P but was absent from

  11. A promiscuous DNA packaging machine from bacteriophage T4.

    PubMed

    Zhang, Zhihong; Kottadiel, Vishal I; Vafabakhsh, Reza; Dai, Li; Chemla, Yann R; Ha, Taekjip; Rao, Venigalla B

    2011-01-01

    Complex viruses are assembled from simple protein subunits by sequential and irreversible assembly. During genome packaging in bacteriophages, a powerful molecular motor assembles at the special portal vertex of an empty prohead to initiate packaging. The capsid expands after about 10%-25% of the genome is packaged. When the head is full, the motor cuts the concatemeric DNA and dissociates from the head. Conformational changes, particularly in the portal, are thought to drive these sequential transitions. We found that the phage T4 packaging machine is highly promiscuous, translocating DNA into finished phage heads as well as into proheads. Optical tweezers experiments show that single motors can force exogenous DNA into phage heads at the same rate as into proheads. Single molecule fluorescence measurements demonstrate that phage heads undergo repeated initiations, packaging multiple DNA molecules into the same head. These results suggest that the phage DNA packaging machine has unusual conformational plasticity, powering DNA into an apparently passive capsid receptacle, including the highly stable virus shell, until it is full. These features probably led to the evolution of viral genomes that fit capsid volume, a strikingly common phenomenon in double-stranded DNA viruses, and will potentially allow design of a novel class of nanocapsid delivery vehicles. PMID:21358801

  12. Length quantization of DNA partially expelled from heads of a bacteriophage T3 mutant

    SciTech Connect

    Serwer, Philip; Wright, Elena T.; Liu, Zheng; Jiang, Wen

    2014-05-15

    DNA packaging of phages phi29, T3 and T7 sometimes produces incompletely packaged DNA with quantized lengths, based on gel electrophoretic band formation. We discover here a packaging ATPase-free, in vitro model for packaged DNA length quantization. We use directed evolution to isolate a five-site T3 point mutant that hyper-produces tail-free capsids with mature DNA (heads). Three tail gene mutations, but no head gene mutations, are present. A variable-length DNA segment leaks from some mutant heads, based on DNase I-protection assay and electron microscopy. The protected DNA segment has quantized lengths, based on restriction endonuclease analysis: six sharp bands of DNA missing 3.7–12.3% of the last end packaged. Native gel electrophoresis confirms quantized DNA expulsion and, after removal of external DNA, provides evidence that capsid radius is the quantization-ruler. Capsid-based DNA length quantization possibly evolved via selection for stalling that provides time for feedback control during DNA packaging and injection. - Graphical abstract: Highlights: • We implement directed evolution- and DNA-sequencing-based phage assembly genetics. • We purify stable, mutant phage heads with a partially leaked mature DNA molecule. • Native gels and DNase-protection show leaked DNA segments to have quantized lengths. • Native gels after DNase I-removal of leaked DNA reveal the capsids to vary in radius. • Thus, we hypothesize leaked DNA quantization via variably quantized capsid radius.

  13. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Kovács, G.; Hegedüs, M.; Módos, K.; Rontó, Gy.; Lammer, H.; Panitz, C.

    The experiment ``Phage and uracil response'' (PUR) will be accommodated in the EXPOSE facility of the ISS aiming to examine and quantify the effect of specific space conditions on bacteriophage T7 and isolated T7 DNA thin films. To achieve this new method was elaborated for the preparation of DNA and nucleoprotein thin films (1). During the EXPOSE Experiment Verification Tests (EVT) the samples were exposed to vacuum (10 -6 Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated, and we also studied the effect of temperature in vacuum as well as the influence of temperature fluctuations. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, DNA-DNA cross-links) accumulate throughout exposure. DNA damage was determined by quantitative PCR using 555 bp and 3826 bp fragments of T7 DNA (2) and by neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of the PCR products have been detected indicating the damage of isolated and intraphage DNA. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target. Fekete et al. J. Luminescence 102-103, 469-475, 2003 Hegedüs et al. Photochem. Photobiol. 78, 213-219, 2003

  14. New physical map of bacteriophage T5 DNA.

    PubMed Central

    Rhoades, M

    1982-01-01

    The locations of 103 cleavage sites, produced by 13 restriction endonucleases, were mapped on the DNA of bacteriophage T5. Single- and double-digest fragment sizes were determined by agarose gel electrophoresis, using restriction fragments of phi X174 DNA and lambda DNA as molecular weight standards. Map coordinates were determined by a computer-based least-squares procedures (J. Schroeder and F. Blattner, Gene [Amst] 4:167-174, 1978). The fragment sizes predicted by the final map are all within 2% of the measured values. Based on this analysis, T5st(+) DNA contains 121,300 base pairs (Mr, 80.3 X 10(6) and has a terminal repetition of 10,160 base pairs (Mr, 6.7 X 10(6)). Restriction endonuclease analysis after treatment with exonuclease III and a single-strand-specific endonuclease allowed precise localization of five of the natural single-chain interruptions in T5 DNA. Revised locations for several T5 deletions were also determined. Images PMID:6287031

  15. DNA damage under simulated extraterrestrial conditions in bacteriophage T7

    NASA Astrophysics Data System (ADS)

    Fekete, A.; Módos, K.; Hegedüs, M.; Kovács, G.; Rontó, Gy.; Péter, Á.; Lammer, H.; Panitz, C.

    The experiment "Phage and Uracil response" will be accommodated in the EXPOSE facility of the International Space Station. Its objective is to examine and quantify the effect of specific space conditions on nucleic acid models, especially on bacteriophage T7 and isolated T7 DNA thin films. In order to define the environmental and technical requirements of the EXPOSE, the samples were subjected to the experiment verification test (EVT). During EVT, the samples were exposed to vacuum (10 -4-10 -6 Pa) and polychromatic UV-radiation (200-400 nm) in air, in inert atmosphere, as well as in simulated space vacuum. The effect of extreme temperature in vacuum and the influence of temperature fluctuations around 0 °C were also studied. The total intraphage/isolated DNA damage was determined by quantitative PCR using 555 and 3826 bp fragments of T7 DNA. The type of the damage was resolved using a combination of enzymatic probes and neutral and alkaline agarose gel electrophoresis; the structural/chemical effects were analyzed by spectroscopic and microscopical methods. We obtained substantial evidence that DNA lesions accumulate throughout exposure, but the amount of damage depends on the thickness of the layers. According to our preliminary results, the damages by exposure to conditions of dehydration and UV-irradiation are larger than the sum of vacuum alone, or radiation alone case, suggesting a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  16. Dynamics of the T4 Bacteriophage DNA Packasome Motor

    PubMed Central

    Dixit, Aparna; Ray, Krishanu; Lakowicz, Joseph R.; Black, Lindsay W.

    2011-01-01

    Conserved bacteriophage ATP-based DNA translocation motors consist of a multimeric packaging terminase docked onto a unique procapsid vertex containing a portal ring. DNA is translocated into the empty procapsid through the portal ring channel to high density. In vivo the T4 phage packaging motor deals with Y- or X-structures in the replicative concatemer substrate by employing a portal-bound Holliday junction resolvase that trims and releases these DNA roadblocks to packaging. Here using dye-labeled packaging anchored 3.7-kb Y-DNAs or linear DNAs, we demonstrate FRET between the dye-labeled substrates and GFP portal-containing procapsids and between GFP portal and single dye-labeled terminases. We show using FRET-fluorescence correlation spectroscopy that purified T4 gp49 endonuclease VII resolvase can release DNA compression in vitro in prohead portal packaging motor anchored and arrested Y-DNA substrates. In addition, using active terminases labeled at the N- and C-terminal ends with a single dye molecule, we show by FRET distance of the N-terminal GFP-labeled portal protein containing prohead at 6.9 nm from the N terminus and at 5.7 nm from the C terminus of the terminase. Packaging with a C-terminal fluorescent terminase on a GFP portal prohead, FRET shows a reduction in distance to the GFP portal of 0.6 nm in the arrested Y-DNA as compared with linear DNA; the reduction is reversed by resolvase treatment. Conformational changes in both the motor proteins and the DNA substrate itself that are associated with the power stroke of the motor are consistent with a proposed linear motor employing a terminal-to-portal DNA grip-and-release mechanism. PMID:21454482

  17. The Viral DNA Packaging Motor of Bacteriophage Lambda

    NASA Astrophysics Data System (ADS)

    Catalano, Carlos E.

    2007-03-01

    Terminase enzymes are common to both eukaryotic and prokaryotic double-stranded DNA viruses. These enzymes, which serve as molecular motors that selectively ``package'' viral DNA into a pre-formed procapsid structure, are among the most powerful biological motors characterized to date. Bacteriophage lambda terminase is a heteroligomer composed of gpA and gpNu1 subunits. The smaller gpNu1 subunit is required for specific recognition of viral DNA, a process that is modulated by ATP. The gpA subunit possesses site-specific nuclease and helicase activities that ``mature'' the viral genome prior to packaging. The subunit further possesses a DNA translocase activity that is central to the packaging motor complex. Discrete ATPase sites in gpA modulate the DNA maturation reactions and fuel the DNA packaging reaction. Kinetic characterization of lambda terminase indicates significant interaction between the multiple catalytic sites of the enzyme and has led to a minimal kinetic model describing the assembly of a catalytically-competent packaging motor complex. Biophysical studies demonstrate that purified lambda terminase forms a homogenous, heterotrimeric structure consisting of one gpA subunit in association with two gpNu1 proteins. Four heterotrimers further assemble into a ring-like structure of sufficient size to encircle duplex DNA. The ensemble of data suggests that the ring tetramer represents the biologically relevant, catalytically-competent motor complex responsible for genome processing and packaging reactions. We present a model for the functional DNA packaging motor complex that finds general utility in our global understanding of the enzymology of virus assembly.

  18. Double-stranded DNA organization in bacteriophage heads: An alternative toroid-based model

    SciTech Connect

    Hud, N.V.

    1995-10-01

    Studies of the organization of double-stranded DNA within bacteriophage heads during the past four decades have produced a wealth of data. However, despite the presentation of numerous models, the true organization of DNA within phage heads remains unresolved. The observations of toroidal DNA structures in electron micrographs of phage lysates have long been cited as support for the organization of DNA in a spool-like fashion. This particular model, like all other models, has not been found to be consistent with all available data. Recently, the authors proposed that DNA within toroidal condensates produced in vitro is organized in a manner significantly different from that suggested by the spool model. This new toroid model has allowed the development of an alternative model for DNA organization within bacteriophage heads that is consistent with a wide range of biophysical data. Here the authors propose that bacteriophage DNA is packaged in a toroid that is folded into a highly compact structure.

  19. Single molecule studies of DNA packaging by bacteriophages

    NASA Astrophysics Data System (ADS)

    Fuller, Derek Nathan

    The DNA packaging dynamics of bacteriophages φ29, gamma, and T4 were studied at the single molecule level using a dual trap optical tweezers. Also, a method for producing long DNA molecules by PCR for optical tweezers studies of protein DNA interactions is presented and thoroughly characterized. This DNA preparation technique provided DNA samples for the φ29 and T4 studies. In the studies of φ29, the role of charge was investigated by varying the ionic conditions of the packaging buffer. Ionic conditions in which the DNA charge was highly screened due to divalent and trivalent cations showed the lowest resistance to packaging of the DNA to high density. This confirmed the importance of counterions in shielding the DNA interstrand repulsion when packaged to high density. While the ionic nature of the packaging buffer had a strong effect on packaging velocities, there was no clear trend between the counterion-screened charge of the DNA and the maximum packaging velocity. The packaging studies of lambda and T4 served as systems for comparative studies with φ29. Each system showed similarities to the φ29 system and unique differences. Both the lambda and T4 packaging motors were capable of generating forces in excess of 50 pN and showed remarkably high processivity, similar to φ29. However, dynamic structural transitions were observed with lambda that are not observed with φ29. The packaging of the lambda genome showed capsid expansion at approximately 30 percent of the genome packaged and capsid rupture at 90 percent of the genome packaged in the absence of capsid stabilizing protein gpD. Unique to the T4 packaging motor, packaging dynamics showed a remarkable amount of variability in velocities. This variability was seen both within individual packaging phages and from one phage to the next. This is possibly due to different conformational states of the packaging machinery. Additionally, lambda and T4 had average packaging velocities under minimal load of 600

  20. Novel DNA packaging recognition in the unusual bacteriophage N15

    SciTech Connect

    Feiss, Michael; Geyer, Henriette; Klingberg, Franco; Moreno, Norma; Forystek, Amanda; Maluf, Nasib Karl; Sippy, Jean

    2015-08-15

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos{sup N15}) is closely related to cos{sup λ}, but whereas the cosB{sup N15} subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB{sup λ}. A bioinformatic study of N15-like phages indicates that cosB{sup N15} also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB–λ. The DNA binding domain of TerS-N15 is a dimer. - Highlights: • There are two classes of DNA packaging signals in N15-related phages. • Phage N15's TerS binding site: a critical site and a possible remote accessory site. • Viral DNA recognition signals by the λ-like bacteriophages: the odd case of N15.

  1. Packaging of DNA by bacteriophage epsilon15: structure, forces, and thermodynamics.

    PubMed

    Petrov, Anton S; Lim-Hing, Krista; Harvey, Stephen C

    2007-07-01

    The structure of bacteriophage epsilon15 has recently been determined by 3D reconstruction of single particle cryo-electron microscopy images. Although this study revealed that the viral genome inside the bacteriophage is on average coaxially spooled, individual DNA conformations inside the capsid could not be determined. In the current study, we present the results of 40 independent simulations of DNA packaging into epsilon15 using the previously described low-resolution model for bacteriophages. In addition to coaxially spooled conformations, we also observe a number of folded-toroidal patterns, but the density averaged over all conformations closely resembles the experimental density. Thermodynamic analysis of the simulations predicts that a force of approximately 125 pN would be required to package DNA into epsilon15. We also show that the origin of this force is predominantly due to electrostatic and entropic contributions. However, the DNA conformation is determined primarily by the need to minimize the DNA bending energy. PMID:17637341

  2. Visualization of Bacteriophage T3 Capsids with DNA Incompletely Packaged In Vivo

    PubMed Central

    Fang, Ping-An; Wright, Elena T.; Weintraub, Susan T.; Hakala, Kevin; Wu, Weimin; Serwer, Philip; Jiang, Wen

    2009-01-01

    The tightly packaged dsDNA genome in the mature particles of many tailed bacteriophages has been shown to form multiple concentric rings when reconstructed from cryo-electron micrographs. However, recent single-particle DNA packaging force measurements have suggested that incompletely packaged DNA (ipDNA) is less ordered when it is shorter than ∼25% of the full genome length. The study presented here initially achieves both the isolation and the ipDNA length-based fractionation of ipDNA-containing T3 phage capsids (ipDNA-capsids) produced by DNA packaging in vivo; some ipDNA has quantized lengths, as judged by high-resolution gel electrophoresis of expelled DNA. This is the first isolation of such particles among the tailed dsDNA bacteriophages. The ipDNA-capsids are a minor component (containing ∼10-4 of packaged DNA in all particles) and are initially detected by non-denaturing gel electrophoresis after partial purification by buoyant density centrifugation. The primary contaminants are aggregates of phage particles and empty capsids. This study then investigates ipDNA conformations by the first cryo-electron microscopy (cryo-EM) of ipDNA-capsids produced in vivo. The 3-D structures of DNA-free capsids, ipDNA-capsids with various lengths of ipDNA, and mature bacteriophage are reconstructed, which reveals the typical T=7l icosahedral shell of many tailed dsDNA bacteriophages. Though the icosahedral shell structures of these capsids are indistinguishable at the current resolution for the protein shell (∼15 Å), the conformations of the DNA inside the shell are drastically different. T3 ipDNA-capsids with 10.6 kb or shorter dsDNA (<28% of total genome) have an ipDNA conformation indistinguishable from random. However, T3 ipDNA-capsids with 22 kb DNA (58% of total genome) forms a single DNA ring next to the inner surface of the capsid shell. In contrast, dsDNA fully packaged (38.2 kb) in mature T3 phage particles forms multiple concentric rings like those seen

  3. Evidence for non-equilibrium dynamics in viral DNA packaging from optical tweezers measurements

    NASA Astrophysics Data System (ADS)

    Berndsen, Zachary T.; Keller, Nicholas; Smith, Douglas E.

    2013-09-01

    In many viruses molecular motors generate large forces to package DNA to high densities. The dynamics and energetics of this process is a subject of wide debate and is of interest as a model for studying confined polymer physics in general. Here we present preliminary results showing that DNA in bacteriophage phi29 undergoes nonequilibrium conformational dynamics during packaging with a relaxation time >60,000x longer than for free DNA and >3000x longer than reported for DNA confined in nanochannels. Nonequilibrium dynamics significantly increases the load on the motor, causes heterogeneity in the rates of packaging, and causes frequent pausing in motor translocation.

  4. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    NASA Astrophysics Data System (ADS)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  5. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface.

    PubMed

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses. PMID:25797007

  6. Initiation of bacteriophage Φ29 DNA packaging studied by optical tweezers manipulation of single DNA molecules

    NASA Astrophysics Data System (ADS)

    Rickgauer, John Peter; Fuller, Derek N.; Hu, Bo; Grimes, Shelley; Jardine, Paul J.; Anderson, Dwight L.; Smith, Douglas E.

    2006-08-01

    A key step in the life cycle of many viruses, including bacteriophages, adenoviruses, and herpesviruses, is the packaging of replicated viral genomes into pre-assembled proheads by the action of ATP-dependent portal motor complexes. Here we present a method that allows the initiation of packaging by single complexes to be studied using optical tweezers. A procedure is developed for assembling phage Φ29 prohead-motor complexes, which are demonstrated to bind and begin translocation of a target DNA molecule within only a few seconds. We show that the Φ29 DNA terminal protein (gene product 3), which functions to prime DNA replication, also has a dramatic effect on packaging. The DNA tether length measured immediately after binding varied from ~30-100% of the full length, yet shortened monotonically, indicating that packaging does not strictly begin at the terminal end of the DNA. Removal of the terminal protein eliminated this variability, causing packaging to initiate at or very near the end of the DNA. These findings, taken together with electron microscopy data, suggest that rather than simply threading into the portal, the motor captures and dynamically tensions a DNA loop, and that the function of the terminal protein is to load DNA segments on both sides of the loop junction onto separate DNA translocating units.

  7. DNA buckling in bacteriophage cavities as a mechanism to aid virus assembly.

    PubMed

    Hirsh, Andrew D; Perkins, N C

    2015-03-01

    While relatively simple biologically, bacteriophages are sophisticated biochemical machines that execute a precise sequence of events during virus assembly, DNA packaging, and ejection. These stages of the viral life cycle require intricate coordination of viral components whose structures are being revealed by single molecule experiments and high resolution (cryo-electron microscopy) reconstructions. For example, during packaging, bacteriophages employ some of the strongest known molecular motors to package DNA against increasing pressure within the viral capsid shell. Located upstream of the motor is an elaborate portal system through which DNA is threaded. A high resolution reconstruction of the portal system for bacteriophage ϕ29 reveals that DNA buckles inside a small cavity under large compressive forces. In this study, we demonstrate that DNA can also buckle in other bacteriophages including T7 and P22. Using a computational rod model for DNA, we demonstrate that a DNA buckle can initiate and grow within the small confines of a cavity under biologically-attainable force levels. The forces of DNA-cavity contact and DNA-DNA electrostatic repulsion ultimately limit cavity filling. Despite conforming to very different cavity geometries, the buckled DNA within T7 and P22 exhibits near equal volumetric energy density (∼1kT/nm(3)) and energetic cost of packaging (∼22kT). We hypothesize that a DNA buckle creates large forces on the cavity interior to signal the conformational changes to end packaging. In addition, a DNA buckle may help retain the genome prior to tail assembly through significantly increased contact area with the portal. PMID:25613203

  8. Incorporation of viral DNA packaging motor channel in lipid bilayers for real-time, single-molecule sensing of chemicals and double-stranded DNA

    PubMed Central

    Haque, Farzin; Geng, Jia; Montemagno, Carlo; Guo, Peixuan

    2013-01-01

    Over the past decade, nanopores have rapidly emerged as stochastic biosensors. This protocol describes the cloning, expression, and purification of the channel of bacteriophage phi29 DNA packaging nanomotor and its subsequent incorporation into lipid membranes for single-pore sensing of dsDNA and chemicals. The membrane-embedded phi29 nanochannels remain functional and structurally intact under a range of conditions. When ions and macromolecules translocate through these nanochannels, reliable fingerprint changes in conductance are observed. Compared with other well studied biological pores, the phi29 nanochannel has a larger cross-sectional area, which enables the translocation of dsDNA. Furthermore, specific amino acids can be introduced by site-directed mutagenesis within the large cavity of the channel to conjugate receptors that are able to bind specific ligands or analytes for desired applications. The lipid membrane embedded nanochannel system has immense potential nanotechnological and biomedical applications in bioreactors, environmental sensing, drug monitoring, controlled drug delivery, early disease diagnosis, and high-throughput DNA sequencing. The total time required for completing one round of this protocol is around one month. PMID:23348364

  9. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses

    PubMed Central

    Koonin, Eugene V; Krupovic, Mart; Yutin, Natalya

    2015-01-01

    Diverse eukaryotes including animals and protists are hosts to a broad variety of viruses with double-stranded (ds) DNA genomes, from the largest known viruses, such as pandoraviruses and mimiviruses, to tiny polyomaviruses. Recent comparative genomic analyses have revealed many evolutionary connections between dsDNA viruses of eukaryotes, bacteriophages, transposable elements, and linear DNA plasmids. These findings provide an evolutionary scenario that derives several major groups of eukaryotic dsDNA viruses, including the proposed order “Megavirales,” adenoviruses, and virophages from a group of large virus-like transposons known as Polintons (Mavericks). The Polintons have been recently shown to encode two capsid proteins, suggesting that these elements lead a dual lifestyle with both a transposon and a viral phase and should perhaps more appropriately be named polintoviruses. Here, we describe the recently identified evolutionary relationships between bacteriophages of the family Tectiviridae, polintoviruses, adenoviruses, virophages, large and giant DNA viruses of eukaryotes of the proposed order “Megavirales,” and linear mitochondrial and cytoplasmic plasmids. We outline an evolutionary scenario under which the polintoviruses were the first group of eukaryotic dsDNA viruses that evolved from bacteriophages and became the ancestors of most large DNA viruses of eukaryotes and a variety of other selfish elements. Distinct lines of origin are detectable only for herpesviruses (from a different bacteriophage root) and polyoma/papillomaviruses (from single-stranded DNA viruses and ultimately from plasmids). Phylogenomic analysis of giant viruses provides compelling evidence of their independent origins from smaller members of the putative order “Megavirales,” refuting the speculations on the evolution of these viruses from an extinct fourth domain of cellular life. PMID:25727355

  10. A bacteriophage T4 in vitro system to clone long DNA molecules. Final report, June 1, 1990--January 31, 1996

    SciTech Connect

    Rao, V.B.

    1997-09-01

    A summary is presented of the following objectives: development of a bacteriophage T4 in vitro system, and techniques to clone long segments of foreign DNA; development of a giant prohead DNA packaging system that could potentially be used to clone even a megabase size DNA; and development of techniques to rapidly map the cloned DNA inserts.

  11. Bacteriophage T4 DNA Topoisomerase Mediates Illegitimate Recombination in vitro

    NASA Astrophysics Data System (ADS)

    Ikeda, Hideo

    1986-02-01

    We have found that purified T4 DNA topoisomerase promotes recombination between two phage λ DNA molecules in an in vitro system. In this cross, T4 DNA topoisomerase alone is able to catalyze the recombination and produce a linear monomer recombinant DNA that can be packaged in vitro. ATP is not required for this recombination, while oxolinic acid stimulates it. The recombinant DNA molecules contain duplications or deletions, and the crossovers take place between nonhomologous and nonspecific sequences of λ DNA. Therefore, the recombination mediated by the T4 DNA topoisomerase is an illegitimate recombination that is similar to that mediated by Escherichia coli DNA gyrase. A model was proposed previously in which DNA gyrase molecules that are bound to DNA associate with each other and lead to the exchange of DNA strands through the exchange of DNA gyrase subunits. This model is also applicable to the recombination mediated by T4 DNA topoisomerase.

  12. Elastic Properties and Heterogeneous Stiffness of the Phi29 Motor Connector Channel

    PubMed Central

    Kumar, Rajendra; Grubmüller, Helmut

    2014-01-01

    The DNA packaging motor of the bacteriophage ϕ29, comprising head-tail connector, ATPase, and pRNA, transports the viral DNA inside the procapsid against pressure differences of up to ∼60 atm during replication. Several models for the DNA packaging mechanism have been proposed, which attribute different roles to the connector, and require specific mechanical properties of the connector. To characterize these properties at the atomic level, and to understand how the connector withstands this large pressure, we have carried out molecular dynamics simulations of the whole connector both in equilibrium and under mechanical stress. The simulations revealed a quite heterogeneous distribution of stiff and soft regions, resembling that of typical composite materials that are also optimized to resist mechanical stress. In particular, the conserved middle α-helical region is found to be remarkably stiff, similar only to structural proteins forming viral shell, silk, or collagen. In contrast, large parts of the peripheral interface to the ϕ29 procapsid turned out to be rather soft. Force probe and umbrella sampling simulations showed that large connector deformations are remarkably reversible, and served to calculate the free energies required for these deformations. In particular, for an untwisting deformation by 12°, as postulated by the untwist-twist model, more than four times’ larger energy is required than is available from hydrolysis of one ATP molecule. Combined with previous experiments, this result is incompatible with the untwist-twist model. In contrast, our simulations support the recently proposed one-way revolution model and suggest in structural terms how the connector blocks DNA leakage. In particular, conserved loops at the rim of the central channel, which are in direct contact with the DNA, are found to be rather flexible and tightly anchored to the rigid central region. These findings suggest a check-valve mechanism, with the flexible loops

  13. Charting the Structure and Energetics of Packaged DNA in Bacteriophages

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun; Rau, Donald C.; Parsegian, V. Adrian; Fang, Li Tai; Knobler, Charles M.; Gelbart, William M.

    2009-03-01

    Many bacterial viruses resort to pressure in order to infect bacteria, e.g., lambda phage stores its dsDNA genome at surprisingly high pressure and then uses this pressure to drive delivery of the genome. We report on a biophysical interrogation of the DNA configuration and pressure in lambda phage by combining structural and thermodynamic measurements with theoretical modeling. Changes in DNA organization in the capsid are monitored using solution small angle x-ray scattering (SAXS). We vary the DNA-DNA repulsion and DNA bending contributions to the capsid pressure by changing salt concentrations and packaged length, and augment SAXS data with osmotic stress measurements to elicit the evolving structure and energetics of the packaged DNA.

  14. Simulation experiments of the effect of space environment on bacteriophage and DNA thin films

    NASA Technical Reports Server (NTRS)

    Fekete, A.; Ronto, Gy; Hegedus, M.; Modos, K.; Berces, A.; Kovacs, G.; Lammer, H.; Panitz, C.

    2004-01-01

    The main goal of PUR experiment (phage and uracil response) is to examine and quantify the effect of specific space conditions on nucleic acid models. To achieve this an improved method was elaborated for the preparation of DNA and bacteriophage thin films. The homogeneity of the films was controlled by UV spectroscopy and microscopy. To provide experimental evidence for the hypothesis that interplanetary transfer of the genetic material is possible, phage T7 and isolated T7 DNA thin films have been exposed to selected space conditions: intense UVC radiation (lambda=254 nm) and high vacuum (10(-4) Pa). The effects of DNA hydration, conformation and packing on UV radiation damage were examined. Characteristic changes in the absorption spectrum, in the electrophoretic pattern of DNA and the decrease of the amount of PCR products have been detected indicating the photodamage of isolated and intraphage DNA. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  15. A novel DNA-binding protein from Campylobacter jejuni bacteriophage NCTC12673.

    PubMed

    Arutyunov, Denis; Szymanski, Christine M

    2015-11-01

    We previously suggested that the double-stranded genomic DNA of Campylobacter jejuni bacteriophage NCTC12673 was complexed with proteins. Mass spectrometry of peptides obtained from tryptic digests of purified phage DNA indicated that phage protein Gp001 co-purified with the DNA. Gp001 is an acidic protein that lacks any obvious homology or conserved domains found in known DNA-binding proteins. The DNA-binding ability of recombinant Gp001 was examined using an electrophoretic mobility shift assay. Slow DNA-Gp001 complex formation was observed at pH 5.5, but not at neutral or basic pH. This nucleoprotein complex had difficulty entering agarose gels used in the assay while proteinase K pretreatment released the DNA from the complex. No mobility shift was observed when the DNA was immediately subjected to electrophoresis after mixing with Gp001, even if both components were separately pre-incubated at pH 5.5. The complexed DNA was unable to transform chemically competent Escherichia coli cells and was less susceptible to degradation by nucleases. The formation of Gp001-DNA complexes at low pH may provide a mechanism for maintaining DNA integrity while the phage pursues its host through the gastrointestinal tract. Also, this feature can potentially be used to improve DNA delivery protocols applied in gene therapy. PMID:26363017

  16. In vitro synthesis of large peptide molecules using glucosylated single-stranded bacteriophage T4D DNA template.

    PubMed Central

    Hulen, C; Legault-Demare, J

    1975-01-01

    Denatured Bacteriophage T4D DNA is able to stimulate aminoacid incorporation into TCA-precipitable material in an in vitro protein synthesis system according to base DNA sequences. Newly synthesized polypeptides remain associated with ribosomes and have a molecular weight in range of 15,000 to 45,000 Daltons. PMID:1052527

  17. Fluctuation Pressure Assisted Ejection of DNA From Bacteriophage

    NASA Astrophysics Data System (ADS)

    Harrison, Michael J.

    2011-03-01

    The role of thermal pressure fluctuations excited within tightly packaged DNA while it is ejected from protein capsid shells is discussed in a model calculation. At equilibrium before ejection we assume the DNA is folded many times into a bundle of parallel segments that forms an equilibrium conformation at minimum free energy, which presses tightly against capsid walls. Using a canonical ensemble at temperature T we calculate internal pressure fluctuations against a slowly moving or static capsid mantle for an elastic continuum model of the folded DNA bundle. It is found that fluctuating pressures on the capsid from thermal excitation of longitudinal acoustic vibrations in the bundle whose wavelengths are exceeded by the bend persistence length may have root-mean-square values that are several tens of atmospheres for typically small phage dimensions. Comparisons are given with measured data on three mutants of lambda phage with different base pair lengths and total genome ejection pressures.

  18. Identification of a protein bound to the termini of bacteriophage PRD1 DNA.

    PubMed Central

    Bamford, D; McGraw, T; MacKenzie, G; Mindich, L

    1983-01-01

    Lipid-containing bacteriophage PRD1 has a double-stranded DNA genome of about 14,500 nucleotide base pairs. The phage can infect Escherichia coli and Salmonella typhimurium as well as other gram-negative bacteria harboring an appropriate plasmid. [35S]methionine label is incorporated into the DNA band early in infection. The label remains associated with DNA through phenol extraction and boiling with sodium dodecyl sulfate. Nuclease treatment of the genome released a protein which migrated as an early phage-specific protein (P8). This protein is also necessary for phage DNA replication. By restriction enzyme analysis it was shown that protein was associated with the terminal restriction fragments. Extracts of infected cells catalyzed the labeling of protein P8 with [alpha-32P]dGTP. Images PMID:6620455

  19. Can Changes in Temperature or Ionic Conditions Modify the DNA Organization in the Full Bacteriophage Capsid?

    PubMed

    Frutos, Marta de; Leforestier, Amélie; Degrouard, Jéril; Zambrano, Nebraska; Wien, Frank; Boulanger, Pascale; Brasilès, Sandrine; Renouard, Madalena; Durand, Dominique; Livolant, Françoise

    2016-07-01

    We compared four bacteriophage species, T5, λ, T7, and Φ29, to explore the possibilities of DNA reorganization in the capsid where the chain is highly concentrated and confined. First, we did not detect any change in DNA organization as a function of temperature between 20 to 40 °C. Second, the presence of spermine (4+) induces a significant enlargement of the typical size of the hexagonal domains in all phages. We interpret these changes as a reorganization of DNA by slight movements of defects in the structure, triggered by a partial screening of repulsive interactions. We did not detect any signal characteristic of a long-range chiral organization of the encapsidated DNA in the presence and in the absence of spermine. PMID:27152667

  20. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels.

    PubMed

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-09-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA-Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  1. Host DNA replication forks are not preferred targets for bacteriophage Mu transposition.

    PubMed Central

    Nakai, H; Taylor, A L

    1985-01-01

    Bacteriophage Mu DNA integration in Escherichia coli strains infected after alignment of chromosomal replication was analyzed by a sandwich hybridization assay. The results indicated that Mu integrated into chromosomal segments at various distances from oriC with similar kinetics. In an extension of these studies, various Hfr strains were infected after alignment of chromosomal replication, and Mu transposition was shut down early after infection. The positions of integrated Mu copies were inferred from the transfer kinetics of Mu to an F- strain. Our analysis indicated that the location of Mu DNA in the host chromosome was not dependent on the positions of host replication forks at the time of infection. However, the procedure for aligning chromosomal replication affected DNA transfer by various Hfr strains differently, and this effect could account for prior results suggesting preferential integration of Mu at host replication forks. Images PMID:3159718

  2. Translesion synthesis is the main component of SOS repair in bacteriophage lambda DNA.

    PubMed Central

    Defais, M; Lesca, C; Monsarrat, B; Hanawalt, P

    1989-01-01

    Agents that interfere with DNA replication in Escherichia coli induce physiological adaptations that increase the probability of survival after DNA damage and the frequency of mutants among the survivors (the SOS response). Such agents also increase the survival rate and mutation frequency of irradiated bacteriophage after infection of treated bacteria, a phenomenon known as Weigle reactivation. In UV-irradiated single-stranded DNA phage, Weigle reactivation is thought to occur via induced, error-prone replication through template lesions (translesion synthesis [P. Caillet-Fauquet, M: Defais, and M. Radman, J. Mol. Biol. 117:95-112, 1977]). Weigle reactivation occurs with higher efficiency in double-stranded DNA phages such as lambda, and we therefore asked if another process, recombination between partially replicated daughter molecules, plays a major role in this case. To distinguish between translesion synthesis and recombinational repair, we studied the early replication of UV-irradiated bacteriophage lambda in SOS-induced and uninduced bacteria. To avoid complications arising from excision of UV lesions, we used bacterial uvrA mutants, in which such excision does not occur. Our evidence suggests that translesion synthesis is the primary component of Weigle reactivation of lambda phage in the absence of excision repair. The greater efficiency in Weigle reactivation of double-stranded DNA phage could thus be attributed to some inducible excision repair unable to occur on single-stranded DNA. In addition, after irradiation, lambda phage replication seems to switch prematurely from the theta mode to the rolling circle mode. Images PMID:2527845

  3. Conformational Dynamics of Bacteriophage T7 DNA Polymerase and its Processivity Factor, Escherichia coli thioredoxin

    SciTech Connect

    Akabayov, B.; Akabayov, S; Lee , S; Tabor, S; Kulczyk , A; Richardson, C

    2010-01-01

    Gene 5 of bacteriophage T7 encodes a DNA polymerase (gp5) responsible for the replication of the phage DNA. Gp5 polymerizes nucleotides with low processivity, dissociating after the incorporation of 1 to 50 nucleotides. Thioredoxin (trx) of Escherichia coli binds tightly (Kd = 5 nM) to a unique segment in the thumb subdomain of gp5 and increases processivity. We have probed the molecular basis for the increase in processivity. A single-molecule experiment reveals differences in rates of enzymatic activity and processivity between gp5 and gp5/trx. Small angle X-ray scattering studies combined with nuclease footprinting reveal two conformations of gp5, one in the free state and one upon binding to trx. Comparative analysis of the DNA binding clefts of DNA polymerases and DNA binding proteins show that the binding surface contains more hydrophobic residues than other DNA binding proteins. The balanced composition between hydrophobic and charged residues of the binding site allows for efficient sliding of gp5/trx on the DNA. We propose a model for trx-induced conformational changes in gp5 that enhance the processivity by increasing the interaction of gp5 with DNA.

  4. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    SciTech Connect

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John; Reha-Krantz, Linda; Doubli, Sylvie; Wallace, Susan S.

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of a lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.

  5. DNA compaction by the bacteriophage protein Cox studied on the single DNA molecule level using nanofluidic channels

    PubMed Central

    Frykholm, Karolin; Berntsson, Ronnie Per-Arne; Claesson, Magnus; de Battice, Laura; Odegrip, Richard; Stenmark, Pål; Westerlund, Fredrik

    2016-01-01

    The Cox protein from bacteriophage P2 forms oligomeric filaments and it has been proposed that DNA can be wound up around these filaments, similar to how histones condense DNA. We here use fluorescence microscopy to study single DNA–Cox complexes in nanofluidic channels and compare how the Cox homologs from phages P2 and WΦ affect DNA. By measuring the extension of nanoconfined DNA in absence and presence of Cox we show that the protein compacts DNA and that the binding is highly cooperative, in agreement with the model of a Cox filament around which DNA is wrapped. Furthermore, comparing microscopy images for the wild-type P2 Cox protein and two mutants allows us to discriminate between compaction due to filament formation and compaction by monomeric Cox. P2 and WΦ Cox have similar effects on the physical properties of DNA and the subtle, but significant, differences in DNA binding are due to differences in binding affinity rather than binding mode. The presented work highlights the use of single DNA molecule studies to confirm structural predictions from X-ray crystallography. It also shows how a small protein by oligomerization can have great impact on the organization of DNA and thereby fulfill multiple regulatory functions. PMID:27131370

  6. Fabrication of massive sheets of single layer patterned arrays using lipid directed reengineered phi29 motor dodecamer.

    PubMed

    Xiao, Feng; Sun, Jinchuan; Coban, Oana; Schoen, Peter; Wang, Joseph Che-Yen; Cheng, R Holland; Guo, Peixuan

    2009-01-27

    The bottom-up assembly of patterned arrays is an exciting and important area in current nanotechnology. Arrays can be engineered to serve as components in chips for a virtually inexhaustible list of applications ranging from disease diagnosis to ultra-high-density data storage. Phi29 motor dodecamer has been reported to form elegant multilayer tetragonal arrays. However, multilayer protein arrays are of limited use for nanotechnological applications which demand nanoreplica or coating technologies. The ability to produce a single layer array of biological structures with high replication fidelity represents a significant advance in the area of nanomimetics. In this paper, we report on the assembly of single layer sheets of reengineered phi29 motor dodecamer. A thin lipid monolayer was used to direct the assembly of massive sheets of single layer patterned arrays of the reengineered motor dodecamer. Uniform, clean and highly ordered arrays were constructed as shown by both transmission electron microscopy and atomic force microscopy imaging. PMID:19206255

  7. Novel DNA Packaging Recognition in the Unusual Bacteriophage N15

    PubMed Central

    Feiss, Michael; Geyer, Henriette; Klingberg, Franco; Moreno, Norma; Sippy, Jean

    2015-01-01

    Phage lambda’s cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos-N15) is closely related to cos-λ, but whereas the cosB-N15 subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB-λ. A bioinformatic study of N15-like phages indicates that cosB-N15 also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approx. 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-lambda. The DNA binding domain of TerS-N15 is a dimer. PMID:25956737

  8. Novel DNA packaging recognition in the unusual bacteriophage N15.

    PubMed

    Feiss, Michael; Geyer, Henriette; Klingberg, Franco; Moreno, Norma; Forystek, Amanda; Maluf, Nasib Karl; Sippy, Jean

    2015-08-01

    Phage lambda's cosB packaging recognition site is tripartite, consisting of 3 TerS binding sites, called R sequences. TerS binding to the critical R3 site positions the TerL endonuclease for nicking cosN to generate cohesive ends. The N15 cos (cos(N15)) is closely related to cos(λ), but whereas the cosB(N15) subsite has R3, it lacks the R2 and R1 sites and the IHF binding site of cosB(λ). A bioinformatic study of N15-like phages indicates that cosB(N15) also has an accessory, remote rR2 site, which is proposed to increase packaging efficiency, like R2 and R1 of lambda. N15 plus five prophages all have the rR2 sequence, which is located in the TerS-encoding 1 gene, approximately 200 bp distal to R3. An additional set of four highly related prophages, exemplified by Monarch, has R3 sequence, but also has R2 and R1 sequences characteristic of cosB-λ. The DNA binding domain of TerS-N15 is a dimer. PMID:25956737

  9. Evidence for an electrostatic mechanism of force generation by the bacteriophage T4 DNA packaging motor

    NASA Astrophysics Data System (ADS)

    Migliori, Amy D.; Keller, Nicholas; Alam, Tanfis I.; Mahalingam, Marthandan; Rao, Venigalla B.; Arya, Gaurav; Smith, Douglas E.

    2014-06-01

    How viral packaging motors generate enormous forces to translocate DNA into viral capsids remains unknown. Recent structural studies of the bacteriophage T4 packaging motor have led to a proposed mechanism wherein the gp17 motor protein translocates DNA by transitioning between extended and compact states, orchestrated by electrostatic interactions between complimentarily charged residues across the interface between the N- and C-terminal subdomains. Here we show that site-directed alterations in these residues cause force dependent impairments of motor function including lower translocation velocity, lower stall force and higher frequency of pauses and slips. We further show that the measured impairments correlate with computed changes in free-energy differences between the two states. These findings support the proposed structural mechanism and further suggest an energy landscape model of motor activity that couples the free-energy profile of motor conformational states with that of the ATP hydrolysis cycle.

  10. The role of bacteriophage T7 gene 2 protein in DNA replication.

    PubMed Central

    Mooney, P Q; North, R; Molineux, I J

    1980-01-01

    The in vivo function of the gene 2 protein of bacteriophage T7 has been examined. The gene 2 protein appears to modulate the activity of the gene 3 endonuclease in order to prevent the premature degradation of any newly-formed DNA concatemers. This modulation is not however a direct interacton between the two proteins. In single-burst experiments rifamycin can substitute for the gene 2 protein, allowing formation of fast-sedimenting replicative DNA intermediates and progeny phage production. This suggests that the sole function of the gene 2 protein is inhibition of the host RNA polymerase and that the latter enzyme directs or promotes the endonucleolytic action of the gene 3 protein. PMID:7001361

  11. The Tip of the Tail Needle Affects the Rate of DNA Delivery by Bacteriophage P22

    PubMed Central

    Leavitt, Justin C.; Gogokhia, Lasha; Gilcrease, Eddie B.; Bhardwaj, Anshul; Cingolani, Gino; Casjens, Sherwood R.

    2013-01-01

    The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host’s outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a “knob” with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host. PMID:23951045

  12. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage lambda Reflect Relative Importance of DNA Self-Repulsion and Bending Energies

    SciTech Connect

    X Qiu; D Rau; V Parsegian; L Fang; C Knobler; W Gelbart

    2011-12-31

    Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage {lambda} with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5 x 10{sup 3} base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In the commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1 kT/bp, an order of magnitude larger than the bending energies.

  13. Salt-Dependent DNA-DNA Spacings in Intact Bacteriophage λ Reflect Relative Importance of DNA Self-Repulsion and Bending Energies

    NASA Astrophysics Data System (ADS)

    Qiu, Xiangyun; Rau, Donald C.; Parsegian, V. Adrian; Fang, Li Tai; Knobler, Charles M.; Gelbart, William M.

    2011-01-01

    Using solution synchrotron x-ray scattering, we measure the variation of DNA-DNA d spacings in bacteriophage λ with mono-, di-, and polyvalent salt concentrations, for wild-type [48.5×103 base pairs (bp)] and short-genome-mutant (37.8 kbp) strains. From the decrease in d spacings with increasing salt, we deduce the relative contributions of DNA self-repulsion and bending to the energetics of packaged phage genomes. We quantify the DNA-DNA interaction energies within the intact phage by combining the measured d spacings in the capsid with measurements of osmotic pressure in DNA assemblies under the same salt conditions in bulk solution. In the commonly used Tris-Mg buffer, the DNA-DNA interaction energies inside the phage capsids are shown to be about 1kT/bp, an order of magnitude larger than the bending energies.

  14. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9

    PubMed Central

    Bryson, Alexandra L.; Hwang, Young; Sherrill-Mix, Scott; Wu, Gary D.; Lewis, James D.; Black, Lindsay; Clark, Tyson A.

    2015-01-01

    ABSTRACT The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and enzymatic probing. We then designed CRISPR spacer sequences targeting T4 and found that wild-type T4 containing glc-HMC was insensitive to attack by CRISPR-Cas9 but mutants with unmodified cytosine were sensitive. Phage with HMC showed only intermediate sensitivity. While this work was in progress, another group reported examples of heavily engineered CRISRP-Cas9 complexes that could, in fact, overcome the effects of T4 DNA modification, indicating that modifications can inhibit but do not always fully block attack. PMID:26081634

  15. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4.

    PubMed

    Gao, Song; Zhang, Liang; Rao, Venigalla B

    2016-05-19

    Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging. PMID:26984529

  16. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4

    PubMed Central

    Gao, Song; Zhang, Liang; Rao, Venigalla B.

    2016-01-01

    Tailed bacteriophages and herpes viruses use powerful molecular machines to package their genomes. The packaging machine consists of three components: portal, motor (large terminase; TerL) and regulator (small terminase; TerS). Portal, a dodecamer, and motor, a pentamer, form two concentric rings at the special five-fold vertex of the icosahedral capsid. Powered by ATPase, the motor ratchets DNA into the capsid through the portal channel. TerS is essential for packaging, particularly for genome recognition, but its mechanism is unknown and controversial. Structures of gear-shaped TerS rings inspired models that invoke DNA threading through the central channel. Here, we report that mutations of basic residues that line phage T4 TerS (gp16) channel do not disrupt DNA binding. Even deletion of the entire channel helix retained DNA binding and produced progeny phage in vivo. On the other hand, large oligomers of TerS (11-mers/12-mers), but not small oligomers (trimers to hexamers), bind DNA. These results suggest that TerS oligomerization creates a large outer surface, which, but not the interior of the channel, is critical for function, probably to wrap viral genome around the ring during packaging initiation. Hence, models involving TerS-mediated DNA threading may be excluded as an essential mechanism for viral genome packaging. PMID:26984529

  17. Structure and physical map of Rhodopseudomonas sphaeroides bacteriophage RS1 DNA.

    PubMed Central

    Donohue, T J; Chory, J; Goldsand, T E; Lynn, S P; Kaplan, S

    1985-01-01

    We analyzed, by restriction endonuclease mapping and electron microscopy, the genome of the lytic Rhodopseudomonas sphaeroides-specific bacteriophage RS1 and characterized it as a linear molecule of approximately 60 to 65 kilobases. When the DNA from purified phage particles was examined by several independent methods, considerable size heterogeneity was apparent in the RS1 DNA. This size heterogeneity was concluded to be of biological origin, was independent of the specific host strain used to propagate virus, and was not due to the presence of host DNA within or nonspecifically associated with purified virions. In addition, treatment of RS1 DNA with either BAL 31 nuclease or DNA polymerase I Klenow fragment revealed that several distinct regions exist within the viral chromosome which contain free 3' hydroxyl groups. A restriction endonuclease map of the RS1 genome was constructed by using the restriction endonucleases EcoRI, ClaI, KpnI, BamHI, MluI, SmaI, and BclI; thereby allowing the positioning of some 40 restriction sites within the viral genome. The results are discussed in terms of the significance and the possible biological origin of the unique features discovered within the phage RS1 DNA. Images PMID:2989552

  18. Further Studies on Bacteriophage T4 DNA Synthesis in Sucrose-Plasmolyzed Cells

    PubMed Central

    Stafford, Mary E.; Reddy, G. Prem Veer; Mathews, Christopher K.

    1977-01-01

    This paper describes several technical improvements in the sucrose-plasmolyzed cell system used in earlier experiments on DNA synthesis in situ with Escherichia coli infected by DNA-defective mutants of bacteriophage T4 (W. L. Collinsworth and C. K. Mathews, J. Virol. 13:908-915, 1974). Using this system, which is based primarily on that of M. G. Wovcha et al. (Proc. Natl. Acad. Sci. U.S.A. 70:2196-2200, 1973), we reinvestigated the properties of mutants bearing lesions in genes 1, 41, and 62, and we resolved some disagreements with data reported from that laboratory. We also asked whether the DNA-delay phenotype of T4 mutants is related to possible early leakage of DNA precursors from infected cells. Such cells display defective DNA synthesis in situ, even when ample DNA precursors are made available. Thus, the lesions associated with these mutations seem to manifest themselves at the level of macromolecular metabolism. Similarly, we examined an E. coli mutant defective in its ability to support T4 production, apparently because of a lesion affecting DNA synthesis (L. Simon et al., Nature [London] 252:451-455). In the plasmolyzed cell system, reduced nucleotide incorporation is seen, indicating also that the genetic defect does not involve DNA precursor synthesis. The plasmolyzed cell system incorporates deoxynucleotide 5′-monophosphates into DNA severalfold more rapidly than the corresponding 5′-triphosphates. This is consistent with the idea that DNA precursor-synthesizing enzymes are functionally organized to shuttle substrates to their sites of utilization. PMID:328926

  19. Assembly Architecture and DNA Binding of the Bacteriophage P22 Terminase Small Subunit

    PubMed Central

    Němeček, Daniel; Lander, Gabriel C.; Johnson, John E.; Casjens, Sherwood R.; Thomas, George J.

    2008-01-01

    Summary Morphogenesis of bacteriophage P22 involves the packaging of double-stranded DNA into a preassembled procapsid. DNA is translocated by a powerful virally-encoded molecular motor called terminase, which comprises large (gp2, 499 residues) and small (gp3, 162 residues) subunits. While gp2 contains the phosphohydrolase and endonuclease activities of terminase, the function of gp3 may be to regulate specific and nonspecific modes of DNA recognition as well as the enzymatic activities of gp2. Electron microscopy shows that wildtype gp3 self-assembles into a stable and monodisperse nonameric ring. A three-dimensional reconstruction at 18 Å resolution provides the first glimpse of P22 terminase architecture and implies two distinct modes of interaction with DNA – involving a central channel of 20 Å diameter and radial spikes separated by 34 Å. Electromobility shift assays indicate that the gp3 ring binds dsDNA nonspecifically in vitro via electrostatic interactions between the positively charged C-terminus of gp3 (residues 143–152) and phosphates of the DNA backbone. Raman spectra show that nonameric rings formed by subunits truncated at residue 142 retain the subunit fold, despite the loss of DNA-binding activity. Difference density maps between gp3 rings containing full-length and C-terminally truncated subunits are consistent with localization of residues 143–152 along the central channel of the nonameric ring. The results suggest a plausible molecular mechanism for gp3 function in DNA recognition and translocation. PMID:18775728

  20. Architecture of the bacteriophage T4 activator MotA/promoter DNA interaction during sigma appropriation.

    PubMed

    Hsieh, Meng-Lun; James, Tamara D; Knipling, Leslie; Waddell, M Brett; White, Stephen; Hinton, Deborah M

    2013-09-20

    Gene expression can be regulated through factors that direct RNA polymerase to the correct promoter sequence at the correct time. Bacteriophage T4 controls its development in this way using phage proteins that interact with host RNA polymerase. Using a process called σ appropriation, the T4 co-activator AsiA structurally remodels the σ(70) subunit of host RNA polymerase, while a T4 activator, MotA, engages the C terminus of σ(70) and binds to a DNA promoter element, the MotA box. Structures for the N-terminal (NTD) and C-terminal (CTD) domains of MotA are available, but no structure exists for MotA with or without DNA. We report the first molecular map of the MotA/DNA interaction within the σ-appropriated complex, which we obtained by using the cleaving reagent, iron bromoacetamidobenzyl-EDTA (FeBABE). We conjugated surface-exposed, single cysteines in MotA with FeBABE and performed cleavage reactions in the context of stable transcription complexes. The DNA cleavage sites were analyzed using ICM Molsoft software and three-dimensional physical models of MotA(NTD), MotA(CTD), and the DNA to investigate shape complementarity between the protein and the DNA and to position MotA on the DNA. We found that the unusual "double wing" motif present within MotA(CTD) resides in the major groove of the MotA box. In addition, we have used surface plasmon resonance to show that MotA alone is in a very dynamic equilibrium with the MotA element. Our results demonstrate the utility of fine resolution FeBABE mapping to determine the architecture of protein-DNA complexes that have been recalcitrant to traditional structure analyses. PMID:23902794

  1. Subunit Conformations and Assembly States of a DNA Translocating Motor: The Terminase of Bacteriophage P22

    PubMed Central

    Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.

    2007-01-01

    Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256

  2. Nonessential region of bacteriophage P4: DNA sequence, transcription, gene products, and functions.

    PubMed Central

    Ghisotti, D; Finkel, S; Halling, C; Dehò, G; Sironi, G; Calendar, R

    1990-01-01

    We sequenced the leftmost 2,640 base pairs of bacteriophage P4 DNA, thus completing the sequence of the 11,627-base-pair P4 genome. The newly sequenced region encodes three nonessential genes, which are called gop, beta, and cII (in order, from left to right). The gop gene product kills Escherichia coli when the beta protein is absent; the gop and beta genes are transcribed rightward from the same promoter. The cII gene is transcribed leftward to a rho-independent terminator. Mutation of this terminator creates a temperature-sensitive phenotype, presumably owing to a defect in expression of the beta gene. Images PMID:2403440

  3. Gp15 and gp16 cooperate in translocating bacteriophage T7 DNA into the infected cell

    PubMed Central

    Chang, Chung-Yu; Kemp, Priscilla; Molineux, Ian J.

    2010-01-01

    Loss of up to four amino acids from the C terminus of the 1318 residue bacteriophage T7 gp16 allows plaque formation at normal efficiencies. Loss of five residues results in non-infective virions, and loss of twelve prevents assembly of stable particles. However, replacing the C-terminal seven with nineteen non-native residues allows assembly of non-infective virions. The latter adsorb and eject internal core proteins into the cell envelope but no phage DNA enters the cytoplasm. Extragenic suppressors of the defective gene 16 lie in gene 15; the mutant gp15 proteins not only re-establish infectivity, they fully restore the kinetics of genome internalization to those exhibited by wild-type phage. After ejection from the infecting particle, gp15 and gp16 thus function together in ratcheting the leading end of the T7 genome into the cytoplasm of the infected cell. PMID:20036409

  4. Identification of a New Motif in Family B DNA Polymerases by Mutational Analyses of the Bacteriophage T4 DNA Polymerase

    PubMed Central

    Li, Vincent; Hogg, Matthew; Reha-Krantz, Linda J.

    2011-01-01

    Structure-based protein sequence alignments of family B DNA polymerases revealed a conserved motif that is formed from interacting residues between loops from the N-terminal and palm domains and between the N-terminal loop and a conserved proline residue. The importance of the motif for function of the bacteriophage T4 DNA polymerase was revealed by suppressor analysis. T4 DNA polymerases that form weak replicating complexes cannot replicate DNA when the dGTP pool is reduced. The conditional lethality provides the means to identify amino acid substitutions that restore replication activity under low dGTP conditions by either correcting the defect produced by the first amino acid substitution or by generally increasing the stability of polymerase complexes; the second type are global suppressors that can effectively counter the reduced stability caused by a variety of amino acid substitutions. Some amino acid substitutions that increase the stability of polymerase complexes produce a new phenotype - sensitivity to the antiviral drug phosphonoacetic acid. Amino acid substitutions that confer decreased ability to replicate DNA under low dGTP conditions or drug sensitivity were identified in the new motif, which suggests that the motif functions in regulating the stability of polymerase complexes. Additional suppressor analyses revealed an apparent network of interactions that link the new motif to the fingers domain and to two patches of conserved residues that bind DNA. The collection of mutant T4 DNA polymerases provides a foundation for future biochemical studies to determine how DNA polymerases remain stably associated with DNA while waiting for the next available dNTP, how DNA polymerases translocate, and the biochemical basis for sensitivity to antiviral drugs. PMID:20493878

  5. Structure of the RNA claw of the DNA packaging motor of bacteriophage Φ29.

    PubMed

    Harjes, Elena; Kitamura, Aya; Zhao, Wei; Morais, Marc C; Jardine, Paul J; Grimes, Shelley; Matsuo, Hiroshi

    2012-10-01

    Bacteriophage DNA packaging motors translocate their genomic DNA into viral heads, compacting it to near-crystalline density. The Bacillus subtilis phage 29 has a unique ring of RNA (pRNA) that is an essential component of its motor, serving as a scaffold for the packaging ATPase. Previously, deletion of a three-base bulge (18-CCA-20) in the pRNA A-helix was shown to abolish packaging activity. Here, we solved the structure of this crucial bulge by nuclear magnetic resonance (NMR) using a 27mer RNA fragment containing the bulge (27b). The bulge actually involves five nucleotides (17-UCCA-20 and A100), as U17 and A100 are not base paired as predicted. Mutational analysis showed these newly identified bulge residues are important for DNA packaging. The bulge introduces a 33-35° bend in the helical axis, and inter-helical motion around this bend appears to be restricted. A model of the functional 120b pRNA was generated using a 27b NMR structure and the crystal structure of the 66b prohead-binding domain. Fitting this model into a cryo-EM map generated a pentameric pRNA structure; five helices projecting from the pRNA ring resemble an RNA claw. Biochemical analysis suggested that this shape is important for coordinated motor action required for DNA translocation. PMID:22879380

  6. Dynamic Measurements of the Position, Orientation, and DNA Content of Individual Unlabeled Bacteriophages.

    PubMed

    Goldfain, Aaron M; Garmann, Rees F; Jin, Yan; Lahini, Yoav; Manoharan, Vinothan N

    2016-07-01

    A complete understanding of the cellular pathways involved in viral infections will ultimately require a diverse arsenal of experimental techniques, including methods for tracking individual viruses and their interactions with the host. Here we demonstrate the use of holographic microscopy to track the position, orientation, and DNA content of unlabeled bacteriophages (phages) in solution near a planar, functionalized glass surface. We simultaneously track over 100 individual λ phages at a rate of 100 Hz across a 33 μm × 33 μm portion of the surface. The technique determines the in-plane motion of the phage to nanometer precision, and the height of the phage above the surface to 100 nm precision. Additionally, we track the DNA content of individual phages as they eject their genome following the addition of detergent-solubilized LamB receptor. The technique determines the fraction of DNA remaining in the phage to within 10% of the total 48.5 kilobase pairs. Analysis of the data reveals that under certain conditions, λ phages move along the surface with their heads down and intermittently stick to the surface by their tails, causing them to stand up. Furthermore, we find that in buffer containing high concentrations of both monovalent and divalent salts, λ phages eject their entire DNA in about 7 s. Taken together, these measurements highlight the potential of holographic microscopy to resolve the fast kinetics of the early stages of phage infection. PMID:27063451

  7. Bacteriophage T4 Mutants Hypersensitive to an Antitumor Agent That Induces Topoisomerase-DNA Cleavage Complexes

    PubMed Central

    Woodworth, D. L.; Kreuzer, K. N.

    1996-01-01

    Many antitumor agents and antibiotics affect cells by interacting with type II topoisomerases, stabilizing a covalent enzyme-DNA complex. A pathway of recombination can apparently repair this DNA damage. In this study, transposon mutagenesis was used to identify possible components of the repair pathway in bacteriophage T4. Substantial increases in sensitivity to the antitumor agent m-AMSA [4'-(9-acridinyl-amino) methanesulfon-m-anisidide] were found with transposon insertion mutations that inactivate any of six T4-encoded proteins: UvsY (DNA synaptase accessory protein), UvsW (unknown function), Rnh (RNase H and 5' to 3' DNA exonuclease), α-gt (α-glucosyl transferase), gp47.1 (uncharacterized), and NrdB (β subunit of ribonucleotide reductase). The role of the rnh gene in drug sensitivity was further characterized. First, an in-frame rnh deletion mutation was constructed and analyzed, providing evidence that the absence of Rnh protein causes hypersensitivity to m-AMSA. Second, the m-AMSA sensitivity of the rnh-deletion mutant was shown to require a drug-sensitive T4 topoisomerase. Third, analysis of double mutants suggested that uvsW and rnh mutations impair a common step in the recombinational repair pathway for m-AMSA-induced damage. Finally, the rnh-deletion mutant was found to be hypersensitive to UV, implicating Rnh in recombinational repair of UV-induced damage. PMID:8807283

  8. RNA Nanoparticles Derived from Three-Way Junction of Phi29 Motor pRNA Are Resistant to I-125 and Cs-131 Radiation

    PubMed Central

    Li, Hui; Rychahou, Piotr G.; Cui, Zheng; Pi, Fengmei; Evers, B. Mark; Shu, Dan

    2015-01-01

    Radiation reagents that specifically target tumors are in high demand for the treatment of cancer. The emerging field of RNA nanotechnology might provide new opportunities for targeted radiation therapy. This study investigates whether chemically modified RNA nanoparticles derived from the packaging RNA (pRNA) three-way junction (3WJ) of phi29 DNA-packaging motor are resistant to potent I-125 and Cs-131 radiation, which is a prerequisite for utilizing these RNA nanoparticles as carriers for targeted radiation therapy. pRNA 3WJ nanoparticles were constructed and characterized, and the stability of these nanoparticles under I-125 and Cs-131 irradiation with clinically relevant doses was examined. RNA nanoparticles derived from the pRNA 3WJ targeted tumors specifically and they were stable under irradiation of I-125 and Cs-131 with clinically relevant doses ranging from 1 to 90 Gy over a significantly long time up to 20 days, while control plasmid DNA was damaged at 20 Gy or higher. PMID:26017686

  9. DNA driven self-assembly of micron-sized rods using DNA-grafted bacteriophage fd virions

    NASA Astrophysics Data System (ADS)

    Unwin, R. R.; Cabanas, R. A.; Yanagishima, T.; Blower, T. R.; Takahashi, H.; Salmond, G. P. C.; Edwardson, J. M.; Fraden, S.; Eiser, E.

    We have functionalized the sides of fd bacteriophage virions with oligonucleotides to induce DNA hybridization driven self-assembly of high aspect ratio filamentous particles. Potential impacts of this new structure range from an entirely new building block in DNA origami structures, inclusion of virions in DNA nanostructures and nanomachines, to a new means of adding thermotropic control to lyotropic liquid crystal systems. A protocol for producing the virions in bulk is reviewed. Thiolated oligonucleotides are attached to the viral capsid using a heterobifunctional chemical linker. A commonly used system is utilized, where a sticky, single-stranded DNA strand is connected to an inert double-stranded spacer to increase inter-particle connectivity. Solutions of fd virions carrying complementary strands are mixed, annealed, and their aggregation is studied using dynamic light scattering (DLS), fluorescence microscopy, and atomic force microscopy (AFM). Aggregation is clearly observed on cooling, with some degree of local order, and is reversible when temperature is cycled through the DNA hybridization transition.

  10. DNA driven self-assembly of micron-sized rods using DNA-grafted bacteriophage fd virions.

    PubMed

    Unwin, R R; Cabanas, R A; Yanagishima, T; Blower, T R; Takahashi, H; Salmond, G P C; Edwardson, J M; Fraden, S; Eiser, E

    2015-03-28

    We have functionalized the sides of fd bacteriophage virions with oligonucleotides to induce DNA hybridization driven self-assembly of high aspect ratio filamentous particles. Potential impacts of this new structure range from an entirely new building block in DNA origami structures, inclusion of virions in DNA nanostructures and nanomachines, to a new means of adding thermotropic control to lyotropic liquid crystal systems. A protocol for producing the virions in bulk is reviewed. Thiolated oligonucleotides are attached to the viral capsid using a heterobifunctional chemical linker. A commonly used system is utilized, where a sticky, single-stranded DNA strand is connected to an inert double-stranded spacer to increase inter-particle connectivity. Solutions of fd virions carrying complementary strands are mixed, annealed, and their aggregation is studied using dynamic light scattering (DLS), fluorescence microscopy, and atomic force microscopy (AFM). Aggregation is clearly observed on cooling, with some degree of local order, and is reversible when temperature is cycled through the DNA hybridization transition. PMID:25732957

  11. Replication of linear duplex DNA in vitro with bacteriophage T5 DNA polymerase

    SciTech Connect

    Fujimura, R. K.; Das, S. K.; Allison, D. P.; Roop, B. C.

    1980-01-01

    Two sets of experiments are presented that attempt to contribute to understanding the mechanisms of DNA replication. The specific areas discussed are fidelity of DNA replication and initiation of replication of duplex DNA. (ACR)

  12. DNA Recognition by the DNA Primase of Bacteriophage T7: A Structure Function Study of the Zinc-Binding Domain

    SciTech Connect

    Akabayov, B.; Lee, S; Akabayov, S; Rekhi, S; Zhu, B; Richardson, C

    2009-01-01

    Synthesis of oligoribonucleotide primers for lagging-strand DNA synthesis in the DNA replication system of bacteriophage T7 is catalyzed by the primase domain of the gene 4 helicase-primase. The primase consists of a zinc-binding domain (ZBD) and an RNA polymerase (RPD) domain. The ZBD is responsible for recognition of a specific sequence in the ssDNA template whereas catalytic activity resides in the RPD. The ZBD contains a zinc ion coordinated with four cysteine residues. We have examined the ligation state of the zinc ion by X-ray absorption spectroscopy and biochemical analysis of genetically altered primases. The ZBD of primase engaged in catalysis exhibits considerable asymmetry in coordination to zinc, as evidenced by a gradual increase in electron density of the zinc together with elongation of the zinc-sulfur bonds. Both wild-type primase and primase reconstituted from purified ZBD and RPD have a similar electronic change in the level of the zinc ion as well as the configuration of the ZBD. Single amino acid replacements in the ZBD (H33A and C36S) result in the loss of both zinc binding and its structural integrity. Thus the zinc in the ZBD may act as a charge modulation indicator for the surrounding sulfur atoms necessary for recognition of specific DNA sequences.

  13. DNA Packaging Specificity of Bacteriophage N15 with an Excursion into the Genetics of a Cohesive End Mismatch

    PubMed Central

    Feiss, Michael; Young Min, Jea; Sultana, Sawsan; Patel, Priyal; Sippy, Jean

    2015-01-01

    During DNA replication by the λ-like bacteriophages, immature concatemeric DNA is produced by rolling circle replication. The concatemers are processed into mature chromosomes with cohesive ends, and packaged into prohead shells, during virion assembly. Cohesive ends are generated by the viral enzyme terminase, which introduces staggered nicks at cos, an approx. 200 bp-long sequence containing subsites cosQ, cosN and cosB. Interactions of cos subsites of immature concatemeric DNA with terminase orchestrate DNA processing and packaging. To initiate DNA packaging, terminase interacts with cosB and nicks cosN. The cohesive ends of N15 DNA differ from those of λ at 2/12 positions. Genetic experiments show that phages with chromosomes containing mismatched cohesive ends are functional. In at least some infections, the cohesive end mismatch persists through cyclization and replication, so that progeny phages of both allelic types are produced in the infected cell. N15 possesses an asymmetric packaging specificity: N15 DNA is not packaged by phages λ or 21, but surprisingly, N15-specific terminase packages λ DNA. Implications for genetic interactions among λ-like bacteriophages are discussed. PMID:26633301

  14. DNA sequences at the ends of the genome of bacteriophage Mu essential for transposition.

    PubMed Central

    Groenen, M A; Timmers, E; van de Putte, P

    1985-01-01

    We have determined the minimal DNA sequences at the ends of the genome of bacteriophage Mu that are required for its transposition. A mini-Mu was constructed on a multicopy plasmid that enabled the manipulation of the DNA sequences at its ends without affecting the genes essential for transposition. The genes A and B, which were cloned outside the ends of the mini-Mu on the same plasmid, were both needed for optimal transposition. In our experimental system the predominant end products of the transposition are cointegrates both in the presence and in the absence of B. Two regions ending approximately 25 and 160 bp from the left end and one ending approximately 50 bp from the right end appear to be essential for optimal transposition. Overlapping with these regions, a 22-base-pair sequence was recognized with the consensus Y-G-T-T-C-A-Y-T-N-N-A-A-R-Y-R-C-G-A-A-A-A, where Y and R represent any pyrimidine and purine, respectively. At the left end these sequences occur as direct repeats; at the right end this sequence is inverted with respect to those at the left end. PMID:2984681

  15. Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence.

    PubMed

    Murphy, James; Mahony, Jennifer; Ainsworth, Stuart; Nauta, Arjen; van Sinderen, Douwe

    2013-12-01

    Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function. PMID:24123737

  16. Function of DNA polymerase I in RNA-primed synthesis of bacteriophage M-13 duplex DNA.

    PubMed Central

    Schneck, P K; Staudenbauer, W L; Hofschneider, P H

    1976-01-01

    Cell-free extracts from Escherichia coli contain a DNA polymerase activity resistant to SH-blocking agents, which is capable of synthesizing complementary strand DNA on a circular M-13 DNA template by extension of RNA primers. This activity is considered to be identical with DNA polymerase I (or some altered form of this enzyme) since it is missing in extracts from po1A- cells. DNA synthesis in the presence of SH-blocking agents occurs at a reduced rate as compared to untreated controls and leads to the formation of DNA chains of defined size (0.4-0.5 genome's length). It is concluded that efficient M-13 duplex DNA synthesis requires the cooperation of both DNA polymerase I and III. PMID:1272793

  17. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication

    PubMed Central

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5′ ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3′–5′ exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and

  18. DNA-Binding Proteins Essential for Protein-Primed Bacteriophage Φ29 DNA Replication.

    PubMed

    Salas, Margarita; Holguera, Isabel; Redrejo-Rodríguez, Modesto; de Vega, Miguel

    2016-01-01

    Bacillus subtilis phage Φ29 has a linear, double-stranded DNA 19 kb long with an inverted terminal repeat of 6 nucleotides and a protein covalently linked to the 5' ends of the DNA. This protein, called terminal protein (TP), is the primer for the initiation of replication, a reaction catalyzed by the viral DNA polymerase at the two DNA ends. The DNA polymerase further elongates the nascent DNA chain in a processive manner, coupling strand displacement with elongation. The viral protein p5 is a single-stranded DNA binding protein (SSB) that binds to the single strands generated by strand displacement during the elongation process. Viral protein p6 is a double-stranded DNA binding protein (DBP) that preferentially binds to the origins of replication at the Φ29 DNA ends and is required for the initiation of replication. Both SSB and DBP are essential for Φ29 DNA amplification. This review focuses on the role of these phage DNA-binding proteins in Φ29 DNA replication both in vitro and in vivo, as well as on the implication of several B. subtilis DNA-binding proteins in different processes of the viral cycle. We will revise the enzymatic activities of the Φ29 DNA polymerase: TP-deoxynucleotidylation, processive DNA polymerization coupled to strand displacement, 3'-5' exonucleolysis and pyrophosphorolysis. The resolution of the Φ29 DNA polymerase structure has shed light on the translocation mechanism and the determinants responsible for processivity and strand displacement. These two properties have made Φ29 DNA polymerase one of the main enzymes used in the current DNA amplification technologies. The determination of the structure of Φ29 TP revealed the existence of three domains: the priming domain, where the primer residue Ser232, as well as Phe230, involved in the determination of the initiating nucleotide, are located, the intermediate domain, involved in DNA polymerase binding, and the N-terminal domain, responsible for DNA binding and localization of the

  19. Is the In Vitro Ejection of Bacteriophage DNA Quasistatic? A Bulk to Single Virus Study

    PubMed Central

    Chiaruttini, N.; de Frutos, M.; Augarde, E.; Boulanger, P.; Letellier, L.; Viasnoff, V.

    2010-01-01

    Abstract Bacteriophage T5 DNA ejection is a complex process that occurs on several timescales in vitro. By using a combination of bulk and single phage measurements, we quantitatively study the three steps of the ejection—binding to the host receptor, channel-opening, and DNA release. Each step is separately addressed and its kinetics parameters evaluated. We reconstruct the bulk kinetics from the distribution of single phage events by following individual DNA molecules with unprecedented time resolution. We show that, at the single phage level, the ejection kinetics of the DNA happens by rapid transient bursts that are not correlated to any genome sequence defects. We speculate that these transient pauses are due to local phase transitions of the DNA inside the capsid. We predict that such pauses should be seen for other phages with similar DNA packing ratios. PMID:20643062

  20. Structure-function analysis of the DNA translocating portal of the bacteriophage T4 packaging machine.

    PubMed

    Padilla-Sanchez, Victor; Gao, Song; Kim, Hyung Rae; Kihara, Daisuke; Sun, Lei; Rossmann, Michael G; Rao, Venigalla B

    2014-03-01

    Tailed bacteriophages and herpesviruses consist of a structurally well conserved dodecameric portal at a special 5-fold vertex of the capsid. The portal plays critical roles in head assembly, genome packaging, neck/tail attachment, and genome ejection. Although the structures of portals from phages φ29, SPP1, and P22 have been determined, their mechanistic roles have not been well understood. Structural analysis of phage T4 portal (gp20) has been hampered because of its unusual interaction with the Escherichia coli inner membrane. Here, we predict atomic models for the T4 portal monomer and dodecamer, and we fit the dodecamer into the cryo-electron microscopy density of the phage portal vertex. The core structure, like that from other phages, is cone shaped with the wider end containing the "wing" and "crown" domains inside the phage head. A long "stem" encloses a central channel, and a narrow "stalk" protrudes outside the capsid. A biochemical approach was developed to analyze portal function by incorporating plasmid-expressed portal protein into phage heads and determining the effect of mutations on head assembly, DNA translocation, and virion production. We found that the protruding loops of the stalk domain are involved in assembling the DNA packaging motor. A loop that connects the stalk to the channel might be required for communication between the motor and the portal. The "tunnel" loops that project into the channel are essential for sealing the packaged head. These studies established that the portal is required throughout the DNA packaging process, with different domains participating at different stages of genome packaging. PMID:24126213

  1. The tight linkage between DNA replication and double-strand break repair in bacteriophage T4

    PubMed Central

    George, James W.; Stohr, Bradley A.; Tomso, Daniel J.; Kreuzer, Kenneth N.

    2001-01-01

    Double-strand break (DSB) repair and DNA replication are tightly linked in the life cycle of bacteriophage T4. Indeed, the major mode of phage DNA replication depends on recombination proteins and can be stimulated by DSBs. DSB-stimulated DNA replication is dramatically demonstrated when T4 infects cells carrying two plasmids that share homology. A DSB on one plasmid triggered extensive replication of the second plasmid, providing a useful model for T4 recombination-dependent replication (RDR). This system also provides a view of DSB repair in T4-infected cells and revealed that the DSB repair products had been replicated in their entirety by the T4 replication machinery. We analyzed the detailed structure of these products, which do not fit the simple predictions of any of three models for DSB repair. We also present evidence that the T4 RDR system functions to restart stalled or inactivated replication forks. First, we review experiments involving antitumor drug-stabilized topoisomerase cleavage complexes. The results suggest that forks blocked at cleavage complexes are resolved by recombinational repair, likely involving RDR. Second, we show here that the presence of a T4 replication origin on one plasmid substantially stimulated recombination events between it and a homologous second plasmid that did not contain a T4 origin. Furthermore, replication of the second plasmid was increased when the first plasmid contained the T4 origin. Our interpretation is that origin-initiated forks become inactivated at some frequency during replication of the first plasmid and are then restarted via RDR on the second plasmid. PMID:11459966

  2. Insight into DNA and Protein Transport in Double-stranded DNA Viruses: The Structure of Bacteriophage N4

    PubMed Central

    Choi, Kyung H.; McPartland, Jennifer; Kaganman, Irene; Bowman, Valorie D.; Rothman-Denes, Lucia B.; Rossmann, Michael G.

    2008-01-01

    SUMMARY Bacteriophage N4 encapsidates a 3,500 amino acid-long DNA-dependent RNA polymerase (vRNAP), which is injected into the host along with the N4 genome upon infection. The three-dimensional structures of wild-type and mutant N4 viruses lacking gp17, gp50, or gp65 were determined by cryo-electron microscopy. The virion has an icosahedral capsid with T = 9 quasi-symmetry that encapsidates well-organized dsDNA and vRNAP. The tail, attached at a unique pentameric vertex of the head, consists of a neck, twelve appendages, and six ribbons that constitute a non-contractile sheath around a central tail tube. Comparison of wild-type and mutant virus structures in conjunction with bioinformatics established the identity and virion locations of the major capsid protein (gp56), a decorating protein (gp17), the vRNAP (gp50), the tail sheath (gp65), the appendages (gp66), and the portal protein (gp59). The N4 virion organization provides insights into its assembly, and suggests a mechanism for genome and vRNAP transport strategies utilized by this unique system. PMID:18374942

  3. Structure and function of the small terminase component of the DNA packaging machine in T4-like bacteriophages

    SciTech Connect

    Sun, Siyang; Gao, Song; Kondabagil, Kiran; Xiang, Ye; Rossmann, Michael G.; Rao, Venigalla B.

    2012-04-04

    Tailed DNA bacteriophages assemble empty procapsids that are subsequently filled with the viral genome by means of a DNA packaging machine situated at a special fivefold vertex. The packaging machine consists of a 'small terminase' and a 'large terminase' component. One of the functions of the small terminase is to initiate packaging of the viral genome, whereas the large terminase is responsible for the ATP-powered translocation of DNA. The small terminase subunit has three domains, an N-terminal DNA-binding domain, a central oligomerization domain, and a C-terminal domain for interacting with the large terminase. Here we report structures of the central domain in two different oligomerization states for a small terminase from the T4 family of phages. In addition, we report biochemical studies that establish the function for each of the small terminase domains. On the basis of the structural and biochemical information, we propose a model for DNA packaging initiation.

  4. The Scrunchworm Hypothesis: Transitions Between A-DNA and B-DNA Provide the Driving Force for Genome Packaging in Double-Stranded DNA Bacteriophages

    PubMed Central

    Harvey, Stephen C.

    2015-01-01

    Double-stranded DNA bacteriophages have motors that drive the genome into preformed capsids, using the energy releas ed by hydrolysis of ATP to overcome the forces opposing DNA packaging. Viral packaging motors are the strongest of all biological motors, but it is not known how they generate these forces. Several models for the process of mechanochemical force generation have been put forward, but there is no consensus on which, if any, of these is correct. All the existing models assume that protein-generated forces drive the DNA forward. The scrunchworm hypothesis proposes that the DNA molecule is the active force-generating core of the motor, not simply a substrate on which the motor operates. The protein components of the motor dehydrate a section of the DNA, converting it from the B form to the A form and shortening it by about 23%. The proteins then rehydrate the DNA, which converts back to the B form. Other regions of the motor grip and release the DNA to capture the shortening-lengthening motions of the B→A→B cycle (“scrunching”), so that DNA is pulled into the motor and pushed forward into the capsid. This DNA-centric mechanism provides a quantitative physical explanation for the magnitude of the forces generated by viral packaging motors. It also provides a simple explanation for the fact that each of the steps in the burst cycle advances the DNA by 2.5 base pairs. The scrunchworm hypothesis is consistent with a large body of published data, and it makes four experimentally testable predictions. PMID:25486612

  5. In vitro construction of bacteriophage lambda carrying segments of the Escherichia coli chromosome: selection of hybrids containing the gene for DNA ligase.

    PubMed Central

    Cameron, J R; Panasenko, S M; Lehman, I R; Davis, R W

    1975-01-01

    DNA from lambdagt-lambdaB bacteriophage was cleaved with EcoRI endonuclease and fragments from EcoRI-digested E. coli DNA were inserted. This DNA was used to infect E. coli, and phages containing the gene for DNA ligase were isolated by genetic selection. Two different hybrids were found with the same E. coli segment inserted in opposite orientations. Both hybrids produced similar levels of ligase as measured in crude extracts of infected cells. Images PMID:1103146

  6. Structure and Energetics of Encapsidated DNA in Bacteriophage HK97 Studied by Scanning Calorimetry and Cryo-electron Microscopy

    PubMed Central

    Duda, Robert L.; Ross, Philip D.; Cheng, Naiqian; Firek, Brian A.; Hendrix, Roger W.; Conway, James F.; Steven, Alasdair C.

    2009-01-01

    Encapsidation of duplex DNA by bacteriophages represents an extreme case of genome condensation, reaching near-crystalline concentrations of DNA. The HK97 system is well suited to study this phenomenon in view of detailed knowledge of its capsid structure. To characterize the interactions involved, we combined calorimetry with cryo-EM and native gel electrophoresis. We found that, as in other phages, HK97 DNA is organized in coaxially wound nested shells. When scanned in buffer containing 1mM [Mg++], filled capsids exhibit a complex thermal profile between 82° and 96°, to which DNA melting and capsid denaturation both contribute. In the absence of (unbound) [Mg++], DNA melting shifts to lower temperatures and the two events are resolved. Filled capsids release their DNA at temperatures well below the onset of DNA melting or capsid denaturation. On heating, the internal pressure increases, causing the DNA to exit – probably, via the portal vertex; the capsid, although largely intact, sustains local damage that leads to an earlier onset of thermal denaturation. Filled capsids differ structurally from empty capsids in the curvature of their protein shell, a change attributable to outwards pressure exerted by the DNA. We propose that this transition is sensed by the portal which is embedded in the capsid wall, whereupon the portal's structure and its interactions with terminase, the packaging enzyme, are altered, thus signaling that packaging is at or approaching completion. PMID:19540242

  7. Effects of the T4 bacteriophage gene 32 product on the efficiency and fidelity of DNA amplification using T4 DNA polymerase.

    PubMed

    Sandhu, D K; Keohavong, P

    1994-06-24

    Two bacteriophage DNA polymerases (Pol), T4 Pol and modified T7 Pol, were used to catalyze DNA amplification in vitro by PCR, and their efficiency and fidelity in DNA amplification were examined in the presence and absence of the T4 bacteriophage gene 32-encoded protein (SSB32). The SSB32 protein significantly improved the efficiency of amplification by T4 Pol. Examination of the amplified DNA by denaturing gradient gel electrophoresis (DGGE) revealed that the protein also reduced the rates of error produced by T4 Pol during PCR, from 6.3 x 10(-6) to 2.0 x 10(-6) errors per base duplication after 10(11)-fold amplification. This protein also improved, but to a lesser extent, the fidelity of modified T7 Pol, from 1.80 x 10(-5) to 1.15 x 10(-5) errors per base duplication. High fidelity polymerase chain reaction (hifi-PCR) is needed for studies requiring isolation of mutant sequences present as only a small fraction of the wild type in the amplified DNA. Although several thermostable Pol are currently available for use in automated PCR, their fidelity was found to be significantly lower than that of the thermosensitive T4 Pol. Therefore, T4 Pol is useful for studies requiring hifi-PCR, although this enzyme needs to be added in the reaction mixture during every cycle of PCR. PMID:8026758

  8. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size

    PubMed Central

    2014-01-01

    Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left

  9. Single molecule analysis of DNA wrapping and looping by a circular 14mer wheel of the bacteriophage 186 CI repressor.

    PubMed

    Wang, Haowei; Dodd, Ian B; Dunlap, David D; Shearwin, Keith E; Finzi, Laura

    2013-06-01

    The lytic-lysogenic decision in bacteriophage 186 is governed by the 186 CI repressor protein in a unique way. The 186 CI is proposed to form a wheel-like oligomer that can mediate either wrapped or looped nucleoprotein complexes to provide the cooperative and competitive interactions needed for regulation. Although consistent with structural, biochemical and gene expression data, many aspects of this model are based on inference. Here, we use atomic force microscopy (AFM) to reveal the various predicted wrapped and looped species, and new ones, for CI regulation of lytic and lysogenic transcription. Automated AFM analysis showed CI particles of the predicted dimensions on the DNA, with CI multimerization favoured by DNA binding. Measurement of the length of the wrapped DNA segments indicated that CI may move on the DNA, wrapping or releasing DNA on either side of the wheel. Tethered particle motion experiments were consistent with wrapping and looping of DNA by CI in solution, where in contrast to λ repressor, the looped species were exceptionally stable. The CI regulatory system provides an intriguing comparison with that of nucleosomes, which share the ability to wrap and release similar sized segments of DNA. PMID:23620280

  10. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: gp32 monomer binding.

    PubMed

    Jose, Davis; Weitzel, Steven E; Baase, Walter A; von Hippel, Peter H

    2015-10-30

    Combining biophysical measurements on T4 bacteriophage replication complexes with detailed structural information can illuminate the molecular mechanisms of these 'macromolecular machines'. Here we use the low energy circular dichroism (CD) and fluorescent properties of site-specifically introduced base analogues to map and quantify the equilibrium binding interactions of short (8 nts) ssDNA oligomers with gp32 monomers at single nucleotide resolution. We show that single gp32 molecules interact most directly and specifically near the 3'-end of these ssDNA oligomers, thus defining the polarity of gp32 binding with respect to the ssDNA lattice, and that only 2-3 nts are directly involved in this tight binding interaction. The loss of exciton coupling in the CD spectra of dimer 2-AP (2-aminopurine) probes at various positions in the ssDNA constructs, together with increases in fluorescence intensity, suggest that gp32 binding directly extends the sugar-phosphate backbone of this ssDNA oligomer, particularly at the 3'-end and facilitates base unstacking along the entire 8-mer lattice. These results provide a model (and 'DNA map') for the isolated gp32 binding to ssDNA targets, which serves as the nucleation step for the cooperative binding that occurs at transiently exposed ssDNA sequences within the functioning T4 DNA replication complex. PMID:26275775

  11. Pyrovanadolysis: a Pyrophosphorolysis-like Reaction Mediated by Pyrovanadate MN2plus and DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; A Kulczyk; S Akabayov; C Thiele; L McLaughlin; B Beauchamp; C Richardson

    2011-12-31

    DNA polymerases catalyze the 3'-5'-pyrophosphorolysis of a DNA primer annealed to a DNA template in the presence of pyrophosphate (PP{sub i}). In this reversal of the polymerization reaction, deoxynucleotides in DNA are converted to deoxynucleoside 5'-triphosphates. Based on the charge, size, and geometry of the oxygen connecting the two phosphorus atoms of PP{sub i}, a variety of compounds was examined for their ability to carry out a reaction similar to pyrophosphorolysis. We describe a manganese-mediated pyrophosphorolysis-like activity using pyrovanadate (VV) catalyzed by the DNA polymerase of bacteriophage T7. We designate this reaction pyrovanadolysis. X-ray absorption spectroscopy reveals a shorter Mn-V distance of the polymerase-VV complex than the Mn-P distance of the polymerase-PP{sub i} complex. This structural arrangement at the active site accounts for the enzymatic activation by Mn-VV. We propose that the Mn{sup 2+}, larger than Mg{sup 2+}, fits the polymerase active site to mediate binding of VV into the active site of the polymerase. Our results may be the first documentation that vanadium can substitute for phosphorus in biological processes.

  12. Binding of Mn-deoxyribonucleoside Triphosphates to the Active Site of the DNA Polymerase of Bacteriophage T7

    SciTech Connect

    B Akabayov; C Richardson

    2011-12-31

    Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg{sup 2+}, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg{sup 2+} to an active site because Mg{sup 2+} is spectroscopically silent and Mg{sup 2+} binds with low affinity to the active site of an enzyme. Therefore, we substituted Mg{sup 2+} with Mn{sup 2+}:Mn{sup 2+} that is not only visible spectroscopically but also provides full activity of the DNA polymerase of bacteriophage T7. In order to demonstrate that the majority of Mn{sup 2+} is bound to the enzyme, we have applied site-directed titration analysis of T7 DNA polymerase using X-ray near edge spectroscopy. Here we show how X-ray near edge spectroscopy can be used to distinguish between signal originating from Mn{sup 2+} that is free in solution and Mn{sup 2+} bound to the active site of T7 DNA polymerase. This method can be applied to other enzymes that use divalent metal ions as a cofactor.

  13. Localization and DNA sequence analysis of the C gene of bacteriophage Mu, the positive regulator of Mu late transcription.

    PubMed Central

    Margolin, W; Howe, M M

    1986-01-01

    The C gene of bacteriophage Mu, required for transcription of the phage late genes, was localized by construction and analysis of a series of deleted derivatives of pKN50, a plasmid containing a 9.4 kb Mu DNA fragment which complements Mu C amber mutant phages for growth. One such deleted derivative, pWM10, containing only 0.5 kb of Mu DNA, complements C amber phages and transactivates the mom gene, one of the Mu late genes dependent on C for activation. The DNA sequence of the 0.5 kb fragment predicts a single long open reading frame coding for a 140 amino acid protein. Sequence analysis of DNA containing a C amber mutation located the base change to the second codon of this reading frame. Generation of a frameshift mutation by filling in a BglII site spanning codon 114 of this reading frame resulted in the loss of C complementation and transactivation activity. These results indicate that this open reading frame encodes the Mu C gene product. Comparison of the predicted amino acid sequence of the C protein with those of other transcriptional regulatory proteins revealed some similarity to a region highly conserved among bacterial sigma factors. Images PMID:3014438

  14. Determinants of affinity and mode of DNA binding at the carboxy terminus of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1.

    PubMed Central

    Andera, L; Geiduschek, E P

    1994-01-01

    The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA. Images PMID:8113176

  15. The 29 DNA Polymerase: Protein-Primer Structure Suggests a Model of the Initiation to Elongation Transition

    SciTech Connect

    Kamtekar,S.; Berman, A.; Wang, J.; Lazaro, J.; Vega, M.; Blanco, L.; Salas, M.; Steitz, T.

    2006-01-01

    The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage {phi}29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 Angstroms resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.

  16. Location of the unique integration site on an Escherichia coli chromosome by bacteriophage lambda DNA in vivo.

    PubMed

    Tal, Asaf; Arbel-Goren, Rinat; Costantino, Nina; Court, Donald L; Stavans, Joel

    2014-05-20

    The search for specific sequences on long genomes is a key process in many biological contexts. How can specific target sequences be located with high efficiency, within physiologically relevant times? We addressed this question for viral integration, a fundamental mechanism of horizontal gene transfer driving prokaryotic evolution, using the infection of Escherichia coli bacteria with bacteriophage λ and following the establishment of a lysogenic state. Following the targeting process in individual live E. coli cells in real time revealed that λ DNA remains confined near the entry point of a cell following infection. The encounter between the 15-bp-long target sequence on the chromosome and the recombination site on the viral genome is facilitated by the directed motion of bacterial DNA generated during chromosome replication, in conjunction with constrained diffusion of phage DNA. Moving the native bacterial integration site to different locations on the genome and measuring the integration frequency in these strains reveals that the frequencies of the native site and a site symmetric to it relative to the origin are similar, whereas both are significantly higher than when the integration site is moved near the terminus, consistent with the replication-driven mechanism we propose. This novel search mechanism is yet another example of the exquisite coevolution of λ with its host. PMID:24799672

  17. In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage-T7-induced protein kinase.

    PubMed Central

    Zillig, W; Fujiki, H; Blum, W; Janeković, D; Schweiger, M; Rahmsdorf, H; Ponta, H; Hirsch-Kauffmann, M

    1975-01-01

    After infection with bacteriophage T7 the beta' and to a lesser extent the beta subunits of E. coli DNA-dependent RNA polymerase (nucleosidetriphosphate:RNA nucleotidyltransferase, EC 2.7.7.6) are phosphorylated by a phage-gene-encoded protein kinase (ATP:protein phosphotransferase, EC 2.7.1.37). The phosphorylation occurs on threonine residues and appears site-specific. It is probably the molecular basis of the early transcriptional control. Images PMID:1101258

  18. Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1.

    PubMed

    Hay, N; Cohen, G

    1983-11-01

    P1 lytic growth was examined in a number of different temperature sensitive mutants of E. coli that affect chromosomal replication. Growth was analyzed by measurements of phage burst sizes and specific DNA synthesis. Efficient P1 growth required each of the bacterial elongation functions dnaE (polC), dnaZ (sub units of E. coli polymerase III holoenzyme), and dnaG (primase) but was not dependent on the elongation function dnaB (mobile promoter). Of two initiation functions tested the dnaA function was found to be dispensable for normal growth whereas the dnaC function was essential. Temperature shift experiments with different dnaC mutants showed that the initiation component of the dnaC function was needed continuously throughout at least the first half of the lytic cycle, while the dnaC elongation activity was probably required during the entire cycle for normal phage yields. In two respects the dependence of P1 lytic growth on E. coli DNA synthesis functions was significantly different from that reported for P1 plasmid replication (Scott and Vapnek, 1980). Thus, lytic replication was far more dependent on a functional polC gene product than was plasmid replication and did not require the bacterial dnaB product. PMID:6359668

  19. Development of a new method for detection and identification of Oenococcus oeni bacteriophages based on endolysin gene sequence and randomly amplified polymorphic DNA.

    PubMed

    Doria, Francesca; Napoli, Chiara; Costantini, Antonella; Berta, Graziella; Saiz, Juan-Carlos; Garcia-Moruno, Emilia

    2013-08-01

    Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished. PMID:23728816

  20. Development of a New Method for Detection and Identification of Oenococcus oeni Bacteriophages Based on Endolysin Gene Sequence and Randomly Amplified Polymorphic DNA

    PubMed Central

    Doria, Francesca; Napoli, Chiara; Costantini, Antonella; Berta, Graziella; Saiz, Juan-Carlos

    2013-01-01

    Malolactic fermentation (MLF) is a biochemical transformation conducted by lactic acid bacteria (LAB) that occurs in wine at the end of alcoholic fermentation. Oenococcus oeni is the main species responsible for MLF in most wines. As in other fermented foods, where bacteriophages represent a potential risk for the fermentative process, O. oeni bacteriophages have been reported to be a possible cause of unsuccessful MLF in wine. Thus, preparation of commercial starters that take into account the different sensitivities of O. oeni strains to different phages would be advisable. However, currently, no methods have been described to identify phages infecting O. oeni. In this study, two factors are addressed: detection and typing of bacteriophages. First, a simple PCR method was devised targeting a conserved region of the endolysin (lys) gene to detect temperate O. oeni bacteriophages. For this purpose, 37 O. oeni strains isolated from Italian wines during different phases of the vinification process were analyzed by PCR for the presence of the lys gene, and 25 strains gave a band of the expected size (1,160 bp). This is the first method to be developed that allows identification of lysogenic O. oeni strains without the need for time-consuming phage bacterial-lysis induction methods. Moreover, a phylogenetic analysis was conducted to type bacteriophages. After the treatment of bacteria with UV light, lysis was obtained for 15 strains, and the 15 phage DNAs isolated were subjected to two randomly amplified polymorphic DNA (RAPD)-PCRs. By combining the RAPD profiles and lys sequences, 12 different O. oeni phages were clearly distinguished. PMID:23728816

  1. Mechano-chemical kinetics of DNA replication: identification of the translocation step of a replicative DNA polymerase

    PubMed Central

    Morin, José A.; Cao, Francisco J.; Lázaro, José M.; Arias-Gonzalez, J. Ricardo; Valpuesta, José M.; Carrascosa, José L.; Salas, Margarita; Ibarra, Borja

    2015-01-01

    During DNA replication replicative polymerases move in discrete mechanical steps along the DNA template. To address how the chemical cycle is coupled to mechanical motion of the enzyme, here we use optical tweezers to study the translocation mechanism of individual bacteriophage Phi29 DNA polymerases during processive DNA replication. We determine the main kinetic parameters of the nucleotide incorporation cycle and their dependence on external load and nucleotide (dNTP) concentration. The data is inconsistent with power stroke models for translocation, instead supports a loose-coupling mechanism between chemical catalysis and mechanical translocation during DNA replication. According to this mechanism the DNA polymerase works by alternating between a dNTP/PPi-free state, which diffuses thermally between pre- and post-translocated states, and a dNTP/PPi-bound state where dNTP binding stabilizes the post-translocated state. We show how this thermal ratchet mechanism is used by the polymerase to generate work against large opposing loads (∼50 pN). PMID:25800740

  2. Development of a simple cell lysis method for recombinant DNA using bacteriophage lambda lysis genes.

    PubMed

    Jang, Boyun; Jung, Yuna; Lim, Dongbin

    2007-12-01

    In this study, we describe the development of a simple and efficient method for cell lysis via the insertion of a bacteriophage lambda lysis gene cluster into the pET22b expression vector in the following order; the T7 promoter, a gene for a target protein intended for production, Sam7 and R. This insertion of R and Sam7 into pET22b exerted no detrimental effects on cellular growth or the production of a target protein. The induction of the T7 promoter did not in itself result in the autolysis of cells in culture but the harvested cells were readily broken by freezing and thawing. We compared the efficiency of the cell lysis technique by freezing and thawing to that observed with sonication, and determined that both methods completely disintegrated the cells and released proteins into the solution. With our modification of pET22b, the lysis of cells became quite simple, efficient, and reliable. This strategy may prove useful for a broad variety of applications, particularly in experiments requiring extensive cell breakage, including library screening and culture condition exploration, in addition to protein purification. PMID:18176547

  3. Mechanism of termination of bacteriophage DNA packaging investigated with optical tweezers

    NASA Astrophysics Data System (ADS)

    delToro, Damian J.; Smith, Douglas E.

    2012-10-01

    The genomes of many dsDNA viruses are replicated by a mechanism that produces a long concatemer of multiple genomes. These viruses utilize multifunctional molecular motor complexes referred to as "terminases" that can excise a unit genome length of DNA and package it into preformed viral shells. Remarkably, the terminase motor can initiate packaging at the appropriate start point, translocate DNA, sense when a sufficient length has been packaged, and then switch into a mode where it arrests and cleaves the DNA to release a filled virus particle. We have recently developed an improved method to measure single phage lambda DNA packaging using dual-trap optical tweezers and pre-stalled motor-DNA-procapsid complexes. We are applying this method to test proposed mechanisms for the sensor that triggers termination; specifically a velocity-monitor model vs. energy-monitor model vs. capsid-filling monitor model.

  4. Structure of the connector of bacteriophage T7 at 8A resolution: structural homologies of a basic component of a DNA translocating machinery.

    PubMed

    Agirrezabala, Xabier; Martín-Benito, Jaime; Valle, Mikel; González, José M; Valencia, Alfonso; Valpuesta, José María; Carrascosa, José L

    2005-04-15

    The three-dimensional structure of the bacteriophage T7 head-to-tail connector has been obtained at 8A resolution using cryo-electron microscopy and single-particle analysis from purified recombinant connectors. The general morphology of the T7 connector is that of a 12-folded toroidal homopolymer with a channel that runs along the longitudinal axis of the particle. The structure of the T7 connector reveals many structural similarities with the connectors from other bacteriophages. Docking of the atomic structure of the varphi29 connector into the three-dimensional reconstruction of T7 connector reveals that the narrow, distal region of the two oligomers are almost identical. This region of the varphi29 connector has been suggested to be involved in DNA translocation, and is composed of an alpha-beta-alpha-beta-beta-alpha motif. A search for alpha-helices in the same region of the T7 three-dimensional map has located three alpha-helices in approximately the same position as those of the varphi29 connector. A comparison of the predicted secondary structure of several bacteriophage connectors, including among others T7, varphi29, P22 and SPP1, reveals that, despite the lack of sequence homology, they seem to contain the same alpha-beta-alpha-beta-beta-alpha motif as that present in the varphi29 connector. These results allow us to suggest a common architecture related to a basic component of the DNA translocating machinery for several viruses. PMID:15784250

  5. The annotated complete DNA sequence of Enterococcus faecalis bacteriophage φEf11 and its comparison with all available phage and predicted prophage genomes.

    PubMed

    Stevens, Roy H; Ektefaie, Mahmoud R; Fouts, Derrick E

    2011-04-01

    φEf11 is a temperate Siphoviridae bacteriophage isolated by induction from a lysogenic Enterococcus faecalis strain. The φEf11 DNA was completely sequenced and found to be 42,822 bp in length, with a G+C mol% of 34.4%. Genome analysis revealed 65 ORFs, accounting for 92.8% of the DNA content. All except for seven of the ORFs displayed sequence similarities to previously characterized proteins. The genes were arranged in functional modules, organized similar to that of several other phages of low GC Gram-positive bacteria; however, the number and arrangement of lysis-related genes were atypical of these bacteriophages. A 159 bp noncoding region between predicted cI and cro genes is highly similar to the functionally characterized early promoter region of lactococcal temperate phage TP901-1, and possessed a predicted stem-loop structure in between predicted P(L) and P(R) promoters, suggesting a novel mechanism of repression of these two bacteriophages from the λ paradigm. Comparison with all available phage and predicted prophage genomes revealed that the φEf11 genome displays unique features, suggesting that φEf11 may be a novel member of a larger family of temperate prophages that also includes lactococcal phages. Trees based on the blast score ratio grouped this family by tail fiber similarity, suggesting that these trees are useful for identifying phages with similar tail fibers. PMID:21204936

  6. The mechanism of transcriptional activation by the topologically DNA-linked sliding clamp of bacteriophage T4.

    PubMed

    Kolesky, Scott E; Ouhammouch, Mohamed; Geiduschek, E Peter

    2002-08-30

    Three viral proteins participate directly in transcription of bacteriophage T4 late genes: the sigma-family protein gp55 provides promoter recognition, gp33 is the co-activator, and gp45 is the activator of transcription; gp33 also represses transcription in the absence of gp45. Transcriptional activation by gp45, the toroidal sliding clamp of the T4 DNA polymerase holoenzyme, requires assembly at primer-template junctions by its clamp loader. The mechanism of transcriptional activation has been analyzed by examining rates of formation of open promoter complexes. The basal gp55-RNA polymerase holoenzyme is only weakly held in its initially formed closed promoter complex, which subsequently opens very slowly. Activation ( approximately 320-fold in this work) increases affinity in the closed complex and accelerates promoter opening. Promoter opening by gp55 is also thermo-irreversible: the T4 late promoter does not open at 0 degrees C, but once opened at 30 degrees C remains open upon shift to the lower temperature. At a hybrid promoter for sigma(70) and gp55-holoenzymes, only gp55 confers thermo-irreversibility of promoter opening. Interaction of gp45 with a C-terminal epitope of gp33 is essential for the co-activator function of gp33. PMID:12206760

  7. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    PubMed

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective. PMID:23165717

  8. Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ

    PubMed Central

    Kuzminov, Andrei

    1999-01-01

    Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965

  9. Old, New, and Widely True: the Bacteriophage T4 DNA Packaging Mechanism

    PubMed Central

    Black, Lindsay W.

    2015-01-01

    DNA packaging into empty viral procapsids by ATP-driven motor proteins applies widely among viruses. Recent fluorescence studies of phage T4 reveal: 1) the small terminase subunit (TerS) synapses pac homologs by a two ring mechanism to gauge DNA maturation and allow packaging by the large terminase subunit (TerL); 2) translocation of linear DNA is efficient by TerL acting alone; expansion of the procapsid is controlled by the portal-terminase assembly; 3) both ends of the packaged DNA are held at the portal, showing a loop of DNA is packaged; 4) transient spring-like compression of B form to A form-like DNA accompanies translocation; 5) the C-terminal domain of TerL is docked to the portal and moves toward it when stalled; 6) a portal bound resolvase can release stalled Y-DNA compression and allow translocation in vitro; and 7) ATP powered translocation on A form dsDNA is supported by recent hexameric helicase studies. PMID:25728298

  10. Molecular Characterization of a Novel Temperate Sinorhizobium Bacteriophage, ФLM21, Encoding DNA Methyltransferase with CcrM-Like Specificity

    PubMed Central

    Dziewit, Lukasz; Oscik, Karolina; Bartosik, Dariusz

    2014-01-01

    ABSTRACT ΦLM21 is a temperate phage isolated from Sinorhizobium sp. strain LM21 (Alphaproteobacteria). Genomic analysis and electron microscopy suggested that ΦLM21 is a member of the family Siphoviridae. The phage has an isometric head and a long noncontractile tail. The genome of ΦLM21 has 50,827 bp of linear double-stranded DNA encoding 72 putative proteins, including proteins responsible for the assembly of the phage particles, DNA packaging, transcription, replication, and lysis. Virion proteins were characterized using mass spectrometry, leading to the identification of the major capsid and tail components, tape measure, and a putative portal protein. We have confirmed the activity of two gene products, a lytic enzyme (a putative chitinase) and a DNA methyltransferase, sharing sequence specificity with the cell cycle-regulating methyltransferase (CcrM) of the bacterial host. Interestingly, the genome of Sinorhizobium phage ΦLM21 shows very limited similarity to other known phage genome sequences and is thus considered unique. IMPORTANCE Prophages are known to play an important role in the genomic diversification of bacteria via horizontal gene transfer. The influence of prophages on pathogenic bacteria is very well documented. However, our knowledge of the overall impact of prophages on the survival of their lysogenic, nonpathogenic bacterial hosts is still limited. In particular, information on prophages of the agronomically important Sinorhizobium species is scarce. In this study, we describe the isolation and molecular characterization of a novel temperate bacteriophage, ΦLM21, of Sinorhizobium sp. LM21. Since we have not found any similar sequences, we propose that this bacteriophage is a novel species. We conducted a functional analysis of selected proteins. We have demonstrated that the phage DNA methyltransferase has the same sequence specificity as the cell cycle-regulating methyltransferase CcrM of its host. We point out that this phenomenon of

  11. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor

    PubMed Central

    Reyes-Aldrete, Emilio; Sherman, Michael B.; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J.; Morais, Marc C.

    2016-01-01

    SUMMARY Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring, and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. PMID:26904950

  12. Structural and Molecular Basis for Coordination in a Viral DNA Packaging Motor.

    PubMed

    Mao, Huzhang; Saha, Mitul; Reyes-Aldrete, Emilio; Sherman, Michael B; Woodson, Michael; Atz, Rockney; Grimes, Shelley; Jardine, Paul J; Morais, Marc C

    2016-03-01

    Ring NTPases are a class of ubiquitous molecular motors involved in basic biological partitioning processes. dsDNA viruses encode ring ATPases that translocate their genomes to near-crystalline densities within pre-assembled viral capsids. Here, X-ray crystallography, cryoEM, and biochemical analyses of the dsDNA packaging motor in bacteriophage phi29 show how individual subunits are arranged in a pentameric ATPase ring and suggest how their activities are coordinated to translocate dsDNA. The resulting pseudo-atomic structure of the motor and accompanying functional analyses show how ATP is bound in the ATPase active site; identify two DNA contacts, including a potential DNA translocating loop; demonstrate that a trans-acting arginine finger is involved in coordinating hydrolysis around the ring; and suggest a functional coupling between the arginine finger and the DNA translocating loop. The ability to visualize the motor in action illuminates how the different motor components interact with each other and with their DNA substrate. PMID:26904950

  13. Structural Basis for DNA-Hairpin Promoter Recognition by the Bacteriophage N4 Virion RNA Polymerase

    SciTech Connect

    Gleghorn, M.; Davydova, E; Rothman-Denes, L; Murakami, K

    2008-01-01

    Coliphage N4 virion-encapsidated RNA polymerase (vRNAP) is a member of the phage T7-like single-subunit RNA polymerase (RNAP) family. Its central domain (mini-vRNAP) contains all RNAP functions of the full-length vRNAP, which recognizes a 5 to 7 base pair stem and 3 nucleotide loop hairpin DNA promoter. Here, we report the X-ray crystal structures of mini-vRNAP bound to promoters. Mini-vRNAP uses four structural motifs to recognize DNA sequences at the hairpin loop and stem and to unwind DNA. Despite their low sequence similarity, three out of four motifs are shared with T7 RNAP that recognizes a double-stranded DNA promoter. The binary complex structure and results of engineered disulfide linkage experiments reveal that the plug and motif B loop, which block the access of template DNA to the active site in the apo-form mini-vRNAP, undergo a large-scale conformational change upon promoter binding, explaining the restricted promoter specificity that is critical for N4 phage early transcription.

  14. Designing disordered materials using DNA-coated colloids of bacteriophage fd and gold.

    PubMed

    Ruff, Z; Nathan, S H; Unwin, R R; Zupkauskas, M; Joshi, D; Salmond, G P C; Grey, C P; Eiser, E

    2016-04-12

    DNA has emerged as an exciting binding agent for programmable colloidal self-assembly. Its popularity derives from its unique properties: it provides highly specific short-ranged interactions and at the same time it acts as a steric stabilizer against non-specific van der Waals and Coulomb interactions. Because complementary DNA strands are linked only via hydrogen bonds, DNA-mediated binding is thermally reversible: it provides an effective attraction that can be switched off by raising the temperature only by a few degrees. In this article we introduce a new binary system made of DNA-functionalized filamentous fd viruses of ∼880 nm length with an aspect ratio of ∼100, and 50 nm gold nanoparticles (gold NPs) coated with the complementary DNA strands. When quenching mixtures below the melt temperature Tm, at which the attraction is switched on, we observe aggregation. Conversely, above Tm the system melts into a homogenous particulate 'gas'. We present the aggregation behavior of three different gold NP to virus ratios and compare them to a gel made solely of gold NPs. In particular, we have investigated the aggregate structures as a function of cooling rate and determine how they evolve as function of time for given quench depths, employing fluorescence microscopy. Structural information was extracted in the form of an effective structure factor and chord length distributions. Rapid cooling rates lead to open aggregates, while slower controlled cooling rates closer to equilibrium DNA hybridization lead to more fine-stranded gels. Despite the different structures we find that for both cooling rates the quench into the two-phase region leads to initial spinodal decomposition, which becomes arrested. Surprisingly, although the fine-stranded gel is disordered, the overall structure and the corresponding length scale distributions in the system are remarkably reproducible. Such highly porous systems can be developed into new functional materials. PMID:26864018

  15. Primary structure and functional analysis of the lysis genes of Lactobacillus gasseri bacteriophage phi adh.

    PubMed

    Henrich, B; Binishofer, B; Bläsi, U

    1995-02-01

    The lysis genes of the Lactobacillus gasseri bacteriophage phi adh were isolated by complementation of a lambda Sam mutation in Escherichia coli. Nucleotide sequencing of a 1,735-bp DNA fragment revealed two adjacent coding regions of 342 bp (hol) and 951 bp (lys) in the same reading frame which appear to belong to a common transcriptional unit. Proteins corresponding to the predicted gene products, holin (12.9 kDa) and lysin (34.7 kDa), were identified by in vitro and in vivo expression of the cloned genes. The phi adh holin is a membrane-bound protein with structural similarity to lysis proteins of other phage, known to be required for the transit of murein hydrolases through the cytoplasmic membrane. The phi adh lysin shows homology with mureinolytic enzymes encoded by the Lactobacillus bulgaricus phage mv4, the Streptococcus pneumoniae phage Cp-1, Cp-7, and Cp-9, and the Lactococcus lactis phage phi LC3. Significant homology with the N termini of known muramidases suggests that phi adh lysin acts by a similar catalytic mechanism. In E. coli, the phi adh lysin seems to be associated with the total membrane fraction, from which it can be extracted with lauryl sarcosinate. Either one of the phi adh lysis proteins provoked lysis of E. coli when expressed along with holins or lysins of phage lambda or Bacillus subtilis phage phi 29. Concomitant expression of the combined holin and lysin functions of phi adh in E. coli, however, did not result in efficient cell lysis. PMID:7836307

  16. Structure-specific DNA binding by bacteriophage T5 5'-->3' exonuclease.

    PubMed Central

    Garforth, S J; Sayers, J R

    1997-01-01

    Phage T5 exonuclease is a 5'-->3'exodeoxyribonuclease that also exhibits endonucleolytic activity on flap structures (branched duplex DNA containing a free single-stranded 5'-end). Oligonucleotides were used to construct duplexes with either blunt ends, 5'-overhangs, 3'-overhangs, a flap or a forked end (pseudo-Y). The binding of T5 exonuclease to various structures was investigated using native electrophoretic mobility shift assays (EMSA) in the absence of the essential divalent metal cofactor. Binding of T5 exonuclease to either blunt-ended duplexes or single-stranded oligonucleotides could not be detected by EMSA. However, duplexes with 5'-overhangs, flaps and pseudo-Y structures showed decreased mobility with added T5 exonuclease. On binding to DNA the wild-type enzyme was rendered partially resistant to proteolysis, yielding a biologically active 31.5 kDa fragment. However, the protein-DNA complex remained susceptible to inactivation by p-hydroxymercuribenzoate (PHMB, a cysteine-specific modifying agent), suggesting that neither cysteine is intimately associated with substrate binding. Replacement of both cysteine residues of the molecule with serine did not greatly alter the catalytic or binding characteristics of the protein but did render it highly resistant to inhibition by PHMB. PMID:9380501

  17. The Fitness Effects of Random Mutations in Single-Stranded DNA and RNA Bacteriophages

    PubMed Central

    Domingo-Calap, Pilar; Cuevas, José M.; Sanjuán, Rafael

    2009-01-01

    Mutational fitness effects can be measured with relatively high accuracy in viruses due to their small genome size, which facilitates full-length sequencing and genetic manipulation. Previous work has shown that animal and plant RNA viruses are very sensitive to mutation. Here, we characterize mutational fitness effects in single-stranded (ss) DNA and ssRNA bacterial viruses. First, we performed a mutation-accumulation experiment in which we subjected three ssDNA (ΦX174, G4, F1) and three ssRNA phages (Qβ, MS2, and SP) to plaque-to-plaque transfers and chemical mutagenesis. Genome sequencing and growth assays indicated that the average fitness effect of the accumulated mutations was similar in the two groups. Second, we used site-directed mutagenesis to obtain 45 clones of ΦX174 and 42 clones of Qβ carrying random single-nucleotide substitutions and assayed them for fitness. In ΦX174, 20% of such mutations were lethal, whereas viable ones reduced fitness by 13% on average. In Qβ, these figures were 29% and 10%, respectively. It seems therefore that high mutational sensitivity is a general property of viruses with small genomes, including those infecting animals, plants, and bacteria. Mutational fitness effects are important for understanding processes of fitness decline, but also of neutral evolution and adaptation. As such, these findings can contribute to explain the evolution of ssDNA and ssRNA viruses. PMID:19956760

  18. Genetics of Critical Contacts and Clashes in the DNA Packaging Specificities of Bacteriophages λ and 21

    PubMed Central

    Sippy, Jean; Patel, Priyal; Vahanian, Nicole; Sippy, Rachel; Feiss, Michael

    2016-01-01

    The cos sites in λ and 21 chromosomes contain binding sites that recruit terminase to initiate DNA packaging. The small subunits of terminase, gpNu1 (λ) and gp1 (21), have winged helix-turn-helix DNA binding domains, where the recognition helixes differ in four of nine residues. To initiate packaging, the small subunit binds three R sequences in the cosB subsite. λ and 21 cannot package each other's DNA, due to recognition helix and R sequence differences. In λ and 21 cosBs, two bp, tri1 and tri2, are conserved in the R sequences yet differ between the phages; they are proposed to play a role in phage-specific packaging by λ and 21. Genetic experiments done with mixed and matched terminase and cosB alleles show packaging specificity depends on favorable contacts and clashes. These interactions indicate that the recognition helixes orient with residues 20 and 24 proximal to tri2 and tri1, respectively. PMID:25543962

  19. Biological Physics Prize talk: Grabbing the Cat by the Tail: Studies of DNA Packaging by Single φ 29 Bacteriophage Particles Using Optical Tweezers

    NASA Astrophysics Data System (ADS)

    Bustamante, Carlos

    2002-03-01

    I will present our recent results on the packaging of DNA by the connector motor at the base of the head of bacteriophage φ 29. As part of their infection cycle, many viruses must package their newly replicated genomes inside a protein capsid to insure its proper transport and delivery to other host cells. Bacteriophage φ 29 packages its 6.6 mm long double-stranded DNA into a 42 nm dia. x 54 nm high capsid via a portal complex that hydrolyses ATP. This process is remarkable because entropic, electrostatic, and bending energies of the DNA must be overcome to package the DNA to near-crystalline density. We have used optical tweezers to pull on single DNA molecules as they are packaged, thus demonstrating that the portal complex is a force generating motor. We find that this motor can work against loads of up to ~57 picoNewtons on average, making it one of the strongest molecular motors ever reported. Movements of over 5 mm are observed, indicating high processivity. Pauses and slips also occur, particularly at higher forces. We establish the force-velocity relationship of the motor and find that the rate-limiting step of the motor's cycle is force dependent even at low loads. Interestingly, the packaging rate decreases as the prohead is filled, indicating that an internal pressure builds up due to DNA compression. We estimate that at the end of the packaging the capsid pressure is ~15 MegaPascals, corresponding to an internal force of ~50 pN acting on the motor. The biological implications of this internal pressure and the mechano-chemical efficiency of the engine are discussed.

  20. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor.

    PubMed

    Jing, Peng; Burris, Benjamin; Zhang, Rong

    2016-07-12

    In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect. PMID:27410744

  1. Bacteriophage Resistance of a ΔthyA Mutant of Lactococcus lactis Blocked in DNA Replication

    PubMed Central

    Pedersen, Martin B.; Jensen, Peter R.; Janzen, Thomas; Nilsson, Dan

    2002-01-01

    The thyA gene, which encodes thymidylate synthase (TS), of Lactococcus lactis CHCC373 was sequenced, including the upstream and downstream regions. We then deleted part of thyA by gene replacement. The resulting strain, MBP71 ΔthyA, was devoid of TS activity, and in media without thymidine, such as milk, there was no detectable dTTP pool in the cells. Hence, DNA replication was abolished, and acidification by MBP71 was completely unaffected by the presence of nine different phages tested at a multiplicity of infection (MOI) of 0.1. Nonreplicating MBP71 must be inoculated at a higher level than CHCC373 to achieve a certain pH within a specified time. For a pH of 5.2 to be reached in 6 h, the inoculation level of MBP71 must be 17-fold higher than for CHCC373. However, by adding a limiting amount of thymidine this could be lowered to just 5-fold the normal amount, while acidification was unaffected with MBP71 up to an MOI of 0.01. It was found that nonreplicating MBP71 produced largely the same products as CHCC373, though the acetaldehyde production of the former was higher. PMID:12039762

  2. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  3. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  4. The MotA transcription factor from bacteriophage T4 contains a novel DNA-binding domain : the 'double wing' motif.

    SciTech Connect

    Li, N.; Sickmier, E. A.; Zhang, R.; Joachimiak, A.; White, S. W.; Biosciences Division; St. Jude Children's Research Hospital; Univ. of Tennessee Health Science Center; Corixa Inc.

    2002-01-01

    MotA is a transcription factor from bacteriophage T4 that helps adapt the host Escherichia coli transcription apparatus to T4 middle promoters. We have determined the crystal structure of the C-terminal DNA-binding domain of MotA (MotCF) to 1.6 A resolution using multiwavelength, anomalous diffraction methods. The structure reveals a novel DNA-binding alpha/beta motif that contains an exposed beta-sheet surface that mediates interactions with the DNA. Independent biochemical experiments have shown that MotCF binds to one surface of a single turn of DNA through interactions in adjacent major and minor grooves. We present a model of the interaction in which beta-ribbons at opposite corners of the six-stranded beta-sheet penetrate the DNA grooves, and call the motif a 'double wing' to emphasize similarities to the 'winged-helix' motif. The model is consistent with data on how MotA functions at middle promoters, and provides an explanation for why MotA can form non-specific multimers on DNA.

  5. Single Molecule Photobleaching (SMPB) Technology for Counting of RNA, DNA, Protein and Other Molecules in Nanoparticles and Biological Complexes by TIRF Instrumentation

    PubMed Central

    Zhang, Hui; Guo, Peixuan

    2014-01-01

    Direct counting of biomolecules within biological complexes or nanomachines is demanding. Single molecule counting using optical microscopy is challenging due to the diffraction limit. The Single Molecule Photobleaching (SMPB) technology for direct counting developed by our team (Shu et al, EMBO J, 2007, 26:527; Zhang et al, RNA, 2007, 13:1793) offers a simple and straightforward method to determine the stoichiometry of molecules or subunits within biocomplexes or nanomachines at nanometer scales. Stoichiometry is determined by real-time observation of the number of descending steps resulted from the photobleaching of individual fluorophore. This technology has now been used extensively for single molecule counting of protein, RNA, and other macromolecules in a variety of complexes or nanostructures. Here, we elucidate the SMPB technology, using the counting of RNA molecules within a bacteriophage phi29 DNA-packaging biomotor as an example. The method described here can be applied to the single molecule counting of other molecules in other systems. The construction of a concise, simple and economical single molecule total internal reflection fluorescence (TIRF) microscope combining prism-type and objective-type TIRF is described. The imaging system contains a deep-cooled sensitive EMCCD camera with single fluorophore detection sensitivity, a laser combiner for simultaneous dual-color excitation, and a Dual-View™ imager to split the multiple outcome signals to different detector channels based on their wavelengths. Methodology of the single molecule photobleaching assay used to elucidate the stoichiometry of RNA on phi29 DNA packaging motor and the mechanism of protein/RNA interaction are described. Different methods for single fluorophore labeling of RNA molecules are reviewed. The process of statistical modeling to reveal the true copy number of the biomolecules based on binomial distribution is also described. PMID:24440482

  6. Cellstat--A continuous culture system of a bacteriophage for the study of the mutation rate and the selection process at the DNA level

    NASA Astrophysics Data System (ADS)

    Husimi, Yuzuru; Nishigaki, Koichi; Kinoshita, Yasunori; Tanaka, Toyosuke

    1982-04-01

    A bacteriophage is continuously cultured in the flow of the host bacterial cell under the control of a minicomputer. In the culture, the population of the noninfected cell is kept constant by the endogeneous regulation mechanism, so it is called the ''cellstat'' culture. Due to the high dilution rate of the host cell, the mutant cell cannot be selected in the cellstat. Therefore, the cellstat is suitable for the study of the mutation rate and the selection process of a bacteriophage under well-defined environmental conditions (including physiological condition of the host cell) without being interfered by host-cell mutations. Applications to coliphage fd, a secretion type phage, are shown as a measurement example. A chimera between fd and a plasmid pBR322 is cultured more than 100 h. The process of population changeovers by deletion mutants indicates that the deletion hot spots exist in this cloning vector and that this apparatus can be used also for testing instability of a recombinant DNA.

  7. Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR.

    PubMed

    Abramov, Gili; Goldbourt, Amir

    2014-08-01

    The icosahedral bacteriophage T7 is a 50 MDa double-stranded DNA (dsDNA) virus that infects Escherichia coli. Although there is substantial information on the physical and morphological properties of T7, structural information, based mostly on Raman spectroscopy and cryo-electron microscopy, is limited. Here, we apply the magic-angle spinning (MAS) solid-state NMR (SSNMR) technique to study a uniformly (13)C and (15)N labeled wild-type T7 phage. We describe the details of the large-scale preparation and purification of an isotopically enriched phage sample under fully hydrated conditions, and show a complete (13)C and a near-complete (15)N nucleotide-type specific assignment of the sugar and base moieties in the 40 kbp dsDNA of T7 using two-dimensional (13)C-(13)C and (15)N-(13)C correlation experiments. The chemical shifts are interpreted as reporters of a B-form conformation of the encapsulated dsDNA. While MAS SSNMR was found to be extremely useful in determining the structures of proteins in native-like environments, its application to nucleic acids has lagged behind, leaving a missing (13)C and (15)N chemical shift database. This work therefore expands the (13)C and (15)N database of real B-form DNA systems, and opens routes to characterize more complex nucleic acid systems by SSNMR. PMID:24875850

  8. Bacteriophage T4D Head Morphogenesis. VIII. DNA-Protein Associations in Intermediate Head Structures That Accumulate in Gene 49− Mutant-Infected Cells

    PubMed Central

    Glinert, Susan J.; Luftig, Ronald B.

    1977-01-01

    We have utilized the gene 49− mutant-infected cells of bacteriophage T4D to accumulate large numbers of nucleic acid-protein intermediate head structures. These heads were used as substrates for experiments in the investigations of the mechanism of DNA packaging. Specifically, we have examined: (i) the susceptibility of the DNA in these structures to digestion by a variety of nucleases after a series of increasing temperature pulses from 25 to 100°C, (ii) the physicochemical characteristics of the DNA inside these heads, and (iii) the mechanism by which proteins are displaced from the interior of the head after treatment with basic proteins. We isolated DNA from these gene 49− heads by use of gradient centrifugation procedures. The DNA had a molecular weight of 8 × 106 and a density of 1.697 ± 0.005 g/cm3, and it contained a short resistant fraction (SRF) which, when associated with the gene 49− heads, exhibited AT-protected regions that were not susceptible to micrococcal nuclease digestion. Such a fraction may contain pieces which are important in the initial association of the DNA with the prohead. Exposure of the gene 49− intermediate capsid structures to basic proteins, such as bovine trypsin inhibitor, lysozyme, and l-polylysine-70, caused a displacement of an amorphous-appearing structure which may be a complex of the gene 49− DNA and interior components of the capsid (e.g., internal proteins, polyamines). Our general conclusion is that in the gene 49− intermediate head structures which are only partly filled with DNA, this DNA is held inside the head by strong electrostatic linkages with interior polypeptides and polyamines. Images PMID:875137

  9. A Novel Method to Couple Electrophysiological Measurements and Fluorescence Imaging of Suspended Lipid Membranes: The Example of T5 Bacteriophage DNA Ejection

    PubMed Central

    Chiaruttini, Nicolas; Letellier, Lucienne; Viasnoff, Virgile

    2013-01-01

    We present an innovative method to couple electrophysiological measurements with fluorescence imaging of functionalized suspended bilayers. Our method combines several advantages: it is well suited to study transmembrane proteins that are difficult to incorporate in suspended bilayers, it allows single molecule resolution both in terms of electrophysiological measurements and fluorescence imaging, and it enables mechanical stimulations of the membrane. The approach comprises of two steps: first the reconstitution of membrane proteins in giant unilamellar vesicles; then the formation of a suspended bilayer spanning a 5 to 15 micron-wide aperture that can be visualized by high NA microscope objectives. We exemplified how the technique can be used to detect in real time the translocation of T5 DNA across the bilayer during its ejection from the bacteriophage capsid. PMID:24376806

  10. Characterization of the bacteriophage lambda excisionase (Xis) protein: the C-terminus is required for Xis-integrase cooperativity but not for DNA binding.

    PubMed Central

    Numrych, T E; Gumport, R I; Gardner, J F

    1992-01-01

    We have performed a mutational analysis of the xis gene of bacteriophage lambda. The Xis protein is 72 amino acids in length and required for excisive recombination. Twenty-six mutants of Xis were isolated that were impaired or deficient in lambda excision. Mutant proteins that contained amino acid substitutions in the N-terminal 49 amino acids of Xis were defective in excisive recombination and were unable to bind DNA. In contrast, one mutant protein containing a leucine to proline substitution at position 60 and two truncated proteins containing either the N-terminal 53 or 64 amino acids continued to bind lambda DNA, interact cooperatively with FIS and promote excision. However, these three mutants were unable to bind DNA cooperatively with Int. Cooperativity between wild-type Xis and Int required the presence of FIS, but not the Int core-type binding sites. This study shows that Xis has at least two functional domains and also demonstrates the importance of the cooperativity in DNA binding of FIS, Xis and Int in lambda excision. Images PMID:1396573

  11. Chlamydia bacteriophages.

    PubMed

    Śliwa-Dominiak, Joanna; Suszyńska, Ewa; Pawlikowska, Małgorzata; Deptuła, Wiesław

    2013-11-01

    Phages are called "good viruses" due to their ability to infect and kill pathogenic bacteria. Chlamydia are small, Gram-negative (G-) microbes that can be dangerous to human and animals. In humans, these bacteria are etiological agents of diseases such as psittacosis or respiratory tract diseases, while in animals, the infection may result in enteritis in cattle and chronic bowel diseases, as well as miscarriages in sheep. The first-known representative of chlamydiaphages was Chp1. It was discovered in Chlamydia psittaci isolates. Since then, four more species of chlamydiaphages have been identified [Chp2, Chp3, φCPG1 φCPAR39 (φCpn1) and Chp4]. All of them were shown to infect Chlamydia species. This paper described all known chlamydiaphages. They were characterised in terms of origin, host range, and their molecular structure. The review concerns the characterisation of bacteriophages that infects pathogenic and dangerous bacteria with unusual, intracellular life cycles that are pathogenic. In the era of antibiotic resistance, it is difficult to cure chlamydophilosis. Those bacteriophages can be an alternative to antibiotics, but before this happens, we need to get to know chlamydiaphages better. PMID:23903989

  12. Effects of pulling forces, osmotic pressure, condensing agents and viscosity on the thermodynamics and kinetics of DNA ejection from bacteriophages to bacterial cells: a computational study

    NASA Astrophysics Data System (ADS)

    Petrov, Anton S.; Douglas, Scott S.; Harvey, Stephen C.

    2013-03-01

    In this work, we report on simulations of double-stranded DNA (dsDNA) ejection from bacteriophage ϕ29 into a bacterial cell. The ejection was studied with a coarse-grained model, in which viral dsDNA was represented by beads on a torsion-less string. The bacteriophage’s capsid and the bacterial cell were defined by sets of spherical constraints. To account for the effects of the viscous medium inside the bacterial cell, the simulations were carried out using a Langevin dynamics protocol. Our simplest simulations (involving constant viscosity and no external biasing forces) produced results compatible with the push-pull model of DNA ejection, with an ejection rate significantly higher in the first part of ejection than in the latter parts. Additionally, we performed more complicated simulations, in which we included additional factors such as external forces, osmotic pressure, condensing agents and ejection-dependent viscosity. The effects of these factors (independently and in combination) on the thermodynamics and kinetics of DNA ejection were studied. We found that, in general, the dependence of ejection forces and ejection rates on the amount of DNA ejected becomes more complex if the ejection is modeled with a broader, more realistic set of parameters and influences (such as variation in the solvent’s viscosity and the application of an external force). However, certain combinations of factors and numerical parameters led to the opposition of some ejection-driving and ejection-inhibiting influences, ultimately causing an apparent simplification of the ejection profiles.

  13. Construction and properties of a temperature-sensitive mutation in the gene for the bacteriophage SPO1 DNA-binding protein TF1.

    PubMed Central

    Sayre, M H; Geiduschek, E P

    1990-01-01

    The Bacillus subtilis bacteriophage SPO1 encodes the DNA-binding protein TF1, a homolog of the ubiquitous type II DNA-binding proteins that are components of bacterial chromatin. The known three-dimensional structure of a related protein was used in devising a scheme of site-directed mutagenesis that led to the creation of a temperature-sensitive mutation in the TF1 gene. At the nonpermissive temperature, this mutation disrupted the temporal regulation of viral protein synthesis and processing, altered the kinetics of accumulation of at least one viral transcript, and prohibited the production of infective progeny phage. We suggest that TF1 function is required to shut off the expression of several early-middle and middle viral genes and that TF1 plays a role in phage head morphogenesis. Spontaneous second-site mutations of the temperature-sensitive mutant TF1 allele that suppressed its associated phenotypes were analyzed. These suppressor mutations conferred greater amino acid sequence homology with the type II DNA-binding protein from the thermophile Bacillus stearothermophilus. Images PMID:2115873

  14. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage

    PubMed Central

    Fornelos, Nadine; Butala, Matej; Hodnik, Vesna; Anderluh, Gregor; Bamford, Jaana K.; Salas, Margarita

    2015-01-01

    The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription. PMID:26138485

  15. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage.

    PubMed

    Fornelos, Nadine; Butala, Matej; Hodnik, Vesna; Anderluh, Gregor; Bamford, Jaana K; Salas, Margarita

    2015-09-01

    The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription. PMID:26138485

  16. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    SciTech Connect

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-06-16

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, (/sup 3/H)thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m/sup 2/, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.

  17. Crystallographic Insights into the Autocatalytic Assembly Mechanism of a Bacteriophage Tail Spike

    SciTech Connect

    Xiang, Ye; Leiman, Petr G.; Li, Long; Grimes, Shelley; Anderson, Dwight L.; Rossmann, Michael G.

    2010-02-03

    The tailed bacteriophage phi29 has 12 'appendages' (gene product 12, gp12) attached to its neck region that participate in host cell recognition and entry. In the cell, monomeric gp12 undergoes proteolytic processing that releases the C-terminal domain during assembly into trimers. We report here crystal structures of the protein before and after catalytic processing and show that the C-terminal domain of gp12 is an 'autochaperone' that aids trimerization. We also show that autocleavage of the C-terminal domain is a posttrimerization event that is followed by a unique ATP-dependent release. The posttranslationally modified N-terminal part has three domains that function to attach the appendages to the phage, digest the cell wall teichoic acids, and bind irreversibly to the host, respectively. Structural and sequence comparisons suggest that some eukaryotic and bacterial viruses as well as bacterial adhesins might have a similar maturation mechanism as is performed by phi29 gp12 for Bacillus subtilis.

  18. Measurement of steady-state kinetic parameters for DNA unwinding by the bacteriophage T4 Dda helicase: use of peptide nucleic acids to trap single-stranded DNA products of helicase reactions

    PubMed Central

    Nanduri, Bindu; Eoff, Robert L.; Tackett, Alan J.; Raney, Kevin D.

    2001-01-01

    Measurement of steady-state rates of unwinding of double-stranded oligonucleotides by helicases is hampered due to rapid reannealing of the single-stranded DNA products. Including an oligonucleotide in the reaction mixture which can hybridize with one of the single strands can prevent reannealing. However, helicases bind to single-stranded DNA, therefore the additional oligonucleotide can sequester the enzyme, leading to slower observed rates for unwinding. To circumvent this problem, the oligonucleotide that serves as a trap was replaced with a strand of peptide nucleic acid (PNA). Fluorescence polarization was used to determine that a 15mer PNA strand does not bind to the bacteriophage T4 Dda helicase. Steady-state kinetic parameters of unwinding catalyzed by Dda were determined by using PNA as a trapping strand. The substrate consisted of a partial duplex with 15 nt of single-stranded DNA and 15 bp. In the presence of 250 nM substrate and 1 nM Dda, the rate of unwinding in the presence of the DNA trapping strand was 0.30 nM s–1 whereas the rate was 1.34 nM s–1 in the presence of the PNA trapping strand. PNA prevents reannealing of single-stranded DNA products, but does not sequester the helicase. This assay will prove useful in defining the complete kinetic mechanism for unwinding of oligonucleotide substrates by this helicase. PMID:11433029

  19. Partial replication of UV-irradiated T4 bacteriophage DNA results in amplification of specific genetic areas

    SciTech Connect

    Ling, S.; Vogelbacker, H.H.; Restifo, L.L.; Mattson, T.; Kozinski, A.W.

    1981-11-01

    Upon infection of Escherichia coli with bormodeoxyuridine-labeled T4 phage that had received 10 lethal hits of UV irradiation, a sizable amount of phage DNA was synthesized (approximately 36 phage equivalent units of DNA per infected bacterium), although very little multiplicity reactivation occurs. This progeny DNA was isolated and analyzed. This DNA was biased in its genetic representation, as shown by hybridization to cloned segments of the T4 genome immobilized on nitrocellulose filters. Preferentially amplified areas corresponded to regions containing origins of T4 DNA replication. The size of the progeny DNA increased with time after infection, possibly due to recombination between partial replicas and nonreplicated subunits or due to the gradual overcoming of the UV damage. As the size of the progeny DNA increased, all of the genes were more equally represented, resulting in a decrease in the genetic bias. Amplification of specific genetic areas was also observed upon infection with UV-irradiated, non-bromo-deoxyuridine-substituted (light) phage. However, the genetic bias observed in this case was not as great as that observed with bromodeoxyuridine-substituted phage. This is most likely due to the higher efficiency of multiplicity reactivation of the light phage.

  20. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer

    PubMed Central

    Mosig, Gisela; Gewin, John; Luder, Andreas; Colowick, Nancy; Vo, Daniel

    2001-01-01

    Two major pathways of recombination-dependent DNA replication, “join-copy” and “join-cut-copy,” can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses. PMID:11459968

  1. Bacteriophage biocontrol of foodborne pathogens.

    PubMed

    Kazi, Mustafa; Annapure, Uday S

    2016-03-01

    Bacteriophages are viruses that only infect bacterial cells. Phages are categorized based on the type of their life cycle, the lytic cycle cause lysis of the bacterium with the release of multiple phage particles where as in lysogenic phase the phage DNA is incorporated into the bacterial genome. Lysogeny does not result in lysis of the host. Lytic phages have several potential applications in the food industry as biocontrol agents, biopreservatives and as tools for detecting pathogens. They have also been proposed as alternatives to antibiotics in animal health. Two unique features of phage relevant for food safety are that they are harmless to mammalian cells and high host specificity, keeping the natural microbiota undisturbed. However, the recent approval of bacteriophages as food additives has opened the discussion about 'edible viruses'. This article reviews in detail the application of phages for the control of foodborne pathogens in a process known as "biocontrol". PMID:27570260

  2. Semiconservative DNA replication is initiated at a single site in recombination-deficient gene 32 mutants of bacteriophage T4.

    PubMed Central

    Dannenberg, R; Mosig, G

    1981-01-01

    We have investigated, by electron microscopy, replicative intermediate produced early after infection of Escherichia coli with two phage T4 gene 32 mutants (amA453 and tsG26) which replicate their parental DNA but are defective in secondary replications and in moderating the activities of recombination nucleases. Under conditions completely restrictive for progeny production, both of these mutant produced replicative intermediates, each containing a single internal loop. Both branches of these loops were double stranded; i.e., both leading and lagging strands were synthesized. The replicative intermediates of these mutants qualitatively and quantitatively resembled early replicating wild-type T4 chromosomes after solitary infection of E. coli. However, in contrast to intracellular wild-type T4 DNA isolated from multiple infection, the mutant DNAs showed neither multiple branches nor multiple tandem loops. These results demonstrate that a truncated gene 32 protein which consists of less than one-third of the wild-type T4 helix-destabilizing protein can facilitate the functions of T4 replication proteins, specifically those of T4 DNA polymerase and priming proteins. Our results also support the hypothesis that the generation of multiple tandem loops or branches in vegetative T4 DNA depends on recombination (Mosig et al., in B. Alberts, ed., Mechanistic Studies of DNA Replication and Genetic Recombination, p. 527-543, Academic Press, Inc., New York, 1980). Images PMID:7321104

  3. Bacteriophage T5 transfer RNA

    SciTech Connect

    Hunt, C.; Desai, S.M.; Vaughan, J.; Weiss, S.B.

    1980-04-10

    Previous studies from this laboratory have provided a high resolution map for 16 tRNA genes located on the continuous heavy DNA strand of bacteriophage T5 DNA. All of the T5 tRNA genes were located in three clusters within the DNA C segment, except for tRNA/sup Arg/, which mapped on the left end of the DNA D segment. In this report, we present evidence for the presence of eight additional T5 tRNA species, five of which are located in two new loci within the DNA C segment. We also describe a two-dimensional gel electrophoresis system for the separation and isolation of T5 tRNA species from crude infected RNA preparations. The gel electrophoresis system separates tRNA isoacceptors specific for different amino acids; evidence is presented that the isoacceptors for isoleucine, histidine, and serine are coded by different T5 genes.

  4. Models for the Binary Complex of Bacteriophage T4 Gp59 Helicase Loading Protein. GP32 Single-Stranded DNA-Binding Protein and Ternary Complex with Pseudo-Y Junction DNA

    SciTech Connect

    Hinerman, Jennifer M.; Dignam, J. David; Mueser, Timothy C.

    2012-04-05

    The bacteriophage T4 gp59 helicase assembly protein (gp59) is required for loading of gp41 replicative helicase onto DNA protected by gp32 single-stranded DNA-binding protein. The gp59 protein recognizes branched DNA structures found at replication and recombination sites. Binding of gp32 protein (full-length and deletion constructs) to gp59 protein measured by isothermal titration calorimetry demonstrates that the gp32 protein C-terminal A-domain is essential for protein-protein interaction in the absence of DNA. Sedimentation velocity experiments with gp59 protein and gp32ΔB protein (an N-terminal B-domain deletion) show that these proteins are monomers but form a 1:1 complex with a dissociation constant comparable with that determined by isothermal titration calorimetry. Small angle x-ray scattering (SAXS) studies indicate that the gp59 protein is a prolate monomer, consistent with the crystal structure and hydrodynamic properties determined from sedimentation velocity experiments. SAXS experiments also demonstrate that gp32ΔB protein is a prolate monomer with an elongated A-domain protruding from the core. Moreover, fitting structures of gp59 protein and the gp32 core into the SAXS-derived molecular envelope supports a model for the gp59 protein-gp32ΔB protein complex. Our earlier work demonstrated that gp59 protein attracts full-length gp32 protein to pseudo-Y junctions. A model of the gp59 protein-DNA complex, modified to accommodate new SAXS data for the binary complex together with mutational analysis of gp59 protein, is presented in the accompanying article (Dolezal, D., Jones, C. E., Lai, X., Brister, J. R., Mueser, T. C., Nossal, N. G., and Hinton, D. M. (2012) J. Biol. Chem. 287, 18596–18607).

  5. The bof gene of bacteriophage P1: DNA sequence and evidence for roles in regulation of phage c1 and ref genes.

    PubMed Central

    Schaefer, T S; Hays, J B

    1990-01-01

    The C1 repressor of bacteriophage P1 acts via 14 or more distinct operators. This repressor represses its own synthesis as well as the synthesis of other gene products. Previously, mutation of an auxiliary regulatory gene, bof, has been shown to increase expression of some C1-regulated P1 genes (e.g., ref) but to decrease expression of others (e.g., ban). In this study the bof gene was isolated on the basis of its ability to depress stimulation of Escherichia coli chromosomal recombination by the P1 ref gene, if and only if a source of C1 was present. C1 alone, but not Bof alone, was partially effective. The bofDNA sequence encodes an 82-codon reading frame that begins with a TTG codon and includes the sites of the bof-1(Am) mutation and a bof::Tn5 null mutation. Expression of ref::lacZ and cl::lacZ fusion genes was partially repressed in trans by a P1 bof-1 prophage or by plasmid-encoded C1 alone, which was in agreement with effects on Ref-stimulated recombination and with previous indirect evidence for c1 autoregulation. Repression of both fusion genes by plasmid-encoded C1 plus Bof or by a P1 bof+ prophage was more complete. When the C1 source also included a 0.7-kilobase region upstream from C1 which encodes the coi gene, repression of both c1::lacZ and ref::lacZ by C1 alone or by C1 plus Bof was much less effective, as if Coi interfered with C1 repressor function. PMID:2345146

  6. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity

    PubMed Central

    Jose, Davis; Weitzel, Steven E.; Baase, Walter A.; Michael, Miya M.; von Hippel, Peter H.

    2015-01-01

    We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5′-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex. PMID:26275774

  7. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: polynucleotide binding and cooperativity.

    PubMed

    Jose, Davis; Weitzel, Steven E; Baase, Walter A; Michael, Miya M; von Hippel, Peter H

    2015-10-30

    We here use our site-specific base analog mapping approach to study the interactions and binding equilibria of cooperatively-bound clusters of the single-stranded DNA binding protein (gp32) of the T4 DNA replication complex with longer ssDNA (and dsDNA) lattices. We show that in cooperatively bound clusters the binding free energy appears to be equi-partitioned between the gp32 monomers of the cluster, so that all bind to the ssDNA lattice with comparable affinity, but also that the outer domains of the gp32 monomers at the ends of the cluster can fluctuate on and off the lattice and that the clusters of gp32 monomers can slide along the ssDNA. We also show that at very low binding densities gp32 monomers bind to the ssDNA lattice at random, but that cooperatively bound gp32 clusters bind preferentially at the 5'-end of the ssDNA lattice. We use these results and the gp32 monomer-binding results of the companion paper to propose a detailed model for how gp32 might bind to and interact with ssDNA lattices in its various binding modes, and also consider how these clusters might interact with other components of the T4 DNA replication complex. PMID:26275774

  8. Thirteen Virulent and Temperate Bacteriophages of Lactobacillus bulgaricus and Lactobacillus lactis Belong to a Single DNA Homology Group

    PubMed Central

    Mata, Mireille; Trautwetter, Annie; Luthaud, Gisèle; Ritzenthaler, Paul

    1986-01-01

    Thirteen virulent phages and two temperate phages of two closely related bacterial species (Lactobacillus lactis and L. bulgaricus) were compared for their protein composition, their antigenic properties, their restriction endonuclease patterns, and their DNA homology. The immunoblotting studies and the DNA-DNA hybridizations showed that the phages could be differentiated into two groups. One group contained 2 temperate phages of L. bulgaricus and 11 virulent phages of L. lactis. Inside each group, at least two common proteins of identical sizes could be detected for each phage. These proteins were able to cross-react in immunoblotting experiments with an antiserum raised against one phage of the same group. Temperate phage DNAs showed partial homology with DNAs from some virulent phages. These homologies seem to be located on the region coding for the structural proteins since recombinant plasmids coding for one of the major phage proteins of one phage were able to hybridize with the DNAs from phages of the same group. These results suggest that temperate and virulent phages may be related to one another. Images PMID:16347174

  9. BACTERIOPHAGE: BIOLOGY AND GENETICS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage are viruses that infect bacteria. Bacteriophage are very small and made up of a protein coat with an inner core containing their genetic material. They infect bacterium, by attaching to the bacterial cell and injecting their nucleic acids into the bacteria. The phages then use the bac...

  10. Bacteriophages Infecting Propionibacterium acnes

    PubMed Central

    2013-01-01

    Viruses specifically infecting bacteria, or bacteriophages, are the most common biological entity in the biosphere. As such, they greatly influence bacteria, both in terms of enhancing their virulence and in terms of killing them. Since the first identification of bacteriophages in the beginning of the 20th century, researchers have been fascinated by these microorganisms and their ability to eradicate bacteria. In this review, we will cover the history of the Propionibacterium acnes bacteriophage research and point out how bacteriophage research has been an important part of the research on P. acnes itself. We will further discuss recent findings from phage genome sequencing and the identification of phage sequence signatures in clustered regularly interspaced short palindromic repeats (CRISPRs). Finally, the potential to use P. acnes bacteriophages as a therapeutic strategy to combat P. acnes-associated diseases will be discussed. PMID:23691509

  11. Biochemical analysis of the substrate specificity and sequence preference of endonuclease IV from bacteriophage T4, a dC-specific endonuclease implicated in restriction of dC-substituted T4 DNA synthesis

    PubMed Central

    Hirano, Nobutaka; Ohshima, Hiroyuki; Takahashi, Hideo

    2006-01-01

    Endonuclease IV encoded by denB of bacteriophage T4 is implicated in restriction of deoxycytidine (dC)-containing DNA in the host Escherichia coli. The enzyme was synthesized with the use of a wheat germ cell-free protein synthesis system, given a lethal effect of its expression in E.coli cells, and was purified to homogeneity. The purified enzyme showed high activity with single-stranded (ss) DNA and denatured dC-substituted T4 genomic double-stranded (ds) DNA but exhibited no activity with dsDNA, ssRNA or denatured T4 genomic dsDNA containing glucosylated deoxyhydroxymethylcytidine. Characterization of Endo IV activity revealed that the enzyme catalyzed specific endonucleolytic cleavage of the 5′ phosphodiester bond of dC in ssDNA with an efficiency markedly dependent on the surrounding nucleotide sequence. The enzyme preferentially targeted 5′-dTdCdA-3′ but tolerated various combinations of individual nucleotides flanking this trinucleotide sequence. These results suggest that Endo IV preferentially recognizes short nucleotide sequences containing 5′-dTdCdA-3′, which likely accounts for the limited digestion of ssDNA by the enzyme and may be responsible in part for the indispensability of a deficiency in denB for stable synthesis of dC-substituted T4 genomic DNA. PMID:16971463

  12. Tandem pentuplication of a DNA segment in a derivative of bacteriophage P2: its use in the study of the mechanism of DNA annealing.

    PubMed Central

    Bertani, G; Chattoraj, D K

    1980-01-01

    From a tandem duplication mutant of phage P2, triplication, quadruplication and pentuplication forms were derived. They were recognized by decreased virion heat stability resulting from the increase in DNA content, and were confirmed by electron microscope heteroduplex mapping. These forms of partially repeated DNA are quite stable in P2 because of the low level of recombination typical of this phage. Under conditions normally employed for full DNA renaturation, these high order repeat chromosomes gave often incomplete renaturation over the repeated segments. Based on current models for DNA renaturation, several predictions were made and tested. The results, although not quantitatively exhaustive, indicated that base pairing proceeding from a nucleation site was sufficiently slow to allow a second nucleation to occur with a fair probability over a length of a few thousand base pairs. Images PMID:7433123

  13. Two novel temperate bacteriophages co-existing in Aeromonas sp. ARM81 - characterization of their genomes, proteomes and DNA methyltransferases.

    PubMed

    Dziewit, Lukasz; Radlinska, Monika

    2016-08-01

    Aeromonas species are causative agents of a wide spectrum of diseases in animals and humans. Although these bacteria are commonly found in various environments, little is known about their phages. Thus far, only one temperate Aeromonas phage has been characterized. Whole-genome sequencing of an Aeromonas sp. strain ARM81 revealed the presence of two prophage clusters. One of them is integrated into the chromosome and the other was maintained as an extrachromosomal, linear plasmid-like prophage encoding a protelomerase. Both prophages were artificially and spontaneously inducible. We separately isolated both phages and compared their genomes with other known viruses. The novel phages show no similarity to the previously characterized Aeromonas phages and might represent new evolutionary lineages of viruses infecting Aeromonadaceae. Apart from the comparative genomic analyses of these phages, complemented with their structural and molecular characterization, a functional analysis of four DNA methyltransferases encoded by these viruses was conducted. One of the investigated N6-adenine-modifying enzymes shares sequence specificity with a Dam-like methyltransferase of its bacterial host, while another one is non-specific, as it catalyzes adenine methylation in various sequence contexts. The presented results shed new light on the diversity of Aeromonas temperate phages. PMID:27184451

  14. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA.

    PubMed

    Haque, Farzin; Li, Jinghong; Wu, Hai-Chen; Liang, Xing-Jie; Guo, Peixuan

    2013-02-01

    Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed. PMID:23504223

  15. Solid-State and Biological Nanopore for Real-Time Sensing of Single Chemical and Sequencing of DNA

    PubMed Central

    Haque, Farzin; Li, Jinghong; Wu, Hai-Chen; Liang, Xing-Jie; Guo, Peixuan

    2013-01-01

    Sensitivity and specificity are two most important factors to take into account for molecule sensing, chemical detection and disease diagnosis. A perfect sensitivity is to reach the level where a single molecule can be detected. An ideal specificity is to reach the level where the substance can be detected in the presence of many contaminants. The rapidly progressing nanopore technology is approaching this threshold. A wide assortment of biomotors and cellular pores in living organisms perform diverse biological functions. The elegant design of these transportation machineries has inspired the development of single molecule detection based on modulations of the individual current blockage events. The dynamic growth of nanotechnology and nanobiotechnology has stimulated rapid advances in the study of nanopore based instrumentation over the last decade, and inspired great interest in sensing of single molecules including ions, nucleotides, enantiomers, drugs, and polymers such as PEG, RNA, DNA, and polypeptides. This sensing technology has been extended to medical diagnostics and third generation high throughput DNA sequencing. This review covers current nanopore detection platforms including both biological pores and solid state counterparts. Several biological nanopores have been studied over the years, but this review will focus on the three best characterized systems including α-hemolysin and MspA, both containing a smaller channel for the detection of single-strand DNA, as well as bacteriophage phi29 DNA packaging motor connector that contains a larger channel for the passing of double stranded DNA. The advantage and disadvantage of each system are compared; their current and potential applications in nanomedicine, biotechnology, and nanotechnology are discussed. PMID:23504223

  16. Genome Sequences of Two Bacillus cereus Group Bacteriophages, Eyuki and AvesoBmore

    PubMed Central

    Erill, Ivan

    2015-01-01

    The genomes of two double-stranded DNA (dsDNA) bacteriophages isolated on Bacillus thuringiensis show similarity to previously sequenced phages and provide evidence of the mosaicism of phage genomes. PMID:26472840

  17. Antiviral effect of cationic compounds on bacteriophages

    PubMed Central

    Ly-Chatain, Mai H.; Moussaoui, Saliha; Vera, Annabelle; Rigobello, Véronique; Demarigny, Yann

    2013-01-01

    The antiviral activity of several cationic compounds – cetyltrimethylammonium bromide (CTAB), chitosan, nisin, and lysozyme – was investigated on the bacteriophage c2 (DNA head and non-contractile tail) infecting Lactococcus strains and the bacteriophage MS2 (F-specific RNA) infecting E. coli. Firstly, these activities were evaluated in a phosphate buffer pH 7 – 10 mM. The CTAB had a virucidal effect on the Lactococcus bacteriophages, but not on the MS2. After 1 min of contact with 0.125 mM CTAB, the c2 population was reduced from 6 to 1.5 log(pfu)/mL and completely deactivated at 1 mM. On the contrary, chitosan inhibited the MS2 more than it did the bacteriophages c2. No antiviral effect was observed for the nisin or the lysozyme on bacteriophages after 1 min of treatment. A 1 and 2.5 log reduction was respectively observed for nisin and lysozyme when the treatment time increased (5 or 10 min). These results showed that the antiviral effect depended both on the virus and structure of the antimicrobial compounds. The antiviral activity of these compounds was also evaluated in different physico-chemical conditions and in complex matrices. The antiviral activity of CTAB was impaired in acid pH and with an increase of the ionic strength. These results might be explained by the electrostatic interactions between cationic compounds and negatively charged particles such as bacteriophages or other compounds in a matrix. Milk proved to be protective suggesting the components of food could interfere with antimicrobial compounds. PMID:23487495

  18. Template reporter bacteriophage platform and multiple bacterial detection assays based thereon

    NASA Technical Reports Server (NTRS)

    Goodridge, Lawrence (Inventor)

    2007-01-01

    The invention is a method for the development of assays for the simultaneous detection of multiple bacteria. A bacteria of interest is selected. A host bacteria containing plasmid DNA from a T even bacteriophage that infects the bacteria of interest is infected with T4 reporter bacteriophage. After infection, the progeny bacteriophage are plating onto the bacteria of interest. The invention also includes single-tube, fast and sensitive assays which utilize the novel method.

  19. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals

    PubMed Central

    Shabbir, Muhammad A. B.; Hao, Haihong; Shabbir, Muhammad Z.; Wu, Qin; Sattar, Adeel; Yuan, Zonghui

    2016-01-01

    Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction–modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR). In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies. PMID:27582740

  20. Bacteria vs. Bacteriophages: Parallel Evolution of Immune Arsenals.

    PubMed

    Shabbir, Muhammad A B; Hao, Haihong; Shabbir, Muhammad Z; Wu, Qin; Sattar, Adeel; Yuan, Zonghui

    2016-01-01

    Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR). In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies. PMID:27582740

  1. Helicase assembly protein Gp59 of bacteriophage T4: fluorescence anisotropy and sedimentation studies of complexes formed with derivatives of Gp32, the phage ssDNA binding protein.

    PubMed

    Xu, H; Wang, Y; Bleuit, J S; Morrical, S W

    2001-06-26

    The gene 59 protein (gp59) of bacteriophage T4 performs a vital function in phage DNA replication by directing the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA at nascent replication forks. The helicase assembly activity of gp59 is required for optimum efficiency of helicase acquisition by the replication fork during strand displacement DNA synthesis and is essential for helicase and primosome assembly during T4 recombination-dependent DNA replication transactions. Of central importance is the ability of gp59 to load the gp41 helicase onto ssDNA previously coated with cooperatively bound molecules of gp32, the T4 ssDNA binding protein. Gp59 heteroassociations with ssDNA, gp32, and gp41 all appear to be essential for this loading reaction. Previous studies demonstrated that a tripartite complex containing gp59 and gp32 simultaneously cooccupying ssDNA is an essential intermediate in gp59-dependent helicase loading; however, the biochemical and structural parameters of gp59-gp32 complexes with or without ssDNA are currently unknown. To better understand gp59-gp32 interactions, we performed fluorescence anisotropy and analytical ultracentrifugation experiments employing native or rhodamine-labeled gp59 species in combination with altered forms of gp32, allowing us to determine their binding parameters, shape parameters, and other hydrodynamic properties. Two truncated forms of gp32 were used: gp32-B, which lacks the N-terminal B-domain required for cooperative binding to ssDNA and for stable self-association, and A-domain fragment, which is the C-terminal peptide of gp32 lacking ssDNA binding ability. Results indicate that gp59 binds with high affinity to either gp32 derivative to form a 1:1 heterodimer. In both cases, heterodimer formation is accompanied by a conformational change in gp59 which correlates with decreased gp59-DNA binding affinity. Hydrodynamic modeling suggests an asymmetric prolate ellipsoid shape for gp

  2. Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation.

    PubMed

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Wu, Dong; Meng, Bing; Weitao, Tao

    2014-01-01

    Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic

  3. Bacteriophage therapy against Enterobacteriaceae.

    PubMed

    Xu, Youqiang; Liu, Yong; Liu, Yang; Pei, Jiangsen; Yao, Su; Cheng, Chi

    2015-02-01

    The Enterobacteriaceae are a class of gram-negative facultative anaerobic rods, which can cause a variety of diseases, such as bacteremia, septic arthritis, endocarditis, osteomyelitis, lower respiratory tract infections, skin and soft-tissue infections, urinary tract infections, intra-abdominal infections and ophthalmic infections, in humans, poultry, animals and fish. Disease caused by Enterobacteriaceae cause the deaths of millions of people every year, resulting in enormous economic loss. Drug treatment is a useful and efficient way to control Enterobacteriaceae infections. However, with the abuse of antibiotics, drug resistance has been found in growing number of Enterobacteriaceae infections and, as such, there is an urgent need to find new methods of control. Bacteriophage therapy is an efficient alternative to antibiotics as it employs a different antibacterial mechanism. This paper summarizes the history of bacteriophage therapy, its bacterial lytic mechanisms, and the studies that have focused on Enterobacteriaceae and bacteriophage therapy. PMID:25662887

  4. Hyperexpansion of RNA Bacteriophage Diversity

    PubMed Central

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  5. Hyperexpansion of RNA Bacteriophage Diversity.

    PubMed

    Krishnamurthy, Siddharth R; Janowski, Andrew B; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-03-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  6. Common Mechanisms of DNA translocation motors in Bacteria and Viruses Using One-way Revolution Mechanism without Rotation

    PubMed Central

    Guo, Peixuan; Zhao, Zhengyi; Haak, Jeannie; Wang, Shaoying; Weitao, Tao

    2014-01-01

    Biomotors were once classified into two categories: linear motor and rotation motor. For decades, the viral DNA-packaging motor has been popularly believed to be a five-fold rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24 hours, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, T7 as well as bacterial DNA translocase FtsK and SpoIIIE as examples to elucidate the puzzles. These motors use a ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-parallel arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism avoids DNA coiling in translocating the lengthy

  7. Bacteriophages of Clostridium perfringens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The specific aims of the book chapter are to: (1) Briefly review the nomenclature of bacteriophages and how these agents are classified. (2) Discuss the problems associated with addition/removal of antibiotics in commercial animal feeds. (3) Provide a brief overview of Clostridium perfringens biolog...

  8. BACTERIOPHAGE THERAPY AND CAMPYLOBACTER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The book chapter reports efforts to exploit Campylobacter-specific bacteriophages to reduce the numbers of Campylobacter jejuni and C. coli colonizing poultry and contaminating poultry meat products. Controlling campylobacters in poultry represents one of the greatest challenges to the agriculture a...

  9. Multiple roles of genome-attached bacteriophage terminal proteins

    SciTech Connect

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  10. Isolation and characterization of a bacteriophage lytic for Desulfovibrio salexigens, a salt-requiring, sulfate-reducing bacterium

    SciTech Connect

    Kamimura, Kazuo; Araki, Michio )

    1989-03-01

    A bacteriophage that lysed Desulfovibrio salexigens cells was isolated from marine sediments and preliminarily characterized by electron microscopy and electrophoretic analysis of structural proteins and genomic nucleic acid. The bacteriophage had an icosahedral head and a long flexible tail, and the buoyant density of the bacteriophage particles was 1.468 g/ml in cesium chloride. The particles consisted of a double-stranded DNA molecule about 33 kilobase pairs long and at least 11 structural proteins.

  11. Complete Genome Sequences of Lytic Bacteriophages of Xanthomonas arboricola pv. juglandis.

    PubMed

    Retamales, Julio; Vasquez, Ignacio; Santos, Leonardo; Segovia, Cristopher; Ayala, Manuel; Alvarado, Romina; Nuñez, Pablo; Santander, Javier

    2016-01-01

    Three bacteriophages, f20-Xaj, f29-Xaj, and f30-Xaj, with lytic activity against Xanthomonas arboricola pv. juglandis were isolated from walnut trees (VIII Bío Bío Region, Chile). These lytic bacteriophages have double-stranded DNA (dsDNA) genomes of 43,851 bp, 41,865 bp, and 44,262 bp, respectively. These are the first described bacteriophages with lytic activity against X. arboricola pv. juglandis that can be utilized as biocontrol agents. PMID:27257210

  12. Complete Genome Sequences of Lytic Bacteriophages of Xanthomonas arboricola pv. Juglandis

    PubMed Central

    Vasquez, Ignacio; Santos, Leonardo; Segovia, Cristopher; Ayala, Manuel; Alvarado, Romina; Nuñez, Pablo

    2016-01-01

    Three bacteriophages, f20-Xaj, f29-Xaj, and f30-Xaj, with lytic activity against Xanthomonas arboricola pv. juglandis were isolated from walnut trees (VIII Bío Bío Region, Chile). These lytic bacteriophages have double-stranded DNA (dsDNA) genomes of 43,851 bp, 41,865 bp, and 44,262 bp, respectively. These are the first described bacteriophages with lytic activity against X. arboricola pv. juglandis that can be utilized as biocontrol agents. PMID:27257210

  13. Evolution and the complexity of bacteriophages

    PubMed Central

    Serwer, Philip

    2007-01-01

    Background The genomes of both long-genome (> 200 Kb) bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1) Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2) Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection). (3) The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection). (4) The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1) determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2) find the environmental conditions that select for the

  14. Binding of the N-terminal domain of the lactococcal bacteriophage TP901-1 CI repressor to its target DNA: a crystallography, small angle scattering, and nuclear magnetic resonance study.

    PubMed

    Frandsen, Kristian H; Rasmussen, Kim K; Jensen, Malene Ringkjøbing; Hammer, Karin; Pedersen, Margit; Poulsen, Jens-Christian N; Arleth, Lise; Lo Leggio, Leila

    2013-10-01

    In most temperate bacteriophages, regulation of the choice of lysogenic or lytic life cycle is controlled by a CI repressor protein. Inhibition of transcription is dependent on a helix-turn-helix motif, often located in the N-terminal domain (NTD), which binds to specific DNA sequences (operator sites). Here the crystal structure of the NTD of the CI repressor from phage TP901-1 has been determined at 1.6 Å resolution, and at 2.6 Å resolution in complex with a 9 bp double-stranded DNA fragment that constitutes a half-site of the OL operator. This N-terminal construct, comprising residues 2-74 of the CI repressor, is monomeric in solution as shown by nuclear magnetic resonance (NMR), small angle X-ray scattering, and gel filtration and is monomeric in the crystal structures. The binding interface between the NTD and the half-site in the crystal is very similar to the interface that can be mapped by NMR in solution with a full palindromic site. The interactions seen in the complexes (in the crystal and in solution) explain the observed affinity for the OR site that is lower than that for the OL site and the specificity for the recognized DNA sequence in comparison to that for other repressors. Compared with many well-studied phage repressor systems, the NTD from TP901-1 CI has a longer extended scaffolding helix that, interestingly, is strongly conserved in putative repressors of Gram-positive pathogens. On the basis of sequence comparisons, we suggest that these bacteria also possess repressor/antirepressor systems similar to that found in phage TP901-1. PMID:24047404

  15. Existence of lysogenic bacteriophages in Bacillus thuringiensis type strains.

    PubMed

    Roh, Jong Yul; Park, Jong Bin; Liu, Qin; Kim, Song Eun; Tao, Xueying; Choi, Tae Woong; Choi, Jae Young; Kim, Woo Jin; Jin, Byung Rae; Je, Yeon Ho

    2013-07-01

    We screened the existence of bacteriophages in 67 Bacillus thuringiensis type strains by phage DNA extraction and PCR using phage terminase small subunit (TerS)-specific primers to the supernatants and the precipitated pellets of Bt cultures, and by transmission electron microscopy. The various bacteriophages were observed from the supernatants of 22 type strains. Ten type strains showed the extracted phage DNAs and the amplified fragment by TerS PCR but 12 type strains showed only the phage DNAs. Their morphological characteristic suggests that they belong to Family Siphoviridae which had a long tail and symmetrical head. PMID:23632013

  16. Precipitation of filamentous bacteriophages for their selective recovery in primary purification.

    PubMed

    Branston, Steven; Stanley, Emma; Keshavarz-Moore, Eli; Ward, John

    2012-01-01

    Filamentous bacteriophages and their derivatives are showing great promise as a whole new class of industrial agents, such as biologically based nano-materials and viral vectors. This raises challenges for their large-scale manufacture, principally due to the lack of bioprocessing knowledge. This article addresses what will be a potentially important option in the primary purification of the bacteriophages. Polyethylene glycol (PEG)-salt dual precipitants, calcium ions, spermidine, and isoelectric precipitation were first examined for their potential suitability for bacteriophage concentration under both pure and broth conditions. Successful precipitants were further studied on the basis of their selective purification ability from DNA and protein contaminants in a clarified broth system. Both PEG-based and isoelectric precipitations resulted in bacteriophage purity improvements, and PEG-based precipitations offered the highest selectivities. This work shows that precipitation of bacteriophages can be an effective primary purification step in a large-scale bioprocess. PMID:21905275

  17. M13 Bacteriophage Based Protein Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Ju Hun

    Despite significant progress in biotechnology and biosensing, early detection and disease diagnosis remains a critical issue for improving patient survival rates and well-being. Many of the typical detection schemes currently used possess issues such as low sensitivity and accuracy and are also time consuming to run and expensive. In addition, multiplexed detection remains difficult to achieve. Therefore, developing advanced approaches for reliable, simple, quantitative analysis of multiple markers in solution that also are highly sensitive are still in demand. In recent years, much of the research has primarily focused on improving two key components of biosensors: the bio-recognition agent (bio-receptor) and the transducer. Particular bio-receptors that have been used include antibodies, aptamers, molecular imprinted polymers, and small affinity peptides. In terms of transducing agents, nanomaterials have been considered as attractive candidates due to their inherent nanoscale size, durability and unique chemical and physical properties. The key focus of this thesis is the design of a protein detection and identification system that is based on chemically engineered M13 bacteriophage coupled with nanomaterials. The first chapter provides an introduction of biosensors and M13 bacteriophage in general, where the advantages of each are provided. In chapter 2, an efficient and enzyme-free sensor is demonstrated from modified M13 bacteriophage to generate highly sensitive colorimetric signals from gold nanocrystals. In chapter 3, DNA conjugated M13 were used to enable facile and rapid detection of antigens in solution that also provides modalities for identification. Lastly, high DNA loadings per phage was achieved via hydrozone chemistry and these were applied in conjunction with Raman active DNA-gold/silver core/shell nanoparticles toward highly sensitive SERS sensing.

  18. Mutations in Nu1, the gene encoding the small subunit of bacteriophage lambda terminase, suppress the postcleavage DNA packaging defect of cosB mutations.

    PubMed Central

    Cai, Z H; Hwang, Y; Cue, D; Catalano, C; Feiss, M

    1997-01-01

    The linear double-stranded DNA molecules in lambda virions are generated by nicking of concatemeric intracellular DNA by terminase, the lambda DNA packaging enzyme. Staggered nicks are introduced at cosN to generate the cohesive ends of virion DNA. After nicking, the cohesive ends are separated by terminase; terminase bound to the left end of the DNA to be packaged then binds the empty protein shell, i.e., the prohead, and translocation of DNA into the prohead occurs. cosB, a site adjacent to cosN, is a terminase binding site. cosB facilitates the rate and fidelity of the cosN cleavage reaction by serving as an anchoring point for gpNu1, the small subunit of terminase. cosB is also crucial for the formation of a stable terminase-DNA complex, called complex I, formed after cosN cleavage. The role of complex I is to bind the prohead. Mutations in cosB affect both cosB functions, causing mild defects in cosN cleavage and severe packaging defects. The lethal cosB R3- R2- R1- mutation contains a transition mutation in each of the three gpNu1 binding sites of cosB. Pseudorevertants of lambda cosB R3- R2- R1- DNA contain suppressor mutations affecting gpNu1. Results of experiments that show that two such suppressors, Nu1ms1 and Nu1ms3, do not suppress the mild cosN cleavage defect caused by the cosB R3- R2- R1- mutation but strongly suppress the DNA packaging defect are presented. It is proposed that the suppressing terminases, unlike the wild-type enzyme, are able to assemble a stable complex I with cosB R3- R2- R1- DNA. Observations on the adenosine triphosphatase activities and protease susceptibilities of gpNu1 of the Nu1ms1 and Nu1ms3 terminases indicate that the conformation of gpNu1 is altered in the suppressing terminases. PMID:9098042

  19. Identification of the Block in the Intracellular Replication of Single-Stranded DNA of Photodynamically Inactivated Bacteriophage φX174

    PubMed Central

    Chaudhuri, Utpal C.; Poddar, Ramendra K.

    1973-01-01

    32P-labeled single-stranded DNA phage φX174 was photodynamically inactivated by irradiation in air with visible light in the presence of the acridine dye, proflavine sulfate. The inactivated phages could adsorb to the host cells but failed to lyse them. Formation of intracellular mature phages was almost completely inhibited. Photodynamic lesions in φX174 DNA caused intracellular formation of defective double-stranded replicative form molecules which ultimately reverted to the single-stranded configuration. PMID:4570924

  20. Excision repair and patch size in UV-irradiated bacteriophage T4

    SciTech Connect

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-11-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control experiments with the denV1 excision-deficient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.

  1. Excision repair and patch size in UV-irradiated bacteriophage T4

    SciTech Connect

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-11-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control, experiments with the denV/sub 1/ excision-deificient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4.

  2. Genetically modified bacteriophages.

    PubMed

    Sagona, Antonia P; Grigonyte, Aurelija M; MacDonald, Paul R; Jaramillo, Alfonso

    2016-04-18

    Phages or bacteriophages, viruses that infect and replicate inside bacteria, are the most abundant microorganisms on earth. The realization that antibiotic resistance poses a substantial risk to the world's health and global economy is revitalizing phage therapy as a potential solution. The increasing ease by which phage genomes can be modified, owing to the influx of new technologies, has led to an expansion of their natural capabilities, and a reduced dependence on phage isolation from environmental sources. This review will discuss the way synthetic biology has accelerated the construction of genetically modified phages and will describe the wide range of their applications. It will further provide insight into the societal and economic benefits that derive from the use of recombinant phages in various sectors, from health to biodetection, biocontrol and the food industry. PMID:26906932

  3. Immunodetection and N-terminal sequencing of DNA replication proteins of bacteriophage BFK20 - lytic phage of Brevibacterium flavum.

    PubMed

    Bukovská, G; Halgašová, N; Hromadová, L; Koščová, H; Bukovský, M

    2014-01-01

    Phages are excellent models for studying the mechanism of DNA replication in prokaryotes. Identification of phage proteins involved in phage DNA replication is the first prerequisite for elucidation of the phage replication module. We focused on replication proteins gp41 (a putative helicase from SF2 superfamily), gp43 (a RepA-like protein), and gp44 (a putative DNA polymerase A) of phage BFK20 grown in Brevibacterium flavum. To identify them in the phage-host system, we prepared antibodies to these proteins which were cloned and expressed in Escherichia coli as his-tagged recombinant proteins. After purification to homogeneity the recombinant proteins served for raising specific polyclonal antibodies in mice. Using these antibodies in Western blot analysis the phage proteins gp41, gp43 and gp44 were detected during the phage growth cycle. The proteins gp41 and gp43, prepared from cell lysate by ammonium sulphate precipitation, were N-terminally sequenced and found to contain the sequences N-SVKPRELR-C and N-MLGSTML-C, respectively. This means that gp41 starts with serine but not with common methionine. We consider these findings an initial but important step towards more thorough characterization of replication proteins of phage BFK20. PMID:24957720

  4. IMPORTANCE OF THE DYNAMICS OF BACTERIOPHAGE-HOST INTERACTIONS TO BACTERIAL ABUNDANCE AND GENETIC DIVERSITY IN AQUATIC ENVIRONMENTS (RESEARCH BRIEF)

    EPA Science Inventory

    Using Pseudomonas aeruginosa and its bacteriophages as a model system, we have clearly demonstrated a significant potential for viral-mediated gene transfer (transduction) of both plasmid and chromosomal DNA in freshwater microbial populations. These investigations have predicted...

  5. DNA Nanoparticles for Improved Protein Synthesis In Vitro

    PubMed Central

    Galinis, Robertas; Stonyte, Greta; Kiseliovas, Vaidotas; Zilionis, Rapolas; Studer, Sabine; Hilvert, Donald; Janulaitis, Arvydas

    2016-01-01

    Abstract The amplification and digital quantification of single DNA molecules are important in biomedicine and diagnostics. Beyond quantifying DNA molecules in a sample, the ability to express proteins from the amplified DNA would open even broader applications in synthetic biology, directed evolution, and proteomics. Herein, a microfluidic approach is reported for the production of condensed DNA nanoparticles that can serve as efficient templates for in vitro protein synthesis. Using phi29DNA polymerase and a multiple displacement amplification reaction, single DNA molecules were converted into DNA nanoparticles containing up to about 104 clonal gene copies of the starting template. DNA nanoparticle formation was triggered by accumulation of inorganic pyrophosphate (produced during DNA synthesis) and magnesium ions from the buffer. Transcription–translation reactions performed in vitro showed that individual DNA nanoparticles can serve as efficient templates for protein synthesis in vitro. PMID:26821778

  6. Isolation and Characterization of Bacteriophages Against Pseudomonas syringae pv. actinidiae Causing Bacterial Canker Disease in Kiwifruit.

    PubMed

    Yu, Ji-Gang; Lim, Jeong-A; Song, Yu-Rim; Heu, Sunggi; Kim, Gyoung Hee; Koh, Young Jin; Oh, Chang-Sik

    2016-02-01

    Pseudomonas syringae pv. actinidiae causes bacterial canker disease in kiwifruit. Owing to the prohibition of agricultural antibiotic use in major kiwifruit-cultivating countries, alternative methods need to be developed to manage this disease. Bacteriophages are viruses that specifically infect target bacteria and have recently been reconsidered as potential biological control agents for bacterial pathogens owing to their specificity in terms of host range. In this study, we isolated bacteriophages against P. syringae pv. actinidiae from soils collected from kiwifruit orchards in Korea and selected seven bacteriophages for further characterization based on restriction enzyme digestion patterns of genomic DNA. Among the studied bacteriophages, two belong to the Myoviridae family and three belong to the Podoviridae family, based on morphology observed by transmission electron microscopy. The host range of the selected bacteriophages was confirmed using 18 strains of P. syringae pv. actinidiae, including the Psa2 and Psa3 groups, and some were also effective against other P. syringae pathovars. Lytic activity of the selected bacteriophages was sustained in vitro until 80 h, and their activity remained stable up to 50°C, at pH 11, and under UV-B light. These results indicate that the isolated bacteriophages are specific to P. syringae species and are resistant to various environmental factors, implying their potential use in control of bacterial canker disease in kiwifruits. PMID:26628254

  7. Bacteriophage lysis: mechanism and regulation.

    PubMed Central

    Young, R

    1992-01-01

    Bacteriophage lysis involves at least two fundamentally different strategies. Most phages elaborate at least two proteins, one of which is a murein hydrolase, or lysin, and the other is a membrane protein, which is given the designation holin in this review. The function of the holin is to create a lesion in the cytoplasmic membrane through which the murein hydrolase passes to gain access to the murein layer. This is necessary because phage-encoded lysins never have secretory signal sequences and are thus incapable of unassisted escape from the cytoplasm. The holins, whose prototype is the lambda S protein, share a common organization in terms of the arrangement of charged and hydrophobic residues, and they may all contain at least two transmembrane helical domains. The available evidence suggests that holins oligomerize to form nonspecific holes and that this hole-forming step is the regulated step in phage lysis. The correct scheduling of the lysis event is as much an essential feature of holin function as is the hole formation itself. In the second strategy of lysis, used by the small single-stranded DNA phage phi X174 and the single-stranded RNA phage MS2, no murein hydrolase activity is synthesized. Instead, there is a single species of small membrane protein, unlike the holins in primary structure, which somehow causes disruption of the envelope. These lysis proteins function by activation of cellular autolysins. A host locus is required for the lytic function of the phi X174 lysis gene E. Images PMID:1406491

  8. How long can bacteriophage λ change its mind?

    PubMed Central

    Semsey, Szabolcs; Campion, Christopher; Mohamed, Abdu; Svenningsen, Sine Lo

    2015-01-01

    A key event in the lifecycle of a temperate bacteriophage is the choice between lysis and lysogeny upon infection of a susceptible host cell. In a recent paper, we showed that a prolonged period exists after the decision to lysogenize, during which bacteriophage λ can abandon the initial decision, and instead develop lytically, as a response to the accumulation of the late lytic regulatory protein Q. Here, we present evidence that expression of Q does not induce replication of λ DNA, suggesting that the DNA to be packaged into the resulting phage progeny was already present at the time of the initial decision to lysogenize. We summarize our findings in a working model of the key determinants of the duration of the post-decision period during which it is possible for the infected cell to switch from the lysogeny decision to successful lytic development. PMID:26459429

  9. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed. PMID:24442504

  10. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12.

    PubMed Central

    Weeks, C R; Ferretti, J J

    1984-01-01

    The infection of Streptococcus pyogenes T25(3) with the temperate bacteriophage T12 results in the conversion of the nontoxigenic strain to type A streptococcal exotoxin (erythrogenic toxin) production. Although previous research has established that integration of the bacteriophage genome into the host chromosome is not essential for exotoxin production, the location of the gene on the bacteriophage or bacterial chromosome had not been determined. In the present investigation, recombinant DNA techniques were used to determine whether the gene specifying type A streptococcal exotoxin (speA) production is located on the bacteriophage chromosome. Bacteriophage T12 was obtained from S. pyogenes T25(3)(T12) by induction with mitomycin C, and after isolation of bacteriophage DNA by phenol-chloroform extraction, the DNA was digested with restriction enzymes and ligated with Escherichia coli plasmid pHP34 or the Streptococcus-E. coli shuttle vector pSA3. Transformation of E. coli HB101 with the recombinant molecules allowed selection of E. coli clones containing bacteriophage T12 genes. Immunological assays with specific antibody revealed the presence of type A streptococcal exotoxin in sonicates of E. coli transformants. Subcloning experiments localized the speA gene to a 1.7-kilobase segment of the bacteriophage T12 genome flanked by SalI and HindIII sites. Introduction of the pSA3 vector containing the speA gene into Streptococcus sanguis (Challis) resulted in transformants that secreted the type A exotoxin. Immunological analysis showed that the type A streptococcal exotoxin produced by E. coli and S. sanguis transformants was identical to the type A exotoxin produced by S. pyogenes T25(3)(T12). Southern blot hybridizations with the cloned fragment confirmed its presence in the bacteriophage T12 genome and its absence in the T25(3) nonlysogen. Therefore, the gene for type A streptococcal exotoxin is located in the bacteriophage genome, and conversion of S. pyogenes T

  11. MUTATIONAL SPECTRUM AND RECOMBINOGENIC EFFECTS INDUCED BY AMINOFLUORENE ADDUCTS IN BACTERIOPHAGE M13 (JOURNAL VERSION)

    EPA Science Inventory

    Double stranded replicative form (RFI) DNA of bacteriophage M13mp10 has been modified in vitro to various extents with N-hydroxy-2-aminofluorene (N-OH-AF) and then transfected into E. coli cells. HPLC analysis of the modified DNA shows that only dG-C8-AF adducts are formed. Appro...

  12. T4 bacteriophage as a phage display platform.

    PubMed

    Gamkrelidze, Mariam; Dąbrowska, Krystyna

    2014-07-01

    Analysis of molecular events in T4-infected Escherichia coli has revealed some of the most important principles of biology, including relationships between structures of genes and their products, virus-induced acquisition of metabolic function, and morphogenesis of complex structures through sequential gene product interaction rather than sequential gene activation. T4 bacteriophages and related strains were applied in the first formulations of many fundamental biological concepts. These include the unambiguous recognition of nucleic acids as the genetic material, the definition of the gene by fine-structure mutation, recombinational and functional analyses, the demonstration that the genetic code is triplet, the discovery of mRNA, the importance of recombination and DNA replications, light-dependent and light-independent DNA repair mechanisms, restriction and modification of DNA, self-splicing of intron/exon arrangement in prokaryotes, translation bypassing and others. Bacteriophage T4 possesses unique features that make it a good tool for a multicomponent vaccine platform. Hoc/Soc-fused antigens can be assembled on the T4 capsid in vitro and in vivo. T4-based phage display combined with affinity chromatography can be applied as a new method for bacteriophage purification. The T4 phage display system can also be used as an attractive approach for cancer therapy. The data show the efficient display of both single and multiple HIV antigens on the phage T4 capsid and offer insights for designing novel particulate HIV or other vaccines that have not been demonstrated by other vector systems. PMID:24828789

  13. Lysogenic bacteriophage isolated from acidophilium

    DOEpatents

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  14. Bacteriophage therapy: a regulatory perspective.

    PubMed

    Pelfrene, Eric; Willebrand, Elsa; Cavaleiro Sanches, Ana; Sebris, Zigmars; Cavaleri, Marco

    2016-08-01

    Despite the recognized problem of antibiotic multidrug resistance, very few antibacterial agents with new mechanisms of action are under development. Bacteriophage therapy could offer one alternative strategy to mitigate this challenge. Although widely used throughout the 20th century in Eastern Europe and the former Soviet Union, this potential therapy has not yet been investigated according to rigorous scientific standards. This paper reports on a multistakeholder meeting held at the EMA, which outlined the existing regulatory framework to which such therapy should adhere and reviewed the current obstacles and shortcomings in scientific development for bacteriophage therapy. PMID:27068400

  15. Bacteriophage lambda: early pioneer and still relevant

    PubMed Central

    Casjens, Sherwood R.; Hendrix, Roger W.

    2015-01-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid 1950's to mid 1980's was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives have continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  16. Bacteriophage lambda: Early pioneer and still relevant.

    PubMed

    Casjens, Sherwood R; Hendrix, Roger W

    2015-05-01

    Molecular genetic research on bacteriophage lambda carried out during its golden age from the mid-1950s to mid-1980s was critically important in the attainment of our current understanding of the sophisticated and complex mechanisms by which the expression of genes is controlled, of DNA virus assembly and of the molecular nature of lysogeny. The development of molecular cloning techniques, ironically instigated largely by phage lambda researchers, allowed many phage workers to switch their efforts to other biological systems. Nonetheless, since that time the ongoing study of lambda and its relatives has continued to give important new insights. In this review we give some relevant early history and describe recent developments in understanding the molecular biology of lambda's life cycle. PMID:25742714

  17. Structure and function of bacteriophage T4

    PubMed Central

    Yap, Moh Lan; Rossmann, Michael G

    2014-01-01

    Bacteriophage T4 is the most well-studied member of Myoviridae, the most complex family of tailed phages. T4 assembly is divided into three independent pathways: the head, the tail and the long tail fibers. The prolate head encapsidates a 172 kbp concatemeric dsDNA genome. The 925 Å-long tail is surrounded by the contractile sheath and ends with a hexagonal baseplate. Six long tail fibers are attached to the baseplate’s periphery and are the host cell’s recognition sensors. The sheath and the baseplate undergo large conformational changes during infection. X-ray crystallography and cryo-electron microscopy have provided structural information on protein–protein and protein–nucleic acid interactions that regulate conformational changes during assembly and infection of Escherichia coli cells. PMID:25517898

  18. Bacteriophage therapy for safeguarding animal and human health: a review.

    PubMed

    Tiwari, Ruchi; Dhama, Kuldeep; Kumar, Amit; Rahal, Anu; Kapoor, Sanjay

    2014-02-01

    Since the discovery of bacteriophages at the beginning of the 19th century their contribution to bacterial evolution and ecology and use in a variety of applications in biotechnology and medicine has been recognized and understood. Bacteriophages are natural bacterial killers, proven as best biocontrol agents due to their ability to lyse host bacterial cells specifically thereby helping in disease prevention and control. The requirement of such therapeutic approach is straight away required in view of the global emergence of Multidrug Resistant (MDR) strains of bacteria and rapidly developing resistance to antibiotics in both animals and humans along with increasing food safety concerns including of residual antibiotic toxicities. Phage typing is a popular tool to differentiate bacterial isolates and to identify and characterize outbreak-associated strains of Salmonella, Campylobacter, Escherichia and Listeria. Numerous methods viz. plaque morphology, ultracentrifugation in the density gradient of CsCl2, and random amplified polymorphic DNA (RAPD) have been found to be effective in detection of various phages. Bacteriophages have been isolated and recovered from samples of animal waste products of different livestock farms. High titer cocktails of broad spectrum lytic bacteriophages are usually used for clinical trial for assessing their therapeutic efficacy against antibiotic unresponsive infections in different animals. Bacteriophage therapy also helps to fight various bacterial infections of poultry viz. colibacillosis, salmonellosis and listeriosis. Moreover, the utility of phages concerning biosafety has raised the importance to explore and popularize the therapeutic dimension of this promising novel therapy which forms the topic of discussion of the present review. PMID:24897784

  19. Bacteriophage endolysins as novel antimicrobials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can...

  20. Bacteriophage therapy in animal production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Concerns over the consequences of bacterial resistance to antibiotics with the use of antibiotics in animal production have led to an increase in research on alternatives to antibiotics. Bacteriophages kill bacteria, are natural, safe, plentiful, self replicating, self limiting, can be used to spec...

  1. Bacteriophages and their implications on future biotechnology: a review

    PubMed Central

    2012-01-01

    Recently it has been recognized that bacteriophages, the natural predators of bacteria can be used efficiently in modern biotechnology. They have been proposed as alternatives to antibiotics for many antibiotic resistant bacterial strains. Phages can be used as biocontrol agents in agriculture and petroleum industry. Moreover phages are used as vehicles for vaccines both DNA and protein, for the detection of pathogenic bacterial strain, as display system for many proteins and antibodies. Bacteriophages are diverse group of viruses which are easily manipulated and therefore they have potential uses in biotechnology, research, and therapeutics. The aim of this review article is to enable the wide range of researchers, scientists, and biotechnologist who are putting phages into practice, to accelerate the progress and development in the field of biotechnology. PMID:22234269

  2. My Life with Bacteriophage φ29

    PubMed Central

    Salas, Margarita

    2012-01-01

    This article is a survey of my scientific work over 52 years. During my postdoctoral stay in Severo Ochoa's laboratory, I determined the direction of reading of the genetic message, and I discovered two proteins that I showed to be involved in the initiation of protein synthesis. The work I have done in Spain with bacteriophage φ29 for 45 years has been very rewarding. I can say that I was lucky because I did not expect that φ29 would give so many interesting results, but I worked hard, with a lot of dedication and enthusiasm, and I was there when the luck arrived. I would like to emphasize our work on the control of φ29 DNA transcription and, in particular, the finding for the first time of a protein covalently linked to the 5′-ends of φ29 DNA that we later showed to be the primer for the initiation of phage DNA replication. Very relevant was the discovery of the φ29 DNA polymerase, with its properties of extremely high processivity and strand displacement capacity, together with its high fidelity. The φ29 DNA polymerase has become an ideal enzyme for DNA amplification, both rolling-circle and whole-genome linear amplification. I am also very proud of the many brilliant students and collaborators with whom I have worked over the years and who have become excellent scientists. This Reflections article is not intended to be the end of my scientific career. I expect to work for many years to come. PMID:23124207

  3. Genome of Bacteriophage P1†

    PubMed Central

    Łobocka, Małgorzata B.; Rose, Debra J.; Plunkett, Guy; Rusin, Marek; Samojedny, Arkadiusz; Lehnherr, Hansjörg; Yarmolinsky, Michael B.; Blattner, Frederick R.

    2004-01-01

    P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from σ70 promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication. PMID:15489417

  4. Response of bacteriophage T7 biological dosimeter to dehydration and extraterrestrial solar UV radiation

    NASA Astrophysics Data System (ADS)

    Hegedüs, M.; Fekete, A.; Módos, K.; Kovács, G.; Rontó, Gy.; Lammer, H.; Panitz, C.

    2007-02-01

    The experiment "Phage and uracil response" (PUR) will be accommodated in the EXPOSE facility of the ISS. Bacteriophage T7/isolated T7 DNA will be exposed to different subsets of extreme environmental parameters in space, in order to study the Responses of Organisms to the Space Environment (ROSE). Launch into orbit is preceded by EXPOSE Experiment Verification Tests (EVT) to optimize the methods and the evaluation. Bacteriophage T7/isolated T7 DNA thin layers were exposed to vacuum ( 10-6Pa), to monochromatic (254 nm) and polychromatic (200-400 nm) UV radiation in air as well as in simulated space vacuum. Using neutral density (ND) filters dose-effect curves were performed in order to define the maximum doses tolerated. The effect of temperature fluctuation in vacuum was also studied. The structural/chemical effects on bacteriophage T7/isolated T7 DNA were analyzed by spectroscopic and microscopical methods. Characteristic changes in the absorption spectrum and in the electrophoretic pattern of phage/DNA have been detected indicating the damage of isolated and intraphage DNA. DNA damage was also determined by quantitative PCR (QPCR) using 555 and 3826 bp fragments of T7 DNA. We obtained substantial evidence that DNA lesions (e.g. strand breaks, DNA-protein cross-links, cyclobutane pirimidine dimers (CPDs) etc.) accumulate throughout exposure. Preliminary results suggest a synergistic action of space vacuum and UV radiation with DNA being the critical target.

  5. Functional eukaryotic nuclear localization signals are widespread in terminal proteins of bacteriophages

    PubMed Central

    Redrejo-Rodríguez, Modesto; Muñoz-Espín, Daniel; Holguera, Isabel; Mencía, Mario; Salas, Margarita

    2012-01-01

    A number of prokaryotic proteins have been shown to contain nuclear localization signals (NLSs), although its biological role remains sometimes unclear. Terminal proteins (TPs) of bacteriophages prime DNA replication and become covalently linked to the genome ends. We predicted NLSs within the TPs of bacteriophages from diverse families and hosts and, indeed, the TPs of Φ29, Nf, PRD1, Bam35, and Cp-1, out of seven TPs tested, were found to localize to the nucleus when expressed in mammalian cells. Detailed analysis of Φ29 TP led us to identify a bona fide NLS within residues 1–37. Importantly, gene delivery into the eukaryotic nucleus is enhanced by the presence of Φ29 TP attached to the 5′ DNA ends. These findings show a common feature of TPs from diverse bacteriophages targeting the eukaryotic nucleus and suggest a possible common function by facilitating the horizontal transfer of genes between prokaryotes and eukaryotes. PMID:23091024

  6. Bacteriophage Procurement for Therapeutic Purposes.

    PubMed

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  7. Bacteriophage Procurement for Therapeutic Purposes

    PubMed Central

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  8. Bacteriophage biocontrol in wastewater treatment.

    PubMed

    Jassim, Sabah A A; Limoges, Richard G; El-Cheikh, Hassan

    2016-04-01

    Waterborne bacterial pathogens in wastewater remains an important public health concern, not only because of the environmental damage, morbidity and mortality that they cause, but also due to the high cost of disinfecting wastewater by using physical and chemical methods in treatment plants. Bacteriophages are proposed as bacterial pathogen indicators and as an alternative biological method for wastewater treatment. Phage biocontrol in large scale treatment requires adaptive and aggressive phages that are able to overcome the environmental forces that interfere with phage-host interactions while targeting unwanted bacterial pathogens and preventing biofilms and foaming. This review will shed light on aspects of using bacteriophage programming technology in wastewater plants to rapidly target and reduce undesirable bacteria without harming the useful bacteria needed for biodegradation. PMID:26941243

  9. Novel Podoviridae Family Bacteriophage Infecting Weissella cibaria Isolated from Kimchi

    PubMed Central

    Holo, Helge; Jeon, Sang-Rok; Nes, Ingolf F.; Yoon, Sung-Sik

    2012-01-01

    The first complete genome sequence of a phage infecting Weissella cibaria (Weissella kimchii) is presented. The bacteriophage ϕYS61 was isolated from kimchi, a Korean fermented vegetable dish. Bacteriophages are recognized as a serious problem in industrial fermentations; however, ϕYS61 differed from many virulent phages associated with food fermentations since it was difficult to propagate and was very susceptible to resistance development. Sequence analysis revealed that ϕYS61 resembles Podoviridae of the subfamily Picovirinae. Within the subfamily Picovirinae, the ϕ29-like phages have been extensively studied, and their terminal protein-primed DNA replication is well characterized. Our data strongly suggest that ϕYS61 also replicates by a protein-primed mechanism. Weissella phage ϕYS61 is, however, markedly different from members of the Picovirinae with respect to genome size and morphology. Picovirinae are characterized by small (approximately 20-kb) genomes which contrasts with the 33,594-bp genome of ϕYS61. Based on electron microscopy analysis, ϕYS61 was classified as a member of the Podoviridae of morphotype C2, similar to the ϕ29-like phages, but its capsid dimensions are significantly larger than those reported for these phages. The novelty of ϕYS61 was also emphasized by the low number of open reading frames (ORFs) showing significant similarity to database sequences. We propose that the bacteriophage ϕYS61 should represent a new subfamily within the family Podoviridae. PMID:22885743

  10. Novel bacteriophages containing a genome of another bacteriophage within their genomes.

    PubMed

    Swanson, Maud M; Reavy, Brian; Makarova, Kira S; Cock, Peter J; Hopkins, David W; Torrance, Lesley; Koonin, Eugene V; Taliansky, Michael

    2012-01-01

    A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri. PMID:22815791

  11. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains

    PubMed Central

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    Aim of Study The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. Material and Methods The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Results Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. Conclusions The results obtained indicate the need for further research aimed

  12. Use of Bacteriophages to control bacterial pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  13. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein

    PubMed Central

    Hooton, Steven P. T.; Connerton, Ian F.

    2015-01-01

    Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs) and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5′-3′ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesize that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation. PMID:25601859

  14. Bacteriophages Carrying Antibiotic Resistance Genes in Fecal Waste from Cattle, Pigs, and Poultry▿

    PubMed Central

    Colomer-Lluch, Marta; Imamovic, Lejla; Jofre, Juan; Muniesa, Maite

    2011-01-01

    This study evaluates the occurrence of bacteriophages carrying antibiotic resistance genes in animal environments. blaTEM, blaCTX-M (clusters 1 and 9), and mecA were quantified by quantitative PCR in 71 phage DNA samples from pigs, poultry, and cattle fecal wastes. Densities of 3 to 4 log10 gene copies (GC) of blaTEM, 2 to 3 log10 GC of blaCTX-M, and 1 to 3 log10 GC of mecA per milliliter or gram of sample were detected, suggesting that bacteriophages can be environmental vectors for the horizontal transfer of antibiotic resistance genes. PMID:21807968

  15. Isolation and characterization of recombinant lambda gt11 bacteriophages expressing four different Mycobacterium intracellulare antigens.

    PubMed Central

    Morris, S L; Rouse, D A; Hussong, D; Chaparas, S D

    1990-01-01

    Four bacteriophages expressing different immunoreactive recombinant Mycobacterium intracellulare antigens were isolated from a lambda gt11 library with monoclonal antibodies to M. intracellulare. These four antibodies reacted with native M. intracellulare proteins of 54, 43, 40/38, and 22 kilodaltons. Southern blot hybridizations with DNA probes prepared from insert fragments of these bacteriophages confirmed the M. intracellulare derivation of the inserts. The physical maps of the immunoreactive phages were deduced by restriction enzyme digestions. The molecular weights of the expressed recombinant antigens were determined by Western (immuno-) blotting. Images PMID:2136733

  16. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation.

    PubMed Central

    Pakula, A A; Young, V B; Sauer, R T

    1986-01-01

    Following random mutagenesis of the bacteriophage lambda cro gene, we have isolated missense mutations that affect approximately half of the 66 residue positions of Cro. About two-thirds of the mutations change residues involved in the maintenance of Cro structure and stability. The corresponding mutant proteins are severely degraded in the cell but often have specific activities near that of wild-type Cro. The remaining mutations affect residues involved in DNA binding. These mutant proteins are present at moderately reduced intracellular levels, but their specific activities are much lower than that of wild type. Images PMID:2947238

  17. Isolation and characterization of a bacteriophage for bacillus licheniformis A5

    SciTech Connect

    Schreier, H.J.; Vonada, E.K.; Yasbin, R.E.; Bernlohr, R.W.

    1982-01-01

    The isolation of a virulent bacteriophage for Bacillus licheniformis A5 is reported. This bacteriophage, designated NLP-1, has an icosahedral head 100 nm in diameter and a contractible tail with a maximum length of 130 nm. Its DNA has a density of 1.741 g/cm/sup 3/ and a T/sub m/ of 78.4/sup 0/C. Base composition analysis showed that thymine is absent and is replaced by hydroxymethyluracil. NLP-1 appears to belong to the Bacillus group of bacteriophages that includes SP01 and SP82. It will infect B. cereus T and B. brevis 8185, but will not infect B. subtilis W23 or 168.

  18. Visualization of bacteriophage P1 infection by cryo-electron tomography of tiny Escherichia coli

    SciTech Connect

    Liu Jun; Chen Chengyen; Shiomi, Daisuke; Niki, Hironori; Margolin, William

    2011-09-01

    Bacteriophage P1 has a contractile tail that targets the conserved lipopolysaccharide on the outer membrane surface of the host for initial adsorption. The mechanism by which P1 DNA enters the host cell is not well understood, mainly because the transient molecular interactions between bacteriophage and bacteria have been difficult to study by conventional approaches. Here, we engineered tiny E. coli host cells so that the initial stages of P1-host interactions could be captured in unprecedented detail by cryo-electron tomography. Analysis of three-dimensional reconstructions of frozen-hydrated specimens revealed three predominant configurations: an extended tail stage with DNA present in the phage head, a contracted tail stage with DNA, and a contracted tail stage without DNA. Comparative analysis of various conformations indicated that there is uniform penetration of the inner tail tube into the E. coli periplasm and a significant movement of the baseplate away from the outer membrane during tail contraction.

  19. Characterization of recombinant bacteriophages containing mosquito ribosomal RNA genes

    SciTech Connect

    Park, Y.J.

    1988-01-01

    A family of nine recombinant bacteriophages containing rRNA genes from cultured cells of the mosquito, Aedes albopictus, has been isolated by screening two different genomic DNA libraries - Charon 30 and EMBL 3 using {sup 32}P-labeled 18S and 28S rRNA as probes. These nine recombinant bacteriophages were characterized by restriction mapping, Southern blotting, and S1 nuclease analysis. The 18S rRNA coding region contains an evolutionarily conserved EcoRI site near the 3{prime}-end, and measures 1800 bp. The 28S rRNA genes were divided into {alpha} and {beta} coding regions measuring 1750 bp and 2000 bp, respectively. The gap between these two regions measures about 340 bp. No insertion sequences were found in the rRNA coding regions. The entire rDNA repeat unit had a minimum length of 15.6 kb, including a nontranscribed spacer region. The non-transcribed spacer region of cloned A. albopictus rDNA contained a common series of seven PvuI sites within a 1250 bp region upstream of the 18S rRNA coding region, and a proportion of this region also showed heterogeneity both in the length and in the restriction sites.

  20. Proteins responsible for lysogeny of deep-sea thermophilic bacteriophage GVE2 at high temperature.

    PubMed

    Song, Qing; Ye, Ting; Zhang, Xiaobo

    2011-06-15

    The lytic and lysogenic life cycle switch of bacteriophages plays very important roles in virus-host interactions. However, the lysogeny of thermophilic bacteriophage infecting thermophile at high temperatures has not been addressed. In this study, two lysogeny-related genes encoding the CI protein and recombinase of GVE2, a thermophilic bacteriophage obtained from a deep-sea hydrothermal vent, were characterized. Temporal analyses showed that the two genes were expressed at early stages of GVE2 infection. Based on chromatin immunoprecipitation (ChIP) assay and electrophoretic mobility shift assay (EMSA), the GVE2 CI protein was bound with only one DNA fragment located at 24264-24036 bp in the GVE2 genome. This location might be the original transcription site and the lysis-lysogeny switch site, which was very different from mesophilic bacteriophages. The GVE2 CI and recombinase proteins could function only at high temperatures. Therefore our study improved our understanding of the lysogeny process of bacteriophages at high temperatures. PMID:21303688

  1. Bacteriophages of lactobacilli.

    PubMed

    Sechaud, L; Cluzel, P J; Rousseau, M; Baumgartner, A; Accolas, J P

    1988-03-01

    Lactobacilli are members of the bacterial flora of lactic starter cultures used to generate lactic acid fermentation in a number of animal or plant products used as human or animals foods. They can be affected by phage outbreaks, which can result in faulty and depreciated products. Two groups of phages specific of Lactobacillus casei have been thoroughly studied. 1. The first group is represented by phage PL-1. This phage behaves as lytic in its usual host L. casei ATCC 27092, but can lysogenize another strain, L. casei ATCC 334. Bacterial receptors of this phage are located in a cell-wall polysaccharide and rhamnose is the main component of the receptors. Ca2+ and adenosine triphosphate (ATP) are indispensable to ensure the injection of the phage DNA into the bacterial cell. The phage DNA is double-stranded, mostly linear, but with cohesive ends which enables it to be circularized. The vegetative growth of PL-1 proceeds according to the classical mode. Cell lysis is produced by an N-acetyl-muramidase at the end of vegetative growth. 2. The second group is represented by the temperate phage phi FSW of L. casei ATCC27139. It has been shown how virulent phages originate from this temperate phage in Japanese dairy plants. The lysogenic state of phi FSW can be altered either by point mutations or by the insertion of a mobile genetic element called ISL 1, which comes from the bacterial chromosome. This is the first transposable element that has been described in lactobacilli. Lysogeny appears to be widespread among lactobacilli since one study showed that 27% of 148 strains studied, representing 15 species, produced phage particles after induction by mitomycin C. Similarly, 23 out of 30 strains of Lactobacillus salivarius are lysogenic and produce, after induction by mitomycin C, temperate phages, killer particles, or defective phages. Temperate phages have also been found in 10 out of 105 strains of Lactobacillus bulgaricus or Lactobacillus lactis after induction by

  2. Bacteriophage T4 Genome†

    PubMed Central

    Miller, Eric S.; Kutter, Elizabeth; Mosig, Gisela; Arisaka, Fumio; Kunisawa, Takashi; Rüger, Wolfgang

    2003-01-01

    Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the “cell-puncturing device,” combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the

  3. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage

    PubMed Central

    Moon, Bo Youn; Park, Joo Youn; Robinson, D. Ashley; Thomas, Jonathan C.; Park, Yong Ho; Thornton, Justin A.; Seo, Keun Seok

    2016-01-01

    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus. PMID:26953931

  4. Marine transducing bacteriophage attacking a luminous bacterium.

    PubMed

    Keynan, A; Nealson, K; Sideropoulos, H; Hastings, J W

    1974-08-01

    The isolation and partial characterization of a marine bacteriophage attacking a strain of luminous bacteria is described, including some physical, biological, and genetic properties. It is a DNA phage of density of 1.52 with a long flexible tail and an apparently icosohedral head. With respect to stability in suspension, it has a rather specific requirement for the sodium ion in high concentration; it is further stabilized by the addition of calcium and magnesium ions. These same ions are likewise all required for both good plating efficiency and plaque uniformity. Although it goes through a typical lytic growth cycle (about 45 min), with a burst size of 100, and no stable lysogens have been isolated, it is nevertheless a transducing phage specifically for the tryptophan region, transducing several, but not all, independently isolated Trp(-) auxotrophs to protrophy. No other auxotrophs of a variety of amino acids were transduced by this phage to prototrophy. Phage infection does not change the normal expression of the luminescent system, and light remains at near normal levels until cell lysis occurs. PMID:16789143

  5. Probing Conserved Helical Modules of Portal Complexes by Mass Spectrometry based Hydrogen/deuterium Exchange

    PubMed Central

    Kang, Sebyung; Poliakov, Anton; Sexton, Jennifer; Renfrow, Matthew B.; Prevelige, Peter E.

    2008-01-01

    The dsDNA bacteriophage P22 has a ring shaped dodecameric complex composed of the 84 kDa portal protein subunit which forms the central channel of the phage’s DNA packaging motor. The overall morphology of the P22 portal complex is similar to that of the portal complexes of Phi29, SPP1, T3, T7 phages and herpes simplex virus. Secondary structure prediction of P22 portal protein and its threading onto the crystal structure of the Phi29 portal complexes suggested that P22 portal protein complex shares conserved helical modules which were found in the dodecameric interfaces of the Phi29 portal complex. To identify the amino acids involved in inter-subunit contacts in the P22 portal ring complexes and validate the threading model, we performed comparative hydrogen/deuterium exchange analysis of monomeric and in vitro assembled portal proteins of P22 and the dodecameric Phi29 portal. Hydrogen/deuterium exchange experiments provided evidence of inter-subunit interactions in the P22 portal complex similar to those in the Phi29 portal which map to the regions predicted to be conserved helical modules. PMID:18621389

  6. Bacteriophage Infection of Model Metal Reducing Bacteria

    NASA Astrophysics Data System (ADS)

    Weber, K. A.; Bender, K. S.; Gandhi, K.; Coates, J. D.

    2008-12-01

    Microbially-mediated metal reduction plays a significant role controlling contaminant mobility in aqueous, soil, and sedimentary environments. From among environmentally relevant microorganisms mediating metal reduction, Geobacter spp. have been identified as predominant metal-reducing bacteria under acetate- oxidizing conditions. Due to the significance of these bacteria in environmental systems, it is necessary to understand factors influencing their metabolic physiology. Examination of the annotated finished genome sequence of G. sulfurreducens PCA, G. uraniumreducens Rf4, G. metallireduceans GS-15 as well as a draft genome sequence of Geobacter sp. FRC-32 have identified gene sequences of putative bacteriophage origin. Presence of these sequences indicates that these bacteria are susceptible to phage infection. Polymerase chain reaction (PCR) primer sets designed tested for the presence of 12 of 25 annotated phage-like sequences in G. sulfurreducens PCA and 9 of 17 phage-like sequences in FRC- 32. The following genes were successfully amplified in G. sulfurreducens PCA: prophage type transcription regulator, phage-induced endonuclease, phage tail sheath, 2 phage tail proteins, phage protein D, phage base plate protein, phage-related DNA polymerase, integrase, phage transcriptional regulator, and Cro-like transcription regulator. Nine of the following sequences were present in FRC-32: 4 separate phage- related proteins, phage-related tail component, viron core protein, phage Mu protein, phage base plate, and phage tail sheath. In addition to the bioinformatics evidence, incubation of G. sulfurreducens PCA with 1 μg mL-1 mytomycin C (mutagen stimulating prophage induction) during mid-log phase resulted in significant cell lysis relative to cultures that remained unamended. Cell lysis was concurrent with an increase in viral like particles enumerated using epifluorescent microscopy. In addition, samples collected following this lytic event (~44hours) were

  7. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella

    PubMed Central

    Bardina, Carlota; Colom, Joan; Spricigo, Denis A.; Otero, Jennifer; Sánchez-Osuna, Miquel; Cortés, Pilar; Llagostera, Montserrat

    2016-01-01

    Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large

  8. Lytic Clostridium perfringens Bacteriophage 39-O Genomic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Screening for bacteriophages lytic for Clostridium perfringens was completed utilizing filtered samples obtained from poultry (intestinal material), soil, sewage and poultry processing drainage water. Following limit dilution cloning and three rounds of plaque purification lytic phage preparations ...

  9. The bacteriophage ϕ29 tail possesses a pore-forming loop for cell membrane penetration.

    PubMed

    Xu, Jingwei; Gui, Miao; Wang, Dianhong; Xiang, Ye

    2016-06-23

    Most bacteriophages are tailed bacteriophages with an isometric or a prolate head attached to a long contractile, long non-contractile, or short non-contractile tail. The tail is a complex machine that plays a central role in host cell recognition and attachment, cell wall and membrane penetration, and viral genome ejection. The mechanisms involved in the penetration of the inner host cell membrane by bacteriophage tails are not well understood. Here we describe structural and functional studies of the bacteriophage ϕ29 tail knob protein gene product 9 (gp9). The 2.0 Å crystal structure of gp9 shows that six gp9 molecules form a hexameric tube structure with six flexible hydrophobic loops blocking one end of the tube before DNA ejection. Sequence and structural analyses suggest that the loops in the tube could be membrane active. Further biochemical assays and electron microscopy structural analyses show that the six hydrophobic loops in the tube exit upon DNA ejection and form a channel that spans the lipid bilayer of the membrane and allows the release of the bacteriophage genomic DNA, suggesting that cell membrane penetration involves a pore-forming mechanism similar to that of certain non-enveloped eukaryotic viruses. A search of other phage tail proteins identified similar hydrophobic loops, which indicates that a common mechanism might be used for membrane penetration by prokaryotic viruses. These findings suggest that although prokaryotic and eukaryotic viruses use apparently very different mechanisms for infection, they have evolved similar mechanisms for breaching the cell membrane. PMID:27309813

  10. Combined Use of Bacteriophage K and a Novel Bacteriophage To Reduce Staphylococcus aureus Biofilm Formation

    PubMed Central

    Alves, D. R.; Gaudion, A.; Bean, J. E.; Perez Esteban, P.; Arnot, T. C.; Harper, D. R.; Kot, W.; Hansen, L. H.; Enright, M. C.

    2014-01-01

    Biofilms are major causes of impairment of wound healing and patient morbidity. One of the most common and aggressive wound pathogens is Staphylococcus aureus, displaying a large repertoire of virulence factors and commonly reduced susceptibility to antibiotics, such as the spread of methicillin-resistant S. aureus (MRSA). Bacteriophages are obligate parasites of bacteria. They multiply intracellularly and lyse their bacterial host, releasing their progeny. We isolated a novel phage, DRA88, which has a broad host range among S. aureus bacteria. Morphologically, the phage belongs to the Myoviridae family and comprises a large double-stranded DNA (dsDNA) genome of 141,907 bp. DRA88 was mixed with phage K to produce a high-titer mixture that showed strong lytic activity against a wide range of S. aureus isolates, including representatives of the major international MRSA clones and coagulase-negative Staphylococcus. Its efficacy was assessed both in planktonic cultures and when treating established biofilms produced by three different biofilm-producing S. aureus isolates. A significant reduction of biofilm biomass over 48 h of treatment was recorded in all cases. The phage mixture may form the basis of an effective treatment for infections caused by S. aureus biofilms. PMID:25149517

  11. Arthrobacter globiformis and its bacteriophage in soil

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  12. Taking Bacteriophage Therapy Seriously: A Moral Argument

    PubMed Central

    Verbeken, Gilbert; Huys, Isabelle; Jennes, Serge; Chanishvili, Nina; Górski, Andrzej; De Vos, Daniel

    2014-01-01

    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need. PMID:24868534

  13. Taking bacteriophage therapy seriously: a moral argument.

    PubMed

    Verbeken, Gilbert; Huys, Isabelle; Pirnay, Jean-Paul; Jennes, Serge; Chanishvili, Nina; Scheres, Jacques; Górski, Andrzej; De Vos, Daniel; Ceulemans, Carl

    2014-01-01

    The excessive and improper use of antibiotics has led to an increasing incidence of bacterial resistance. In Europe the yearly number of infections caused by multidrug resistant bacteria is more than 400.000, each year resulting in 25.000 attributable deaths. Few new antibiotics are in the pipeline of the pharmaceutical industry. Early in the 20th century, bacteriophages were described as entities that can control bacterial populations. Although bacteriophage therapy was developed and practiced in Europe and the former Soviet republics, the use of bacteriophages in clinical setting was neglected in Western Europe since the introduction of traditional antibiotics. Given the worldwide antibiotic crisis there is now a growing interest in making bacteriophage therapy available for use in modern western medicine. Despite the growing interest, access to bacteriophage therapy remains highly problematic. In this paper, we argue that the current state of affairs is morally unacceptable and that all stakeholders (pharmaceutical industry, competent authorities, lawmakers, regulators, and politicians) have the moral duty and the shared responsibility towards making bacteriophage therapy urgently available for all patients in need. PMID:24868534

  14. Host receptors for bacteriophage adsorption.

    PubMed

    Bertozzi Silva, Juliano; Storms, Zachary; Sauvageau, Dominic

    2016-02-01

    The adsorption of bacteriophages (phages) onto host cells is, in all but a few rare cases, a sine qua non condition for the onset of the infection process. Understanding the mechanisms involved and the factors affecting it is, thus, crucial for the investigation of host-phage interactions. This review provides a survey of the phage host receptors involved in recognition and adsorption and their interactions during attachment. Comprehension of the whole infection process, starting with the adsorption step, can enable and accelerate our understanding of phage ecology and the development of phage-based technologies. To assist in this effort, we have established an open-access resource--the Phage Receptor Database (PhReD)--to serve as a repository for information on known and newly identified phage receptors. PMID:26755501

  15. Bacteriophage endolysins as novel antimicrobials

    PubMed Central

    Schmelcher, Mathias; Donovan, David M; Loessner, Martin J

    2013-01-01

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology. PMID:23030422

  16. Isolation and Characterization of a Bacteriophage for Thiobacillus novellus

    PubMed Central

    Johnson, K.; Chow, C. T.; Lyric, R. M.; Van Caeseele, L.

    1973-01-01

    A DNA-containing bacteriophage for Thiobacillus novellus has been isolated from sewage and purified by ammonium sulfate precipitation, differential centrifugation, and cesium chloride equilibrium centrifugation. The buoyant density of this phage in CsCl is 1.51 g/cm3. Electron microscopy studies have revealed a polyhedral head about 60 nm in diameter and a tail surrounded by a number of fine filaments. It has an adsorption rate constant of 1.1 × 10−9 ml/min, a latent period of 45 min, and an average burst size of 150. The mole guanine and cytosine content in its DNA has been estimated to be 57 to 58%. Five structural proteins with molecular weights of 62,000, 42,500, 30,500, 17,750, and 13,500 have been detected by polyacrylamide gel electrophoresis techniques. Images PMID:4203086

  17. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NASA Astrophysics Data System (ADS)

    Lemay, Serge G.; Panja, Debabrata; Molineux, Ian J.

    2013-02-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been interpreted in terms of the decrease in free energy of the densely packed DNA associated with genome ejection. Here we detail a simple model of genome ejection in terms of the hydrostatic and osmotic pressures inside the phage, a bacterium, and a buffer solution or culture medium. We argue that the hydrodynamic flow associated with the water movement from the buffer solution into the phage capsid and further drainage into the bacterial cytoplasm, driven by the osmotic gradient between the bacterial cytoplasm and culture medium, provides an alternative mechanism for phage genome ejection in vivo; the mechanism is perfectly consistent with phage genome ejection in vitro.

  18. Structure and synthesis of a lipid-containing bacteriophage. Amphiphilic properties of protein IV of bacteriophage PM2.

    PubMed

    Satake, H; Kania, M; Franklin, R M

    1981-03-01

    Interactions between lipids and the DNA-binding protein (protein IV) purified from bacteriophage PM2 were studied in vitro. The efficiency of incorporation of protein IV into single-walled liposomes was more than 90%. Protein IV embedded in liposomes interacted more strongly with PM2 DNA than protein IV alone. The DNA--protein-IV--liposome complex was relatively stable as observed by sedimentation behavior on a sucrose gradient. The interaction between DNA and the protein-IV--liposome was abolished by tryptic digestion, even though 40% of the protein remained in the vesicle. More than 70% of the amino acids of this embedded peptide segment were hydrophobic. Carboxypeptidase digestion of the protein-IV--liposome caused a release of 20% of the radioactivity of the vesicle without changing the DNA-binding ability of the complexes. Modification of the protein-IV--liposome with the chemical probe, 2,4-dinitrofluorobenzene, and analysis of the tryptic peptides released from the protein-IV--liposome demonstrated that the N-terminal basic amino acid cluster segment responsible for the DNA binding was located on the outer surface of the bilayer. These results support an earlier model in which protein IV anchors itself in the inner leaflet of the PM2 bilayer membrane, interacting with the DNA in the virion. PMID:6263621

  19. The Bacteriophage Carrier State of Campylobacter jejuni Features Changes in Host Non-coding RNAs and the Acquisition of New Host-derived CRISPR Spacer Sequences

    PubMed Central

    Hooton, Steven P. T.; Brathwaite, Kelly J.; Connerton, Ian F.

    2016-01-01

    Incorporation of self-derived CRISPR DNA protospacers in Campylobacter jejuni PT14 occurs in the presence of bacteriophages encoding a CRISPR-like Cas4 protein. This phenomenon was evident in carrier state infections where both bacteriophages and host are maintained for seemingly indefinite periods as stable populations following serial passage. Carrier state cultures of C. jejuni PT14 have greater aerotolerance in nutrient limited conditions, and may have arisen as an evolutionary response to selective pressures imposed during periods in the extra-intestinal environment. A consequence of this is that bacteriophage and host remain associated and able to survive transition periods where the chances of replicative success are greatly diminished. The majority of the bacteriophage population do not commit to lytic infection, and conversely the bacterial population tolerates low-level bacteriophage replication. We recently examined the effects of Campylobacter bacteriophage/C. jejuni PT14 CRISPR spacer acquisition using deep sequencing strategies of DNA and RNA-Seq to analyze carrier state cultures. This approach identified de novo spacer acquisition in C. jejuni PT14 associated with Class III Campylobacter phages CP8/CP30A but spacer acquisition was oriented toward the capture of host DNA. In the absence of bacteriophage predation the CRISPR spacers in uninfected C. jejuni PT14 cultures remain unchanged. A distinct preference was observed for incorporation of self-derived protospacers into the third spacer position of the C. jejuni PT14 CRISPR array, with the first and second spacers remaining fixed. RNA-Seq also revealed the variation in the synthesis of non-coding RNAs with the potential to bind bacteriophage genes and/or transcript sequences. PMID:27047470

  20. Characterization of Helicobacter pylori Bacteriophage KHP30

    PubMed Central

    Uchiyama, Jumpei; Takeuchi, Hiroaki; Kato, Shin-ichiro; Gamoh, Keiji; Takemura-Uchiyama, Iyo; Ujihara, Takako; Daibata, Masanori

    2013-01-01

    Helicobacter pylori inhabits the stomach mucosa and is a causative agent of stomach ulcer and cancer. In general, bacteriophages (phages) are strongly associated with bacterial evolution, including the development of pathogenicity. Several tailed phages have so far been reported in H. pylori. We have isolated an H. pylori phage, KHP30, and reported its genomic sequence. In this study, we examined the biological characteristics of phage KHP30. Phage KHP30 was found to be a spherical lipid-containing phage with a diameter of ca. 69 nm. Interestingly, it was stable from pH 2.5 to pH 10, suggesting that it is adapted to the highly acidic environment of the human stomach. Phage KHP30 multiplied on 63.6% of clinical H. pylori isolates. The latent period was ca. 140 min, shorter than the doubling time of H. pylori (ca. 180 min). The burst size was ca. 13, which was smaller than the burst sizes of other known tailed or spherical phages. Phage KHP30 seemed to be maintained as an episome in H. pylori strain NY43 cells, despite a predicted integrase gene in the KHP30 genomic sequence. Seven possible virion proteins of phage KHP30 were analyzed using N-terminal protein sequencing and mass spectrometry, and their genes were found to be located on its genomic DNA. The genomic organization of phage KHP30 differed from the genomic organizations in the known spherical phage families Corticoviridae and Tectiviridae. This evidence suggests that phage KHP30 is a new type of spherical phage that cannot be classified in any existing virus category. PMID:23475617

  1. Complete Genome Sequences of Five Bacteriophages That Infect Rhodobacter capsulatus.

    PubMed

    Bollivar, David W; Bernardoni, Brooke; Bockman, Matthew R; Miller, Brenda M; Russell, Daniel A; Delesalle, Veronique A; Krukonis, Gregory P; Hatfull, Graham F; Cross, Madeline R; Szewczyk, Marlena M; Eppurath, Atul

    2016-01-01

    Five bacteriophages that infect the Rhodobacter capsulatus strain YW1 were isolated from stream water near Bloomington, Illinois, USA. Two distinct genome types are represented in the newly isolated bacteriophages. These genomes are different from other bacteriophage genomes previously described. PMID:27231352

  2. Complete Genome Sequences of Five Bacteriophages That Infect Rhodobacter capsulatus

    PubMed Central

    Bernardoni, Brooke; Bockman, Matthew R.; Miller, Brenda M.; Russell, Daniel A.; Delesalle, Veronique A.; Krukonis, Gregory P.; Hatfull, Graham F.; Cross, Madeline R.; Szewczyk, Marlena M.; Eppurath, Atul

    2016-01-01

    Five bacteriophages that infect the Rhodobacter capsulatus strain YW1 were isolated from stream water near Bloomington, Illinois, USA. Two distinct genome types are represented in the newly isolated bacteriophages. These genomes are different from other bacteriophage genomes previously described. PMID:27231352

  3. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage BMBtp2.

    PubMed

    Dong, Zhaoxia; Peng, Donghai; Wang, Yueying; Zhu, Lei; Ruan, Lifang; Sun, Ming

    2013-01-01

    Bacillus thuringiensis is an insect pathogen which has been widely used for biocontrol. During B. thuringiensis fermentation, lysogenic bacteriophages cause severe losses of yield. Here, we announce the complete genome sequence of a bacteriophage, BMBtp2, which is induced from B. thuringiensis strain YBT-1765, which may be helpful to clarify the mechanism involved in bacteriophage contamination. PMID:23405296

  4. Immunochemical Nature of Receptors of Pseudotuberculosis Diagnostic Bacteriophage.

    PubMed

    Byvalov, A A; Dudina, L G; Konyshev, I V; Litvinets, S G; Martinson, E A

    2016-03-01

    The effect of treatment of Yersinia pseudotuberculosis cells with antibodies of various specificities on adhesiveness of pseudotuberculosis bacteriophage was analyzed by competitive inhibition technique. Bacteriophage adsorption to bacteria was sterically inhibited by monoclonal antibodies to protein epitopes of Y. pseudotuberculosis outer membrane. These results suggest that receptors of pseudotuberculosis diagnostic bacteriophage are localized on the LPS core of microbial cell. PMID:27021089

  5. Bacteriophage strain typing by rapid single molecule analysis.

    PubMed

    Grunwald, Assaf; Dahan, Moran; Giesbertz, Anna; Nilsson, Adam; Nyberg, Lena K; Weinhold, Elmar; Ambjörnsson, Tobias; Westerlund, Fredrik; Ebenstein, Yuval

    2015-10-15

    Rapid characterization of unknown biological samples is under the focus of many current studies. Here we report a method for screening of biological samples by optical mapping of their DNA. We use a novel, one-step chemo-enzymatic reaction to covalently bind fluorophores to DNA at the four-base recognition sites of a DNA methyltransferase. Due to the diffraction limit of light, the dense distribution of labels results in a continuous fluorescent signal along the DNA. The amplitude modulations (AM) of the fluorescence intensity along the stretched DNA molecules exhibit a unique molecular fingerprint that can be used for identification. We show that this labelling scheme is highly informative, allowing accurate genotyping. We demonstrate the method by labelling the genomes of λ and T7 bacteriophages, resulting in a consistent, unique AM profile for each genome. These profiles are also successfully used for identification of the phages from a background phage library. Our method may provide a facile route for screening and typing of various organisms and has potential applications in metagenomics studies of various ecosystems. PMID:26019180

  6. Bacteriophage strain typing by rapid single molecule analysis

    PubMed Central

    Grunwald, Assaf; Dahan, Moran; Giesbertz, Anna; Nilsson, Adam; Nyberg, Lena K.; Weinhold, Elmar; Ambjörnsson, Tobias; Westerlund, Fredrik; Ebenstein, Yuval

    2015-01-01

    Rapid characterization of unknown biological samples is under the focus of many current studies. Here we report a method for screening of biological samples by optical mapping of their DNA. We use a novel, one-step chemo-enzymatic reaction to covalently bind fluorophores to DNA at the four-base recognition sites of a DNA methyltransferase. Due to the diffraction limit of light, the dense distribution of labels results in a continuous fluorescent signal along the DNA. The amplitude modulations (AM) of the fluorescence intensity along the stretched DNA molecules exhibit a unique molecular fingerprint that can be used for identification. We show that this labelling scheme is highly informative, allowing accurate genotyping. We demonstrate the method by labelling the genomes of λ and T7 bacteriophages, resulting in a consistent, unique AM profile for each genome. These profiles are also successfully used for identification of the phages from a background phage library. Our method may provide a facile route for screening and typing of various organisms and has potential applications in metagenomics studies of various ecosystems. PMID:26019180

  7. Bacteriophages: antibacterials with a future?

    PubMed

    Broxmeyer, Lawrence

    2004-01-01

    The hypothesis as to whether a benign species of bacteria could kill a virulent kind has to this point been untested. Recently it was shown that in the macrophage, bacteriophages, when properly introduced through a nonvirulent microbe, had a killing rate for virulent AIDS Mycobacterium tuberculosis and Mycobacterium avium far in excess of modern day antibiotics. The study in effect brought a natural phenomena, lysogeny, whereby one bacterial colony kills another thru phage weaponry, to bear in the conquest of hard-to-kill, antibiotic resistant pathogens. This killing occurred intracellularly, within the white blood cell using Mycobacterium smegmatis, a benign bacterial species found generally in smegma secretions from human genitalia as well as soil, dust and water, and first identified in 1884. The subsequent treatment of M. avium-infected, as well as M. tuberculosis-infected RAW 264.7 macrophages, with M. smegmatis transiently infected with TM4 resulted in a unexpectedly large time- and titer-dependent reduction in the number of viable intracellular bacilli. In addition, the M. smegmatis vacuole harboring TM4 fused with the M. avium vacuole in macrophages. These results suggested a potentially novel concept to kill intracellular pathogenic bacteria and warrant future development. PMID:15142642

  8. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    PubMed Central

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  9. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    SciTech Connect

    Gordon, L.K.; Haseltine, W.A.

    1980-12-25

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA.

  10. T4-Related Bacteriophage LIMEstone Isolates for the Control of Soft Rot on Potato Caused by ‘Dickeya solani’

    PubMed Central

    Adriaenssens, Evelien M.; Van Vaerenbergh, Johan; Vandenheuvel, Dieter; Dunon, Vincent; Ceyssens, Pieter-Jan; De Proft, Maurice; Kropinski, Andrew M.; Noben, Jean-Paul; Maes, Martine; Lavigne, Rob

    2012-01-01

    The bacterium ‘Dickeya solani’, an aggressive biovar 3 variant of Dickeya dianthicola, causes rotting and blackleg in potato. To control this pathogen using bacteriophage therapy, we isolated and characterized two closely related and specific bacteriophages, vB_DsoM_LIMEstone1 and vB_DsoM_LIMEstone2. The LIMEstone phages have a T4-related genome organization and share DNA similarity with Salmonella phage ViI. Microbiological and molecular characterization of the phages deemed them suitable and promising for use in phage therapy. The phages reduced disease incidence and severity on potato tubers in laboratory assays. In addition, in a field trial of potato tubers, when infected with ‘Dickeya solani’, the experimental phage treatment resulted in a higher yield. These results form the basis for the development of a bacteriophage-based biocontrol of potato plants and tubers as an alternative for the use of antibiotics. PMID:22413005

  11. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    PubMed

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used. PMID:25827218

  12. Comparison of Five Bacteriophages as Models for Viral Aerosol Studies

    PubMed Central

    Turgeon, Nathalie; Toulouse, Marie-Josée; Martel, Bruno; Moineau, Sylvain

    2014-01-01

    Bacteriophages are perceived to be good models for the study of airborne viruses because they are safe to use, some of them display structural features similar to those of human and animal viruses, and they are relatively easy to produce in large quantities. Yet, only a few studies have investigated them as models. It has previously been demonstrated that aerosolization, environmental conditions, and sampling conditions affect viral infectivity, but viral infectivity is virus dependent. Thus, several virus models are likely needed to study their general behavior in aerosols. The aim of this study was to compare the effects of aerosolization and sampling on the infectivity of five tail-less bacteriophages and two pathogenic viruses: MS2 (a single-stranded RNA [ssRNA] phage of the Leviviridae family), Φ6 (a segmented double-stranded RNA [dsRNA] phage of the Cystoviridae family), ΦX174 (a single-stranded DNA [ssDNA] phage of the Microviridae family), PM2 (a double-stranded DNA [dsDNA] phage of the Corticoviridae family), PR772 (a dsDNA phage of the Tectiviridae family), human influenza A virus H1N1 (an ssRNA virus of the Orthomyxoviridae family), and the poultry virus Newcastle disease virus (NDV; an ssRNA virus of the Paramyxoviridae family). Three nebulizers and two nebulization salt buffers (with or without organic fluid) were tested, as were two aerosol sampling devices, a liquid cyclone (SKC BioSampler) and a dry cyclone (National Institute for Occupational Safety and Health two-stage cyclone bioaerosol sampler). The presence of viruses in collected air samples was detected by culture and quantitative PCR (qPCR). Our results showed that these selected five phages behave differently when aerosolized and sampled. RNA phage MS2 and ssDNA phage ΦX174 were the most resistant to aerosolization and sampling. The presence of organic fluid in the nebulization buffer protected phages PR772 and Φ6 throughout the aerosolization and sampling with dry cyclones. In this

  13. Bacteriophages as Potential Treatment for Urinary Tract Infections

    PubMed Central

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M.

    2016-01-01

    Background: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. Objective: To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Material and methods: Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. Results: The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Conclusions: Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials. PMID:27148173

  14. Direct Detection of Unnatural DNA Nucleotides dNaM and d5SICS using the MspA Nanopore.

    PubMed

    Craig, Jonathan M; Laszlo, Andrew H; Derrington, Ian M; Ross, Brian C; Brinkerhoff, Henry; Nova, Ian C; Doering, Kenji; Tickman, Benjamin I; Svet, Mark T; Gundlach, Jens H

    2015-01-01

    Malyshev et al. showed that the four-letter genetic code within a living organism could be expanded to include the unnatural DNA bases dNaM and d5SICS. However, verification and detection of these unnatural bases in DNA requires new sequencing techniques. Here we provide proof of concept detection of dNaM and d5SICS in DNA oligomers via nanopore sequencing using the nanopore MspA. We find that both phi29 DNA polymerase and Hel308 helicase are capable of controlling the motion of DNA containing dNaM and d5SICS through the pore and that single reads are sufficient to detect the presence and location of dNaM and d5SICS within single molecules. PMID:26588074

  15. Direct Detection of Unnatural DNA Nucleotides dNaM and d5SICS using the MspA Nanopore

    PubMed Central

    Craig, Jonathan M.; Laszlo, Andrew H.; Derrington, Ian M.; Ross, Brian C.; Brinkerhoff, Henry; Nova, Ian C.; Doering, Kenji; Tickman, Benjamin I.; Svet, Mark T.; Gundlach, Jens H.

    2015-01-01

    Malyshev et al. showed that the four-letter genetic code within a living organism could be expanded to include the unnatural DNA bases dNaM and d5SICS. However, verification and detection of these unnatural bases in DNA requires new sequencing techniques. Here we provide proof of concept detection of dNaM and d5SICS in DNA oligomers via nanopore sequencing using the nanopore MspA. We find that both phi29 DNA polymerase and Hel308 helicase are capable of controlling the motion of DNA containing dNaM and d5SICS through the pore and that single reads are sufficient to detect the presence and location of dNaM and d5SICS within single molecules. PMID:26588074

  16. Bacteriophage protein-protein interactions.

    PubMed

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian; Uetz, Peter

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage-host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  17. Bacteriophage Protein–Protein Interactions

    PubMed Central

    Häuser, Roman; Blasche, Sonja; Dokland, Terje; Haggård-Ljungquist, Elisabeth; von Brunn, Albrecht; Salas, Margarita; Casjens, Sherwood; Molineux, Ian

    2012-01-01

    Bacteriophages T7, λ, P22, and P2/P4 (from Escherichia coli), as well as ϕ29 (from Bacillus subtilis), are among the best-studied bacterial viruses. This chapter summarizes published protein interaction data of intraviral protein interactions, as well as known phage–host protein interactions of these phages retrieved from the literature. We also review the published results of comprehensive protein interaction analyses of Pneumococcus phages Dp-1 and Cp-1, as well as coliphages λ and T7. For example, the ≈55 proteins encoded by the T7 genome are connected by ≈43 interactions with another ≈15 between the phage and its host. The chapter compiles published interactions for the well-studied phages λ (33 intra-phage/22 phage-host), P22 (38/9), P2/P4 (14/3), and ϕ29 (20/2). We discuss whether different interaction patterns reflect different phage lifestyles or whether they may be artifacts of sampling. Phages that infect the same host can interact with different host target proteins, as exemplified by E. coli phage λ and T7. Despite decades of intensive investigation, only a fraction of these phage interactomes are known. Technical limitations and a lack of depth in many studies explain the gaps in our knowledge. Strategies to complete current interactome maps are described. Although limited space precludes detailed overviews of phage molecular biology, this compilation will allow future studies to put interaction data into the context of phage biology. PMID:22748812

  18. The Tape Measure Protein of the Staphylococcus aureus Bacteriophage vB_SauS-phiIPLA35 Has an Active Muramidase Domain

    PubMed Central

    Rodríguez-Rubio, Lorena; Gutiérrez, Dolores; Martínez, Beatriz; Rodríguez, Ana; Götz, Friedrich

    2012-01-01

    Tailed double-stranded DNA (dsDNA) bacteriophages frequently harbor structural proteins displaying peptidoglycan hydrolytic activities. The tape measure protein from Staphylococcus aureus bacteriophage vB_SauS-phiIPLA35 has a lysozyme-like and a peptidase_M23 domain. This report shows that the lysozyme-like domain (TG1) has muramidase activity and exhibits in vitro lytic activity against live S. aureus cells, an activity that could eventually find use in the treatment of infections. PMID:22729533

  19. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    EPA Science Inventory

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  20. Molecular Biology and Biotechnology of Bacteriophage

    NASA Astrophysics Data System (ADS)

    Onodera, Kazukiyo

    The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.

  1. Bacteriophage ecology in commercial sauerkraut fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ecology of bacteriophages infecting lactic acid bacteria (LAB) in commercial sauerkraut fermentations was investigated. Brine samples were taken from four commercial sauerkraut fermentation tanks over a 60- or 100-day period in 2000 and 2001. A total of 171 independent phage isolates, including ...

  2. Comparative genomics of Shiga toxin encoding bacteriophages

    PubMed Central

    2012-01-01

    Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx) across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC), however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential. PMID:22799768

  3. An Undergraduate Laboratory Activity Demonstrating Bacteriophage Specificity†

    PubMed Central

    Allen, Mary E.; Gyure, Ruth A.

    2013-01-01

    Bacteriophage are among the most diverse and numerous microbes inhabiting our planet. Yet many laboratory activities fail to engage students in meaningful exploration of their diversity, unique characteristics, and abundance. In this curriculum activity students use a standard plaque assay to enumerate bacteriophage particles from a natural sample and use the scientific method to address questions about host specificity and diversity. A raw primary sewage sample is enriched for bacteriophage using hosts in the family Enterobacteriaceae. Students hypothesize about host specificity and use quantitative data (serial dilution and plaque assay) to test their hypotheses. Combined class data also help them answer questions about phage diversity. The exercise was field tested with a class of 47 students using pre- and posttests. For all learning outcomes posttest scores were higher than pretest scores at or below p = 0.01. Average individualized learning gain (G) was also calculated for each learning outcome. Students’ use of scientific language in reference to bacteriophage and host interaction significantly improved (p = 0.002; G = 0.50). Improved means of expression helped students construct better hypotheses on phage host specificity (G = 0.31, p = 0.01) and to explain the plaque assay method (G = 0.33, p = 0.002). At the end of the exercise students also demonstrated improved knowledge and understanding of phage specificity as related to phage therapy in humans (p < 0.001; G = 51). PMID:23858357

  4. Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase.

    PubMed

    Parks, Adam R; Court, Carolyn; Lubkowska, Lucyna; Jin, Ding J; Kashlev, Mikhail; Court, Donald L

    2014-05-01

    Transcriptional slippage is a class of error in which ribonucleic acid (RNA) polymerase incorporates nucleotides out of register, with respect to the deoxyribonucleic acid (DNA) template. This phenomenon is involved in gene regulation mechanisms and in the development of diverse diseases. The bacteriophage λ N protein reduces transcriptional slippage within actively growing cells and in vitro. N appears to stabilize the RNA/DNA hybrid, particularly at the 5' end, preventing loss of register between transcript and template. This report provides the first evidence of a protein that directly influences transcriptional slippage, and provides a clue about the molecular mechanism of transcription termination and N-mediated antitermination. PMID:24711367

  5. Bacteriophage λ N protein inhibits transcription slippage by Escherichia coli RNA polymerase

    PubMed Central

    Parks, Adam R.; Court, Carolyn; Lubkowska, Lucyna; Jin, Ding J.; Kashlev, Mikhail; Court, Donald L.

    2014-01-01

    Transcriptional slippage is a class of error in which ribonucleic acid (RNA) polymerase incorporates nucleotides out of register, with respect to the deoxyribonucleic acid (DNA) template. This phenomenon is involved in gene regulation mechanisms and in the development of diverse diseases. The bacteriophage λ N protein reduces transcriptional slippage within actively growing cells and in vitro. N appears to stabilize the RNA/DNA hybrid, particularly at the 5′ end, preventing loss of register between transcript and template. This report provides the first evidence of a protein that directly influences transcriptional slippage, and provides a clue about the molecular mechanism of transcription termination and N-mediated antitermination. PMID:24711367

  6. Use of wide-host-range bacteriophages to reduce Salmonella on poultry products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages used to treat infections are typically amplified in a pathogenic host. However, this practice introduces the risk of administering any remaining bacteriophage-resistant pathogen during bacteriophage application if separate techniques are less than perfect. In this study, bacteriopha...

  7. Crystallization and preliminary crystallographic characterization of the origin-binding domain of the bacteriophage λ O replication initiator

    SciTech Connect

    Struble, E. B.; Bianchet, M. A.; McMacken, R.

    2007-06-01

    Crystallization and preliminary diffraction data of the N-terminal 19–139 fragment of the origin-binding domain of bacteriophage λ O replication initiator are reported. The bacteriophage λ O protein binds to the λ replication origin (oriλ) and serves as the primary replication initiator for the viral genome. The binding energy derived from the binding of O to oriλ is thought to help drive DNA opening to facilitate initiation of DNA replication. Detailed understanding of this process is severely limited by the lack of high-resolution structures of O protein or of any lambdoid phage-encoded paralogs either with or without DNA. The production of crystals of the origin-binding domain of λ O that diffract to 2.5 Å is reported. Anomalous dispersion methods will be used to solve this structure.

  8. Molecular architecture of tailed double-stranded DNA phages

    PubMed Central

    Fokine, Andrei; Rossmann, Michael G

    2014-01-01

    The tailed double-stranded DNA bacteriophages, or Caudovirales, constitute ~96% of all the known phages. Although these phages come in a great variety of sizes and morphology, their virions are mainly constructed of similar molecular building blocks via similar assembly pathways. Here we review the structure of tailed double-stranded DNA bacteriophages at a molecular level, emphasizing the structural similarity and common evolutionary origin of proteins that constitute these virions. PMID:24616838

  9. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  10. Continuous in vitro evolution of bacteriophage RNA polymerase promoters

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Banerji, A.; Joyce, G. F.

    1994-01-01

    Rapid in vitro evolution of bacteriophage T7, T3, and SP6 RNA polymerase promoters was achieved by a method that allows continuous enrichment of DNAs that contain functional promoter elements. This method exploits the ability of a special class of nucleic acid molecules to replicate continuously in the presence of both a reverse transcriptase and a DNA-dependent RNA polymerase. Replication involves the synthesis of both RNA and cDNA intermediates. The cDNA strand contains an embedded promoter sequence, which becomes converted to a functional double-stranded promoter element, leading to the production of RNA transcripts. Synthetic cDNAs, including those that contain randomized promoter sequences, can be used to initiate the amplification cycle. However, only those cDNAs that contain functional promoter sequences are able to produce RNA transcripts. Furthermore, each RNA transcript encodes the RNA polymerase promoter sequence that was responsible for initiation of its own transcription. Thus, the population of amplifying molecules quickly becomes enriched for those templates that encode functional promoters. Optimal promoter sequences for phage T7, T3, and SP6 RNA polymerase were identified after a 2-h amplification reaction, initiated in each case with a pool of synthetic cDNAs encoding greater than 10(10) promoter sequence variants.

  11. Vibrio vulnificus Bacteriophage SSP002 as a Possible Biocontrol Agent

    PubMed Central

    Lee, Hyun Sung; Choi, Slae; Shin, Hakdong

    2014-01-01

    A novel Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to the Siphoviridae family, was isolated from the coastal area of the Yellow Sea of South Korea. Host range analysis revealed that the growth inhibition of phage SSP002 is relatively specific to V. vulnificus strains from both clinical and environmental samples. In addition, a one-step growth curve analysis and a bacteriophage stability test revealed a latent period of 65 min, a burst size of 23 ± 2 PFU, as well as broad temperature (20°C to 60°C) and pH stability (pH 3 to 12) ranges. A Tn5 random transposon mutation of V. vulnificus and partial DNA sequencing of the inserted Tn5 regions revealed that the flhA, flhB, fliF, and fleQ mutants are resistant to SSP002 phage infection, suggesting that the flagellum may be the host receptor for infection. The subsequent construction of specific gene-inactivated mutants (flhA, flhB, fliF, and fleQ) and complementation experiments substantiated this. Previously, the genome of phage SSP002 was completely sequenced and analyzed. Comparative genomic analysis of phage SSP002 and Vibrio parahaemolyticus phage vB_VpaS_MAR10 showed differences among their tail-related genes, supporting different host ranges at the species level, even though their genome sequences are highly similar. An additional mouse survival test showed that the administration of phage SSP002 at a multiplicity of infection of 1,000 significantly protects mice from infection by V. vulnificus for up to 2 months, suggesting that this phage may be a good candidate for the development of biocontrol agents against V. vulnificus infection. PMID:24212569

  12. Functional relationship between bacteriophages G4 and phi X174.

    PubMed Central

    Borrias, W E; Hagenaar, M; Van Den Brekel, R; Kühlemeijer, C; Weisbeek, P J

    1979-01-01

    Mutants of bacteriophage G4 were isolated and characterized, and their mutations were mapped. They constitute six different genes, namely, A, B, E, F, G, and H. The functional relationship with bacteriophage phi X174 was determined by complementation experiments using amber mutants of phi X and amber mutants of G4. Bacteriophage phi X was able to use the products of G4 genes E, F, G, and H. In bacteriophage G4, however, only the phi X gene H product was functional. Images PMID:480475

  13. Modeling tailed bacteriophage adsorption: Insight into mechanisms.

    PubMed

    Storms, Zachary J; Sauvageau, Dominic

    2015-11-01

    The process of a bacteriophage attaching to its host cell is a combination of physical diffusion, biochemical surface interactions, and reaction-induced conformational changes in receptor proteins. Local variations in the physico-chemical properties of the medium, the phage׳s mode of action, and the physiology of the host cell also all influence adsorption kinetics. These characteristics can affect a specific phage׳s binding capabilities and the susceptibility of the host cell to phage attack. Despite the complexity of this process, describing adsorption kinetics of a population of bacteriophages binding to a culture of cells has been accomplished with relatively simple equations governed by the laws of mass-action. Many permutations and modifications to the basic set of reactions have been suggested through the years. While no single solution emerges as a universal answer, this review provides the fundamentals of current phage adsorption modeling and will guide researchers in the selection of valid, appropriate models. PMID:26331682

  14. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display

    PubMed Central

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-01-01

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840

  15. Biophysics and bioinformatics of transcription regulation in bacteria and bacteriophages

    NASA Astrophysics Data System (ADS)

    Djordjevic, Marko

    2005-11-01

    Due to rapid accumulation of biological data, bioinformatics has become a very important branch of biological research. In this thesis, we develop novel bioinformatic approaches and aid design of biological experiments by using ideas and methods from statistical physics. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of the regulatory circuits that control expression of genes. We propose a novel, biophysics based algorithm, for the supervised detection of transcription factor (TF) binding sites. The method classifies potential binding sites by explicitly estimating the sequence-specific binding energy and the chemical potential of a given TF. In contrast with the widely used information theory based weight matrix method, our approach correctly incorporates saturation in the transcription factor/DNA binding probability. This results in a significant reduction in the number of expected false positives, and in the explicit appearance---and determination---of a binding threshold. The new method was used to identify likely genomic binding sites for the Escherichia coli TFs, and to examine the relationship between TF binding specificity and degree of pleiotropy (number of regulatory targets). We next address how parameters of protein-DNA interactions can be obtained from data on protein binding to random oligos under controlled conditions (SELEX experiment data). We show that 'robust' generation of an appropriate data set is achieved by a suitable modification of the standard SELEX procedure, and propose a novel bioinformatic algorithm for analysis of such data. Finally, we use quantitative data analysis, bioinformatic methods and kinetic modeling to analyze gene expression strategies of bacterial viruses. We study bacteriophage Xp10 that infects rice pathogen Xanthomonas oryzae. Xp10 is an unusual bacteriophage, which has morphology and genome organization that most closely

  16. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    PubMed

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. PMID:26109320

  17. Biochemical Changes in Lysogenic Bacillus stearothermophilus After Bacteriophage Induction1

    PubMed Central

    Welker, N. E.; Campbell, L. Leon

    1965-01-01

    Welker, N. E. (University of Illinois, Urbana), and L. Leon Campbell. Biochemical changes in lysogenic Bacillus stearothermophilus after bacteriophage induction. J. Bacteriol. 90:1129–1137. 1965.—Cultures of Bacillus stearothermophilus 1503-4R (TP-1) continued to grow at an unaltered rate after induction with mitomycin C (MC). MC-induced cultures exhibited a 2.5-fold increase in cell number before lysis occurred. Prior to lysis, cells were observed to elongate and to contain areas of lesser density. Protein synthesis was slightly inhibited in MC- or ultraviolet light (UV)-induced cultures for a period of 5 to 10 min, and then proceeded at a rate identical to that in the noninduced culture. Ribonucleic acid (RNA) synthesis was not affected by MC induction. UV induction caused RNA synthesis to occur in two stages: in the first stage, the rate of RNA synthesis was one-third that observed in the noninduced culture and lasted for a period of 15 min; the second stage of RNA synthesis then proceeded at a rate identical to that in the noninduced culture. The synthesis of deoxyribonucleic acid (DNA) in an MC- or UV-induced culture occurred in two stages. In the first stage, DNA synthesis in induced cultures occurred at a rate of one-half (MC) and one-third (UV) of that observed in the noninduced culture. The first stage of DNA synthesis in MC- or UV-induced cultures lasted for 25 to 30 min and 15 to 20 min, respectively. In the second stage, the rate of DNA synthesis in MC- or UV-induced cultures occurred at a rate three times that of the noninduced culture. UV induction appeared to have a greater inhibitory effect than MC induction on protein, RNA, and DNA synthesis as well as phage yield. The differential rate (K) of inducible and constitutive α-amylase synthesis was inhibited by 75 and 100%, respectively, for a period of 20 min after MC induction. After 20 min, the K values for α-amylase synthesis were identical to those obtained in the absence of MC induction. The

  18. Genetically modified bacteriophages in applied microbiology.

    PubMed

    Bárdy, P; Pantůček, R; Benešík, M; Doškař, J

    2016-09-01

    Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents. PMID:27321680

  19. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809.

    PubMed

    Lagonenko, Alexander L; Sadovskaya, Olga; Valentovich, Leonid N; Evtushenkov, Anatoly N

    2015-04-01

    Erwinia amylovora is a Gram-negative plant pathogenic bacteria causing fire blight disease in many Rosaceae species. A novel E. amylovora bacteriophage, phiEa2809, was isolated from symptomless apple leaf sample collected in Belarus. This phage was also able to infect Pantoea agglomerans strains. The genome of phiEa2809 is a double-stranded linear DNA 162,160 bp in length, including 145 ORFs and one tRNA gene. The phiEa2809 genomic sequence is similar to the genomes of the Serratia plymutica phage MAM1, Shigella phage AG-3, Dickeya phage vB DsoM LIMEstone1 and Salmonella phage ViI and lacks similarity to described E. amylovora phage genomes. Based on virion morphology (an icosahedral head, long contractile tail) and genome structure, phiEa2809 was classified as a member of Myoviridae, ViI-like bacteriophages group. PhiEa2809 is the firstly characterized ViI-like bacteriophage able to lyse E. amylovora. PMID:25714551

  20. Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages

    PubMed Central

    Chapot-Chartier, Marie-Pierre

    2014-01-01

    Lactic acid bacteria (LAB) are Gram positive bacteria widely used in the production of fermented food in particular cheese and yoghurts. Bacteriophage infections during fermentation processes have been for many years a major industrial concern and have stimulated numerous research efforts. Better understanding of the molecular mechanisms of bacteriophage interactions with their host bacteria is required for the development of efficient strategies to fight against infections. The bacterial cell wall plays key roles in these interactions. First, bacteriophages must adsorb at the bacterial surface through specific interactions with receptors that are cell wall components. At next step, phages must overcome the barrier constituted by cell wall peptidoglycan (PG) to inject DNA inside bacterial cell. Also at the end of the infection cycle, phages synthesize endolysins able to hydrolyze PG and lyse bacterial cells to release phage progeny. In the last decade, concomitant development of genomics and structural analysis of cell wall components allowed considerable advances in the knowledge of their structure and function in several model LAB. Here, we describe the present knowledge on the structure of the cell wall glycopolymers of the best characterized LAB emphasizing their structural variations and we present the available data regarding their role in bacteria-phage specific interactions at the different steps of the infection cycle. PMID:24904550

  1. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus.

    PubMed

    Varga, Marian; Pantůček, Roman; Růžičková, Vladislava; Doškař, Jirˇí

    2016-01-01

    In Staphylococcus aureus, generalized transduction mediated by temperate bacteriophages represents a highly efficient way of transferring antibiotic resistance genes between strains. In the present study, we identified and characterized in detail a new efficiently transducing bacteriophage of the family Siphoviridae, designated ϕJB, which resides as a prophage in the meticillin-resistant S. aureus (MRSA) strain Jevons B. Whole-genome sequencing followed by detailed in silico analysis uncovered a linear dsDNA genome consisting of 43 ,12 bp and comprising 70 ORFs, of which ∼40 encoded proteins with unknown function. A global genome alignment of ϕJB and other efficiently transducing phages ϕ11, ϕ53, ϕ80, ϕ80α and ϕNM4 showed a high degree of homology with ϕNM4 and substantial differences with regard to other phages. Using a model transduction system with a well-defined donor and recipient, ϕJB transferred the tetracycline resistance plasmid pT181 and a penicillinase plasmid with outstanding frequencies, beating most of the above-mentioned phages by an order of magnitude. Moreover, ϕJB demonstrated high frequencies of transferring antibiotic resistance plasmids even upon induction from a lysogenic donor strain. Considering such transducing potential, ϕJB and related bacteriophages may serve as a suitable tool for elucidating the nature of transduction and its contribution to the spread of antibiotic resistance genes in naturally occurring MRSA populations. PMID:26537974

  2. Small regulatory RNAs in lambdoid bacteriophages and phage-derived plasmids: Not only antisense.

    PubMed

    Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Licznerska, Katarzyna; Felczykowska, Agnieszka; Dydecka, Aleksandra; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2015-03-01

    Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were known. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs. PMID:25111672

  3. Induction and characterization of a lysogenic bacteriophage of Lactococcus garvieae isolated from marine fish species.

    PubMed

    Hoai, T D; Yoshida, T

    2016-07-01

    This study investigated the presence of prophages in Lactococcus garvieae isolated from several marine fish species in Japan. Representative strains of 16 bacterial genotypes (S1-S16) selected from more than 400 L. garvieae isolates were used to induce lysogenic bacteriophages. These strains were treated with 500 ng mL(-1) freshly prepared mitomycin C. A cross-spotting assay was performed to validate the lysogenic and indicator strains. The lysogenic strains were selected for isolation and concentration of the phages. Phage DNA was digested with EcoRI for biased sinusoidal field gel electrophoresis analysis. Polymerase chain reaction (PCR) was used to detect integrated prophage DNA. Of the 16 representative bacterial genotypes, 12 strains integrated prophages as indicated by the PCR assay, and 10 phages were detected and isolated using two indicator bacterial strains. Analysis of genomic DNA showed that these phages were homologous and named as PLgT-1. Transmission electron microscopy revealed that the morphology of PLgT-1 was consistent with the virus family Siphoviridae. PCR analysis of the prophage DNA revealed that all of the S1 genotype strains were lysogenic (30/30), but none of the S16 genotype strains were lysogenic (0/30). This is the first study to investigate lysogenic bacteriophages from L. garvieae. PMID:26471724

  4. Template-free generation of RNA species that replicate with bacteriophage T7 RNA polymerase.

    PubMed Central

    Biebricher, C K; Luce, R

    1996-01-01

    A large variety of different RNA species that are replicated by DNA-dependent RNA polymerase from bacteriophage T7 have been generated by incubating high concentrations of this enzyme with substrate for extended time periods. The products differed from sample to sample in molecular weight and sequence, their chain lengths ranging from 60 to 120. The mechanism of autocatalytic amplification of RNA by T7 RNA polymerase proved to be analogous to that observed with viral RNA-dependent RNA polymerases (replicases): only single-stranded templates are accepted and complementary replica strands are synthesized. With enzyme in excess, exponential growth was observed; linear growth resulted when the enzyme was saturated by RNA template. The plus strands, present at 90% of the replicating RNA species, were found to have GG residues at both termini. Consensus sequences were not found among the sequences of the replicating RNA species. The secondary structures of all species sequenced turned out to be hairpins. The RNA species were specifically replicated by T7 RNA polymerase; they were not accepted as templates by the RNA polymerases from Escherichia coli or bacteriophage SP6 or by Qbeta replicase; T3 RNA polymerase was partially active. Template-free production of RNA was completely suppressed by addition of DNA to the incubation mixture. When both DNA and RNA templates were present, transcription and replication competed, but T7 RNA polymerase preferred DNA as a template. No replicating RNA species were detected in vivo in cells expressing T7 RNA polymerase. Images PMID:8670848

  5. Call for a dedicated European legal framework for bacteriophage therapy.

    PubMed

    Verbeken, Gilbert; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Huys, Isabelle

    2014-04-01

    The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy. PMID:24500660

  6. Engineering filamentous bacteriophages for enhanced gold binding and metallization properties.

    PubMed

    Korkmaz Zirpel, Nuriye; Arslan, Taner; Lee, Hyeji

    2015-09-15

    Filamentous bacteriophages are nanowire-like virion molecules consisting of a single stranded DNA (ssDNA) as the genomic material packed in a protein cage. In this study, Tyr containing 5-mer peptides were displayed on phage filaments for enhanced Au binding and reduction properties. Wild type fd (AEGDD) and engineered YYYYY, AYSSG and AYGDD phages were investigated by Quartz crystal microbalance (QCM), Atomic force microscopy (AFM), Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDX) analyses. Presence of only one Tyr unit on five aa flexible region of p8 coat proteins increased Au binding affinities of engineered phages. YYYYY phages were shown to have the strongest Au surface and AuNP binding affinities. Recombinant phages were shown to be coated with Au clusters after one-step metallization reaction. With further genetic modifications, phages can be programmed to function as site specific self-assembling biotemplates for bottom-up manufacturing in nanoelectronics and biosensor application studies. PMID:26004572

  7. [Bacteriophage λ: electrostatic properties of the genome and its elements].

    PubMed

    Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A

    2015-01-01

    Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome. PMID:26107891

  8. Temperate bacteriophage {phi}O18P from an Aeromonas media isolate: Characterization and complete genome sequence

    SciTech Connect

    Beilstein, Frauke

    2008-03-30

    A group of 74 Aeromonas isolates from surface water of three ponds in Bielefeld, Germany was screened for prophage induction after UV irradiation. The phage {phi}O18P was induced from the Aeromonas media isolate O18. {phi}O18P belongs to the Myoviridae phage family. The complete nucleotide sequence of the double stranded DNA genome of bacteriophage {phi}O18P consists of 33,985 bp. The genome has 5' protruding cohesive ends of 16 bases. On the {phi}O18P genome 46 open reading frames (orfs) were identified which are organized in the modules integration and regulation, replication, head, packaging, tail and lysis. Additionally the phage DNA includes a methylase gene. Comparison of the genome architecture with those of other bacteriophages revealed significant similarities to the P2 phage family and especially to the prophages of Aeromonas salmonicida and the Vibrio cholerae phage K139.

  9. The life cycles of the temperate lactococcal bacteriophage phiLC3 monitored by a quantitative PCR method.

    PubMed

    Lunde, M; Blatny, J M; Kaper, F; Nes, I F; Lillehaug, D

    2000-11-01

    We present here a new and general approach for monitoring the life cycles of temperate bacteriophages which establish lysogeny by inserting their genomes site-specifically into the bacterial host chromosome. The method is based on quantitative amplification of specific DNA sites involved in various cut-and-join events during the life cycles of the phages (i.e. the cos, attP, attB, attL and attR sites) with the use of sequence-specific primers. By comparing the amounts of these specific DNA sites at different intervals, we were able to follow the development of the lytic and lysogenic life cycles of the temperate lactococcal bacteriophage phiLC3 after infection of its bacterial host Lactococcus lactis ssp. cremoris IMN-C18. PMID:11040439

  10. Genetic requirements for sensitivity of bacteriophage t7 to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Tabor, Stanley; Richardson, Charles C

    2014-08-01

    We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373-9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity. PMID:24858186

  11. Genetic Requirements for Sensitivity of Bacteriophage T7 to Dideoxythymidine

    PubMed Central

    Tran, Ngoc Q.; Tabor, Stanley

    2014-01-01

    We previously reported that the presence of dideoxythymidine (ddT) in the growth medium selectively inhibits the ability of bacteriophage T7 to infect Escherichia coli by inhibiting phage DNA synthese (N. Q. Tran, L. F. Rezende, U. Qimron, C. C. Richardson, and S. Tabor, Proc. Natl. Acad. Sci. U. S. A. 105:9373–9378, 2008, doi:10.1073/pnas.0804164105). In the presence of T7 gene 1.7 protein, ddT is taken up into the E. coli cell and converted to ddTTP. ddTTP is incorporated into DNA as ddTMP by the T7 DNA polymerase, resulting in chain termination. We have identified the pathway by which exogenous ddT is converted to ddTTP. The pathway consists of ddT transport by host nucleoside permeases and phosphorylation to ddTMP by the host thymidine kinase. T7 gene 1.7 protein phosphorylates ddTMP and ddTDP, resulting in ddTTP. A 74-residue peptide of the gene 1.7 protein confers ddT sensitivity to the same extent as the 196-residue wild-type gene 1.7 protein. We also show that cleavage of thymidine to thymine and deoxyribose-1-phosphate by the host thymidine phosphorylase greatly increases the sensitivity of phage T7 to ddT. Finally, a mutation in T7 DNA polymerase that leads to discrimination against the incorporation of ddTMP eliminates ddT sensitivity. PMID:24858186

  12. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  13. Effects of bacteriophage T4-induced modification of Escherichia coli RNA polymerase on gene expression in vitro.

    PubMed Central

    Mailhammer, R; Yang, H L; Reiness, G; Zubay, G

    1975-01-01

    After T4 bacteriophage infection of E. coli a complex series of events take place in the bacterium, including gross inhibition of host transcription and discrete changes in the classes of the genes of T4 that are transcribed. Accompanying these changes in the pattern of transcription one finds T4-induced changes in the RNA polymerase (EC 2.7.7.6; nucleosidetriphosphate:RNA nucleotidyltransferase). The effects of modified polymerase on transcription can be advantageously analyzed in a DNA-directed cell-free system for protein synthesis. In this system gene activity is measured indirectly by the amounts and types of proteins sythesized. In the DNA-directed cell-free system this modified polymerase, like normal polymerase, transcribes T4 DNA with a high efficiency but transcribes bacteriophage lambda and host DNA very poorly. Polymerase reconstruction experiments show that modification of the alpha subunit of the RNA polymerase is sufficient for inhibition of host transcription. Host transcription is also inhibited in vitro by T4 DNA. This latter type of inhibition is presumed to involve competition between host DNA and T4 DNA for some factor essential for transcription. The T4-modified polymerase transcribes from T4 DNA many of the same genes as normal unmodified polymerase; it also shows a capability for transcribing certain "non-early" T4 genes which is enhanced in the presence of protein-containing extracts from T4-infected cells. PMID:1108008

  14. Potential of Bacteriophage to Prevent and Treat Poultry Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage are viruses plentiful in nature that kill bacteria, and represent a safe alternative to antibiotics. Bacteriophage lytic to Escherichia coli were isolated from municipal waste water treatment and poultry processing plants. This E. coli isolate is pathogenic to poultry, causing a sev...

  15. Complete Genome Sequences of Five Paenibacillus larvae Bacteriophages.

    PubMed

    Sheflo, Michael A; Gardner, Adam V; Merrill, Bryan D; Fisher, Joshua N B; Lunt, Bryce L; Breakwell, Donald P; Grose, Julianne H; Burnett, Sandra H

    2013-01-01

    Paenibacillus larvae is a pathogen of honeybees that causes American foulbrood (AFB). We isolated bacteriophages from soil containing bee debris collected near beehives in Utah. We announce five high-quality complete genome sequences, which represent the first completed genome sequences submitted to GenBank for any P. larvae bacteriophage. PMID:24233582

  16. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  17. Immune Interference of Bacteriophage Efficacy When Treating Colibacillosis In Poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine if prior exposure of broiler chickens with bacteriophage would limit the ability of the same bacteriophage to treat colibacillosis. There were 5 treatments with 3 replicate pens of 20 birds per pen. The treatments consisted of 1) control; 2) birds treated with ba...

  18. [A STUDY OF THE ISOLATED BACTERIOPHAGE ΦAB-SP7 ADSORPTION ON THE CELL SURFACE OF THE AZOSPIRILLUM BRASILENSE SP7].

    PubMed

    Guliy, O I; Karavaeva, O A; Velikov, V A; Sokolov, O I; Pavily, S A; Larionova, O S; Burov, A M; Ignatov, O V

    2016-01-01

    The bacteriophage ΦAb-Sp7 was isolated from the cells of the Azospirillum brasilense Sp7. The morphology, size of the gram-negative colonies, and range of lytic activity against other strains and species of the genus Azospirillum was tested. The isolated phage DNA was examined using electrophoretic and restriction analysis, and the size of the genome were established. The electron microscopy. resuIts show that the phage (capsid) has a strand-like form. The electron microscopy study of the bacteriophage ΦAb-Sp7 adsorption on the A. brasilense Sp7 bacterial surface was performed. PMID:27145602

  19. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.

    PubMed

    Zhang, Likui; Huang, Yanchao; Xu, Dandan; Yang, Lixiang; Qian, Kaicheng; Chang, Guozhu; Gong, Yong; Zhou, Xiaojian; Ma, Kesen

    2016-09-01

    His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology. PMID:27131500

  20. Complete Bacteriophage Transfer in a Bacterial Endosymbiont (Wolbachia) Determined by Targeted Genome Capture

    PubMed Central

    Kent, Bethany N.; Salichos, Leonidas; Gibbons, John G.; Rokas, Antonis; Newton, Irene L. G.; Clark, Michael E.; Bordenstein, Seth R.

    2011-01-01

    Bacteriophage flux can cause the majority of genetic diversity in free-living bacteria. This tenet of bacterial genome evolution generally does not extend to obligate intracellular bacteria owing to their reduced contact with other microbes and a predominance of gene deletion over gene transfer. However, recent studies suggest intracellular coinfections in the same host can facilitate exchange of mobile elements between obligate intracellular bacteria—a means by which these bacteria can partially mitigate the reductive forces of the intracellular lifestyle. To test whether bacteriophages transfer as single genes or larger regions between coinfections, we sequenced the genome of the obligate intracellular Wolbachia strain wVitB from the parasitic wasp Nasonia vitripennis and compared it against the prophage sequences of the divergent wVitA coinfection. We applied, for the first time, a targeted sequence capture array to specifically trap the symbiont's DNA from a heterogeneous mixture of eukaryotic, bacterial, and viral DNA. The tiled array successfully captured the genome with 98.3% efficiency. Examination of the genome sequence revealed the largest transfer of bacteriophage and flanking genes (52.2 kb) to date between two obligate intracellular coinfections. The mobile element transfer occurred in the recent evolutionary past based on the 99.9% average nucleotide identity of the phage sequences between the two strains. In addition to discovering an evolutionary recent and large-scale horizontal phage transfer between coinfecting obligate intracellular bacteria, we demonstrate that “targeted genome capture” can enrich target DNA to alleviate the problem of isolating symbiotic microbes that are difficult to culture or purify from the conglomerate of organisms inside eukaryotes. PMID:21292630

  1. The effects of bacteriophage and nanoparticles on microbial processes

    NASA Astrophysics Data System (ADS)

    Moody, Austin L.

    There are approximately 1031 tailed phages in the biosphere, making them the most abundant organism. Bacteriophages are viruses that infect bacteria. Due to the large diversity and abundance, no two bacteriophages that have been isolated are genetically the same. Phage products have potential in disease therapy to solve bacteria-related problems, such as infections resulting from resistant strains of Staphylococcus aureus. A bacteriophage capable of infecting methicillin-resistant S. aureus (MRSA) was isolated from bovine hair. The bacteriophage, named JB phage, was characterized using purification, amplification, cesium chloride banding, scanning electron microscopy, and transmission electron microscopy. JB phage and nanoparticles were used in various in vitro and in vivo models to test their effects on microbial processes. Scanning and transmission electron microscopy studies revealed strong interactions between JB phage and nanoparticles, which resulted in increased bacteriophage infectivity. JB phage and nanoparticle cocktails were used as a therapeutic to treat skin and systemic infections in mice caused by MRSA.

  2. Molecular basis of RNA polymerase promoter specificity switch revealed through studies of Thermus bacteriophage transcription regulator

    PubMed Central

    Severinov, Konstantin; Minakhin, Leonid; Sekine, Shun-ichi; Lopatina, Anna; Yokoyama, Shigeyuki

    2014-01-01

    Transcription initiation is the central point of gene expression regulation. Understanding of molecular mechanism of transcription regulation requires, ultimately, the structural understanding of consequences of transcription factors binding to DNA-dependent RNA polymerase (RNAP), the enzyme of transcription. We recently determined a structure of a complex between transcription factor gp39 encoded by a Thermus bacteriophage and Thermus RNAP holoenzyme. In this addendum to the original publication, we highlight structural insights that explain the ability of gp39 to act as an RNAP specificity switch which inhibits transcription initiation from a major class of bacterial promoters, while allowing transcription from a minor promoter class to continue. PMID:25105059

  3. Cooperativity leads to temporally-correlated fluctuations in the bacteriophage lambda genetic switch

    PubMed Central

    Shenker, Jacob Q.; Lin, Milo M.

    2015-01-01

    Cooperative interactions are widespread in biochemical networks, providing the nonlinear response that underlies behavior such as ultrasensitivity and robust switching. We introduce a temporal correlation function—the conditional activity—to study the behavior of these phenomena. Applying it to the bistable genetic switch in bacteriophage lambda, we find that cooperative binding between binding sites on the prophage DNA lead to non-Markovian behavior, as quantified by the conditional activity. Previously, the conditional activity has been used to predict allosteric pathways in proteins; here, we show that it identifies the rare unbinding events which underlie induction from lysogeny to lysis. PMID:25904924

  4. Isolation, characterization, and complete genome analysis of P1312, a thermostable bacteriophage that infects Thermobifida fusca

    PubMed Central

    Cheepudom, Jatuporn; Lee, Cheng-Cheng; Cai, Bingfu; Meng, Menghsiao

    2015-01-01

    Thermobifida fusca is a moderately thermophilic and cellulolytic actinobacterium. It is of particular interest due to its ability to not only produce a variety of biotechnologically relevant enzymes but also serve as an alternative host for metabolic engineering for the production of valuable chemicals from lignocellulosic agricultural wastes. No bacteriophage that infects T. fusca has been reported, despite its potential impacts on the utilization of T. fusca. In this study, an extremely thermostable bacteriophage P1312 that infects T. fusca was isolated from manure compost. Electron microscopy showed that P1312 has an icosahedral head and a long flexible non-contractile tail, a characteristic of the family Siphoviridae. P1312 has a double-stranded DNA genome of 60,284 bp with 93 potential ORFs. Thirty-one ORFs encode proteins having putative biological functions. The genes involved in phage particle formation cluster together in a region of approximately 16 kb, followed by a segment containing genes presumably for DNA degradation/modification and cell wall disruption. The genes required for DNA replication and transcriptional control are dispersed within the rest of the genome. Phylogenetic analysis of large terminase subunit suggests that P1312 is a headful packaging phage containing a chromosome with circularly permuted direct terminal repeats. PMID:26441893

  5. Characterization of the Genome of the Dairy Lactobacillus helveticus Bacteriophage ΦAQ113

    PubMed Central

    Scaltriti, Erika; Rossetti, Lia; Guffanti, Alessandro; Armiento, Angelarita; Fornasari, Maria Emanuela; Grolli, Stefano; Carminati, Domenico; Brini, Elena; Pavan, Paolo; Felsani, Armando; D'Urzo, Annalisa; Moles, Anna; Claude, Jean-Baptiste; Grandori, Rita; Ramoni, Roberto; Giraffa, Giorgio

    2013-01-01

    The complete genomic sequence of the dairy Lactobacillus helveticus bacteriophage ΦAQ113 was determined. Phage ΦAQ113 is a Myoviridae bacteriophage with an isometric capsid and a contractile tail. The final assembled consensus sequence revealed a linear, circularly permuted, double-stranded DNA genome with a size of 36,566 bp and a G+C content of 37%. Fifty-six open reading frames (ORFs) were predicted, and a putative function was assigned to approximately 90% of them. The ΦAQ113 genome shows functionally related genes clustered together in a genome structure composed of modules for DNA replication/regulation, DNA packaging, head and tail morphogenesis, cell lysis, and lysogeny. The identification of genes involved in the establishment of lysogeny indicates that it may have originated as a temperate phage, even if it was isolated from natural cheese whey starters as a virulent phage, because it is able to propagate in a sensitive host strain. Additionally, we discovered that the ΦAQ113 phage genome is closely related to Lactobacillus gasseri phage KC5a and Lactobacillus johnsonii phage Lj771 genomes. The phylogenetic similarities between L. helveticus phage ΦAQ113 and two phages that belong to gut species confirm a possible common ancestral origin and support the increasing consideration of L. helveticus as a health-promoting organism. PMID:23728811

  6. Metagenomic analysis reveals that bacteriophages are reservoirs of antibiotic resistance genes.

    PubMed

    Subirats, Jéssica; Sànchez-Melsió, Alexandre; Borrego, Carles M; Balcázar, José Luis; Simonet, Pascal

    2016-08-01

    A metagenomics approach was applied to explore the presence of antibiotic resistance genes (ARGs) in bacteriophages from hospital wastewater. Metagenomic analysis showed that most phage sequences affiliated to the order Caudovirales, comprising the tailed phage families Podoviridae, Siphoviridae and Myoviridae. Moreover, the relative abundance of ARGs in the phage DNA fraction (0.26%) was higher than in the bacterial DNA fraction (0.18%). These differences were particularly evident for genes encoding ATP-binding cassette (ABC) and resistance-nodulation-cell division (RND) proteins, phosphotransferases, β-lactamases and plasmid-mediated quinolone resistance. Analysis of assembled contigs also revealed that blaOXA-10, blaOXA-58 and blaOXA-24 genes belonging to class D β-lactamases as well as a novel blaTEM (98.9% sequence similarity to the blaTEM-1 gene) belonging to class A β-lactamases were detected in a higher proportion in phage DNA. Although preliminary, these findings corroborate the role of bacteriophages as reservoirs of resistance genes and thus highlight the necessity to include them in future studies on the emergence and spread of antibiotic resistance in the environment. PMID:27312355

  7. Bacteriophage typing scheme for Salmonella infantis.

    PubMed Central

    Kasatiya, S; Caprioli, T; Champoux, S

    1979-01-01

    A bacteriophage typing system is described for Salmonella infantis. Nine phages were selected, of which three were isolated from sewage and six from human feces. All except 7 of the 546 strains collected between 1974 and 1978 could be classified into 23 different phage types. The five most common phage types comprised 26, 13, 9, 9, and 9% of all strains, respectively. Strains from humans, animals, food, and water isolated during nine episodes, or from given patients at different intervals of time, belonged to the same phage type. PMID:544631

  8. Bacteriophage lambda-based expression vectors.

    PubMed

    Christensen, A C

    2001-03-01

    Bacteriophage lambda has been in use as a cloning vector for over 25 years, and has been used extensively as an expression vector. The efficiency of packaging and infection, and the simplicity of plaque screening are advantages of lambda as a cloning vector. A number of ingenious modifications help overcome the disadvantages associated with its mode of growth and its size. Some lambda vectors have been designed to be readily converted into plasmids or phagemids, and there are a variety of promoters and fusions that can be used to drive expression of foreign genes. Screening lambda libraries with antibodies or ligands is a powerful way of identifying novel genes. PMID:11434310

  9. Bacterial genome remodeling through bacteriophage recombination.

    PubMed

    Menouni, Rachid; Hutinet, Geoffrey; Petit, Marie-Agnès; Ansaldi, Mireille

    2015-01-01

    Bacteriophages co-exist and co-evolve with their hosts in natural environments. Virulent phages lyse infected cells through lytic cycles, whereas temperate phages often remain dormant and can undergo lysogenic or lytic cycles. In their lysogenic state, prophages are actually part of the host genome and replicate passively in rhythm with host division. However, prophages are far from being passive residents: they can modify or bring new properties to their host. In this review, we focus on two important phage-encoded recombination mechanisms, i.e. site-specific recombination and homologous recombination, and how they remodel bacterial genomes. PMID:25790500

  10. The RNA binding site of bacteriophage MS2 coat protein.

    PubMed Central

    Peabody, D S

    1993-01-01

    The coat protein of the RNA bacteriophage MS2 binds a specific stem-loop structure in viral RNA to accomplish encapsidation of the genome and translational repression of replicase synthesis. In order to identify the structural components of coat protein required for its RNA binding function, a series of repressor-defective mutants has been isolated. To ensure that the repressor defects were due to substitution of binding site residues, the mutant coat proteins were screened for retention of the ability to form virus-like particles. Since virus assembly presumably requires native structure, this approach eliminated mutants whose repressor defects were secondary consequences of protein folding or stability defects. Each of the variant coat proteins was purified and its ability to bind operator RNA in vitro was measured. DNA sequence analysis identified the nucleotide and amino acid substitutions responsible for reduced RNA binding affinity. Localization of the substituted sites in the three-dimensional structure of coat protein reveals that amino acid residues on three adjacent strands of the coat protein beta-sheet are required for translational repression and RNA binding. The sidechains of the affected residues form a contiguous patch on the interior surface of the viral coat. Images PMID:8440248

  11. Novel N4 Bacteriophages Prevail in the Cold Biosphere

    PubMed Central

    Zhan, Yuanchao; Buchan, Alison

    2015-01-01

    Coliphage N4 is a lytic bacteriophage discovered nearly half a century ago, and it was considered to be a “genetic orphan” until very recently, when several additional N4-like phages were discovered to infect nonenteric bacterial hosts. Interest in this genus of phages is stimulated by their unique genetic features and propagation strategies. To better understand the ecology of N4-like phages, we investigated the diversity and geographic patterns of N4-like phages by examining 56 Chesapeake Bay viral communities, using a PCR-clone library approach targeting a diagnostic N4-like DNA polymerase gene. Many new lineages of N4-like phages were found in the bay, and their genotypes shift from the lower to the upper bay. Interestingly, signature sequences of N4-like phages were recovered only from winter month samples, when water temperatures were below 4°C. An analysis of existing metagenomic libraries from various aquatic environments supports the hypothesis that N4-like phages are most prolific in colder waters. In particular, a high number of N4-like phages were detected in Organic Lake, Antarctica, a cold and hypersaline system. The prevalence of N4-like phages in the cold biosphere suggests these viruses possess yet-to-be-determined mechanisms that facilitate lytic infections under cold conditions. PMID:26025897

  12. Nanoscale detection of bacteriophage triggered ion cascade (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Dobozi-King, Maria; Seo, Sungkyu; Kim, Jong U.; Cheng, Mosong; Kish, Laszlo B.; Young, Ryland

    2005-05-01

    In an era of potential bioterrorism and pandemics of antibiotic-resistant microbes, bacterial contaminations of food and water supplies is a major concern. There is an urgent need for the rapid, inexpensive and specific identification of bacteria under field conditions. Here we describe a method that combines the specificity and avidity of bacteriophages with fluctuation analysis of electrical noise. The method is based on the massive, transitory ion leakage that occurs at the moment of phage DNA injection into the host cell. The ion fluxes require only that the cells be physiologically viable (i.e., have energized membranes) and can occur within seconds after mixing the cells with sufficient concentrations of phage particles. To detect these fluxes, we have constructed a nano-well, a lateral, micron-size capacitor of titanium electrodes with gap size of 150 nm, and used it to measure the electrical field fluctuations in microliter (mm3) samples containing phage and bacteria. In mixtures where the analyte bacteria were sensitive to the phage, large stochastic waves with various time and amplitude scales were observed, with power spectra of approximately 1/f2 shape over at 1 - 10 Hz. Development of this SEPTIC (SEnsing of Phage-Triggered Ion Cascades) technology could provide rapid detection and identification of live, pathogenic bacteria on the scale of minutes, with unparalleled specificity. The method has a potential ultimate sensitivity of 1 bacterium/microliter (1 bacterium/mm3).

  13. [New Virulent Bacteriophages Active against Multiresistant Pseudomonas aeruginosa Strains].

    PubMed

    Balarjishvili, N Sh; Kvachadze, L I; Kutateladze, M I; Meskhi, T Sh; Pataridze, T K; Berishvili, T A; Tevdoradze, E Sh

    2015-01-01

    The sensitivity of 512 newly isolated Pseudomonas aeruginosa clinical strains to six classes of anti-microbial preparations has been studied. Antibiotic-resistant strains were selected and genotyped. Three new virulent bacteriophages of the families Myoviridae and Podoviridae were isolated against these strains. The parameters of the intracellular phage development cycle were established, and the influence of inactivating factors (temperature, pH, and UV exposure) on phage viability was studied. The molecular weight of the phage genome was determined. Phage DNA restriction analysis and polyacrylamide gel electrophoresis in the presence of envelope protein SDS were carried out. The plating efficacy of phages on 28 genetically distant antibiotic-resistant P. aeruginosa strains was studied. It was established that 26 of them were lysed by phages with a high efficacy. The range of antibacterial action of the studied phages and their mixtures on 427 multi-drug-resistant clinical isolates was assessed. It is shown that including these phages in one multicomponent preparation enhanced their lytic activity. PMID:26859962

  14. Predicting Gene-Regulation Functions: Lessons from Temperate Bacteriophages

    PubMed Central

    Teif, Vladimir B.

    2010-01-01

    Gene-regulation functions (GRF) provide a unique characteristic of a cis-regulatory module (CRM), relating the concentrations of transcription factors (input) to the promoter activities (output). The challenge is to predict GRFs from the sequence. Here we systematically consider the lysogeny-lysis CRMs of different temperate bacteriophages such as the Lactobacillus casei phage A2, Escherichia coli phages λ, and 186 and Lactococcal phage TP901-1. This study allowed explaining a recent experimental puzzle on the role of Cro protein in the lambda switch. Several general conclusions have been drawn: 1), long-range interactions, multilayer assembly and DNA looping may lead to complex GRFs that cannot be described by linear functions of binding site occupancies; 2), in general, GRFs cannot be described by the Boolean logic, whereas a three-state non-Boolean logic suffices for the studied examples; 3), studied CRMs of the intact phages seemed to have a similar GRF topology (the number of plateaus and peaks corresponding to different expression regimes); we hypothesize that functionally equivalent CRMs might have topologically equivalent GRFs for a larger class of genetic systems; and 4) within a given GRF class, a set of mechanistic-to-mathematical transformations has been identified, which allows shaping the GRF before carrying out a system-level analysis. PMID:20371324

  15. Mur-LH, the Broad-Spectrum Endolysin of Lactobacillus helveticus Temperate Bacteriophage φ-0303

    PubMed Central

    Deutsch, Stéphanie-Marie; Guezenec, Stéphane; Piot, Michel; Foster, Simon; Lortal, Sylvie

    2004-01-01

    φ-0303 is a temperate bacteriophage isolated from Lactobacillus helveticus CNRZ 303 strain after mitomycin C induction. In this work, the gene coding for a lytic protein of this bacteriophage was cloned using a library of φ-0303 in Escherichia coli DH5α. The lytic activity was detected by its expression, using whole cells of the sensitive strain L. helveticus CNRZ 892 as the substrate. The lysin gene was within a 4.1-kb DNA fragment of φ-0303 containing six open reading frames (ORFs) and two truncated ORFs. No sequence homology with holin genes was found within the cloned fragment. An integrase-encoding gene was also present in the fragment, but it was transcribed in a direction opposite that of the lysin gene. The lysin-encoding lys gene was verified by PCR amplification from the total phage DNA and subcloned. The lys gene is a 1,122-bp sequence encoding a protein of 373 amino acids (Mur-LH), whose product had a deduced molecular mass of 40,207 Da. Comparisons with sequences in sequence databases showed homology with numerous endolysins of other bacteriophages. Mur-LH was expressed in E. coli BL21, and by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with L. helveticus CNRZ 892 as the substrate, the recombinant protein showed an apparent molecular mass of 40 kDa. The N-terminal sequence of the protein confirmed the start codon. Hydrolysis of cell walls of L. helveticus CNRZ 303 by the endolysin and biochemical analysis of the residues produced demonstrated that Mur-LH has N-acetylmuramidase activity. Last, the endolysin exhibited a broad spectrum of lytic activity, as it was active on different species, mainly thermophilic lactobacilli but also lactococci, pediococci, Bacillus subtilis, Brevibacterium linens, and Enterococcus faecium. PMID:14711630

  16. Rapid generation of long tandem DNA repeat arrays by homologous recombination in yeast to study their function in mammalian genomes

    PubMed Central

    2011-01-01

    We describe here a method to rapidly convert any desirable DNA fragment, as small as 100 bp, into long tandem DNA arrays up to 140 kb in size that are inserted into a microbe vector. This method includes rolling-circle phi29 amplification (RCA) of the sequence in vitro and assembly of the RCA products in vivo by homologous recombination in the yeast Saccharomyces cerevisiae. The method was successfully used for a functional analysis of centromeric and pericentromeric repeats and construction of new vehicles for gene delivery to mammalian cells. The method may have general application in elucidating the role of tandem repeats in chromosome organization and dynamics. Each cycle of the protocol takes ~ two weeks to complete. PMID:21982381

  17. Plasmid-Controlled Variation in the Content of Methylated Bases in Bacteriophage Lambda Deoxyribonucleic Acid

    PubMed Central

    Hattman, Stanley

    1972-01-01

    The N6-methyladenine (MeAde) and 5-methylcytosine (MeC) contents in deoxyribonucleic acid (DNA) of bacteriophage lambda has been analyzed as a function of host specificity. The following facts have emerged: (i) lambda grown on strains harboring the P1 prophage contain ca. 70 more MeAde residues/DNA molecule than lambda grown either in the P1-sensitive parent, or in a P1 immune-defective lysogen which does not confer P1 modification; (ii) lambda grown on strains harboring the N-3 drug-resistance factor contain ca. 60 more MeC residues/DNA molecule than lambda grown on the parental strain lacking the factor; (iii) lambda grown in Escherichia coli B strains is devoid of MeC, whereas lambda grown in a B (N-3) host contains a high level of MeC; (iv) the MeAde content in lambda DNA is not affected by the N-3 factor. These results suggest that P1 controls an adenine-specific DNA methylase, and that the N-3 plasmid controls a cytosine-specific DNA methylase. The N-3 factor has been observed previously to direct cytosine-specific methylation of phage P22 DNA and E. coli B DNA in vivo; in vitro studies presented here demonstrate this activity. PMID:4561202

  18. Respirable bacteriophages for the treatment of bacterial lung infections.

    PubMed

    Hoe, Susan; Semler, Diana D; Goudie, Amanda D; Lynch, Karlene H; Matinkhoo, Sadaf; Finlay, Warren H; Dennis, Jonathan J; Vehring, Reinhard

    2013-12-01

    This review article discusses the development of respiratory therapeutics containing bacteriophages indicated for lung infections, specifically those that have become increasingly difficult to treat because of antibiotic resistance. Recent achievements and remaining problems are presented for each step necessary to develop a bacteriophage-containing dosage form for respiratory drug delivery, including selection of appropriate bacteriophages for therapy, processing and purification of phage preparations, formulation into a stable, solid dosage form, and delivery device selection. Safety and efficacy studies in animals and human subjects are also reviewed. PMID:23597003

  19. In silico identification of genes in bacteriophage DNA.

    PubMed

    Kropinski, Andrew M; Borodovsky, Mark; Carver, Tim J; Cerdeño-Tárraga, Ana M; Darling, Aaron; Lomsadze, Alexandre; Mahadevan, Padmanabhan; Stothard, Paul; Seto, Donald; Van Domselaar, Gary; Wishart, David S

    2009-01-01

    One of the most satisfying aspects of a genome sequencing project is the identification of the genes contained within it.These are of two types: those which encode tRNAs and those which produce proteins. After a general introduction on the properties of protein-encoding genes and the utility of the Basic Local Alignment Search Tool (BLASTX) to identify genes through homologs, a variety of tools are discussed by their creators. These include for genome annotation: GeneMark, Artemis, and BASys; and, for genome comparisons: Artemis Comparison Tool (ACT), Mauve, CoreGenes, and GeneOrder. PMID:19082552

  20. Genomic and Genetic Analysis of Bordetella Bacteriophages Encoding Reverse Transcriptase-Mediated Tropism-Switching Cassettes

    PubMed Central

    Liu, Minghsun; Gingery, Mari; Doulatov, Sergei R.; Liu, Yichin; Hodes, Asher; Baker, Stephen; Davis, Paul; Simmonds, Mark; Churcher, Carol; Mungall, Karen; Quail, Michael A.; Preston, Andrew; Harvill, Eric T.; Maskell, Duncan J.; Eiserling, Frederick A.; Parkhill, Julian; Miller, Jeff F.

    2004-01-01

    Liu et al. recently described a group of related temperate bacteriophages that infect Bordetella subspecies and undergo a unique template-dependent, reverse transcriptase-mediated tropism switching phenomenon (Liu et al., Science 295: 2091-2094, 2002). Tropism switching results from the introduction of single nucleotide substitutions at defined locations in the VR1 (variable region 1) segment of the mtd (major tropism determinant) gene, which determines specificity for receptors on host bacteria. In this report, we describe the complete nucleotide sequences of the 42.5- to 42.7-kb double-stranded DNA genomes of three related phage isolates and characterize two additional regions of variability. Forty-nine coding sequences were identified. Of these coding sequences, bbp36 contained VR2 (variable region 2), which is highly dynamic and consists of a variable number of identical 19-bp repeats separated by one of three 5-bp spacers, and bpm encodes a DNA adenine methylase with unusual site specificity and a homopolymer tract that functions as a hotspot for frameshift mutations. Morphological and sequence analysis suggests that these Bordetella phage are genetic hybrids of P22 and T7 family genomes, lending further support to the idea that regions encoding protein domains, single genes, or blocks of genes are readily exchanged between bacterial and phage genomes. Bordetella bacteriophages are capable of transducing genetic markers in vitro, and by using animal models, we demonstrated that lysogenic conversion can take place in the mouse respiratory tract during infection. PMID:14973019

  1. Antimicrobial bacteriophage-derived proteins and therapeutic applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Antibiotics have the remarkable power to control bacterial infections. Unfortunately, widespread use, whether regarded as prudent or not, has favored the emergence and persistence of antibiotic resistant strains of human pathogenic bacteria, resulting in a global health threat. Bacteriophages (pha...

  2. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  3. Bacteriophage-based nanoprobes for rapid bacteria separation

    NASA Astrophysics Data System (ADS)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  4. Simulated hatchery system to assess bacteriophage efficacy against Vibrio harveyi.

    PubMed

    Raghu Patil, J; Desai, Srividya Narayanamurthy; Roy, Panchali; Durgaiah, Murali; Saravanan, R Sanjeev; Vipra, Aradhana

    2014-12-01

    Vibriosis caused by luminous Vibrio harveyi commonly contributes to poor survival in shrimp hatcheries and aquaculture ponds. Lytic bacteriophages pathogenic for V. harveyi are currently being investigated as an alternative to antibiotics to prevent vibriosis. Here, 8 bacteriophages were isolated from oysters and clams using V. harveyi strains as baiting hosts. Among these bacteriophages, 1 strain (VHP6b) identified as broadly pathogenic for 27 V. harveyi strains examined was further characterized by electron microscopy and genome sequence analysis. Phage VHP6b possessed a tail and morphology consistent with it being a member of the family Siphoviridae, and its genome and proteome were most closely related to the Vibrio phages SSP02 and MAR10. An integrase gene essential for lysogeny was not evident. The ability of bacteriophage VHP6b to protect shrimp postlarvae against vibriosis caused by V. harveyi strain VH6 was demonstrated in a model system designed to simulate typical hatchery conditions. Bacteriophage treatment improved survival of postlarvae by 40 to 60% under these conditions, so therapies based on this or other bacteriophages may be useful in shrimp hatcheries. PMID:25449322

  5. Bacteriophage endolysins: applications for food safety.

    PubMed

    Schmelcher, Mathias; Loessner, Martin J

    2016-02-01

    Bacteriophage endolysins (peptidoglycan hydrolases) have emerged as a new class of antimicrobial agents useful for controlling bacterial infection or other unwanted contaminations in various fields, particularly in the light of the worldwide increasing frequency of drug-resistant pathogens. This review summarizes and discusses recent developments regarding the use of endolysins for food safety. Besides the use of native and engineered endolysins for controlling bacterial contamination at different points within the food production chain, this also includes the application of high-affinity endolysin-derived cell wall binding domains for rapid detection of pathogenic bacteria. Novel approaches to extend the lytic action of endolysins towards Gram-negative cells will also be highlighted. PMID:26707470

  6. Bacteriophage Lambda: a Paradigm Revisited ▿

    PubMed Central

    Fogg, Paul C. M.; Allison, Heather E.; Saunders, Jon R.; McCarthy, Alan J.

    2010-01-01

    Bacteriophage lambda has an archetypal immunity system, which prevents the superinfection of its Escherichia coli lysogens. It is now known that superinfection can occur with toxigenic lambda-like phages at a high frequency, and here we demonstrate that the superinfection of a lambda lysogen can lead to the acquisition of additional lambda genomes, which was confirmed by Southern hybridization and quantitative PCR. As many as eight integration events were observed but at a very low frequency (6.4 × 10−4) and always as multiple insertions at the established primary integration site in E. coli. Sequence analysis of the complete immunity region demonstrated that these multiply infected lysogens were not immunity mutants. In conclusion, although lambda superinfection immunity can be confounded, it is a rare event. PMID:20375161

  7. Why Be Temperate: Lessons from Bacteriophage λ.

    PubMed

    Gandon, Sylvain

    2016-05-01

    Many pathogens have evolved the ability to induce latent infections of their hosts. The bacteriophage λ is a classical model for exploring the regulation and the evolution of latency. Here, I review recent experimental studies on phage λ that identify specific conditions promoting the evolution of lysogenic life cycles. In addition, I present specific adaptations of phage λ that allow this virus to react plastically to variations in the environment and to reactivate its lytic life cycle. All of these different examples are discussed in the light of evolutionary epidemiology theory to disentangle the different evolutionary forces acting on temperate phages. Understanding phage λ adaptations yield important insights into the evolution of latency in other microbes, including several life-threatening human pathogens. PMID:26946976

  8. Association of lysogenic bacteriophage MAV1 with virulence of Mycoplasma arthritidis.

    PubMed Central

    Voelker, L L; Weaver, K E; Ehle, L J; Washburn, L R

    1995-01-01

    Mycoplasma arthritidis causes a severe polyarthritis under natural conditions in rats and under experimental conditions in both rats and mice. Although the disease itself has been extensively studied, M. arthritidis virulence factors remain uncharacterized. Comparison of relative arthritogenicity of 20 strains of M. arthritidis revealed that the strains tended to fall into two groups, a highly arthritogenic group, inducing maximum arthritis scores of > or = 11 in rats, and a low-virulence group, inducing maximum scores of < 6. Chromosomal DNA from the more highly arthritogenic strains possessed sequences that hybridized by Southern analysis with a probe prepared from lysogenic M. arthritidis bacteriophage MAV1, while DNA from low-virulence strains did not. One of the low-virulence strains, 158, was experimentally lysogenized with MAV1. Lysogenized 158 showed a significant increase in arthritogenicity over nonlysogenized 158. These data suggest that MAV1 carries a factor that is important in pathogenesis of M. arthritidis-induced arthritis of rats. PMID:7558313

  9. PlyC: A multimeric bacteriophage lysin

    PubMed Central

    Nelson, Daniel; Schuch, Raymond; Chahales, Peter; Zhu, Shiwei; Fischetti, Vincent A.

    2006-01-01

    Lysins are murein hydrolases produced by bacteriophage that act on the bacterial host cell wall to release progeny phage. When added extrinsically in their purified form, these enzymes produce total lysis of susceptible Gram-positive bacteria within seconds, suggesting a unique antimicrobial strategy. All known Gram-positive lysins are produced as a single polypeptide containing a catalytic activity domain, which cleaves one of the four major peptidoglycan bonds, and a cell-wall-binding domain, which may bind a species-specific carbohydrate epitope in the cell wall. Here, we have cloned and expressed a unique lysin from the streptococcal bacteriophage C1, termed PlyC. Molecular characterization of the plyC operon reveals that PlyC is, surprisingly, composed of two separate gene products, PlyCA and PlyCB. Based on biochemical and biophysical studies, the catalytically active PlyC holoenzyme is composed of eight PlyCB subunits for each PlyCA. Inhibitor studies predicted the presence of an active-site cysteine, and bioinformatic analysis revealed a cysteine, histidine-dependent amidohydrolase/peptidase domain within PlyCA. Point mutagenesis confirmed that PlyCA is responsible for the observed catalytic activity, and Cys-333 and His-420 are the active-site residues. PlyCB was found to self-assemble into an octamer, and this complex alone was able to direct streptococcal cell-wall-specific binding. Similar to no other proteins in sequence databases, PlyC defines a previously uncharacterized structural family of cell-wall hydrolases. PMID:16818874

  10. Bacteriophages of Leuconostoc, Oenococcus, and Weissella

    PubMed Central

    Kot, Witold; Neve, Horst; Heller, Knut J.; Vogensen, Finn K.

    2014-01-01

    Leuconostoc (Ln.), Weissella, and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat, and fish. Most of industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore, bacteriophages attacking Leuconostoc strains may negatively influence the production process. Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae family and differ in morphological details. Hybridization and comparative genomic studies of Leuconostoc phages suggest that they can be divided into several groups, however overall diversity of Leuconostoc phages is much lower as compared to, e.g., lactococcal phages. Several fully sequenced genomes of Leuconostoc phages have been deposited in public databases. Lytic phages of Leuconostoc can be divided into two host species-specific groups with similarly organized genomes that shared very low nucleotide similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor binding proteins of two lytic Ln. pseudomesenteroides phages have been identified. Molecular tools for detection of dairy Leuconostoc phages have been developed. The rather limited data on phages of Oenococcus and Weissella show that (i) lysogeny seems to be abundant in Oenococcus strains, and (ii) several phages infecting Weissella cibaria are also able to productively infect strains of other Weissella species and even strains of the genus

  11. Bacteriophages show promise as antimicrobial agents.

    PubMed

    Alisky, J; Iczkowski, K; Rapoport, A; Troitsky, N

    1998-01-01

    The emergence of antibiotic-resistant bacteria has prompted interest in alternatives to conventional drugs. One possible option is to use bacteriophages (phage) as antimicrobial agents. We have conducted a literature review of all Medline citations from 1966-1996 that dealt with the therapeutic use of phage. There were 27 papers from Poland, the Soviet Union, Britain and the U.S.A. The Polish and Soviets administered phage orally, topically or systemically to treat a wide variety of antibiotic-resistant pathogens in both adults and children. Infections included suppurative wound infections, gastroenteritis, sepsis, osteomyelitis, dermatitis, empyemas and pneumonia; pathogens included Staphylococcus, Streptococcus, Klebsiella, Escherichia, Proteus, Pseudomonas, Shigella and Salmonella spp. Overall, the Polish and Soviets reported success rates of 80-95% for phage therapy, with rare, reversible gastrointestinal or allergic side effects. However, efficacy of phage was determined almost exclusively by qualitative clinical assessment of patients, and details of dosages and clinical criteria were very sketchy. There were also six British reports describing controlled trials of phage in animal models (mice, guinea pigs and livestock), measuring survival rates and other objective criteria. All of the British studies raised phage against specific pathogens then used to create experimental infections. Demonstrable efficacy against Escherichia, Acinetobacter, Pseudomonas and Staphylococcus spp. was noted in these model systems. Two U.S. papers dealt with improving the bioavailability of phage. Phage is sequestered in the spleen and removed from circulation. This can be overcome by serial passage of phage through mice to isolate mutants that resist sequestration. In conclusion, bacteriophages may show promise for treating antibiotic resistant pathogens. To facilitate further progress, directions for future research are discussed and a directory of authors from the reviewed

  12. Montmorillonite-induced Bacteriophage φ6 Disassembly

    NASA Astrophysics Data System (ADS)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  13. Diverse self-association properties within a family of phage packaging RNAs.

    PubMed

    Hao, Yumeng; Kieft, Jeffrey S

    2014-11-01

    The packaging RNA (pRNA) found in phi29 bacteriophage is an essential component of a molecular motor that packages the phage's DNA genome. The pRNA forms higher-order multimers by intermolecular "kissing" interactions between identical molecules. The phi29 pRNA is a proven building block for nanotechnology and a model to explore the rare phenomenon of naturally occurring RNA self-association. Although the self-association properties of the phi29 pRNA have been extensively studied and this pRNA is used in nanotechnology, the characteristics of phylogenetically related pRNAs with divergent sequences are comparatively underexplored. These diverse pRNAs may lend new insight into both the rules governing RNA self-association and for RNA engineering. Therefore, we used a combination of biochemical and biophysical methods to resolve ambiguities in the proposed secondary structures of pRNAs from M2, GA1, SF5, and B103 phage, and to discover that different naturally occurring pRNAs form multimers of different stoichiometry and thermostability. Indeed, the M2 pRNA formed multimers that were particularly thermostable and may be more useful than phi29 pRNA for many applications. To determine if diverse pRNA behaviors are conferred by different kissing loop sequences, we designed and tested chimeric RNAs based on our revised secondary structural models. We found that although the kissing loops are essential for self-association, the critical determinant of multimer stability and stoichiometry is likely the diverse three-way junctions found in these RNAs. Using known features of RNA three-way junctions and solved structures of phi29 pRNA's junction, we propose a model for how different junctions affect self-association. PMID:25246655

  14. Diverse self-association properties within a family of phage packaging RNAs

    PubMed Central

    Hao, Yumeng

    2014-01-01

    The packaging RNA (pRNA) found in phi29 bacteriophage is an essential component of a molecular motor that packages the phage's DNA genome. The pRNA forms higher-order multimers by intermolecular “kissing” interactions between identical molecules. The phi29 pRNA is a proven building block for nanotechnology and a model to explore the rare phenomenon of naturally occurring RNA self-association. Although the self-association properties of the phi29 pRNA have been extensively studied and this pRNA is used in nanotechnology, the characteristics of phylogenetically related pRNAs with divergent sequences are comparatively underexplored. These diverse pRNAs may lend new insight into both the rules governing RNA self-association and for RNA engineering. Therefore, we used a combination of biochemical and biophysical methods to resolve ambiguities in the proposed secondary structures of pRNAs from M2, GA1, SF5, and B103 phage, and to discover that different naturally occurring pRNAs form multimers of different stoichiometry and thermostability. Indeed, the M2 pRNA formed multimers that were particularly thermostable and may be more useful than phi29 pRNA for many applications. To determine if diverse pRNA behaviors are conferred by different kissing loop sequences, we designed and tested chimeric RNAs based on our revised secondary structural models. We found that although the kissing loops are essential for self-association, the critical determinant of multimer stability and stoichiometry is likely the diverse three-way junctions found in these RNAs. Using known features of RNA three-way junctions and solved structures of phi29 pRNA's junction, we propose a model for how different junctions affect self-association. PMID:25246655

  15. Purification of phage display-modified bacteriophage T4 by affinity chromatography

    PubMed Central

    2011-01-01

    Background Affinity chromatography is one of the most efficient protein purification strategies. This technique comprises a one-step procedure with a purification level in the order of several thousand-fold, adaptable for various proteins, differentiated in their size, shape, charge, and other properties. The aim of this work was to verify the possibility of applying affinity chromatography in bacteriophage purification, with the perspective of therapeutic purposes. T4 is a large, icosahedral phage that may serve as an efficient display platform for foreign peptides or proteins. Here we propose a new method of T4 phage purification by affinity chromatography after its modification with affinity tags (GST and Histag) by in vivo phage display. As any permanent introduction of extraneous DNA into a phage genome is strongly unfavourable for medical purposes, integration of foreign motifs with the phage genome was not applied. The phage was propagated in bacteria expressing fusions of the phage protein Hoc with affinity tags from bacterial plasmids, independently from the phage expression system. Results Elution profiles of phages modified with the specific affinity motifs (compared to non-specific phages) document their binding to the affinity resins and effective elution with standard competitive agents. Non-specific binding was also observed, but was 102-105 times weaker than the specific one. GST-modified bacteriophages were also effectively released from glutathione Sepharose by proteolytic cleavage. The possibility of proteolytic release was designed at the stage of expression vector construction. Decrease in LPS content in phage preparations was dependent on the washing intensity; intensive washing resulted in preparations of 11-40 EU/ml. Conclusions Affinity tags can be successfully incorporated into the T4 phage capsid by the in vivo phage display technique and they strongly elevate bacteriophage affinity to a specific resin. Affinity chromatography can be

  16. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine.

    PubMed

    Tran, Ngoc Q; Rezende, Lisa F; Qimron, Udi; Richardson, Charles C; Tabor, Stanley

    2008-07-01

    Bacteriophage T7 DNA polymerase efficiently incorporates dideoxynucleotides into DNA, resulting in chain termination. Dideoxythymidine (ddT) present in the medium at levels not toxic to Escherichia coli inhibits phage T7. We isolated 95 T7 phage mutants that were resistant to ddT. All contained a mutation in T7 gene 1.7, a nonessential gene of unknown function. When gene 1.7 was expressed from a plasmid, T7 phage resistant to ddT still arose; analysis of 36 of these mutants revealed that all had a single mutation in gene 5, which encodes T7 DNA polymerase. This mutation changes tyrosine-526 to phenylalanine, which is known to increase dramatically the ability of T7 DNA polymerase to discriminate against dideoxynucleotides. DNA synthesis in cells infected with wild-type T7 phage was inhibited by ddT, suggesting that it resulted in chain termination of DNA synthesis in the presence of gene 1.7 protein. Overexpression of gene 1.7 from a plasmid rendered E. coli cells sensitive to ddT, indicating that no other T7 proteins are required to confer sensitivity to ddT. PMID:18599435

  17. Type III Restriction Is Alleviated by Bacteriophage (RecE) Homologous Recombination Function but Enhanced by Bacterial (RecBCD) Function

    PubMed Central

    Handa, Naofumi; Kobayashi, Ichizo

    2005-01-01

    Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage—presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks. PMID:16237019

  18. Evaluation of alternative host bacteria as vehicles for oral administration of bacteriophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Survival of bacteriophages through the upper gastrointestinal tract (UGIT) and persistence in the lower gastrointestinal tract (LGIT) is essential for treatment of enteric bacterial infections. We have hypothesized that non-pathogenic Alternative Host Bacteriophage (AHB), originally isolated from p...

  19. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    PubMed

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P < 0.001) reduction compared with the phosphate-buffered saline-treated control in measured viable Salmonella within 60 min. Moreover, this bacteriophage cocktail reduced natural contamination in samples taken from an undistributed lot of commercial dried dog food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible. PMID:25581183

  20. Preliminary crystallographic analysis of the major capsid protein P2 of the lipid-containing bacteriophage PM2

    SciTech Connect

    Abrescia, Nicola G. A.; Kivelä, Hanna M.; Grimes, Jonathan M.; Bamford, Jaana K. H.; Bamford, Dennis H.; Stuart, David I.

    2005-08-01

    The viral capsid protein P2 of bacteriophage PM2 has been crystallized. Preliminary X-ray analysis demonstrates the position and orientation of the two trimers in the asymmetric unit. PM2 (Corticoviridae) is a dsDNA bacteriophage which contains a lipid membrane beneath its icosahedral capsid. In this respect it resembles bacteriophage PRD1 (Tectiviridae), although it is not known whether the similarity extends to the detailed molecular architecture of the virus, for instance the fold of the major coat protein P2. Structural analysis of PM2 has been initiated and virus-derived P2 has been crystallized by sitting-nanodrop vapour diffusion. Crystals of P2 have been obtained in space group P2{sub 1}2{sub 1}2, with two trimers in the asymmetric unit and unit-cell parameters a = 171.1, b = 78.7, c = 130.1 Å. The crystals diffract to 4 Å resolution at the ESRF BM14 beamline (Grenoble, France) and the orientation of the non-crystallographic threefold axes, the spatial relationship between the two trimers and the packing of the trimers within the unit cell have been determined. The trimers form tightly packed layers consistent with the crystal morphology, possibly recapitulating aspects of the arrangement of subunits in the virus.

  1. A metagenomic approach to characterize temperate bacteriophage populations from Cystic Fibrosis and non-Cystic Fibrosis bronchiectasis patients

    PubMed Central

    Tariq, Mohammad A.; Everest, Francesca L. C.; Cowley, Lauren A.; De Soyza, Anthony; Holt, Giles S.; Bridge, Simon H.; Perry, Audrey; Perry, John D.; Bourke, Stephen J.; Cummings, Stephen P.; Lanyon, Clare V.; Barr, Jeremy J.; Smith, Darren L.

    2015-01-01

    Pseudomonas aeruginosa (Pa), normally a soil commensal, is an important opportunistic pathogen in Cystic Fibrosis (CF) and non-Cystic Fibrosis Bronchiectasis (nCFBR). Persistent infection correlates with accelerated decline in lung function and early mortality. The horizontal transfer of DNA by temperate bacteriophages can add gene function and selective advantages to their bacterial host within the constrained environment of the lower lung. In this study, we chemically induce temperate bacteriophages from clonal cultures of Pa and identify their mixed viral communities employing metagenomic approaches. We compared 92 temperate phage metagenomes stratified from these clinical backgrounds (47 CF and 45 nCFBR Pa isolates) using MG-RAST and GeneWise2. KEGG analysis shows the complexity of temperate phage accessory gene carriage increases with duration and severity of the disease. Furthermore, we identify the presence of Ig-like motifs within phage structural genes linked to bacterial adhesion and carbohydrate binding including Big_2, He_Pig, and Fn3. This study provides the first clinical support to the proposed bacteriophage adherence to mucus (BAM) model and the evolution of phages interacting at these mucosal surfaces over time. PMID:25741327

  2. A metagenomic approach to characterize temperate bacteriophage populations from Cystic Fibrosis and non-Cystic Fibrosis bronchiectasis patients.

    PubMed

    Tariq, Mohammad A; Everest, Francesca L C; Cowley, Lauren A; De Soyza, Anthony; Holt, Giles S; Bridge, Simon H; Perry, Audrey; Perry, John D; Bourke, Stephen J; Cummings, Stephen P; Lanyon, Clare V; Barr, Jeremy J; Smith, Darren L

    2015-01-01

    Pseudomonas aeruginosa (Pa), normally a soil commensal, is an important opportunistic pathogen in Cystic Fibrosis (CF) and non-Cystic Fibrosis Bronchiectasis (nCFBR). Persistent infection correlates with accelerated decline in lung function and early mortality. The horizontal transfer of DNA by temperate bacteriophages can add gene function and selective advantages to their bacterial host within the constrained environment of the lower lung. In this study, we chemically induce temperate bacteriophages from clonal cultures of Pa and identify their mixed viral communities employing metagenomic approaches. We compared 92 temperate phage metagenomes stratified from these clinical backgrounds (47 CF and 45 nCFBR Pa isolates) using MG-RAST and GeneWise2. KEGG analysis shows the complexity of temperate phage accessory gene carriage increases with duration and severity of the disease. Furthermore, we identify the presence of Ig-like motifs within phage structural genes linked to bacterial adhesion and carbohydrate binding including Big_2, He_Pig, and Fn3. This study provides the first clinical support to the proposed bacteriophage adherence to mucus (BAM) model and the evolution of phages interacting at these mucosal surfaces over time. PMID:25741327

  3. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    NASA Astrophysics Data System (ADS)

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  4. Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis

    PubMed Central

    Millen, Anne M.; Horvath, Philippe; Boyaval, Patrick; Romero, Dennis A.

    2012-01-01

    Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins), which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB), none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II) in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes. PMID:23240053

  5. DNA Equation of State: In Vitro vs In Viro.

    PubMed

    Podgornik, Rudolf; Aksoyoglu, M Alphan; Yasar, Selcuk; Svenšek, Daniel; Parsegian, V Adrian

    2016-07-01

    We formulate a continuum approach to the equation of state (density dependence of osmotic pressure) of bulk DNA and encapsidated DNA, as well as review the phase diagram of DNA in the regime of densities relevant for DNA packing in bacteriophages. We derive the first integral of the equilibrium equations that connects the behavior of DNA in the bulk and in nanoscale enclosures, and we delineate the changes wrought upon the mesophase equilibria of encapsidated DNA. We show how multiphase equilibria and complicated spatial distribution of DNA density and orientation can emerge due to the curvature contribution to the DNA osmotic pressure within the capsid. PMID:27058110

  6. Bacteriophage Typing of Salmonella. I. Isolation and Host Range Study of Bacteriophages

    PubMed Central

    Ibrahim, Abdel Aziz E.

    1969-01-01

    A series of bacteriophages, lytic for bacteria belonging to the genera Escherichia and Salmonella, were isolated. The phages were isolated from fecal samples, intestinal contents of turkey poults, and carrier cultures of S. typhimurium, S. typhimurium var copenhagen, S. heidelberg, and E. coli. The feasibility of using different habitats as sources of Salmonella phages was evaluated. The carrier cultures were the most promising source for phages active on the serotypes for which the phages were sought. A host range study of the isolated phages was made. Eight phages were selected to develop a phage typing scheme for S. typhimurium, S. typhimurium var copenhagen, and S. heidelberg. PMID:4907005

  7. Nucleotide sequence analysis with polynucleotide kinase and nucleotide `mapping' methods. 5′-Terminal sequence of deoxyribonucleic acid from bacteriophages λ and 424

    PubMed Central

    Murray, Kenneth

    1973-01-01

    The polynucleotide kinase reaction was used in analyses of complex mixtures of oligodeoxynucleotides which were fractionated by various two-dimensional nucleotide `mapping' procedures. Parallel ionophoretic analyses on DEAE-cellulose paper, pH2, and AE-cellulose paper, pH3.5, of venom phosphodiesterase partial digests of 5′-terminally labelled oligonucleotides enabled the sequence of the nucleotides to be deduced uniquely. A `diagonal ionophoresis' method has been used with mixtures of nucleotides. Application of these methods to 5′-terminally labelled DNA from bacteriophage λ gave the terminal sequences pA-G-G-T-C-G and pG-G-G-C-G. Identical 5′-terminal sequences were found with DNA from bacteriophage 424. ImagesPLATE 5PLATE 1PLATE 2PLATE 3PLATE 4 PMID:4352720

  8. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage...

  9. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage...

  10. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  11. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  12. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  13. 40 CFR 180.1307 - Bacteriophage of Clavibacter michiganensis subspecies michiganensis; exemption from the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Bacteriophage of Clavibacter... EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1307 Bacteriophage of... exemption from the requirement of a tolerance is established for residues of lytic bacteriophage...

  14. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  15. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato....

  16. Similarities and differences within members of the Ff family of filamentous bacteriophage viruses.

    PubMed

    Morag, Omry; Abramov, Gili; Goldbourt, Amir

    2011-12-29

    The filamentous bacteriophage viruses of the Ff family, fd and M13, slightly differ in their genome, and their 50-residue-long major capsid proteins have a single site difference: the uncharged asparagine-12 in M13 is replaced with a negatively charged aspartate in fd. We have used magic-angle spinning solid-state NMR spectroscopy to site-specifically assign the resonances belonging to the capsid protein of M13. Assignment of several mobile residues was facilitated by using J-based spectroscopy, which in addition provided sugar-base contacts in the M13-DNA stemming from two-bond scalar couplings. A comparison between M13 and fd bacteriophages reveals that the two virions have a very conserved and stable structure, manifested in negligibly small chemical shift differences and similar dynamic properties for nearly all resonances. The principal difference between the two phages involves residues in the vicinity of residue 12. We suggest that the elimination of the single charge at position 12 throughout the entire assembly affects the electrostatic and hydrogen-bonding interaction network governing inter- and intraresidue contacts, mainly by the rearrangement of the positively charged lysine residue at position 8. PMID:22085310

  17. Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage.

    PubMed

    Ma, Yanyan; Li, Erna; Qi, Zhizhen; Li, Huan; Wei, Xiao; Lin, Weishi; Zhao, Ruixiang; Jiang, Aimin; Yang, Huiying; Yin, Zhe; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Achromobacter xylosoxidans, an opportunistic pathogen, is responsible for various nosocomial and community-acquired infections. We isolated phiAxp-3, an N4-like bacteriophage that infects A. xylosoxidans, from hospital waste and studied its genomic and biological properties. Transmission electron microscopy revealed that, with a 67-nm diameter icosahedral head and a 20-nm non-contractile tail, phiAxp-3 has features characteristic of Podoviridae bacteriophages (order Caudovirales). With a burst size of 9000 plaque-forming units and a latent period of 80 min, phiAxp-3 had a host range limited to only four A. xylosoxidans strains of the 35 strains that were tested. The 72,825 bp phiAxp-3 DNA genome, with 416-bp terminal redundant ends, contains 80 predicted open reading frames, none of which are related to virulence or drug resistance. Genome sequence comparisons place phiAxp-3 more closely with JWAlpha and JWDelta Achromobacter phages than with other N4 viruses. Using proteomics, we identified 25 viral proteins from purified phiAxp-3 particles. Notably, investigation of the phage phiAxp-3 receptor on the surface of the host cell revealed that lipopolysaccharide serves as the receptor for the adsorption of phage phiAxp-3. Our findings advance current knowledge about A. xylosoxidans phages in an age where alternative therapies to combat antibiotic-resistant bacteria are urgently needed. PMID:27094846

  18. Genome and Proteome of Campylobacter jejuni Bacteriophage NCTC 12673▿†

    PubMed Central

    Kropinski, Andrew M.; Arutyunov, Denis; Foss, Mary; Cunningham, Anna; Ding, Wen; Singh, Amit; Pavlov, Andrey R.; Henry, Matthew; Evoy, Stephane; Kelly, John; Szymanski, Christine M.

    2011-01-01

    Campylobacter jejuni continues to be the leading cause of bacterial food-borne illness worldwide, so improvements to current methods used for bacterial detection and disease prevention are needed. We describe here the genome and proteome of C. jejuni bacteriophage NCTC 12673 and the exploitation of its receptor-binding protein for specific bacterial detection. Remarkably, the 135-kb Myoviridae genome of NCTC 12673 differs greatly from any other proteobacterial phage genome described (including C. jejuni phages CP220 and CPt10) and instead shows closest homology to the cyanobacterial T4-related myophages. The phage genome contains 172 putative open reading frames, including 12 homing endonucleases, no visible means of packaging, and a putative trans-splicing intein. The phage DNA appears to be strongly associated with a protein that interfered with PCR amplification and estimation of the phage genome mass by pulsed-field gel electrophoresis. Identification and analyses of the receptor-binding protein (Gp48) revealed features common to the Salmonella enterica P22 phage tailspike protein, including the ability to specifically recognize a host organism. Bacteriophage receptor-binding proteins may offer promising alternatives for use in pathogen detection platforms. PMID:21965409

  19. Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links

    NASA Astrophysics Data System (ADS)

    Ares, P.; Garcia-Doval, C.; Llauró, A.; Gómez-Herrero, J.; van Raaij, M. J.; de Pablo, P. J.

    2014-05-01

    Viral fibers play a central role in many virus infection mechanisms since they recognize the corresponding host and establish a mechanical link to its surface. Specifically, bacteriophages have to anchor to bacteria through the fibers surrounding the tail before starting the viral DNA translocation into the host. The protein gene product (gp) 37 from bacteriophage T4 long tail fibers forms a fibrous parallel homotrimer located at the distal end of the long tail fibers. Biochemical data indicate that, at least, three of these fibers are required for initial host cell interaction but do not reveal why three and no other numbers are required. By using atomic force microscopy, we obtained high-resolution images of gp37 fibers adsorbed on a mica substrate in buffer conditions and probed their local mechanical properties. Our experiments of radial indentation at the nanometer scale provided a radial stiffness of ˜0.08 N/m and a breaking force of ˜120 pN. In addition, we performed finite element analysis and determined a Young's modulus of ˜20 MPa. From these mechanical parameters, we hypothesize that three viral fibers provide enough mechanical strength to prevent a T4 virus from being detached from the bacteria by the viral particle Brownian motion, delivering a biophysical justification for the previous biochemical data.

  20. Narrow-Host-Range Bacteriophages That Infect Rhizobium etli Associate with Distinct Genomic Types

    PubMed Central

    Santamaría, Rosa Isela; Bustos, Patricia; Sepúlveda-Robles, Omar; Lozano, Luis; Rodríguez, César; Fernández, José Luis; Juárez, Soledad; Kameyama, Luis; Guarneros, Gabriel; Dávila, Guillermo

    2014-01-01

    In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ∼45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species. PMID:24185856

  1. Isolation and molecular characterisation of Achromobacter phage phiAxp-3, an N4-like bacteriophage

    PubMed Central

    Ma, Yanyan; Li, Erna; Qi, Zhizhen; Li, Huan; Wei, Xiao; Lin, Weishi; Zhao, Ruixiang; Jiang, Aimin; Yang, Huiying; Yin, Zhe; Yuan, Jing; Zhao, Xiangna

    2016-01-01

    Achromobacter xylosoxidans, an opportunistic pathogen, is responsible for various nosocomial and community-acquired infections. We isolated phiAxp-3, an N4-like bacteriophage that infects A. xylosoxidans, from hospital waste and studied its genomic and biological properties. Transmission electron microscopy revealed that, with a 67-nm diameter icosahedral head and a 20-nm non-contractile tail, phiAxp-3 has features characteristic of Podoviridae bacteriophages (order Caudovirales). With a burst size of 9000 plaque-forming units and a latent period of 80 min, phiAxp-3 had a host range limited to only four A. xylosoxidans strains of the 35 strains that were tested. The 72,825 bp phiAxp-3 DNA genome, with 416-bp terminal redundant ends, contains 80 predicted open reading frames, none of which are related to virulence or drug resistance. Genome sequence comparisons place phiAxp-3 more closely with JWAlpha and JWDelta Achromobacter phages than with other N4 viruses. Using proteomics, we identified 25 viral proteins from purified phiAxp-3 particles. Notably, investigation of the phage phiAxp-3 receptor on the surface of the host cell revealed that lipopolysaccharide serves as the receptor for the adsorption of phage phiAxp-3. Our findings advance current knowledge about A. xylosoxidans phages in an age where alternative therapies to combat antibiotic-resistant bacteria are urgently needed. PMID:27094846

  2. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure.

    PubMed

    Wang, Weiyu; Li, Mengzhe; Lin, Hong; Wang, Jingxue; Mao, Xiangzhao

    2016-10-01

    Vibrio parahaemolyticus, a marine pathogen, is a causative agent of gastroenteritis in humans after consumption of contaminated seafood. In recent years, infections with V. parahaemolyticus have become an increasingly frequent factor in microbial food poisoning; therefore, it is urgent to figure out ways to control Vibrio parahaemolyticus. Endolysins, lytic enzymes encoded by bacteriophages, have been regarded as a therapeutic alternative to antibiotics in control of bacterial growth and have been successfully utilized in various areas. Here, we report the full genome sequence of the novel phage qdvp001, which lyses Vibrio parahaemolyticus 17802. The qdvp001 genome consists of a 134,742-bp DNA with a G+C content of 35.35 % and 227 putative open reading frames. Analysis revealed that the qdvp001 open reading frames encoded various putative functional proteins with a putative endolysin gene (ORF 60). No holin genes were identified in qdvp001. ORF 60 was cloned and expressed. The results showed that the purified endolysin Lysqdvp001 had a high hydrolytic activity toward Vibrio parahaemolyticus and a broader spectrum compared to that of the parental bacteriophage qdvp001. Thus, purified endolysin Lysqdvp001 has a potential to be used as an antibacterial agent in the future. PMID:27376376

  3. Interplay between the mechanics of bacteriophage fibers and the strength of virus-host links.

    PubMed

    Ares, P; Garcia-Doval, C; Llauró, A; Gómez-Herrero, J; van Raaij, M J; de Pablo, P J

    2014-05-01

    Viral fibers play a central role in many virus infection mechanisms since they recognize the corresponding host and establish a mechanical link to its surface. Specifically, bacteriophages have to anchor to bacteria through the fibers surrounding the tail before starting the viral DNA translocation into the host. The protein gene product (gp) 37 from bacteriophage T4 long tail fibers forms a fibrous parallel homotrimer located at the distal end of the long tail fibers. Biochemical data indicate that, at least, three of these fibers are required for initial host cell interaction but do not reveal why three and no other numbers are required. By using atomic force microscopy, we obtained high-resolution images of gp37 fibers adsorbed on a mica substrate in buffer conditions and probed their local mechanical properties. Our experiments of radial indentation at the nanometer scale provided a radial stiffness of ∼ 0.08 N/m and a breaking force of ∼ 120 pN. In addition, we performed finite element analysis and determined a Young's modulus of ∼ 20 MPa. From these mechanical parameters, we hypothesize that three viral fibers provide enough mechanical strength to prevent a T4 virus from being detached from the bacteria by the viral particle Brownian motion, delivering a biophysical justification for the previous biochemical data. PMID:25353832

  4. Capture and Detection of T7 Bacteriophages on a Nanostructured Interface

    PubMed Central

    2015-01-01

    A highly ordered array of T7 bacteriophages was created by the electrophoretic capture of phages onto a nanostructured array with wells that accommodated the phages. Electrophoresis of bacteriophages was achieved by applying a positive potential on an indium tin oxide electrode at the bottom of the nanowells. Nanoscale arrays of phages with different surface densities were obtained by changing the electric field applied to the bottom of the nanowells. The applied voltage was shown to be the critical factor in generating a well-ordered phage array. The number of wells occupied by a phage, and hence the concentration of phages in a sample solution, could be quantified by using a DNA intercalating dye that rapidly stains the T7 phage. The fluorescence signal was enhanced by the intrinsic photonic effect made available by the geometry of the platform. It was shown that the quantification of phages on the array was 6 orders of magnitude better than could be obtained with a fluorescent plate reader. The device opens up the possibility that phages can be detected directly without enrichment or culturing, and by detecting phages that specifically infect bacteria of interest, rapid pathogen detection becomes possible. PMID:24650205

  5. Characterization of T-Even Bacteriophage Substructures

    PubMed Central

    Cummings, Donald J.; Kusy, A. R.; Chapman, V. A.; DeLong, S. S.; Stone, K. R.

    1970-01-01

    T-even bacteriophages were grown and purified in bulk quantities. The protein coats were disrupted into their component substructures by treatment with 67% dimethyl sulfoxide (DMSO). Tail fibers and tubes were purified on glycerol-CsCl-D2O gradients and examined with respect to sedimentation properties, subunit molecular weights, amino acid composition, isoelectric points, and morphology. It was found that intact tail fibers had a sedimentation coefficient of 12 to 13S and that dissociated fibers consisted of three classes of proteins having molecular weights of 150 K ± 10, 42 K ± 4, and 28 K ± 3 daltons. A model was constructed in which the 150-K subunit folded back on itself twice to give a three-stranded rope. Each 150-K subunit then represented a half-fiber and it was proposed that the role of the 42- and 28-K subunits was to hold each half-fiber together as well as serve as a possible link with other substructures. Isoelectric point studies also indicated that there were three different proteins with pI values of 3.5, 5.7, and 8.0. Amino acid analyses indicated that fibers had a composition distinct from other phage substructures. In addition, a striking difference was noted in the content of tryptophan among the phages examined. T4B had three to five times more tryptophan than did T2L, T2H, T4D, and T6. Intact tail tubes had an S20,w of 31 to 38S and dissociated tubes consisted of three proteins of molecular weights 57 K ± 5, 38 K ± 4, and 25 K ± 3 daltons. Based on degradation studies with DMSO, it was proposed that these three proteins were arranged in a helical array yielding the tube structure. Isoelectric point studies indicated that there were three major proteins in the tube whose pI values were 5.1, 5.7, and 8.5. No significant differences were observed in the amino acid content of tubes obtained from all the T-even bacteriophages. Images PMID:5497900

  6. Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential

    PubMed Central

    2012-01-01

    Background Staphylococcus epidermidis is a commensal bacterium but can colonize the hospital environment due to its ability to form biofilms favouring adhesion to host tissues, medical devices and increasing resistance to antibiotics. In this context, the use of phages to destroy biofilms is an interesting alternative. Results The complete genomes of two Staphylococcus epidermidis bacteriophages, vB_SepiS-phiIPLA5 and vB_SepiS-phiIPLA7, have been analyzed. Their genomes are 43,581 bp and 42,123 bp, and contain 67 and 59 orfs. Bioinformatic analyses enabled the assignment of putative functions to 36 and 29 gene products, respectively, including DNA packaging and morphogenetic proteins, lysis components, and proteins necessary for DNA recombination, regulation, modification and replication. A point mutation in vB_SepiS-phiIPLA5 lysogeny control-associated genes explained its strictly lytic behaviour. Comparative analysis of phi-IPLA5 and phi-IPLA7 genome structure resembled those of S. epidermidis ϕPH15 and ϕCNPH82 phages. A mosaic structure of S. epidermidis prophage genomes was revealed by PCR analysis of three marker genes (integrase, major head protein and holin). Using these genes, high prevalence (73%) of phage DNA in a representative S. epidermidis strain collection consisting of 60 isolates from women with mastitis and healthy women was determined. Putative pectin lyase-like domains detected in virion-associated proteins of both phages could be involved in exopolysaccharide (EPS) depolymerization, as evidenced by both the presence of a clear halo surrounding the phage lysis zone and the phage-mediated biofilm degradation. Conclusions Staphylococcus epidermidis bacteriophages, vB_SepiS-phiIPLA5 and vB_SepiS-phiIPLA7, have a mosaic structure similar to other widespread S. epidermidis prophages. Virions of these phages are provided of pectin lyase-like domains, which may be regarded as promising anti-biofilm tools. PMID:22681775

  7. Autoinhibition of Bacteriophage T4 Mre11 by Its C-terminal Domain*

    PubMed Central

    Gao, Yang; Nelson, Scott W.

    2014-01-01

    Mre11 and Rad50 form a stable complex (MR) and work cooperatively in repairing DNA double strand breaks. In the bacteriophage T4, Rad50 (gene product 46) enhances the nuclease activity of Mre11 (gene product 47), and Mre11 and DNA in combination stimulate the ATPase activity of Rad50. The structural basis for the cross-activation of the MR complex has been elusive. Various crystal structures of the MR complex display limited protein-protein interfaces that mainly exist between the C terminus of Mre11 and the coiled-coil domain of Rad50. To test the role of the C-terminal Rad50 binding domain (RBD) in Mre11 activation, we constructed a series of C-terminal deletions and mutations in bacteriophage T4 Mre11. Deletion of the RBD in Mre11 eliminates Rad50 binding but only has moderate effect on its intrinsic nuclease activity; however, the additional deletion of the highly acidic flexible linker that lies between RBD and the main body of Mre11 increases the nuclease activity of Mre11 by 20-fold. Replacement of the acidic residues in the flexible linker with alanine elevates the Mre11 activity to the level of the MR complex when combined with deletion of RBD. Nuclease activity kinetics indicate that Rad50 association and deletion of the C terminus of Mre11 both enhance DNA substrate binding. Additionally, a short peptide that contains the flexible linker and RBD of Mre11 acts as an inhibitor of Mre11 nuclease activity. These results support a model where the Mre11 RBD and linker domain act as an autoinhibitory domain when not in complex with Rad50. Complex formation with Rad50 alleviates this inhibition due to the tight association of the RBD and the Rad50 coiled-coil. PMID:25077970

  8. Genetic and biochemical studies of the lipid-containing bacteriophage PR4

    SciTech Connect

    Vanden Boom, T.J.

    1989-01-01

    Bacteriophage PR4 is a lipid-containing bacterial virus able to infect Escherichia coli and Salmonella typhimurium. The icosahedral virion consists of an external protein capsid layer which surrounds a membrane vesicle enclosed ds DNA genome. The author has analyzed the time course of phage PR4 protein synthesis and have identified at least 34 proteins present in phage infected cells not detected in uninfected control cultures. In addition, he has isolated a more extensive set of conditional-lethal nonsense mutants of this virus. This collection of mutants permitted the identification of seven additional phage PR4 gene products, including the terminal genome protein and an accessory lytic factor. The present collection of phage PR4 mutants has been assigned to 19 distinct genetic groups on the basis of genetic complementation tests and sodium dodecyl sulfate polyacrylamide gel electrophoresis analysis of the proteins produced in mutant-infected UV-irradiated cells. A restriction endonuclease map of the phage PR4 genome was constructed which includes 59 sites for ten restriction endonucleases. In addition, he has constructed a collection of recombinant plasmids containing subgenomic DNA fragments of bacteriophage PR4. He has used this collection of plasmids to generate a physical-genetic map of the PR4 genome. The physical-genetic map localizes mutations in 13 phage PR4 genetic groups on the viral DNA molecule. To investigate the role of phosphatidylglycerol (PG) in phage assembly and infectivity, he propagated PR4 on an E. coli mutant defective in PG synthesis. The PG content of phage PR4 grown on the mutant host accounted for 0.4% of the total viral phospholipids, representing a 90-fold decrease in PG relative to the PG content of phage grown on a wild type host.

  9. Bacteriophage Therapy To Reduce Salmonella Colonization of Broiler Chickens▿

    PubMed Central

    Atterbury, R. J.; Van Bergen, M. A. P.; Ortiz, F.; Lovell, M. A.; Harris, J. A.; De Boer, A.; Wagenaar, J. A.; Allen, V. M.; Barrow, P. A.

    2007-01-01

    Acute enteric infections caused by salmonellas remain a major public health burden worldwide. Poultry, particularly chickens, are known to be the main reservoir for this zoonotic pathogen. Although some progress has been made in reducing Salmonella colonization of broiler chickens by using biosecurity and antimicrobials, it still remains a considerable problem. The use of host-specific bacteriophages as a biocontrol is one possible intervention by which Salmonella colonization could be reduced. A total of 232 Salmonella bacteriophages were isolated from poultry farms, abattoirs, and wastewater in 2004 and 2005. Three phages exhibiting the broadest host ranges against Salmonella enterica serotypes Enteritidis, Hadar, and Typhimurium were characterized further by determining their morphology and lytic activity in vitro. These phages were then administered in antacid suspension to birds experimentally colonized with specific Salmonella host strains. The first phage reduced S. enterica serotype Enteritidis cecal colonization by ≥4.2 log10 CFU within 24 h compared with controls. Administration of the second phage reduced S. enterica serotype Typhimurium by ≥2.19 log10 CFU within 24 h. The third bacteriophage was ineffective at reducing S. enterica serotype Hadar colonization. Bacteriophage resistance occurred at a frequency commensurate with the titer of phage being administered, with larger phage titers resulting in a greater proportion of resistant salmonellas. The selection of appropriate bacteriophages and optimization of both the timing and method of phage delivery are key factors in the successful phage-mediated control of salmonellas in broiler chickens. PMID:17526794

  10. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    PubMed

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-01-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage. PMID:24671947

  11. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery

    PubMed Central

    Geertsema, Hylkje J.; Kulczyk, Arkadiusz W.; Richardson, Charles C.; van Oijen, Antoine M.

    2014-01-01

    Replication of DNA plays a central role in transmitting hereditary information from cell to cell. To achieve reliable DNA replication, multiple proteins form a stable complex, known as the replisome, enabling them to act together in a highly coordinated fashion. Over the past decade, the roles of the various proteins within the replisome have been determined. Although many of their interactions have been characterized, it remains poorly understood how replication proteins enter and leave the replisome. In this study, we visualize fluorescently labeled bacteriophage T7 DNA polymerases within the replisome while we simultaneously observe the kinetics of the replication process. This combination of observables allows us to monitor both the activity and dynamics of individual polymerases during coordinated leading- and lagging-strand synthesis. Our data suggest that lagging-strand polymerases are exchanged at a frequency similar to that of Okazaki fragment synthesis and that two or more polymerases are present in the replisome during DNA replication. Our studies imply a highly dynamic picture of the replisome with lagging-strand DNA polymerases residing at the fork for the synthesis of only a few Okazaki fragments. Further, new lagging-strand polymerases are readily recruited from a pool of polymerases that are proximally bound to the replisome and continuously replenished from solution. PMID:24591606

  12. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery.

    PubMed

    Geertsema, Hylkje J; Kulczyk, Arkadiusz W; Richardson, Charles C; van Oijen, Antoine M

    2014-03-18

    Replication of DNA plays a central role in transmitting hereditary information from cell to cell. To achieve reliable DNA replication, multiple proteins form a stable complex, known as the replisome, enabling them to act together in a highly coordinated fashion. Over the past decade, the roles of the various proteins within the replisome have been determined. Although many of their interactions have been characterized, it remains poorly understood how replication proteins enter and leave the replisome. In this study, we visualize fluorescently labeled bacteriophage T7 DNA polymerases within the replisome while we simultaneously observe the kinetics of the replication process. This combination of observables allows us to monitor both the activity and dynamics of individual polymerases during coordinated leading- and lagging-strand synthesis. Our data suggest that lagging-strand polymerases are exchanged at a frequency similar to that of Okazaki fragment synthesis and that two or more polymerases are present in the replisome during DNA replication. Our studies imply a highly dynamic picture of the replisome with lagging-strand DNA polymerases residing at the fork for the synthesis of only a few Okazaki fragments. Further, new lagging-strand polymerases are readily recruited from a pool of polymerases that are proximally bound to the replisome and continuously replenished from solution. PMID:24591606

  13. Electron Microscopic Evidence for Linear Insertion of Bacteriophage MU-1 in Lysogenic Bacteria

    PubMed Central

    Martuscelli, J.; Taylor, A. L.; Cummings, D. J.; Chapman, V. A.; DeLong, S. S.; Cañedo, L.

    1971-01-01

    Temperate bacteriophage Mu-1 was used to generate a lysogenic derivative of the F′lac episome of Escherichia coli. Intact, covalently circular molecules of F′lac and lysogenic F′lac Mu+ deoxyribonucleic acid (DNA) were isolated and examined by electron microscopy. The mean contour lengths of F′lac and F′lac Mu+ molecules were 37.6 ± 0.4 μm and 53.2 ± 0.4 μm, respectively. The mean difference, 15.6 μm, is similar to the mean contour length of 12.9 ± 0.1 μm obtained for linear DNA molecules released by osmotic shock from mature phage Mu-1 virions. These results provide direct physical evidence that phage Mu-1 integrates by linear insertion of its genome into the DNA of lysogenic host bacteria. Chemical and physical analyses of phage Mu-1 DNA indicate that it is similar to E. coli DNA in respect of gross base composition, buoyant density, and melting temperature. Images PMID:4943078

  14. Characterisation of the structure of ocr, the gene 0.3 protein of bacteriophage T7

    PubMed Central

    Atanasiu, C.; Byron, O.; McMiken, H.; Sturrock, S. S.; Dryden, D. T. F.

    2001-01-01

    The product of gene 0.3 of bacteriophage T7, ocr, is a potent inhibitor of type I DNA restriction and modification enzymes. We have used biophysical methods to examine the mass, stability, shape and surface charge distribution of ocr. Ocr is a dimeric protein with hydrodynamic behaviour equivalent to a prolate ellipsoid of axial ratio 4.3 ± 0.7:1 and mass of 27 kDa. The protein is resistant to denaturation but removal of the C-terminal region reduces stability substantially. Six amino acids, N4, D25, N43, D62, S68 and W94, are all located on the surface of the protein and N4 and S68 are also located at the interface between the two 116 amino acid monomers. Negatively charged amino acid side chains surround W94 but these side chains are not part of the highly acidic C-terminus after W94. Ocr is able to displace a short DNA duplex from the binding site of a type I enzyme with a dissociation constant of the order of 100 pM or better. These results suggest that ocr is of a suitable size and shape to effectively block the DNA binding site of a type I enzyme and has a large negatively charged patch on its surface. This charge distribution may be complementary to the charge distribution within the DNA binding site of type I DNA restriction and modification enzymes. PMID:11452031

  15. Characterisation of the structure of ocr, the gene 0.3 protein of bacteriophage T7.

    PubMed

    Atanasiu, C; Byron, O; McMiken, H; Sturrock, S S; Dryden, D T

    2001-07-15

    The product of gene 0.3 of bacteriophage T7, ocr, is a potent inhibitor of type I DNA restriction and modification enzymes. We have used biophysical methods to examine the mass, stability, shape and surface charge distribution of ocr. Ocr is a dimeric protein with hydrodynamic behaviour equivalent to a prolate ellipsoid of axial ratio 4.3 +/- 0.7:1 and mass of 27 kDa. The protein is resistant to denaturation but removal of the C-terminal region reduces stability substantially. Six amino acids, N4, D25, N43, D62, S68 and W94, are all located on the surface of the protein and N4 and S68 are also located at the interface between the two 116 amino acid monomers. Negatively charged amino acid side chains surround W94 but these side chains are not part of the highly acidic C-terminus after W94. Ocr is able to displace a short DNA duplex from the binding site of a type I enzyme with a dissociation constant of the order of 100 pM or better. These results suggest that ocr is of a suitable size and shape to effectively block the DNA binding site of a type I enzyme and has a large negatively charged patch on its surface. This charge distribution may be complementary to the charge distribution within the DNA binding site of type I DNA restriction and modification enzymes. PMID:11452031

  16. Bacteriophage SP82G Inhibition of an Intracellular Deoxyribonucleic Acid Inactivation Process in Bacillus subtilis1

    PubMed Central

    McAllister, William T.; Green, D. MacDonald

    1972-01-01

    The stability of SP82G bacteriophage deoxyribonucleic acid (DNA) after its uptake by competent Bacillus subtilis was examined by determining the ability of superinfecting phage particles to rescue genetic markers carried by the infective DNA. These experiments show that a DNA inactivation process within the cell is inhibited after infection of the cell by intact phage particles. The inhibition is maximally expressed 6 min after phage infection and is completely prevented by the addition of chloramphenicol at the time of infection. The protective effect of this function extends even to infective DNA which was present in the cell before the addition of intact phage. Continued protein synthesis does not appear to be a requirement for the maintenance of the inhibition. In an analogous situation, if infectious centers resulting from singly infecting phage particles are exposed to chloramphenicol shortly after the time of infection, an exponential decrease in the survival of infectious centers with time held in chloramphenicol is observed. If the addition of chloramphenicol is delayed until 6 min after infection, the infectious centers are resistant to chloramphenicol. The sensitivity of infectious centers treated with chloramphenicol at early times after infection is strongly dependent upon the multiplicity of infection and is consistent with a model of multiplicity reactivation. These results indicate that injected DNA is also susceptible to the intracellular inactivation process and suggest that the inhibition of this system is necessary for the successful establishment of an infectious center. PMID:4625174

  17. The Crystal Structure of Bacteriophage HK97 gp6: Defining a Large Family of Head-Tail Connector Proteins

    SciTech Connect

    Cardarelli, Lia; Lam, Robert; Tuite, Ashleigh; Baker, Lindsay A; Sadowski, Paul D; Radford, Devon R; Rubinstein, John L; Battaile, Kevin P; Chirgadze, Nickolay; Maxwell, Karen L; Davidson, Alan R

    2010-08-17

    The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 {angstrom} crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly.

  18. The Crystal Structure of Bacteriophage HK97 gp6: Defining a Large Family of Head-Tail Connector Proteins

    SciTech Connect

    Cardarelli, Lia; Lam, Robert; Tuite, Ashleigh; Baker, Lindsay A; Sadowski, Paul D; Radford, Devon R; Rubinstein, John L; Battaile, Kevin P; Chirgadze, Nickolay; Maxwell, Karen L; Davidson, Alan R

    2011-11-23

    The final step in the morphogenesis of long-tailed double-stranded DNA bacteriophages is the joining of the DNA-filled head to the tail. The connector is a specialized structure of the head that serves as the interface for tail attachment and the point of egress for DNA from the head during infection. Here, we report the determination of a 2.1 Å crystal structure of gp6 of bacteriophage HK97. Through structural comparisons, functional studies, and bioinformatic analysis, gp6 has been determined to be a component of the connector of phage HK97 that is evolutionarily related to gp15, a well-characterized connector component of bacteriophage SPP1. Whereas the structure of gp15 was solved in a monomeric form, gp6 crystallized as an oligomeric ring with the dimensions expected for a connector protein. Although this ring is composed of 13 subunits, which does not match the symmetry of the connector within the phage, sequence conservation and modeling of this structure into the cryo-electron microscopy density of the SPP1 connector indicate that this oligomeric structure represents the arrangement of gp6 subunits within the mature phage particle. Through sequence searches and genomic position analysis, we determined that gp6 is a member of a large family of connector proteins that are present in long-tailed phages. We have also identified gp7 of HK97 as a homologue of gp16 of phage SPP1, which is the second component of the connector of this phage. These proteins are members of another large protein family involved in connector assembly.

  19. A bacteriophage endolysin that eliminates intracellular streptococci

    PubMed Central

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB–PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. DOI: http://dx.doi.org/10.7554/eLife.13152.001 PMID:26978792

  20. Sampling submicron T1 bacteriophage aerosols.

    PubMed

    Harstad, J B

    1965-11-01

    Liquid impingers, filter papers, and fritted bubblers were partial viable collectors of radioactive submicron T1 bacteriophage aerosols at 30, 55, and 85% relative humidity. Sampler differences for viable collection were due to incomplete physical collection (slippage) and killing of phage by the samplers. Dynamic aerosols of a mass median diameter of 0.2 mu were produced with a Dautrebande generator from concentrated aqueous purified phage suspensions containing extracellular soluble radioactive phosphate as a physical tracer. There was considerable destruction of phage by the Dautrebande generator; phage titers of the Dautrebande suspension decreased exponentially, but there was a progressive (linear) increase in tracer titers. Liquid impingers recovered the most viable phage but allowed considerable (30 to 48%) slippage, which varies inversely with the aerosol relative humidity. Filter papers were virtually complete physical collectors of submicron particles but were the most destructive. Fritted bubbler slippage was more than 80%. With all samplers, phage kill was highest at 85% relative humidity and lowest at 55% relative humidity. An electrostatic precipitator was used to collect aerosol samples for particle sizing with an electron microscope. The particle size was slightly larger at 85% relative humidity than at 30 or 55% relative humidity. PMID:5866038

  1. Characteristics of bacteriophages for Micromonospora purpurea.

    PubMed

    Kikuchi, M; Perlman, D

    1978-07-01

    Chemical and physical stabilities of bacteriophages øUW 21 and øUW 51 infecting Micromonospora purpurea ATCC 15835 were examined. Both phages were stable over the pH range of 5 to 8 and to heating at temperatures up to 50 degrees C and especially stable in buffer containing magnesium ion. Exposure to 1 M Ca(NO3)2 inactivated both phages, and phage øUW 51 was also susceptible to 1 M CaCl2, 0.1 M tris(hydroxymethyl)aminomethane, and 0.3% H2O2. Phage plating efficiency was highest on the cultures at logarithmic phase and sometimes much influenced by host growth. Phage øUW 51 has a latent period of 2 h at 34 degrees C and a burst size between 35 and 40. The latent period for phage øUW 21 is about 12 h, and the burst size is smaller than 30. PMID:29557

  2. A bacteriophage endolysin that eliminates intracellular streptococci.

    PubMed

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-01-01

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities. PMID:26978792

  3. Lipopolysaccharide-specific bacteriophage for Klebsiella pneumoniae C3.

    PubMed Central

    Tomás, J M; Jofre, J T

    1985-01-01

    Bacteriophage FC3-1 is one of several specific bacteriophages of Klebsiella pneumoniae C3 isolated in our laboratory. Unlike receptors for other Klebsiella phages, the bacteriophage FC3-1 receptor was shown to be lipopolysaccharide, specifically the polysaccharide fraction (O-antigen and core region). We concluded that capsular polysaccharide, outer membrane proteins, and lipid A were not involved in phage binding. Mutants resistant to this phage were isolated and were found to be devoid of lipopolysaccharide O-antigen by several criteria but to contain capsular material serologically identical to that of the wild type. The polysaccharide fraction was concluded to be the primary phage receptor, indicating that it is available to the phage. Images PMID:3888963

  4. Effects of sunlight on bacteriophage viability and structure.

    PubMed Central

    Wommack, K E; Hill, R T; Muller, T A; Colwell, R R

    1996-01-01

    Current estimates of viral abundance in natural waters rely on direct counts of virus-like particles (VLPs), using either transmission or epifluorescence microscopy. Direct counts of VLPs, while useful in studies of viral ecology, do not indicate whether the observed VLPs are capable of infection and/or replication. Rapid decay in bacteriophage viability under environmental conditions has been observed. However, it has not been firmly established whether there is a corresponding degradation of the virus particles. To address this question, viable and direct counts were carried out employing two Chesapeake Bay bacteriophages in experimental microcosms incubated for 56 h at two depths in the York River estuary. Viruses incubated in situ in microcosms at the surface yielded decay rates in full sunlight of 0.11 and 0.06 h-1 for CB 38 phi and CB 7 phi, respectively. The number of infective particles in microcosms in the dark and at a depth of 1 m was not significantly different from laboratory controls, with decay rates averaging 0.052 h-1 for CB 38 phi and 0.037 h-1 for CB 7 phi. Direct counts of bacteriophages decreased in teh estuarine microcosms, albeit only at a rate of 0.028 h-1, and were independent of treatment. Destruction of virus particles is concluded to be a process separate from loss of infectivity. It is also concluded that strong sunlight affects the viability of bacteriophages in surface waters, with the result that direct counts of VLPs overestimate the number of bacteriophage capable of both infection and replication. However, in deeper waters, where solar radiation is not a significant factor, direct counts should more accurately estimate numbers of viable bacteriophage. PMID:8919794

  5. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    PubMed

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  6. Complete genome sequence of Croceibacter bacteriophage P2559S.

    PubMed

    Kang, Ilnam; Kang, Dongmin; Cho, Jang-Cheon

    2012-08-01

    Croceibacter atlanticus HTCC2559(T), a marine bacterium isolated from the Sargasso Sea, is a phylogenetically unique member of the family Flavobacteriaceae. Strain HTCC2559(T) possesses genes related to interaction with primary producers, which makes studies on bacteriophages infecting the strain interesting. Here we report the genome sequence of bacteriophage P2559S, which was isolated off the coast of the Republic of Korea and lytically infects HTCC2559(T). Many genes predicted in the P2559S genome had their homologs in Bacteroides phages. PMID:22843867

  7. Engineered enzymatically active bacteriophages and methods of uses thereof

    DOEpatents

    Collins, James J; Kobayashi, Hideki; Kearn, Mads; Araki, Michihiro; Friedland, Ari; Lu, Timothy Kuan-Ta

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  8. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    PubMed

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field. PMID:26626879

  9. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    SciTech Connect

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  10. Specific binding of a bacteriophage at a hydrocarbon-water interface. [Acinetobacter calcoaceticus

    SciTech Connect

    Pines, O.; Gutnick, D.

    1984-01-01

    Emulsan, the extracellular polyanionic emulsifying agent produced by Acinetobacter calcoaceticus RAG-1, has been implicated as a receptor for a specific virulent RAG-1 bacteriophage, ap3. Aqueous solutions of emulsan did not interfere with phage ap3 adsorption to RAG-1 cells. However, binding of phage ap3 occurred at the interfaces of hexadecane-in-water emulsions specifically stabilized by emulsan polymers. Binding of ap3 to emulsions was inhibited either in the presence of anti-emulsan antibodies or in the presence of a specific emulsan depolymerase. Moreover, when the phage was first bound to emulsan-stabilized emulsions and the emulsions subsequently treated with emulsan depolymerase, viable phage was released, indicating that phage ap3 DNA ejection was not triggered by binding. The results indicate that emulsan functions as the ap3 receptor and suggest that to function as a receptor, emulsan assumes a specific conformation conferred on it by its specific interaction with hydrophobic surfaces.

  11. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    NASA Technical Reports Server (NTRS)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  12. Phage Display on the Base of Filamentous Bacteriophages: Application for Recombinant Antibodies Selection

    PubMed Central

    Morozova, V.V.

    2009-01-01

    The display of peptides and proteins on the surface of filamentous bacteriophage is a powerful methodology for selection of peptides and protein domains, including antibodies. An advantage of this methodology is the direct physical link between the phenotype and the genotype, as an analyzed polypeptide and its encoding DNA fragment exist in one phage particle. Development of phage display antibody libraries provides repertoires of phage particles exposing antibody fragments of great diversity. The biopanning procedure facilitates selection of antibodies with high affinity and specificity for almost any target. This review is an introduction to phage display methodology. It presents recombinant antibodies display in more details:, construction of phage libraries of antibody fragments and different strategies for the biopanning procedure. PMID:22649612

  13. Evidence that bacteriophage λ lysogens may induce in response to the proton motive force uncoupler CCCP.

    PubMed

    Thomason, Lynn C; Court, Donald L

    2016-02-01

    We describe a genetic β-galactoside reporter system using a disk diffusion assay on MacConkey Lactose agar petri plates to monitor maintenance of the bacteriophage λ prophage state and viral induction in Escherichia coli K-12. Evidence is presented that the phage λ major lytic promoters, pL and pR, are activated when cells containing the reporters are exposed to the energy poison carbonyl cyanide m-chlorophenyl hydrazine, CCCP. This uncoupler of oxidative phosphorylation inhibits ATP synthesis by collapsing the proton motive force. Expression of the λ lytic promoters in response to CCCP requires host RecA function and an autocleavable CI repressor, as does SOS induction of the λ prophage that occurs by a DNA damage-dependent pathway. λ Cro function is required for CCCP-mediated activation of the λ lytic promoters. CCCP does not induce an sfi-lacZ SOS reporter. PMID:26705574

  14. Characterization of the novel T4-like Salmonella enterica bacteriophage STP4-a and its endolysin.

    PubMed

    Li, Meng; Li, Mengzhe; Lin, Hong; Wang, Jingxue; Jin, Yanqiu; Han, Feng

    2016-02-01

    While screening for new antimicrobial agents for multidrug-resistant Salmonella enterica, the novel lytic bacteriophage STP4-a was isolated and characterized. Phage morphology revealed that STP4-a belongs to the family Myoviridae. Bacterial challenge assays showed that different serovars of Salmonella enterica were susceptible to STP4-a infection. The genomic characteristics of STP4-a, containing 159,914 bp of dsDNA with an average GC content of 36.86 %, were determined. Furthermore, the endolysin of STP4-a was expressed and characterized. The novel endolysin, LysSTP4, has hydrolytic activity towards outer-membrane-permeabilized S. enterica and Escherichia coli. These results provide essential information for the development of novel phage-based biocontrol agents against S. enterica. PMID:26563319

  15. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97

    PubMed Central

    Chang, Yoonjee; Shin, Hakdong; Lee, Ju-Hoon; Park, Chul Jong; Paik, Soon-Young; Ryu, Sangryeol

    2015-01-01

    A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus. PMID:26437428

  16. Genomic characterization and comparison of seven Myoviridae bacteriophage infecting Bacillus thuringiensis.

    PubMed

    Sauder, Amber Brooke; Quinn, McKenzie Rea; Brouillette, Alexis; Caruso, Steven; Cresawn, Steven; Erill, Ivan; Lewis, Lynn; Loesser-Casey, Kathryn; Pate, Morgan; Scott, Crystal; Stockwell, Stephanie; Temple, Louise

    2016-02-01

    Bacillus thuringiensis Kurstaki, a bacterium that is a source of biopesticides and a safe simulant for pathogenic Bacillus species, was used to isolate seven unique bacteriophages. The phage genomes were sequenced and ranged in size from 158,100 to 163,019 bp encoding 290-299 genes, and the GC content of ~38% was similar to that of the host bacterium. All phages had terminal repeats 2-3 kb long. Three of the phages encoded tRNAs and three contained a self-splicing intron in the DNA polymerase gene. They were categorized as a single cluster (>60% nucleotide conservation) containing three subclusters (>80% nucleotide conservation), supported by genomic synteny and phylogenetic analysis. Considering the published genomes of phages that infect the genus Bacillus and noting the ability of many of the Bacillus cereus group phages to infect multiple species, a clustering system based on gene content is proposed. PMID:26773385

  17. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  18. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1990-01-01

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  19. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.; Moffatt, B.A.; Dunn, J.J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells. 10 figs.

  20. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F.W.; Davanloo, P.; Rosenberg, A.H.

    1984-03-30

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the T7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties.

  1. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1997-12-02

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  2. Cloning and expression of the gene for bacteriophage T7 RNA polymerase

    DOEpatents

    Studier, F. William; Davanloo, Parichehre; Rosenberg, Alan H.; Moffatt, Barbara A.; Dunn, John J.

    1999-02-09

    This application describes a means to clone a functional gene for bacteriophage T7 RNA polymerase. Active T7 RNA polymerase is produced from the cloned gene, and a plasmid has been constructed that can produce the active enzyme in large amounts. T7 RNA polymerase transcribes DNA very efficiently and is highly selective for a relatively long promoter sequence. This enzyme is useful for synthesizing large amounts of RNA in vivo or in vitro, and is capable of producing a single RNA selectively from a complex mixture of DNAs. The procedure used to obtain a clone of the R7 RNA polymerase gene can be applied to other T7-like phages to obtain clones that produce RNA polymerases having different promoter specificities, different bacterial hosts, or other desirable properties. T7 RNA polymerase is also used in a system for selective, high-level synthesis of RNAs and proteins in suitable host cells.

  3. pH-induced stability switching of the bacteriophage HK97 maturation pathway.

    PubMed

    May, Eric R; Arora, Karunesh; Brooks, Charles L

    2014-02-26

    Many viruses undergo large-scale conformational changes during their life cycles. Blocking the transition from one stage of the life cycle to the next is an attractive strategy for the development of antiviral compounds. In this work, we have constructed an icosahedrally symmetric, low-energy pathway for the maturation transition of bacteriophage HK97. By conducting constant-pH molecular dynamics simulations on this pathway, we identify which residues are contributing most significantly to shifting the stability between the states along the pathway under differing pH conditions. We further analyze these data to establish the connection between critical residues and important structural motifs which undergo reorganization during maturation. We go on to show how DNA packaging can induce spontaneous reorganization of the capsid during maturation. PMID:24495192

  4. Genome Sequence of Gordonia Bacteriophage Lucky10

    PubMed Central

    Brown, Aleks K.; Fisher, Daniel J.; Okwiya, Nicholas H.; Savage, Kaitlyn A.; German, Brian A.; McDonnell, Jill E.; Schafer, Claire E.; Yu, Victor J.; Furbee, Emily C.; Grubb, Sarah R.; Warner, Marcie H.; Montgomery, Matthew T.; Garlena, Rebecca A.; Russell, Daniel A.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2016-01-01

    Lucky10 is a newly isolated phage of Gordonia terrae 3612 that was recovered from a soil sample in Pittsburgh, PA. Lucky10 has siphoviral morphology and a double-stranded DNA (dsDNA) genome of 42,979 bp, with 70 predicted protein-coding genes. Lucky10 shows little similarity to previously reported Gordonia phages. PMID:27365346

  5. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters.

    PubMed

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent; Doré, William

    2013-09-15

    Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml(-1), respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml(-1) compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml(-1). A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g(-1) and 1050 PFU 100 g(-1) respectively. PMID:23850211

  6. Thermus thermophilus bacteriophage ϕYS40 genome and proteomic characterization of virions

    PubMed Central

    Naryshkina, Tatyana; Liu, Jing; Florens, Laurence; Swanson, Selene K.; Pavlov, Andrey R.; Pavlova, Nadejda V.; Inman, Ross; Kozyavkin, Sergei A.; Washburn, Michael; Mushegian, Arcady; Severinov, Konstantin

    2006-01-01

    We determined the sequence of the 152,372-bp genome of ϕYS40, a lytic tailed bacteriophage of Thermus thermophilus. The genome contains 170 putative open reading frames and three tRNA genes. Functions for 25% of ϕYS40 gene products were predicted on the basis of similarity to proteins of known function from diverse phages and bacteria. ϕYS40 encodes a cluster of proteins involved in nucleotide salvage, such as flavin-dependent thymidylate synthase, thymidylate kinase, ribonucleotide reductase, and deoxycytidylate deaminase, and in DNA replication, such as DNA primase, helicase, type A DNA polymerase, and predicted terminal protein involved in initiation of DNA synthesis. The structural genes of ϕYS40, most of which have no similarity to sequences in public databases, were identified by mass-spectrometric analysis of purified virions. Various ϕYS40 proteins have different phylogenetic neighbors, including Myovirus, Podovirus, and Siphovirus gene products, bacterial genes, and in one case, a dUTPase from a eukaryotic virus. ϕYS40 has apparently arisen through multiple acts of recombination between different phage genomes as well as through acquisition of bacterial genes. PMID:17027029

  7. A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods

    PubMed Central

    Lee, Ju-Hoon; Bai, Jaewoo; Shin, Hakdong; Kim, Yeran; Park, Bookyung; Heu, Sunggi

    2015-01-01

    Cronobacter sakazakii is an important pathogen that causes high mortality in infants. Due to its occasional antibiotic resistance, a bacteriophage approach might be an alternative effective method for the control of this pathogen. To develop a novel biocontrol agent using bacteriophages, the C. sakazakii-infecting phage CR5 was newly isolated and characterized. Interestingly, this phage exhibited efficient and relatively durable host lysis activity. In addition, a specific gene knockout study and subsequent complementation experiment revealed that this phage infected the host strain using the bacterial flagella. The complete genome sequence analysis of phage CR5 showed that its genome contains 223,989 bp of DNA, including 231 predicted open reading frames (ORFs), and it has a G+C content of 50.06%. The annotated ORFs were classified into six functional groups (structure, packaging, host lysis, DNA manipulation, transcription, and additional functions); no gene was found to be related to virulence or toxin or lysogen formation, but >80% of the predicted ORFs are unknown. In addition, a phage proteomic analysis using SDS-PAGE and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) revealed that seven phage structural proteins are indeed present, supporting the ORF predictions. To verify the potential of this phage as a biocontrol agent against C. sakazakii, it was added to infant formula milk contaminated with a C. sakazakii clinical isolate or food isolate, revealing complete growth inhibition of the isolates by the addition of phage CR5 when the multiplicity of infection (MOI) was 105. PMID:26497465

  8. A Novel Bacteriophage Targeting Cronobacter sakazakii Is a Potential Biocontrol Agent in Foods.

    PubMed

    Lee, Ju-Hoon; Bai, Jaewoo; Shin, Hakdong; Kim, Yeran; Park, Bookyung; Heu, Sunggi; Ryu, Sangryeol

    2016-01-01

    Cronobacter sakazakii is an important pathogen that causes high mortality in infants. Due to its occasional antibiotic resistance, a bacteriophage approach might be an alternative effective method for the control of this pathogen. To develop a novel biocontrol agent using bacteriophages, the C. sakazakii-infecting phage CR5 was newly isolated and characterized. Interestingly, this phage exhibited efficient and relatively durable host lysis activity. In addition, a specific gene knockout study and subsequent complementation experiment revealed that this phage infected the host strain using the bacterial flagella. The complete genome sequence analysis of phage CR5 showed that its genome contains 223,989 bp of DNA, including 231 predicted open reading frames (ORFs), and it has a G+C content of 50.06%. The annotated ORFs were classified into six functional groups (structure, packaging, host lysis, DNA manipulation, transcription, and additional functions); no gene was found to be related to virulence or toxin or lysogen formation, but >80% of the predicted ORFs are unknown. In addition, a phage proteomic analysis using SDS-PAGE and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) revealed that seven phage structural proteins are indeed present, supporting the ORF predictions. To verify the potential of this phage as a biocontrol agent against C. sakazakii, it was added to infant formula milk contaminated with a C. sakazakii clinical isolate or food isolate, revealing complete growth inhibition of the isolates by the addition of phage CR5 when the multiplicity of infection (MOI) was 10(5). PMID:26497465

  9. Mutant bacteriophages, Frank Macfarlane Burnet, and the changing nature of "genespeak" in the 1930s.

    PubMed

    Sankaran, Neeraja

    2010-01-01

    In 1936, Frank Macfarlane Burnet published a paper entitled "Induced lysogenicity and the mutation of bacteriophage within lysogenic bacteria," in which he demonstrated that the introduction of a specific bacteriophage into a bacterial strain consistently and repeatedly imparted a specific property - namely the resistance to a different phage - to the bacterial strain that was originally susceptible to lysis by that second phage. Burnet's explanation for this change was that the first phage was causing a mutation in the bacterium which rendered it and its successive generations of offspring resistant to lysogenicity. At the time, this idea was a novel one that needed compelling evidence to be accepted. While it is difficult for us today to conceive of mutations and genes outside the context of DNA as the physico-chemical basis of genes, in the mid 1930s, when this paper was published, DNA's role as the carrier of hereditary information had not yet been discovered and genes and mutations were yet to acquire physical and chemical forms. Also, during that time genes were considered to exist only in organisms capable of sexual modes of replication and the status of bacteria and viruses as organisms capable of containing genes and manifesting mutations was still in question. Burnet's paper counts among those pieces of work that helped dispel the notion that genes, inheritance and mutations were tied to an organism's sexual status. In this paper, I analyze the implications of Burnet's paper for the understanding of various concepts - such as "mutation," and "gene," - at the time it was published, and how those understandings shaped the development of the meanings of these terms and our modern conceptions thereof. PMID:20665082

  10. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    PubMed

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  11. Ejecting Phage DNA against Cellular Turgor Pressure

    PubMed Central

    Marion, Sanjin; Šiber, Antonio

    2014-01-01

    We examine in vivo ejection of noncondensed DNA from tailed bacteriophages into bacteria. The ejection is dominantly governed by the physical conditions in the bacteria. The confinement of the DNA in the virus capsid only slightly helps the ejection, becoming completely irrelevant during its last stages. A simple calculation based on the premise of condensed DNA in the cell enables us to estimate the maximal bacterial turgor pressure against which the ejection can still be fully realized. The calculated pressure (∼5 atm) shows that the ejection of DNA into Gram-negative bacteria could proceed spontaneously, i.e., without the need to invoke active mechanisms. PMID:25418173

  12. Complete Genome Sequence of Bacillus megaterium Bacteriophage Eldridge

    PubMed Central

    Reveille, Alexandra M.; Eldridge, Kimberly A.

    2016-01-01

    In this study the complete genome sequence of the unique bacteriophage Eldridge, isolated from soil using Bacillus megaterium as the host organism, was determined. Eldridge is a myovirus with a genome consisting of 242 genes and is unique when compared to phage sequences in GenBank. PMID:27103735

  13. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge.

    PubMed

    Cornell, Jessica L; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj; Temple, Louise

    2016-01-01

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages. PMID:27540049

  14. Environmental Augmentation with Bacteriophage Prevents Colibacillosis in Broiler Chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages are viruses that kill bacteria. They are plentiful in nature, are safe having no known activity to human or animal cells, and are an attractive alternative to antibiotics. The objectives of this research were to establish an experimental model of colibacillosis induced by indirect e...

  15. Bacteriophage for prophylaxis and therapy in cattle, poultry, and pigs.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The successful use of virulent (lytic) bacteriophages (phages) in preventing and treating neonatal enterotoxigenic Escherichia coli infections in calves, lambs and pigs has prompted investigation of other applications phage therapy in food animals. While results have been very variable, some indica...

  16. Isolation of an Lc-specific Escherichia coli bacteriophage.

    PubMed Central

    Fralick, J A; Diedrich, D L; Casey-Wood, S

    1990-01-01

    We isolated an OmpF-specific bacteriophage whose host range mutant, SQ108h2, requires the presence of the Lc porin for its attachment and which can be used to screen or select for Lc-defective mutants among Escherichia coli K-12 strains lysogenic for the PA-2 converting phage. Images FIG. 1 PMID:1689719

  17. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated the antilisterial activity of generally recognized as safe (GRAS) bacteriophage LISTEX P100 (phage P100) on the surface of raw salmon fillet tissue against Listeria monocytogenes serotypes 1/2a and 4b. In a broth model system, phage P100 completely inhibited L. monocytogenes gro...

  18. Bacteriophage and peptidoglycan degrading enzymes with antimicrobial applications.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophage are viruses that infect and utilize bacteria as their host. They can reside in the bacterial genome as a prophage, or enter the lytic phase, take over the host gene expression machinery, synthesize new phage particles, lyse the host, and release up to hundreds of phage progeny. Lysis...

  19. BACTERIOPHAGE TRANSPORT IN SANDY SOIL AND FRACTURED TUFF

    EPA Science Inventory

    Bacteriophage transport was investigated in laboratory column experiments using sandy soil, a controlled field study in a sandy wash, and laboratory experiments using fractured rock. In the soil columns, the phage MS-2 exhibited significant dispersion and was excluded from 35 to ...

  20. Characterization of Salmonella bacteriophages isolated from swine lagoon effluent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four Salmonella bacteriophages originally isolated from swine lagoon effluent were further characterized. Their differences and similarities to known phages and to each other and their potential for biocontrol of Salmonella were assessed. In host inoculation spot tests the lagoon phages produced s...

  1. Factors Affecting Survival of Bacteriophage on Tomato Leaf Surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated p...

  2. Use of bacteriophages in controlling E. coli in leafy vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bacteriophages are viruses that can infect and lys (kill) bacteria. These viruses are not harmful to humans and are present in the environment and many foods. Enterohemmorhagic E. coli (EHEC), like E. coli O157:H7, have been associated with contaminated bagged leafy green commodities. Outbreaks o...

  3. UPTAKE OF BACTERIOPHAGE F2 THROUGH PLANT ROOTS

    EPA Science Inventory

    A model system was designed to measure viral uptake through the roots of plants and translocation to distal plant parts. For this study, uptake of bacteriophage f2 was measured in corn and bean plants growing in hydroponic solutions. Few phage were detected in plants with uncut r...

  4. Complete Genome Sequence of Bacillus thuringiensis Bacteriophage Smudge

    PubMed Central

    Cornell, Jessica L.; Breslin, Eileen; Schuhmacher, Zachary; Himelright, Madison; Berluti, Cassandra; Boyd, Charles; Carson, Rachel; Del Gallo, Elle; Giessler, Caris; Gilliam, Benjamin; Heatherly, Catherine; Nevin, Julius; Nguyen, Bryan; Nguyen, Justin; Parada, Jocelyn; Sutterfield, Blake; Tukruni, Muruj

    2016-01-01

    Smudge, a bacteriophage enriched from soil using Bacillus thuringiensis DSM-350 as the host, had its complete genome sequenced. Smudge is a myovirus with a genome consisting of 292 genes and was identified as belonging to the C1 cluster of Bacillus phages. PMID:27540049

  5. Mechanism of integrating foreign DNA during transformation of Bacillus subtilis.

    PubMed Central

    Duncan, C H; Wilson, G A; Young, F E

    1978-01-01

    Genes encoding thymidylate synthetase from Bacillus subtilis bacteriophages were cloned in Escherichia coli. Chimeric plasmids pCD1 and pCD3 were constructed from site-specific endonuclease digests of bacteriophage phi3T DNA cloned in pMB9 in E. coli. Similar cloning techniques with bacteriophage beta22 DNA yielded chimeric plasmids pCD4, pCD5, and pCD6. Endonuclease digests of DNA from pCD1 and pCD3 propagated in E. coli or from DNA isolated from bacteriophage phi3T propagated in B. subtilis transformed B. subtilis from Thy- to Thy+. Intact DNA from bacteriophage beta22, endonuclease digests of beta22 DNA, and a chimeric plasmid (pCD5) composed only of the thybeta22 gene and pMB9 did not transform B. subtilis from Thy- to Thy+ even though pCD5 could transform Thy- E. coli to Thy+. However, if the thybeta22 fragment from pCD5 was introduced into another chimeric plasmid, pCD2, that contains a region of homology to the chromosome of B. subtilis in addition to pMB9, transformation of Thy- clones of B. subtilis was possible. Furthermore, Southern hybridization analyses of the digests of chromosomal DNA from the Thy+ transformants established that the entire chimeric plasmid was incorporated into the chromosome of B. subtilis. Treatment of these plasmids with site-specific endonucleases abolished transformation. These results indicated that the entire chimeric plasmid can be incorporated into the chromosome of B. subtilis by a Campbell-like model. Therefore, an additional mechanism for transformation exists whereby plasmids can be integrated if sufficient chromosomal homology is maintained. Images PMID:99740

  6. Diverse Temperate Bacteriophage Carriage in Clostridium difficile 027 Strains

    PubMed Central

    Nale, Janet Y.; Shan, Jinyu; Hickenbotham, Peter T.; Fawley, Warren N.; Wilcox, Mark H.; Clokie, Martha R. J.

    2012-01-01

    Background The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI). Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027. Methodology/Principal Findings We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs) in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species. Conclusion/Significance A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile

  7. Translocation of DNA across bacterial membranes.

    PubMed Central

    Dreiseikelmann, B

    1994-01-01

    DNA translocation across bacterial membranes occurs during the biological processes of infection by bacteriophages, conjugative DNA transfer of plasmids, T-DNA transfer, and genetic transformation. The mechanism of DNA translocation in these systems is not fully understood, but during the last few years extensive data about genes and gene products involved in the translocation processes have accumulated. One reason for the increasing interest in this topic is the discussion about horizontal gene transfer and transkingdom sex. Analyses of genes and gene products involved in DNA transfer suggest that DNA is transferred through a protein channel spanning the bacterial envelope. No common model exists for DNA translocation during phage infection. Perhaps various mechanisms are necessary as a result of the different morphologies of bacteriophages. The DNA translocation processes during conjugation, T-DNA transfer, and transformation are more consistent and may even be compared to the excretion of some proteins. On the basis of analogies and homologies between the proteins involved in DNA translocation and protein secretion, a common basic model for these processes is presented. PMID:7968916

  8. Whole genome sequencing of environmental Vibrio cholerae O1 from 10 nanograms of DNA using short reads.

    PubMed

    Pérez Chaparro, Paula Juliana; McCulloch, John Anthony; Cerdeira, Louise Teixeira; Al-Dilaimi, Arwa; Canto de Sá, Lena Lillian; de Oliveira, Rodrigo; Tauch, Andreas; de Carvalho Azevedo, Vasco Ariston; Cruz Schneider, Maria Paula; da Silva, Artur Luiz da Costa

    2011-11-01

    Multiple Displacement Amplification (MDA) of DNA using φ29 (phi29) DNA polymerase amplifies DNA several billion-fold, which has proved to be potentially very useful for evaluating genome information in a culture-independent manner. Whole genome sequencing using DNA from a single prokaryotic genome copy amplified by MDA has not yet been achieved due to the formation of chimeras and skewed amplification of genomic regions during the MDA step, which then precludes genome assembly. We have hereby addressed the issue by using 10 ng of genomic Vibrio cholerae DNA extracted within an agarose plug to ensure circularity as a starting point for MDA and then sequencing the amplified yield using the SOLiD platform. We successfully managed to assemble the entire genome of V. cholerae strain LMA3984-4 (environmental O1 strain isolated in urban Amazonia) using a hybrid de novo assembly strategy. Using our method, only 178 out of 16,713 (1%) of contigs were not able to be inserted into either chromosome scaffold, and out of these 178, only 3 appeared to be chimeras. The other contigs seem to be the result of template-independent non-specific amplification during MDA, yielding spurious reads. Extraction of genomic DNA within an agarose plug in order to ensure circularity of the extracted genome might be key to minimizing amplification bias by MDA for WGS. PMID:21871929

  9. Bacteriophage P22 ejects all of its internal proteins before its genome.

    PubMed

    Jin, Yan; Sdao, Sophia M; Dover, John A; Porcek, Natalia B; Knobler, Charles M; Gelbart, William M; Parent, Kristin N

    2015-11-01

    Double-stranded DNA bacteriophages are highly pressurized, providing a force driving ejection of a significant fraction of the genome from its capsid. In P22-like Podoviridae, internal proteins ("E proteins") are packaged into the capsid along with the genome, and without them the virus is not infectious. However, little is known about how and when these proteins come out of the virus. We employed an in vitro osmotic suppression system with high-molecular-weight polyethylene glycol to study P22 E protein release. While slow ejection of the DNA can be triggered by lipopolysaccharide (LPS), the rate is significantly enhanced by the membrane protein OmpA from Salmonella. In contrast, E proteins are not ejected unless both OmpA and LPS are present and their ejection when OmpA is present is largely complete before any genome is ejected, suggesting that E proteins play a key role in the early stage of transferring P22 DNA into the host. PMID:26245366

  10. Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model.

    PubMed

    Yosef, Ido; Edgar, Rotem; Levy, Asaf; Amitai, Gil; Sorek, Rotem; Munitz, Ariel; Qimron, Udi

    2016-01-01

    The emergence of mutations following growth-limiting conditions underlies bacterial drug resistance, viral escape from the immune system and fundamental evolution-driven events. Intriguingly, whether mutations are induced by growth limitation conditions or are randomly generated during growth and then selected by growth limitation conditions remains an open question(1). Here, we show that bacteriophage T7 undergoes apparent stress-induced mutagenesis when selected for improved recognition of its host's receptor. In our unique experimental set-up, the growth limitation condition is physically and temporally separated from mutagenesis: growth limitation occurs while phage DNA is outside the host, and spontaneous mutations occur during phage DNA replication inside the host. We show that the selected beneficial mutations are not pre-existing and that the initial slow phage growth is enabled by the phage particle's low-efficiency DNA injection into the host. Thus, the phage particle allows phage populations to initially extend their host range without mutagenesis by virtue of residual recognition of the host receptor. Mutations appear during non-selective intracellular replication, and the frequency of mutant phages increases by natural selection acting on free phages, which are not capable of mutagenesis. PMID:27572836

  11. Three-way junction conformation dictates self-association of phage packaging RNAs.

    PubMed

    Hao, Yumeng; Kieft, Jeffrey S

    2016-07-01

    The packaging RNA (pRNA) found in the phi29 family of bacteriophage is an essential component of a powerful molecular motor used to package the phage's DNA genome into the capsid. The pRNA forms homomultimers mediated by intermolecular "kissing-loop" interactions, thus it is an example of the unusual phenomenon of a self-associating RNA that can form symmetric higher-order multimers. Previous research showed the pRNAs from phi29 family phages have diverse self-association properties and the kissing-loop interaction is not the sole structural element dictating multimerization. We found that a 3-way junction (3wj) within each pRNA, despite not making direct intermolecular contacts, plays important roles in stabilizing the intermolecular interactions and dictating the size of the multimer formed (dimer, trimer, etc.). Specifically, the 3wj in the pRNA from phage M2 appears to favor a different conformation compared to the 3wj in the phi29 pRNA, and the M2 junction facilitates formation of a higher-order multimer that is more thermostable. This behavior provides insights into the fundamental principles of RNA self-association, and additionally may be useful to engineer fine-tuned properties into pRNAs for nanotechnology. PMID:27217219

  12. Ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon mediated circular strand displacement polymerization and hyperbranched rolling circle amplification.

    PubMed

    Li, Xiaolu; Guo, Jing; Zhai, Qian; Xia, Jing; Yi, Gang

    2016-08-31

    Using a cascade signal amplification strategy, an ultrasensitive electrochemical biosensor for specific detection of DNA based on molecular beacon (MB) mediated circular strand displacement polymerization (CSDP) and hyperbranched rolling circle amplification (HRCA) was proposed. The hybridization of MB probe to target DNA resulted in a conformational change of the MB and triggered the CSDP in the presence of bio-primer and Klenow fragment (KF exo(-)), leading to multiple biotin-tagged DNA duplex. Furthermore, the HRCA was implemented to product amounts of double-stranded DNA (ds-DNA) fragments using phi29 DNA polymerase via biotin-streptavidin interaction. After the product of HRCA binded numerous biotinylated detection probes, an ultrasensitive electrochemical readout by further employing the streptavidin-alkaline phosphatase. The proposed biosensor exhibited excellent detection sensitivity and specificity with a log-linear response to target DNA from 0.01 fM to 10 pM as low as 8.9 aM. The proposed method allowed DNA detection with simplicity, rapidness, low cost and high specificity, which might have the potential for application in clinical molecular diagnostics and environmental monitoring. PMID:27506343

  13. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle.

    PubMed

    Skinner, Gary M; Baumann, Christoph G; Quinn, Diana M; Molloy, Justin E; Hoggett, James G

    2004-01-30

    A single-molecule transcription assay has been developed that allows, for the first time, the direct observation of promoter binding, initiation, and elongation by a single RNA polymerase (RNAP) molecule in real-time. To promote DNA binding and transcription initiation, a DNA molecule tethered between two optically trapped beads was held near a third immobile surface bead sparsely coated with RNAP. By driving the optical trap holding the upstream bead with a triangular oscillation while measuring the position of both trapped beads, we observed the onset of promoter binding, promoter escape (productive initiation), and processive elongation by individual RNAP molecules. After DNA template release, transcription re-initiation on the same DNA template is possible; thus, multiple enzymatic turnovers by an individual RNAP molecule can be observed. Using bacteriophage T7 RNAP, a commonly used RNAP paradigm, we observed the association and dissociation (k(off)= 2.9 s(-1)) of T7 RNAP and promoter DNA, the transition to the elongation mode (k(for) = 0.36 s(-1)), and the processive synthesis (k(pol) = 43 nt s(-1)) and release of a gene-length RNA transcript ( approximately 1200 nt). The transition from initiation to elongation is much longer than the mean lifetime of the binary T7 RNAP-promoter DNA complex (k(off) > k(for)), identifying a rate-limiting step between promoter DNA binding and promoter escape. PMID:14597619

  14. Quantitation of DNA methyltransferase activity via chronocoulometry in combination with rolling chain amplification.

    PubMed

    Ji, Jingjing; Liu, Yuanjian; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2016-11-15

    In this paper, a rolling chain amplification (RCA) strategy was proposed for chronocoulometric detection of DNA methyltransferase (MTase) activity. Briefly, after the double DNA helix structure was assembled on the surface of gold electrode, it was first methylated by M. SssI MTase and then RCA was realized in the presence of E. coli and phi29 DNA polymerase. Successively, numerous hexaammineruthenium (III) chloride ([Ru(NH3)6)(3+), RuHex) were adsorbed on replicons by electrostatic interaction and generated a large electrochemical readout, the signal was "on". On the contrary, in the absence of M. SssI MTase, the methylated CpG site in the unmethylated double DNA helix structure could be specifically recognized and cleaved by HpaII, resulting in a disconnection of RCA from the electrode. This led seldom RuHex to be absorbed onto the surface of electrode, the signal was "off". Based on the proposed strategy, the activity of M. SssI MTase was assayed in the range of 0.5-60U/mL with a detection limit of 0.09U/mL (S/N=3). In addition, the inhibition of procaine and epicatechin on M. SssI MTase activity was evaluated. When the proposed method was applied in complex matrix such as human serum samples, acceptable accuracy, precision and high sensitivity were achieved. Therefore, the proposed method was a potential useful mean for clinical diagnosis and drug development. PMID:27155113

  15. Error rates for nanopore discrimination among cytosine, methylcytosine, and hydroxymethylcytosine along individual DNA strands.

    PubMed

    Schreiber, Jacob; Wescoe, Zachary L; Abu-Shumays, Robin; Vivian, John T; Baatar, Baldandorj; Karplus, Kevin; Akeson, Mark

    2013-11-19

    Cytosine, 5-methylcytosine, and 5-hydroxymethylcytosine were identified during translocation of single DNA template strands through a modified Mycobacterium smegmatis porin A (M2MspA) nanopore under control of phi29 DNA polymerase. This identification was based on three consecutive ionic current states that correspond to passage of modified or unmodified CG dinucleotides and their immediate neighbors through the nanopore limiting aperture. To establish quality scores for these calls, we examined ~3,300 translocation events for 48 distinct DNA constructs. Each experiment analyzed a mixture of cytosine-, 5-methylcytosine-, and 5-hydroxymethylcytosine-bearing DNA strands that contained a marker that independently established the correct cytosine methylation status at the target CG of each molecule tested. To calculate error rates for these calls, we established decision boundaries using a variety of machine-learning methods. These error rates depended upon the identity of the bases immediately 5' and 3' of the targeted CG dinucleotide, and ranged from 1.7% to 12.2% for a single-pass read. We estimate that Q40 values (0.01% error rates) for methylation status calls could be achieved by reading single molecules 5-19 times depending upon sequence context. PMID:24167260

  16. The rolling-circle melting-pot model for porcine circovirus DNA replication

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A stem-loop structure, formed by a pair of inverted repeats during DNA replication, is a conserved feature at the origin of DNA replication (Ori) among plant and animal viruses, bacteriophages and plasmids that replicate their genomes via the rolling-circle replication (RCR) mechanism. Porcine circo...

  17. Staphylococcus aureus SarA is a Regulatory Protein Responsive to Redox and pH that can Support Bacteriophage Lambda Integrase-Mediated Excision/Recombination

    PubMed Central

    Fujimoto, David F.; Higginbotham, Robin H.; Maleki, Soheila J.; Segall1, Anca M.; Smeltzer, Mark S.; Hurlburt, Barry K.

    2010-01-01

    Summary Staphylococcus aureus produces a wide array of virulence factors and causes a correspondingly diverse array of infections. Production of these virulence factors is under the control of a complex network of global regulatory elements, one of which is sarA. sarA encodes a DNA-binding protein that is considered to function as a transcription factor capable of acting as either a repressor or an activator. Using competitive ELISA assays, we demonstrate that SarA is present at approximately 50,000 copies per cell, which is not characteristic of classical transcription factors. We also demonstrate that SarA is present at all stages of growth in vitro and is capable of binding DNA with high affinity but that its binding affinity and pattern of shifted complexes in electrophoretic mobility shift assays is responsive to the redox state. We also show that SarA binds to the bacteriophage lambda (λ) attachment site, attL, producing SarA-DNA complexes similar to intasomes, which consist of bacteriophage lambda integrase, E. coli integration host factor and attL DNA. In addition, SarA stimulates intramolecular excision recombination in the absence of λ excisionase, a DNA-binding accessory protein. Taken together, these data suggest that SarA may function as an architectural accessory protein. PMID:19919677

  18. Different Expression Patterns of Genes from the Exo-Xis Region of Bacteriophage λ and Shiga Toxin-Converting Bacteriophage Ф24B following Infection or Prophage Induction in Escherichia coli

    PubMed Central

    Bloch, Sylwia; Nejman-Faleńczyk, Bożena; Dydecka, Aleksandra; Łoś, Joanna M.; Felczykowska, Agnieszka; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2014-01-01

    Lambdoid bacteriophages serve as useful models in microbiological and molecular studies on basic biological process. Moreover, this family of viruses plays an important role in pathogenesis of enterohemorrhagic Escherichia coli (EHEC) strains, as they are carriers of genes coding for Shiga toxins. Efficient expression of these genes requires lambdoid prophage induction and multiplication of the phage genome. Therefore, understanding the mechanisms regulating these processes appears essential for both basic knowledge and potential anti-EHEC applications. The exo-xis region, present in genomes of lambdoid bacteriophages, contains highly conserved genes of largely unknown functions. Recent report indicated that the Ea8.5 protein, encoded in this region, contains a newly discovered fused homeodomain/zinc-finger fold, suggesting its plausible regulatory role. Moreover, subsequent studies demonstrated that overexpression of the exo-xis region from a multicopy plasmid resulted in impaired lysogenization of E. coli and more effective induction of λ and Ф24B prophages. In this report, we demonstrate that after prophage induction, the increase in phage DNA content in the host cells is more efficient in E. coli bearing additional copies of the exo-xis region, while survival rate of such bacteria is lower, which corroborated previous observations. Importantly, by using quantitative real-time reverse transcription PCR, we have determined patterns of expressions of particular genes from this region. Unexpectedly, in both phages λ and Ф24B, these patterns were significantly different not only between conditions of the host cells infection by bacteriophages and prophage induction, but also between induction of prophages with various agents (mitomycin C and hydrogen peroxide). This may shed a new light on our understanding of regulation of lambdoid phage development, depending on the mode of lytic cycle initiation. PMID:25310402

  19. The sabotage of the bacterial transcription machinery by a small bacteriophage protein.

    PubMed

    Liu, Bing; Shadrin, Andrey; Sheppard, Carol; Mekler, Vladimir; Xu, Yingqi; Severinov, Konstantin; Matthews, Steve; Wigneshweraraj, Sivaramesh

    2014-01-01

    Many bacteriophages produce small proteins that specifically interfere with the bacterial host transcription machinery and thus contribute to the acquisition of the bacterial cell by the bacteriophage. We recently described how a small protein, called P7, produced by the Xp10 bacteriophage inhibits bacterial transcription initiation by causing the dissociation of the promoter specificity sigma factor subunit from the host RNA polymerase holoenzyme. In this addendum to the original publication, we present the highlights of that research. PMID:24701369

  20. Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water.

    PubMed

    Chaudhry, Waqas Nasir; Haq, Irshad Ul; Andleeb, Saadia; Qadri, Ishtiaq

    2014-06-01

    Citrobacter freundii is a worldwide emerging nosocomial pathogen with escalating incidence of multidrug resistance. Citrobacter freundii exists in natural environment, especially in health care settings and is difficult to eradicate. Phage therapy is considered as an alternative way of controlling bacterial infections and contaminations. In this study, we have described isolation and characterization of a virulent bacteriophage LK1 capable of specifically infecting Citrobacter freundii. A virulent bacteriophage LK1, specific for Citrobacter freundii was isolated from sewage water sample. TEM showed that phage Lk1 has an icosahedral head 70 nm in diameter and short tail of 17 nm, and can be classified as a member of the Podoviridae family. Restriction analysis indicated that phage LK1 was a dsDNA virus with an approximate genome size of 20-23 kb. Proteomic pattern generated by SDS PAGE using purified LK1 phage particles, revealed three major and six minor protein bands with molecular weight ranging from 25 to 80 kDa. Adsorption rate of LK1 relative to the host bacterium was also determined which showed significant improvement in adsorption with the addition of CaCl2 . In a single step growth experiment, LK1 exhibited a latent period of 24 min and burst size of 801 particle/cell. Moreover, pH and thermal stability of phage LK1 demonstrated a pH range of 5.0-6.0 and phage viability decreased to 0% at 65 °C. When LK1 was used to infect six other clinically isolated pathogenic strains, it showed relatively narrow host range. LK1 was capable of eliciting efficient lysis of Citrobacter freundii, revealing its potential as a non-toxic sanitizer for controlling Citrobacter freundii infection and contamination in both hospital and other public environments. PMID:23686910

  1. Bacteriophage-based synthetic biology for the study of infectious diseases

    PubMed Central

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  2. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    NASA Technical Reports Server (NTRS)

    Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor); Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  3. An easy-to-prepare mini-scaffold for DNA origami.

    PubMed

    Brown, S; Majikes, J; Martínez, A; Girón, T M; Fennell, H; Samano, E C; LaBean, T H

    2015-10-28

    The DNA origami strategy for assembling designed supramolecular complexes requires ssDNA as a scaffold strand. A system is described that was designed approximately one third the length of the M13 bacteriophage genome for ease of ssDNA production. Folding of the 2404-base ssDNA scaffold into a variety of origami shapes with high assembly yields is demonstrated. PMID:26413973

  4. Exploiting Radiation Damage to Map Proteins in Nucleoprotein Complexes: The Internal Structure of Bacteriophage T7

    PubMed Central

    Cheng, Naiqian; Wu, Weimin; Watts, Norman R.; Steven, Alasdair C.

    2014-01-01

    In the final stage of radiation damage in cryo-electron microscopy of proteins, bubbles of hydrogen gas are generated. Proteins embedded in DNA bubble sooner than free-standing proteins and DNA does not bubble under the same conditions. These properties make it possible to distinguish protein from DNA. Here we explored the scope of this technique (“bubblegram imaging”) by applying it to bacteriophage T7, viewed as a partially defined model system. T7 has a thin-walled icosahedral capsid, 60 nm in diameter, with a barrel-shaped protein core under one of its twelve vertices (the portal vertex). The core is densely wrapped with DNA but details of their interaction and how their injection into a host bacterium is coordinated are lacking. With short (10 sec) intervals between exposures of 17 electrons/Å2 each, bubbling starts in the third exposure, with 1 – 4 bubbles nucleating in the core: in subsequent exposures, these bubbles grow and merge. A 3D reconstruction from fifth-exposure images depicts a bipartite cylindrical gas cloud in the core. In its portal-proximal half, the axial region is gaseous whereas in the portal-distal half, it is occupied by a 3 nm-wide dense rod. We propose that they respectively represent core protein and an end of the packaged genome, poised for injection into a host cell. Single bubbles at other sites may represent residual scaffolding protein. Thus, bubbling depends on dose rate, protein amount, and tightness of the DNA seal. PMID:24345345

  5. The Molecular Genetics of Bacteriophage: The Work of Norton Zinder

    PubMed Central

    Kresge, Nicole; Simoni, Robert D.; Hill, Robert L.

    2011-01-01

    In 1966, Norton Zinder and Joshua Lederberg discovered that Salmonella could exchange genes via bacteriophages. They named this phenomenon “genetic transduction.” This discovery set Zinder on a lifelong journey researching bacteriophage. In the two Journal of Biological Chemistry (JBC) Classic papers reprinted here, Zinder and Nina Fedoroff present their findings on the phage f2 replicase. Properties of the Phage f2 Replicase. I. Optimal Conditions for Replicase Activity and Analysis of the Polynucleotide Product Synthesized in Vitro (Fedoroff, N. V., and Zinder, N. D. (1972) J. Biol. Chem. 247, 4577–4585) Properties of the Phage f2 Replicase. II. Comparative Studies on the Ribonucleic Acid-dependent and Poly(C)-dependent Activities of the Replicase (Fedoroff, N. V., and Zinder, N. D. (1972) J. Biol. Chem. 247, 4586–4592) PMID:21830328

  6. A method for the detection of bacteriophages from ocean water

    NASA Astrophysics Data System (ADS)

    Moebus, K.

    1980-03-01

    A method for the isolation of bacteriophages from ocean water is described. It precludes sample storage before starting phage-enrichment cultures and provides for the use of 3 sub-samples enriched with organic nutrients after 1, 2 and 3 days of incubation. The method was used with samples collected from 6 m below the surface at 48 stations between the European continental shelf and the Sargasso Sea. With 213 among 931 bacterial isolates about 250 strains of bacteriophages were detected by two methods of different sensitivity. From 14 samples taken east of the Azores 115 host bacteria have been found versus only 98 from 34 samples collected at westerly stations. The employment of more than one sub-sample per station as well as the use of more sensitive phage-detection procedures was found to be more advantageous the lower the concentration of cultivatable bacteria in a sample.

  7. Insights into Bacteriophage Application in Controlling Vibrio Species.

    PubMed

    Letchumanan, Vengadesh; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Goh, Bey-Hing; Ab Mutalib, Nurul-Syakima; Lee, Learn-Han

    2016-01-01

    Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria - are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy. PMID:27486446

  8. Structural basis of the temperature transition of Pf1 bacteriophage

    PubMed Central

    Thiriot, David S.; Nevzorov, Alexander A.; Opella, Stanley J.

    2005-01-01

    The filamentous bacteriophage Pf1 undergoes a reversible temperature-dependent transition that is also influenced by salt concentrations. This structural responsiveness may be a manifestation of the important biological property of flexibility, which is necessary for long, thin filamentous assemblies as a protection against shear forces. To investigate structural changes in the major coat protein, one- and two-dimensional solid-state NMR spectra of concentrated solutions of Pf1 bacteriophage were acquired, and the structure of the coat protein determined at 0°C was compared with the structure previously determined at 30°C. Despite dramatic differences in the NMR spectra, the overall change in the coat protein structure is small. Changes in the orientation of the C-terminal helical segment and the conformation of the first five residues at the N-terminus are apparent. These results are consistent with prior studies by X-ray fiber diffraction and other biophysical methods. PMID:15741342

  9. Bacteriophage application to control the contaminated water with Shigella.

    PubMed

    Jun, Jin Woo; Giri, Sib Sankar; Kim, Hyoun Joong; Yun, Sae Kil; Chi, Cheng; Chai, Ji Young; Lee, Byeong Chun; Park, Se Chang

    2016-01-01

    Shigella is one of the most important waterborne and foodborne pathogens around the world. Emergence of antibiotic-resistant Shigella has made the development of alternatives to conventional antibiotics necessary. In this study, a virulent Myoviridae bacteriophage, pSs-1 was isolated from environmental water in South Korea and showed infectivity to S. flexneri as well as S. sonnei strains. One-step growth analysis showed that pSs-1 has a short latent period (25 min) and a large burst size (97 PFU/cell). According to the genomic analysis, pSs-1 contains 164,999 bp of genome with a G + C content of 35.54% and it is considered as a member of the T4-like bacteriophage group. These results showed that pSs-1 may have potential as a biocontrol agent instead of conventional antibiotics for shigellosis. PMID:26971572

  10. Insights into Bacteriophage Application in Controlling Vibrio Species

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Goh, Bey-Hing; Ab Mutalib, Nurul-Syakima; Lee, Learn-Han

    2016-01-01

    Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages – viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy. PMID:27486446

  11. Bacteriophage application to control the contaminated water with Shigella

    PubMed Central

    Jun, Jin Woo; Giri, Sib Sankar; Kim, Hyoun Joong; Yun, Sae Kil; Chi, Cheng; Chai, Ji Young; Lee, Byeong Chun; Park, Se Chang

    2016-01-01

    Shigella is one of the most important waterborne and foodborne pathogens around the world. Emergence of antibiotic-resistant Shigella has made the development of alternatives to conventional antibiotics necessary. In this study, a virulent Myoviridae bacteriophage, pSs-1 was isolated from environmental water in South Korea and showed infectivity to S. flexneri as well as S. sonnei strains. One-step growth analysis showed that pSs-1 has a short latent period (25 min) and a large burst size (97 PFU/cell). According to the genomic analysis, pSs-1 contains 164,999 bp of genome with a G + C content of 35.54% and it is considered as a member of the T4-like bacteriophage group. These results showed that pSs-1 may have potential as a biocontrol agent instead of conventional antibiotics for shigellosis. PMID:26971572

  12. The nucleotide sequence of the bacteriophage T5 ltf gene.

    PubMed

    Kaliman, A V; Kulshin, V E; Shlyapnikov, M G; Ksenzenko, V N; Kryukov, V M

    1995-06-01

    The nucleotide sequence of the bacteriophage T5 Bg/II-BamHI fragment (4,835 bp in length) known to carry a gene encoding the LTF protein which forms the phage L-shaped tail fibers was determined. It was shown to contain an open reading frame for 1,396 amino acid residues that corresponds to a protein of 147.8 kDa. The coding region of ltf gene is preceded by a typical Shine-Dalgarno sequence. Downstream from the ltf gene there is a strong transcription terminator. Data bank analysis of the LTF protein sequence reveals 55.1% identity to the hypothetical protein ORF 401 of bacteriophage lambda in a segment of 118 amino acids overlap. PMID:7789514

  13. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry.

    PubMed

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed. PMID:27375566

  14. Bacteriophages as Weapons Against Bacterial Biofilms in the Food Industry

    PubMed Central

    Gutiérrez, Diana; Rodríguez-Rubio, Lorena; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2016-01-01

    Microbiological contamination in the food industry is often attributed to the presence of biofilms in processing plants. Bacterial biofilms are complex communities of bacteria attached to a surface and surrounded by an extracellular polymeric material. Their extreme resistance to cleaning and disinfecting processes is related to a unique organization, which implies a differential bacterial growth and gene expression inside the biofilm. The impact of biofilms on health, and the economic consequences, has promoted the development of different approaches to control or remove biofilm formation. Recently, successful results in phage therapy have boosted new research in bacteriophages and phage lytic proteins for biofilm eradication. In this regard, this review examines the environmental factors that determine biofilm development in food-processing equipment. In addition, future perspectives for the use of bacteriophage-derived tools as disinfectants are discussed. PMID:27375566

  15. Response of the bacteriophage T4 replisome to non-coding lesions and regression of a stalled replication fork

    PubMed Central

    Nelson, Scott W.; Benkovic, Stephen J.

    2010-01-01

    DNA is constantly damaged by endogenous and exogenous agents. The resulting DNA lesions have the potential to halt the progression of the replisome, possibly leading to replication fork collapse. Here, we examine the effect of a non-coding DNA lesion in either the leading or lagging strand template on the bacteriophage T4 replisome. A damaged base in the lagging strand template does not affect the progression of the replication fork. Instead, the stalled lagging strand polymerase recycles from the lesion and initiates synthesis of the new Okazaki fragment upstream from the damaged base. In contrast, when the replisome encounters a blocking lesion in the leading strand template, the replication fork only travels approximately 1 kb beyond the point of the DNA lesion before complete replication fork collapse. The primosome and lagging strand polymerase remain active during this period and an Okazaki fragment is synthesized beyond the point of the leading strand lesion. There is no evidence for a new priming event on the leading strand template. Instead, the DNA structure that is produced by the stalled replication fork is a substrate for the DNA repair helicase, UvsW. UvsW catalyzes the regression of a stalled replication fork into a “chicken foot” structure that has been postulated to be an intermediate in an error-free lesion bypass pathway. PMID:20600127

  16. Genome Sequences of Gordonia terrae Bacteriophages Phinally and Vivi2

    PubMed Central

    Anderson, Kaitlyn C.; Arora, Charu; Bortz, Michael E.; Burnet, George; Conover, David H.; D’Incau, Gina M.; Ghobrial, Jonathan A.; Jonas, Audrey L.; Migdal, Emily J.; Rote, Nicole L.; German, Brian A.; McDonnell, Jill E.; Mezghani, Nadia; Schafer, Claire E.; Thompson, Paige K.; Ulbrich, Megan C.; Yu, Victor J.; Furbee, Emily C.; Grubb, Sarah R.; Warner, Marcie H.; Montgomery, Matthew T.; Garlena, Rebecca A.; Russell, Daniel A.; Jacobs-Sera, Deborah; Hatfull, Graham F.

    2016-01-01

    Bacteriophages Phinally and Vivi2 were isolated from soil from Pittsburgh, Pennsylvania, USA, using host Gordonia terrae 3612. The Phinally and Vivi2 genomes are 59,265 bp and 59,337 bp, respectively, and share sequence similarity with each other and with GTE6. Fewer than 25% of the 87 to 89 putative genes have predictable functions. PMID:27540050

  17. Genome Sequences of Gordonia terrae Bacteriophages Phinally and Vivi2.

    PubMed

    Pope, Welkin H; Anderson, Kaitlyn C; Arora, Charu; Bortz, Michael E; Burnet, George; Conover, David H; D'Incau, Gina M; Ghobrial, Jonathan A; Jonas, Audrey L; Migdal, Emily J; Rote, Nicole L; German, Brian A; McDonnell, Jill E; Mezghani, Nadia; Schafer, Claire E; Thompson, Paige K; Ulbrich, Megan C; Yu, Victor J; Furbee, Emily C; Grubb, Sarah R; Warner, Marcie H; Montgomery, Matthew T; Garlena, Rebecca A; Russell, Daniel A; Jacobs-Sera, Deborah; Hatfull, Graham F

    2016-01-01

    Bacteriophages Phinally and Vivi2 were isolated from soil from Pittsburgh, Pennsylvania, USA, using host Gordonia terrae 3612. The Phinally and Vivi2 genomes are 59,265 bp and 59,337 bp, respectively, and share sequence similarity with each other and with GTE6. Fewer than 25% of the 87 to 89 putative genes have predictable functions. PMID:27540050

  18. In vitro protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3' nucleotide of the linear template: a stepwise sliding-back mechanism.

    PubMed

    Martín, A C; Blanco, L; García, P; Salas, M; Méndez, J

    1996-07-19

    Phage Cp-1 from Streptoccocus pneumoniae makes use of a protein-priming mechanism to start replication of its linear DNA: the first reaction consists of the addition of 5' dAMP to a molecule of the primer protein, an initiation event occurring at both DNA ends. After elongation of the initiation complex, the primer protein remains linked to the 5' end of the nascent DNA chain, and is subsequently referred to as terminal protein (TP). In this paper, using DNA-free extracts from Cp-1-infected S. pneumoniae, we provide evidence that the formation of the covalent complex TP-dAMP is a template-instructed reaction and that ssDNA molecules can serve as templates for TP-primed replication. A mutational analysis of the 3' terminal nucleotides of Cp-1 DNA reveals that a precise DNA sequence is required for efficient template recognition, and that in vitro initiation of Cp-1 DNA replication is directed by the third nucleotide of the template. However, the two terminal nucleotides are recovered during the first steps of elongation. A new variant of the sliding-back mechanism for protein-primed initiation, firstly described for Bacillus subtilis phage phi29, is proposed to account for the maintenance of Cp-1 DNA ends. The results presented here reinforce the hypothesis that sliding-back must be a common feature in all genomes that use protein-priming to initiate replication. PMID:8757800

  19. Host adaption to the bacteriophage carrier state of Campylobacter jejuni

    PubMed Central

    Brathwaite, Kelly J.; Siringan, Patcharin; Connerton, Phillippa L.; Connerton, Ian F.

    2015-01-01

    The carrier state of the foodborne pathogen Campylobacter jejuni represents an alternative life cycle whereby virulent bacteriophages can persist in association with host bacteria without commitment to lysogeny. Host bacteria exhibit significant phenotypic changes that improve their ability to survive extra-intestinal environments, but exhibit growth-phase-dependent impairment in motility. We demonstrate that early exponential phase cultures become synchronised with respect to the non-motile phenotype, which corresponds with a reduction in their ability to adhere to and invade intestinal epithelial cells. Comparative transcriptome analyses (RNA-seq) identify changes in gene expression that account for the observed phenotypes: downregulation of stress response genes hrcA, hspR and per and downregulation of the major flagellin flaA with the chemotactic response signalling genes cheV, cheA and cheW. These changes present mechanisms by which the host and bacteriophage can remain associated without lysis, and the cultures survive extra-intestinal transit. These data provide a basis for understanding a critical link in the ecology of the Campylobacter bacteriophage. PMID:26004283

  20. Bacteriophages and medical oncology: targeted gene therapy of cancer.

    PubMed

    Bakhshinejad, Babak; Karimi, Marzieh; Sadeghizadeh, Majid

    2014-08-01

    Targeted gene therapy of cancer is of paramount importance in medical oncology. Bacteriophages, viruses that specifically infect bacterial cells, offer a variety of potential applications in biomedicine. Their genetic flexibility to go under a variety of surface modifications serves as a basis for phage display methodology. These surface manipulations allow bacteriophages to be exploited for targeted delivery of therapeutic genes. Moreover, the excellent safety profile of these viruses paves the way for their potential use as cancer gene therapy platforms. The merge of phage display and combinatorial technology has led to the emergence of phage libraries turning phage display into a high throughput technology. Random peptide libraries, as one of the most frequently used phage libraries, provide a rich source of clinically useful peptide ligands. Peptides are known as a promising category of pharmaceutical agents in medical oncology that present advantages such as inexpensive synthesis, efficient tissue penetration and the lack of immunogenicity. Phage peptide libraries can be screened, through biopanning, against various targets including cancer cells and tissues that results in obtaining cancer-homing ligands. Cancer-specific peptides isolated from phage libraries show huge promise to be utilized for targeting of various gene therapy vectors towards malignant cells. Beyond doubt, bacteriophages will play a more impressive role in the future of medical oncology. PMID:25012686