Science.gov

Sample records for bacterium vibrio harveyi

  1. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  2. Influence of nitrogen substrates and substrate C:N ratios on the nitrogen isotopic composition of amino acids from the marine bacterium Vibrio harveyi

    NASA Astrophysics Data System (ADS)

    Maki, K.; Ohkouchi, N.; Chikaraishi, Y.; Fukuda, H.; Miyajima, T.; Nagata, T.

    2014-09-01

    Nitrogen (N) isotopic compositions of individual hydrolysable amino acids (?15NAAs) in N pools have been increasingly used for trophic position assessment and evaluation of sources and transformation processes of organic matter in marine environments. However, there are limited data about variability in ?15NAAs patterns and how this variability influences marine bacteria, an important mediator of trophic transfer and organic matter transformation. We explored whether marine bacterial ?15NAAs profiles change depending on the type and C:N ratio of the substrate. The ?15NAAs profile of a marine bacterium, Vibrio harveyi, was examined using medium containing either glutamate, alanine or ammonium as the N source [substrate C:N ratios (range, 3 to 20) were adjusted with glucose]. The data were interpreted as a reflection of isotope fractionations associated with de novo synthesis of amino acids by bacteria. Principal component analysis (PCA) using the ?15N offset values normalized to glutamate + glutamine ?15N revealed that ?15NAAs profiles differed depending on the N source and C:N ratio of the substrate. High variability in the ?15N offset of alanine and valine largely explained this bacterial ?15NAAs profile variability. PCA was also conducted using bacterial and phytoplankton (cyanobacteria and eukaryotic algae) ?15NAAs profile data reported previously. The results revealed that bacterial ?15NAAs patterns were distinct from those of phytoplankton. Therefore, the ?15NAAs profile is a useful indicator of biochemical responses of bacteria to changes in substrate conditions, serving as a potentially useful method for identifying organic matter sources in marine environments.

  3. A selective and differential medium for Vibrio harveyi.

    PubMed Central

    Harris, L; Owens, L; Smith, S

    1996-01-01

    A new medium, termed Vibrio harveyi agar, has been developed for the isolation and enumeration of V. harveyi. It is possible to differentiate V. harveyi colonies from the colonies of strains representing 15 other Vibrio species with this medium. This medium has been shown to inhibit the growth of two strains of marine Pseudomonas spp. and two strains of marine Flavobacterium spp. but to allow the growth of Photobacterium strains. Colonies displaying typical V. harveyi morphology were isolated from the larval rearing water of a commercial prawn hatchery with V. harveyi agar as a primary isolation medium and were positively identified, by conventional tests, as V. harveyi. This agar displays great potential as a primary isolation medium and offers significant advantages over thiosulfate-citrate-bile salts-sucrose agar as a medium for differentiating V. harveyi from other marine and estuarine Vibrio species. PMID:8795252

  4. Genetically Modified Vibrio harveyi Strains as Potential Bioindicators of Mutagenic Pollution of Marine Environments

    PubMed Central

    Czy?, Agata; Jasiecki, Jacek; Bogdan, Adam; Szpilewska, Hanna; We?grzyn, Grzegorz

    2000-01-01

    For biodetection of mutagenic pollution of marine environments, an organism naturally occurring in these habitats should be used. We found that marine bacterium Vibrio harveyi may be an appropriate bioindicator of mutagenic pollution. For positive selection of mutants, we developed a simple method for isolation of V. harveyi mutants resistant to neomycin. We constructed genetically modified V. harveyi strains that produce significantly more neomycin-resistant mutants upon treatment with low concentrations of mutagens than the wild-type counterpart. The sensitivity of the mutagenicity test with the V. harveyi strains is at least comparable to (if not higher than) that of the commonly used Ames test, which uses Salmonella enterica serovar Typhimurium strains. Therefore, we consider that the V. harveyi strains described in this report could be used as potential bioindicators of mutagenic pollution of marine environments. PMID:10653723

  5. Genetically modified Vibrio harveyi strains as potential bioindicators of mutagenic pollution of marine environments

    SciTech Connect

    Czyz, A.; Jasiecki, J.; Bogdan, A.; Szpilewska, H.; Wegrzyn, G.

    2000-02-01

    For biodetection of mutagenic pollution of marine environments, an organism naturally occurring in these habitats should be used. The authors found that marine bacterium Vibrio harveyi may be an appropriate bioindicator of mutagenic pollution. For positive selection of mutants, they developed a simple method for isolation of V. harveyi mutants resistant to neomycin. The authors constructed genetically modified V. harveyi strains that produce significantly more neomycin-resistant mutants upon treatment with low concentrations of mutagens than the wild-type counterpart. The sensitivity of the mutagenicity test with the V. harveyi strains is at least comparable to (if not higher than) that of the commonly used Ames test, which uses Salmonella enterica serovar Typhimurium strains. Therefore, the authors consider that the V. harveyi strains described in this report could be used as potential bioindicators of mutagenic pollution of marine environments.

  6. Small RNA Control of Cell-to-Cell Communication in Vibrio Harveyi and Vibrio Cholerae

    NASA Astrophysics Data System (ADS)

    Svenningsen, Sine Lo

    Quorum sensing is a process of cell-to-cell communication, by which bacteria coordinate gene expression and behavior on a population-wide scale. Quorum sensing is accomplished through production, secretion, and subsequent detection of chemical signaling molecules termed autoinducers. The human pathogen Vibrio cholerae and the marine bioluminescent bacterium Vibrio harveyi incorporate information from multiple autoinducers, and also environmental signals and metabolic cues into their quorum-sensing pathways. At the core of these pathways lie several homologous small regulatory RNA molecules, the Quorum Regulatory RNAs. Small noncoding RNAs have emerged throughout the bacterial and eukaryotic kingdoms as key regulators of behavioral and developmental processes. Here, I review our present understanding of the role of the Qrr small RNAs in integrating quorum-sensing signals and in regulating the individual cells response to this information.

  7. Genes encoding the Vibrio harveyi haemolysin (VHH)/thermolabile haemolysin (TLH) are widespread in vibrios.

    PubMed

    Wang, Shu-Xian; Zhang, Xiao-Hua; Zhong, Ying-Bin; Sun, Bo-Guang; Chen, Ji-Xiang

    2007-10-01

    V. harveyi VHH haemolysin, which shows high homology to the TLH haemolysin (the identities of their deduced amino acid sequences are up to 85.6%), is a putative virulence factor to marine cultured fish. A VHH probe, which is specific to V. harveyi vhhA haemolysin gene, was used to screen EcoR I digests of total DNA from 57 vibrio strains, including 26 vibrio type strains, 20 V. harveyi isolates and 11 V. parahaemolyticus isolates. As a result, 1 strong hybridisation band was detected in 13 type strains, including 2 of Vibrio alginolyticus, 2 of V. harveyi, and 1 strain each of Grimontia hollisae, V. campbellii, V. cincinnatiensis, V. fischeri, V. mimicus, V. natriegens, V. parahaemolyticus, V. proteolyticus and V. logei. Also, 1 weak band was detected in 6 type strains, including V. anguillarum, V. aestuarianus, Photobacterium damselae subsp. damselae, V. fluvialis, V. furnissii and V. vulnificus. There was not any hybridization signal in other type strains. Also, vhh/tlh was present in all isolates of V. harveyi and V. parahaemolyticus. Moreover, 3 isolates of V. harveyi, i.e. VIB 645, VIB 648 and SF1, had duplicated vhh genes. The data indicates that vhh/tlh is widespread in vibrios, especially in V. harveyi related species and V. fischeri related species. To support this conclusion, the vhh/tlh homologue genes in V. anguillarum VIB 72, V. campbellii VIB 285, V. natriegens VIB 299 and V. harveyi VIB 647 were cloned and sequenced, and the deduced amino acid sequences showed high degree of identities to VHH (67% - 99%) and TLH haemolysin (69% - 91%). This study will help us to identify the role of vhh/tlh haemolysin gene in the pathogenicity of vibrios. PMID:18062266

  8. Antibiotic resistance of Vibrio harveyi isolated from seawater in Korea.

    PubMed

    Kang, Chang-Ho; Kim, YongGyeong; Oh, Soo Ji; Mok, Jong-Soo; Cho, Myung-Hwan; So, Jae-Seong

    2014-09-15

    Vibrio harveyi is an opportunistic human pathogen that may cause gastroenteritis, severe necrotizing soft-tissue infections, and primary septicemia, with a potentially high rate of lethality. In this study, we isolated and characterized V. harveyi from seawater collected from the West Sea in Korea, including sites located near shellfish farms. For the initial isolation of putative V. harveyi, isolates were incubated on thiosulfate citrate bile salt sucrose agar plates for 24h, followed by selection of greenish colonies. Gram-negative and oxidase-positive colonies were subsequently confirmed by biochemical assays and the API 20E kit test system. Species-specific 16S rRNA and hemolysin genes were used to design V. harveyi-specific PCR primers. From 840 seawater samples, a total of 2 strains of V. harveyi were isolated from shellfish farm seawater. The two isolates were subjected to profiling against 16 antibiotics and found to be resistant to cephalothin, vancomycin, ampicillin, cefepime, cefotetan, and streptomycin. PMID:25066453

  9. A model for signal transduction during quorum sensing in Vibrio harveyi

    NASA Astrophysics Data System (ADS)

    Banik, Suman K.; Fenley, Andrew T.; Kulkarni, Rahul V.

    2009-12-01

    We present a framework for analyzing luminescence regulation during quorum sensing in the bioluminescent bacterium Vibrio harveyi. Using a simplified model for signal transduction in the quorum sensing pathway, we identify key dimensionless parameters that control the system's response. These parameters are estimated using experimental data on luminescence phenotypes for different mutant strains. The corresponding model predictions are consistent with results from other experiments which did not serve as input for determining model parameters. Furthermore, the proposed framework leads to novel testable predictions for luminescence phenotypes and for responses of the network to different perturbations.

  10. Biosynthesis of myristic acid in luminescent bacteria. [Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1987-05-01

    In vivo pulse-label studies have demonstrated that luminescent bacteria can provide myritic acid (14:0) required for the synthesis of the luciferase substrate myristyl aldehyde. Luminescent wild type Vibrio harveyi incubated with (/sup 14/C) acetate in a nutrient-depleted medium accumulated substantial tree (/sup 14/C)fatty acid (up to 20% of the total lipid label). Radio-gas chromatography revealed that > 75% of the labeled fatty acid is 14:0. No free fatty acid was detected in wild type cells labeled prior to the development of bioluminescence in the exponential growth phase, or in a dark mutant of V. harveyi (mutant M17) that requires exogenous 14:0 for light emission. The preferential accumulation of 14:0 was not observed when wild type cells were labeled with (/sup 14/C)acetate in regular growth medium. Moreover, all V. harveyi strains exhibited similar fatty acid mass compositions regardless of the state of bioluminescence. Since earlier work has shown that a luminescence-related acyltransferase (defective in the M17 mutant) can catalyze the deacylation of fatty acyl-acyl carrier protein in vitro, the present results are consistent with a model in which this enzyme diverts 14:0 to the luminescence system during fatty acid biosynthesis. Under normal conditions, the supply of 14:0 by this pathway is tightly regulated such that bioluminescence development does not significantly alter the total fatty acid composition.

  11. Draft genome sequence of the fish pathogen Vibrio harveyi strain ZJ0603.

    PubMed

    Huang, Yucong; Jian, Jichang; Lu, Yishan; Cai, Shuanghu; Wang, Bei; Tang, Jufen; Pang, Huanying; Ding, Yu; Wu, Zaohe

    2012-12-01

    Vibrio harveyi is an important pathogen that causes vibriosis in various aquatic organisms. Here, we announce the draft genome sequence of V. harveyi strain ZJ0603, which was isolated from diseased Orange-spotted grouper (Epinephelus coioides) in Guangdong, China. PMID:23144396

  12. Draft Genome Sequences of the Fish Pathogen Vibrio harveyi Strains VH2 and VH5

    PubMed Central

    Castillo, Daniel; D’Alvise, Paul; Middelboe, Mathias; Gram, Lone; Liu, Siyang; Kalatzis, Panos G.; Kokkari, Constantina

    2015-01-01

    Vibrio harveyi is an important marine pathogen that is responsible for vibriosis outbreaks in cultured fish and invertebrates worldwide. Here, we announce the draft genome sequences of V. harveyi strains VH2 and VH5, isolated from farmed juvenile Seriola dumerili during outbreaks of vibriosis in Crete, Greece. PMID:26383670

  13. Unexpected photoreactivation of Vibrio harveyi bacteria living in ionization environment

    SciTech Connect

    Alifano, P.; Tala, A.; Tredici, S. M.; Nassisi, V.; Siciliano, M. V.

    2011-05-15

    Bacteria undergoing environmental effects is extremely interesting for structural, mechanistic, and evolutionary implications. Luminescent bacteria that have evolved in a specific ambient have developed particular responses and their behavior can give us new suggestions on the task and production of luciferina proteins. To analyze the UV interaction under controlled laboratory conditions, we used photoluminescent bacterial strains belonging to a new species evolutionarily close to Vibrio harveyi sampled from a coastal cave with a high radon content that generates ionizing radiation. The survival of the bacterial strains was analyzed, in the light and in the dark, following a variety of genotoxic treatments including UV radiation exposure. The strains were irradiated by a germicide lamp. The results demonstrated that most of the strains exhibited a low rate of survival after the UV exposure. After irradiation by visible light following the UV exposure, all strains showed a high capability of photoreactivation when grown. This capability was quite unexpected because these bacteria were sampled from a dark ambient without UV radiation. This leads us to hypothesize that the photoreactivation in these bacteria might have been evolved to repair DNA lesions also induced by different radiation sources other than UV (e.g., x-ray) and that the luminescent bacteria might use their own light emission to carry out the photoreactivation. The high capability of photoreactivation of these bacteria was also justified by the results of deconvolution. The deconvolution was applied to the emission spectra and it was able to show evidence of different light peaks. The presence of the visible peak could control the photolysis enzyme.

  14. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    PubMed Central

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  15. Characterization of abalone Haliotis tuberculata-Vibrio harveyi interactions in gill primary cultures.

    PubMed

    Pichon, Delphine; Cudennec, Benoit; Huchette, Sylvain; Djediat, Chakib; Renault, Tristan; Paillard, Christine; Auzoux-Bordenave, Stéphanie

    2013-10-01

    The decline of European abalone Haliotis tuberculata populations has been associated with various pathogens including bacteria of the genus Vibrio. Following the summer mortality outbreaks reported in France between 1998 and 2000, Vibrio harveyi strains were isolated from moribund abalones, allowing in vivo and in vitro studies on the interactions between abalone H. tuberculata and V. harveyi. This work reports the development of primary cell cultures from abalone gill tissue, a target tissue for bacterial colonisation, and their use for in vitro study of host cell-V. harveyi interactions. Gill cells originated from four-day-old explant primary cultures were successfully sub-cultured in multi-well plates and maintained in vitro for up to 24 days. Cytological parameters, cell morphology and viability were monitored over time using flow cytometry analysis and semi-quantitative assay (XTT). Then, gill cell cultures were used to investigate in vitro the interactions with V. harveyi. The effects of two bacterial strains were evaluated on gill cells: a pathogenic bacterial strain ORM4 which is responsible for abalone mortalities and LMG7890 which is a non-pathogenic strain. Cellular responses of gill cells exposed to increasing concentrations of bacteria were evaluated by measuring mitochondrial activity (XTT assay) and phenoloxidase activity, an enzyme which is strongly involved in immune response. The ability of gill cells to phagocyte GFP-tagged V. harveyi was evaluated by flow cytometry and gill cells-V. harveyi interactions were characterized using fluorescence microscopy and transmission electron microscopy. During phagocytosis process we evidenced that V. harveyi bacteria induced significant changes in gill cells metabolism and immune response. Together, the results showed that primary cell cultures from abalone gills are suitable for in vitro study of host-pathogen interactions, providing complementary assays to in vivo experiments. PMID:23756730

  16. Vibrio harveyi Adheres to and Penetrates Tissues of the European Abalone Haliotis tuberculata within the First Hours of Contact

    PubMed Central

    Barbou, Annaïck; Capitaine, Carole; Bidault, Adeline; Dujon, Antoine Marie; Moraga, Dario

    2014-01-01

    Vibrio harveyi is a marine bacterial pathogen responsible for episodic epidemics generally associated with massive mortalities in many marine organisms, including the European abalone Haliotis tuberculata. The aim of this study was to identify the portal of entry and the dynamics of infection of V. harveyi in the European abalone. The results indicate that the duration of contact between V. harveyi and the European abalone influences the mortality rate and precocity. Immediately after contact, the epithelial and mucosal area situated between the gills and the hypobranchial gland was colonized by V. harveyi. Real-time PCR analyses and culture quantification of a green fluorescent protein-tagged strain of V. harveyi in abalone tissues revealed a high density of bacteria adhering to and then penetrating the whole gill-hypobranchial gland tissue after 1 h of contact. V. harveyi was also detected in the hemolymph of a significant number of European abalones after 3 h of contact. In conclusion, this article shows that a TaqMan real-time PCR assay is a powerful and useful technique for the detection of a marine pathogen such as V. harveyi in mollusk tissue and for the study of its infection dynamics. Thus, we have revealed that the adhesion and then the penetration of V. harveyi in European abalone organs begin in the first hours of contact. We also hypothesize that the portal of entry of V. harveyi in the European abalone is the area situated between the gills and the hypobranchial gland. PMID:25107972

  17. The nucleotide sequence of Beneckea harveyi 5S rRNA. [bioluminescent marine bacterium

    NASA Technical Reports Server (NTRS)

    Luehrsen, K. R.; Fox, G. E.

    1981-01-01

    The primary sequence of the 5S ribosomal RNA isolated from the free-living bioluminescent marine bacterium Beneckea harveyi is reported and discussed in regard to indications of phylogenetic relationships with the bacteria Escherichia coli and Photobacterium phosphoreum. Sequences were determined for oligonucleotide products generated by digestion with ribonuclease T1, pancreatic ribonuclease and ribonuclease T2. The presence of heterogeneity is indicated for two sites. The B. harveyi sequence can be arranged into the same four helix secondary structures as E. coli and other prokaryotic 5S rRNAs. Examination of the 5S-RNS sequences of the three bacteria indicates that B. harveyi and P. phosphoreum are specifically related and share a common ancestor which diverged from an ancestor of E. coli at a somewhat earlier time, consistent with previous studies.

  18. Norepinephrine and dopamine increase motility, biofilm formation, and virulence of Vibrio harveyi

    PubMed Central

    Yang, Qian; Anh, Nguyen D. Q.; Bossier, Peter; Defoirdt, Tom

    2014-01-01

    Vibrio harveyi is one of the major pathogens of aquatic organisms, affecting both vertebrates and invertebrates, and causes important losses in the aquaculture industry. In order to develop novel methods to control disease caused by this pathogen, we need to obtain a better understanding of pathogenicity mechanisms. Sensing of catecholamines increases both growth and production of virulence-related factors in pathogens of terrestrial animals and humans. However, at this moment, knowledge on the impact of catecholamines on the virulence of pathogens of aquatic organisms is lacking. In the present study, we report that in V. harveyi, norepinephrine (NE) and dopamine (Dopa) increased growth in serum-supplemented medium, siderophore production, swimming motility, and expression of genes involved in flagellar motility, biofilm formation, and exopolysaccharide production. Consistent with this, pretreatment of V. harveyi with catecholamines prior to inoculation into the rearing water resulted in significantly decreased survival of gnotobiotic brine shrimp larvae, when compared to larvae challenged with untreated V. harveyi. Further, NE-induced effects could be neutralized by ?-adrenergic antagonists or by the bacterial catecholamine receptor antagonist LED209, but not by ?-adrenergic or dopaminergic antagonists. Dopa-induced effects could be neutralized by dopaminergic antagonists or LED209, but not by adrenergic antagonists. Together, our results indicate that catecholamine sensing increases the success of transmission of V. harveyi and that interfering with catecholamine sensing might be an interesting strategy to control vibriosis in aquaculture. We hypothesize that upon tissue and/or hemocyte damage during infection, pathogens come into contact with elevated catecholamine levels, and that this stimulates the expression of virulence factors that are required to colonize a new host. PMID:25414697

  19. Polycistronic mRNAs code for polypeptides of the Vibrio harveyi luminescence system

    SciTech Connect

    Miyamoto, C.M.; Graham, A.D.; Boylan, M.; Evans, J.F.; Hasel, K.W.; Meighen, E.A.; Graham, A.F.

    1985-03-01

    DNA coding for the ..cap alpha.. and ..beta.. subunits of Vibrio harveyi luciferase, the luxA and luxB genes, and the adjoining chromosomal regions on both sides of these genes (total of 18 kilobase pairs) was cloned into Escherichia coli. Using labeled DNA coding for the ..cap alpha.. subunit as a hybridization probe, the authors identified a set of polycistronic mRNAs (2.6, 4, 7, and 8 kilobases) by Northern blotting; the most prominent of these was the one 4 kilobases long. This set of mRNAs was induced during the development of bioluminescence in V. harveyi. Furthermore, the same set of mRNAs was synthesized in E. coli by a recombinant plasmid that contained a 12-kilobase pair length of V. harveyi DNA and expressed the genes for the luciferase subunits. A cloned DNA segment corresponding to the major 4-kilobase mRNA coded for the ..cap alpha.. and ..beta.. subunits of luciferase, as well as a 32,000-dalton protein upstream from these genes that could be specifically modified by acyl-coenzyme A and is a component of the bioluminescence system. V. harveyi mRNA that was hybridized to the released from cloned DNA encompassing the luxA and luxB genes was translated in vitro. Luciferase ..cap alpha.. and ..beta.. subunits and the 32,000-dalton polypeptide were detected among the products, along with 42,000- and 55,000-dalton polypeptides, which are encoded downstream from the lux genes and are thought to be involved in luminescence.

  20. Nitric oxide as an antimicrobial molecule against Vibrio harveyi infection in the hepatopancreas of Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Chen, Ting; Wong, Nai-Kei; Jiang, Xiao; Luo, Xing; Zhang, Lvping; Yang, Dan; Ren, Chunhua; Hu, Chaoqun

    2015-01-01

    Nitric oxide (NO) is a key effector molecule produced in the innate immune systems of many species for antimicrobial defense. However, how NO production is regulated during bacterial infection in invertebrates, especially crustaceans, remains poorly understood. Vibrio harveyi, a Gram-negative marine pathogen, is among the most prevalent and serious threats to the world's shrimp culture industry. Its virulence typically manifests itself through shrimp hepatopancreas destruction. In the current study, we found that NO generated by an in vitro donor system (NOC-18) could rapidly and effectively kill V. harveyi. In addition, injection of heat-killed V. harveyi increased the concentration of NO/nitrite and the mRNA expression of nitric oxide synthase (NOS) in the hepatopancreas of Pacific white shrimp (Litopenaeus vannamei), the commercially most significant shrimp species. Live V. harveyi challenge also induced NO/nitrite production and NOS gene expression in primary L. vannamei hepatopancreatic cells in a time- and dose-dependent manner. Co-incubation of l-NAME, an inhibitor selective for mammalian constitutive NOSs, dose-dependently blocked V. harveyi-induced NO/nitrite production, without affecting V. harveyi-induced NOS mRNA expression. Furthermore, l-NAME treatment significantly increased the survival rate of infecting V. harveyi in cultured primary hepatopancreatic cells of L. vannamei. As a whole, we have demonstrated that endogenous NO produced by L. vannamei hepatopancreatic cells occurs in enzymatically regulated manners and is sufficient to act as a bactericidal molecule for V. harveyi clearance. PMID:25449376

  1. Dynamics and Mechanism of A Quorum Sensing Network Regulated by Small RNAs in Vibrio Harveyi

    NASA Astrophysics Data System (ADS)

    Shen, Jian-Wei

    2011-03-01

    Bacterial quorum sensing (QS) has attracted much interests and it is an important process of cell communication. Recently, Bassler et al. studied the phenomena of QS regulated by small RNAs and the experimental data showed that small RNAs played important role in the QS of Vibrio harveyi and it can permit the fine-tuning of gene regulation and maintenance of homeostasis. According to Michaelis—Menten kinetics and mass action law in this paper, we construct a mathematical model to investigate the mechanism induced QS by coexist of small RNA and signal molecular (AI) and show that there are periodic oscillation when the time delay and Hill coefficient exceed a critical value and the periodic oscillation produces the change of concentration and induces QS. These results are fit to the experimental results. In the meanwhile, we also get some theoretical value of Hopf Bifurcation on time deday. In addition, we also find this network is robust against noise.

  2. Identification of Vibrio harveyi proteins involved in the specific immune response of Senegalese sole (Solea senegalensis, Kaup).

    PubMed

    Medina, A; Mancera, J M; Martínez-Manzanares, E; Moriñigo, M A; Arijo, S

    2015-11-01

    Senegalese sole cultures are frequently affected by Vibrio harveyi disease outbreaks. Vaccines in aquaculture are one of the most successful methods of preventing fish pathologies; however, these vaccines are usually composed of inactivated whole cells containing a wide pool of antigens, and some do not induce any protection against pathogens. Thus, the aim of this study was to identify immunogenic proteins of V. harveyi involved in the specific antibody production by Senegalese sole. S. senegalensis specimens were immunized, by intraperitoneal injection, with V. harveyi bacterin supplemented with inactivated extracellular polymeric substances (ECP) and Freund incomplete adjuvant to obtain polyclonal antiserum. One month later, specimens were re-inoculated with the same antigens. Sera from immunized fish were collected two months post first immunization. Strong specific immune response to V. harveyi antigens was detected by ELISA using bacterin (limit dilutions of sera were 1:64000), ECP (1:4000) and outer membrane proteins (OMP) (1:4000) as antigens. Presence of immunogenic proteins in V. harveyi ECP and OMP were determined by 2D-PAGE. For Western Blot analysis some gels were transferred onto nitrocellulose membranes and incubated with sera from S. senegalensis specimens immunized against V. harveyi. 2D-PAGE and Western Blot showed at least five reactive proteins in the ECP and two in the OMP fraction. The spots that clearly reacted with the sole antiserum were excised from stained gel, and analyzed by mass spectrometry (MALDI/TOFTOF). A database search was then performed, using MASCOT as the search method. According to the results, the five ECP spots were identified as Maltoporine, protein homologous to Metal dependent phosphohydrolase, two porins isoforms of V. harveyi and a protein homologous to the cell division protein FtsH. Reactive proteins in the OMP fraction were identified as the protein 3-hydroxyisobutyrate dehydrogenase and a protein homologous to acid phosphatase. PMID:26386193

  3. Metabolomic analysis revealed the differential responses in two pedigrees of clam Ruditapes philippinarum towards Vibrio harveyi challenge.

    PubMed

    Liu, Xiaoli; Zhao, Jianmin; Wu, Huifeng; Wang, Qing

    2013-12-01

    Manila clam Ruditapes philippinarum is an important marine aquaculture shellfish. This species has several pedigrees including White, Zebra, Liangdao Red and Marine Red distributing in the coastal areas in North China. In this work, we studied the metabolic differences induced by Vibrio harveyi in hepatopancreas from White and Zebra clams using NMR-based metabolomics. Metabolic responses (e.g., amino acids, glucose, glycogen, ATP and succinate) and altered mRNA expression levels of related genes (ATP synthase, heat shock protein 90, defensin and lysozyme) suggested that V. harveyi induced clear disruption in energy metabolism and immune stresses in both White and Zebra clam hepatopancreas. However, V. harveyi caused obvious osmotic stress in Zebra clam hepatopancreas, which was not observed in V. harveyi-challenged White clams samples. In addition, V. harveyi challenge induced more severe disruption in energy metabolism and immune stress in White clams than in Zebra clams. Overall, our results indicated that the biological differences between different pedigrees of R. philippinarum should be considered in immunity studies. PMID:24161758

  4. A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems

    NASA Astrophysics Data System (ADS)

    Hunter, G. A. M.; Guevara Vasquez, F.; Keener, J. P.

    2013-08-01

    Quorum sensing is the process by which bacteria regulate their gene expression based on the local cell-population density. The quorum sensing systems of Vibrio harveyi and Vibrio cholerae are comprised of a phosphorelay cascade coupled to a small RNA (sRNA) circuit. The sRNA circuit contains multiple quorum regulated small RNA (Qrr) that regulate expression of the homologous master transcriptional regulators LuxR (in V. harveyi) and HapR (in V. cholerae). Their quorum sensing systems are topologically similar and homologous thereby making it difficult to understand why repression of HapR is more robust than LuxR to changes in Qrr. In this work we formulate and parameterize a novel mathematical model of the V. harveyi and V. cholerae sRNA circuit. We parameterize the model by fitting it to a variety of empirical data from both species. We show that we can distinguish all of the parameters and that the parameterizations (one for each species) are robust to errors in the data. We then use our model to propose some experiments to identify and explain kinetic differences between the species. We find that V. cholerae Qrr are more abundant and more sensitive to changes in LuxO than V. harveyi Qrr and argue that this is why expression of HapR is more robust than LuxR to changes in Qrr.

  5. Computational modeling of differences in the quorum sensing induced luminescence phenotypes of \\textit{Vibrio harveyi} and \\textit{Vibrio cholerae}

    E-print Network

    Andrew T Fenley; Suman K Banik; Rahul V Kulkarni

    2011-01-27

    \\textit{Vibrio harveyi} and \\textit{Vibrio cholerae} have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in \\textit{V. harveyi}, the sRNAs act additively; however, in \\textit{V. cholerae}, the sRNAs act redundantly. Furthermore, there are striking differences in the luminescence phenotypes for different pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. However these differences have not been connected with the observed differences for the sRNA deletion strains in these bacteria. In this work, we present a model for quorum sensing induced luminescence phenotypes focusing on the interactions of multiple sRNAs with target mRNA. Within our model, we find that one key parameter -- the fold-change in protein concentration necessary for luminescence activation -- can control whether the sRNAs appear to act additively or redundantly. For specific parameter choices, we find that differences in this key parameter can also explain hitherto unconnected luminescence phenotypes differences for various pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. The model can thus provide a unifying explanation for observed differences in luminescence phenotypes and can also be used to make testable predictions for future experiments.

  6. Novel beta-lactamase genes from two environmental isolates of Vibrio harveyi.

    PubMed

    Teo, J W; Suwanto, A; Poh, C L

    2000-05-01

    Two ampicillin-resistant (Amp(r)) isolates of Vibrio harveyi, W3B and HB3, were obtained from the coastal waters of the Indonesian island of Java. Strain W3B was isolated from marine water near a shrimp farm in North Java while HB3 was from pristine seawater in South Java. In this study, novel beta-lactamase genes from W3B (bla(VHW-1)) and HB3 (bla(VHH-1)) were cloned and their nucleotide sequences were determined. An open reading frame (ORF) of 870 bp encoding a deduced protein of 290 amino acids (VHW-1) was revealed for the bla gene of strain W3B while an ORF of 849 bp encoding a 283-amino-acid protein (VHH-1) was deduced for bla(VHH-1). At the DNA level, genes for VHW-1 and VHH-1 have a 97% homology, while at the protein level they have a 91% homology of amino acid sequences. Neither gene sequence showed homology to any other beta-lactamases in the databases. The deduced proteins were found to be class A beta-lactamases bearing low levels of homology (<50%) to other beta-lactamases of the same class. The highest level of identity was obtained with beta-lactamases from Pseudomonas aeruginosa, i.e., PSE-1, PSE-4, and CARB-3, and Vibrio cholerae CARB-6. Our study showed that both strains W3B and HB3 possess an endogenous plasmid of approximately 60 kb in size. However, Southern hybridization analysis employing bla(VHW-1) as a gene probe demonstrated that the bla gene was not located in the plasmid. A total of nine ampicillin-resistant V. harveyi strains, including W3B and HB3, were examined by pulsed-field gel electrophoresis of NotI-digested genomic DNA. Despite a high level of intrastrain genetic diversity, the bla(VHW-1) probe hybridized only to an 80- or 160-kb NotI genomic fragment in different isolates. PMID:10770767

  7. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene

    SciTech Connect

    Reichmuth, D.S.; Hittle, J.L.; Blanch, H.W.; Keasling, J.D.

    2000-01-05

    One possible alternative to current fuel hydrodesulfurization methods is the use of microorganisms to remove sulfur compounds. Biodesulfurization requires much milder processing conditions, gives higher specificity, and does not require molecular hydrogen. In the present work the authors have produced two compatible plasmids: pDSR3, which allows Escherichia coli to convert dibenzothiophene (DBT) to hydroxybiphenyl (HBP), and pDSR2, which produces a Vibrio harveyi flavin oxidoreductase. The authors show that the flavin oxidoreductase enhances the rate of DBT removal when co-expressed in vivo with the desulfurization enzymes. The plasmids pDSR2 and pDSR3 were co-expressed in growing cultures. The expression of oxidoreductase caused an increase in the rate of DBT removal but a decrease in the rate of HBP production. The maximum rate of DBT removal was 8 mg/h {center{underscore}dot} g dry cell weight. Experiments were also conducted using resting cells with the addition of various carbon sources. It was found that the addition of glucose or glycerol to cultures with oxidoreductase expression produced the highest DBT removal rate. The culture with acetate and no oxidoreductase expression had the highest level of HBP production. For all carbon sources, the DBT removal rate was faster and the HBP generation rate slower with the expression of the oxidoreductase. Analysis of desulfurization intermediates indicates that the last enzyme in the pathway may be limiting.

  8. Computational modeling of differences in the quorum sensing induced luminescence phenotypes of \\textit{Vibrio harveyi} and \\textit{Vibrio cholerae}

    E-print Network

    Fenley, Andrew T; Kulkarni, Rahul V

    2011-01-01

    \\textit{Vibrio harveyi} and \\textit{Vibrio cholerae} have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in \\textit{V. harveyi}, the sRNAs act additively; however, in \\textit{V. cholerae}, the sRNAs act redundantly. Furthermore, there are striking differences in the luminescence phenotypes for different pathway mutants in \\textit{V. harveyi} and \\textit{V. cholerae}. However these differences have not been connected with the observed differences for the sRNA deletion strains in these bacteria. In this work, we present a model for quorum sensing induced luminescence phenotypes focusing on the interactions of multiple sRNAs with target mRNA. Within our model, we find that one key parameter -- the fold-change in protein concentration necessary for luminescence activation -- can control whether the sRNAs appear to act additively or redundantly. Fo...

  9. Immunological evaluation of Vibrio alginolyticus, Vibrio harveyi, Vibrio vulnificus and infectious spleen and kidney necrosis virus (ISKNV) combined-vaccine efficacy in Epinephelus coioides.

    PubMed

    Huang, Zhijian; Tang, Jingjing; Li, Mei; Fu, Yacheng; Dong, Chuanfu; Zhong, Jiang F; He, Jianguo

    2012-11-15

    Combined vaccines are immunological products intended for immunization against multifactorial infectious diseases caused by different types or variants of pathogens. In this study, the effectiveness of Vibrio alginolyticus (Va), Vibrio harveyi (Vh), Vibrio vulnificus (Vv) and infectious spleen and kidney necrosis virus (ISKNV), an iridovirus, combined-vaccine (Vibrio and ISKNV combined vaccines, VICV), Va+Vh+Vv inactive vaccine (VIV) and ISKNV whole cell inactive vaccine (IWCIV) in Epinephelus coioides were evaluated using various immunological parameters including antibody titer, serum lysozyme activity (LA), respiratory burst (RB) activity, bactericidal activity (BA) and relative percentage survival (RPS). E. coioides immunized with VICV and challenged with Va+Vh+Vv+ISKNV had an RPS of 80%. The RPS was 73.3% in E. coioides immunized with VIV and challenged with Va+Vh+Vv. E. coioides immunized with IWCIV and challenged with ISKNV had an RPS of 69.6%. Serum LA in the vaccinated group was significantly higher than the control group on days 21 and 28 post-vaccination (P<0.01). The RB activity of head kidney cells in the vaccinated group was significantly higher (P<0.01) compared to that in the control group. However, RB activity of spleen cells in the vaccinated group and the control group were not significantly different (P>0.05). After immunization with VICV, BA values of blood leucocytes and head kidney cells increased significantly more than spleen cells. BA value of blood leucocytes was higher than that in head kidney cells. There were distinct difference between BA values in head kidney cells and in spleen cells (P<0.05) as well as between BA value of blood leucocytes and head kidney cells (P<0.01). E. coioides vaccinated with VICV have significantly higher antibody levels than control groupers (P<0.01). Our study suggests that the VICV candidate can effectively protect groupers against multiple bacterial and viral pathogens. PMID:23010220

  10. Chemotaxis in marine bacterium Vibrio alginolyticus

    NASA Astrophysics Data System (ADS)

    Xie, Li

    We investigated the motility pattern and chemotaxis system of the polarly flagellated marine bacterium Vibrio alginolyticus. V. alginolyticus executes 3-step (run-reverse-flick) cycles which are distinctively different from the 2-step (run-tumble) pattern of Escherichia coli. This marine bacterium backtracks its forward swimming path and randomizes its moving direction by flicking its flagellum at the end of the backward swimming interval. V. alginolyticus has a similar chemotaxis system as E. coli, and our study showed that their chemotaxis networks respond to chemical cues in the same manner. However, at contrast to E. coli, in which the motor bias is regulate by the chemotaxis network, in V. alginolyticus, the switching rates of the flagellar motor is modulated so that swimming intervals in a favorable direction can be lengthened regardless of the motor rotation direction. As a result, despite their different motility patterns, both E. coli and V. alginolyticus use a biased random walk to migrate toward a nutrient source. To understand the effect of motility patterns on chemotaxis capacity, master equations similar to convection-diffusion equations were developed to describe the motion of these two bacteria in a chemical profile. It was found that by adopting the run-reverse-flick motility pattern, a 3-step swimmer has the same drift velocity but its diffusivity is reduced by half compared to a 2-step swimmer. As a result of the smaller diffusivity, the former localizes better around a nutrient source but does not explore as efficiently as the latter. We thus speculate that the 3-step motility pattern suits better for the marine environment where searching is unproductive and it is more important to exploit an existing, though transient, resource.

  11. Chemotaxis in Marine Bacterium Vibrio alginolyticus

    NASA Astrophysics Data System (ADS)

    Xie, Li; Chattopadhyay, Suddhashil; Altindal, Tuba; Wu, Xiao-Lun

    2009-03-01

    We investigated swimming behavior of marine bacterium Vibrio alginolyticus in an uniform chemical environment. The typical bacterial trajectory consists of consecutive run (forward swimming) and reverse (backward swimming) intervals with occasional sudden changes of swimming directions, which we call flagellar flicks. This mode of chemotaxis is different from the canonical run-and-tumble strategy adopted by Escherichia coli and may be selected for in V. alginolyticus due to the ocean environment where nutrients are scarce and are subject to rapid turbulent dispersion. We measured the statistical distributions of run Trun and revers Trev time intervals, P(Trun) and P(Trev), and found that while the back-swimming time appears to have a well-defined time scale of 0.5,, the forward swimming time is more broadly distributed, suggestive of a Poisson process. Measurements of the time interval Tflick between two consecutive directional changes show that P(Tflick) is also peaked at a finite time, Tflick˜1,, and the mean directional change is ??˜70,0. Interestingly, this ?? observed is nearly optimal for efficient randomization of swimming directions. Altogether, our experiments suggest that V. alginolyticus employs both run-and-reverse and flicking activities for chemotaxis, and this behavior presumably optimizes their foraging efficiency in a turbulent environment.

  12. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp

    PubMed Central

    Ruwandeepika, H. A. Darshanee; Karunasagar, Indrani; Bossier, Peter; Defoirdt, Tom

    2015-01-01

    Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels) and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels), which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold) higher than the in vitro expression levels, indicating that (currently unknown) host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells. PMID:26636765

  13. Sigma E Regulators Control Hemolytic Activity and Virulence in a Shrimp Pathogenic Vibrio harveyi

    E-print Network

    Rattanama, Pimonsri

    Members of the genus Vibrio are important marine and aquaculture pathogens. Hemolytic activity has been identified as a virulence factor in many pathogenic vibrios including V. cholerae, V. parahaemolyticus, V. alginolyticus, ...

  14. Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand

    E-print Network

    Bae, Jin-Woo

    Vibrio areninigrae sp. nov., a marine bacterium isolated from black sand Ho-Won Chang,1 Seong Woon with the genus Vibrio and was phylogenetically related most closely to the type strain of Vibrio hispanicus (98 and phylogenetic data suggested that J74T should be placed in the genus Vibrio as representing a novel species

  15. Complete genome sequence of Vibrio fischeri: A symbiotic bacterium with pathogenic congeners

    E-print Network

    Ruby, Edward G.

    Complete genome sequence of Vibrio fischeri: A symbiotic bacterium with pathogenic congeners E. G Vibrio fischeri belongs to the Vibrionaceae, a large family of marine -proteobacteria that includes tissue. Among the small number of pathogenic Vibrio species that cause human diseases are Vibrio cholerae

  16. Identification and analysis of HSP70 from Sepiella maindroni under stress of Vibrio harveyi and Cd(2.).

    PubMed

    Liu, Hui-hui; He, Jian-yu; Chi, Chang-feng; Lv, Zhen-ming

    2015-11-01

    The 70-kDa heat shock proteins (HSP70) play crucial roles in protecting cells against environmental stresses, such as heat shock, heavy metals and pathogenic bacteria. The full-length HSP70 cDNA of Sepiella maindroni (designated as SmHSP70, GenBank accession no. KJ739788) was 2109 bp, including an ORF of 1950 bp encoding a polypeptide of 649 amino acids with predicted pI/MW 5.24/71.30 kDa, a 62 bp-5'-UTR and a 97 bp-3'-UTR. BLASTp analysis and phylogenetic relationship strongly suggested that the amino acid sequence was a member of HSP70 family. Multiple sequence alignment revealed that SmHSP70 and other known HSP70 were highly conserved, especially in the regions of HSP70 family signatures, the bipartite nuclear targeting sequence, ATP/GTP-binding site motif and 'EEVD' motif. Time-dependent mRNA expression of SmHSP70 in the liver was recorded by quantitative real-time RT-PCR after Vibrio harveyi injection and Cd(2+) exposure. The results indicated that SmHSP70 played a significant role in mediating the environmental stress and immune response against pathogens. PMID:26192462

  17. Distribution of the Luminous Bacterium Beneckea harveyi in a Semitropical Estuarine Environment

    PubMed Central

    O'Brien, Catherine H.; Sizemore, Ronald K.

    1979-01-01

    Bioluminescent bacteria were found in the water column, sediment, shrimp, and gastrointestinal tract of marine fishes from the semitropical estuarine environment of the East Lagoon, Galveston Island, Tex. Populations in the water column decreased during cold weather while sedimentary populations persisted. The highest percentages of luminous organisms were isolated from the gastrointestinal tract of marine fishes, where they persisted during 5 days of starvation. The presence of chitin temporarily increased intestinal populations. All isolates were Beneckea harveyi, whose natural habitat appears to be the gut of fishes and whose free-living reservoir appears to be marine sediments. PMID:16345465

  18. Immune responses of barramundi, Lates calcarifer (Bloch), after administration of an experimental Vibrio harveyi bacterin by intraperitoneal injection, anal intubation and immersion.

    PubMed

    Crosbie, P B B; Nowak, B F

    2004-11-01

    Barramundi, Lates calcarifer (Bloch), were immunized with an experimental Vibrio harveyi bacterin via intraperitoneal injection, immersion and anal intubation. Both specific and non-specific immune parameters were measured to compare responses to bacterin after delivery by various methods. Elevated antibody activities in sera were found in all treatment groups with barramundi injected intraperitoneally displaying significantly higher antibody activity than the other groups. In addition, there was evidence of memory induction with a heightened antibody response in the intraperitoneally injected group only. Bacteriostatic assays indicated activity against V. harveyi in the sera of all bacterin-treated groups; again this activity was significantly higher in the intraperitoneally injected groups. There was no enhancement noted in head kidney macrophage phagocytic activity or in serum lysozyme levels. PMID:15509257

  19. Polymethoxyflavones Isolated from the Peel of Miaray Mandarin (Citrus miaray) Have Biofilm Inhibitory Activity in Vibrio harveyi.

    PubMed

    Uckoo, Ram M; Jayaprakasha, G K; Vikram, Amit; Patil, Bhimanagouda S

    2015-08-19

    Citrus fruits are a good source of bioactive compounds with numerous beneficial biological activities. In the present study, fruits of the unexplored Miaray mandarin were used for the isolation of 10 bioactive compounds. Dried peels were sequentially extracted with hexane and chloroform in a Soxhlet-type apparatus for 8 h. The extracts were concentrated under vacuum and separated by flash chromatography to obtain nine polymethoxyflavones and a limonoid. The purity of each compound was analyzed by high-performance liquid chromatography (HPLC), and the compounds were identified by spectral analysis using MALDI-TOF-MS and NMR. The isolated compounds were identified as 5-hydroxy-3,7,3',4'-tetramethoxyflavone, 5,6,7,8,4'-pentamethoxyflavone (tangeretin), 3,5,6,7,8,3',4'-heptamethoxyflavone, 5,6,7,8,3',4'-hexamethoxyflavone (nobiletin), 3,5,7,8,3',4'-hexamethoxyflavone, 3,5,7,3',4'-pentamethoxyflavone (pentamethylquercetin), 5,7,4'-trimethoxyflavone, 5,7,8,4'-tetramethoxyflavone, 5,7,8,3',4'-pentamethoxyflavone, and limonin. These compounds were further tested for their ability to inhibit cell-cell signaling and biofilm formation in Vibrio harveyi. Among the evaluated polymethoxyflavones, 3,5,6,7,8,3',4'-heptamethoxyflavone and 3,5,7,8,3',4'-hexamethoxyflavone inhibited autoinducer-mediated cell-cell signaling and biofilm formation. These results suggest that Miaray mandarin fruits are a good source of polymethoxyflavones. This is the first report on the isolation of bioactive compounds from Miaray mandarin and evaluation of their biofilm inhibitory activity as well as isolation of pentamethylquercetin from the Citrus genus. PMID:26140409

  20. Inhibition of Vibrio harveyi bioluminescence by cerulenin: In vivo evidence for covalent modification of the reductase enzyme involved in aldehyde synthesis

    SciTech Connect

    Byers, D.M. ); Meighen, E.A. )

    1989-07-01

    Bacterial bioluminescence is very sensitive to cerulenin, a fungal antibiotic which is known to inhibit fatty acid synthesis. When Vibrio harveyi cells pretreated with cerulenin were incubated with ({sup 3}H)myristic acid in vivo, acylation of the 57-kilodalton reductase subunit of the luminescence-specific fatty acid reductase complex was specifically inhibited. Light emission of wild-type V. harveyi was 20-fold less sensitive to cerulenin at low concentrations (10{mu}g/ml) than that of the dark mutant strain M17, which requires exogenous myristic acid for luminescence because of a defective transferase subunit. The sensitivity of myristic acid-stimulated luminescence in the mutant strain M17 exceeded that of phospholipid synthesis from ({sup 14}C)acetate, whereas uptake and incorporation of exogenous ({sup 14}C)myristic acid into phospholipids was increased by cerulenin. The reductase subunit could be labeled by incubating M17 cells with ({sup 3}H)tetrahydrocerulenin; this labeling was prevented by preincubation with either unlabeled cerulenin or myristic acid. Labeling of the reductase subunit with ({sup 3}H)tetrahydrocerulenin was also noted in an aldehyde-stimulated mutant (A16) but not in wild-type cells or in another aldehyde-stimulated mutant (M42) in which ({sup 3}H)myristoyl turnover at the reductase subunit was found to be defective. These results indicate that (i) cerulenin specifically and covalently inhibits the reductase component of aldehyde synthesis, (ii) this enzyme is partially protected from cerulenin inhibition in the wild-type strain in vivo, and (iii) two dark mutants which exhibit similar luminescence phenotypes (mutants A16 and M42) are blocked at different stages of fatty acid reduction.

  1. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO.

    PubMed

    Vikram, Amit; Jesudhasan, Palmy R; Jayaprakasha, G K; Pillai, Suresh D; Patil, Bhimanagouda S

    2011-01-01

    Citrus limonoids are unique secondary metabolites, characterized by a triterpenoid skeleton with a furan ring. Studies have demonstrated beneficial health properties of limonoids. In addition, certain citrus limonoids play a role in plant defence against insect pests. In the present study, five limonoids were purified from sour orange and evaluated for their ability to inhibit cell-cell signalling. The purified limonoids were tested for their ability to interfere with cell-cell signalling and biofilm formation in Vibrio harveyi. Isolimonic acid, deacetylnomilinic acid glucoside and ichangin demonstrated significant inhibition of autoinducer-mediated cell-cell signalling and biofilm formation. Furthermore, isolimonic acid and ichangin treatment resulted in induced expression of the response regulator gene luxO. In addition, luxR promoter activity was not affected by isolimonic acid or ichangin. Therefore, the ability of isolimonic acid and ichangin to interfere with cell-cell signalling and biofilm formation seems to stem from the modulation of luxO expression. The results suggest that isolimonic acid and ichangin are potent modulators of bacterial cell-cell signalling. PMID:20864476

  2. Expression of Vibrio harveyi Acyl-ACP Synthetase Allows Efficient Entry of Exogenous Fatty Acids into the Escherichia coli Fatty Acid and Lipid A Synthetic Pathways

    PubMed Central

    Jiang, Yanfang; Morgan-Kiss, Rachael M.; Campbell, John W.; Chan, Chi Ho; Cronan, John E.

    2010-01-01

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously-supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function. PMID:20028080

  3. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  4. A trans-unsaturated fatty acid in a psychrophilic bacterium, Vibrio sp. strain ABE-1.

    PubMed Central

    Okuyama, H; Sasaki, S; Higashi, S; Murata, N

    1990-01-01

    A high level of a trans-unsaturated fatty acid was found in the phospholipids of a psychrophilic bacterium, Vibrio sp. strain ABE-1. This fatty acid was identified as 9-trans-hexadecenoic acid (C16:19t) by gas-liquid chromatography and infrared absorption spectrometry. C16:1(9)t accounted for less than 1% of the total fatty acids in cells grown at 5 degrees C and reached 12% of the total at 20 degrees C. We suggest that the increase in the level of the trans-unsaturated fatty acid is related to the high growth rate of this bacterium at elevated temperatures. Possible biological roles of the trans-unsaturated fatty acid in the adaptation of the microorganism to the ambient temperature are discussed. PMID:2345157

  5. Cell-bound cations of the moderately halophilic bacterium Vibrio costicola.

    PubMed Central

    Shindler, D B; Wydro, R M; Kushner, D J

    1977-01-01

    Over most of the range of salt concentrations in which the moderately halophilic bacterium Vibrio costicola could grow, the sum of the cell-associated Na+ + K+ ions was at least as high as in the external medium. This is in contrast to other moderate halophiles, which have substantially lower internal than external salt concentrations for most of their growth range. The relative amounts of Na+ and K+ in V. costicola varied with environmental conditions. The K+/Na+ ratio fell during anaerobic incubation or when cells were poisoned. As Na+ ions left the cells, K+ ions entered. However, movement of these ions was not tightly coupled, since K+ content of cells could increase without a corresponding decrease in Na+ content. The Mg2+ contents of cells varied little with environmental conditions. PMID:263820

  6. Vibrio panuliri sp. nov., a marine bacterium isolated from spiny lobster, Panulirus penicillatus and transfer of Vibrio ponticus from Scophthalmi clade to the newly proposed Ponticus clade.

    PubMed

    Kumari, Prabla; Poddar, Abhijit; Schumann, Peter; Das, Subrata K

    2014-12-01

    A novel marine bacterium, strain LBS2(T) was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1-7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2(T) belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2(T) formed a separate cluster with Vibrio ponticus DSM 16217(T) with 89.8% multilocus gene sequence similarity. However, strain LBS2(T) is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2(T) belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217(T) as the representative type strain of the clade. DNA-DNA homologies between strain LBS2(T) and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2(T) represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2(T) (= JCM 19500(T) = DSM 27724(T) = LMG 27902(T)). PMID:25445014

  7. Vibrio calviensis sp. nov., a halophilic, facultatively oligotrophic 0.2 microm-fiIterabIe marine bacterium.

    PubMed

    Denner, Ewald B M; Vybiral, Dietmar; Fischer, Ulrike R; Velimirov, Branko; Busse, Hans-Jürgen

    2002-03-01

    A gram-negative, facultatively anaerobic, straight to slightly curved rod-shaped bacterium (RE35F/12T) sensitive to vibriostatic agent O/129 was previously isolated from sea water (Western Mediterranean Sea, Bay of Calvi, Corsica, France) by 0.2 microm-membrane filtration. Strain RE35/F12T (= CIP 107077T = DSM 14347T) was facultatively oligotrophic, halophilic, required Na+ for growth and produced acid but no gas from D-glucose under anaerobic conditions. Comparative 165 rRNA gene-sequence analyses demonstrated that the bacterium is most closely related (94.3%) to Vibrio scophthalmi. Similarities to the sequences of all other established Vibrio species ranged from 93.6% (with Vibrio aestuarianus) to 90.7% (with Vibrio rumoiensis). Strain RE35/F12T occupies a distinct phylogenetic position; this is similar to the case of Vibrio hollisae, because RE35F/12T represents a relatively long subline of descent sharing a branching point with the outskirts species V. hollisae. The G+C content of the DNA was 49.5 mol%. Ubiquinone Q-8 was the main respiratory lipoquinone, and 16:1omega9cis, 16:0 and 18:1trans9, cis11 were the major cellular fatty acids, 16:1omega9cis being predominant. The polyamine pattern was characterized by the presence of the triamine sym-norspermidine. On the basis of the polyphasic information summarized above, a new Vibrio species is described for which the name Vibrio calviensis sp. nov. is proposed. PMID:11931167

  8. Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment.

    PubMed

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-10-01

    A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10-37?°C and pH?5.0-9.0, with optimal growth at 28?°C and pH?6.0-8.0. Growth was observed with 1-9?% (w/v) NaCl in marine broth, with optimal growth with 3-5?% NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38?%), Vibrio diazotrophicus ATCC 33466T (97.31?%), Vibrio aestuarianus ATCC 35048T (97.07?%) Vibrio areninigrae J74T (96.76?%) and Vibrio hispanicus LMG 13240T (96.76?%). The major fatty acids were C16?:?0, C16?:?1?7c/C16?:?1?6c and C18?:?1?7c/C18?:?1?6c. The DNA G+C content was 41.9?%. The DNA-DNA hybridization analysis results showed a 30.2?% association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T (?=?KEMB 2255-005T?=?JCM 30409T). PMID:26296768

  9. The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri

    NASA Astrophysics Data System (ADS)

    Barron, Addie; Hagen, Steve; Son, Minjun

    2015-03-01

    Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.

  10. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus

    SciTech Connect

    Harwood-Sears, V.; Gordon, A.S. )

    1990-05-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuPB2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experiments in which chloramphenicol was added to cultures indicated that there was de novo synthesis of these proteins in response to copper. When supernatants were separated by gel permeation chromatography, CuBP1 and CuPB2 coeluted with a copper-induced peak in copper-binding activity. CuBP1 and CuBP2 from whole supernatants were concentrated and partially purified by using a copper-charged immobilized metal ion affinity chromatography column, confirming the affinity of these proteins for copper. A comparison of cell pellets and supernatants demonstrated that CuBP1 was more concentrated in supernatants than in cells. Our data are consistent with a model for a novel mechanism of copper detoxification in which excretion of copper-binding protein is induced by copper.

  11. Penetration of the Coral-Bleaching Bacterium Vibrio shiloi into Oculina patagonica

    PubMed Central

    Banin, E.; Israely, T.; Kushmaro, A.; Loya, Y.; Orr, E.; Rosenberg, E.

    2000-01-01

    Inoculation of the coral-bleaching bacterium Vibrio shiloi into seawater containing its host Oculina patagonica led to adhesion of the bacteria to the coral surface via a ?-d-galactose receptor, followed by penetration of the bacteria into the coral tissue. The internalized V. shiloi cells were observed inside the exodermal layer of the coral by electron microscopy and fluorescence microscopy using specific anti-V. shiloi antibodies to stain the intracellular bacteria. At 29°C, 80% of the bacteria bound to the coral within 8 h. Penetration, measured by the viable count (gentamicin invasion assay) inside the coral tissue, was 5.6, 20.9, and 21.7% of the initial inoculum at 8, 12, and 24 h, respectively. The viable count in the coral tissue decreased to 5.3% at 48 h, and none could be detected at 72 h. Determination of V. shiloi total counts (using the anti-V. shiloi antibodies) in the coral tissue showed results similar to viable counts for the first 12 h of infection. After 12 h, however, the total count more than doubled from 12 to 24 h and continued to rise, reaching a value 6 times that of the initial inoculum at 72 h. Thus, the intracellular V. shiloi organisms were transformed into a form that could multiply inside the coral tissue but did not form colonies on agar medium. Internalization of the bacteria was accompanied by the production of high concentrations of V. shiloi toxin P activity in the coral tissue. Internalization and multiplication of V. shiloi are discussed in terms of the mechanism of bacterial bleaching of corals. PMID:10877802

  12. Genome sequence of Vibrio diabolicus and identification of the exopolysaccharide HE800 biosynthesis locus.

    PubMed

    Goudenège, David; Boursicot, Vincent; Versigny, Typhaine; Bonnetot, Sandrine; Ratiskol, Jacqueline; Sinquin, Corinne; LaPointe, Gisèle; Le Rous, Frédérique; Roux, Frédérique Le; Delbarre-Ladrat, Christine

    2014-12-01

    Vibrio diabolicus, a marine bacterium originating from deep-sea hydrothermal vents, produces the HE800 exopolysaccharide with high value for biotechnological purposes, especially for human health. Its genome was sequenced and analyzed; phylogenetic analysis using the core genome revealed V. diabolicus is close to another deep-sea Vibrio sp. (Ex25) within the Harveyi clade and Alginolyticus group. A genetic locus homologous to the syp cluster from Vibrio fischeri was demonstrated to be involved in the HE800 production. However, few genetic particularities suggest that the regulation of syp expression may be different in V. diabolicus. The presence of several types of glycosyltransferases within the locus indicates a capacity to generate diversity in the glycosidic structure, which may confer an adaptability to environmental conditions. These results contribute to better understanding exopolysaccharide biosynthesis and for developing new efficient processes to produce this molecule for biotechnological applications. PMID:25273176

  13. Integrating small molecule signalling and H-NS antagonism in Vibrio cholerae, a bacterium with two chromosomes.

    PubMed

    Dorman, Charles J

    2015-08-01

    H-NS is a well-established silencer of virulence gene transcription in the human pathogen Vibrio cholerae. Biofilm formation aids V.?cholerae in colonizing both its host and its external environments, and H-NS silences biofilm gene expression. Cyclic-di-guanosine monophosphate acts through the DNA binding proteins VpsR and VpsT to overcome H-NS-mediated repression of biofilm genes, driving a transition between a planktonic and a colonial/biofilm lifestyle. The H-NS binding pattern has now been charted on both chromosomes in V.?cholerae, but whether or not this abundant DNA-binding-and-bridging protein plays any roles in nucleoid organization in this bacterium remains an open question. PMID:25988304

  14. Vibrio psychroerythrus sp. n.: Classification of the Psychrophilic Marine Bacterium, NRC 1004

    PubMed Central

    D'aoust, J. Y.; Kushner, D. J.

    1972-01-01

    A red-pigmented organism, formerly known as marine psychrophile NRC 1004, has been classified as Vibrio psychroerythrus sp. n. Classification was mainly based on morphology, the ability of the organism to oxidize and ferment glucose, its sensitivity to vibriostat 0/129, and its deoxyribonucleic acid base composition of 40.0 moles% guanine plus cytosine, determined by thermal denaturation. The organism gave positive reactions for catalase, oxidase, and starch hydrolysis and produced acid from maltose and dextrin but not from arabinose. It was indole- and citrate-negative and reduced nitrate to nitrite without producing gas. PMID:5053463

  15. Mutation of Bacterium Vibrio gazogenes for Selective Preparation of Colorants Farzaneh Alihosseini

    E-print Network

    Hammock, Bruce D.

    with molecular mass of 309 Da was detected as well. The mutated bacteria strains increased the yield of pigment marine bacterium strain effectively produced prodiginine type pigments. These colorants could dye wool Biotechnol. Prog., 26: 352­360, 2010 Keywords: antibacterial pigment, prodigiosin, textiles, mass

  16. Multiple N-acyl-L-homoserine lactone autoinducers of luminescence in the marine symbiotic bacterium Vibrio fischeri.

    PubMed Central

    Kuo, A; Blough, N V; Dunlap, P V

    1994-01-01

    In Vibrio fischeri, the synthesis of N-3-oxohexanoyl-L-homoserine lactone, the autoinducer for population density-responsive induction of the luminescence operon (the lux operon, luxICDABEG), is dependent on the autoinducer synthase gene luxI. Gene replacement mutants of V. fischeri defective in luxI, which had been expected to produce no autoinducer, nonetheless exhibited lux operon transcriptional activation. Mutants released into the medium a compound that, like N-3-oxohexanoyl-L-homoserine lactone, activated expression of the lux system in a dose-dependent manner and was both extractable with ethyl acetate and labile to base. The luxI-independent compound, also like N-3-oxohexanoyl-L-homoserine lactone, was produced by V. fischeri cells in a regulated, population density-responsive manner and required the transcriptional activator LuxR for activity in the lux system. The luxI-independent compound was identified as N-octanoyl-L-homoserine lactone by coelution with the synthetic compound in reversed-phase high-pressure liquid chromatography, by derivatization treatment with 2,4-dinitrophenylhydrazine, by mass spectrometry, and by nuclear magnetic resonance spectroscopy. A locus, ain, necessary and sufficient for Escherichia coli to synthesize N-octanoyl-L-homoserine lactone was cloned from the V. fischeri genome and found to be distinct from luxI by restriction mapping and Southern hybridization. N-Octanoyl-L-homoserine lactone and ain constitute a second, novel autoinduction system for population density-responsive signalling and regulation of lux gene expression, and possibly other genes, in V. fischeri. A third V. fischeri autoinducer, N-hexanoyl-L-homoserine lactone, dependent on luxI for its synthesis, was also identified. The presence of multiple chemically and genetically distinct but cross-acting autoinduction systems in V. fischeri indicates unexpected complexity for autoinduction as a regulatory mechanism in this bacterium. Images PMID:8002580

  17. Purification, characterization and production optimization of a vibriocin produced by mangrove associated Vibrio parahaemolyticus

    PubMed Central

    Balakrishnan, Baskar; Ranishree, Jayappriyan Kothilmozhian; Thadikamala, Sathish; Panchatcharam, Prabakaran

    2014-01-01

    Objective To identify a potential bacterium which produces antimicrobial peptide (vibriocin), and its purification, characterization and production optimization. The bacteria subjected in the study were isolated from a highly competitive ecological niche of mangrove ecosystem. Methods The bacterium was characterized by phenotype besides 16S rRNA gene sequence analysis. The antibacterial activity was recognised by using agar well diffusion method. The vibriocin was purified using ammonium sulphate precipitation, butanol extraction, gel filtration chromatography, ion-exchange chromatography and subsequently, by HPLC. Molecular weight of the substance identified in SDS-PAGE. Production optimization performed according to Taguchi's mathematical model using 6 different nutritional parameters as variables. Results The objective bacterium was identified as Vibrio parahaemolyticus. The vibriocin showed 18 KDa of molecular mass with mono peptide in nature and highest activity against pathogenic Vibrio harveyi. The peptide act stable in a wide range of pH, temperature, UV radiation, solvents and chemicals utilized. An overall ?20% of vibriocin production was improved, and was noticed that NaCl and agitation speed played a vital role in secretion of vibriocin. Conclusion The vibriocin identified here would be an effective alternative for chemically synthesized drugs for the management of Vibrio infections in mariculture industry. PMID:25182547

  18. A Novel Algicide: Evidence of the Effect of a Fatty Acid Compound from the Marine Bacterium, Vibrio sp. BS02 on the Harmful Dinoflagellate, Alexandrium tamarense

    PubMed Central

    Fu, Lijun; An, Xinli; Zhang, Bangzhou; Li, Yi; Chen, Zhangran; Zheng, Wei; Yi, Lin; Zheng, Tianling

    2014-01-01

    Alexandrium tamarense is a notorious bloom-forming dinoflagellate, which adversely impacts water quality and human health. In this study we present a new algicide against A. tamarense, which was isolated from the marine bacterium Vibrio sp. BS02. MALDI-TOF-MS, NMR and algicidal activity analysis reveal that this compound corresponds to palmitoleic acid, which shows algicidal activity against A. tamarense with an EC50 of 40 ?g/mL. The effects of palmitoleic acid on the growth of other algal species were also studied. The results indicate that palmitoleic acid has potential for selective control of the Harmful algal blooms (HABs). Over extended periods of contact, transmission electron microscopy shows severe ultrastructural damage to the algae at 40 ?g/mL concentrations of palmitoleic acid. All of these results indicate potential for controlling HABs by using the special algicidal bacterium and its active agent. PMID:24626054

  19. Microbial Metabolism Quorum Sensing

    E-print Network

    Huang, Ching-Tsan

    Bioluminescence OHHL Vibrio harveyi Bioluminescence HBHL Erwinia carotovora Multiple exoenzymes virulence unique to V. harveyi - A bioluminescence Gram (-) marine bacterium ; free living in the ocean #12

  20. Draft Genome Sequence of Vibrio sp. Strain Vb278, an Antagonistic Bacterium Isolated from the Marine Sponge Sarcotragus spinosulus

    PubMed Central

    Gonçalves, Ana C. S.; Franco, Telma; Califano, Gianmaria; Dowd, Scot E.; Pohnert, Georg

    2015-01-01

    We report here the draft genome sequence of Vibrio sp. Vb278, a biofilm-producing strain isolated from the marine sponge Sarcotragus spinosulus, showing in vitro antibacterial activity. The annotated genome displays a range of symbiotic factors and the potential for the biosynthesis of several biologically active natural products. PMID:26021918

  1. Genome Sequence of Vibrio campbellii Strain UMTGB204, a Marine Bacterium Isolated from a Green Barrel Tunicate.

    PubMed

    Gan, Huan You; Noor, Mohd Ezhar Mohd; Saari, Nur Azna; Musa, Najiah; Mustapha, Baharim; Usup, Gires; Danish-Daniel, Muhd

    2015-01-01

    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified. PMID:25814609

  2. Crystal structure and kinetic studies of a tetrameric type II ?-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    PubMed

    Ferraroni, Marta; Del Prete, Sonia; Vullo, Daniela; Capasso, Clemente; Supuran, Claudiu T

    2015-12-01

    Carbonic anhydrase (CA) is a zinc enzyme that catalyzes the reversible conversion of carbon dioxide to bicarbonate (hydrogen carbonate) and a proton. CAs have been extensively investigated owing to their involvement in numerous physiological and pathological processes. Currently, CA inhibitors are widely used as antiglaucoma, anticancer and anti-obesity drugs and for the treatment of neurological disorders. Recently, the potential use of CA inhibitors to fight infections caused by protozoa, fungi and bacteria has emerged as a new research direction. In this article, the cloning and kinetic characterization of the ?-CA from Vibrio cholerae (VchCA?) are reported. The X-ray crystal structure of this new enzyme was solved at 1.9?Å resolution from a crystal that was perfectly merohedrally twinned, revealing a tetrameric type II ?-CA with a closed active site in which the zinc is tetrahedrally coordinated to Cys42, Asp44, His98 and Cys101. The substrate bicarbonate was found bound in a noncatalytic binding pocket close to the zinc ion, as reported for a few other ?-CAs, such as those from Escherichia coli and Haemophilus influenzae. At pH 8.3, the enzyme showed a significant catalytic activity for the physiological reaction of the hydration of CO2 to bicarbonate and protons, with the following kinetic parameters: a kcat of 3.34 × 10(5)?s(-1) and a kcat/Km of 4.1 × 10(7)?M(-1)?s(-1). The new enzyme, on the other hand, was poorly inhibited by acetazolamide (Ki of 4.5?µM). As this bacterial pathogen encodes at least three CAs, an ?-CA, a ?-CA and a ?-CA, these enzymes probably play an important role in the life cycle and pathogenicity of Vibrio, and it cannot be excluded that interference with their activity may be exploited therapeutically to obtain antibiotics with a different mechanism of action. PMID:26627652

  3. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744.

    PubMed

    Zenno, S; Saigo, K; Kanoh, H; Inouye, S

    1994-06-01

    The gene encoding the major NAD(P)H-flavin oxidoreductase (flavin reductase) of the luminous bacterium Vibrio fischeri ATCC 7744 was isolated by using synthetic oligonucleotide probes corresponding to the N-terminal amino acid sequence of the enzyme. Nucleotide sequence analysis suggested that the major flavin reductase of V. fischeri consisted of 218 amino acids and had a calculated molecular weight of 24,562. Cloned flavin reductase expressed in Escherichia coli was purified virtually to homogeneity, and its basic biochemical properties were examined. As in the major flavin reductase in crude extracts of V. fischeri, cloned flavin reductase showed broad substrate specificity and served well as a catalyst to supply reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. The major flavin reductase of V. fischeri not only showed significant similarity in amino acid sequence to oxygen-insensitive NAD(P)H nitroreductases of Salmonella typhimurium, Enterobacter cloacae, and E. coli but also was associated with a low level of nitroreductase activity. The major flavin reductase of V. fischeri and the nitroreductases of members of the family Enterobacteriaceae would thus appear closely related in evolution and form a novel protein family. PMID:8206830

  4. Multiple Regulators Control Capsular Polysaccharide Production in Vibrio parahaemolyticus

    PubMed Central

    Güvener, Zehra Tüzün; McCarter, Linda L.

    2003-01-01

    Vibrio parahaemolyticus, a biofouling marine bacterium and human pathogen, undergoes phase variation displaying translucent (TR) and opaque (OP) colony morphologies. Prior studies demonstrated that OP colonies produce more capsular polysaccharide (CPS) than TR colonies and that opacity is controlled by the Vibrio harveyi LuxR-type transcriptional activator OpaR. CPS has also been shown to be regulated by the scrABC signaling pathway, which involves a GGDEF-EAL motif-containing sensory protein. The present study identifies cps genes and examines their regulation. Transposon insertions in the cps locus, which contains 11 genes, abolished opacity. Such mutants failed to produce CPS and were defective in pellicle formation in microtiter wells and in a biofilm attachment assay. Reporter fusions to cpsA, the first gene in the locus, showed ?10-fold-enhanced transcription in the OP (opaR+) strain compared to a TR (?opaR) strain. Two additional transcriptional regulators were discovered. One potential activator, CpsR, participates in the scrABC GGDEF-EAL-signaling pathway; CpsR was required for the increased cps expression observed in scrA ?opaR strains. CpsR, which contains a conserved module found in members of the AAA+ superfamily of ATP-interacting proteins, is homologous to Vibrio cholerae VpsR; however, unlike VpsR, CpsR was not essential for cps expression. CpsS, the second newly identified regulator, contains a CsgD-type DNA-binding domain and appears to act as a repressor. Mutants with cpsS defects have greatly elevated cps transcription; their high level of cpsA expression was CpsR dependent in ?R strains and primarily OpaR dependent in OP strains. Thus, a network of positive and negative regulators modulates CPS production in V. parahaemolyticus. PMID:12949095

  5. Molecular cloning and characterization of a novel ?-1,3-xylanase possessing two putative carbohydrate-binding modules from a marine bacterium Vibrio sp. strain AX-4

    PubMed Central

    2005-01-01

    We cloned a novel ?-1,3-xylanase gene, consisting of a 1728-bp open reading frame encoding 576 amino acid residues, from a marine bacterium, Vibrio sp. strain AX-4. Sequence analysis revealed that the ?-1,3-xylanase is a modular enzyme composed of a putative catalytic module belonging to glycoside hydrolase family 26 and two putative carbohydrate-binding modules belonging to family 31. The recombinant enzyme hydrolysed ?-1,3-xylan to yield xylo-oligosaccharides with different numbers of xylose units, mainly xylobiose, xylotriose and xylotetraose. However, the enzyme did not hydrolyse ?-1,4-xylan, ?-1,4-mannan, ?-1,4-glucan, ?-1,3-xylobiose or p-nitrophenyl-?-xyloside. When ?-1,3-xylo-oligosaccharides were used as the substrate, the kcat value of the enzyme for xylopentaose was found to be 40 times higher than that for xylotetraose, and xylotriose was extremely resistant to hydrolysis by the enzyme. A PSI-BLAST search revealed two possible catalytic Glu residues (Glu-138 as an acid/base catalyst and Glu-234 as a nucleophile), both of which are generally conserved in glycoside hydrolase superfamily A. Replacement of these two conserved Glu residues with Asp and Gln resulted in a significant decrease and complete loss of enzyme activity respectively, without a change in their CD spectra, suggesting that these Glu residues are the catalytic residues of ?-1,3-xylanase. The present study also clearly shows that the non-catalytic putative carbohydrate-binding modules play an important role in the hydrolysis of insoluble ?-1,3-xylan, but not that of soluble glycol-?-1,3-xylan. Furthermore, repeating a putative carbohydrate-binding module strongly enhanced the hydrolysis of the insoluble substrate. PMID:15743273

  6. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis.

    PubMed

    Claes, M F; Dunlap, P V

    2000-02-15

    The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent. J. Exp. Zool. 286:280-296, 2000. PMID:10653967

  7. Complete genome sequence of a giant Vibrio bacteriophage VH7D.

    PubMed

    Luo, Zhu-Hua; Yu, Yan-Ping; Jost, Günter; Xu, Wei; Huang, Xiang-Ling

    2015-12-01

    A Vibrio sp. lytic phage VH7D was isolated from seawater of an abalone farm in Xiamen, China. The phage was capable of lysing Vibrio rotiferianus DSM 17186(T) and Vibrio harveyi DSM 19623(T). The complete genome of this phage consists of 246,964 nucleotides with a GC content of 41.31%, which characterized it as a giant vibriophage. Here we report the complete genome sequence and major findings from the genomic annotation. PMID:26476690

  8. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and...

  9. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cholera caused by the bacterium Vibrio cholerae and provides epidemiological information on cholera. Cholera is an acute infectious disease characterized by severe diarrhea with extreme fluid and...

  10. Secondary Metabolites Produced by the Marine Bacterium Halobacillus salinus That Inhibit Quorum Sensing-Controlled Phenotypes in Gram-Negative Bacteria?

    PubMed Central

    Teasdale, Margaret E.; Liu, Jiayuan; Wallace, Joselynn; Akhlaghi, Fatemeh; Rowley, David C.

    2009-01-01

    Certain bacteria use cell-to-cell chemical communication to coordinate community-wide phenotypic expression, including swarming motility, antibiotic biosynthesis, and biofilm production. Here we present a marine gram-positive bacterium that secretes secondary metabolites capable of quenching quorum sensing-controlled behaviors in several gram-negative reporter strains. Isolate C42, a Halobacillus salinus strain obtained from a sea grass sample, inhibits bioluminescence production by Vibrio harveyi in cocultivation experiments. With the use of bioassay-guided fractionation, two phenethylamide metabolites were identified as the active agents. The compounds additionally inhibit quorum sensing-regulated violacein biosynthesis by Chromobacterium violaceum CV026 and green fluorescent protein production by Escherichia coli JB525. Bacterial growth was unaffected at concentrations below 200 ?g/ml. Evidence is presented that these nontoxic metabolites may act as antagonists of bacterial quorum sensing by competing with N-acyl homoserine lactones for receptor binding. PMID:19060172

  11. Luciferase-dependent oxygen consumption by bioluminescent vibrios

    SciTech Connect

    Makemson, J.C.

    1986-02-01

    Oxygen uptake due to luciferase in two luminous Vibrio species was estimated in vivo by utilizing inhibitors having specificities for luciferase (decanol) and cytochromes (cyanide). Cyanide titration of respiration revealed a component of oxygen uptake less sensitive to cyanide which was completely inhibitable by low concentrations of decanol. From this it was estimated that in vivo luciferase is responsible for less than 12% (Vibrio harveyi) or 20% (Vibrio fischeri) of the total respiration. From these data in vivo bioluminescent quantum yields are estimated to be not lower than 1.7 and 2.6%, respectively.

  12. Magnetosome formation in marine vibrio MV-1 

    E-print Network

    Trubitsyn, Denis

    2010-11-24

    Marine vibrio MV-1 is a magnetotactic bacterium capable of aligning its cell in response to the Earth’s magnetic field. This ability is due to the presence of chainlike structures comprising magnetosomes, magnetite ...

  13. Vibrio vulnificus FACT SHEETFOR HEALTH CARE PROVIDERS Every year millions of Americans consume raw

    E-print Network

    Fernandez, Eduardo

    Vibrio vulnificus FACT SHEETFOR HEALTH CARE PROVIDERS Every year millions of Americans consume raw molluscan shellfish can cause serious illness or death from Vibrio vulnificus. Vibrio vulnificus is a gram-negative bacterium and is considered the most lethal of the vibrios inhabiting brackish and salt water

  14. Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture.

    PubMed

    Scarano, Christian; Spanu, Carlo; Ziino, Graziella; Pedonese, Francesca; Dalmasso, Alessandra; Spanu, Vincenzo; Virdis, Salvatore; De Santis, Enrico P L

    2014-07-01

    Extensive use of antimicrobial agents in finfish farming and the consequent selective pressure lead to the acquisition of antibiotic resistance in aquaculture environment bacteria. Vibrio genus represents one of the main pathogens affecting gilthead sea bream. The development of antibiotic resistance by Vibrio represents a potential threat to human health by exchange of resistant genes to human pathogens through food chain. The objective of the present study was to conduct a multisite survey on the antibiotic resistance of Vibrio spp. isolated from gilthead sea bream reared in Italian mariculture. Vibrio spp. strains were isolated from skin, gills, muscles and intestinal content of 240 gilthead sea bream. A random selection of 150 strains was sequenced for species identification. Resistance against 15 antimicrobial agents was tested by the broth microdilution method. Vibrio harveyi and Vibrio alginolyticus accounted for 36.7% and 33.3% of the isolates respectively. 96% of the strains showed multiple resistance to the tested drugs, with two strains, Vibrio aestuarianus and Vibrio harveyi resistant to 10 and 9 antibiotics, respectively. Ampicillin, amoxicillin, erythromycin and sulfadiazine showed low efficacy against Vibrio spp. Rational use of antimicrobial agents and surveillance on antibiotic administration may reduce the acquisition of resistance by microorganisms of aquatic ecosystems. PMID:25180847

  15. Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae

    PubMed Central

    Al-saari, Nurhidayu; Gao, Feng; A.K.M. Rohul, Amin; Sato, Kazumichi; Sato, Keisuke; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Meirelles, Pedro M.; Thompson, Fabiano L.; Thompson, Cristiane; A. Filho, Gilberto M.; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2015-01-01

    Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT 5085T, V. hangzhouensis JCM 15146T V. maritimus LMG 25439T, and V. variabilis LMG 25438T). In silico DDH data also supported the genomic relationship. The strains C7T also had less than 95% average amino acid identity (AAI) and average nucleotide identity (ANI) towards V. maritimus C210, V. variabilis C206, and V. mediterranei AK1T, V. brasiliensis LMG 20546T, V. orientalis ATCC 33934T, and V. sinaloensis DSM 21326. The name Vibrio astriarenae sp. nov. is proposed with C7 as the type strains. Both V. agarivorans CECT 5058T and V. astriarenae C7T are members of the newest clade of Vibrionaceae named Agarivorans. PMID:26313925

  16. Cloning of a Novel Collagenase Gene from the Gram-Negative Bacterium Grimontia (Vibrio) hollisae 1706B and Its Efficient Expression in Brevibacillus choshinensis ?

    PubMed Central

    Teramura, Naoko; Tanaka, Keisuke; Iijima, Katsumasa; Hayashida, Osamu; Suzuki, Koki; Hattori, Shunji; Irie, Shinkichi

    2011-01-01

    The collagenase gene was cloned from Grimontia (Vibrio) hollisae 1706B, and its complete nucleotide sequence was determined. Nucleotide sequencing showed that the open reading frame was 2,301 bp in length and encoded an 84-kDa protein of 767 amino acid residues. The deduced amino acid sequence contains a putative signal sequence and a zinc metalloprotease consensus sequence, the HEXXH motif. G. hollisae collagenase showed 60 and 59% amino acid sequence identities to Vibrio parahaemolyticus and Vibrio alginolyticus collagenase, respectively. In contrast, this enzyme showed <20% sequence identity with Clostridium histolyticum collagenase. When the recombinant mature collagenase, which consisted of 680 amino acids with a calculated molecular mass of 74 kDa, was produced by the Brevibacillus expression system, a major gelatinolytic protein band of ?60 kDa was determined by zymographic analysis. This result suggested that cloned collagenase might undergo processing after secretion. Moreover, the purified recombinant enzyme was shown to possess a specific activity of 5,314 U/mg, an ?4-fold greater activity than that of C. histolyticum collagenase. PMID:21515782

  17. Role for cheR of Vibrio fischeri in the Vibriosquid Cindy R. DeLoney-Marino and Karen L. Visick

    E-print Network

    McFall-Ngai, Margaret

    Role for cheR of Vibrio fischeri in the Vibrio­squid symbiosis Cindy R. DeLoney-Marino and Karen L symbiotic partner, the biolumines- cent marine bacterium Vibrio fischeri. Vibrio fischeri cells present during colonization, but not essential. Key words: Vibrio fischeri, chemotaxis, colonization, Che

  18. Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio

    E-print Network

    McFall-Ngai, Margaret

    Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis, Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis, form a clade within the family of other genera of the Vibrionaceae (i.e. Photobacterium and Vibrio, with which they overlap in G+C content

  19. Mortalities of eastern and pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio cora...

  20. Development of specific oligonucleotide probes to detect Vibrio species.

    PubMed

    Molini, Umberto; Thanantong, Narut; Giangaspero, Annunziata; Sparagano, Olivier A E

    2008-12-01

    Many species of Vibrio are responsible for diseases in marine organisms and for economic losses to the aquaculture industry. The aim of this preliminary study was to obtain species-specific DNA zones to be used as potential probes from a phylogenetic analysis of the 23S ribosomal RNA (rRNA) gene of different Vibrio species from marine and human organisms. Species-specific probes were identified for V. parahaemolyticus, V. fortis, V. splendidus, and for two clusters of taxonomically related species, namely V. harveyi/campbelli and V. lentus/aestuarianus. A reverse line blot assay showed that the designed probes can specifically detect the different Vibrio species, thereby proving that these probes can be used to evaluate the presence of pathogenic and nonpathogenic Vibrio species in the sea and in marine organisms to assist in the investigation of environmental risks. PMID:19120237

  1. Vibrios Associated with Litopenaeus vannamei Larvae, Postlarvae, Broodstock, and Hatchery Probionts

    PubMed Central

    Vandenberghe, Johan; Verdonck, Linda; Robles-Arozarena, Rocio; Rivera, Gabriel; Bolland, Annick; Balladares, Marcos; Gomez-Gil, Bruno; Calderon, Jorge; Sorgeloos, Patrick; Swings, Jean

    1999-01-01

    Several bacteriological surveys were performed from 1994 to 1996 at different Litopenaeus vannamei hatcheries (in Ecuador) and shrimp farms (in Mexico). Samples were taken from routine productions of healthy and diseased L. vannamei larvae, postlarvae, and their culture environment and from healthy and diseased juveniles and broodstock. In Ecuador, the dominant bacterial flora associated with shrimp larvae showing symptoms of zoea 2 syndrome, mysis mold syndrome, and bolitas syndrome has been determined. Strains were characterized by Biolog metabolic fingerprinting and identified by comparison to a database of 850 Vibrio type and reference strains. A selection of strains was further genotypically fine typed by AFLP. Vibrio alginolyticus is predominantly present in all larval stages and is associated with healthy nauplius and zoea stages. AFLP genetic fingerprinting shows high genetic heterogeneity among V. alginolyticus strains, and the results suggest that putative probiotic and pathogenic strains each have specific genotypes. V. alginolyticus was found to be associated with larvae with the zoea 2 syndrome and the mysis mold syndrome, while different Vibrio species (V. alginolyticus and V. harveyi) are associated with the bolitas syndrome. V. harveyi is associated with diseased postlarvae, juveniles, and broodstock. The identities of the strains identified as V. harveyi by the Biolog system could not be unambiguously confirmed by AFLP genomic fingerprinting. Vibrio strain STD3-988 and one unidentified strain (STD3-959) are suspected pathogens of only juvenile and adult stages. V. parahaemolyticus, Photobacterium damselae, and V. mimicus are associated with juvenile and adult stages. PMID:10347048

  2. Roles of Bacterial Regulators in the Symbiosis between Vibrio fischeri and Euprymna scolopes

    E-print Network

    McFall-Ngai, Margaret

    Roles of Bacterial Regulators in the Symbiosis between Vibrio fischeri and Euprymna scolopes 1 the bioluminescent marine bacterium Vibrio fischeri and the Hawaiian squid Euprymna scolopes provides a model system by highlighting important directions for future investigation. 2 Early Events in the Euprymna scolopes ­ Vibrio

  3. Conformation of the Hexasaccharide Repeating Subunit from the Vibrio cholerae O139 Capsular Polysaccharide

    E-print Network

    Bush, C. Allen

    Conformation of the Hexasaccharide Repeating Subunit from the Vibrio cholerae O139 Capsular to be caused by Vibrio cholerae O139, a strain which differs from the more common O1 strain in that the former. The disease is caused by Vibrio cholerae, a Gram-negative bacterium that is associated with brackish water

  4. 2002 Blackwell Science Ltd LitR, a new transcriptional activator in Vibrio

    E-print Network

    Ruby, Edward G.

    © 2002 Blackwell Science Ltd LitR, a new transcriptional activator in Vibrio fischeri, regulates population of the luminous bacterium Vibrio fischeri. This symbiotic infection initially stabilizes of Colorado Health Sciences Center, Box B175, 4200 East 9th Avenue, Denver, CO 80262, USA. Summary Vibrio

  5. Effects of Hypercapnic Hypoxia on the Clearance of Vibrio campbellii in the Atlantic Blue Crab,

    E-print Network

    Burnett, Louis E.

    Effects of Hypercapnic Hypoxia on the Clearance of Vibrio campbellii in the Atlantic Blue Crab the crab's ability to clear a pathogenic bacterium, Vibrio campbellii 90­69B3, from the hemolymph. AdultPa; and pH 6.7­7.1) and were injected with 2.5 104 Vibrio g 1 body weight. The animals were held in normoxia

  6. LuxU connects quorum sensing to biofilm formation in Vibrio fischeri

    E-print Network

    McFall-Ngai, Margaret

    LuxU connects quorum sensing to biofilm formation in Vibrio fischeri Valerie A. Ray and Karen L, USA. Summary Biofilm formation by Vibrio fischeri is a complex process involving multiple regulators integration via two-component regula- tors is the Lux pathway in the marine bioluminescent bacterium Vibrio

  7. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species.

    PubMed

    Hasan, Nur A; Grim, Christopher J; Lipp, Erin K; Rivera, Irma N G; Chun, Jongsik; Haley, Bradd J; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A Christine; Brettin, Thomas S; Bruce, David; Challacombe, Jean F; Detter, J Chris; Han, Cliff S; Eisen, Jonathan A; Huq, Anwar; Colwell, Rita R

    2015-05-26

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea. PMID:25964331

  8. Occurrence and Diversity of Clinically Important Vibrio Species in the Aquatic Environment of Georgia

    PubMed Central

    Kokashvili, Tamar; Whitehouse, Chris A.; Tskhvediani, Ana; Grim, Christopher J.; Elbakidze, Tinatin; Mitaishvili, Nino; Janelidze, Nino; Jaiani, Ekaterine; Haley, Bradd J.; Lashkhi, Nino; Huq, Anwar; Colwell, Rita R.; Tediashvili, Marina

    2015-01-01

    Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n?=?657) and freshwater lakes around Tbilisi (n?=?938). Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS) detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost 90% of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human-pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) were detected in 62.8, 37.8, and 21.4% of samples testing positive for Vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii), and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs. PMID:26528464

  9. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species

    PubMed Central

    Hasan, Nur A.; Grim, Christopher J.; Lipp, Erin K.; Rivera, Irma N. G.; Chun, Jongsik; Haley, Bradd J.; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A. Christine; Brettin, Thomas S.; Bruce, David; Challacombe, Jean F.; Detter, J. Chris; Han, Cliff S.; Eisen, Jonathan A.; Huq, Anwar; Colwell, Rita R.

    2015-01-01

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea. PMID:25964331

  10. Vibrio vulnificus

    MedlinePLUS

    ... Foodnet Data Reports Trends, Data Tables, and Figures Select MMWR Articles Vibrio vulnificus Infections Associated with Eating ... MMWR June 4, 1993 / Vol. 42 / No. 21 Select CDC References Vugia DJ, Tabnak F, Newton AE, ...

  11. Vibrio parahaemolyticus

    MedlinePLUS

    ... Foodnet Data Reports Trends, Data Tables, and Figures Select MMWR Articles CDC. Vibrio parahaemolyticus infections associated with ... Pacific Northwest, 1997 . MMWR 1998;47:457-462. Select CDC References Baker-Austin C. Spread of Pacific ...

  12. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching?emi_2269 2051..2059

    E-print Network

    McFall-Ngai, Margaret

    Minireview Control of biofilm formation and colonization in Vibrio fischeri: a role for partner). In the symbiosis between the marine bacterium Vibrio fischeri and its host squid, Euprymna scolopes, colonization numerous Vibrio species, in which it is predicted to promote bacterial persistence in the environment and

  13. The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by NsrR and upregulated in response to

    E-print Network

    McFall-Ngai, Margaret

    The alternative oxidase (AOX) gene in Vibrio fischeri is controlled by NsrR and upregulated Vibrio fischeri, we explore the regulation of aox expression and AOX function. Using quantitative PCR-encoding gene in Vibrio fischeri ES114, a bioluminescent marine bacterium that forms a symbiotic relationship

  14. Inferring the Evolutionary History of Vibrios by Means of Multilocus Sequence Analysis? †

    PubMed Central

    Sawabe, Tomoo; Kita-Tsukamoto, Kumiko; Thompson, Fabiano L.

    2007-01-01

    We performed the first broad study aiming at the reconstruction of the evolutionary history of vibrios by means of multilocus sequence analysis of nine genes. Overall, 14 distinct clades were recognized using the SplitsTree decomposition method. Some of these clades may correspond to families, e.g., the clades Salinivibrio and Photobacteria, while other clades, e.g., Splendidus and Harveyi, correspond to genera. The common ancestor of all vibrios was estimated to have been present 600 million years ago. We can define species of vibrios as groups of strains that share >95% gene sequence similarity and >99.4% amino acid identity based on the eight protein-coding housekeeping genes. The gene sequence data were used to refine the standard online electronic taxonomic scheme for vibrios (http://www.taxvibrio.lncc.br). PMID:17704223

  15. Transcriptomic profiling of the oyster pathogen Vibrio splendidus opens a window on the evolutionary dynamics of the small RNA repertoire in the Vibrio genus

    PubMed Central

    Toffano-Nioche, Claire; Nguyen, An N.; Kuchly, Claire; Ott, Alban; Gautheret, Daniel; Bouloc, Philippe; Jacq, Annick

    2012-01-01

    Work in recent years has led to the recognition of the importance of small regulatory RNAs (sRNAs) in bacterial regulation networks. New high-throughput sequencing technologies are paving the way to the exploration of an expanding sRNA world in nonmodel bacteria. In the Vibrio genus, compared to the enterobacteriaceae, still a limited number of sRNAs have been characterized, mostly in Vibrio cholerae, where they have been shown to be important for virulence, as well as in Vibrio harveyi. In addition, genome-wide approaches in V. cholerae have led to the discovery of hundreds of potential new sRNAs. Vibrio splendidus is an oyster pathogen that has been recently associated with massive mortality episodes in the French oyster growing industry. Here, we report the first RNA-seq study in a Vibrio outside of the V. cholerae species. We have uncovered hundreds of candidate regulatory RNAs, be it cis-regulatory elements, antisense RNAs, and trans-encoded sRNAs. Conservation studies showed the majority of them to be specific to V. splendidus. However, several novel sRNAs, previously unidentified, are also present in V. cholerae. Finally, we identified 28 trans sRNAs that are conserved in all the Vibrio genus species for which a complete genome sequence is available, possibly forming a Vibrio “sRNA core.” PMID:23097430

  16. PCR and molecular detection for differentiating Vibrio species.

    PubMed

    Sparagano, O A E; Robertson, P A W; Purdom, I; McInnes, J; Li, Y; Yu, D-H; Du, Z-J; Xu, H-S; Austin, B

    2002-10-01

    Vibriosis is an economically important disease of fish, marine invertebrates (particularly penaeid shrimps), and large marine mammals and is responsible for high mortality rates in aquaculture worldwide. Some Vibrio species are also responsible for zoonoses, whereas others are relatively nonpathogenic. Using 16S- and 23S-based PCR reactions, we obtained species-specific patterns and a 470-bp band, respectively. DNA sequences obtained on the 23S rRNA gene allowed us to identify species-specific probes for Vibrio parahaemolyticus, V. alginolyticus, V. anguillarum and for a cluster of taxonomically related species: V. carchariae/harveyi/campbelii. A phylogenetic tree based on the 23S sequences confirmed previous results obtained by Western blotting. PMID:12381564

  17. Radiofrequency transmission line for bioluminescent Vibrio sp. irradiation

    NASA Astrophysics Data System (ADS)

    Nassisi, V.; Alifano, P.; Talà, A.; Velardi, L.

    2012-07-01

    We present the study and the analyses of a transmission line for radiofrequency (RF) irradiation of bacteria belonging to Vibrio harveyi-related strain PS1, a bioluminescent bacterium living in symbiosis with many marine organisms. The bioluminescence represents a new biologic indicator which is useful for studying the behaviour of living samples in the presence of RF waves due to the modern communication systems. A suitable transmission line, used as an irradiating cell and tested up to the maximum frequency used by the global system for mobile communications and universal mobile telecommunications system transmissions, was characterized. In this experiment, the RF voltage applied to the transmission line was 1 V. Due to short dimensions of the line and the applied high frequencies, standing waves were produced in addition to progressing waves and the electric field strength varies particularly along the longitudinal direction. The magnetic field map was not strongly linked to the electric one due to the presence of standing waves and of the outgoing irradiation. RF fields were measured by two homemade suitable probes able to diagnostic fields of high frequency. The field measurements were performed without any specimens inside the line. Being our sample made of living matter, the real field was modified and its value was estimated by a simulation code. The bioluminescence experiments were performed only at 900 MHz for two different measured electric fields, 53 and 140 V/m. The light emission was measured right from the beginning and after 7 and 25 h. Under RF irradiation, we found that the bioluminescence activity decreased. Compared with the control sample, the diminution was 6.8% and 44% after 7 and 25 h of irradiation, respectively, both with the low or high field. No changes of the survival factor for all the samples were observed. Besides, to understand the emission processes, we operated the deconvolution of the spectra by two Gaussian curves. The Gaussian peaks were approximately centered at 460 nm and 490 nm. The 490 nm peak was higher than the control one. Under RF, the 490 nm peak decreased compared to the 460 nm one. The decreasing was stronger for the sample in the higher field. The ratio of the emission area of the 490 nm to 460 nm was 5 for the control sample. It decreased up to 1.6 for the samples under RF. The bioluminescence improves the DNA repair by photoreactivation, and there is evidence that photolyase is preferentially activated by blue/violet light. Our finding suggests that RF exposure may stimulate DNA repair by shifting the emission spectra from blue/green (490 nm) to blue/violet (460 nm).

  18. Cinnamaldehyde and cinnamaldehyde derivatives reduce virulence in Vibrio spp. by decreasing the DNA-binding activity of the quorum sensing response regulator LuxR

    PubMed Central

    Brackman, Gilles; Defoirdt, Tom; Miyamoto, Carol; Bossier, Peter; Van Calenbergh, Serge; Nelis, Hans; Coenye, Tom

    2008-01-01

    Background To date, only few compounds targeting the AI-2 based quorum sensing (QS) system are known. In the present study, we screened cinnamaldehyde and substituted cinnamaldehydes for their ability to interfere with AI-2 based QS. The mechanism of QS inhibition was elucidated by measuring the effect on bioluminescence in several Vibrio harveyi mutants. We also studied in vitro the ability of these compounds to interfere with biofilm formation, stress response and virulence of Vibrio spp. The compounds were also evaluated in an in vivo assay measuring the reduction of Vibrio harveyi virulence towards Artemia shrimp. Results Our results indicate that cinnamaldehyde and several substituted derivatives interfere with AI-2 based QS without inhibiting bacterial growth. The active compounds neither interfered with the bioluminescence system as such, nor with the production of AI-2. Study of the effect in various mutants suggested that the target protein is LuxR. Mobility shift assays revealed a decreased DNA-binding ability of LuxR. The compounds were further shown to (i) inhibit biofilm formation in several Vibrio spp., (ii) result in a reduced ability to survive starvation and antibiotic treatment, (iii) reduce pigment and protease production in Vibrio anguillarum and (iv) protect gnotobiotic Artemia shrimp against virulent Vibrio harveyi BB120. Conclusion Cinnamaldehyde and cinnamaldehyde derivatives interfere with AI-2 based QS in various Vibrio spp. by decreasing the DNA-binding ability of LuxR. The use of these compounds resulted in several marked phenotypic changes, including reduced virulence and increased susceptibility to stress. Since inhibitors of AI-2 based quorum sensing are rare, and considering the role of AI-2 in several processes these compounds may be useful leads towards antipathogenic drugs. PMID:18793453

  19. Refined identification of Vibrio bacterial flora from Acanthasther planci based on biochemical profiling and analysis of housekeeping genes.

    PubMed

    Rivera-Posada, J A; Pratchett, M; Cano-Gomez, A; Arango-Gomez, J D; Owens, L

    2011-09-01

    We used a polyphasic approach for precise identification of bacterial flora (Vibrionaceae) isolated from crown-of-thorns starfish (COTS) from Lizard Island (Great Barrier Reef, Australia) and Guam (U.S.A., Western Pacific Ocean). Previous 16S rRNA gene phylogenetic analysis was useful to allocate and identify isolates within the Photobacterium, Splendidus and Harveyi clades but failed in the identification of Vibrio harveyi-like isolates. Species of the V harveyi group have almost indistinguishable phenotypes and genotypes, and thus, identification by standard biochemical tests and 16S rRNA gene analysis is commonly inaccurate. Biochemical profiling and sequence analysis of additional topA and mreB housekeeping genes were carried out for definitive identification of 19 bacterial isolates recovered from sick and wild COTS. For 8 isolates, biochemical profiles and topA and mreB gene sequence alignments with the closest relatives (GenBank) confirmed previous 16S rRNA-based identification: V. fortis and Photobacterium eurosenbergii species (from wild COTS), and V natriegens (from diseased COTS). Further phylogenetic analysis based on topA and mreB concatenated sequences served to identify the remaining 11 V harveyi-like isolates: V. owensii and V. rotiferianus (from wild COTS), and V. owensii, V. rotiferianus, and V. harveyi (from diseased COTS). This study further confirms the reliability of topA-mreB gene sequence analysis for identification of these close species, and it reveals a wider distribution range of the potentially pathogenic V. harveyi group. PMID:22013751

  20. Genetic diversity of culturable Vibrio in an Australian blue mussel Mytilus galloprovincialis hatchery.

    PubMed

    Kwan, Tzu Nin; Bolch, Christopher J S

    2015-09-17

    Bacillary necrosis associated with Vibrio species is the common cause of larval and spat mortality during commercial production of Australian blue mussel Mytilus galloprovincialis. A total of 87 randomly selected Vibrio isolates from various stages of rearing in a commercial mussel hatchery were characterised using partial sequences of the ATP synthase alpha subunit gene (atpA). The sequenced isolates represented 40 unique atpA genotypes, overwhelmingly dominated (98%) by V. splendidus group genotypes, with 1 V. harveyi group genotype also detected. The V. splendidus group sequences formed 5 moderately supported clusters allied with V. splendidus/V. lentus, V. atlanticus, V. tasmaniensis, V. cyclitrophicus and V. toranzoniae. All water sources showed considerable atpA gene diversity among Vibrio isolates, with 30 to 60% of unique isolates recovered from each source. Over half (53%) of Vibrio atpA genotypes were detected only once, and only 7 genotypes were recovered from multiple sources. Comparisons of phylogenetic diversity using UniFrac analysis showed that the culturable Vibrio community from intake, header, broodstock and larval tanks were phylogenetically similar, while spat tank communities were different. Culturable Vibrio associated with spat tank seawater differed in being dominated by V. toranzoniae-affiliated genotypes. The high diversity of V. splendidus group genotypes detected in this study reinforces the dynamic nature of microbial communities associated with hatchery culture and complicates our efforts to elucidate the role of V. splendidus group bacteria in vibriosis. PMID:26378406

  1. Illuminating Cell Signaling: Using "Vibrio harveyi" in an Introductory Biology Laboratory

    ERIC Educational Resources Information Center

    Hrizo, Stacy L.; Kaufmann, Nancy

    2009-01-01

    Cell signaling is an essential cellular process that is performed by all living organisms. Bacteria communicate with each other using a chemical language in a signaling pathway that allows bacteria to evaluate the size of their population, determine when they have reached a critical mass (quorum sensing), and then change their behavior in unison…

  2. Genome Sequences of Vibrio navarrensis, a Potential Human Pathogen Lori M. Gladney,a,b,c Lee S. Katz,a Kristen M. Knipe,a Lori A. Rowe,a Andrew B. Conley,c Lavanya Rishishwar,c

    E-print Network

    Jordan, King

    Genome Sequences of Vibrio navarrensis, a Potential Human Pathogen Lori M. Gladney,a,b,c Lee S Vibrio navarrensis is an aquatic bacterium recently shown to be associated with human illness. We report-Ramírez L, Jordan IK, Tarr CL. 2014. Genome sequences of Vibrio navarrensis, a potential human pathogen

  3. EFFECTS OF PHYSICOCHEMICAL FACTORS AND BACTERIAL COLONY MORPHOTYPE ON ASSOCIATION OF VIBRIO VULNIFICUS WITH HEMOCYTES OF CRASSOSTREA VIRGINICA

    EPA Science Inventory

    Vibrio vulnificus is a naturally occurring marine bacterium which causes invasive disease of immunocompromised humans following consumption of raw oysters. t is natural flora of Gulf Coast estuaries and has been found to inhabit tissues of oysters, Crassostrea virginica (Gmelin, ...

  4. Lessons from cholera & Vibrio cholerae

    PubMed Central

    Ghose, Asoke C.

    2011-01-01

    Cholera is an acute form of diarrhoeal disease that plagued human civilization over the centuries. The sudden and explosive onset of the disease in the form of an outbreak or epidemic, coupled with high mortality and morbidity rates, had a tragic impact on the personal as well as social life of people living in the affected areas. The enormity of human sufferings led clinicians and scientists to carry out extensive research on cholera and Vibrio cholerae (the causative bacterium of the disease) leading to major discoveries that opened up novel areas of research or new disciplines in biomedical sciences. An attempt is made here to summarize some of these breakthroughs and outline their significance in broader perspectives. Finally, the possible impact of the global socio-political scenario on the spread of cholera epidemics (pandemicity of cholera) is briefly discussed. PMID:21415490

  5. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon.

    PubMed

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Jarayabhand, Padermsak; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2015-01-01

    Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host's epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host's gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids. PMID:26285030

  6. Interaction of Vibrio spp. with the Inner Surface of the Digestive Tract of Penaeus monodon

    PubMed Central

    Soonthornchai, Wipasiri; Chaiyapechara, Sage; Jarayabhand, Padermsak; Söderhäll, Kenneth; Jiravanichpaisal, Pikul

    2015-01-01

    Several species of Vibrio are the causative agent of gastroenteritis in humans. In aquaculture, Vibrio harveyi (Vh) and V. parahaemolyticus (Vp) have long been considered as shrimp pathogens in freshwater, brackish and marine environments. Here we show by using scanning electron microscopy (SEM) that Penaeus monodon orally inoculated with each of these two pathogens via an Artemia diet had numerous bacteria attached randomly across the stomach surface, in single and in large biofilm-like clusters 6 h post-infection. A subsequent marked proliferation in the number of V. harveyi within the biofilm-like formations resulted in the development of infections in the stomach, the upper and middle midgut, but neither in the posterior midgut nor the hindgut. SEM also revealed the induced production of peritrichous pili-like structures by the Vp attaching to the stomach lining, whilst only a single polar fibre was seen forming an apparent physical bridge between Vh and the host’s epithelium. In contrast to these observations, no such adherences or linkages were seen when trials were conducted with non-pathogenic Vibrio spp. or with Micrococcus luteus, with no obvious resultant changes to the host’s gut surface. In naive shrimp, the hindgut was found to be a favorable site for bacteria notably curved, short-rod shaped bacteria which probably belong to Vibrio spp. Data from the current study suggests that pathogens of P. monodon must be able to colonize the digestive tract, particularly the stomach, where chitin is present, and then they use an array of virulent factors and enzymes to infect their host resulting in disease. Oral infection is a better way of mimicking natural routes of infection; investigating the host-bacteria interactions occurring in the digestive tract may lead to new strategies for the prevention or control of bacterial infections in penaeids. PMID:26285030

  7. Intestinal Colonization Dynamics of Vibrio cholerae

    PubMed Central

    Almagro-Moreno, Salvador; Pruss, Kali; Taylor, Ronald K.

    2015-01-01

    To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms. PMID:25996593

  8. Cyclo(Phe-Pro) Modulates the Expression of ompU in Vibrio spp.

    PubMed Central

    Park, Dae-Kyun; Lee, Ko-Eun; Baek, Chang-Ho; Kim, In Hwang; Kwon, Ji-Hyoun; Lee, Won Koo; Lee, Kyu-Ho; Kim, Byung-Soo; Choi, Sang-Ho; Kim, Kun-Soo

    2006-01-01

    Vibrio vulnificus was found to produce a chemical that induced the expression of Vibrio fischeri lux genes. Electron spray ionization-mass spectrometry and 1H nuclear magnetic resonance analyses indicated that the compound was cyclo(l-Phe-l-Pro) (cFP). The compound was produced at a maximal level when cell cultures reached the onset of stationary phase. Sodium dodecyl sulfate-polyacrylamide gel analysis of the total proteins of V. vulnificus indicated that expression of OmpU was enhanced by exogenously added synthetic or purified cFP. A toxR-null mutant failed to express ompU despite the addition of cFP. The related Vibrio spp. V. cholerae, V. parahaemolyticus, and V. harveyi also produced cFP, which induced the expression of their own ompU genes. cFP also enhanced the expression in V. cholerae of the ctx genes, which are known to be regulated by ToxR. Our results suggest that cFP is a signal molecule controlling the expression of genes important for the pathogenicity of Vibrio spp. PMID:16513751

  9. Ammonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal Vent Bacterium, ThermoWibrio ammonificans

    E-print Network

    Falkowski, Paul G.

    ), were isolated from the marine hydrothermal vent bacterium ThermoVibrio ammonificans. The molecular report of secondary metabolites from the marine hydrothermal vent bacterium T. ammonificans. The oceansAmmonificins A and B, Hydroxyethylamine Chroman Derivatives from a Cultured Marine Hydrothermal

  10. Phylogeny and Molecular Identification of Vibrios on the Basis of Multilocus Sequence Analysis

    PubMed Central

    Thompson, F. L.; Gevers, D.; Thompson, C. C.; Dawyndt, P.; Naser, S.; Hoste, B.; Munn, C. B.; Swings, J.

    2005-01-01

    We analyzed the usefulness of rpoA, recA, and pyrH gene sequences for the identification of vibrios. We sequenced fragments of these loci from a collection of 208 representative strains, including 192 well-documented Vibrionaceae strains and 16 presumptive Vibrio isolates associated with coral bleaching. In order to determine the intraspecies variation among the three loci, we included several representative strains per species. The phylogenetic trees constructed with the different genetic loci were roughly in agreement with former polyphasic taxonomic studies, including the 16S rRNA-based phylogeny of vibrios. The families Vibrionaceae, Photobacteriaceae, Enterovibrionaceae, and Salinivibrionaceae were all differentiated on the basis of each genetic locus. Each species clearly formed separated clusters with at least 98, 94, and 94% rpoA, recA, and pyrH gene sequence similarity, respectively. The genus Vibrio was heterogeneous and polyphyletic, with Vibrio fischeri, V. logei, and V. wodanis grouping closer to the Photobacterium genus. V. halioticoli-, V. harveyi-, V. splendidus-, and V. tubiashii-related species formed groups within the genus Vibrio. Overall, the three genetic loci were more discriminatory among species than were 16S rRNA sequences. In some cases, e.g., within the V. splendidus and V. tubiashii group, rpoA gene sequences were slightly less discriminatory than recA and pyrH sequences. In these cases, the combination of several loci will yield the most robust identification. We can conclude that strains of the same species will have at least 98, 94, and 94% rpoA, recA, and pyrH gene sequence similarity, respectively. PMID:16151093

  11. Vibrio and Pregnancy

    MedlinePLUS

    ... takes over an area after a hurricane or flood may contain Vibrio bacteria. You should try to ... you can get a stomachache and diarrhea. This type of infection is not usually dangerous. However, it ...

  12. Genes Similar to the Vibrio parahaemolyticus Virulence-Related Genes tdh, tlh, and vscC2 Occur in Other Vibrionaceae Species Isolated from a Pristine Estuary

    PubMed Central

    Klein, Savannah L.; Gutierrez West, Casandra K.; Mejia, Diana M.

    2014-01-01

    Detection of the human pathogen Vibrio parahaemolyticus often relies on molecular biological analysis of species-specific virulence factor genes. These genes have been employed in determinations of V. parahaemolyticus population numbers and the prevalence of pathogenic V. parahaemolyticus strains. Strains of the Vibrionaceae species Photobacterium damselae, Vibrio diabolicus, Vibrio harveyi, and Vibrio natriegens, as well as strains similar to Vibrio tubiashii, were isolated from a pristine salt marsh estuary. These strains were examined for the V. parahaemolyticus hemolysin genes tdh, trh, and tlh and for the V. parahaemolyticus type III secretion system 2? gene vscC2 using established PCR primers and protocols. Virulence-related genes occurred at high frequencies in non-V. parahaemolyticus Vibrionaceae species. V. diabolicus was of particular interest, as several strains were recovered, and the large majority (>83%) contained virulence-related genes. It is clear that detection of these genes does not ensure correct identification of virulent V. parahaemolyticus. Further, the occurrence of V. parahaemolyticus-like virulence factors in other vibrios potentially complicates tracking of outbreaks of V. parahaemolyticus infections. PMID:24212573

  13. Structure-Activity Relationship of Cinnamaldehyde Analogs as Inhibitors of AI-2 Based Quorum Sensing and Their Effect on Virulence of Vibrio spp

    PubMed Central

    Brackman, Gilles; Celen, Shari; Hillaert, Ulrik; Van Calenbergh, Serge; Cos, Paul; Maes, Louis; Nelis, Hans J.; Coenye, Tom

    2011-01-01

    Background Many bacteria, including Vibrio spp., regulate virulence gene expression in a cell-density dependent way through a communication process termed quorum sensing (QS). Hence, interfering with QS could be a valuable novel antipathogenic strategy. Cinnamaldehyde has previously been shown to inhibit QS-regulated virulence by decreasing the DNA-binding ability of the QS response regulator LuxR. However, little is known about the structure-activity relationship of cinnamaldehyde analogs. Methodology/Principal Findings By evaluating the QS inhibitory activity of a series of cinnamaldehyde analogs, structural elements critical for autoinducer-2 QS inhibition were identified. These include an ?,? unsaturated acyl group capable of reacting as Michael acceptor connected to a hydrophobic moiety and a partially negative charge. The most active cinnamaldehyde analogs were found to affect the starvation response, biofilm formation, pigment production and protease production in Vibrio spp in vitro, while exhibiting low cytotoxicity. In addition, these compounds significantly increased the survival of the nematode Caenorhabditis elegans infected with Vibrio anguillarum, Vibrio harveyi and Vibrio vulnificus. Conclusions/Significance Several new and more active cinnamaldehyde analogs were discovered and they were shown to affect Vibrio spp. virulence factor production in vitro and in vivo. Although ligands for LuxR have not been identified so far, the nature of different cinnamaldehyde analogs and their effect on the DNA binding ability of LuxR suggest that these compounds act as LuxR-ligands. PMID:21249192

  14. Randomly Amplified Polymorphic DNA Analysis of Clinical and Environmental Isolates of Vibrio vulnificus and Other Vibrio Species

    PubMed Central

    Warner, Jennifer M.; Oliver, James D.

    1999-01-01

    Vibrio vulnificus is an estuarine bacterium that is capable of causing a rapidly fatal infection in humans. A randomly amplified polymorphic DNA (RAPD) PCR protocol was developed for use in detecting V. vulnificus, as well as other members of the genus Vibrio. The resulting RAPD profiles were analyzed by using RFLPScan software. This RAPD method clearly differentiated between members of the genus Vibrio and between isolates of V. vulnificus. Each V. vulnificus strain produced a unique band pattern, indicating that the members of this species are genetically quite heterogeneous. All of the vibrios were found to have amplification products whose sizes were within four common molecular weight ranges, while the V. vulnificus strains had an additional two molecular weight range bands in common. All of the V. vulnificus strains isolated from clinical specimens produced an additional band that was only occasionally found in environmental strains; this suggests that, as is the case with the Kanagawa hemolysin of Vibrio parahaemolyticus, the presence of this band may be correlated with the ability of a strain to produce an infection in humans. In addition, band pattern differences were observed between encapsulated and nonencapsulated isogenic morphotypes of the same strain of V. vulnificus. PMID:10049874

  15. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    PubMed

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  16. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shellfish in Shanghai

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is a marine and estuarine bacterium that poses a large threat to human health worldwide. It has been the leading bacterial cause of seafood-borne illness. This study investigated the prevalence and drug resistance of V. parahaemolyticus isolated from retail shellfish in Shang...

  17. Transcription termination Within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The iron transport-biosynthesis (ITB) operon in Vibrio anguillarum includes four genes for ferric-siderophore transport, fatD,C,B,A, and two genes for siderophorebiosynthesis, angR and angT and plays an important role in the virulence mechanism of this bacterium. Despite being part of the same polyc...

  18. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae

    PubMed Central

    Lutz, Carla; Erken, Martina; Noorian, Parisa; Sun, Shuyang; McDougald, Diane

    2013-01-01

    It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium can be detected in areas where it has not previously been isolated, indicating a much broader, global distribution of this bacterium outside of endemic regions. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of this bacterium in the environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature, and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists. PMID:24379807

  19. Occurrence and distribution of Vibrio spp., Listonella spp., and Clostridium botulinum in the Seto Inland Sea of Japan.

    PubMed Central

    Venkateswaran, K; Nakano, H; Okabe, T; Takayama, K; Matsuda, O; Hashimoto, H

    1989-01-01

    The distribution of Vibrio species in samples of surface water, bottom water (water 2 m above the sediment), and sediment from the Seto Inland Sea was studied. A simple technique using a membrane filter and short preenrichment in alkaline peptone water was developed to resuscitate the injured cells, followed by plating them onto TCBS agar. In addition, a survey was conducted to determine the incidence of Clostridium botulinum in sediment samples. Large populations of heterotrophs were found in surface water, whereas large numbers of total vibrios were found in bottom water. In samples from various water sampling regions, high counts of all bacterial populations were found in the inner regions having little exchange of seawater when compared with those of the open region of the inland sea. In the identification of 463 isolates, 23 Vibrio spp. and 2 Listonella spp. were observed. V. harveyi was prevalent among the members of the Vibrio genus. Vibrio species were categorized into six groups; an estimated 20% of these species were in the so-called "pathogenic to humans" group. In addition, a significant proportion of this group was hemolytic and found in the Bisan Seto region. V. vulnificus, V. fluvialis, and V. cholerae non-O1 predominated in the constricted area of the inland sea, which is eutrophic as a result of riverine influence. It was concluded that salinity indirectly governs the distribution of total vibrios and analysis of variance revealed that all bacterial populations were distributed homogeneously and the variance values were found to be significant in some water sampling regions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2648988

  20. Assimilable organic carbon (AOC) in soil water extracts using Vibrio Harveyi BB721 and its implication for microbial biomass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a...

  1. Environmental Vibrio parahaemolyticus DNA signatures validation.

    PubMed

    Caburlotto, G; Knight, I T; Lleo, M M; Taviani, E; Huq, A; Colwell, R R

    2011-12-01

    Insignia is a novel DNA computational system which uses highly efficient algorithms to compare bacterial genomes and to identify specific DNA signatures to distinguish a target bacterium, or group of bacteria, from all other known bacterial species. It is currently being validated using different bacterial groups, including Vibrio spp. In this study, the genomic analysis by Insignia was conducted on Vibrio parahaemolyticus, a halophilic gram-negative bacteria which constitutes a leading cause of seafood-borne disease. Insignia was used to identify 37 V. parahaemolyticus-specific signatures and to design PCR assays to validate the representative signature sequences by TaqMan essays. The 37 assays targeted loci distributed around the genome and detected genes coding for hypothetical proteins and for proteins involved in adhesion, starvation and virulence. A panel of V. parahaemolyticus environmental strains isolated from the North Adriatic Sea (Italy) and from the Black Sea (Georgia) was used to validate the selected signatures. The signature assays revealed both sensitive and specific and the method allowed a more accurate identification of the tested bacterial strains at the species level when compared to biochemical and PCR standard methods. Using Insignia, it was possible to distinguish two different groups among the strains previously identified as V. parahaemolyticus: most of the strains were included in a "V. parahaemolyticus-like group" showing nearly all of the signatures assayed while a small group of 10 strains contained only a few of the signatures tested. By sequencing the 16S rDNA of this latter group, it was confirmed that they were not V. parahaemolyticus but in fact belonged to other Vibrio species. No significant genome-wide differences were detected between the strains isolated in Italy and in Georgia though the very different geographical origin. PMID:21940129

  2. Biodiversity of Vibrios

    PubMed Central

    Thompson, Fabiano L.; Iida, Tetsuya; Swings, Jean

    2004-01-01

    Vibrios are ubiquitous and abundant in the aquatic environment. A high abundance of vibrios is also detected in tissues and/or organs of various marine algae and animals, e.g., abalones, bivalves, corals, fish, shrimp, sponges, squid, and zooplankton. Vibrios harbour a wealth of diverse genomes as revealed by different genomic techniques including amplified fragment length polymorphism, multilocus sequence typing, repetetive extragenic palindrome PCR, ribotyping, and whole-genome sequencing. The 74 species of this group are distributed among four different families, i.e., Enterovibrionaceae, Photobacteriaceae, Salinivibrionaceae, and Vibrionaceae. Two new genera, i.e., Enterovibrio norvegicus and Grimontia hollisae, and 20 novel species, i.e., Enterovibrio coralii, Photobacterium eurosenbergii, V. brasiliensis, V. chagasii, V. coralliillyticus, V. crassostreae, V. fortis, V. gallicus, V. hepatarius, V. hispanicus, V. kanaloaei, V. neonatus, V. neptunius, V. pomeroyi, V. pacinii, V. rotiferianus, V. superstes, V. tasmaniensis, V. ezurae, and V. xuii, have been described in the last few years. Comparative genome analyses have already revealed a variety of genomic events, including mutations, chromosomal rearrangements, loss of genes by decay or deletion, and gene acquisitions through duplication or horizontal transfer (e.g., in the acquisition of bacteriophages, pathogenicity islands, and super-integrons), that are probably important driving forces in the evolution and speciation of vibrios. Whole-genome sequencing and comparative genomics through the application of, e.g., microarrays will facilitate the investigation of the gene repertoire at the species level. Based on such new genomic information, the taxonomy and the species concept for vibrios will be reviewed in the next years. PMID:15353563

  3. Vibrios Commonly Possess Two Chromosomes

    PubMed Central

    Okada, Kazuhisa; Iida, Tetsuya; Kita-Tsukamoto, Kumiko; Honda, Takeshi

    2005-01-01

    The prevalence of the two-chromosome configuration was investigated in 34 species of vibrios and closely related species. Pulsed-field gel electrophoresis of undigested genomic DNA suggested that vibrios commonly have two chromosomes. The size of the large chromosome is predominantly within a narrow range (3.0 to 3.3 Mb), whereas the size of the small chromosome varies considerably among the vibrios (0.8 to 2.4 Mb). This fact suggests that the structure of the small chromosome is more flexible than that of the large chromosome during the evolution of vibrios. PMID:15629946

  4. RAPID TETRAZOLIUM DYE REDUCTION ASSAY TO ASSESS THE BACTERICIDAL ACTIVITY OF OYSTER (CRASSOSTREA VIRGINICA) HEMOCYTES AGAINST VIBRIO PARAHAEMOLYTICUS

    EPA Science Inventory

    An assay was developed to assess the ability of oyster, Crassostrea virginica, hemocytes to kill the human pathogenic bacterium, Vibrio parahaemolyticus (ATCC 17802). Bacterial killing was estimated colorimetrically by the enzymatic reduction of a tetrazolium dye, 3-(4,5-dimethyl...

  5. Passive transfer of serum from tilapia vaccinated with a Vibrio vulnificus vaccine provides protection from specific pathogen challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio vulnificus is a Gram-negative bacterium that has been associated with disease losses in some aquaculture reared fish species. Vaccination has proven effective for reducing the impact of this disease and research has suggested that specific antibodies are important for protective immunity. The...

  6. Mortalities of Eastern and Pacific Oyster Larvae Caused by the Pathogens Vibrio coralliilyticus and Vibrio tubiashii

    PubMed Central

    Watson, Michael A.; Needleman, David S.; Church, Karlee M.; Häse, Claudia C.

    2014-01-01

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 104 to 3.0 × 104 CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 104 and 4.0 × 104 CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ?1.1 × 104 CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years. PMID:25344234

  7. Description of a Novel Symbiotic Bacterium from the Brittle Star, Amphipholis squamata

    PubMed Central

    Lesser, Michael P.; Blakemore, Richard P.

    1990-01-01

    A gram-negative, marine, facultatively anaerobic bacterial isolate designated strain AS-1 was isolated from the subcuticular space of the brittle star, Amphipholis squamata. Its sensitivity to O/129 and novobiocin, overall morphology, and biochemical characteristics and the moles percent guanine-plus-cytosine composition of its DNA (42.9 to 44.4) suggest that this isolate should be placed in the genus Vibrio. Strain AS-1 was not isolated from ambient seawater and is distinct from described Vibrio species. This symbiotic bacterium may assist its host as one of several mechanisms of nutrient acquisition during the brooding of developing embryos. Images PMID:16348257

  8. Draft Genome Sequences of Vibrio fluvialis Strains 560 and 539, Isolated from Environmental Samples

    PubMed Central

    de Oliveira Veras, Adonney Allan; da Silva, Miriam Lopes; Gomes, Jaqueline Conceição Meireles; Dias, Larissa Maranhão; de Sá, Pablo Caracciolo Gomes; Alves, Jorianne Thyeska Castro; Castro, Wendel; Miranda, Fábio; Kazuo, Ehilton; Marinho, Diogo; Rodrigues, Mateus; Freire, Matheus; Zahlouth, Ramiro; Renan, Wendel; Lopes, Thiago Souza; Matté, Maria Helena; da Silva Mayer, Cintia Carolina; de Almeida Vasconcelos Barboni, Suzi; Matté, Glavur Rogério; Carneiro, Adriana Ribeiro; Silva, Artur

    2015-01-01

    Vibrio fluvialis is a halophilic bacterium found in many environments and is mainly associated with sporadic cases and outbreaks of gastroenteritis in humans. Here, we describe the genome sequences of environmental strains of V. fluvialis 560 (Vf560) and V. fluvialis 539 (Vf539) possessing a variant of the integrative and conjugative element (ICE) SXT for the first time in Brazil and South America. PMID:25573928

  9. Autecology of Vibrio vulnificus and Vibrio parahaemolyticus in tropical waters

    SciTech Connect

    Rivera, S.; Lugo, T.; Hazen, T.C.

    1988-12-31

    Water and shellfish samples collected from estuaries, mangroves, and beaches along the coast of Puerto Rico were examined for Vibrio vulnificus and Vibrio parahaemolyticus. An array of water quality parameters were also measured simultaneous with bacteria sampling. Both species of vibrio were associated with estuary and mangrove locations, and neither was isolated from sandy beaches. Densities of V. vulnificus were negatively correlated with salinity, 10--15 ppt being optimal. V. parahaemolyticus was isolated from sites with salinities between 20 and 35 ppt, the highest densities occurring at 20 ppt. Densities of Vibrio spp. and V. parahaemolyticus for a tropical estuary surpassed those reported for temperate estuaries by several orders of magnitude. Both densities of total Vibrio spp. and V. parahaemolyticus in the water were directly related to densities of fecal coliforms, unlike V. vulnificus. The incidence of ONPG(+) strains among sucrose({minus}) Vibrio spp. served as an indicator of the frequency of V. vulnificus in this group. More than 63% of the V. vulnificus isolated were pathogenic. V. vulnificus and V. parahaemolyticus occupy clearly separate niches within the tropical estuarine-marine ecosystem.

  10. Vibrio chromosomes share common history

    E-print Network

    Kirkup, Benjamin

    Abstract Background While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it ...

  11. Vibrio chromosomes share common history

    E-print Network

    Kirkup, Benjamin

    Background: While most gamma proteobacteria have a single circular chromosome, Vibrionales have two circular chromosomes. Horizontal gene transfer is common among Vibrios, and in light of this genetic mobility, it is an ...

  12. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) were assessed in natural seawater and in the Eastern oyster...

  13. Surface-attachment sequence in Vibrio Cholerae

    NASA Astrophysics Data System (ADS)

    Utada, Andrew; Gibiansky, Maxsim; Wong, Gerard

    2013-03-01

    Vibrio cholerae is a gram-negative bacterium that causes the human disease cholera. It is found natively in brackish costal waters in temperate climates, where it attaches to the surfaces of a variety of different aquatic life. V. cholerae has a single polar flagellum making it highly motile, as well as a number of different pili types, enabling it to attach to both biotic and abiotic surfaces. Using in-house built tracking software we track all surface-attaching bacteria from high-speed movies to examine the early-time attachment profile of v. cholerae onto a smooth glass surface. Similar to previous work, we observe right-handed circular swimming trajectories near surfaces; however, in addition we see a host of distinct motility mechanisms that enable rapid exploration of the surface before forming a more permanent attachment. Using isogenic mutants we show that the motility mechanisms observed are due to a complex combination of hydrodynamics and pili-surface interactions. Lauga, E., DiLuzio, W. R., Whitesides, G. M., Stone, H. A. Biophys. J. 90, 400 (2006).

  14. Vibrio parahaemolyticus ToxRS regulator is required for stress tolerance and colonization in a novel orogastric streptomycin-induced adult murine model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus, a marine bacterium, is the causative agent of gastroenteritis associated with the consumption of seafood. It contains a homologue of the toxRS operon that in V. cholerae is the key regulator of virulence gene expression. We examined a non-polar mutation in toxRS to determi...

  15. Development of Vibrio spp. infection resistance related SNP markers using multiplex SNaPshot genotyping method in the clam Meretrix meretrix.

    PubMed

    Nie, Qing; Yue, Xin; Liu, Baozhong

    2015-04-01

    The clam Meretrix meretrix is a commercially important mollusc species in the coastal areas of South and Southeast Asia. In the present study, large-scale SNPs were genotyped by the Multiplex SNaPshot genotyping method among the stocks of M. meretrix with different Vibrio spp. infection resistance profile. Firstly, the AUTOSNP software was applied to mine SNPs from M. meretrix transcriptome, and 323 SNP loci (including 120 indels) located on 64 contigs were selected based on Uniprot-GO associations. Then, 38 polymorphic SNP loci located on 15 contigs were genotyped successfully in the clam stocks with different resistance to Vibrio parahaemolyticus infection (11-R and 11-S groups). Pearson's Chi-square test was applied to compare the allele and genotype frequency distributions of the SNPs between the different stocks, and seven SNP markers located on three contigs were found to be associated with V. parahaemolyticus infection resistance trait. Haplotype-association analysis showed that six haplotypes had significantly different frequency distributions in 11-S and 11-R (P < 0.05). With selective genotyping between 09-R and 09-C populations, which had different resistance to Vibrio harveyi infection, four out of the seven selected SNPs had significantly different distributions (P < 0.05) and therefore they were considered to be associated with Vibrio spp. infection resistance. Sequence alignments and annotations indicated that the contigs containing the associated SNPs had high similarity to the immune related genes. All these results would be useful for the future marker-assisted selection of M. meretrix strains with high Vibrio spp. infection resistance. PMID:25655323

  16. Assessing single and joint toxicity of three phenylurea herbicides using Lemna minor and Vibrio fischeri bioassays.

    PubMed

    Gatidou, Georgia; Stasinakis, Athanasios S; Iatrou, Evangelia I

    2015-01-01

    Single and joint toxicity of three substituted urea herbicides, namely monolinuron [3-(4-chlorophenyl)-1-methoxy-1-methylurea], linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] and diuron [1-(3,4 dichlorophenyl)-3,3 dimethyl urea], were studied. The duckweed Lemna minor and the luminescent bacterium Vibrio fischeri were used for the toxicity assessment and they were exposed to various concentrations of the herbicides, individually and in binary mixtures. The exposure time was 7d for the duckweed and 30 min for the bacterium. Estimation of EC50 values was performed by frond counting and reduction in light output for Lemna minor and Vibrio fischeri, respectively. Lemna minor was found to be much more sensitive than Vibrio fischeri to target compounds. The toxicity of the three herbicides applied solely was estimated to be in decreasing order: diuron (EC50=28.3 ?g L(-1))?linuron (EC50=30.5 ?g L(-1))>monolinuron (EC50=300 ?g L(-1)) for the duckweed and linuron (EC50=8.2 mg L(-1))>diuron (EC50=9.2 mg L(-1))>monolinuron (EC50=11.2 mg L(-1)) for the bacterium. Based on the environmental concentrations reported in the literature and EC50 values obtained from Lemna minor experiments, Risk Quotients (RQ) much higher than 1 were calculated for diuron and linuron. In Lemna minor experiments, combination of target compounds resulted to additive effects due to their same mode of phenylurea action on photosynthetic organisms. Regarding Vibrio fischeri, synergistic, additive and antagonistic effects were observed, which varied according to the concentrations of target compounds. PMID:24821233

  17. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  18. Coagglutination of Vibrio cholerae, Vibrio mimicus, and Vibrio vulnificus with anti-flagellar monoclonal antibody.

    PubMed Central

    Simonson, J G; Siebeling, R J

    1988-01-01

    Monoclonal antibodies (MAbs) with serological activity for purified flagellar (H) core protein prepared from Vibrio cholerae were identified by enzyme-linked immunosorbent assay. Four of these MAbs reacted with the flagella of V. cholerae and V. mimicus exclusively, while eight MAbs reacted with at least 1 of 30 heterologous Vibrio species tested by enzyme-linked immunosorbent assay or coagglutination. It appears that V. cholerae and V. mimicus express similar, if not identical, H determinants unique to these two Vibrio species. Staphylococcus aureus cells or latex beads armed with the four species-specific MAbs coagglutinated each of 47 isolates identified bacteriologically as V. cholerae or V. mimicus from among 103 Vibrio isolates tested. One coagglutination reagent armed with anti-V. vulnificus H MAb exhibited species specificity in that only V. vulnificus cells were coagglutinated from among the 31 Vibrio species examined. This reagent coagglutinated 20 isolates identified bacteriologically as V. vulnificus in a serological survey. MAb coagglutination reagents offer a rapid, specific, and economical alternative to the classical bacteriological approach to identify the human pathogens V. cholerae, V. mimicus, and V. vulnificus. PMID:3182988

  19. VIBRIO VULNIFICUS EDUCATION WORKSHOPS / MATERIALS

    EPA Science Inventory

    This project will promote Vibrio vulnificus education on-line continuing medical education units to health care professionals that counsel and care for at-risk individuals. The Florida Department of Agriculture and Consumer Services will purchase advertisement and promotion in me...

  20. Vibrio cholerae as a predator: lessons from evolutionary principles

    PubMed Central

    Pukatzki, Stefan; Provenzano, Daniele

    2013-01-01

    Diarrheal diseases are the second-most common cause of death among children under the age of five worldwide. Cholera alone, caused by the marine bacterium Vibrio cholerae, is responsible for several million cases and over 120,000 deaths annually. When contaminated water is ingested, V. cholerae passes through the gastric acid barrier, penetrates the mucin layer of the small intestine, and adheres to the underlying epithelial lining. V. cholerae multiplies rapidly, secretes cholera toxin, and exits the human host in vast numbers during diarrheal purges. How V. cholerae rapidly reaches such high numbers during each purge is not clearly understood. We propose that V. cholerae employs its bactericidal type VI secretion system to engage in intraspecies and intraguild predation for nutrient acquisition to support rapid growth and multiplication. PMID:24368907

  1. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Vibrio cholerae serological reagents. 866...Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  2. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  3. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  4. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  5. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Vibrio cholerae serological reagents. 866... Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a) Identification. Vibrio cholerae serological reagents...

  6. Occurrence of Vibrio parahaemolyticus, Vibrio cholerae, and Vibrio vulnificus in the Aquacultural Environments of Taiwan.

    PubMed

    Tey, Yao Hsien; Jong, Koa-Jen; Fen, Shin-Yuan; Wong, Hin-Chung

    2015-05-01

    The occurrence of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae in a total of 72 samples from six aquaculture ponds for groupers, milk fish, and tilapia in southern Taiwan was examined by the membrane filtration and colony hybridization method. The halophilic V. parahaemolyticus was only recovered in seawater ponds, with a high isolation frequency of 86.1% and a mean density of 2.6 log CFU/g. V. cholerae was found in both the seawater and freshwater ponds but preferentially in freshwater ponds, with a frequency of 72.2% and a mean density of 1.65 log CFU/g. V. vulnificus was identified mainly in seawater ponds, with an isolation frequency of 27.8%. The density of V. parahaemolyticus in seawater ponds was positively related to water temperature (Pearson correlation coefficient, r = 0.555) and negatively related to salinity (r = 2 0.333). The density of V. cholerae in all six ponds was positively related to water temperature (r = 0.342) and negatively related to salinity (r = 2 0.432). Two putatively pathogenic tdh(+) V. parahaemolyticus isolates (1.4% of the samples) and no ctx(+) V. cholerae isolates were identified. The experimental results may facilitate assessments of the risk posed by these pathogenic Vibrio species in Taiwan, where aquaculture provides a large part of the seafood supply. PMID:25951392

  7. Arabinose Induces Pellicle Formation by Vibrio fischeri

    PubMed Central

    Quirke, Kevin P.; McEwen, Sheila M.

    2013-01-01

    Biofilms are multicellular communities of bacteria attached to a surface and embedded in a protective matrix. In many cases, the signals that induce biofilm formation are unknown. Here, we report that biofilm formation by the marine bacterium Vibrio fischeri can be induced by the addition of arabinose to LBS (Luria-Bertani-salt), a tryptone-based medium. Growth of cells in the presence of 0.2% arabinose, but not other sugars, induced the production of a pellicle at the air/liquid interfaces of static cultures. V. fischeri failed to grow on arabinose as the sole carbon source, suggesting that pellicle production did not occur as a result of increased growth, but experiments using the acid/base indicator phenol red suggested that V. fischeri may partially metabolize arabinose. Pellicle production was independent of the syp polysaccharide locus but was altered upon disruption of the bcs cellulose locus. Through a screen for mutants defective for pellicle production, we found that loss of motility disrupted the formation of the arabinose-induced pellicle. Among the ?20 mutants that retained motility were strains with insertions in a putative msh pilus locus and a strain with a defect in yidK, which is involved in galactose catabolism. Mutants with the msh gene disrupted grew poorly in the presence of arabinose, while the yidK mutant appeared to be “blind” to the presence of arabinose. Finally, arabinose impaired symbiotic colonization by V. fischeri. This work thus identifies a novel signal and new pathways involved in control of biofilm formation by V. fischeri. PMID:23335779

  8. Lateral Flagellar Gene System of Vibrio parahaemolyticus

    PubMed Central

    Stewart, Bonnie J.; McCarter, Linda L.

    2003-01-01

    Vibrio parahaemolyticus possesses dual flagellar systems adapted for movement under different circumstances. A single polar flagellum propels the bacterium in liquid (i.e., swimming) with a motor that is powered by the sodium motive force. Multiple proton-driven lateral flagella enable translocation over surfaces (i.e., swarming). The polar flagellum is produced continuously, while production of lateral flagella is induced when the organism is grown on surfaces. This work describes the isolation of mutants with insertions in the structural and regulatory laf genes. A Tn5-based lux transcriptional reporter transposon was constructed and used for mutagenesis and subsequent transcriptional analysis of the laf regulon. Twenty-nine independent insertions were distributed within 16 laf genes. DNA sequence analysis identified 38 laf genes in two loci. Among the mutants isolated, 11 contained surface-induced lux fusions. A hierarchy of laf gene expression was established following characterization of the laf::lux transcriptional fusion strains and by mutational and primer extension analyses of the laf regulon. The laf system is like many enteric systems in that it is a proton-driven, peritrichous flagellar system; however, laf regulation was different from the Salmonella-Escherichia coli paradigm. There is no apparent flhDC counterpart that encodes master regulators known to control flagellar biosynthesis and swarming in many enteric bacteria. A potential ?54-dependent regulator, LafK, was demonstrated to control expression of early genes, and a lateral-specific ?28 factor controls late flagellar gene expression. Another notable feature was the discovery of a gene encoding a MotY-like product, which previously had been associated only with the architecture of sodium-type polar flagellar motors. PMID:12867460

  9. Squid-Derived Chitin Oligosaccharides Are a Chemotactic Signal during Colonization by Vibrio fischeri

    PubMed Central

    Schaefer, Amy L.; Brennan, Caitlin A.; Heath-Heckman, Elizabeth A. C.; DeLoney-Marino, Cindy R.; McFall-Ngai, Margaret J.

    2012-01-01

    Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae (“vibrios”), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone. PMID:22522684

  10. Insights into Vibrio parahaemolyticus CHN25 Response to Artificial Gastric Fluid Stress by Transcriptomic Analysis

    PubMed Central

    Sun, Xuejiao; Liu, Taigang; Peng, Xu; Chen, Lanming

    2014-01-01

    Vibrio parahaemolyticus is the causative agent of food-borne gastroenteritis disease. Once consumed, human acid gastric fluid is perhaps one of the most important environmental stresses imposed on the bacterium. Herein, for the first time, we investigated Vibrio parahaemolyticus CHN25 response to artificial gastric fluid (AGF) stress by transcriptomic analysis. The bacterium at logarithmic growth phase (LGP) displayed lower survival rates than that at stationary growth phase (SGP) under a sub-lethal acid condition (pH 4.9). Transcriptome data revealed that 11.6% of the expressed genes in Vibrio parahaemolyticus CHN25 was up-regulated in LGP cells after exposed to AGF (pH 4.9) for 30 min, including those involved in sugar transport, nitrogen metabolism, energy production and protein biosynthesis, whereas 14.0% of the genes was down-regulated, such as ATP-binding cassette (ABC) transporter and flagellar biosynthesis genes. In contrast, the AGF stress only elicited 3.4% of the genes from SGP cells, the majority of which were attenuated in expression. Moreover, the number of expressed regulator genes was also substantially reduced in SGP cells. Comparison of transcriptome profiles further revealed forty-one growth-phase independent genes in the AGF stress, however, half of which displayed distinct expression features between the two growth phases. Vibrio parahaemolyticus seemed to have evolved a number of molecular strategies for coping with the acid stress. The data here will facilitate future studies for environmental stresses and pathogenicity of the leading seafood-borne pathogen worldwide. PMID:25490137

  11. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus

    PubMed Central

    Cohen, Yossi; Joseph Pollock, F; Rosenberg, Eugene; Bourne, David G

    2013-01-01

    Vibrio coralliilyticus is an important coral pathogen demonstrated to cause disease outbreaks worldwide. This study investigated the feasibility of applying bacteriophage therapy to treat the coral pathogen V. coralliilyticus. A specific bacteriophage for V. coralliilyticus strain P1 (LMG23696), referred to here as bacteriophage YC, was isolated from the seawater above corals at Nelly Bay, Magnetic Island, central Great Barrier Reef (GBR), the same location where the bacterium was first isolated. Bacteriophage YC was shown to be a lytic phage belonging to the Myoviridae family, with a rapid replication rate, high burst size, and high affinity to its host. By infecting its host bacterium, bacteriophage YC was able to prevent bacterial-induced photosystem inhibition in pure cultures of Symbiodinium, the photosymbiont partner of coral and a target for virulence factors produced by the bacterial pathogen. Phage therapy experiments using coral juveniles in microtiter plates as a model system revealed that bacteriophage YC was able to prevent V. coralliilyticus-induced photoinactivation and tissue lysis. These results demonstrate that bacteriophage YC has the potential to treat coral disease outbreaks caused by the bacterial pathogen V. coralliilyticus, making it a good candidate for phage therapy treatment of coral disease. PMID:23239510

  12. Isolation and identification among cockle isolates of Vibrio vulnificus isolated from Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Kurdi Al-Dulaimi, Mohammed M.; Mutalib, Sahilah Abd.; Ghani, Ma`aruf Abd.

    2014-09-01

    Vibrio vulnificus infections are worldwide public health problems associated with illnesses resulting from consumption of raw or partially cooked seafood. The aim of this study was to investigate the presence and identification of V. vulnificus in cockles from local wet (40) and supermarkets (38) from Selangor, Malaysia from July 2013 to February 2014. A total of 78(n=78) cockle were examined for the presence of V. vulnificus and at about 32% (25/78) cockle samples were positive to this bacterium. Colonies morphological observation and biochemical characterization for those isolates showed 60% (15/78) of isolates were classified as biotype 1 and 40% (10/78) belong to biotype 2.

  13. Septic arthritis and subsequent fatal septic shock caused by Vibrio vulnificus infection.

    PubMed

    Emamifar, Amir; Asmussen Andreasen, Rikke; Skaarup Andersen, Nanna; Jensen Hansen, Inger Marie

    2015-01-01

    Vibrio vulnificus is a rare but potential fatal bacterium that can cause severe infections. Wound infections, primary sepsis and gastroenteritis are the most common clinical features. Septic arthritis caused by V. vulnificus is an atypical presentation that has been reported in only two case reports; however, it has not been previously noted in Denmark. The authors report a case of septic arthritis caused by V. vulnificus in an immunocompromised patient. The disease progressed to severe sepsis and subsequent death within 10?h of admission. PMID:26604231

  14. Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106).

    SciTech Connect

    Temperton, B.; Thomas, S.; Tait, K.; Parry, H.; Emery, M.; Allen, M.; Quinn, J.; McGrath, J.; Gilbert, J.

    2011-01-01

    Vibrio tubiashii NCIMB 1337 is a major and increasingly prevalent pathogen of bivalve mollusks, and shares a close phylogenetic relationship with both V. orientalis and V. coralliilyticus. It is a Gram-negative, curved rod-shaped bacterium, originally isolated from a moribund juvenile oyster, and is both oxidase and catalase positive. It is capable of growth under both aerobic and anaerobic conditions. Here we describe the features of this organism, together with the draft genome and annotation. The genome is 5,353,266 bp long, consisting of two chromosomes, and contains 4,864 protein-coding and 86 RNA genes.

  15. Characterization of htrB and msbB mutants of the light organ symbiont Vibrio fischeri.

    PubMed

    Adin, Dawn M; Phillips, Nancy J; Gibson, Bradford W; Apicella, Michael A; Ruby, Edward G; McFall-Ngai, Margaret J; Hall, Daniel B; Stabb, Eric V

    2008-02-01

    Bacterial lipid A is an important mediator of bacterium-host interactions, and secondary acylations added by HtrB and MsbB can be critical for colonization and virulence in pathogenic infections. In contrast, Vibrio fischeri lipid A stimulates normal developmental processes in this bacterium's mutualistic host, Euprymna scolopes, although the importance of lipid A structure in this symbiosis is unknown. To further examine V. fischeri lipid A and its symbiotic function, we identified two paralogs of htrB (designated htrB1 and htrB2) and an msbB gene in V. fischeri ES114 and demonstrated that these genes encode lipid A secondary acyltransferases. htrB2 and msbB are found on the Vibrio "housekeeping" chromosome 1 and are conserved in other Vibrio species. Mutations in htrB2 and msbB did not impair symbiotic colonization but resulted in phenotypic alterations in culture, including reduced motility and increased luminescence. These mutations also affected sensitivity to sodium dodecyl sulfate, kanamycin, and polymyxin, consistent with changes in membrane permeability. Conversely, htrB1 is located on the smaller, more variable vibrio chromosome 2, and an htrB1 mutant was wild-type-like in culture but appeared attenuated in initiating the symbiosis and was outcompeted 2.7-fold during colonization when mixed with the parent. These data suggest that htrB2 and msbB play conserved general roles in vibrio biology, whereas htrB1 plays a more symbiosis-specific role in V. fischeri. PMID:18065606

  16. Characterization of htrB and msbB Mutants of the Light Organ Symbiont Vibrio fischeri?

    PubMed Central

    Adin, Dawn M.; Phillips, Nancy J.; Gibson, Bradford W.; Apicella, Michael A.; Ruby, Edward G.; McFall-Ngai, Margaret J.; Hall, Daniel B.; Stabb, Eric V.

    2008-01-01

    Bacterial lipid A is an important mediator of bacterium-host interactions, and secondary acylations added by HtrB and MsbB can be critical for colonization and virulence in pathogenic infections. In contrast, Vibrio fischeri lipid A stimulates normal developmental processes in this bacterium's mutualistic host, Euprymna scolopes, although the importance of lipid A structure in this symbiosis is unknown. To further examine V. fischeri lipid A and its symbiotic function, we identified two paralogs of htrB (designated htrB1 and htrB2) and an msbB gene in V. fischeri ES114 and demonstrated that these genes encode lipid A secondary acyltransferases. htrB2 and msbB are found on the Vibrio “housekeeping” chromosome 1 and are conserved in other Vibrio species. Mutations in htrB2 and msbB did not impair symbiotic colonization but resulted in phenotypic alterations in culture, including reduced motility and increased luminescence. These mutations also affected sensitivity to sodium dodecyl sulfate, kanamycin, and polymyxin, consistent with changes in membrane permeability. Conversely, htrB1 is located on the smaller, more variable vibrio chromosome 2, and an htrB1 mutant was wild-type-like in culture but appeared attenuated in initiating the symbiosis and was outcompeted 2.7-fold during colonization when mixed with the parent. These data suggest that htrB2 and msbB play conserved general roles in vibrio biology, whereas htrB1 plays a more symbiosis-specific role in V. fischeri. PMID:18065606

  17. A Vibrio anguillarum strain associated with skin ulcer on cultured flounder, Paralichthys olivaceus

    NASA Astrophysics Data System (ADS)

    Mo, Zhao-Lan; Tan, Xun-Gang; Xu, Yong-Li; Zhang, Pei-Jun

    2001-12-01

    The characteristics of a bacterium strain M3, isolated from cultured flounder Paralichthys olivaceus with remarkable external sign of skin ulcer during an epizootic outbreak, indicated that the bacterium belonged to the species Vibrio anguillarum. Challenge by I.M. (intramuscular injection), bath, and oral administration with M3 showed that it was highly pathogenic for Paralichthys olivacues. The LD50 dose was 5.144×103 CFU/ per fish infection by I.M. injection. Recovered inoculated bacteria from the surviving fish revealed that the asymptomatic carriers could be a latent contagious source. Study of the effect of bacterial culture CFS (cell-free-supernatant) showed that the exotoxins produced by M3 play an important role in its pathogenicity for flounder. The resistance of M3 to 36 out of 41 antibiotics indicated that the bacterial disease outbreak was mainly attributable to the frequent and excessive use of antimicrobial agents; and that vaccination would be an effective precaution against bacterial disease.

  18. Construction and application of plasmid- and transposon-based promoter-probe vectors for Streptomyces spp. that employ a Vibrio harveyi luciferase reporter cassette.

    PubMed Central

    Sohaskey, C D; Im, H; Schauer, A T

    1992-01-01

    Several versatile promoter-probe vectors have been constructed for Streptomyces strains which utilize the production of blue-green light as a measure of transcription activity. Three plasmid vectors (two high and one low copy number) and two transposons are described. The multicopy plasmids pRS1106 and pRS1108 contain a transcription terminator and multiple-cloning polylinker upstream of promoterless luciferase (lux) and neomycin resistance reporter genes. Plasmid pHI90 is similar in structure to the pRS vectors except that its single copy number is an advantage for regulation studies or situations in which overexpression is otherwise toxic to the cell. The two transposons carry a promoterless lux cassette cloned such that transposition into a target DNA and fusion to the target's transcription unit occur simultaneously. Tn5351 was created by inserting the luciferase genes near the right end of the viomycin resistance transposon Tn4563. Tn5353 carries the luciferase genes near the right end of a neomycin resistance transposon derived from Tn4556. The size of Tn5353 was minimized by deleting nonessential transposon sequences, making this element small enough to be cloned into phi C31 bacteriophages for efficient transposon delivery to target cells of Streptomyces strains. The two Tnlux transposons have been used to generate Streptomyces coelicolor morphological mutants and to monitor transcription from chromosomal promoters during development. Images PMID:1309525

  19. New selective and differential medium for Vibrio cholerae and Vibrio vulnificus.

    PubMed Central

    Massad, G; Oliver, J D

    1987-01-01

    Thiosulfate-citrate-bile salts-sucrose agar has been routinely used for the isolation of pathogenic vibrios, although its selectivity for Vibrio cholerae and Vibrio vulnificus is inadequate. Therefore, a new plating medium, cellobiose-polymyxin B-colistin agar, was developed for the isolation of these two species. Cellobiose-polymyxin B-colistin agar demonstrated a significant advantage over other media designed for the isolation or differentiation of vibrios: of both the 136 strains representing 19 Vibrio species and the marine isolates of the genera Pseudomonas, Flavobacterium, and Photobacterium, only V. vulnificus and V. cholerae were able to grow. Furthermore, the fermentation of cellobiose by V. vulnificus allowed for the easy differentiation of these two species. This medium offers significant potential as a selective and differential medium for these two pathogenic vibrios. PMID:3674873

  20. Supplementary Information Integrative genome-scale metabolic analysis of Vibrio vulnificus

    E-print Network

    Supplementary Information Integrative genome-scale metabolic analysis of Vibrio vulnificus for drug of conserved genes in Vibrio vulnificus and Vibrio parahaemolyticus genomes Vibrios........................................................ 5 Supplementary Table III. Reactions

  1. Mesenteric Panniculitis Associated With Vibrio cholerae Infection.

    PubMed

    Roginsky, Grigory; Mazulis, Andrew; Ecanow, Jacob S; Ehrenpreis, Eli D

    2015-10-01

    We report the first case of acute Vibrio cholerae infection with computed tomography (CT) changes consistent with mesenteric panniculitis (MP). A 78-year-old Indian man returned from overseas travel with progressively severe nausea, vomiting, abdominal pain, and watery diarrhea. His stool tested positive twice for Vibrio cholerae. CT revealed prominent lymph nodes and a hazy mesentery consistent with MP. Antibiotic treatment resulted in complete resolution of MP on follow-up CT 8 months later. In the setting of Vibrio cholerae infection, the CT finding of MP appears to be the result of a immunologically mediated reactive inflammatory disorder of the mesentery. PMID:26504876

  2. Mesenteric Panniculitis Associated With Vibrio cholerae Infection

    PubMed Central

    Roginsky, Grigory; Mazulis, Andrew; Ecanow, Jacob S.

    2015-01-01

    We report the first case of acute Vibrio cholerae infection with computed tomography (CT) changes consistent with mesenteric panniculitis (MP). A 78-year-old Indian man returned from overseas travel with progressively severe nausea, vomiting, abdominal pain, and watery diarrhea. His stool tested positive twice for Vibrio cholerae. CT revealed prominent lymph nodes and a hazy mesentery consistent with MP. Antibiotic treatment resulted in complete resolution of MP on follow-up CT 8 months later. In the setting of Vibrio cholerae infection, the CT finding of MP appears to be the result of a immunologically mediated reactive inflammatory disorder of the mesentery. PMID:26504876

  3. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments

    PubMed Central

    Norsworthy, Allison N.; Visick, Karen L.

    2013-01-01

    Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria–host interaction. PMID:24348467

  4. Vibrio parahaemolyticus in Brazilian coastal waters.

    PubMed

    Franca, S M; Gibbs, D L; Samuels, P; Johnson, W D

    1980-08-01

    Vibrio parahaemolyticus has been increasingly recognized as an important cause of acute diarrheal illness in Asia, Europe, Africa, Australia, and North America. We investigated whether this pathogen was also present in Brazil and found that 10% of the fish samples studied were contaminated with this halophilic vibrio. Positive cultures were obtained in three of 64 fish (5%) and in seven of 36 shell fish (19%). PMID:7190196

  5. Occurrence of virulence genes among Vibrio cholerae and Vibrio parahaemolyticus strains from treated wastewaters.

    PubMed

    Khouadja, Sadok; Suffredini, Elisabetta; Baccouche, Besma; Croci, Luciana; Bakhrouf, Amina

    2014-10-01

    Pathogenic Vibrio species are an important cause of foodborne illnesses. The aim of this study was to describe the occurrence of potentially pathogenic Vibrio species in the final effluents of a wastewater treatment plant and the risk that they may pose to public health. During the 1-year monitoring, a total of 43 Vibrio strains were isolated: 23 Vibrio alginolyticus, 1 Vibrio cholerae, 4 Vibrio vulnificus, and 15 Vibrio parahaemolyticus. The PCR investigation of V. parahaemolyticus and V. cholerae virulence genes (tlh, trh, tdh, toxR, toxS, toxRS, toxT, zot, ctxAB, tcp, ace, vpi, nanH) revealed the presence of some of these genes in a significant number of strains. Intraspecies variability and genetic relationships among the environmental isolates were analyzed by random amplified polymorphic DNA-PCR (RAPD-PCR). We report the results of the first isolation and characterization of an environmental V. cholerae non-O1 non-O139 and of a toxigenic V. parahaemolyticus strain in Tunisia. We suggest that non-pathogenic Vibrio might represent a marine reservoir of virulence genes that can be transmitted between strains by horizontal transfer. PMID:25023745

  6. Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons.

    PubMed

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick

    2015-11-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. PMID:26319881

  7. VIBRIO VULNIFICUS EDUCATION WORKSHOP FOR THE FLORIDA MEDICAL COMMUNITY

    EPA Science Inventory

    Vibrio vulnificus is a naturally occurring microorganism that occurs warm marine and estuarine waters. The bacteria are concentrated by filter feeding shellfish. Certain immunocompromised individuals and those with liver disease can be adversely, even fatally affected by Vibrio...

  8. Quorum Sensing in the Squid-Vibrio Symbiosis

    PubMed Central

    Verma, Subhash C.; Miyashiro, Tim

    2013-01-01

    Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization. PMID:23965960

  9. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus

    PubMed Central

    Wang, Rongzhi; Zhong, Yanfang; Gu, Xiaosong; Yuan, Jun; Saeed, Abdullah F.; Wang, Shihua

    2015-01-01

    Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems and two type VI secretion systems, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection. PMID:25798132

  10. Mechanisms of iron regulation of luminescence in Vibrio fischeri

    SciTech Connect

    Haygood, M.G.; Nealson, K.H.

    1985-04-01

    Synthesis of luciferase is repressed by iron in the symbiotic bioluminescent bacterium Vibrio fischeri. Possible mechanisms of iron regulation of luciferase synthesis were tested with V. fischeri and with Escherichia coli clones containing plasmids carrying V. fischeri luminescence genes. Experiments were conducted in complete medium with and without the synthetic iron chelator ethylenediamine-di(o-hydroxyphenyl acetic acid). Comparison of the effect of ethylenediamine-di(o-hydroxyphenyl acetic acid) and another growth inhibitor, (2-n-heptyl-4-hydroxyquinoline-N-oxide), showed that iron repression is not due to inhibition of growth. A quantitative bioassay for autoinducer was developed with E. coli HB101 containing pJE411, a plasmid carrying V. fischeri luminescence genes with a transcriptional fusion between luxI and E. coli lacZ. Bioassay experiments showed no effect of iron on either autoinducer activity or production (before induction) or transcription of the lux operon. Ethylenediamine-di(o-hydroxyphenyl acetic acid) did not affect luciferase induction in E. coli strains with wild-type iron assimilation or impaired iron assimilation bearing pJE202 (a plasmid with functional V. fischeri lux genes), suggesting that the genes responsible for the iron effect are missing or substituted in these clones. Two models are consistent with the data: (i) iron represses autoinducer transport, and (ii) iron acts through an autoinduction-independent regulatory system (e.g., an iron repressor).

  11. Variations climatiques et probabilit de dveloppement des Vibrio dans la

    E-print Network

    Brogniez, Hélène

    Variations climatiques et probabilité de développement des Vibrio dans la Méditerranée nord probabilité de développement du Vibrio par G. Constantin de Magny. Enfin, nous remercions David Antoine pour matières Remerciements ii 1 Présentation 1 2 Etat de l'art 3 2.1 Le Vibrio

  12. O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide

    E-print Network

    McFall-Ngai, Margaret

    O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide COMPOSITION AND ANALYSIS, University of Iowa, Iowa City, Iowa 52242 Background: The structure and function of the Vibrio fischeri O of bacterial colonization of the squid light organ. Vibrio fischeri exists in a symbiotic relationship

  13. Inactivation of mismatch repair increases the diversity of Vibrio parahaemolyticus

    E-print Network

    Yi, Soojin

    Inactivation of mismatch repair increases the diversity of Vibrio parahaemolyticus Tracy H. Hazen is the first to report a higher frequency of natural mutators among Vibrio environmental strains and to provide evidence that inactivation of MMR increases the diversity of V. parahaemolyticus. Introduction Vibrio

  14. Effects of Global Warming on Vibrio Ecology.

    PubMed

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause. PMID:26185070

  15. Pathogenicity of vibrios in fish: An overview

    NASA Astrophysics Data System (ADS)

    Jun, Li; Woo, Norman Y. S.

    2003-10-01

    Bacteria of the genus Vibrio are ubiquitously distributed in the marine environment. Due to the rapid expansion of intensive mariculture and the consequent deterioration of culture conditions, more and more Vibrio spp. have been recognized as pathogenic agents in outbreaks of vibriosis, a serious epizootic disease affecting most wild and farmed fish species worldwide, which has become the most important limiting factor for the development of intensive mariculture industry. Attempts have been made to understand the pathogenicity of vibrios in host fish with the ultimate aim of elucidating the best means for disease control. After an extensive literature survey of the recent advances in the field of fish vibriosis, the pathological changes, virulence factors and associated potential pathogenic mechanisms, transmission routes and related environmental factors involved in outbreak of vibriosis, as well as the controlling strategies are reviewed in the present paper.

  16. Antibiotic-Resistant Vibrios in Farmed Shrimp

    PubMed Central

    Albuquerque Costa, Renata; Araújo, Rayza Lima; Souza, Oscarina Viana; Vieira, Regine Helena Silva dos Fernandes

    2015-01-01

    Antimicrobial susceptibility pattern was determined in 100 strains of Vibrio isolated from the Litopenaeus vannamei shrimp and identified phenotypically. A high antibiotic-resistance index (75%) was observed, with the following phenotypic profiles: monoresistance (n = 42), cross-resistance to ?-lactams (n = 20) and multiple resistance (n = 13). Plasmid resistance was characterized for penicillin (n = 11), penicillin + ampicillin (n = 1), penicillin + aztreonam (n = 1), and ampicillin (n = 1). Resistance to antimicrobial drugs by the other strains (n = 86) was possibly mediated by chromosomal genes. The findings of this study support the conclusion that the cultured shrimps can be vehicles of vibrios resistant to ?-lactam and tetracycline. PMID:25918714

  17. RECA EXPRESSION IN RESPONSE TO SOLAR UVR IN THE MARINE BACTERIUM VIBRIO NATRIEGENS.

    EPA Science Inventory

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a program...

  18. Predicting the Distribution of Vibrio spp. in the Chesapeake Bay: A Vibrio cholerae Case Study

    PubMed Central

    Magny, Guillaume Constantin de; Long, Wen; Brown, Christopher W.; Hood, Raleigh R.; Huq, Anwar; Murtugudde, Raghu; Colwell, Rita R.

    2010-01-01

    Vibrio cholerae, the causative agent of cholera, is a naturally occurring inhabitant of the Chesapeake Bay and serves as a predictor for other clinically important vibrios, including Vibrio parahaemolyticus and Vibrio vulnificus. A system was constructed to predict the likelihood of the presence of V. cholerae in surface waters of the Chesapeake Bay, with the goal to provide forecasts of the occurrence of this and related pathogenic Vibrio spp. Prediction was achieved by driving an available multivariate empirical habitat model estimating the probability of V. cholerae within a range of temperatures and salinities in the Bay, with hydrodynamically generated predictions of ambient temperature and salinity. The experimental predictions provided both an improved understanding of the in situ variability of V. cholerae, including identification of potential hotspots of occurrence, and usefulness as an early warning system. With further development of the system, prediction of the probability of the occurrence of related pathogenic vibrios in the Chesapeake Bay, notably V. parahaemolyticus and V. vulnificus, will be possible, as well as its transport to any geographical location where sufficient relevant data are available. PMID:20145974

  19. Thermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response

    PubMed Central

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M.; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M.; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an ‘efficient’ immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

  20. Thermal stress triggers broad Pocillopora damicornis transcriptomic remodeling, while Vibrio coralliilyticus infection induces a more targeted immuno-suppression response.

    PubMed

    Vidal-Dupiol, Jeremie; Dheilly, Nolwenn M; Rondon, Rodolfo; Grunau, Christoph; Cosseau, Céline; Smith, Kristina M; Freitag, Michael; Adjeroud, Mehdi; Mitta, Guillaume

    2014-01-01

    Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulence have been clearly identified, their interaction, synergy and relative weight during pathogenesis remain poorly documented. We investigated these phenomena in the interaction between the coral Pocillopora damicornis and the bacterium Vibrio coralliilyticus, for which the infection process is temperature-dependent. We developed an experimental model that enabled unraveling the effects of thermal stress, and virulence vs. non-virulence of the bacterium. The physiological impacts of various treatments were quantified at the transcriptome level using a combination of RNA sequencing and targeted approaches. The results showed that thermal stress triggered a general weakening of the coral, making it more prone to infection, non-virulent bacterium induced an 'efficient' immune response, whereas virulent bacterium caused immuno-suppression in its host. PMID:25259845

  1. EFFECT OF AGGREGATION ON VIBRIO CHOLERAE INACTIVATION

    EPA Science Inventory

    Extensive research has shown that microorganisms exhibit increased resistance due to clumping, aggregation, particle association, or modification of antecedent growth conditions. During the course of investigating a major water-borne Vibrio cholerae outbreak in Peru, U.S. EPA inv...

  2. Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death.

    PubMed

    Burdette, Dara L; Yarbrough, Melanie L; Orth, Kim

    2009-01-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is a gram-negative halophillic bacterium that causes worldwide seafood-borne gastroenteritis. The prevalence of V. parahaemolyticus in the environment and incidence of infection have been linked to rising water temperatures caused by global warming. Among its virulence factors, V. parahaemolyticus harbors two type III secretion systems (T3SS). Recently, we have shown that T3SS1 induces rapid cellular death that initiates with acute autophagy, as measured by LC3 lipidation and accumulation of early autophagosomal vesicles. While not the first characterized pathogen to usurp autophagy, this is the first example of an extracellular pathogen that exploits this pathway for its own benefit. Here we discuss possible roles for the induction of autophagy during infection and discuss how V. parahaemolyticus-induced autophagy provides insight into key regulatory steps that govern the decision between apoptosis and autophagy. PMID:19011375

  3. Zebrafish as a Natural Host Model for Vibrio cholerae Colonization and Transmission

    PubMed Central

    Runft, Donna L.; Mitchell, Kristie C.; Abuaita, Basel H.; Allen, Jonathan P.; Bajer, Sarah; Ginsburg, Kevin; Neely, Melody N.

    2014-01-01

    The human diarrheal disease cholera is caused by the aquatic bacterium Vibrio cholerae. V. cholerae in the environment is associated with several varieties of aquatic life, including insect egg masses, shellfish, and vertebrate fish. Here we describe a novel animal model for V. cholerae, the zebrafish. Pandemic V. cholerae strains specifically colonize the zebrafish intestinal tract after exposure in water with no manipulation of the animal required. Colonization occurs in close contact with the intestinal epithelium and mimics colonization observed in mammals. Zebrafish that are colonized by V. cholerae transmit the bacteria to naive fish, which then become colonized. Striking differences in colonization between V. cholerae classical and El Tor biotypes were apparent. The zebrafish natural habitat in Asia heavily overlaps areas where cholera is endemic, suggesting that zebrafish and V. cholerae evolved in close contact with each other. Thus, the zebrafish provides a natural host model for the study of V. cholerae colonization, transmission, and environmental survival. PMID:24375135

  4. The secret languages of coevolved symbioses: Insights from the Euprymna scolopes-Vibrio fischeri symbiosis

    PubMed Central

    McFall-Ngai, Margaret; Heath-Heckman, Elizabeth A. C.; Gillette, Amani A.; Peyer, Suzanne M.; Harvie, Elizabeth A.

    2011-01-01

    Recent research on a wide variety of systems has demonstrated that animals generally coevolve with their microbial symbionts. Although such relationships are most often established anew each generation, the partners associate with fidelity, i.e., they form exclusive alliances within the context of rich communities of non-symbiotic environmental microbes. The mechanisms by which this exclusivity is achieved and maintained remain largely unknown. Studies of the model symbiosis between the Hawaiian squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri provide evidence that the interplay between evolutionarily conserved features of the innate immune system, most notably MAMP/PRR interactions, and a specific feature of this association, i.e., luminescence, are critical for development and maintenance of this association. As such, in this partnership and perhaps others, symbiotic exclusivity is mediated by the synergism between a general animal-microbe ‘language’ and a ‘secret language’ that is decipherable only by the specific partners involved. PMID:22154556

  5. Stimulation of bacterial DNA synthesis by algal exudates in attached algal-bacterial consortia. [Amphora coffeaeformis; Vibrio proteolyticus

    SciTech Connect

    Murray, R.E.; Cooksey, K.E.; Priscu, J.C.

    1986-11-01

    Algal-bacterial consortia attached to polystyrene surfaces were prepared in the laboratory by using the marine diatom Amphora coffeaeformis and the marine bacterium Vibrio proteolytica (the approved name of this bacterium is Vibrio proteolyticus. The organisms were attached to the surfaces at cell densities of approximately 5 x 10/sup 4/ cells cm/sup -2/ (diatoms) and 5 x 10/sup 6/ cells cm/sup -2/ (bacteria). The algal-bacterial consortia consistently exhibited higher rates of (/sup 3/H)thymidine incorporation than did biofilms composed solely of bacteria. The rates of (/sup 3/H)thymidine incorporation by the algal-bacterial consortia were fourfold greater than the rates of incorporation by monobacterial biofilms 16 h after biofilm formation and were 16-fold greater 70 h after biofilm formation. Extracellular material released from the attached Amphora cells supported rates of bacterial activity (0.8 x 10/sup -21/ mol to 17.9 x 10/sup -21/ mol of (/sup 3/H)thymidine incorporated cell /sup -1/ h/sup -1/) and growth (doubling time, 29.5 to 1.4 days) comparable to values reported for a wide variety of marine and freshwater ecosystems. In the presence of sessile diatom populations, DNA synthesis by attached V. proteolytica cells was light dependent and increased with increasing algal abundance. The metabolic activity of diatoms thus appears to be the rate-limiting process in biofilm development on illuminated surfaces under conditions of low bulk-water dissolved organic carbon.

  6. Polar targeting of Shigella virulence factor IcsA in Enterobacteriacae and Vibrio

    PubMed Central

    Charles, Macarthur; Pérez, Marisa; Kobil, Jessica H.; Goldberg, Marcia B.

    2001-01-01

    Asymmetric localization is key to the proper function of certain prokaryotic proteins important to virulence, chemotaxis, cell division, development, motility, and adhesion. Shigella IcsA is localized to the old pole of the bacterium, where it mediates assembly of an actin tail inside infected mammalian cells. IcsA (VirG) is essential to Shigella intracellular motility and virulence. We used translational fusions between portions of IcsA and the green fluorescent protein (GFP) to determine the regions of IcsA that are necessary and sufficient for its targeting to the bacterial old pole. An IcsA-GFP fusion that lacks a signal peptide localized to the old pole, indicating that signal peptide-mediated secretion is not required for polar localization. Two regions within IcsA were required for localization of an IcsA-GFP fusion to the old pole. Further characterization of these regions indicated that amino acids 1–104 and 507–620 were each independently sufficient for polar localization. Finally, when expressed in Escherichia coli, Salmonella typhimurium, Yersinia pseudotuberculosis, and Vibrio cholerae, each of the two targeting regions localized to the pole, indicating that the mechanism of polar targeting used by IcsA is present generally among Enterobacteriacae and Vibrio. PMID:11481451

  7. The dual nature of haemocyanin in the establishment and persistence of the squid–vibrio symbiosis

    PubMed Central

    Kremer, Natacha; Schwartzman, Julia; Augustin, René; Zhou, Lawrence; Ruby, Edward G.; Hourdez, Stéphane; McFall-Ngai, Margaret J.

    2014-01-01

    We identified and sequenced from the squid Euprymna scolopes two isoforms of haemocyanin that share the common structural/physiological characteristics of haemocyanin from a closely related cephalopod, Sepia officinalis, including a pronounced Bohr effect. We examined the potential roles for haemocyanin in the animal's symbiosis with the luminous bacterium Vibrio fischeri. Our data demonstrate that, as in other cephalopods, the haemocyanin is primarily synthesized in the gills. It transits through the general circulation into other tissues and is exported into crypt spaces that support the bacterial partner, which requires oxygen for its bioluminescence. We showed that the gradient of pH between the circulating haemolymph and the matrix of the crypt spaces in adult squid favours offloading of oxygen from the haemocyanin to the symbionts. Haemocyanin is also localized to the apical surfaces and associated mucus of a juvenile-specific epithelium on which the symbionts gather, and where their specificity is determined during the recruitment into the association. The haemocyanin has an antimicrobial activity, which may be involved in this enrichment of V. fischeri during symbiont initiation. Taken together, these data provide evidence that the haemocyanin plays a role in shaping two stages of the squid–vibrio partnership. PMID:24807261

  8. FIGURE 2. -Immunodiffusion comparison of Vibrio anguil-larum 775 and Vibrio sp. 1669. Wells I, 3, and 5 contain V. an-

    E-print Network

    4 FIGURE 2. -Immunodiffusion comparison of Vibrio anguil- larum 775 and Vibrio sp. 1669. Wells I, 3, and 5 contain V. an- guillarum 775 sonicate and wells 2, 4, and 6 contain Vibrio sp. 1669 sonicate. The center well contains rabbit anti-V. anguil- larum 775 serum. V anguillarum 775 in rabbit anti-Vibrio sp

  9. Recreational swimmers' exposure to Vibrio vulnificus and Vibrio parahaemolyticus in the Chesapeake Bay, Maryland, USA.

    PubMed

    Shaw, Kristi S; Sapkota, Amy R; Jacobs, John M; He, Xin; Crump, Byron C

    2015-01-01

    Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous in the marine-estuarine environment, but the magnitude of human non-ingestion exposure to these waterborne pathogens is largely unknown. We evaluated the magnitude of dermal exposure to V. vulnificus and V. parahaemolyticus among swimmers recreating in Vibrio-populated waters by conducting swim studies at four swimming locations in the Chesapeake Bay in 2009 and 2011. Volunteers (n=31) swam for set time periods, and surface water (n=25) and handwash (n=250) samples were collected. Samples were analyzed for Vibrio concentrations using quantitative PCR. Linear and logistic regressions were used to evaluate factors associated with recreational exposures. Mean surface water V. vulnificus and V. parahaemolyticus concentrations were 1128CFUmL(-1) (95% confidence interval (CI): 665.6, 1591.4) and 18CFUmL(-1) (95% CI: 9.8, 26.1), respectively, across all sampling locations. Mean Vibrio concentrations in handwash samples (V. vulnificus, 180CFUcm(-2) (95% CI: 136.6, 222.5); V. parahaemolyticus, 3CFUcm(-2) (95% CI: 2.4, 3.7)) were significantly associated with Vibrio concentrations in surface water (V. vulnificus, p<0.01; V. parahaemolyticus, p<0.01), but not with salinity or temperature (V. vulnificus, p=0.52, p=0.17; V. parahaemolyticus, p=0.82, p=0.06). Handwashing reduced V. vulnificus and V. parahaemolyticus on subjects' hands by approximately one log (93.9%, 89.4%, respectively). It can be concluded that when Chesapeake Bay surface waters are characterized by elevated concentrations of Vibrio, swimmers and individuals working in those waters could experience significant dermal exposures to V. vulnificus and V. parahaemolyticus, increasing their risk of infection. PMID:25454225

  10. A medium for presumptive identification of Vibrio anguillarum.

    PubMed Central

    Alsina, M; Martínez-Picado, J; Jofre, J; Blanch, A R

    1994-01-01

    A medium (VAM) for differentiation of Vibrio anguillarum is described. The presence of bile salts, the high pH, and the high NaCl concentration select mainly for Vibrio species. The high salinity and the ampicillin select for a fraction of Vibrio species, and sorbitol fermentation differentiates among those vibrios still able to grow. One hundred ninety-seven of 227 strains of V. anguillarum were identified with this medium. Only 3 of 66 strains of Vibrio that were not V. anguillarum or V. anguillarum-like were recognized with this medium, and any of 7 non-Vibrio strains related to fish diseases or Escherichia coli grew on the medium. It is our contention that the medium described here constitutes an efficient instrument for presumptive detection of V. anguillarum in pathological and environmental samples. PMID:8017947

  11. Genome assortment, not serogroup, defines Vibrio cholerae pandemic strains

    SciTech Connect

    Brettin, Thomas S; Bruce, David C; Challacombe, Jean F; Detter, John C; Han, Cliff S; Munik, A C; Chertkov, Olga; Meincke, Linda; Saunders, Elizabeth; Choi, Seon Y; Haley, Bradd J; Taviani, Elisa; Jeon, Yoon - Seong; Kim, Dong Wook; Lee, Jae - Hak; Walters, Ronald A; Hug, Anwar; Colwell, Rita R

    2009-01-01

    Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the 6th and the current 7th pandemics, respectively. Cholera researchers continually face newly emerging and re-emerging pathogenic clones carrying combinations of new serogroups as well as of phenotypic and genotypic properties. These genotype and phenotype changes have hampered control of the disease. Here we compare the complete genome sequences of 23 strains of V. cholerae isolated from a variety of sources and geographical locations over the past 98 years in an effort to elucidate the evolutionary mechanisms governing genetic diversity and genesis of new pathogenic clones. The genome-based phylogeny revealed 12 distinct V. cholerae phyletic lineages, of which one, designated the V. cholerae core genome (CG), comprises both O1 classical and EI Tor biotypes. All 7th pandemic clones share nearly identical gene content, i.e., the same genome backbone. The transition from 6th to 7th pandemic strains is defined here as a 'shift' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages within the CG clade. In contrast, transition among clones during the present 7th pandemic period can be characterized as a 'drift' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V.cholerae serogroup O139 and V.cholerae O1 El Tor hybrid clones that produce cholera toxin of classical biotype. Based on the comprehensive comparative genomics presented in this study it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to define pathogenic V. cholerae clones.

  12. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    PubMed Central

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  13. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons.

    PubMed

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  14. [The interrelationships between Vibrio cholerae and the infusorian Tetrahymena pyriformis].

    PubMed

    Pogorelov, V I; Pinigin, A F; Maramovich, A S; Pushkareva, V I; Litvin, V Iu; Lykova, M V; Kapustin, Iu M

    1995-01-01

    The results of the study of interaction between V. cholerae of different virulence and T. pyriformis are presented. The study has revealed the heterogeneity of V. cholerae population: alongside easily phagocytized vibrios, there are vibrios resistant to the digestive action of T. pyriformis. An increase in the number of V. cholerae in association with T. pyriformis has been evaluated, taking into account the selective multiplication of vibrios resistant to phagocytosis. The data on changes in the agglutinative, phagolytic and virulent properties of V. cholerae cultivated together with T. pyriformis are presented. The suggestion has been made that protozoa can function as hosts of pathogenic vibrios supporting their existence in water. PMID:7653129

  15. Applied studies on the viability of El Tor vibrios*

    PubMed Central

    Pesigan, T. P.; Plantilla, J.; Rolda, M.

    1967-01-01

    The viability of El Tor vibrios was tested at various temperatures in foodstuffs, kitchen utensils, and water after these materials had been directly contaminated with stools of cholera patients or carriers from the Philippines, collected in 1963-64. The period of survival of vibrios in foodstuffs was 2-5 days at room temperature (30°C-32°C) and as long as 9 days under refrigeration (5°C-10°C). Vibrios survived even longer in refrigerated water. The period of survival was shorter for all materials contaminated with carriers' stools, which contain fewer vibrios. Chlorinated lime was more effective than potassium permanganate as a decontaminant. PMID:4870081

  16. Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."

    ERIC Educational Resources Information Center

    Slock, James

    1995-01-01

    Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)

  17. 7th Rendez vous de Concarneau October 16th 2015

    E-print Network

    margaritifera ©Moeaperles Litopenaeus stylirostris ©SnipView #12;Vibrio genus (more than 80 species) Present in all marine environments Planktonic bacteria or biofilm Vibrio harveyi and Tenacibaculum maritimum on different pathogen bacteria Staphylococcus aureus Escherichia coli Vibrio fisheri Vibrio harveyi Few studies

  18. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    SciTech Connect

    Neiditch,M.; Federle, M.; Pompeani, A.; Kelly, R.; Swem, D.; Jeffrey, P.; Bassler, B.; Hughson, F.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.

  19. Vibrio fluvialis: an emerging human pathogen

    PubMed Central

    Ramamurthy, Thandavarayan; Chowdhury, Goutam; Pazhani, Gururaja P.; Shinoda, Sumio

    2014-01-01

    Vibrio fluvialis is a pathogen commonly found in coastal environs. Considering recent increase in numbers of diarrheal outbreaks and sporadic extraintestinal cases, V. fluvialis has been considered as an emerging pathogen. Though this pathogen can be easily isolated by existing culture methods, its identification is still a challenging problem due to close phenotypic resemblance either with Vibrio cholerae or Aeromonas spp. However, using molecular tools, it is easy to identify V. fluvialis from clinical and different environmental samples. Many putative virulence factors have been reported, but its mechanisms of pathogenesis and survival fitness in the environment are yet to be explored. This chapter covers some of the major discoveries that have been made to understand the importance of V. fluvialis. PMID:24653717

  20. Vibrio species as agents of elasmobranch disease

    NASA Astrophysics Data System (ADS)

    Grimes, D. J.; Colwell, R. R.; Stemmler, J.; Hada, H.; Maneval, D.; Hetrick, F. M.; May, E. B.; Jones, R. T.; Stoskopf, M.

    1984-03-01

    Two Vibrio species identified as V. damsela and a new sucrose-positive Vibrio sp., V. carchariae sp. nov., were simultaneously isolated from a brown shark which died while being held in captivity at a large aquarium. Pathogenicity studies were subsequently conducted using a variety of elasmobranchs, including smooth dogfish and lemon sharks. Both bacterial strains proved pathogenic, causing death in nearly all of the elasmobranch hosts challenged. Virulence studies revealed that both bacterial strains were cytotoxic for Y-1 mouse adrenal cells. The V. damsela strain was highly cytotoxic causing Y-1 cellular damage at culture supernatant dilutions up to 1 : 128. Both strains were hemolytic, but neither exhibited the Kanagawa phenomenon. They were both capable of urea hydrolysis, an interesting trait, considering that elasmobranchs retain large (ca 300 milliosmolal) urea concentration in their tissue.

  1. Nontoxigenic Vibrio parahaemolyticus Strains Causing Acute Gastroenteritis

    PubMed Central

    Leoni, Francesca; Serra, Roberto; Serracca, Laura; Decastelli, Lucia; Rocchegiani, Elena; Masini, Laura; Canonico, Cristina; Talevi, Giulia; Carraturo, Antonio

    2012-01-01

    We investigated the virulence properties of four Vibrio parahaemolyticus strains causing acute gastroenteritis following consumption of indigenous mussels in Italy. The isolated strains were cytotoxic and adhesive but, surprisingly, lacked tdh, trh, and type three secretion system 2 (T3SS2) genes. We emphasize that nontoxigenic V. parahaemolyticus can induce acute gastroenteritis, highlighting the need for more investigation of the pathogenicity of this microorganism. PMID:23052317

  2. Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence

    PubMed Central

    Calder, Thomas; de Souza Santos, Marcela; Attah, Victoria; Klimko, John; Fernandez, Jessie; Salomon, Dor; Krachler, Anne-Marie; Orth, Kim

    2015-01-01

    The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of sea-food-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcriptional regulators of either system. These strains are derived from the clinical RIMD 2210633 strain. We demonstrate that each mutation affects the virulence of the bacterium in a different manner. POR and CAB strains exhibited similar levels of swarming motility and T3SS effector production and secretion, but the CAB3 and CAB4 strains, which harbor a mutation in the T3SS2 master regulator gene, formed reduced biofilm growth under T3SS2 inducing conditions. Additionally, while the cytotoxicity of the POR and CAB strains was similar, the CAB2 (T3SS1 regulatory mutant) strain was strikingly more invasive than the comparable POR2 (T3SS1 structural mutant) strain. In summary, creating structural or regulatory mutations in either T3SS1 or T3SS2 causes differential downstream effects on other virulence systems. Understanding the biological differences of strains created from a clinical isolate is critical for interpreting and understanding the pathogenic nature of V. parahaemolyticus. PMID:25288215

  3. Proline-Rich Peptide from the Coral Pathogen Vibrio shiloi That Inhibits Photosynthesis of Zooxanthellae

    PubMed Central

    Banin, Ehud; Khare, Sanjay K.; Naider, Fred; Rosenberg, Eugene

    2001-01-01

    The coral-bleaching bacterium Vibrio shiloi biosynthesizes and secretes an extracellular peptide, referred to as toxin P, which inhibits photosynthesis of coral symbiotic algae (zooxanthellae). Toxin P was produced during the stationary phase when the bacterium was grown on peptone or Casamino Acids media at 29°C. Glycerol inhibited the production of toxin P. Toxin P was purified to homogeneity, yielding the following 12-residue peptide: PYPVYAPPPVVP (molecular weight, 1,295.54). The structure of toxin P was confirmed by chemical synthesis. In the presence of 12.5 mM NH4Cl, pure natural or synthetic toxin P (10 ?M) caused a 64% decrease in the photosynthetic quantum yield of zooxanthellae within 5 min. The inhibition was proportional to the toxin P concentration. Toxin P bound avidly to zooxanthellae, such that subsequent addition of NH4Cl resulted in rapid inhibition of photosynthesis. When zooxanthellae were incubated in the presence of NH4Cl and toxin P, there was a rapid decrease in the pH (pH 7.8 to 7.2) of the bulk liquid, suggesting that toxin P facilitates transport of NH3 into the cell. It is known that uptake of NH3 into cells can destroy the pH gradient and block photosynthesis. This mode of action of toxin P can help explain the mechanism of coral bleaching by V. shiloi. PMID:11282602

  4. Nitrogen Oxidations in Bacterium-Plant Interactions

    E-print Network

    Cohen, Michael F.

    Letters Nitrogen Oxidations in Bacterium-Plant Interactions After reading D. J. Arp and P. J it apropos to point out some note- worthy roles for nitrogen oxidations in bacterium-plant interactions may be related to a central role for nitric oxide (NO) in activating plant systemic acquired

  5. Relationship between ion requirements for respiration and membrane transport in a marine bacterium.

    PubMed Central

    Khanna, G; DeVoe, L; Brown, L; Niven, D F; MacLeod, R A

    1984-01-01

    Intact cells of the marine bacterium Alteromonas haloplanktis 214 oxidized NADH, added to the suspending medium, by a process which was stimulated by Na+ or Li+ but not K+. Toluene-treated cells oxidized NADH at three times the rate of untreated cells by a mechanism activated by Na+ but not by Li+ or K+. In the latter reaction, K+ spared the requirement for Na+. Intact cells of A. haloplanktis oxidized ethanol by a mechanism stimulated by either Na+ or Li+. The uptake of alpha-aminoisobutyric acid by intact cells of A. haloplanktis in the presence of either NADH or ethanol as an oxidizable substrate required Na+, and neither Li+ nor K+ could replace it. The results indicate that exogenous and endogenous NADH and ethanol are oxidized by A. haloplanktis by processes distinguishable from one another by their requirements for alkali metal ions and from the ion requirements for membrane transport. Intact cells of Vibrio natriegens and Photobacterium phosphoreum oxidized NADH, added externally, by an Na+-activated process, and intact cells of Vibrio fischeri oxidized NADH, added externally, by a K+-activated process. Toluene treatment caused the cells of all three organisms to oxidize NADH at much faster rates than untreated cells by mechanisms which were activated by Na+ and spared by K+. PMID:6690427

  6. Vibrio cholerae non-serogroup O1 cystitis.

    PubMed Central

    Dumler, J S; Osterhout, G J; Spangler, J G; Dick, J D

    1989-01-01

    We report a case of a patient who developed cystitis caused by non-serogroup O1 Vibrio cholerae after swimming in the Chesapeake Bay. Treatment was empirical, with complete symptomatic resolution. Genitourinary tract infections by Vibrio spp. are uncommon but should be considered when cystitis occurs after saltwater exposure in appropriate geographic regions. PMID:2768474

  7. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vibrio cholerae serological reagents. 866.3930 Section 866.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3930 Vibrio cholerae serological reagents....

  8. Abstract The recent discovery that the fish pathogen Vibrio salmonicida is closely related to the luminous

    E-print Network

    McFall-Ngai, Margaret

    Abstract The recent discovery that the fish pathogen Vibrio salmonicida is closely related to the luminous bacteria Vibrio fischeri and Vibrio logei suggested that V. salmonicida might also be capable and responds to exogenous V. fischeri autoinducer. Key words Vibrio salmonicida · Luminescence · Luciferase

  9. Vibrio illness in Florida, 19982007 K. E. WEIS1,2

    E-print Network

    Fernandez, Eduardo

    Vibrio illness in Florida, 1998­2007 K. E. WEIS1,2 *, R. M. HAMMOND2 , R. HUTCHINSON2 AND C. G. M) SUMMARY This study characterized the current epidemiology of vibrio infections in Florida and examined 834 vibrio infections in 825 individuals (average annual incidence rate 4.8/1 000 000). Common Vibrio

  10. Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea

    E-print Network

    Bae, Jin-Woo

    Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea Young-Do Nam,1,2 Ho to the Gammaproteobacteria and are specifically related to Vibrio species. They were most closely related to Vibrio position on the main Vibrio branch. The levels of DNA­DNA hybridization with respect to V. rumoiensis FERM

  11. Wound Infections Caused by Vibrio vulnificus and Other Marine Bacteria Author(s): J. D. Oliver

    E-print Network

    Fernandez, Eduardo

    Wound Infections Caused by Vibrio vulnificus and Other Marine Bacteria Author(s): J. D. Oliver by other marine vibrios, and the increasingly reportedwound/skin infections caused by Mycobacterium marinum,Erysipelothrixrhusiopathiae,and Aeromonashydrophila. WOUND INFECTIONS CAUSED BY MARINE VIBRIO SPECIES Almost all persons who develop vibrio wound in

  12. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement

    NASA Technical Reports Server (NTRS)

    Lobitz, B.; Beck, L.; Huq, A.; Wood, B.; Fuchs, G.; Faruque, A. S.; Colwell, R.

    2000-01-01

    It has long been known that cholera outbreaks can be initiated when Vibrio cholerae, the bacterium that causes cholera, is present in drinking water in sufficient numbers to constitute an infective dose, if ingested by humans. Outbreaks associated with drinking or bathing in unpurified river or brackish water may directly or indirectly depend on such conditions as water temperature, nutrient concentration, and plankton production that may be favorable for growth and reproduction of the bacterium. Although these environmental parameters have routinely been measured by using water samples collected aboard research ships, the available data sets are sparse and infrequent. Furthermore, shipboard data acquisition is both expensive and time-consuming. Interpolation to regional scales can also be problematic. Although the bacterium, V. cholerae, cannot be sensed directly, remotely sensed data can be used to infer its presence. In the study reported here, satellite data were used to monitor the timing and spread of cholera. Public domain remote sensing data for the Bay of Bengal were compared directly with cholera case data collected in Bangladesh from 1992-1995. The remote sensing data included sea surface temperature and sea surface height. It was discovered that sea surface temperature shows an annual cycle similar to the cholera case data. Sea surface height may be an indicator of incursion of plankton-laden water inland, e.g., tidal rivers, because it was also found to be correlated with cholera outbreaks. The extensive studies accomplished during the past 25 years, confirming the hypothesis that V. cholerae is autochthonous to the aquatic environment and is a commensal of zooplankton, i.e., copepods, when combined with the findings of the satellite data analyses, provide strong evidence that cholera epidemics are climate-linked.

  13. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia

    PubMed Central

    Letchumanan, Vengadesh; Yin, Wai-Fong; Lee, Learn-Han; Chan, Kok-Gan

    2015-01-01

    Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with V. parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh) which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance V. parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320) isolates were positive for V. parahaemolyticus. Only 10% (19/185) toxR-positive isolate exhibit the trh gene and none of the isolates were tested positive for tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%), chloramphenicol (95%), trimethoprim-sulfamethoxazole (93%), gentamicin (85%), levofloxacin (83%), and tetracycline (82%). The chloramphenicol (catA2) and kanamycin (aphA-3) resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields. PMID:25688239

  14. Vibrio diversity and dynamics in the Monterey Bay upwelling region

    PubMed Central

    Mansergh, Sarah; Zehr, Jonathan P.

    2013-01-01

    The Vibrionaceae (Vibrio) are a ubiquitous group of metabolically flexible marine bacteria that play important roles in biogeochemical cycling in the ocean. Despite this versatility, little is known about Vibrio diversity and abundances in upwelling regions. The seasonal dynamics of Vibrio populations was examined by analysis of 16S rRNA genes in Monterey Bay (MB), California from April 2006–April 2008 at two long term monitoring stations, C1 and M2. Vibrio phylotypes within MB were diverse, with subpopulations clustering with several different cultured representatives including Allivibrio spp., Vibrio penaecida, and Vibrio splendidus as well as with many unidentified marine environmental bacterial 16S rRNA gene sequences. Total Vibrio population abundances, as well as abundances of a Vibrio sp. subpopulation (MBAY Vib7) and an Allivibrio sp. subpopulation (MBAY Vib4) were examined in the context of environmental parameters from mooring station and CTD cast data. Total Vibrio populations showed some seasonal variability but greater variability was observed within the two subpopulations. MBAY Vib4 was negatively associated with MB upwelling indices and positively correlated with oceanic season conditions, when upwelling winds relax and warmer surface waters are present in MB. MBAY Vib7 was also negatively associated with upwelling indices and represented a deeper Vibrio sp. population. Correlation patterns suggest that larger oceanographic conditions affect the dynamics of the populations in MB, rather than specific environmental factors. This study is the first to target and describe the diversity and dynamics of these natural populations in MB and demonstrates that these populations shift seasonally within the region. PMID:24575086

  15. Molecular evolution of Vibrio pathogenicity island-2 (VPI-2): mosaic structure among Vibrio cholerae and Vibrio mimicus natural isolates.

    PubMed

    Jermyn, William S; Boyd, E Fidelma

    2005-01-01

    Vibrio cholerae is a Gram-negative rod that inhabits the aquatic environment and is the aetiological agent of cholera, a disease that is endemic in much of Southern Asia. The 57.3 kb Vibrio pathogenicity island-2 (VPI-2) is confined predominantly to toxigenic V. cholerae O1 and O139 serogroup isolates and encodes 52 ORFs (VC1758 to VC1809), which include homologues of an integrase (VC1758), a restriction modification system, a sialic acid metabolism gene cluster (VC1773-VC1783), a neuraminidase (VC1784) and a gene cluster that shows homology to Mu phage. In this study, a 14.1 kb region of VPI-2 comprising ORFs VC1773 to VC1787 was identified by PCR and Southern blot analyses in all 17 Vibrio mimicus isolates examined. The VPI-2 region in V. mimicus was inserted adjacent to a serine tRNA similar to VPI-2 in V. cholerae. In 11 of the 17 V. mimicus isolates examined, an additional 5.3 kb region encoding VC1758 and VC1804 to VC1809 was present adjacent to VC1787. The evolutionary history of VPI-2 was reconstructed by comparative analysis of the nanH (VC1784) gene tree with the species gene tree, deduced from the housekeeping gene malate dehydrogenase (mdh), among V. cholerae and V. mimicus isolates. Both gene trees showed an overall congruence; on both gene trees V. cholerae O1 and O139 serogroup isolates clustered together, whereas non-O1/non-O139 serogroup isolates formed separate divergent branches with similar clustering of strains within the branches. One exception was noted: on the mdh gene tree, V. mimicus sequences formed a distinct divergent lineage from V. cholerae sequences; however, on the nanH gene tree, V. mimicus clustered with V. cholerae non-O1/non-O139 isolates, suggesting horizontal transfer of this region between these species. PMID:15632448

  16. Light-scattering sensor for real-time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate.

    PubMed

    Huff, Karleigh; Aroonnual, Amornrat; Littlejohn, Amy E Fleishman; Rajwa, Bartek; Bae, Euiwon; Banada, Padmapriya P; Patsekin, Valery; Hirleman, E Daniel; Robinson, J Paul; Richards, Gary P; Bhunia, Arun K

    2012-09-01

    The three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water- and seafood-related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label-free forward light-scattering sensor was developed to detect and identify colonies of these three pathogens in real time in the presence of other vibrios in food or water samples. Vibrio colonies grown on agar plates were illuminated by a 635?nm laser beam and scatter-image signatures were acquired using a CCD (charge-coupled device) camera in an automated BARDOT (BActerial Rapid Detection using Optical light-scattering Technology) system. Although a limited number of Vibrio species was tested, each produced a unique light-scattering signature that is consistent from colony to colony. Subsequently a pattern recognition system analysing the collected light-scatter information provided classification in 1-2?min with an accuracy of 99%. The light-scattering signatures were unaffected by subjecting the bacteria to physiological stressors: osmotic imbalance, acid, heat and recovery from a viable but non-culturable state. Furthermore, employing a standard sample enrichment in alkaline peptone water for 6?h followed by plating on selective thiosulphate citrate bile salts sucrose agar at 30°C for ??12?h, the light-scattering sensor successfully detected V.?cholerae, V.?parahaemolyticus and V.?vulnificus present in oyster or water samples in 18?h even in the presence of other vibrios or other bacteria, indicating the suitability of the sensor as a powerful screening tool for pathogens on agar plates. PMID:22613192

  17. Light?scattering sensor for real?time identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae colonies on solid agar plate

    PubMed Central

    Huff, Karleigh; Aroonnual, Amornrat; Littlejohn, Amy E. Fleishman; Rajwa, Bartek; Bae, Euiwon; Banada, Padmapriya P.; Patsekin, Valery; Hirleman, E. Daniel; Robinson, J. Paul; Richards, Gary P.; Bhunia, Arun K.

    2012-01-01

    Summary The three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water? and seafood?related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label?free forward light?scattering sensor was developed to detect and identify colonies of these three pathogens in real time in the presence of other vibrios in food or water samples. Vibrio colonies grown on agar plates were illuminated by a 635?nm laser beam and scatter?image signatures were acquired using a CCD (charge?coupled device) camera in an automated BARDOT (BActerial Rapid Detection using Optical light?scattering Technology) system. Although a limited number of Vibrio species was tested, each produced a unique light?scattering signature that is consistent from colony to colony. Subsequently a pattern recognition system analysing the collected light?scatter information provided classification in 1?2?min with an accuracy of 99%. The light?scattering signatures were unaffected by subjecting the bacteria to physiological stressors: osmotic imbalance, acid, heat and recovery from a viable but non?culturable state. Furthermore, employing a standard sample enrichment in alkaline peptone water for 6?h followed by plating on selective thiosulphate citrate bile salts sucrose agar at 30°C for ??12?h, the light?scattering sensor successfully detected V.?cholerae, V.?parahaemolyticus and V.?vulnificus present in oyster or water samples in 18?h even in the presence of other vibrios or other bacteria, indicating the suitability of the sensor as a powerful screening tool for pathogens on agar plates. PMID:22613192

  18. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    PubMed Central

    Rivas, Amable J.; Lemos, Manuel L.; Osorio, Carlos R.

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts. PMID:24093021

  19. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments.

    PubMed

    Payne, Shelley M; Mey, Alexandra R; Wyckoff, Elizabeth E

    2016-03-01

    Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  20. Cloning and Nucleotide Sequence of the gyrB Gene of Vibrio parahaemolyticus and Its Application in Detection of This Pathogen in Shrimp

    PubMed Central

    Venkateswaran, Kasthuri; Dohmoto, Nobuhiko; Harayama, Shigeaki

    1998-01-01

    Because biochemical testing and 16S rRNA sequence analysis have proven inadequate for the differentiation of Vibrio parahaemolyticus from closely related species, we employed the gyrase B gene (gyrB) as a molecular diagnostic probe. The gyrB genes of V. parahaemolyticus and closely related Vibrio alginolyticus were cloned and sequenced. Oligonucleotide PCR primers were designed for the amplification of a 285-bp fragment from within gyrB specific for V. parahaemolyticus. These primers recognized 117 of 117 reference and wild-type V. parahaemolyticus strains, whereas amplification did not occur when 90 strains of 37 other Vibrio species or 60 strains representing 34 different nonvibrio species were tested. In 100-?l PCR mixtures, the lower detection limits were 5 CFU for live cells and 4 pg for purified DNA. The possible application of gyrB primers for the routine identification of V. parahaemolyticus in food was examined. We developed and tested a procedure for the specific detection of the target organism in shrimp consisting of an 18-h preenrichment followed by PCR amplification of the 285-bp V. parahaemolyticus-specific fragment. This method enabled us to detect an initial inoculum of 1.5 CFU of V. parahaemolyticus cells per g of shrimp homogenate. By this approach, we were able to detect V. parahaemolyticus in all of 27 shrimp samples artificially inoculated with this bacterium. We present here a rapid, reliable, and sensitive protocol for the detection of V. parahaemolyticus in shrimp. PMID:9464408

  1. Genome anatomy of the gastrointestinal pathogen, Vibrio parahaemolyticus of crustacean origin

    PubMed Central

    2013-01-01

    Vibrio parahaemolyticus, an important human pathogen, is associated with gastroenteritis and transmitted through partially cooked seafood. It has become a major concern in the production and trade of marine food products. The prevalence of potentially virulent and pathogenic V. parahaemolyticus in raw seafood is of public health significance. Here we describe the genome sequence of a V. parahaemolyticus isolate of crustacean origin which was cultured from prawns in 2008 in Selangor, Malaysia (isolate PCV08-7). The next generation sequencing and analysis revealed that the genome of isolate PCV08-7 has closest similarity to that of V. parahaemolyticus RIMD2210633. However, there are certain unique features of the PCV08-7 genome such as the absence of TDH-related hemolysin (TRH), and the presence of HU-alpha insertion. The genome of isolate PCV08-7 encodes a thermostable direct hemolysin (TDH), an important virulence factor that classifies PCV08-7 isolate to be a serovariant of O3:K6 strain. Apart from these, we observed that there is certain pattern of genetic rearrangements that makes V. parahaemolyticus PCV08-7 a non-pandemic clone. We present detailed genome statistics and important genetic features of this bacterium and discuss how its survival, adaptation and virulence in marine and terrestrial hosts can be understood through the genomic blueprint and that the availability of genome sequence entailing this important Malaysian isolate would likely enhance our understanding of the epidemiology, evolution and transmission of foodborne Vibrios in Malaysia and elsewhere. PMID:24330647

  2. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    SciTech Connect

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H. )

    1990-11-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 {times} 10{sup {minus}9} and 3.4 {times} 10{sup {minus}7} transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 {times} 10{sup {minus}8} to 1.3 {times} 10{sup {minus}4} transformants per recipient with plasmid DNA and at an average frequency of 8.3 {times} 10{sup {minus}5} transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound ({sup 3}H)bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations.

  3. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach.

    PubMed

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C; Yang, Yu-Liang

    2015-01-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with (13)C-labeled precursors indicated that a pyridoxal 5'-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity. PMID:26238555

  4. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    NASA Astrophysics Data System (ADS)

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-08-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5?-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.

  5. Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.

    PubMed

    Moreau, Pierrick; Moreau, Kevin; Segarra, Amélie; Tourbiez, Delphine; Travers, Marie-Agnès; Rubinsztein, David C; Renault, Tristan

    2015-01-01

    Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters. PMID:25714877

  6. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    SciTech Connect

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  7. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    PubMed Central

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-01-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5?-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity. PMID:26238555

  8. Glucose- but Not Rice-Based Oral Rehydration Therapy Enhances the Production of Virulence Determinants in the Human Pathogen Vibrio cholerae

    PubMed Central

    Kühn, Juliane; Finger, Flavio; Bertuzzo, Enrico; Borgeaud, Sandrine; Gatto, Marino; Rinaldo, Andrea; Blokesch, Melanie

    2014-01-01

    Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT), whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings. PMID:25474211

  9. A K+ yptake protein, TrkA, is required for serum, protamine, and polymyxin B resistance in Vibrio vulnificus.

    PubMed

    Chen, Yu-Chung; Chuang, Yin-Ching; Chang, Chun-Chin; Jeang, Chii-Ling; Chang, Ming-Chung

    2004-02-01

    Vibrio vulnificus, a highly virulent marine bacterium, is the causative agent of both serious wound infections and fatal septicemia in many areas of the world. To identify the genes required for resistance to human serum, we constructed a library of transposon mutants of V. vulnificus and screened them for hypersensitivity to human serum. Here we report that one of the isolated serum-susceptible mutants had a mutation in an open reading frame identified as trkA, a gene encoding an amino acid sequence showing high identity to that of TrkA of Vibrio alginolyticus, a protein required for the uptake of potassium. A trkA isogenic mutant was constructed via insertional inactivation, and it was significantly more easily killed by human serum, protamine, or polymyxin B than was the wild type. At K+ concentrations of 1 to 20 mM, this isogenic mutant showed attenuated growth compared to the wild-type strain. In addition, infection experiments demonstrated virulence attenuation when this mutant was administered intraperitoneally or subcutaneously to both normal and iron-treated mice, indicating that TrkA may modulate the transport of potassium and resistance to host innate defenses and that it is important for virulence in mice. PMID:14742502

  10. Anti-lipopolysaccharide factors in the American lobster Homarus americanus: Molecular characterization and transcriptional response to Vibrio fluvialis challenge

    PubMed Central

    Beale, K.M.; Towle, D.W.; Jayasundara, N.; Smith, C.M.; Shields, J.D.; Small, H.J.; Greenwood, S.J.

    2008-01-01

    Two partial mRNA sequences predicted to encode anti-lipopolysaccharide factors (ALFs) were identified among expressed sequence tags generated from the American lobster Homarus americanus and complete cDNA sequences were obtained from library clones. Comparison of the translated amino acid sequences to those publicly available confirmed similarity to arthropod anti-lipopolysaccharide factors. Both protein sequences, designated ALFHa-1 and ALFHa-2, contained an N-terminal signal peptide and two half-cysteines participating in a disulfide bridge, features conserved in other ALFs. Predicted secondary structures were similar to that described for the ALF from the horseshoe crab Limulus polyphemus. As part of an exploratory study of immunity in H. americanus, lobsters were injected with the bacterium Vibrio fluvialis and gill, hematopoietic, and hepatopancreas tissues were sampled for analysis of gene expression of ALFHa-1 and ALFHa-2 by quantitative PCR. The relative abundance of ALFHa-2 mRNA was not significantly affected by Vibrio injection in any of the three tissues tested. In contrast, ALFHa-1 mRNA levels in gills were increased by the treatment some 17-fold. Our results support a molecularly specific regulation of antimicrobial proteins in response to bacterial infection in H. americanus. PMID:19956341

  11. Vibrio neonatus sp. nov. and Vibrio ezurae sp. nov. isolated from the gut of Japanese abalones.

    PubMed

    Sawabe, Tomoo; Hayashi, Karin; Moriwaki, Jun; Fukui, Youhei; Thompson, Fabiano L; Swings, Jean; Christen, Richard

    2004-09-01

    Five alginolytic, facultative anaerobic, non-motile bacteria were isolated from the gut of Japanese abalones (Haliotis discus discus, H. diversicolor diversicolor and H. diversicolor aquatilis). Phylogenetic analyses based on 16S rRNA gene and gap gene sequences indicated that these strains are closely related to V. halioticoli. DNA-DNA hybridizations, FAFLP fingerprintings, and phylogenies of gap and 16S rRNA gene sequences showed that the five strains represent two species different from all currently described vibrios. The names Vibrio neonatus sp. nov. (IAM 15060T = LMG 19973T = HDD3-1T; mol% G+C of DNA is 42.1-43.9), and Vibrio ezurae sp. nov. (IAM 15061T = LMG 19970T = HDS1-1T; mol% G+C of DNA is 43.6-44.8) are proposed to encompass these new taxa. The two new species can be differentiated from V. halioticoli on the basis of several features, including beta-galactosidase activity, assimilation of glycerol, D-mannose and D-gluconate. PMID:15490553

  12. VIBRIOS (VIBRIO JEJUNI, N.SP.) ASSOCIATED WITH INTESTINAL DISORDERS OF COWS AND CALVES.

    PubMed

    Jones, F S; Orcutt, M; Little, R B

    1931-05-31

    A number of vibrios obtained from the small intestines of calves fed feces from spontaneous diarrhea in cows, natural intestinal disorders of calves, experimentally induced infections of calves, and cultures obtained from Dr. Theobald Smith have been studied. From the close morphological resemblance, similarities in motility, position and number of flagella, tinctorial properties, and the tendency to fragmentation in older cultures, as well as the narrow nutritive requirements, we are led to regard them as a closely allied group and we propose the name Vibrio jejuni. Immunologically as judged by agglutination the organisms have been divided into two groups, the smaller representing two strains originating from diarrhea in cows and the larger comprising one from this source and many from the calf disease. The larger group can be subdivided by means of agglutination absorption into cultures which do not contain the complete antigenic complex and others which do so. Certain freshly isolated vibrios when injected into rabbits incite definite reactions terminating in a localization in the small intestine accompanied by catarrhal inflammation. PMID:19869887

  13. Crayfish: a newly recognized vehicle for vibrio infections.

    PubMed Central

    Bean, N. H.; Maloney, E. K.; Potter, M. E.; Korazemo, P.; Ray, B.; Taylor, J. P.; Seigler, S.; Snowden, J.

    1998-01-01

    We conducted a 1-year case-control study of sporadic vibrio infections to identify risk factors related to consumption of seafood products in two coastal areas of Louisiana and Texas. Twenty-six persons with sporadic vibrio infections and 77 matched controls were enrolled. Multivariate analysis revealed that crayfish (P < 0.025) and raw oysters (P < 0.009) were independently associated with illness. Species-specific analysis revealed an association between consumption of cooked crayfish and Vibrio parahemolyticus infection (OR 9.24, P < 0.05). No crayfish consumption was reported by persons with V. vulnificus infection. Although crayfish had been suspected as a vehicle for foodborne disease, this is the first time to our knowledge that consumption of cooked crayfish has been demonstrated to be associated with vibrio infection. PMID:9825776

  14. Oligotyping reveals community level habitat selection within the genus Vibrio

    PubMed Central

    Schmidt, Victor T.; Reveillaud, Julie; Zettler, Erik; Mincer, Tracy J.; Murphy, Leslie; Amaral-Zettler, Linda A.

    2014-01-01

    The genus Vibrio is a metabolically diverse group of facultative anaerobic bacteria, common in aquatic environments and marine hosts. The genus contains several species of importance to human health and aquaculture, including the causative agents of human cholera and fish vibriosis. Vibrios display a wide variety of known life histories, from opportunistic pathogens to long-standing symbionts with individual host species. Studying Vibrio ecology has been challenging as individual species often display a wide range of habitat preferences, and groups of vibrios can act as socially cohesive groups. Although strong associations with salinity, temperature and other environmental variables have been established, the degree of habitat or host specificity at both the individual and community levels is unknown. Here we use oligotyping analyses in combination with a large collection of existing Vibrio 16S ribosomal RNA (rRNA) gene sequence data to reveal patterns of Vibrio ecology across a wide range of environmental, host, and abiotic substrate associated habitats. Our data show that individual taxa often display a wide range of habitat preferences yet tend to be highly abundant in either substrate-associated or free-living environments. Our analyses show that Vibrio communities share considerable overlap between two distinct hosts (i.e., sponge and fish), yet are distinct from the abiotic plastic substrates. Lastly, evidence for habitat specificity at the community level exists in some habitats, despite considerable stochasticity in others. In addition to providing insights into Vibrio ecology across a broad range of habitats, our study shows the utility of oligotyping as a facile, high-throughput and unbiased method for large-scale analyses of publically available sequence data repositories and suggests its wide application could greatly extend the range of possibilities to explore microbial ecology. PMID:25431569

  15. Genome Sequence of the Human Pathogen Vibrio cholerae Amazonia

    PubMed Central

    Thompson, Cristiane C.; Marin, Michel A.; Dias, Graciela M.; Dutilh, Bas E.; Edwards, Robert A.; Iida, Tetsuya; Thompson, Fabiano L.; Vicente, Ana Carolina P.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis and fitness, such as the type VI secretion system, present in choleragenic V. cholerae strains. PMID:21952545

  16. Interactions between Mytilus galloprovincialis hemocytes and the bivalve pathogens Vibrio aestuarianus 01/032 and Vibrio splendidus LGP32.

    PubMed

    Balbi, T; Fabbri, R; Cortese, K; Smerilli, A; Ciacci, C; Grande, C; Vezzulli, L; Pruzzo, C; Canesi, L

    2013-12-01

    Marine bivalves can accumulate large numbers of bacteria, in particular Vibrio species, whose persistence in bivalve tissues largely depends on their sensitivity to the bactericidal activity of circulating hemocytes and hemolymph soluble factors. The interactions between vibrios and hemolymph have been investigated, in particular in bivalve species susceptible to infection by certain Vibrio spp. and strains. In this work, the effects of two bivalve pathogens, Vibrio splendidus LGP32 (V.s.) and Vibrio aestuarianus 01/032 (V.a.), isolated from oyster mortality outbreaks, on the hemocytes of Mytilus galloprovincialis were investigated. In vitro, V.s., but not V.a., induced a dramatic decrease in lysosomal membrane stability-LMS in the hemocytes; both vibrios induced a moderate lysozyme release, with V.s. > V.a.. The V.s.-induced decrease in LMS was mediated by activation of PI-3Kinase, as shown by use of different kinase inhibitors. TEM analysis showed rapid internalization of both vibrios; however, V.s. lead to cellular and lysosomal damage and was able to survive within the hemocytes, whereas significant killing of V.a. was observed. In vivo, in mussels challenged with either vibrio and sampled at 6, 24 and 96 h post-injection, transient decreases in hemocyte LMS and progressive increases in serum lysozyme activity were observed, with V.s. > V.a.. Moreover, whereas V.a. was efficiently cleared from hemolymph, V.s. showed significant growth, that was maximal at 24 h p.i. when lowest LMS values were recorded in the hemocytes. Both vibrios also induced significant decreases in LMS in the digestive gland, again with V.s. > V.a.. The results indicate distinct interactions between mussel hemocytes and the two vibrio strains tested. The effects of V.s. may be due to the capacity of this strain to interfere with the signaling pathways involved in hemocyte function, thus escaping the bactericidal activity of the host cell, as observed for certain mammalian pathogens. Although V.s. is considered not pathogenic to Mytilus, this vibrio strain can affect the lysosomal function at the cellular and tissue level, thus leading to stressful conditions. PMID:24080469

  17. Vibrio cholerae: lessons for mucosal vaccine design

    PubMed Central

    Bishop, Anne L; Camilli, Andrew

    2011-01-01

    The ability of Vibrio cholerae to persist in bodies of water will continue to confound our ability to eradicate cholera through improvements to infrastructure, and thus cholera vaccines are needed. We aim for an inexpensive vaccine that can provide long-lasting protection from all epidemic cholera infections, currently caused by O1 or O139 serogroups. Recent insights into correlates of protection, epidemiology and pathogenesis may help us design improved vaccines. This notwithstanding, we have come to appreciate that even marginally protective vaccines, such as oral whole-cell killed vaccines, if widely distributed, can provide significant protection, owing to herd immunity. Further efforts are still required to provide more effective protection of young children. PMID:21162623

  18. Vibrio Vulnificus Necrotizing Fasciitis Associated with Acupuncture

    PubMed Central

    Kotton, Yael; Soboh, Soboh; Bisharat, Naiel

    2015-01-01

    Necrotizing fasciitis is a severe life-threatening infection of the deep subcutaneous tissues and fascia. Infection with Vibrio vulnificus, a halophilic Gram-negative bacillus found worldwide in warm coastal waters, can lead to severe complications, particularly among patients with chronic liver diseases. We herein present an unusual case of necrotizing fasciitis caused by V. vulnificus triggered by acupuncture needle insertion. The patient, who suffered from diabetes mellitus and nonalcoholic fatty liver disease and worked at a fish hatchery, denied any injury prior to acupuncture. This is the first ever reported case of V. vulnificus infection triggered by acupuncture needle insertion, clearly emphasizing the potential hazards of the prolonged survival of V. vulnificus on the skin. The potential infectious complications of acupuncture needle insertion are discussed. PMID:26500738

  19. Comparative microscopy study of Vibrio cholerae flagella

    NASA Astrophysics Data System (ADS)

    Konnov, Nikolai P.; Baiburin, Vil B.; Zadnova, Svetlana P.; Volkov, Uryi P.

    1999-06-01

    A fine structure of bacteria flagella is an important problem of molecular cell biology. Bacteria flagella are the self-assembled structures that allow to use the flagellum protein in a number of biotechnological applications. However, at present, there is a little information about high resolution scanning probe microscopy study of flagellum structure, in particular, about investigation of Vibrio cholerae flagella. In our lab have been carried out the high resolution comparative investigation of V. cholerae flagella by means of various microscopes: tunneling (STM), scanning force (SFM) and electron transmission. As a scanning probe microscope is used designed in our lab versatile SPM with replaceable measuring heads. Bacteria were grown, fixed and treated according to the conventional techniques. For STM investigations samples were covered with Pt/Ir thin films by rotated vacuum evaporation, in SFM investigations were used uncovered samples. Electron microscopy of the negatively stained bacteria was used as a test procedure.

  20. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates

    PubMed Central

    Hurley, Catherine C; Quirke, AnneMarie; Reen, F Jerry; Boyd, E Fidelma

    2006-01-01

    Background Vibrio parahaemolyticus is an aquatic, halophilic, Gram-negative bacterium, first discovered in 1950 in Japan during a food-poisoning outbreak. Infections resulting from consumption of V. parahaemolyticus have increased globally in the last 10 years leading to the bacterium's classification as a newly emerging pathogen. In 1996 the first appearance of a pandemic V. parahaemolyticus clone occurred, a new O3:K6 serotype strain that has now been identified worldwide as a major cause of seafood-borne gastroenteritis. Results We examined the sequenced genome of V. parahaemolyticus RIMD2210633, an O3:K6 serotype strain isolated in Japan in 1996, by bioinformatic analyses to uncover genomic islands (GIs) that may play a role in the emergence and pathogenesis of pandemic strains. We identified 7 regions ranging in size from 10 kb to 81 kb that had the characteristics of GIs such as aberrant base composition compared to the core genome, presence of phage-like integrases, flanked by direct repeats and the absence of these regions from closely related species. Molecular analysis of worldwide clinical isolates of V. parahaemolyticus recovered over the last 33 years demonstrated that a 24 kb region named V. parahaemolyticus island-1 (VPaI-1) encompassing ORFs VP0380 to VP0403 is only present in new O3:K6 and related strains recovered after 1995. We investigated the presence of 3 additional regions, VPaI-4 (VP2131 to VP2144), VPaI-5 (VP2900 to VP2910) and VPaI-6 (VPA1254 to VPA1270) by PCR assays and Southern blot analyses among the same set of V. parahaemolyticus isolates. These 3 VPaI regions also gave similar distribution patterns amongst the 41 strains examined. Conclusion The 4 VPaI regions examined may represent DNA acquired by the pandemic group of V. parahaemolyticus isolates that increased their fitness either in the aquatic environment or in their ability to infect humans. PMID:16672049

  1. Alterations in the Proteome of the Euprymna scolopes Light Organ in Response to Symbiotic Vibrio fischeri

    PubMed Central

    Doino Lemus, Judith; McFall-Ngai, Margaret J.

    2000-01-01

    During the onset of the cooperative association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri, the anatomy and morphology of the host's symbiotic organ undergo dramatic changes that require interaction with the bacteria. This morphogenetic process involves an array of tissues, including those in direct contact with, as well as those remote from, the symbiotic bacteria. The bacteria induce the developmental program soon after colonization of the organ, although complete morphogenesis requires 96 h. In this study, to determine critical time points, we examined the biochemistry underlying bacterium-induced host development using two-dimensional polyacrylamide gel electrophoresis. Specifically, V. fischeri-induced changes in the soluble proteome of the symbiotic organ during the first 96 h of symbiosis were identified by comparing the protein profiles of symbiont-colonized and uncolonized organs. Both symbiosis-related changes and age-related changes were analyzed to determine what proportion of the differences in the proteomes was the result of specific responses to interaction with bacteria. Although no differences were detected over the first 24 h, numerous symbiosis-related changes became apparent at 48 and 96 h and were more abundant than age-related changes. In addition, many age-related protein changes occurred 48 h sooner in symbiotic animals, suggesting that the interaction of squid tissue with V. fischeri cells accelerates certain developmental processes of the symbiotic organ. These data suggest that V. fischeri-induced modifications in host tissues that occur in the first 24 h of the symbiosis are independent of marked alterations in the patterns of abundant proteins but that the full 4-day morphogenetic program requires significant alteration of the host soluble proteome. PMID:10966433

  2. Characterization of the alginate lyases from Vibrio1 splendidus 12B012

    E-print Network

    Zhao, Huimin

    1 Characterization of the alginate lyases from Vibrio1 splendidus 12B012 3 Ahmet H. Badur1# , Sujit into smaller oligomers. We investigated the alginate lyases from Vibrio splendidus 12B01, a20 marine

  3. Role of polyphosphate kinase gene (ppk) for survival of Vibrio cholerae O1 in surface water of Bangladesh.

    PubMed

    Jahid, Iqbal Kabir; Hasan, Md Mahmud; Abdul Matin, Mohammad; Mahmud, Zahid Hayat; Neogi, Sucharit Basu; Uddin, Md Hafiz; Islam, Md Sirajul

    2013-11-15

    Polyphosphate provides a substitute for ATP and energy source when phosphorus is a limiting resource in nature. The present study focuses on the role ofpolyphosphate for the survival of Vibrio cholerae in the aquatic habitats as an autochthonous bacterium. The survival advantages of polyphosphate of V. cholerae O1 having (wild type) and lacking (mutant) polyphosphate kinase (ppk) gene in surface water and with Anabaena variabilis were compared by cultural, Direct Fluorescent Antibody (DFA) and polymerase chain reaction methods in natural water microcosms. The microcosm's water was prepared by filtering and physicochemical parameters were also investigated by standard methods. The results revealed that both fresh and saline water, the wild type strain enhanced survival in cultural conditioned than ppk mutant strain. However, Fluorescent Antibody Direct Viable Counts (FADVC) and Polymerase Chain Reaction (PCR) results noted both strains have the equal survival strategy in viable but nonculturable state (VNC). In conclusion, it could be hypothesized that the polyphosphate inclusion body might keep cultivable and survivable at low phosphate natural environment of the aquatic bacterium. PMID:24511696

  4. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-vibrio association

    PubMed Central

    Koropatnick, Tanya; Goodson, Michael S.; Heath-Heckman, Elizabeth A. C.; McFall-Ngai, Margaret

    2014-01-01

    The symbiotic association between the Hawaiian bobtail squid Euprymna scolopes and the luminous marine bacterium Vibrio fischeri provides a unique opportunity to study epithelial morphogenesis. Shortly after hatching, the squid host harvests bacteria from the seawater using currents created by two elaborate fields of ciliated epithelia on the surface of the juvenile light organ. After light organ colonization, the symbiont population signals the gradual loss of the ciliated epithelia through apoptosis of the cells, which culminates in the complete regression of these tissues. Whereas aspects of this process have been studied at the morphological, biochemical and molecular levels, no in-depth analysis of the cellular events has been reported. Here we describe the cellular structure of the epithelial field and present evidence that the symbiosis-induced regression occurs in two steps. Using confocal microscopic analyses, we observed an initial epithelial remodeling, which serves to disable the function of the harvesting apparatus, followed by a protracted regression involving actin rearrangements and epithelial cell extrusion. We identified a metal-dependent gelatinolytic activity in the symbiont-induced morphogenic epithelial fields, suggesting the involvement of Zn-dependent matrix metalloproteinase(s) (MMP) in light organ morphogenesis. These data show that the bacterial symbionts not only induce apoptosis of the field, but also change the form, function and biochemistry of the cells as part of the morphogenic program. PMID:24648207

  5. Visualization of coral host-pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain

    NASA Astrophysics Data System (ADS)

    Pollock, F. Joseph; Krediet, Cory J.; Garren, Melissa; Stocker, Roman; Winn, Karina; Wilson, Bryan; Huete-Stauffer, Carla; Willis, Bette L.; Bourne, David G.

    2015-06-01

    The bacterium Vibrio coralliilyticus has been implicated as the causative agent of coral tissue loss diseases (collectively known as white syndromes) at sites across the Indo-Pacific and represents an emerging model pathogen for understanding the mechanisms linking bacterial infection and coral disease. In this study, we used a mini-Tn7 transposon delivery system to chromosomally label a strain of V. coralliilyticus isolated from a white syndrome disease lesion with a green fluorescent protein gene (GFP). We then tested the utility of this modified strain as a research tool for studies of coral host-pathogen interactions. A suite of biochemical assays and experimental infection trials in a range of model organisms confirmed that insertion of the GFP gene did not interfere with the labeled strain's virulence. Using epifluorescence video microscopy, the GFP-labeled strain could be reliably distinguished from non-labeled bacteria present in the coral holobiont, and the pathogen's interactions with the coral host could be visualized in real time. This study demonstrates that chromosomal GFP labeling is a useful technique for visualization and tracking of coral pathogens and provides a novel tool to investigate the role of V. coralliilyticus in coral disease pathogenesis.

  6. Vibrio tapetis, the Causative Agent of Brown Ring Disease, Forms Biofilms with Spherical Components

    PubMed Central

    Rodrigues, Sophie; Paillard, Christine; Le Pennec, Gaël; Dufour, Alain; Bazire, Alexis

    2015-01-01

    Vibrio tapetis is a marine bacterium causing Brown Ring Disease (BRD) in the Manila clam Ruditapes philippinarum. V. tapetis biofilm formation remains unexplored depite the fact that it might be linked to pathogenicity. Our objectives were to characterize the in vitro biofilm formation of V. tapetis and evaluate the effects of culture conditions. Biofilm structure and its matrix composition were examined by confocal laser scanning microscopy and scanning electron microscopy. V. tapetis was able to form biofilms on a glass substratum within 24 h. Polysaccharides and extracellular DNA of the biofilm matrixes were differently distributed depending on the V. tapetis strains. Spherical components of about 1–2 ?m diameter were found at the biofilm surface. They contain DNA, proteins, and seemed to be physically linked to bacteria and of cellular nature. Transmission electron microscopy showed that the spherical components were devoid of internal compartments. Temperatures >21°C inhibit BRD whereas low salinity (2%) favor it, none of the both conditions altered V. tapetis' ability to form biofilms in vitro. We suggest therefore that biofilm formation could play a role in the persistence of the pathogen in clam than in BRD symptoms. PMID:26696991

  7. Increased Isolation Frequency of Toxigenic Vibrio cholerae O1 from Environmental Monitoring Sites in Haiti

    PubMed Central

    Alam, Meer T.; Weppelmann, Thomas A.; Longini, Ira; De Rochars, Valery Madsen Beau; Morris, John Glenn; Ali, Afsar

    2015-01-01

    Since the identification of the first cholera case in 2010, the disease has spread in epidemic form throughout the island nation of Haiti; as of 2014, about 700,000 cholera cases have been reported, with over 8,000 deaths. While case numbers have declined, the more fundamental question of whether the causative bacterium, Vibrio cholerae has established an environmental reservoir in the surface waters of Haiti remains to be elucidated. In a previous study conducted between April 2012 and March 2013, we reported the isolation of toxigenic V. cholerae O1 from surface waters in the Ouest Department. After a second year of surveillance (April 2013 to March 2014) using identical methodology, we observed a more than five-fold increase in the number of water samples containing culturable V. cholerae O1 compared to the previous year (1.7% vs 8.6%), with double the number of sites having at least one positive sample (58% vs 20%). Both seasonal water temperatures and precipitation were significantly related to the frequency of isolation. Our data suggest that toxigenic V. cholerae O1 are becoming more common in surface waters in Haiti; while the basis for this increase is uncertain, our findings raise concerns that environmental reservoirs are being established. PMID:25853552

  8. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2

    PubMed Central

    Hu, Xiaoke; Wang, Caixia; Wang, Peng

    2015-01-01

    A biosurfactant-producing bacterium, designated 3B-2, was isolated from marine sediment and identified as Vibrio sp. by 16S rRNA gene sequencing. The culture medium composition was optimized to increase the capability of 3B-2 for producing biosurfactant. The produced biosurfactant was characterized in terms of protein concentration, surface tension, and oil-displacement efficiency. The optimal medium for biosurfactant production contained: 0.5% lactose, 1.1% yeast extract, 2% sodium chloride, and 0.1% disodium hydrogen phosphate. Under optimal conditions (28°C), the surface tension of crude biosurfactant could be reduced to 41 from 71.5 mN/m (water), while its protein concentration was increased to up to 6.5 g/L and the oil displacement efficiency was improved dramatically at 6.5 cm. Two glycoprotein fractions with the molecular masses of 22 and 40 kDa were purified from the biosurfactant, which held great potential for applications in microbial enhanced oil recovery and bioremediation. PMID:26441908

  9. Purification and characterization of L-asparaginase with anti-lymphoma activity from Vibrio succinogenes.

    PubMed

    Distasio, J A; Niederman, R A; Kafkewitz, D; Goodman, D

    1976-11-25

    Homogeneols L-asparaginase with anti-lymphoma activity was prepared from Vibrio succinogenes, an anaerobic bacterium from the bovine rumen. An overall yield of pure L-asparaginase of 40 to 45% and a specific activity of 200 +/- 2 IU per mg of protein was obtained. The pure enzyme can be stored at -20 degrees for at least 3 months with no loss of activity. The isoelectric point of the L-asparaginase is 8.74. No carbohydrate, phosphorus, tryptophan, disulfide, or sulfhydryl groups were detected. The enzyme has a molecular weight of 146,000 and a subunit weight of approximately 37,000. The Km of the enzyme for L-asparagine is 4.78 X 10(-5) M and the pH optimum of the L-asparaginase reaction is 7.3. D-Asparagine was hydrolyzed at 6.5% of the rate found with the L isomer. L-Glutamine and a variety of other amides were not hydrolyzed at significant rates; the activity of the enzyme for L-glutamine was 130- to 600-fold less than that of other therapeutically effective L-asparaginases of bacterial origin. The L-asparaginase from V. succinogenes is immunologically distinct from the L-asparaginase (EC-2) of Escherichia coli. PMID:11211

  10. Insights into the environmental reservoir of pathogenic Vibrio parahaemolyticus using comparative genomics

    PubMed Central

    Hazen, Tracy H.; Lafon, Patricia C.; Garrett, Nancy M.; Lowe, Tiffany M.; Silberger, Daniel J.; Rowe, Lori A.; Frace, Michael; Parsons, Michele B.; Bopp, Cheryl A.; Rasko, David A.; Sobecky, Patricia A.

    2015-01-01

    Vibrio parahaemolyticus is an aquatic halophilic bacterium that occupies estuarine and coastal marine environments, and is a leading cause of seafood-borne food poisoning cases. To investigate the environmental reservoir and potential gene flow that occurs among V. parahaemolyticus isolates, the virulence-associated gene content and genome diversity of a collection of 133 V. parahaemolyticus isolates were analyzed. Phylogenetic analysis of housekeeping genes, and pulsed-field gel electrophoresis, demonstrated that there is genetic similarity among V. parahaemolyticus clinical and environmental isolates. Whole-genome sequencing and comparative analysis of six representative V. parahaemolyticus isolates was used to identify genes that are unique to the clinical and environmental isolates examined. Comparative genomics demonstrated an O3:K6 environmental isolate, AF91, which was cultured from sediment collected in Florida in 2006, has significant genomic similarity to the post-1995 O3:K6 isolates. However, AF91 lacks the majority of the virulence-associated genes and genomic islands associated with these highly virulent post-1995 O3:K6 genomes. These findings demonstrate that although they do not contain most of the known virulence-associated regions, some V. parahaemolyticus environmental isolates exhibit significant genetic similarity to clinical isolates. This highlights the dynamic nature of the V. parahaemolyticus genome allowing them to transition between aquatic and host-pathogen states. PMID:25852665

  11. Prevalence and distribution of Vibrio parahaemolyticus in finfish from Cochin (south India).

    PubMed

    Sudha, Santha; Divya, Puthenkandathil S; Francis, Bini; Hatha, Ammanamveetil A M

    2012-01-01

    Finfish samples obtained from four retail outlets in Cochin between June 2009 and June 2010 were investigated for the occurrence of Vibrio parahaemolyticus. A total of 182 samples were collected and suspect isolates were identified using standard biochemical tests and were further confirmed by a species-specific tlh gene. V. parahaemolyticus was detected in 45.1% of samples, with demersal fish being more affected than pelagic species. The bacterium was isolated more frequently from the skin and gills of pelagic fish, while the intestine yielded greater numbers of V. parahaemolyticus in demersal fish. The highest incidence of antibiotic resistance was recorded against ampicillin and streptomycin, followed by carbenicillin, cefpodoxime, cephalothin, colistin and amoxycillin; the lowest was against nalidixic acid, tetracycline, chloramphenicol and ciprofloxacin. Multiple drug resistance was prevalent among isolates. Although only a fraction of strains are pathogenic for humans, the time-temperature abuse in markets provides ample scope for these strains to multiply to dangerous levels. The multidrug resistant nature of the strains adds to the gravity of the problem. High V. parahaemolyticus incidence rates in market finfish samples from areas in and around Cochin clearly indicates that control measures should be adopted to reduce post-harvest contamination in seafood and time-temperature abuse in markets to diminish the risk of V. parahaemolyticus infection associated with seafood destined for human consumption. PMID:23038073

  12. Studies on diseased freshwater prawn Macrobrachium rosenbergii infected with Vibrio vulnificus.

    PubMed

    Sharshar, Kh M; Azab, E A

    2008-09-01

    The present study was aimed at isolation and characterization of the pathogenic bacterium from diseased freshwater prawn. The effect of the bacterial pathogen on hepatopancreas, gills and exoskeleton was also investigated. Diseased freshwater prawn, Macrobrachium rosenbergii were collected from commercial hatchery in Behera Governorate, Egypt. The diseased prawn showed dark brown focal lesions and necrosis of appendage tips. The causative bacterial pathogen was isolated from haemolymph and hepatopancreas of the diseased prawn. Based on the morphological, biochemical and physiological characteristics, in addition EPI 20E test, the isolated pathogen was characterized as Vibrio vulnificus. Histopathology, hepatopancreas showed haemocytic infiltration in the interstitial sinuses, thickening and ruptures of the basal lamina and necrosis of its tubules. Similarly, the accumulation of haemocytes in the haemocoelic space, swelling, fusion of lamellae and abnormal gill tips. Also, the cuticular layers of the exoskeleton of diseased prawn had a rough or wrinkled surface and were disrupted and separated from the epidermis. The pathogen, V. vulnificus showed different degrees of sensitivity to different antimicrobial agents. It was highly sensitive to each of the antibiotics rifadin, virbamycin, oflaxcin, garamycin, flummox and trimethoprim/sulfamethoxzole) and resistant to nalidixic acid, unasyn, velosef, claforan, negram and amoxicillin. The minimal inhibitory concentration of trimethoprin/sulfamethoxzole for the studied pathogen, V. vulnificus was 0.31/5.93 microg. PMID:19266922

  13. The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis.

    PubMed

    Agarwal, Shivangi; Zhu, Yeuming; Gius, David R; Satchell, Karla J F

    2015-11-01

    The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-?). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus. PMID:26351282

  14. Genotyping of virulence plasmid from Vibrio parahaemolyticus isolates causing acute hepatopancreatic necrosis disease in shrimp.

    PubMed

    Han, Jee Eun; Tang, Kathy F J; Lightner, Donald V

    2015-08-20

    Acute hepatopancreatic necrosis disease (AHPND) has caused severe mortalities in farmed penaeid shrimp throughout SE Asia and Mexico. The causative agent of AHPND is the marine bacterium Vibrio parahaemolyticus, which secretes PirA- and PirB-like binary toxin that caused deterioration in the hepatopancreas of infected shrimp. The genes responsible for the production of this toxin are located in a large plasmid residing within the bacterial cells. We analyzed the plasmid sequence from the whole genome sequences of AHPND-V. parahaemolyticus isolates and identified 2 regions that exhibit a clear geographical variation: a 4243-bp Tn3-like transposon and a 9-bp small sequence repeat (SSR). The Tn3-like transposon was only found in the isolates from Mexico and 2 unspecified Central American countries, but not in SE Asian isolates from China, Vietnam, and Thailand. We developed PCR methods to characterize AHPND-V. parahaemolyticus isolates as either Mexican-type or SE Asian-type based on the presence of the Tn3-like transposon. The SSR is found within the coding region of a hypothetical protein and has either 4, 5, or 6 repeat units. SSRs with 4 repeat units were found in isolates from Vietnam, China, and Thailand. SSRs with 5 repeat units were found in some Vietnamese isolates, and SSRs with 6 repeat units were only found in the Mexican isolates. PMID:26290509

  15. Salinity and Temperature Effects on Physiological Responses of Vibrio fischeri from Diverse Ecological Niches

    E-print Network

    McFall-Ngai, Margaret

    Salinity and Temperature Effects on Physiological Responses of Vibrio fischeri from Diverse, New Mexico State University, Box 30001, Las Cruces, NM 88003-8001, USA Abstract Vibrio fischeri members of Vibrionaceae have shown temperature and salinity to be integral agents in governing Vibrio

  16. Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio

    E-print Network

    McFall-Ngai, Margaret

    Gene sequences of the pil operon reveal relationships between symbiotic strains of Vibrio fischeri the bobtail squid Euprymna scolopes (Mollusca: Cephalopoda) and Vibrio fischeri bacteria has been a well of vibrios, we amplified pil genes A, B, C and D to determine orientation and sequence similarity to other

  17. Conformation of a Rigid Tetrasaccharide Epitope in the Capsular Polysaccharide of Vibrio cholerae O139

    E-print Network

    Bush, C. Allen

    Conformation of a Rigid Tetrasaccharide Epitope in the Capsular Polysaccharide of Vibrio cholerae O, 1999 ABSTRACT: A newly reported strain of Vibrio cholerae, known as strain O139 Bengal, is the first to the -GlcNAc. All the cholera epidemics known in recent times have been caused by Vibrio cholerae

  18. THE EVOLUTIONARY ECOLOGY OF A SEPIOLID SQUID-VIBRIO ASSOCIATION: FROM CELL TO ENVIRONMENT

    E-print Network

    McFall-Ngai, Margaret

    THE EVOLUTIONARY ECOLOGY OF A SEPIOLID SQUID-VIBRIO ASSOCIATION: FROM CELL TO ENVIRONMENT S), and their Vibrio bacteria (gamma Proteobacteria: Vibrionaceae), has been a model system for over 20 years, giving for understanding the role of symbiotic competence. Keywords VIBRIO; MUTUALISM; SEPIOLID; EVOLUTION INTRODUCTION All

  19. ENVIRONMENTAL INFLUENCES ON VIBRIO VULNIFICUS ABUNDANCE IN THE ALA WAI CANAL

    E-print Network

    Qiu, Bo

    ENVIRONMENTAL INFLUENCES ON VIBRIO VULNIFICUS ABUNDANCE IN THE ALA WAI CANAL A THESIS SUBMITTED ADVISOR DR. GRIEG STEWARD #12; iv Abstract: Vibrio vulnificus is a potentially fatal human pathogen when and where environmental pathogens such as Vibrio vulnificus are most prevalent there. Correlations

  20. Vibrio fischeri exhibit the growth advantage in stationary-phase Branden Petrun and C. Phoebe Lostroh

    E-print Network

    McFall-Ngai, Margaret

    NOTE Vibrio fischeri exhibit the growth advantage in stationary-phase phenotype Branden Petrun and C. Phoebe Lostroh Abstract: Vibrio fischeri are bioluminescent marine bacteria that can be isolated of young V. fischeri cells remains almost constant during co-incubation. Key words: Vibrio fischeri

  1. Lysozyme gene expression by hemocytes of Pacific white shrimp, Litopenaeus vannamei, after injection with Vibrio

    E-print Network

    Burnett, Louis E.

    injection with Vibrio Erin J. Burge*, Daniel J. Madigan, Louis E. Burnett, Karen G. Burnett Grice Marine and in circulating hemocytes for 48 h following challenge with the shrimp pathogen Vibrio campbellii Baumann rights reserved. Keywords: Litopenaeus vannamei; Shrimp; Hemocyte; Vibrio; Lysozyme; Gene expression

  2. ORIGINAL ARTICLE Interference with the quorum sensing systems in a Vibrio

    E-print Network

    Wood, Thomas K.

    as valuable and indispensable live food organisms in the industrial larvi- culture of many marine fish-feeding organism (Skjermo and Vadstein 1993; Verdonck et al. 1997; Savas et al. 2005), which increases the risk organisms. Challenge tests were performed with 11 V. harveyi strains and different quorum sensing mutants

  3. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico.

    PubMed

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A; Setién, Alvaro Aguilar

    2015-12-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  4. Novel Waddlia Intracellular Bacterium in Artibeus intermedius Fruit Bats, Mexico

    PubMed Central

    Pierlé, Sebastián Aguilar; Morales, Cirani Obregón; Martínez, Leonardo Perea; Ceballos, Nidia Aréchiga; Rivero, Juan José Pérez; Díaz, Osvaldo López; Brayton, Kelly A.

    2015-01-01

    An intracellular bacterium was isolated from fruit bats (Artibeus intermedius) in Cocoyoc, Mexico. The bacterium caused severe lesions in the lungs and spleens of bats and intracytoplasmic vacuoles in cell cultures. Sequence analyses showed it is related to Waddlia spp. (order Chlamydiales). We propose to call this bacterium Waddlia cocoyoc. PMID:26583968

  5. The Demand for Eastern Oysters, Crassostrea virginica, from the Gulf of Mexico in the Presence of Vibrio vulnificus

    E-print Network

    of Vibrio vulnificus WALTER R. KEITHLY, Jr., and HAMADY DIOP Introduction The bacteria Vibrio vulnificus of Vibrio vulnificus is highly cor related with water temperature, and vir tually all Gulf-harvested oysters eating uncooked Gulf Coast oysters that are contaminated with Vibrio vulnificus bacteria." Most

  6. New Vibrio species associated to molluscan microbiota: a review

    PubMed Central

    Romalde, Jesús L.; Dieguez, Ana L.; Lasa, Aide; Balboa, Sabela

    2014-01-01

    The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed. PMID:24427157

  7. Vibrio alginolyticus ("Achromobacter") collagenase: biosynthesis, function and application.

    PubMed

    Keil, B

    1992-01-01

    Bacterial collagenase from aerobic non-pathogenic Vibrio alginolyticus chemovar iophagus ("Achromobacter" collagenase, EC 3.4.24.08) is an inducible extracellular metallo-proteinase. Production of Vibrio collagenase is induced specifically by collagen or by its macromolecular fragments. On the cell surface is expressed a specific receptor recognizing collagen structure. The study of natural inducers led to synthetic peptides with inducing properties. Vibrio collagenase cleaves collagen helical chains preferentially at 3/4 from the N-terminal. Its specific activity on synthetic substrate, 180,000 ukat/mg, represents the highest value for known collagenases. Its specificity differs from that of Clostridium: The enzyme cleaves preferentially sequences with Gly or Ala in position P'1 and Pro in position P2 or P'2. Highly specific cleavages were obtained in beta-casein, prolactin, myosin, adenylate kinase and fibronectin. Autolysis yields partially degraded forms still active on native collagen and peptide substrate. The determination of the sequence of Vibrio collagenase is nearly achieved; the enzyme was not yet obtained in crystalline form. On basis of the already known sequence and structure of Hypoderma collagenase (EC 3.4.21.49), a hypothesis is advanced on the character of collagen binding site loops. Vibrio collagenase can be produced in kilogram quantities at low cost. It was found highly efficient in debridement of necrotic burns, ulcers and decubitus. PMID:1480012

  8. An insight of traditional plasmid curing in Vibrio species

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    As the causative agent of foodborne related illness, Vibrio species causes a huge impact on the public health and management. Vibrio species is often associated with seafood as the latter plays a role as a vehicle to transmit bacterial infections. Hence, antibiotics are used not to promote growth but rather to prevent and treat bacterial infections. The extensive use of antibiotics in the aquaculture industry and environment has led to the emerging of antibiotic resistant strains. This phenomenon has triggered an alarming public health concern due to the increase number of pathogenic Vibrio strains that are resistant to clinically used antibiotics and is found in the environment. Antibiotic resistance and the genes location in the strains can be detected through plasmid curing assay. The results derived from plasmid curing assay is fast, cost effective, sufficient in providing insights, and influence the antibiotic management policies in the aquaculture industry. This presentation aims in discussing and providing insights on various curing agents in Vibrio species. To our best of knowledge, this is a first review written discussing on plasmid curing in Vibrio species. PMID:26347714

  9. Aquatic ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus.

    PubMed

    Vezzulli, Luigi; Pezzati, Elisabetta; Stauder, Monica; Stagnaro, Laura; Venier, Paola; Pruzzo, Carla

    2015-04-01

    The ecology of the oyster pathogens Vibrio splendidus and Vibrio aestuarianus in the brackish aquatic environment was extensively investigated in this study. By conducting laboratory experiments under natural setting conditions, it was shown that V.?splendidus?LGP32 strain generally exhibits longer persistence in both seawater and sediment than V.?aestuarianus 01/32 strain. Both strains maintained viability and culturability for longer times in the sediment, suggesting that this compartment may represent a suitable niche for their persistence in the environment. In addition, both strains attached to chitin particles and copepods, the efficiency of attachment being higher in V.?splendidus than in V.?aestuarianus. Similarly, LGP32 strain showed a greater capability to form biofilm on poly-vinyl chloride (PVC) surfaces than 01/32 strain. LGP32 and 01/32 strains were also capable of entering a viable but non-culturable state after extended incubation at 5°C, a condition commonly found during cold season in the aquatic brackish environment. These results are consistent with field data collected during a 2-year sampling campaign in the northern Adriatic Sea and provide background information on the mechanisms promoting V.?splendidus and V.?aestuarianus persistence in coastal water, thus contributing to a better understanding of the epidemiology of the associated diseases. PMID:24725454

  10. Enterotoxin production by Vibrio cholerae and Vibrio mimicus grown in continuous culture with microbial cell recycle.

    PubMed Central

    Spira, W M; Fedorka-Cray, P J

    1983-01-01

    We have examined the effect of complete cell recycle on the production of cholera toxin (CT) by Vibrio cholerae and CT-like toxin by Vibrio mimicus in continuous culture fermentations. Complete cell recycle was obtained by filtering culture fluids through Amicon hollow fibers with an exclusion limit of 100,000 daltons (H1P100-20) and returning the concentrated cell slurry to the fermentor. A single 1-liter laboratory fermentor system modified with this recycle loop was capable of producing over 20 liters of cell-free culture filtrate per day. Toxin production in this system was compared with yields obtained in traditional continuous cultures and in shake flask cultures. Yields of CT from V. cholerae 569B in the recycle fermentor were highest at the highest dilution rate employed (1.0 vol/vol per h). The use of complete cell recycle dramatically increased yields over those obtained in continuous culture and equaled those obtained in shake flasks. The concentration of CT in the filtrate was slightly less than half of that measured in culture fluids sampled at the same time. Similarly, V. mimicus 61892 grown in the presence of 50 micrograms of lincomycin per ml produced 280 ng of CT per ml in the recycle fermentor, compared with 210 ng/ml in shake flasks under optimal conditions. The sterile filtrate from this fermentation contained 110 ng/ml. PMID:6357081

  11. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp.

    PubMed Central

    Janda, J M; Powers, C; Bryant, R G; Abbott, S L

    1988-01-01

    Recent taxonomic advances have now implicated several different Vibrio species as human pathogens. While the most common clinical presentation of Vibrio infection continues to be gastroenteritis, an increasing number of extraintestinal infections are being reported, particularly in immunocompromised individuals. Detection of Vibrio infections requires a good clinical history and the use of appropriate isolation and identification procedures by the laboratory to confirm illnesses attributed to Vibrio species. Except for Vibrio cholerae O1 and Vibrio parahaemolyticus, there is little direct evidence linking the production of a myriad of cell-associated or extracellular factors produced by each species with human disease and pathogenesis. Many questions regarding pathogenic Vibrio species remain unanswered, including their frequency and distribution in environmental specimens (water, shellfish), infective doses, virulence potential of individual isolates, and markers associated with such strains. Images PMID:3058295

  12. Long-term effects of ocean warming on vibrios

    NASA Astrophysics Data System (ADS)

    Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

    2012-12-01

    Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased in occurrence over the last half century in the southern North Sea, but also prevailed within the particle associated bacterial community of coastal marine waters. These findings provide support for the view that global warming may have a strong impact on the composition of marine bacterial communities with important implications for human and animal health into the future.

  13. Vibrio salilacus sp. nov., a new member of the Anguillarum clade with six alleles of the 16S rRNA gene from a saline lake.

    PubMed

    Zhong, Zhi-Ping; Liu, Ying; Liu, Hong-Can; Wang, Fang; Zhou, Yu-Guang; Liu, Zhi-Pei

    2015-08-01

    A Gram-stain-negative, catalase- and oxidase-positive, facultatively aerobic bacterium, strain DSG-S6T, was isolated from Dasugan Lake (salinity 3.1%, w/w), China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain DSG-S6T were non-spore-forming, slightly bent rods, and motile by means of a single polar flagellum. Growth occurred in the presence of 0-7.0% (w/v) NaCl (optimum, 2.0%), at 4-35?°C (optimum, 30?°C) and at pH?6.0-10.5 (optimum, pH?8.0-8.5). C16?:?0, C18?:?1?7c and C16?:?1?7c and/or C16?:?1?6c were the major fatty acids. Six alleles of the 16S rRNA gene sharing 98.9-99.9??% similarity were detected in strain DSG-S6T, which showed highest 16S rRNA gene sequence similarity to Vibrio aestuarianus ATCC 35048T (97.7?%), then to Vibrio pacinii LMG 19999T (97.6%) and Vibrio metschnikovii CIP 69.14T (96.8%). Multilocus sequence analysis of four housekeeping genes and 16S rRNA genes clearly clustered it as a member of the Anguillarum clade. Mean DNA-DNA relatedness between strain DSG-S6T and V. aestuarianus NBRC 15629T, V. pacinii CGMCC 1.12557T and V. metschnikovii JCM 21189T was 20.6?±?2.3, 38.1?±?3.5 and 24.2?±?2.8%, respectively. The DNA G+C content was 46.8?mol% (Tm). Based on the data, it is concluded that strain DSG-S6T represents a novel species of the genus Vibrio, for which the name Vibrio salilacus sp. nov. is proposed. The type strain is DSG-S6T (?=?CGMCC 1.12427T?=?JCM 19265T). PMID:25964518

  14. Paradigms: examples from the bacterium Xylella fastidiosa.

    PubMed

    Purcell, Alexander

    2013-01-01

    The history of advances in research on Xylella fastidiosa provides excellent examples of how paradigms both advance and limit our scientific understanding of plant pathogens and the plant diseases they cause. I describe this from a personal perspective, having been directly involved with many persons who made paradigm-changing discoveries, beginning with the discovery that a bacterium, not a virus, causes Pierce's disease of grape and other plant diseases in numerous plant species, including important crop and forest species. PMID:23682911

  15. Proteolysis of Virulence Regulator ToxR Is Associated with Entry of Vibrio cholerae into a Dormant State

    PubMed Central

    Almagro-Moreno, Salvador; Kim, Tae K.; Skorupski, Karen; Taylor, Ronald K.

    2015-01-01

    Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state. PMID:25849031

  16. VIBRIOS FROM THE INTESTINAL TRACT OF THE GRAY RAT

    PubMed Central

    Jones, F. S.; Little, Ralph B.; Orcutt, Marion

    1932-01-01

    Vibrios obtained from the intestinal tracts of wild rats are described. The organism is a normal inhabitant of the lower ileum and cecum of the rat and may be cultivated from these regions. While these rat organisms are in their growth characters and morphology like those found in an intestinal disease of cattle they differ serologically from the cow organisms. PMID:19870043

  17. Vibrio biofilms: so much the same yet so different

    E-print Network

    McFall-Ngai, Margaret

    95064, USA 2 Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153 the consumption of contaminated water or food, particularly raw seafood. V. parahaemoly- ticus is responsible for the most common Vibrio-associated, seafood-borne gastroenteritis [2]. V. vulnificus causes gas

  18. Complete Genome Sequence of Vibrio vulnificus Bacteriophage SSP002

    PubMed Central

    Lee, Hyun Sung; Choi, Slae

    2012-01-01

    Vibrio vulnificus phages are abundant in coastal marine environments, shellfish, clams, and oysters. SSP002, a V. vulnificus-specific bacteriophage, was isolated from oysters from the west coast of South Korea. In this study, the complete genome of SSP002 was sequenced and analyzed for the first time among the V. vulnificus-specific bacteriophages. PMID:22733877

  19. Complete genome sequence of Vibrio vulnificus bacteriophage SSP002.

    PubMed

    Lee, Hyun Sung; Choi, Slae; Choi, Sang Ho

    2012-07-01

    Vibrio vulnificus phages are abundant in coastal marine environments, shellfish, clams, and oysters. SSP002, a V. vulnificus-specific bacteriophage, was isolated from oysters from the west coast of South Korea. In this study, the complete genome of SSP002 was sequenced and analyzed for the first time among the V. vulnificus-specific bacteriophages. PMID:22733877

  20. NATURAL TRANSFORMATION OF A MARINE VIBRIO SPECIES BY PLASMID DNA

    EPA Science Inventory

    A series of thirty marine and estuarine bacterial isolates was examined for the ability to naturally transform with plasmid DNA. One isolate from Tampa Bay, Florida, identified as Vibrio parahaemolyticus, successfully incorporated and maintained the broad host range plasmid pKT23...

  1. Natural modulators of Vibrios in seawater and shellfish

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Naturally occurring marine bacteria, Vibrio parahaemolyticus and V. vulnificus, are major threats to the safety of molluscan shellfish in the US and elsewhere. Illnesses range from mild gastrointestinal upset to septicemia and death. In studies on the uptake and persistence of V. parahaemolyticus ...

  2. Biofilm Recruitment of Vibrio cholerae by Matrix Proteolysis.

    PubMed

    Duperthuy, Marylise; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2015-11-01

    The appearance of bacterial biofilms involves secretion of polysaccharides and proteins that form an extracellular matrix embedding the bacteria. Proteases have also been observed, but their role has remained unclear. Smith and co-workers have now found that proteolysis can contribute to further recruitment of bacteria to Vibrio cholerae biofilms. PMID:26439292

  3. Vibrio Trends in the Ecology of the Venice Lagoon

    PubMed Central

    Rahman, Mohammad Shamsur; Cardazzo, Barbara; Facco, Pierantonio; Bordin, Paola; Mioni, Renzo; Novelli, Enrico; Fasolato, Luca

    2014-01-01

    Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization. PMID:24487545

  4. Cellular and molecular hemocyte responses of the Pacific oyster, Crassostrea gigas, following bacterial infection with Vibrio aestuarianus strain 01/32.

    PubMed

    Labreuche, Yannick; Lambert, Christophe; Soudant, Philippe; Boulo, Viviane; Huvet, Arnaud; Nicolas, Jean-Louis

    2006-10-01

    The strategies used by bacterial pathogens to circumvent host defense mechanisms remain largely undefined in bivalve molluscs. In this study, we investigated experimentally the interactions between the Pacific oyster (Crassostrea gigas) immune system and Vibrio aestuarianus strain 01/32, a pathogenic bacterium originally isolated from moribund oysters. First, an antibiotic-resistant V. aestuarianus strain was used to demonstrate that only a limited number of bacterial cells was detected in the host circulatory system, suggesting that the bacteria may localize in some organs. Second, we examined the host defense responses to V. aestuarianus at the cellular and molecular levels, using flow-cytometry and real-time PCR techniques. We showed that hemocyte phagocytosis and adhesive capabilities were affected during the course of infection. Our results also uncovered a previously-undescribed mechanism used by a Vibrio in the initial stages of host interaction: deregulation of the hemocyte oxidative metabolism by enhancing the production of reactive oxygen species and down-regulating superoxide dismutase (Cg-EcSOD) gene expression. This deregulation may provide an opportunity to the pathogen by impairing hemocyte functions and survival. These findings provide new insights into the cellular and molecular bases of the host-pathogen interactions in C. gigas oyster. PMID:16978900

  5. The catecholamine stress hormones norepinephrine and dopamine increase the virulence of pathogenic Vibrio anguillarum and Vibrio campbellii.

    PubMed

    Pande, Gde Sasmita J; Suong, Nguyen Thao; Bossier, Peter; Defoirdt, Tom

    2014-12-01

    Obtaining a better understanding of mechanisms involved in bacterial infections is of paramount importance for the development of novel agents to control disease caused by (antibiotic resistant) pathogens in aquaculture. In this study, we investigated the impact of catecholamine stress hormones on growth and virulence factor production of pathogenic vibrios (i.e. two Vibrio campbellii strains and two Vibrio anguillarum strains). Both norepinephrine and dopamine (at 100 ?M) significantly induced growth in media containing serum. The compounds also increased swimming motility of the tested strains, whereas they had no effect on caseinase, chitinase, and hemolysin activities. Further, antagonists for eukaryotic catecholamine receptors were able to neutralize some of the effects of the catecholamines. Indeed, the dopaminergic receptor antagonist chlorpromazine neutralized the effect of dopamine, and the ?-adrenergic receptor antagonists phentolamine and phenoxybenzamine neutralized the effect of norepinephrine, whereas the ?-adrenergic receptor antagonist propranolol had limited to no effect. Finally, pretreatment of pathogenic V. campbellii with catecholamines significantly increased its virulence toward giant freshwater prawn larvae. However, the impact of catecholamine receptor antagonists on in vivo virulence was less clear-cut when compared to the in vitro experiments. In summary, our results show that—similar to enteric pathogens—catecholamines also increase the virulence of vibrios that are pathogenic to aquatic organisms by increasing motility and growth in media containing serum. PMID:25264299

  6. Mutagenesis by insertion of drug resistance transposon Tn7 into a vibrio species.

    PubMed Central

    Thomson, J A; Hendson, M; Magnes, R M

    1981-01-01

    A halotolerant, collagenolytic strain of Vibrio sp. was conjugated with an Escherichia coli strain carrying plasmid RP4. The plasmid was transferred to and maintained in the Vibrio and could be subsequently transferred in matings to suitably marked stains of the same species. After conjugation with an E. coli carrying the cointegrate plasmid RP4::Mu cts61::Tn7, Vibrio transconjugants were selected that carried Tn7 inserted into the bacterial chromosome. A large proportion of these transconjugants were auxotrophic, showing that plasmid suicide by Mu can be used to isolate Tn7-derived mutants in Vibrio. Approximately half of the auxotrophs isolate Tn7-derived mutants in Vibrio. Approximately half of the auxotrophs isolated were ilv mutants, all of which exhibited the same phenotype. Thus, although Tn7 insertion can induce auxotrophy, including trp, thy, his and ura, in Vibrio, there does appear to be a hot spot for integration in the ilv operon. PMID:6270064

  7. Antibacterial Activity of Biosecur® Citrus Extract Surface Cleaner Against Vibrio Vulnificus

    PubMed Central

    Cormier, Jiemin; Scott, Ronson; Janes, Marlene

    2013-01-01

    This study evaluated the antibacterial activity of Biosecur® citrus extract surface cleaner against Vibrio vulnificus using plate count method. Two concentrations, 0.5% and 2% of Biosecur® surface cleaner were plated on Vibrio vulnificus Agar (VVA) and tested for reduction of Vibrio vulnificus. In order to investigate the lasting residual activity of Biosecur®, antibacterial activity tests were also performed at time intervals up to 2.5 h after Biosecur® was plated on VVA. Biosecur® showed 6-log reduction of Vibrio vulnificus at 2%, and 3-log reduction of Vibrio vulnificus at 0.5%. The antibacterial activity of 2% Biosecur® against Vibrio vulnificus was shown to be equivalent to that of tetracycline. The residual activity of 2% Biosecur® was shown to maintain for at least 2.5 h after application. This study confirmed the high activity and long lasting residual effect of a safe, non-toxic organic food grade surface cleaner. PMID:24302976

  8. Molecular characterization and expression analysis of interferon-gamma in the large yellow croaker Larimichthys crocea.

    PubMed

    Chen, Ruan-Ni; Su, Yong-Quan; Wang, Jun; Liu, Min; Qiao, Ying; Mao, Yong; Ke, Qiao-Zhen; Han, Kun-Huang; Zheng, Wei-Qiang; Zhang, Jian-She; Wu, Chang-Wen

    2015-10-01

    The large yellow croaker Larimichthys crocea is an important mariculture fish species in China, and the bacterium Vibrio harveyi (V. harveyi) and the ciliate protozoan Cryptocaryon irritans (C. irritans) are the two major pathogens in its aquaculture sector. Interferon-gamma (IFN-?) plays important roles in regulating both innate and cell mediated immune responses as an inflammatory cytokine. In this study, we obtained the nucleotide sequence of IFN-? from the large yellow croaker (LcIFN-?). The phylogenetic relationship tree of 18 available IFN-? genes was constructed based on their sequences. Expression analyses in 10 various tissues were conducted after the croaker challenged with V. harveyi and C. irritans, respectively. Real time PCR analysis showed that the expression of LcIFN-? was observed broadly in health individuals. After injected with V. harveyi, the 10 tissues had a higher expression of IFN-? at the first day (1 d); only spleen, muscle, intestine, heart and skin had higher expressions after infected with C. irritans at 1 d. Major immune tissues (skin, gill, head kidney and spleen) and detoxification tissue (liver) were sampled at 0 h, 6 h, 1 d, 2 d, 3 d, 4 d, 5 d and 7 d to understand the expression trends of LcIFN-? after challenged with C. irritans. The expressions of LcIFN-? in skin and gill (the primary immune organs) showed a clear correlative relationship with the life cycle of C. irritans. PMID:26193669

  9. Acyl-acyl carrier protein as a source of fatty acids for bacterial bioluminescence

    SciTech Connect

    Byers, D.M.; Meighen, E.A.

    1985-09-01

    Pulse-chase experiments with (/sup 3/H)tetradecanoic acid and ATP showed that the bioluminescence-related 32-kDa acyltransferase from Vibrio harveyi can specifically catalyze the deacylation of a /sup 3/H-labeled 18-kDa protein observed in extracts of this bacterium. The 18-kDa protein has been partially purified and its physical and chemical properties strongly indicate that it is fatty acyl-acyl carrier protein (acyl-ACP). Both this V. harveyi (/sup 3/H)acylprotein and (/sup 3/H)palmitoyl-ACP from Escherichia coli were substrates in vitro for either the V. harveyi 32-kDa acyltransferase or the analogous enzyme (34K) from Photobacterium phosphoreum. TLC analysis indicated that the hexane-soluble product of the reaction is fatty acid. No significant cleavage of either E. coli or V. harveyi tetradecanoyl-ACP was observed in extracts of these bacteria unless the 32-kDa or 34K acyltransferase was present. Since these enzymes are believed to be responsible for the supply of fatty acids for reduction to form the aldehyde substrate of luciferase, the above results suggest that long-chain acyl-ACP is the source of fatty acids for bioluminescence.

  10. CysK Plays a Role in Biofilm Formation and Colonization by Vibrio fischeri.

    PubMed

    Singh, Priyanka; Brooks, John F; Ray, Valerie A; Mandel, Mark J; Visick, Karen L

    2015-08-01

    A biofilm, or a matrix-embedded community of cells, promotes the ability of the bacterium Vibrio fischeri to colonize its symbiotic host, the Hawaiian squid Euprymna scolopes. Biofilm formation and colonization depend on syp, an 18-gene polysaccharide locus. To identify other genes necessary for biofilm formation, we screened for mutants that failed to form wrinkled colonies, a type of biofilm. We obtained several with defects in genes required for cysteine metabolism, including cysH, cysJ, cysK, and cysN. The cysK mutant exhibited the most severe wrinkling defect. It could be complemented with a wild-type copy of the cysK gene, which encodes O-acetylserine sulfhydrolase, or by supplementing the medium with additional cysteine. None of a number of other mutants defective for biosynthetic genes negatively impacted wrinkled colony formation, suggesting a specific role for CysK. CysK did not appear to control activation of Syp regulators or transcription of the syp locus, but it did influence production of the Syp polysaccharide. Under biofilm-inducing conditions, the cysK mutant retained the same ability as that of the parent strain to adhere to the agar surface. The cysK mutant also exhibited a defect in pellicle production that could be complemented by the cysK gene but not by cysteine, suggesting that, under these conditions, CysK is important for more than the production of cysteine. Finally, our data reveal a role for cysK in symbiotic colonization by V. fischeri. Although many questions remain, this work provides insights into additional factors required for biofilm formation and colonization by V. fischeri. PMID:26025891

  11. Recognition between symbiotic Vibrio fischeri and the hemocytes of Euprymna scolopes

    PubMed Central

    Nyholm, Spencer V.; Stewart, Jennifer J.; Ruby, Edward G.; McFall-Ngai, Margaret J.

    2008-01-01

    Summary The light-organ crypts of the squid Euprymna scolopes permit colonization exclusively by the luminous bacterium Vibrio fischeri. Because the crypt interior remains in contact with seawater, the squid must not only foster the specific symbiosis but also continue to exclude other bacteria. Investigation of the role of the innate immune system in these processes revealed that macrophage-like hemocytes isolated from E. scolopes recognized and phagocytosed V. fischeri less than other closely related bacterial species common to the host’s environment. Interestingly, phagocytes isolated from hosts that had been cured of their symbionts bound five-times more V. fischeri cells than those from uncured hosts. No such change in the ability to bind other species of bacteria was observed, suggesting that the host adapts specifically to V. fischeri. Deletion of the gene encoding OmpU, the major outer membrane protein of V. fischeri, increased binding by hemocytes from uncured animals to the level observed for hemocytes from cured animals. Co-incubation with wild-type V. fischeri reduced this binding, suggesting they produce a factor that complements the mutant’s defect. Analyses of the phagocytosis of bound cells by fluorescence-activated cell sorting (FACS) indicated that, once binding to hemocytes had occurred, V. fischeri cells are phagocytosed as effectively as other bacteria. Thus, discrimination by this component of the squid immune system occurs at the level of hemocyte binding, and this response: (i) is modified by previous exposure to the symbiont and, (ii) relies on outer membrane and/or secreted components of the symbionts. These data suggest that regulation of host hemocyte binding by the symbiont may be one of many factors that contribute to specificity in this association. PMID:19196278

  12. A Metalloprotease Secreted by the Type II Secretion System Links Vibrio cholerae with Collagen

    PubMed Central

    Park, Bo R.; Zielke, Ryszard A.; Wierzbicki, Igor H.; Mitchell, Kristie C.; Withey, Jeffrey H.

    2015-01-01

    Vibrio cholerae is autochthonous to various aquatic niches and is the etiological agent of the life-threatening diarrheal disease cholera. The persistence of V. cholerae in natural habitats is a crucial factor in the epidemiology of cholera. In contrast to the well-studied V. cholerae-chitin connection, scarce information is available about the factors employed by the bacteria for the interaction with collagens. Collagens might serve as biologically relevant substrates, because they are the most abundant protein constituents of metazoan tissues and V. cholerae has been identified in association with invertebrate and vertebrate marine animals, as well as in a benthic zone of the ocean where organic matter, including collagens, accumulates. Here, we describe the characterization of the V. cholerae putative collagenase, VchC, encoded by open reading frame VC1650 and belonging to the subfamily M9A peptidases. Our studies demonstrate that VchC is an extracellular collagenase degrading native type I collagen of fish and mammalian origin. Alteration of the predicted catalytic residues coordinating zinc ions completely abolished the protein enzymatic activity but did not affect the translocation of the protease by the type II secretion pathway into the extracellular milieu. We also show that the protease undergoes a maturation process with the aid of a secreted factor(s). Finally, we propose that V. cholerae is a collagenovorous bacterium, as it is able to utilize collagen as a sole nutrient source. This study initiates new lines of investigations aiming to uncover the structural and functional components of the V. cholerae collagen utilization program. PMID:25561716

  13. Prevalences of pathogenic and non-pathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast

    PubMed Central

    Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M. Dolores; Roque, Ana

    2015-01-01

    Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast. PMID:26284033

  14. Molecular characterization of vulnibactin biosynthesis in Vibrio vulnificus indicates the existence of an alternative siderophore

    PubMed Central

    Tan, Wenzhi; Verma, Vivek; Jeong, Kwangjoon; Kim, Soo Young; Jung, Che-Hun; Lee, Shee Eun; Rhee, Joon Haeng

    2013-01-01

    Vibrio vulnificus is a halophilic estuarine bacterium that causes fatal septicemia and necrotizing wound infections in humans. Virulent V. vulnificus isolates produce a catechol siderophore called vulnibactin, made up of one residue of 2, 3-dihydroxybenzoic acid (2, 3-DHBA) and two residues of salicylic acid (SA). Vulnibactin biosynthetic genes (VV2_0828 to VV2_0844) are clustered at one locus of chromosome 2, expression of which is significantly up-regulated in vivo. In the present study, we decipher the biosynthetic network of vulnibactin, focusing specifically on genes around SA and 2, 3-DHBA biosynthetic steps. Deletion mutant of isochorismate pyruvate lyase (VV2_0839) or 2, 3-dihydroxybenzoate-2, 3-dehydrogenase (VV2_0834) showed retarded growth under iron-limited conditions though the latter showed more significant growth defect than the former, suggesting a dominant role of 2, 3-DHBA in the vulnibactin biosynthesis. A double deletion mutant of VV2_0839 and VV2_0834 manifested additional growth defect under iron limitation. Though the growth defect of respective single deletion mutants could be restored by exogenous SA or 2, 3-DHBA, only 2, 3-DHBA could rescue the double mutant when supplied alone. However, double mutant could be rescued with SA only when hydrogen peroxide was supplied exogenously, suggesting a chemical conversion of SA to 2, 3-DHBA. Assembly of two SA and one 2, 3-DHBA into vulnibactin was mediated by two AMP ligase genes (VV2_0836 and VV2_0840). VV2_0836 deletion mutant showed more significant growth defect under iron limitation, suggesting its dominant function. In conclusion, using molecular genetic analytical tools, we confirm that vulnibactin is assembled of both 2, 3-DHBA and SA. However, conversion of SA to 2, 3-DHBA in presence of hydrogen peroxide and growth profile of AMP ligase mutants suggest a plausible existence of yet unidentified alternative siderophore that may be composed solely of 2, 3-DHBA. PMID:24478763

  15. Vibrio cholerae Evades Neutrophil Extracellular Traps by the Activity of Two Extracellular Nucleases

    PubMed Central

    Seper, Andrea; Hosseinzadeh, Ava; Gorkiewicz, Gregor; Lichtenegger, Sabine; Roier, Sandro; Leitner, Deborah R.; Röhm, Marc; Grutsch, Andreas; Reidl, Joachim; Urban, Constantin F.; Schild, Stefan

    2013-01-01

    The Gram negative bacterium Vibrio cholerae is the causative agent of the secretory diarrheal disease cholera, which has traditionally been classified as a noninflammatory disease. However, several recent reports suggest that a V. cholerae infection induces an inflammatory response in the gastrointestinal tract indicated by recruitment of innate immune cells and increase of inflammatory cytokines. In this study, we describe a colonization defect of a double extracellular nuclease V. cholerae mutant in immunocompetent mice, which is not evident in neutropenic mice. Intrigued by this observation, we investigated the impact of neutrophils, as a central part of the innate immune system, on the pathogen V. cholerae in more detail. Our results demonstrate that V. cholerae induces formation of neutrophil extracellular traps (NETs) upon contact with neutrophils, while V. cholerae in return induces the two extracellular nucleases upon presence of NETs. We show that the V. cholerae wild type rapidly degrades the DNA component of the NETs by the combined activity of the two extracellular nucleases Dns and Xds. In contrast, NETs exhibit prolonged stability in presence of the double nuclease mutant. Finally, we demonstrate that Dns and Xds mediate evasion of V. cholerae from NETs and lower the susceptibility for extracellular killing in the presence of NETs. This report provides a first comprehensive characterization of the interplay between neutrophils and V. cholerae along with new evidence that the innate immune response impacts the colonization of V. cholerae in vivo. A limitation of this study is an inability for technical and physiological reasons to visualize intact NETs in the intestinal lumen of infected mice, but we can hypothesize that extracellular nuclease production by V. cholerae may enhance survival fitness of the pathogen through NET degradation. PMID:24039581

  16. Selectivity of Vibrio cholerae H-NOX for Gaseous Ligands Follows “Sliding Scale Rule” Hypothesis

    PubMed Central

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-lim

    2014-01-01

    Vc H-NOX (or VCA0720) is an H-NOX (heme-nitric oxide and oxygen binding) protein from facultative aerobic bacterium Vibrio cholerae. It shares significant sequence homology with soluble guanylyl cyclase (sGC), a NO sensor protein commonly found in animals. Similar to sGC, Vc H-NOX binds strongly to NO and CO with affinities of 0.27 nM and 0.77 ?M, respectively, but weakly to O2. When positioned in “sliding scale” plot {Tsai, A.-L. et. al. (2012) Biochemistry, 51, pp172-86}, the line connecting logKD(NO) and logKD(CO) of Vc H-NOX is almost superimposable with that of Ns H-NOX. Therefore, the measured affinities and kinetic parameters of gaseous ligands to Vc H-NOX provide more evidence to validate the “sliding scale rule” hypothesis. Like sGC, Vc H-NOX binds NO in multiple steps, forming first a 6-coordinate heme-NO complex with a rate of 1.1 × 109 M?1s?1, and then converts to a 5c heme-NO complex at a rate also dependent on [NO]. Although the formation of oxyferrous Vc H-NOX is not detectable under normal atmospheric oxygen level, ferrous Vc H-NOX is oxidized to ferric form at a rate of 0.06 s?1 when mixed with O2. Ferric Vc H-NOX exists as a mixture of high- and low-spin states and is influenced by binding to different ligands. Characterization of both ferric and ferrous Vc H-NOX and their complexes with various ligands lay the foundation for understanding the possible dual roles in gas and redox sensing of Vc H-NOX. PMID:24351060

  17. Culturable and VBNC Vibrio cholerae: interactions with chironomid egg masses and their bacterial population.

    PubMed

    Halpern, Malka; Landsberg, Ori; Raats, Dina; Rosenberg, Eugene

    2007-02-01

    Vibrio cholerae, the etiologic agent of cholera, is autochthonous to various aquatic environments. Recently, it was found that chironomid (nonbiting midges) egg masses serve as a reservoir for the cholera bacterium and that flying chironomid adults are possible windborne carriers of V. cholerae non-O1 non-O139. Chironomids are the most widely distributed insect in freshwater. Females deposit egg masses at the water's edge, and each egg mass contains eggs embedded in a gelatinous matrix. Hemagglutinin/protease, an extracellular enzyme of V. cholerae, was found to degrade chironomid egg masses and to prevent them from hatching. In a yearly survey, chironomid populations and the V. cholerae in their egg masses followed phenological succession and interaction of host-pathogen population dynamics. In this report, it is shown via FISH technique that most of the V. cholerae inhabiting the egg mass are in the viable but nonculturable (VBNC) state. The diversity of culturable bacteria from chironomid egg masses collected from two freshwater habitats was determined. In addition to V. cholerae, representatives of the following genera were isolated: Acinetobacter, Aeromonas, Klebsiella, Shewanella, Pseudomonas, Paracoccus, Exiguobacterium, and unidentified bacteria. Three important human pathogens, Aeromonas veronii, A. caviae, and A. hydrophila, were isolated from chironomid egg masses, indicating that chironomid egg masses may be a natural reservoir for pathogenic Aeromonas species in addition to V. cholerae. All isolates of V. cholerae were capable of degrading chironomid egg masses. This may help explain their host-pathogen relationship with chironomids. In contrast, almost none of the other bacteria that were isolated from the egg masses possessed this ability. Studying the interaction between chironomid egg masses, the bacteria inhabiting them, and V. cholerae could contribute to our understanding of the nature of the V. cholerae-egg mass interactions. PMID:17186156

  18. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    PubMed Central

    Collins, Andrew J.; Schleicher, Tyler R.; Rader, Bethany A.; Nyholm, Spencer V.

    2012-01-01

    The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/tandem mass spectrometry (LC-MS/MS) proteomic analyses. 454 high-throughput sequencing produced 650, 686 reads totaling 279.9?Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial-associated molecular patterns were identified. Among these was a complete open reading frame to a putative peptidoglycan recognition protein (EsPGRP5) with conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NF-?B signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative Real-Time PCR of complement-like genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes from adult squid with colonized light organs compared to those isolated from hosts where the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of E. scolopes. PMID:22590467

  19. Correlations between Clinical Features and Mortality in Patients with Vibrio vulnificus Infection

    PubMed Central

    Zhao, Hong; Xu, Lichen; Dong, Huihui; Hu, Jianhua; Gao, Hainv; Yang, Meifang; Zhang, Xuan; Chen, Xiaoming; Fan, Jun; Ma, Weihang

    2015-01-01

    Vibrio vulnificus is a common gram-negative bacterium, which might cause morbidity and mortality in patients following consumption of seafood or exposure to seawater in Southeast China. We retrospectively analyzed clinical data of patients with laboratory confirmed V. vulnificus infection. Twenty one patients were divided into a survival group and a non-surviving (or death) group according to their clinical outcome. Clinical data and measurements were statistically analyzed. Four patients (19.05%) died and five patients gave positive cultures from bile fluid, and 16 other patients gave positive culture from blood or blisters. Ten patients (47.62%) had an underlying liver disease and marine-related events were found in sixteen patients (76.2%). Patients with heavy drinking habits might be at increased mortality (p = 0.028). Clinical manifestations of cellulitis (47.6%), septic shock (42.9%) and multiple organ failure (28.6%) were statistically significant when comparing survivors and non-survivors (p = 0.035, p = 0.021 and p = 0.003, respectively). The laboratory results, including hemoglobin < 9.0 g/L (p = 0.012), platelets < 2.0×109 /L, prothrombin time activity (PTA) <20%, decreased serum creatinine and increased urea nitrogen were statistically significant (p = 0.012, p = 0.003, p = 0.028 and p = 0.028, respectively). Patients may be at a higher risk of mortality under situations where they have a history of habitual heavy alcoholic drink consumption (p = 0.028, OR = 22.5, 95%CI 1.5–335.3), accompanied with cellulitis, shock, multiple organ failure, and laboratory examinations that are complicated by decreased platelets, hemoglobin and significantly prolonged prothrombin time (PT). PMID:26274504

  20. VibrioBase: A Model for Next-Generation Genome and Annotation Database Development

    PubMed Central

    Choo, Siew Woh; Tan, Tze King; Mutha, Naresh V. R.; Wong, Guat Jah

    2014-01-01

    To facilitate the ongoing research of Vibrio spp., a dedicated platform for the Vibrio research community is needed to host the fast-growing amount of genomic data and facilitate the analysis of these data. We present VibrioBase, a useful resource platform, providing all basic features of a sequence database with the addition of unique analysis tools which could be valuable for the Vibrio research community. VibrioBase currently houses a total of 252 Vibrio genomes developed in a user-friendly manner and useful to enable the analysis of these genomic data, particularly in the field of comparative genomics. Besides general data browsing features, VibrioBase offers analysis tools such as BLAST interfaces and JBrowse genome browser. Other important features of this platform include our newly developed in-house tools, the pairwise genome comparison (PGC) tool, and pathogenomics profiling tool (PathoProT). The PGC tool is useful in the identification and comparative analysis of two genomes, whereas PathoProT is designed for comparative pathogenomics analysis of Vibrio strains. Both of these tools will enable researchers with little experience in bioinformatics to get meaningful information from Vibrio genomes with ease. We have tested the validity and suitability of these tools and features for use in the next-generation database development. PMID:25243218

  1. Spite and virulence in the bacterium Pseudomonas aeruginosa

    E-print Network

    Reece, Sarah

    Spite and virulence in the bacterium Pseudomonas aeruginosa R. Fredrik Inglisa,1 , Andy Gardnerb models, we carried out experiments using the bacterium Pseudomonas aeruginosa to test under what social infections. allelopathy bacteriocins disease kin selection microbial evolution In recent years there has been

  2. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  3. Characterization of the Secretomes of Two Vibrios Pathogenic to Mollusks

    PubMed Central

    Madec, Stéphanie; Pichereau, Vianney; Jacq, Annick; Paillard, Mathieu; Boisset, Claire; Guérard, Fabienne

    2014-01-01

    Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins (ECPs) of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each fraction on hemocyte cellular parameters (phagocytosis and adhesion). Fractions showing a significant effect were subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and 87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or proteins of unknown function (14 and 15 respectively). Interestingly, for V. aestuarianus, we noted the secretion of 3 extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease). For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis to further analyze the contribution of specific proteins in the virulence mechanisms of these species. PMID:25401495

  4. Evaluation of methods for enumeration of Vibrio parahaemolyticus from seafood.

    PubMed Central

    Karunasagar, I; Venugopal, M N; Karunasagar, I; Segar, K

    1986-01-01

    The efficiency of several enrichment broths in recovering Vibrio parahaemolyticus inoculated into fish homogenates was studied. Recovery by the most probable number technique was very low in all the broths, while direct plating on thiosulfate citrate bile salt sucrose agar yielded better recovery. A decrease in the enrichment time to 8 from 18 h did not improve recovery. At concentrations exceeding 2.5 micrograms/ml, polymyxin was inhibitory to V. parahaemolyticus. PMID:3767361

  5. Cloning of the cytotoxin-hemolysin gene of Vibrio vulnificus.

    PubMed Central

    Wright, A C; Morris, J G; Maneval, D R; Richardson, K; Kaper, J B

    1985-01-01

    Genes encoding the cytotoxin-hemolysin of Vibrio vulnificus were cloned in Escherichia coli by using the lytic cloning vector, lambda 1059. Subcloning in plasmid pBR325 resulted in the isolation of a 3.2-kilobase DNA fragment containing the cytotoxin gene. By using this fragment as a DNA probe, homologous gene sequences were detected in all 54 V. vulnificus strains studied; homologous sequences were present in none of 96 isolates from 29 other bacterial species. PMID:4066036

  6. Characterization of the secretomes of two vibrios pathogenic to mollusks.

    PubMed

    Madec, Stéphanie; Pichereau, Vianney; Jacq, Annick; Paillard, Mathieu; Boisset, Claire; Guérard, Fabienne; Paillard, Christine; Nicolas, Jean-Louis

    2014-01-01

    Vibrio tapetis causes the brown ring disease in the Japanese clam Ruditapes philippinarum while Vibrio aestuarianus is associated with massive oyster mortalities. As extracellular proteins are often associated with the virulence of pathogenic bacteria, we undertook a proteomic approach to characterize the secretomes of both vibrios. The extracellular proteins (ECPs) of both species were fractionated by SEC-FPLC and in vitro assays were performed to measure the effects of each fraction on hemocyte cellular parameters (phagocytosis and adhesion). Fractions showing a significant effect were subjected to SDS-PAGE, and proteins were identified by nano LC-MS/MS. 45 proteins were identified for V. aestuarianus and 87 for V. tapetis. Most of them belonged to outer membrane or were periplasmic, including porins or adhesins that were already described as virulence factors in other bacterial species. Others were transporter components, flagella proteins, or proteins of unknown function (14 and 15 respectively). Interestingly, for V. aestuarianus, we noted the secretion of 3 extracellular enzymes including the Vam metalloprotease and two other enzymes (one putative lipase and one protease). For V. tapetis, we identified five extracellular enymes, i.e. two different endochitinases, one protease, one lipase and an adhesin. A comparison of both secretomes also showed that only the putative extracellular lipase was common to both secretomes, underscoring the difference in pathogenicity mechanisms between these two species. Overall, these results characterize for the first time the secretomes of these two marine pathogenic vibrios and constitute a useful working basis to further analyze the contribution of specific proteins in the virulence mechanisms of these species. PMID:25401495

  7. Grimontia indica AK16T, sp. nov., Isolated from a Seawater Sample Reports the Presence of Pathogenic Genes Similar to Vibrio Genus

    PubMed Central

    Singh, Aditya; Vaidya, Bhumika; Khatri, Indu; Srinivas, T. N. R.; Subramanian, Srikrishna; Korpole, Suresh; Pinnaka, Anil Kumar

    2014-01-01

    Grimontia indica strain AK16T sp. nov. is the type strain of G. indica sp. nov. a new species within the genus Grimontia. This strain, whose genome is described here, was isolated from seawater sample collected from southeast coast of Palk Bay, India. G. indica AK16T is a Gram-negative, facultative aerobic rod shaped bacterium. There are only two other strains in the genus Grimontia one of which, Grimontia hollisae CIP 101886T, is a reported human pathogen isolated from human stool sample while the other, ‘Grimontia marina IMCC5001T’, was isolated from a seawater sample. As compared to the pathogenic strain Grimontia hollisae CIP 101886T, the strain AK16T lacks some genes for pathogenesis like the accessory colonization factors AcfA and AcfD, which are required for the colonization of the bacterium in the host body. While it carries some pathogenesis genes like OmpU, which are related to pathogenesis of Vibrio strains. This suggests that the life cycle of AK16T may include some pathogenic interactions with marine animal(s), or it may be an opportunistic pathogen. Study of the Grimontia genus is important because of the severe pathogenic traits exhibited by a member of the genus with only three species reported in total. The study will provide some vital information which may be useful in future clinical studies on the genus. PMID:24465608

  8. Overexpression of the tcp Gene Cluster Using the T7 RNA Polymerase/Promoter System and Natural Transformation-Mediated Genetic Engineering of Vibrio cholerae

    PubMed Central

    Borgeaud, Sandrine; Blokesch, Melanie

    2013-01-01

    The human pathogen and aquatic bacterium Vibrio cholerae belongs to the group of naturally competent bacteria. This developmental program allows the bacterium to take up free DNA from its surrounding followed by a homologous recombination event, which allows integration of the transforming DNA into the chromosome. Taking advantage of this phenomenon we genetically engineered V. cholerae using natural transformation and FLP recombination. More precisely, we adapted the T7 RNA polymerase/promoter system in this organism allowing expression of genes in a T7 RNA polymerase-dependent manner. We naturally transformed V. cholerae by adding a T7-specific promoter sequence upstream the toxin-coregulated pilus (tcp) gene cluster. In a V. cholerae strain, which concomitantly produced the T7 RNA polymerase, this genetic manipulation resulted in the overexpression of downstream genes. The phenotypes of the strain were also in line with the successful production of TCP pili. This provides a proof-of-principle that the T7 RNA polymerase/promoter system is functional in V. cholerae and that genetic engineering of this organism by natural transformation is a straightforward and efficient approach. PMID:23308292

  9. Development of a Taqman real-time PCR assay for rapid detection and quantification of Vibrio tapetis in extrapallial fluids of clams

    PubMed Central

    Richard, Gaëlle G.; Le Bris, Cédric; Paillard, Christine

    2015-01-01

    The Gram-negative bacterium Vibrio tapetis is known as the causative agent of Brown Ring Disease (BRD) in the Manila clam Venerupis (=Ruditapes) philippinarum. This bivalve is the second most important species produced in aquaculture and has a high commercial value. In spite of the development of several molecular methods, no survey has been yet achieved to rapidly quantify the bacterium in the clam. In this study, we developed a Taqman real-time PCR assay targeting virB4 gene for accurate and quantitative identification of V. tapetis strains pathogenic to clams. Sensitivity and reproducibility of the method were assessed using either filtered sea water or extrapallial fluids of clam injected with the CECT4600T V. tapetis strain. Quantification curves of V. tapetis strain seeded in filtered seawater (FSW) or extrapallial fluids (EF) samples were equivalent showing reliable qPCR efficacies. With this protocol, we were able to specifically detect V. tapetis strains down to 1.125 101 bacteria per mL of EF or FSW, taking into account the dilution factor used for appropriate template DNA preparation. This qPCR assay allowed us to monitor V. tapetis load both experimentally or naturally infected Manila clams. This technique will be particularly useful for monitoring the kinetics of massive infections by V. tapetis and for designing appropriate control measures for aquaculture purposes. PMID:26713238

  10. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    NASA Astrophysics Data System (ADS)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 ?/ng ml-1 cm-2, and reproducibility more than 11 times.

  11. Genome Wide Analysis for Rapid Identification of Vibrio Species.

    PubMed

    Kalia, Vipin Chandra; Kumar, Prasun; Kumar, Ravi; Mishra, Anjali; Koul, Shikha

    2015-12-01

    The highly conserved 16S rRNA (rrs) gene is generally used for bacterial identification. In organisms possessing multiple copies of rrs, high intra-genomic heterogeneity does not allow easy distinction among different species. In order to identify Vibrio species, a wide range of genes have been employed. There is an urgent requirement of a consensus gene, which can be used as biomarker for rapid identification. Eight sequenced genomes of Vibrio species were screened for selecting genes which were common among all the genomes. Out of 108 common genes, 24 genes of sizes varying from 0.11 to 3.94 kb were subjected to in silico digestion with 10 type II restriction endonucleases (RE). A few unique genes-dapF, fadA, hisD, ilvH, lpxC, recF, recR, rph and ruvB in combination with certain REs provided unique digestion patterns, which can be used as biomarkers. This protocol can be exploited for rapid diagnosis of Vibrio species. PMID:26543262

  12. Identification of Vibrio Isolates by a Multiplex PCR Assay and rpoB Sequence Determination?

    PubMed Central

    Tarr, Cheryl L.; Patel, Jayna S.; Puhr, Nancy D.; Sowers, Evangeline G.; Bopp, Cheryl A.; Strockbine, Nancy A.

    2007-01-01

    Vibrio, a diverse genus of aquatic bacteria, currently includes 72 species, 12 of which occur in human clinical samples. Of these 12, three species—Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus—account for the majority of Vibrio infections in humans. Rapid and accurate identification of Vibrio species has been problematic because phenotypic characteristics are variable within species and biochemical identification requires 2 or more days to complete. To facilitate the identification of human-pathogenic species, we developed a multiplex PCR that uses species-specific primers to amplify gene regions in four species (V. cholerae, V. parahaemolyticus, V. vulnificus, and V. mimicus). The assay was tested on a sample of 309 Vibrio isolates representing 26 named species (including 12 human pathogens) that had been characterized by biochemical methods. A total of 190 isolates that had been identified as one of the four target species all yielded results consistent with the previous classification. The assay identified an additional four V. parahaemolyticus isolates among the other 119 isolates. Sequence analysis based on rpoB was used to validate the multiplex results for these four isolates, and all clustered with other V. parahaemolyticus sequences. The rpoB sequences for 12 of 15 previously unidentified isolates clustered with other Vibrio species in a phylogenetic analysis, and three isolates appeared to represent unnamed Vibrio species. The PCR assay provides a simple, rapid, and reliable tool for identification of the major Vibrio pathogens in clinical samples, and rpoB sequencing provides an additional identification tool for other species in the genus Vibrio. PMID:17093013

  13. Proteome of the bacterium Mycoplasma gallisepticum.

    PubMed

    Demina, I A; Serebryakova, M V; Ladygina, V G; Rogova, M A; Zgoda, V G; Korzhenevskyi, D A; Govorun, V M

    2009-02-01

    Using modern proteomic assays, we have identified the products of gene expression and posttranslational modifications of proteins of the bacterium Mycoplasma gallisepticum S6. Combinations of different technologies of protein separation by electrophoresis and mass-spectrometric analysis gave us a total of 446 proteins, i.e. 61% of the annotated proteins of this microorganism. The Pro-Q Diamond and Pro-Q Emerald dye technology was used for fluorescent detection of ten phosphoproteins and two glycoproteins. The acylation of proteins was studied by electrophoresis after in vivo labeling with different 14C-labeled fatty acids, followed by autoradiography. Sixteen acylated proteins were identified, with a quarter of them involved in plasma membrane construction and another quarter involved in cell energy metabolism. PMID:19267672

  14. Agrobacterium tumefaciens is a diazotrophic bacterium

    SciTech Connect

    Kanvinde, L.; Sastry, G.R.K. )

    1990-07-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate {sup 15}N supplied as {sup 15}N{sub 2}. As with most other well-characterized diazotrophic bacteria, the presence of NH{sub 4}{sup +} in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship.

  15. Fluctuation-Enhanced Sensing of Bacterium Odors

    E-print Network

    Hung-Chih Chang; Laszlo B. Kish; Maria D. King; Chiman Kwan

    2009-01-22

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  16. Sediment and Vegetation as Reservoirs of Vibrio vulnificus in the Tampa Bay Estuary and Gulf of Mexico

    PubMed Central

    Chase, Eva; Young, Suzanne

    2015-01-01

    The opportunistic pathogen Vibrio vulnificus occurs naturally in estuarine habitats and is readily cultured from water and oysters under warm conditions but infrequently at ambient conditions of <15°C. The presence of V. vulnificus in other habitats, such as sediments and aquatic vegetation, has been explored much less frequently. This study investigated the ecology of V. vulnificus in water by culture and quantitative PCR (qPCR) and in sediment, oysters, and aquatic vegetation by culture. V. vulnificus samples were taken from five sites around Tampa Bay, FL. Levels determined by qPCR and culture were significantly correlated (P = 0.0006; r = 0.352); however, V. vulnificus was detected significantly more frequently by qPCR (85% of all samples) compared to culture (43%). Culturable V. vulnificus bacteria were recovered most frequently from oyster samples (70%), followed by vegetation and sediment (?50%) and water (43%). Water temperature, which ranged from 18.5 to 33.4°C, was positively correlated with V. vulnificus concentrations in all matrices but sediments. Salinity, which ranged from 1 to 35 ppt, was negatively correlated with V. vulnificus levels in water and sediments but not in other matrices. Significant interaction effects between matrix and temperature support the hypothesis that temperature affects V. vulnificus concentrations differently in different matrices and that sediment habitats may serve as seasonal reservoirs for V. vulnificus. V. vulnificus levels in vegetation have not been previously measured and reveal an additional habitat for this autochthonous estuarine bacterium. PMID:25636843

  17. Sediment and vegetation as reservoirs of Vibrio vulnificus in the Tampa Bay Estuary and Gulf of Mexico.

    PubMed

    Chase, Eva; Young, Suzanne; Harwood, Valerie J

    2015-04-01

    The opportunistic pathogen Vibrio vulnificus occurs naturally in estuarine habitats and is readily cultured from water and oysters under warm conditions but infrequently at ambient conditions of <15°C. The presence of V. vulnificus in other habitats, such as sediments and aquatic vegetation, has been explored much less frequently. This study investigated the ecology of V. vulnificus in water by culture and quantitative PCR (qPCR) and in sediment, oysters, and aquatic vegetation by culture. V. vulnificus samples were taken from five sites around Tampa Bay, FL. Levels determined by qPCR and culture were significantly correlated (P = 0.0006; r = 0.352); however, V. vulnificus was detected significantly more frequently by qPCR (85% of all samples) compared to culture (43%). Culturable V. vulnificus bacteria were recovered most frequently from oyster samples (70%), followed by vegetation and sediment (?50%) and water (43%). Water temperature, which ranged from 18.5 to 33.4°C, was positively correlated with V. vulnificus concentrations in all matrices but sediments. Salinity, which ranged from 1 to 35 ppt, was negatively correlated with V. vulnificus levels in water and sediments but not in other matrices. Significant interaction effects between matrix and temperature support the hypothesis that temperature affects V. vulnificus concentrations differently in different matrices and that sediment habitats may serve as seasonal reservoirs for V. vulnificus. V. vulnificus levels in vegetation have not been previously measured and reveal an additional habitat for this autochthonous estuarine bacterium. PMID:25636843

  18. VasH Is a Transcriptional Regulator of the Type VI Secretion System Functional in Endemic and Pandemic Vibrio cholerae?†

    PubMed Central

    Kitaoka, Maya; Miyata, Sarah T.; Brooks, Teresa M.; Unterweger, Daniel; Pukatzki, Stefan

    2011-01-01

    The Gram-negative bacterium Vibrio cholerae is the etiological agent of cholera, a disease characterized by the release of high volumes of watery diarrhea. Many medically important proteobacteria, including V. cholerae, carry one or multiple copies of the gene cluster that encodes the bacterial type VI secretion system (T6SS) to confer virulence or interspecies competitiveness. Structural similarity and sequence homology between components of the T6SS and the cell-puncturing device of T4 bacteriophage suggest that the T6SS functions as a molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Although our understanding of how the structural T6SS apparatus assembles is developing, little is known about how this system is regulated. Here, we report on the contribution of the activator of the alternative sigma factor 54, VasH, as a global regulator of the V. cholerae T6SS. Using bioinformatics and mutational analyses, we identified domains of the VasH polypeptide that are essential for its ability to initiate transcription of T6SS genes and established a universal role for VasH in endemic and pandemic V. cholerae strains. PMID:21949076

  19. Mutations in the IMD Pathway and Mustard Counter Vibrio cholerae Suppression of Intestinal Stem Cell Division in Drosophila

    PubMed Central

    Wang, Zhipeng; Hang, Saiyu; Purdy, Alexandra E.; Watnick, Paula I.

    2013-01-01

    ABSTRACT Vibrio cholerae is an estuarine bacterium and an intestinal pathogen of humans that causes severe epidemic diarrhea. In the absence of adequate mammalian models in which to study the interaction of V. cholerae with the host intestinal innate immune system, we have implemented Drosophila melanogaster as a surrogate host. We previously showed that immune deficiency pathway loss-of-function and mustard gain-of-function mutants are less susceptible to V. cholerae infection. We find that although the overall burden of intestinal bacteria is not significantly different from that of control flies, intestinal stem cell (ISC) division is increased in these mutants. This led us to examine the effect of V. cholerae on ISC division. We report that V. cholerae infection and cholera toxin decrease ISC division. Because IMD pathway and Mustard mutants, which are resistant to V. cholerae, maintain higher levels of ISC division during V. cholerae infection, we hypothesize that suppression of ISC division is a virulence strategy of V. cholerae and that accelerated epithelial regeneration protects the host against V. cholerae. Extension of these findings to mammals awaits the development of an adequate experimental model. PMID:23781070

  20. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates

    PubMed Central

    Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I.; Strauch, Eckhard

    2015-01-01

    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains. PMID:26694432

  1. In situ strain-level detection and identification of Vibrio parahaemolyticus using surface-enhanced Raman spectroscopy.

    PubMed

    Xu, Jiajie; Turner, Jeffrey W; Idso, Matthew; Biryukov, Stanley V; Rognstad, Laurel; Gong, Heng; Trainer, Vera L; Wells, Mark L; Strom, Mark S; Yu, Qiuming

    2013-03-01

    The outer membrane of a bacterium is composed of chemical and biological components that carry specific molecular information related to strains, growth stages, expressions to stimulation, and maybe even geographic differences. In this work, we demonstrate that the biochemical information embedded in the outer membrane can be used for rapid detection and identification of pathogenic bacteria using surface-enhanced Raman spectroscopy (SERS). We used seven different strains of the marine pathogen Vibrio parahaemolyticus as a model system. The strains represent four genetically distinct clades isolated from clinical and environmental sources in Washington, U.S.A. The unique quasi-3D (Q3D) plasmonic nanostructure arrays, optimized using finite-difference time-domain (FDTD) calculations, were used as SERS-active substrates for sensitive and reproducible detection of these bacteria. SERS barcodes were generated on the basis of SERS spectra and were used to successfully detect individual strains in both blind samples and mixtures. The sensing and detection methods developed in this work could have broad applications in the areas of environmental monitoring, biomedical diagnostics, and homeland security. PMID:23356387

  2. Response of Penaeus indicus females at two different stages of ovarian development to a lethal infection with Vibrio penaeicida.

    PubMed

    Avarre, J-C; Saulnier, D; Labreuche, Y; Ansquer, D; Tietz, A; Lubzens, Esther

    2003-01-01

    An association between vitellogenesis and the immune system was suggested in crustaceans from studies on plasma lipoproteins. The present research studies the effect of an experimentally induced bacterial infection on vitellogenesis in females of the shrimp Penaeus indicus, as a model for penaeid species. Pre-vitellogenic and vitellogenic P. indicus females were experimentally infected with an extremely pathogenic bacterium, Vibrio penaeicida. The peak in mortality occurred earlier in pre-vitellogenic animals than in vitellogenic ones, although the final mortality level ( approximately 64-74%) 52h post-infection was nearly the same for the two groups. Twenty hours after infection, the total number of haemocytes was significantly reduced in vitellogenic females while there was no change in the pre-vitellogenic group. Protein synthesis in ovaries was not significantly affected by infection, at the two stages of ovarian development. No differences were found in mRNA levels of shrimp ovarian peritrophin protein (SOP), but preliminary results showed that mRNA expression of vitellin (VT) was reduced in a heavily infected vitellogenic female. The total amount of lipids in the haemolymph of vitellogenic females was almost twice higher than that of pre-vitellogenic ones. However, there was no change in the total content of lipids, lipid classes and fatty acid distribution in haemolymph or hepatopancreas following infection. Although vitellogenic and pre-vitellogenic females probably respond differently to a lethal bacterial infection, physiological differences may be concealed by the rapid onset of mortality. PMID:12581716

  3. Role of Zooplankton Diversity in Vibrio cholerae Population Dynamics and in the Incidence of Cholera in the Bangladesh Sundarbans ?

    PubMed Central

    de Magny, Guillaume Constantin; Mozumder, Pronob K.; Grim, Christopher J.; Hasan, Nur A.; Naser, M. Niamul; Alam, Munirul; Sack, R. Bradley; Huq, Anwar; Colwell, Rita R.

    2011-01-01

    Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a severe watery, life-threatening diarrheal disease occurring predominantly in developing countries. V. cholerae, including both serogroups O1 and O139, is found in association with crustacean zooplankton, mainly copepods, and notably in ponds, rivers, and estuarine systems globally. The incidence of cholera and occurrence of pathogenic V. cholerae strains with zooplankton were studied in two areas of Bangladesh: Bakerganj and Mathbaria. Chitinous zooplankton communities of several bodies of water were analyzed in order to understand the interaction of the zooplankton population composition with the population dynamics of pathogenic V. cholerae and incidence of cholera. Two dominant zooplankton groups were found to be consistently associated with detection of V. cholerae and/or occurrence of cholera cases, namely, rotifers and cladocerans, in addition to copepods. Local differences indicate there are subtle ecological factors that can influence interactions between V. cholerae, its plankton hosts, and the incidence of cholera. PMID:21764957

  4. Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species

    PubMed Central

    Gauglitz, Julia M.; Butler, Alison

    2013-01-01

    In response to iron deplete aerobic conditions, bacteria often secrete low molecular weight, high-affinity iron(III)-complexing ligands, siderophores, to solubilize and sequester iron(III). Many marine siderophores are amphiphilic and are produced in suites, wherein each member within a particular suite has the same iron(III)-binding polar head group which is appended by one or two fatty acids of varying length, degree of unsaturation and hydroxylation, establishing the suite composition. We report herein the isolation and structural characterization of a suite of siderophores from marine bacterial isolate Vibrio sp. Nt1. Based on structural analysis, this suite of siderophores, the moanachelins, is amphiphilic and composed of two N-acetyl, N-hydroxy D-ornithines, one N-acetyl, N-hydroxy L-ornithine and either a glycine or an L-alanine, appended with various saturated and unsaturated fatty acid tails. The variation in the small side-chain amino acid is the first occurrence of variation in the peptidic head group structure of a set of siderophores produced by a single bacterium. PMID:23564034

  5. Application of the VPp1 bacteriophage combined with a coupled enzyme system in the rapid detection of Vibrio parahaemolyticus.

    PubMed

    Peng, Yong; Jin, Yanqiu; Lin, Hong; Wang, Jingxue; Khan, Muhammad Naseem

    2014-03-01

    For rapid and quantitative detection of Vibrio parahaemolyticus, a method combining the specific lysis of bacteriophages with a bacterial luciferase-flavin mononucleotide:nicotinamide adenine dinucleotide oxidoreductase bioluminescent system in vitro was developed. A V. parahaemolyticus detection system was established by optimizing three main influencing factors: bacteriophage titer, volume ratio of the bacteriophage to its host bacterium, and lysis time. A standard curve between the number of bacteria and the luminescence intensity of the coupled enzyme system was studied and revealed a good linear relationship. More than 10(7)colony-forming units (cfu)·ml(-1) bacteria in pure culture and >10(8) cfu·ml(-1) bacteria in oyster samples were readily detected without pre-enrichment. Furthermore, >10(0) cfu·ml(-1) bacteria in oyster samples were readily detected after 4h of enrichment culture. Because of its rapid detection, high specificity, and simplicity in operation, this method is an effective tool for detecting living bacteria in food and environmental samples. PMID:24440165

  6. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates.

    PubMed

    Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I; Strauch, Eckhard

    2015-01-01

    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains. PMID:26694432

  7. Effect of site-directed mutagenesis at the GGEEF domain of the biofilm forming GGEEF protein from Vibrio cholerae.

    PubMed

    Chouhan, Om Prakash; Bandekar, Divya; Hazra, Mousumi; Baghudana, Ashish; Hazra, Saugata; Biswas, Sumit

    2016-12-01

    Vibrio cholerae, the cause of seven noted pandemics, leads a dual lifecycle-one in the human host in its virulent form, and the other as a sessile, non-virulent bacterium in aquatic bodies in surface biofilms. Surface biofilms have been attributed to be associated with a ubiquitous protein domain present in all branches of bacteria, known as the GGD(/E)EF domain. While the diguanlyate cyclase activities of these proteins are universally established, the role of these proteins as diguanlyate-specific phosphodiesterases in conjunction with a EAL domain has also been reported. The VC0395_0300 protein from V. cholerae which shows biofilm forming abilities also acts as a phosphodiesterase. Interestingly, this GGD(/E)EF protein contains a EAL site in the reverse orientation. We attempted to mutate the GGEEF signature along the sequence by site-directed mutagenesis. The resultant mutants (Sebox5-7) did not show much difference in phosphodiesterase activity in comparison with the wild type protein (Sebox3), indicating the independence of the phosphodiesterase activity of the protein from the GGD(/E)EF domain. However, the ability of the mutants to form surface biofilm was significantly lesser in the case of mutations in the three central positions of the signature domain. PMID:26728467

  8. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA

    SciTech Connect

    Kelly, R.; Bolitho, M; Higgins, D; Lu, W; Ng, W; Jeffrey, P; Rabinowitz, J; Semmelhack, M; Hughson, F; Bassler, B

    2009-01-01

    Vibrio cholerae, the bacterium that causes the disease cholera, controls virulence factor production and biofilm development in response to two extracellular quorum-sensing molecules, called autoinducers. The strongest autoinducer, called CAI-1 (for cholera autoinducer-1), was previously identified as (S)-3-hydroxytridecan-4-one. Biosynthesis of CAI-1 requires the enzyme CqsA. Here, we determine the CqsA reaction mechanism, identify the CqsA substrates as (S)-2-aminobutyrate and decanoyl coenzyme A, and demonstrate that the product of the reaction is 3-aminotridecan-4-one, dubbed amino-CAI-1. CqsA produces amino-CAI-1 by a pyridoxal phosphate-dependent acyl-CoA transferase reaction. Amino-CAI-1 is converted to CAI-1 in a subsequent step via a CqsA-independent mechanism. Consistent with this, we find cells release {ge}100 times more CAI-1 than amino-CAI-1. Nonetheless, V. cholerae responds to amino-CAI-1 as well as CAI-1, whereas other CAI-1 variants do not elicit a quorum-sensing response. Thus, both CAI-1 and amino-CAI-1 have potential as lead molecules in the development of an anticholera treatment.

  9. Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non-susceptible bivalve species

    E-print Network

    Allam, Bassem

    Effects of the pathogenic Vibrio tapetis on defence factors of susceptible and non the effect of challenge with Vibrio tapetis, the etiologic agent of brown ring disease (BRD) in clams; Defence-related factors; Vibrio tapetis * Corresponding author. Fax: C1 631 632 8915. E-mail address

  10. The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different

    E-print Network

    van Aalten, Daan

    The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding Laboratory (EMBL), Outstation Hamburg at DESY, Hamburg, Germany Abstract Vibrio cholerae is a bacterial, Konarev PV, et al. (2012) The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure

  11. Received 28 Jun 2013 | Accepted 5 Mar 2014 | Published 1 Apr 2014 The Vibrio cholerae type VI secretion system

    E-print Network

    MacMillan, Andrew

    ARTICLE Received 28 Jun 2013 | Accepted 5 Mar 2014 | Published 1 Apr 2014 The Vibrio cholerae type Provenzano2,3 & Stefan Pukatzki1 Vibrio cholerae is a Gram-negative bacterial pathogen that consists of over biosynthesis genes are encoded within Vibrio pathogenicity island-1 (VPI-1), and TCP protruding from

  12. Abstract Vibrio fischeri strains isolated from light or-gans of the sepiolid squid Euprymna scolpes are non-vis-

    E-print Network

    McFall-Ngai, Margaret

    Abstract Vibrio fischeri strains isolated from light or- gans of the sepiolid squid Euprymna for their pleiotropic conversion upon colonization of the squid. Key words Vibrio fischeri · Spontaneous variant between Vibrio fischeri and the sepiolid squid Euprymna scolopes (McFall-Ngai and Ruby 1991), the bacteria

  13. Natural transformation of Vibrio fischeri requires tfoX and tfoYemi_2250 2302..2311

    E-print Network

    Ruby, Edward G.

    Natural transformation of Vibrio fischeri requires tfoX and tfoYemi_2250 2302..2311 Amber Pollack indicated that natural genetic transformation occurs in Vibrio cholerae, and that it requires both induction of the genus Vibrio. Like V. cholerae, when grown in chitohexaose, cells of V. fischeri are able to take up

  14. The Novel Sigma Factor-Like Regulator RpoQ Controls Luminescence, Chitinase Activity, and Motility in Vibrio fischeri

    E-print Network

    McFall-Ngai, Margaret

    in Vibrio fischeri Xiaodan Cao,a,b Sarah V. Studer,a Karen Wassarman,c Yuanxing Zhang,b Edward G. Ruby of Wisconsin--Madison, Madison, Wisconsin, USAc ABSTRACT Vibrio fischeri, the bacterial symbiont regulatory component in the quorum-signaling pathway of Vibrio fischeri. RpoQ is a novel protein in the Rpo

  15. Page 1 of 4 GenMAPP Gene Database for Vibrio cholerae O1 biovar El Tor str. N16961

    E-print Network

    Dahlquist, Kam D.

    Page 1 of 4 GenMAPP Gene Database for Vibrio cholerae O1 biovar El Tor str. N16961 Vc. This ReadMe describes a Gene Database for Vibrio cholerae O1 biovar El Tor str. N16961 that was built Specifications a. Gene ID Systems This Vibrio cholerae Gene Database is UniProt-centric in that the main data

  16. Inhibition of SypG-Induced Biofilms and Host Colonization by the Negative Regulator SypE in Vibrio

    E-print Network

    McFall-Ngai, Margaret

    Inhibition of SypG-Induced Biofilms and Host Colonization by the Negative Regulator SypE in Vibrio Medical Center, Maywood, Illinois, United States of America Abstract Vibrio fischeri produces a specific by the Negative Regulator SypE in Vibrio fischeri. PLoS ONE 8(3): e60076. doi:10.1371/journal.pone.0060076 Editor

  17. Page 1 of 4 GenMAPP Gene Database for Vibrio cholerae O1 biovar El Tor str. N16961

    E-print Network

    Dahlquist, Kam D.

    Page 1 of 4 GenMAPP Gene Database for Vibrio cholerae O1 biovar El Tor str. N16961 VcMAPP requires a separate Gene Database for each species. This ReadMe describes a Gene Database for Vibrio Specifications a. Gene ID Systems This Vibrio cholerae Gene Database is UniProt-centric in that the main data

  18. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment

    PubMed Central

    Orata, Fabini D.; Kirchberger, Paul C.; Méheust, Raphaël; Barlow, E. Jed; Tarr, Cheryl L.; Boucher, Yan

    2015-01-01

    Vibrio metoecus is the closest relative of Vibrio cholerae, the causative agent of the potent diarrheal disease cholera. Although the pathogenic potential of this new species is yet to be studied in depth, it has been co-isolated with V. cholerae in coastal waters and found in clinical specimens in the United States. We used these two organisms to investigate the genetic interaction between closely related species in their natural environment. The genomes of 20 V. cholerae and 4 V. metoecus strains isolated from a brackish coastal pond on the US east coast, as well as 4 clinical V. metoecus strains were sequenced and compared with reference strains. Whole genome comparison shows 86–87% average nucleotide identity (ANI) in their core genes between the two species. On the other hand, the chromosomal integron, which occupies approximately 3% of their genomes, shows higher conservation in ANI between species than any other region of their genomes. The ANI of 93–94% observed in this region is not significantly greater within than between species, meaning that it does not follow species boundaries. Vibrio metoecus does not encode toxigenic V. cholerae major virulence factors, the cholera toxin and toxin-coregulated pilus. However, some of the pathogenicity islands found in pandemic V. cholerae were either present in the common ancestor it shares with V. metoecus, or acquired by clinical and environmental V. metoecus in partial fragments. The virulence factors of V. cholerae are therefore both more ancient and more widespread than previously believed. There is high interspecies recombination in the core genome, which has been detected in 24% of the single-copy core genes, including genes involved in pathogenicity. Vibrio metoecus was six times more often the recipient of DNA from V. cholerae as it was the donor, indicating a strong bias in the direction of gene transfer in the environment. PMID:26454015

  19. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment.

    PubMed

    Orata, Fabini D; Kirchberger, Paul C; Méheust, Raphaël; Barlow, E Jed; Tarr, Cheryl L; Boucher, Yan

    2015-01-01

    Vibrio metoecus is the closest relative of Vibrio cholerae, the causative agent of the potent diarrheal disease cholera. Although the pathogenic potential of this new species is yet to be studied in depth, it has been co-isolated with V. cholerae in coastal waters and found in clinical specimens in the United States. We used these two organisms to investigate the genetic interaction between closely related species in their natural environment. The genomes of 20 V. cholerae and 4 V. metoecus strains isolated from a brackish coastal pond on the US east coast, as well as 4 clinical V. metoecus strains were sequenced and compared with reference strains. Whole genome comparison shows 86-87% average nucleotide identity (ANI) in their core genes between the two species. On the other hand, the chromosomal integron, which occupies approximately 3% of their genomes, shows higher conservation in ANI between species than any other region of their genomes. The ANI of 93-94% observed in this region is not significantly greater within than between species, meaning that it does not follow species boundaries. Vibrio metoecus does not encode toxigenic V. cholerae major virulence factors, the cholera toxin and toxin-coregulated pilus. However, some of the pathogenicity islands found in pandemic V. cholerae were either present in the common ancestor it shares with V. metoecus, or acquired by clinical and environmental V. metoecus in partial fragments. The virulence factors of V. cholerae are therefore both more ancient and more widespread than previously believed. There is high interspecies recombination in the core genome, which has been detected in 24% of the single-copy core genes, including genes involved in pathogenicity. Vibrio metoecus was six times more often the recipient of DNA from V. cholerae as it was the donor, indicating a strong bias in the direction of gene transfer in the environment. PMID:26454015

  20. Effect of Temperature on Growth of Vibrio paraphemolyticus and Vibrio vulnificus in Flounder, Salmon Sashimi and Oyster Meat

    PubMed Central

    Kim, Yoo Won; Lee, Soon Ho; Hwang, In Gun; Yoon, Ki Sun

    2012-01-01

    Vibrio parahaemolyticus and Vibrio vulnificus are the major pathogenic Vibrio species which contaminate ready-to-eat seafood. The purpose of this study was to evaluate the risk of human illness resulting from consumption of ready-to-eat seafood such as sashimi and raw oyster meat due to the presence of V. parahaemolyticus and V. vulnificus. We compared the growth kinetics of V. parahaemolyticus and V. vulnificus strains in broth and ready-to-eat seafood, including flounder and salmon sashimi, as a function of temperature. The growth kinetics of naturally occurring V. vulnificus in raw oyster meat was also evaluated. The minimum growth temperatures of V. parahaemolyticus and V. vulnificus in broth were 13 °C and 11 °C, respectively. Overall, significant differences in lag time (LT) and specific growth rate (SGR) values between flounder and salmon sashimi were observed at temperatures ranging from 13 °C to 30 °C (p < 0.05). The growth of naturally occurring V. vulnificus reached stationary phase at ~4 log CFU/g in oysters, regardless of the storage temperature. This data indicates that the population of V. vulnificus in oysters did not reach the maximum population density as observed in the broth, where growth of V. vulnificus and V. parahaemolyticus isolated from oysters grew up to >8 log CFU/mL. PMID:23330227

  1. Complete genome sequence for the shellfish pathogen Vibrio coralliilyticus RE98 isolated from a shellfish hatchery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp), and two...

  2. CHITINASE DETERMINANTS OF 'VIBRIO VULNIFICUS': GENE CLONING AND APPLICATIONS OF A CHITINASE PROBE

    EPA Science Inventory

    To initiate study of the genetic control of chitinolytic activity in vibrios, the chitobiase gene was isolated by cloning chromosomal DNA prepared from Vibrio vulnificus. Chimeric plasmids were constructed from Sau3A I partial digests of chromosomal DNA by ligating 5 to 15-Kiloba...

  3. Draft Genome Sequence of Vibrio owensii Strain SH-14, Which Causes Shrimp Acute Hepatopancreatic Necrosis Disease

    PubMed Central

    Liu, Liyuan; Xiao, Jinzhou; Xia, Xiaoming; Pan, Yingjie; Yan, Shuling

    2015-01-01

    We sequenced Vibrio owensii strain SH-14, which causes serious acute hepatopancreatic necrosis disease (AHPND) in shrimp. Sequence analysis showed a large extrachromosomal plasmid, which encoded pir toxin genes and shared highly sequence similarity with the one observed in AHPND-causing Vibrio parahaemolyticus strains. The results suggest that this plasmid appears to play an important role in shrimp AHPND. PMID:26634753

  4. [Isolation and identification of Vibrio genus microorganisms in the Quibu River].

    PubMed

    Bravo Fariñas, L; Monté Boada, R; Valdés Ramos, E; Dumas Valdivieso, S

    1991-01-01

    The Quibú River sewages were studied during 9 weeks, in order to isolate and characterize Vibrio genus microorganisms. Twenty Moore's hyssops were placed 2 or 3 times a week on the banks of the river, where each of them was kept in a passive capture stay for 24 hours. In all the hyssops placed, Vibrio cholerae non-01 were isolated. PMID:9768187

  5. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA

    E-print Network

    McFall-Ngai, Margaret

    Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA Jeffrey L, Maywood, IL, USA. Summary Bioluminescence generated by the Vibrio fischeri Lux system consumes oxygen environment of an established infection. Introduction Bacterial bioluminescence is a tightly regulated energy

  6. A SIMPLE FLUOROGENIC METHOD TO ASSESS VIBRIO CHOLERAE AND AEROMONAS HYDROPHILA IN WELL WATER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We present the colony overlay procedure for peptidases (COPP), a simple, fluorogenic assay for the rapid detection of Vibrio cholerae and Aeromonas hydrophila in fresh well water. Substrate cleavage by enzymes present in Vibrio and Aeromonas species produces fluorescent foci on UV-light irradiated ...

  7. Desulfonatronum Thiodismutans sp. nov., a Novel Alkaliphilic, Sulfate-reducing Bacterium Capable of Lithoautotrophic Growth

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Cleland, David; Krader, Paul

    2003-01-01

    A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1(sup T), was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0.6-0.7 x 1.2-2.7 microns in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15-48 C (optimum, 37 C), > 1-7 % NaCI, w/v (optimum, 3%) and pH 8.0-10.0 (optimum, 9.5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1(sup T) uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1(sup T) is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63.0 mol% (HPLC). DNA-DNA hybridization with the most closely related species, Desulfonatronum lacustre Z-7951(sup T), exhibited 51 % homology. Also, the genome size (1.6 x 10(exp 9) Da) and T(sub m) value of the genomic DNA (71 +/- 2 C) for strain MLF1(sup T) were significantly different from the genome size (2.1 x 10(exp 9) Da) and T(sub m) value (63 +/- 2 C) for Desulfonatronum lacustre Z-7951(sup T). On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus Desulfonatronum, for which the name Desulfonatronum thiodismutans sp. nov. is proposed (the type strain is MLF1(sup T) = ATCC BAA-395(sup T) = DSM 14708(sup T)).

  8. Recombinant production and characterization of a highly active alkaline phosphatase from marine bacterium Cobetia marina.

    PubMed

    Golotin, Vasily; Balabanova, Larissa; Likhatskaya, Galina; Rasskazov, Valery

    2015-04-01

    The psychrophilic marine bacterium, Cobetia marina, recovered from the mantle tissue of the marine mussel, Crenomytilus grayanus, which contained a gene encoding alkaline phosphatase (AP) with apparent biotechnology advantages. The enzyme was found to be more efficient than its counterparts and showed k cat value 10- to 100-fold higher than those of all known commercial APs. The enzyme did not require the presence of exogenous divalent cations and dimeric state of its molecule for activity. The recombinant enzyme (CmAP) production and purification were optimized with a final recovery of 2 mg of the homogenous protein from 1 L of the transgenic Escherichia coli Rosetta(DE3)/Pho40 cells culture. CmAP displayed a half-life of 16 min at 45 °C and 27 min at 40 °C in the presence of 2 mM EDTA, thus suggesting its relative thermostability in comparison with the known cold-adapted analogues. A high concentration of EDTA in the incubation mixture did not appreciably inhibit CmAP. The enzyme was stable in a wide range of pH (6.0-11.0). CmAP exhibited its highest activity at the reaction temperature of 40-50 °C and pH 9.5-10.3. The structural features of CmAP could be the reason for the increase in its stability and catalytic turnover. We have modeled the CmAP 3D structure on the base of the high-quality experimental structure of the close homologue Vibrio sp. AP (VAP) and mutated essential residues predicted to break Mg(2+) bonds in CmAP. It seems probable that the intrinsically tight binding of catalytic and structural metal ions together with the flexibility of intermolecular and intramolecular links in CmAP could be attributed to the adapted mutualistic lifestyle in oceanic waters. PMID:25260971

  9. Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the Coastal and Estuarine Waters of Louisiana, Maryland, Mississippi, and Washington (United States)

    PubMed Central

    Bowers, John C.; Griffitt, Kimberly J.; Molina, Vanessa; Clostio, Rachel W.; Pei, Shaofeng; Laws, Edward; Paranjpye, Rohinee N.; Strom, Mark S.; Chen, Arlene; Hasan, Nur A.; Huq, Anwar; Noriea, Nicholas F.; Grimes, D. Jay; Colwell, Rita R.

    2012-01-01

    Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations. The contribution of salinity, conductivity, turbidity, and dissolved organic carbon to the incidence and distribution of Vibrio spp. has also been reported. Here, a multicoastal, 21-month study was conducted to determine relationships between environmental parameters and V. parahaemolyticus and V. vulnificus populations in water, oysters, and sediment in three coastal areas of the United States. Because ecologically unique sites were included in the study, it was possible to analyze individual parameters over wide ranges. Molecular methods were used to detect genes for thermolabile hemolysin (tlh), thermostable direct hemolysin (tdh), and tdh-related hemolysin (trh) as indicators of V. parahaemolyticus and the hemolysin gene vvhA for V. vulnificus. SST and suspended particulate matter were found to be strong predictors of total and potentially pathogenic V. parahaemolyticus and V. vulnificus. Other predictors included chlorophyll a, salinity, and dissolved organic carbon. For the ecologically unique sites included in the study, SST was confirmed as an effective predictor of annual variation in vibrio abundance, with other parameters explaining a portion of the variation not attributable to SST. PMID:22865080

  10. Exit Mechanisms of the Intracellular Bacterium Ehrlichia

    PubMed Central

    Thomas, Sunil; Popov, Vsevolod L.; Walker, David H.

    2010-01-01

    Background The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the causative agent of human monocytotropic ehrlichiosis. Ehrlichia muris and Ixodes ovatus Ehrlichia (IOE) are agents of mouse models of ehrlichiosis. The mechanism by which Ehrlichia are transported from an infected host cell to a non-infected cell has not been demonstrated. Methodology/Principal Findings Using fluorescence microscopy and transmission and scanning electron microscopy, we demonstrated that Ehrlichia was transported through the filopodia of macrophages during early stages of infection. If host cells were not present in the vicinity of an Ehrlichia-infected cell, the leading edge of the filopodium formed a fan-shaped structure filled with the pathogen. Formation of filopodia in the host macrophages was inhibited by cytochalasin D and ehrlichial transport were prevented due to the absence of filopodia formation. At late stages of infection the host cell membrane was ruptured, and the bacteria were released. Conclusions/Significance Ehrlichia are transported through the host cell filopodium during initial stages of infection, but are released by host cell membrane rupture during later stages of infection. PMID:21187937

  11. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus

    PubMed Central

    Boyd, E Fidelma; Cohen, Ana Luisa V; Naughton, Lynn M; Ussery, David W; Binnewies, Tim T; Stine, O Colin; Parent, Michelle A

    2008-01-01

    Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup emerged in Southeast Asia causing large outbreaks and rapid hospitalizations. This new highly virulent strain is now globally disseminated. Results We performed a four-way BLAST analysis on the genome sequence of V. parahaemolyticus RIMD2210633, an O3:K6 isolate from Japan recovered in 1996, versus the genomes of four published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions included an integron, f237 phage, 2 type III secretion systems (T3SS), a type VI secretion system (T6SS) and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7). Comparative genomic analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983, identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not encode 8 of the 24 regions unique to RMID, including a T6SS, which suggests an additional virulence mechanism in RIMD2210633. The distribution of only the VPaI regions was highly variable among a collection of 42 isolates and phylogenetic analysis of these isolates show that these regions are confined to a pathogenic clade. Conclusion Our data show that there is considerable genomic flux in this species and that the new highly virulent clone arose from an O3:K6 isolate that acquired at least seven novel regions, which included both a T3SS and a T6SS. PMID:18590559

  12. Vibrio fetus Infection in Man: a Serological Test

    PubMed Central

    Bokkenheuser, Victor

    1972-01-01

    Antigen preparations derived from a typical human strain of Vibrio fetus were employed in four tests. Of these, the indirect bacterial hemagglutination test proved most sensitive. By this test, antibodies titering 320 to 3,200 were found in five of eight patients with confirmed infections. Two patients without antibodies were on antimetabolites. Antigenic relationship with other compounds, and in particular with Brucella organisms, was not observed. No sero-reactors were found among 184 apparently healthy young men; of 401 unselected hospital patients, four had low sero-titers. PMID:4673792

  13. Do Protozoa Control the Elimination of Vibrio choleraein Brackish Water?

    NASA Astrophysics Data System (ADS)

    Martínez Pérez, María Elena; Macek, Miroslav; Castro Galván, María Teresa

    2004-05-01

    Elimination of inoculated Vibrio cholerae (107 cells ml-1) within a brackish water bacteria assemblage (Mecoacán Lagoon, State of Tabasco, Mexico) was studied in laboratory microcosms with filtration-fractionated water. Feeding of a ciliate, Cyclidium glaucoma was evaluated using fluorescently labelled V. cholerae o1. Even though V. cholerae was not exploited as the major food source, ciliates were able to eliminate it efficiently. An addition of chitin directly supported the growth of bacteria, although not so much of V. cholerae, and indirectly the growth of the protistan assemblage. Generally, the changes in a bacterial assemblage structure were the most important in V. cholerae elimination.

  14. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    SciTech Connect

    Dees, C.; Ringleberg, D.; Scott, T.C.; Phelps, T.

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  15. Characterization of the cellulose-degrading bacterium NCIMB 10462

    SciTech Connect

    Dees, C.; Scott, T.C.; Phelps, T.J.

    1995-12-31

    The gram-negative cellulase-producing bacterium NCIMB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulose. Because of renewed interest in cellulose-degrading bacteria for use in the bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its true metabolic potential. Metabolic and physical characterization of NCIMB 10462 revealed that this is an alkalophilic, non-fermentative, gram-negative, oxidase-positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium has few characteristics consistent with a classification of P. fluorescens and a very low probability match with the genus Sphingomonas. However, total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIMB 10462 grows best aerobically, but also grows well in complex media under reducing conditions. NCIMB 10462 grows slowly under anaerobic conditions on complex media, but growth on cellulosic media occurred only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIMB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is its ability to degrade cellulose, we suggest that it be called Pseudomonas cellulosa.

  16. Persistence, Seasonal Dynamics and Pathogenic Potential of Vibrio Communities from Pacific Oyster Hemolymph

    PubMed Central

    Wendling, Carolin C.; Batista, Frederico M.; Wegner, K. Mathias

    2014-01-01

    Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods. PMID:24728233

  17. The human pathogenic vibrios--a public health update with environmental perspectives.

    PubMed Central

    West, P. A.

    1989-01-01

    Pathogenic Vibrio species are naturally-occurring bacteria in freshwater and saline aquatic environments. Counts of free-living bacteria in water are generally less than required to induce disease. Increases in number of organisms towards an infective dose can occur as water temperatures rise seasonally followed by growth and concentration of bacteria on higher animals, such as chitinous plankton, or accumulation by shellfish and seafood. Pathogenic Vibrio species must elaborate a series of virulence factors to elicit disease in humans. Activities which predispose diarrhoeal and extraintestinal infections include ingestion of seafood and shellfish and occupational or recreational exposure to natural aquatic environments, especially those above 20 degrees C. Travel to areas endemic for diseases due to pathogenic Vibrio species may be associated with infections. Host risk factors strongly associated with infections are lack of gastric acid and liver disorders. Involvement of pathogenic Vibrio species in cases of diarrhoea should be suspected especially if infection is associated with ingestion of seafood or shellfish, raw or undercooked, in the previous 72 h. Vibrio species should be suspected in any acute infection associated with wounds sustained or exposed in the marine or estuarine environment. Laboratories serving coastal areas where infection due to pathogenic Vibrio species are most likely to occur should consider routine use of TCBS agar and other detection regimens for culture of Vibrio species from faeces, blood and samples from wound and ear infections. PMID:2673820

  18. Isolation of Vibrio alginolyticus and Vibrio splendidus from Aquacultured Carpet Shell Clam (Ruditapes decussatus) Larvae Associated with Mass Mortalities

    PubMed Central

    Gómez-León, J.; Villamil, L.; Lemos, M. L.; Novoa, B.; Figueras, A.

    2005-01-01

    Two episodes of mortality of cultured carpet shell clams (Ruditapes decussatus) associated with bacterial infections were recorded during 2001 and 2002 in a commercial hatchery located in Spain. Vibrio alginolyticus was isolated as the primary organism from moribund clam larvae that were obtained during the two separate events. Vibrio splendidus biovar II, in addition to V. alginolyticus, was isolated as a result of a mixed Vibrio infection from moribund clam larvae obtained from the second mortality event. The larval mortality rates for these events were 62 and 73%, respectively. Mortality was also detected in spat. To our knowledge, this is the fist time that these bacterial species have been associated with larval and juvenile carpet shell clam mortality. The bacterial strains were identified by morphological and biochemical techniques and also by PCR and sequencing of a conserved region of the 16S rRNA gene. In both cases bacteria isolated in pure culture were inoculated into spat of carpet shell clams by intravalvar injection and by immersion. The mortality was attributed to the inoculated strains, since the bacteria were obtained in pure culture from the soft tissues of experimentally infected clams. V. alginolyticus TA15 and V. splendidus biovar II strain TA2 caused similar histological lesions that affected mainly the mantle, the velum, and the connective tissue of infected organisms. The general enzymatic activity of both live cells and extracellular products (ECPs), as evaluated by the API ZYM system, revealed that whole bacterial cells showed greater enzymatic activity than ECPs and that the activity of most enzymes ceased after heat treatment (100°C for 10 min). Both strain TA15 and strain TA2 produced hydroxamate siderophores, although the activity was greater in strain TA15. ECPs from both bacterial species at high concentrations, as well as viable bacteria, caused significant reductions in hemocyte survival after 4 h of incubation, whereas no significant differences in viability were observed during incubation with heat-killed bacteria. PMID:15640176

  19. Colonization State Influences the Hemocyte Proteome in a Beneficial Squid–Vibrio Symbiosis*

    PubMed Central

    Schleicher, Tyler R.; VerBerkmoes, Nathan C.; Shah, Manesh; Nyholm, Spencer V.

    2014-01-01

    The squid Euprymna scolopes and the luminescent bacterium Vibrio fischeri form a highly specific beneficial light organ symbiosis. Not only does the host have to select V. fischeri from the environment, but it must also prevent subsequent colonization by non-symbiotic microorganisms. Host macrophage-like hemocytes are believed to play a role in mediating the symbiosis with V. fischeri. Previous studies have shown that the colonization state of the light organ influences the host's hemocyte response to the symbiont. To further understand the molecular mechanisms behind this process, we used two quantitative mass-spectrometry-based proteomic techniques, isobaric tags for relative and absolute quantification (iTRAQ) and label-free spectral counting, to compare and quantify the adult hemocyte proteomes from colonized (sym) and uncolonized (antibiotic-treated/cured) squid. Overall, iTRAQ allowed for the quantification of 1,024 proteins with two or more peptides. Thirty-seven unique proteins were determined to be significantly different between sym and cured hemocytes (p value < 0.05), with 20 more abundant proteins and 17 less abundant in sym hemocytes. The label-free approach resulted in 1,241 proteins that were identified in all replicates. Of 185 unique proteins present at significantly different amounts in sym hemocytes (as determined by spectral counting), 92 were more abundant and 93 were less abundant. Comparisons between iTRAQ and spectral counting revealed that 30 of the 37 proteins quantified via iTRAQ exhibited trends similar to those identified by the label-free method. Both proteomic techniques mutually identified 16 proteins that were significantly different between the two groups of hemocytes (p value < 0.05). The presence of V. fischeri in the host light organ influenced the abundance of proteins associated with the cytoskeleton, adhesion, lysosomes, proteolysis, and the innate immune response. These data provide evidence that colonization by V. fischeri alters the hemocyte proteome and reveals proteins that may be important for maintaining host–symbiont specificity. PMID:25038065

  20. Antimicrobial Susceptibility of Vibrio vulnificus and Vibrio parahaemolyticus Recovered from Recreational and Commercial Areas of Chesapeake Bay and Maryland Coastal Bays

    PubMed Central

    Shaw, Kristi S.; Rosenberg Goldstein, Rachel E.; He, Xin; Jacobs, John M.; Crump, Byron C.; Sapkota, Amy R.

    2014-01-01

    Vibrio vulnificus and V. parahaemolyticus in the estuarine-marine environment are of human health significance and may be increasing in pathogenicity and abundance. Vibrio illness originating from dermal contact with Vibrio laden waters or through ingestion of seafood originating from such waters can cause deleterious health effects, particularly if the strains involved are resistant to clinically important antibiotics. The purpose of this study was to evaluate antimicrobial susceptibility among these pathogens. Surface-water samples were collected from three sites of recreational and commercial importance from July to September 2009. Samples were plated onto species-specific media and resulting V. vulnificus and V. parahaemolyticus strains were confirmed using polymerase chain reaction assays and tested for antimicrobial susceptibility using the Sensititre® microbroth dilution system. Descriptive statistics, Friedman two-way Analysis of Variance (ANOVA) and Kruskal-Wallis one-way ANOVA were used to analyze the data. Vibrio vulnificus (n?=?120) and V. parahaemolyticus (n?=?77) were isolated from all sampling sites. Most isolates were susceptible to antibiotics recommended for treating Vibrio infections, although the majority of isolates expressed intermediate resistance to chloramphenicol (78% of V. vulnificus, 96% of V. parahaemolyticus). Vibrio parahaemolyticus also demonstrated resistance to penicillin (68%). Sampling location or month did not significantly impact V. parahaemolyticus resistance patterns, but V. vulnificus isolates from St. Martin's River had lower overall intermediate resistance than that of the other two sampling sites during the month of July (p?=?0.0166). Antibiotics recommended to treat adult Vibrio infections were effective in suppressing bacterial growth, while some antibiotics recommended for pediatric treatment were not effective against some of the recovered isolates. To our knowledge, these are the first antimicrobial susceptibility data of V. vulnificus and V. parahaemolyticus recovered from the Chesapeake Bay. These data can serve as a baseline against which future studies can be compared to evaluate whether susceptibilities change over time. PMID:24586914

  1. Influence of Alginate on Attachment of Vibrio spp. to Stainless Steel Surfaces in Seawater

    PubMed Central

    Gordon, Andrew S.

    1987-01-01

    The influence of alginate on the attachment of Vibrio alginolyticus and Vibrio pelagius biovar II to stainless steel was investigated. When the bacteria were in stationary phase, alginate decreased the number of attached bacteria in the case of each Vibrio sp. In contrast, when V. pelagius biovar II was grown on alginate and harvested in log phase, attachment was increased. This effect may be due to nutrient availability at the surface or to receptors on the bacterial surface which interact with alginate adsorbed to the metal. PMID:16347345

  2. LitR Is a Repressor of syp Genes and Has a Temperature-Sensitive Regulatory Effect on Biofilm Formation and Colony Morphology in Vibrio (Aliivibrio) salmonicida

    PubMed Central

    Bjelland, Ane Mohn; Ronessen, Maria; Robertsen, Espen; Willassen, Nils Peder

    2014-01-01

    Vibrio (Aliivibrio) salmonicida is the etiological agent of cold water vibriosis, a disease in farmed Atlantic salmon (Salmo salar) that is kept under control due to an effective vaccine. A seawater temperature below 12°C is normally required for disease development. Quorum sensing (QS) is a cell density-regulated communication system that bacteria use to coordinate activities involved in colonization and pathogenesis, and we have previously shown that inactivation of the QS master regulator LitR attenuates the V. salmonicida strain LFI1238 in a fish model. We show here that strain LFI1238 and a panel of naturally occurring V. salmonicida strains are poor biofilm producers. Inactivation of litR in the LFI1238 strain enhances medium- and temperature-dependent adhesion, rugose colony morphology, and biofilm formation. Chemical treatment and electron microscopy of the biofilm identified an extracellular matrix consisting mainly of a fibrous network, proteins, and polysaccharides. Further, by microarray analysis of planktonic and biofilm cells, we identified a number of genes regulated by LitR and, among these, were homologues of the Vibrio fischeri symbiosis polysaccharide (syp) genes. The syp genes were regulated by LitR in both planktonic and biofilm lifestyle analyses. Disruption of syp genes in the V. salmonicida ?litR mutant alleviated adhesion, rugose colony morphology, and biofilm formation. Hence, LitR is a repressor of syp transcription that is necessary for expression of the phenotypes examined. The regulatory effect of LitR on colony morphology and biofilm formation is temperature sensitive and weak or absent at temperatures above the bacterium's upper threshold for pathogenicity. PMID:24973072

  3. Vibrio cholerae Represses Polysaccharide Synthesis To Promote Motility in Mucosa

    PubMed Central

    Liu, Zhenyu; Wang, Yuning; Liu, Shengyan; Sheng, Ying; Rueggeberg, Karl-Gustav; Wang, Hui; Li, Jie; Gu, Frank X.; Zhong, Zengtao; Kan, Biao

    2015-01-01

    The viscoelastic mucus layer of gastrointestinal tracts is a host defense barrier that a successful enteric pathogen, such as Vibrio cholerae, must circumvent. V. cholerae, the causative agent of cholera, is able to penetrate the mucosa and colonize the epithelial surface of the small intestine. In this study, we found that mucin, the major component of mucus, promoted V. cholerae movement on semisolid medium and in liquid medium. A genome-wide screen revealed that Vibrio polysaccharide (VPS) production was inversely correlated with mucin-enhanced motility. Mucin adhesion assays indicated that VPS bound to mucin. Moreover, we found that vps expression was reduced upon exposure to mucin. In an infant mouse colonization model, mutants that overexpressed VPS colonized less effectively than wild-type strains in more distal intestinal regions. These results suggest that V. cholerae is able to sense mucosal signals and modulate vps expression accordingly so as to promote fast motion in mucus, thus allowing for rapid spread throughout the intestines. PMID:25561707

  4. Invariant recognition of polychromatic images of Vibrio cholerae 01

    NASA Astrophysics Data System (ADS)

    Alvarez-Borrego, Josue; Mourino-Perez, Rosa R.; Cristobal, Gabriel; Pech-Pacheco, Jose L.

    2002-04-01

    Cholera is an acute intestinal infectious disease. It has claimed many lives throughout history, and it continues to be a global health threat. Cholera is considered one of the most important emergence diseases due its relation with global climate changes. Automated methods such as optical systems represent a new trend to make more accurate measurements of the presence and quantity of this microorganism in its natural environment. Automatic systems eliminate observer bias and reduce the analysis time. We evaluate the utility of coherent optical systems with invariant correlation for the recognition of Vibrio cholerae O1. Images of scenes are recorded with a CCD camera and decomposed in three RGB channels. A numeric simulation is developed to identify the bacteria in the different samples through an invariant correlation technique. There is no variation when we repeat the correlation and the variation between images correlation is minimum. The position-, scale-, and rotation-invariant recognition is made with a scale transform through the Mellin transform. The algorithm to recognize Vibrio cholerae O1 is the presence of correlation peaks in the green channel output and their absence in red and blue channels. The discrimination criterion is the presence of correlation peaks in red, green, and blue channels.

  5. Recombination Shapes the Structure of an Environmental Vibrio cholerae Population ? †

    PubMed Central

    Keymer, Daniel P.; Boehm, Alexandria B.

    2011-01-01

    Vibrio cholerae consists of pathogenic strains that cause sporadic gastrointestinal illness or epidemic cholera disease and nonpathogenic strains that grow and persist in coastal aquatic ecosystems. Previous studies of disease-causing strains have shown V. cholerae to be a primarily clonal bacterial species, but isolates analyzed have been strongly biased toward pathogenic genotypes, while representing only a small sample of the vast diversity in environmental strains. In this study, we characterized homologous recombination and structure among 152 environmental V. cholerae isolates and 13 other putative Vibrio isolates from coastal waters and sediments in central California, as well as four clinical V. cholerae isolates, using multilocus sequence analysis of seven housekeeping genes. Recombinant regions were identified by at least three detection methods in 72% of our V. cholerae isolates. Despite frequent recombination, significant linkage disequilibrium was still detected among the V. cholerae sequence types. Incongruent but nonrandom associations were observed for maximum likelihood topologies from the individual loci. Overall, our estimated recombination rate in V. cholerae of 6.5 times the mutation rate is similar to those of other sexual bacteria and appears frequently enough to restrict selection from purging much of the neutral intraspecies diversity. These data suggest that frequent recombination among V. cholerae may hinder the identification of ecotypes in this bacterioplankton population. PMID:21075874

  6. Community-Level and Species-Specific Associations between Phytoplankton and Particle-Associated Vibrio Species in Delaware's Inland Bays.

    PubMed

    Main, Christopher R; Salvitti, Lauren R; Whereat, Edward B; Coyne, Kathryn J

    2015-09-01

    Vibrio species are an abundant and diverse group of bacteria that form associations with phytoplankton. Correlations between Vibrio and phytoplankton abundance have been noted, suggesting that growth is enhanced during algal blooms or that association with phytoplankton provides a refuge from predation. Here, we investigated relationships between particle-associated Vibrio spp. and phytoplankton in Delaware's inland bays (DIB). The relative abundances of particle-associated Vibrio spp. and algal classes that form blooms in DIB (dinoflagellates, diatoms, and raphidophytes) were determined using quantitative PCR. The results demonstrated a significant correlation between particle-associated Vibrio abundance and phytoplankton, with higher correlations to diatoms and raphidophytes than to dinoflagellates. Species-specific associations were examined during a mixed bloom of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) and indicated a significant positive correlation for particle-associated Vibrio abundance with H. akashiwo but a negative correlation with F. japonica. Changes in Vibrio assemblages during the bloom were evaluated using automated ribosomal intergenic spacer analysis (ARISA), which revealed significant differences between each size fraction but no significant change in Vibrio assemblages over the course of the bloom. Microzooplankton grazing experiments showed that losses of particle-associated Vibrio spp. may be offset by increased growth in the Vibrio population. Moreover, analysis of Vibrio assemblages by ARISA also indicated an increase in the relative abundance for specific members of the Vibrio community despite higher grazing pressure on the particle-associated population as a whole. The results of this investigation demonstrate links between phytoplankton and Vibrio that may lead to predictions of potential health risks and inform future management practices in this region. PMID:26070682

  7. Severe septic shock and cardiac arrest in a patient with Vibrio metschnikovii: a case report

    PubMed Central

    2014-01-01

    Introduction Vibrio metschnikovii is a very rare species and can be fatal to patients with massive comorbidity. Until now only eight other cases have been reported. Case presentation This case report describes a 78-year-old Danish man who presented with fever, hypotension and unconsciousness and he developed cardiac arrest. Vibrio metschnikovii was identified in all his blood samples and effective antibiotics were initiated. Conclusions The human sources are believed to include shrimps, birds, water, sewage and seafood. We report the first case of Vibrio metschnikovii from a Nordic country and the report shows that even though isolation of Vibrio metschnikovii from human clinical samples is very rare, it still infects humans and may be fatal, despite sufficient treatment. PMID:25331560

  8. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion

    E-print Network

    Wollenberg, M. S.

    This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These ‘dark’V. fischeri strains remained non-bioluminescent even after treatment ...

  9. Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor.

    PubMed

    Wang, R X; Wang, J Y; Sun, Y C; B L Yang; A L Wang

    2015-12-30

    546 Vibrio isolates from rearing seawater (292 strains) and intestines of abalone (254 strains) were tested to ten antibiotics using Kirby-Bauer diffusion method. Resistant rates of abalone-derived Vibrio isolates to chloramphenicol (C), enrofloxacin (ENX) and norfloxacin (NOR) were <28%, whereas those from seawater showed large fluctuations in resistance to each of the tested antibiotics. Many strains showed higher resistant rates (>40%) to kanamycin (KNA), furazolidone (F), tetracycline (TE), gentamicin (GM) and rifampin (RA). 332 isolates from seawater (n=258) and abalone (n=74) were resistant to more than three antibiotics. Peaked resistant rates of seawater-derived isolates to multiple antibiotics were overlapped in May and August. Statistical analysis showed that pH had an important effect on resistant rates of abalone-derived Vibrio isolates to RA, NOR, and ENX. Salinity and dissolved oxygen were negatively correlated with resistant rates of seawater-derived Vibrio isolates to KNA, RA, and PG. PMID:26494250

  10. Drug-sensitivity of El Tor vibrio strains isolated in the Philippines in 1964 and 1965*

    PubMed Central

    Kuwahara, Shogo; Goto, Sachiko; Kimura, Masatake; Abe, Hisao

    1967-01-01

    About 1500 strains of El Tor vibrios, isolated in 1964 and 1965 in the Philippines, were examined for their susceptibilities to 17 drugs. All the strains tested were highly sensitive to dihydroxymethyl-furalazine, and most were highly sensitive to tetracycline hydrochloride, chloramphenicol and erythromycin, and moderately sensitive to novobiocin, dihydrostreptomycin sulfate, kanamycin and neomycin. They showed a remarkable fluctuation of sensitivity to ampicillin, cefaloridine, cefalotin and sulfafurazole, and a high resistance to benzylpenicillin sodium, oleandomycin and spiramycin. Experimental confirmation was provided of the fact that El Tor vibrios and non-agglutinable vibrios can be distinguished from classical cholera vibrios by their resistance to polymyxin B and colistin. Highly streptomycin-resistant strains, and to a lesser extent ampicillin- and sulfafurazole-resistant strains, were relatively often isolated from cholera patients who had been treated with antibiotics. One patient yielded a strain resistant to tetracycline, chloramphenicol, streptomycin and sulfafurazole. PMID:4870079

  11. Color correlation for the recognition of Vibrio cholerae O1 in seawater

    NASA Astrophysics Data System (ADS)

    Mourino-Perez, Rosa R.; Alvarez-Borrego, Josue

    1999-07-01

    Application of color correlation optical systems for the recognition of Vibrio cholerae 01 in seawater samples with matched filters and phase only filters recorded in holographic plates in three channels (RGB).

  12. Constitutive Type VI Secretion System Expression Gives Vibrio cholerae Intra- and Interspecific Competitive Advantages

    E-print Network

    Unterweger, Daniel

    The type VI secretion system (T6SS) mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae – the causative agent of cholera. All V. cholerae strains examined to date ...

  13. Clinical, hematological and biochemical alterations in olive flounder, Paralichthys olivaceus following experimental infection by Vibrio scophthalmi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hematological analysis can provide key values for monitoring fish health conditions. There is no information available on hematological changes of olive flounder following infection by Vibrio scophthalmi. In this study, hematological and biochemical alterations were determined for olive flounder inf...

  14. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    SciTech Connect

    Colwell, Rita

    2012-06-01

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  15. RESPONSES OF OYSTER (CRASSOSTREA VIRGINICA) HEMOCYTES TO NONPATHOGENIC AND CLINICAL ISOLATES OF VIBRIO PARAHAEMOLYTICUS

    EPA Science Inventory

    Bacterial uptake by oysters (Crassostrea virginica) and bactericidal activity of oyster hemocytes were studied using four environmental isolates and three clinical isolates of Vibrio parahaemolyticus. Clinical isolates (2030, 2062, 2107) were obtained from gastroenteritis patien...

  16. DIFFERENTIAL EFFECTS OF OYSTER (CRASSOSTREA VIRGINICA) DEFENSES ON CLINICAL AND ENVIRONMENTAL ISOLATES OF VIBRIO PARAHEMOLYTICUS

    EPA Science Inventory

    Three clinical (2030, 2062, and 2107) and three environmental (1094, 1163, and ATCC 17802) isolates of Vibrio parahaemolyticus were exposed to hemocytes and plasma collected from oysters (Crassostrea virginica) to determine their susceptibility to putative oyster defenses. Clinic...

  17. INFLUENCE OF SEASONAL FACTORS ON OYSTER HEMOCYTE KILLING OF VIBRIO PARAHEMOLYTICUS

    EPA Science Inventory

    Seasonal variation of cellular defenses of oyster Crassostrea virginica against Vibrio parahaemolyticus were examined from June 1997 to December 1998 using a recently developed bactericidal assay that utilizes a tetrazolium dye. Mean hemocyte numbers, plasma lysozyme, and P. mari...

  18. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Colwell, Rita [University of Maryland

    2013-02-12

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  19. Local Mobile Gene Pools Rapidly Cross Species Boundaries To Create within Global Vibrio cholerae Populations

    E-print Network

    Boucher, Yan

    Vibrio cholerae represents both an environmental pathogen and a widely distributed microbial species comprised of closely related strains occurring in the tropical to temperate coastal ocean across the globe (Colwell RR, ...

  20. Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador.

    PubMed

    Sperling, L; Alter, T; Huehn, S

    2015-11-01

    The aim of this study was to investigate the prevalence of Vibrio spp. in shrimp at retail and in shrimp farms in Ecuador and to determine the antimicrobial agent resistance patterns of farm isolates. The presence of genes linked to early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) also was evaluated. Vibrio spp. were isolated from retail shrimps in Cuenca, Ecuador, and farm shrimps originating from provinces El Oro and Guayas, Ecuador. A total of 229 shrimp samples were collected, of which 71 originated from retail markets in Cuenca and 158 came from shrimp farms. Overall, 219 (95.6%) samples tested positive for Vibrio spp. Vibrio parahaemolyticus (80.8%) was the most common species detected, followed by Vibrio alginolyticus (50.2%), Vibrio cholerae (11.3%), and Vibrio vulnificus (3.5%). None of the V. parahaemolyticus isolates carried the virulence-associated tdh and trh genes. In V. parahaemolyticus shrimp farm isolates, high resistance was found to ampicillin (92.2%), and intermediate resistance was found to tetracycline (51.3%) and amikacin (22.1%). Of the V. parahaemolyticus strains, 68 were resistant to at least three antimicrobial agents, and 2 were resistant to seven antimicrobial agents simultaneously. Up to 18 resistant isolates were found for V. alginolyticus, whereas V. vulnificus and V. cholerae isolates were more susceptible. None of the V. parahaemolyticus isolates carried the EMS-AHPND plasmid. The results of this study revealed the ubiquitous occurrence of Vibrio spp. in shrimps at retail and on shrimp farms in Ecuador. PMID:26555534

  1. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana.

    PubMed

    Pradhan, Nirakar; Dipasquale, Laura; d'Ippolito, Giuliana; Panico, Antonio; Lens, Piet N L; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  2. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    PubMed Central

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  3. Phaeobacter gallaeciensis Reduces Vibrio anguillarum in Cultures of Microalgae and Rotifers, and Prevents Vibriosis in Cod Larvae

    PubMed Central

    D’Alvise, Paul W.; Lillebø, Siril; Prol-Garcia, Maria J.; Wergeland, Heidrun I.; Nielsen, Kristian F.; Bergh, Øivind; Gram, Lone

    2012-01-01

    Phaeobacter gallaeciensis can antagonize fish-pathogenic bacteria in vitro, and the purpose of this study was to evaluate the organism as a probiont for marine fish larvae and their feed cultures. An in vivo mechanism of action of the antagonistic probiotic bacterium is suggested using a non-antagonistic mutant. P. gallaeciensis was readily established in axenic cultures of the two microalgae Tetraselmis suecica and Nannochloropsis oculata, and of the rotifer Brachionus plicatilis. P. gallaeciensis reached densities of 107 cfu/ml and did not adversely affect growth of algae or rotifers. Vibrio anguillarum was significantly reduced by wild-type P. gallaeciensis, when introduced into these cultures. A P. gallaeciensis mutant that did not produce the antibacterial compound tropodithietic acid (TDA) did not reduce V. anguillarum numbers, suggesting that production of the antibacterial compound is important for the antagonistic properties of P. gallaeciensis. The ability of P. gallaeciensis to protect fish larvae from vibriosis was determined in a bath challenge experiment using a multidish system with 1 larva per well. Unchallenged larvae reached 40% accumulated mortality which increased to 100% when infected with V. anguillarum. P. gallaeciensis reduced the mortality of challenged cod larvae (Gadus morhua) to 10%, significantly below the levels of both the challenged and the unchallenged larvae. The TDA mutant reduced mortality of the cod larvae in some of the replicates, although to a much lesser extent than the wild type. It is concluded that P. gallaeciensis is a promising probiont in marine larviculture and that TDA production likely contributes to its probiotic effect. PMID:22928051

  4. VgrG2 of type VI secretion system 2 of Vibrio parahaemolyticus induces autophagy in macrophages

    PubMed Central

    Yu, Ying; Fang, Lihua; Zhang, Yan; Sheng, Hongxia; Fang, Weihuan

    2015-01-01

    Type VI secretion system (T6SS) is a macromolecular transenvelope machine encoded within the genomes of several proteobacteria species. Vibrio parahaemolyticus contains two putative T6SS systems, VpT6SS1 and VpT6SS2, both contributing to adherence to Caco-2 and/or HeLa cells. However, it remains unknown if these systems are involved in cellular responses. In order to exclude the effects of other virulence factors known to induce cytotoxicity or autophagy, a triple deletion mutant dTTT (with deletion of tdh, and T3SS1 and T3SS2 structural protein genes) was used as the parent strain to construct deletion mutants of T6SS genes. The mutant dTTT-?icmF2, but not dTTT-?icmF1, reduced autophagic response upon 4 h of infection of the macrophage. Further attempt was made to search for the possible effector proteins that might be responsible for direct induction of autophagy by deletion of the genes encoding Hcp2 and VgrG2, two putative translocons of T6SS2 of V. parahaemolyticus. Deletion of either hcp2 or vgrG2 did reduce the autophagic response. However, increased LC3-II lipidation was seen only in the macrophage cells transfected with pVgrG2, but not with pHcp2. Chloroquinine treatment increased accumulation of LC3-II, suggesting that VgrG2 enhanced autophagic flux. The fact that vgrG2 deletion led to reduced level of intracellular cAMP suggests a possible role of cAMP signaling in autophagic responses to the bacterium. We conclude that VgrG2 of V. parahaemolyticus induces autophagy in macrophages. PMID:25784905

  5. Identification of a Wzy Polymerase Required for Group IV Capsular Polysaccharide and Lipopolysaccharide Biosynthesis in Vibrio vulnificus?

    PubMed Central

    Nakhamchik, Alina; Wilde, Caroline; Rowe-Magnus, Dean A.

    2007-01-01

    The estuarine bacterium Vibrio vulnificus is a human and animal pathogen. The expression of capsular polysaccharide (CPS) is essential for virulence. We used a new mini-Tn10 delivery vector, pNKTXI-SceI, to generate a mutant library and identify genes essential for CPS biosynthesis. Twenty-one acapsular mutants were isolated, and the disrupted gene in one mutant, coding for a polysaccharide polymerase (wzy), is described here. A wecA gene initiating glycosyltransferase was among the genes identified in the region flanking the wzy gene. This, together with the known structure of the CPS, supports a group IV capsule designation for the locus; however, its overall organization mirrored that of group I capsules. This new arrangement may be linked to our finding that the CPS region appears to have been recently acquired by horizontal transfer. Alcian Blue staining and immunoblotting with antisera against the wild-type strain indicated that the wzy::Tn10 mutant failed to produce CPS and was attenuated relative to the wild type in a septicemic mouse model. Interestingly, immunoblotting revealed that the mutant was also defective in lipopolysaccharide (LPS) production. However, the core-plus-one O-antigen pattern typical of wzy mutations was apparent. CPS production, LPS production, and virulence were restored following complementation with the wild-type wzy gene. Hence, Wzy participates in both CPS and LPS biosynthesis and is required for virulence in strain 27562. To our knowledge, this is the first functional demonstration of a Wzy polysaccharide polymerase in V. vulnificus and is the first to show a link between LPS and CPS biosynthesis. PMID:17923517

  6. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes

    PubMed Central

    Sun, Yan; Verma, Subhash C.; Bogale, Haikel; Miyashiro, Tim

    2015-01-01

    Bacteria often use transcription factors to regulate the expression of metabolic genes in accordance to available nutrients. NagC is a repressor conserved among ?-proteobacteria that regulates expression of enzymes involved in the metabolism of N-acetyl-glucosamine (GlcNAc). The polymeric form of GlcNAc, known as chitin, has been shown to play roles in chemotactic signaling and nutrition within the light organ symbiosis established between the marine bacterium Vibrio fischeri and the Hawaiian squid Euprymna scolopes. Here, we investigate the impact of NagC regulation on the physiology of V. fischeri. We find that NagC repression contributes to the fitness of V. fischeri in the absence of GlcNAc. In addition, the inability to de-repress expression of NagC-regulated genes reduces the fitness of V. fischeri in the presence of GlcNAc. We find that chemotaxis toward GlcNAc or chitobiose, a dimeric form of GlcNAc, is independent of NagC regulation. Finally, we show that NagC represses gene expression during the early stages of symbiosis. Our data suggest that the ability to regulate gene expression with NagC contributes to the overall fitness of V. fischeri in environments that vary in levels of GlcNAc. Furthermore, our finding that NagC represses gene expression within the squid light organ during an early stage of symbiosis supports the notion that the ability of the squid to provide a source of GlcNAc emerges later in host development. PMID:26236308

  7. Structural insights into the regulation of sialic acid catabolism by the Vibrio vulnificus transcriptional repressor NanR

    PubMed Central

    Hwang, Jungwon; Kim, Byoung Sik; Jang, Song Yee; Lim, Jong Gyu; You, Dong-Ju; Jung, Hyun Suk; Oh, Tae-Kwang; Lee, Jie-Oh; Choi, Sang Ho; Kim, Myung Hee

    2013-01-01

    Pathogenic and commensal bacteria that experience limited nutrient availability in their host have evolved sophisticated systems to catabolize the mucin sugar N-acetylneuraminic acid, thereby facilitating their survival and colonization. The correct function of the associated catabolic machinery is particularly crucial for the pathogenesis of enteropathogenic bacteria during infection, although the molecular mechanisms involved with the regulation of the catabolic machinery are unknown. This study reports the complex structure of NanR, a repressor of the N-acetylneuraminate (nan) genes responsible for N-acetylneuraminic acid catabolism, and its regulatory ligand, N-acetylmannosamine 6-phosphate (ManNAc-6P), in the human pathogenic bacterium Vibrio vulnificus. Structural studies combined with electron microscopic, biochemical, and in vivo analysis demonstrated that NanR forms a dimer in which the two monomers create an arched tunnel-like DNA-binding space, which contains positively charged residues that interact with the nan promoter. The interaction between the NanR dimer and DNA is alleviated by the ManNAc-6P–mediated relocation of residues in the ligand-binding domain of NanR, which subsequently relieves the repressive effect of NanR and induces the transcription of the nan genes. Survival studies in which mice were challenged with a ManNAc-6P–binding-defective mutant strain of V. vulnificus demonstrated that this relocation of NanR residues is critical for V. vulnificus pathogenesis. In summary, this study presents a model of the mechanism that regulates sialic acid catabolism via NanR in V. vulnificus. PMID:23832782

  8. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations? †

    PubMed Central

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  9. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association

    PubMed Central

    Chun, Carlene K.; Troll, Joshua V.; Koroleva, Irina; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E.; de Fatima Bonaldo, Maria; Casavant, Thomas L.; Soares, M. Bento; Ruby, Edward G.; McFall-Ngai, Margaret J.

    2008-01-01

    The light–organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution. PMID:18682555

  10. Transcriptional profiling of Vibrio parahaemolyticus exsA reveals a complex activation network for type III secretion

    PubMed Central

    Liu, Aaron C.; Thomas, Nikhil A.

    2015-01-01

    Vibrio parahaemolyticus (Vp) is a marine halophilic bacterium that is commonly associated with oysters and shrimp. Human consumption of contaminated shellfish can result in Vp mediated gastroenteritis and severe diarrheal disease. Vp encodes two type 3 secretion systems (T3SS-1 and T3SS2) that have been functionally implicated in cytotoxicity and enterotoxicity respectively. In this study, we profiled protein secretion and temporal promoter activities associated with exsA and exsB gene expression. exsA is an AraC-like transcriptional activator that is critical for activating multiple operons that encode T3SS-1 genes, whereas exsB is thought to encode an outer membrane pilotin component for T3SS-1. The exsBA genetic locus has two predicted promoter elements. The predicted exsB and exsA promoters were individually cloned upstream of luxCDABE genes in reporter plasmid constructs allowing for in situ, real-time quantitative light emission measurements under many growth conditions. Low calcium growth conditions supported maximal exsB and exsA promoter activation. exsB promoter activity exhibited high basal activity and resulted in an exsBA co-transcript. Furthermore, a separate proximal exsA promoter showed initial low basal activity yet eventually exceeded that of exsB and reached maximal levels after 2.5 h corresponding to an entry into early log phase. exsA promoter activity was significantly higher at 30°C than 37°C, which also coincided with increased secretion levels of specific T3SS-1 effector proteins. Lastly, bioinformatic analyses identified a putative expanded ExsA binding motif for multiple transcriptional operons. These findings suggest a two wave model of Vp T3SS-I induction that integrates two distinct promoter elements and environmental signals into a complex ExsA activation framework. PMID:26539165

  11. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1.

    PubMed

    Zhang, Weiwei; Liang, Weikang; Li, Chenghua

    2016-01-25

    Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis. PMID:26476308

  12. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal

    PubMed Central

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ? (17.5%), V. alginolyticus ? (17.5%), V. parahaemolyticus ? (10%), V. cholerae non-O1/O139 ? (26.6%) and V. mimicus ? (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20–34°C), and to a lesser extent, in the summer (24–36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to ?-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence. PMID:26340543

  13. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal.

    PubMed

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ? (17.5%), V. alginolyticus ? (17.5%), V. parahaemolyticus ? (10%), V. cholerae non-O1/O139 ? (26.6%) and V. mimicus ? (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20-34°C), and to a lesser extent, in the summer (24-36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to ?-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence. PMID:26340543

  14. Distribution of Vibrio alginolyticus-like species in Shenzhen coastal waters, China

    PubMed Central

    Chen, Ming-Xia; Li, He-Yang; Li, Gang; Zheng, Tian-Ling

    2011-01-01

    We investigated the distribution of vibrios in Shenzhen coastal waters in order to obtain valuable information for the aquaculture industry and a health warning system. Quantities of vibrios from surface waters ranged from 0 to 4.40×104 CFUs mL-1 in April (spring), while from 0 to 2.57×103 CFUs mL-1 in September (autumn); the abundance of V. alginolyticus-like species from surface water ranged from 0 to 6.72×103 CFUs mL-1 in April (spring) and from 0 to 1.28×103 CFUs mL-1 in September (autumn); higher counts were observed in spring. The V. alginolyticus-like species was dominant in Shenzhen coastal waters, with the highest abundance in the clean region (stations YMK001 and GDN064) in April, suggesting that Vibrio spp. were naturally occurring bacteria in marine environments. The correlation between the abundance of vibrios (including V. alginolyticus-like species) and environmental factors varied in different regions and different seasons. There were no vibrios detected when the salinity was less than 11.15‰ in the Zhujiang River estuary, which indicated that salinity played a key role in the distribution of vibrios and V. alginolyticus-like species. PMID:24031704

  15. Partial Purification and Characterization of Hemolysin from a Psychrotrophic Kanagawa-Positive Marine Vibrio

    PubMed Central

    Peters, Susan; Baross, John A.; Morita, Richard Y.

    1982-01-01

    Psychrotrophic Kanagawa-positive marine vibrios were isolated from soft-shelled clams (Mya arenaria) collected in Yaquina Bay, Oreg. The 235 vibrio isolates obtained were screened for Gram reaction and morphology, Kanagawa reaction on Wagastsuma agar, and response to selected biochemical tests. The vibrio selected for further study was grown in broth, and the hemolysin was precipitated from a cleared supernatant with solid ammonium sulfate. The hemolytic substance was partially purified by DEAE-cellulose and Sephadex G-100 column chromatography. The hemolysin contained protein essential for activity, was thermolabile, and was more active against rabbit erythrocytes at 37°C than at lower temperatures. The molecular weight was estimated at 55,000 by using a Sephadex G-100 column. Hemolytic activity was partially inactivated by gangliosides and lowered against horse erythrocytes. The hemolysin did not react with antibody prepared against vibriolysin from Vibrio parahaemolyticus WP-1 by the Ouchterlony method. The hemolysin was high in aspartic and glutamic acids and low in arginine and histidine. Electrophoresis on a sodium dodecyl sulfate-polyacrylamide gel gave three major bands. The hemolysin from a psychrotrophic vibrio and the hemolytic exotoxin of V. parahaemolyticus had some similar and dissimilar characteristics. The possibility that a Vibrio sp. other than V. parahaemolyticus might serve as the reservoir for the Kanagawa phenotype is discussed. Images PMID:16345927

  16. Vibrio scophthalmi sp. nov., a new species from turbot (Scophthalmus maximus).

    PubMed

    Cerdà-Cuéllar, M; Rosselló-Mora, R A; Lalucat, J; Jofre, J; Blanch, A

    1997-01-01

    Six strains isolated from the intestines of juvenile turbot in a fish hatchery in the north of Spain were found to be phenotypically members of the genus Vibrio. However, the phenotypic traits of these organisms did not place them in any of the currently known Vibrio species. These isolates formed an homogeneous group in which the DNA-DNA similarity values (the differences between the thermal denaturation midpoints of the homologous and heterologous duplexes) with reference strain A089T (T = type strain) ranged from 0 to 1.7 degrees C. The results of a 16S rRNA sequence analysis of A089T placed this strain in the genus Vibrio in the gamma subclass of the Proteobacteria. The closest relative is Vibrio aestuarianus, with a sequence similarity of 97.8%. This group of strains can be easily differentiated from the other Vibrio species by their clear phenotype. We propose the name Vibrio scophthalmi sp. nov. for these strains; the type strain is strain A089 (= CECT 4638). PMID:8995802

  17. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2012-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing microorganisms. Eradification techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation- based sterilization processes. Due to their resistance to a variety of perturbations, the non-spore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-spore-forming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/sq m), and desiccation (years). These resistive phenotypes of Deinococcus enhance the potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  18. Extreme Ionizing-Radiation-Resistant Bacterium

    NASA Technical Reports Server (NTRS)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    There is a growing concern that desiccation and extreme radiation-resistant, non-spore-forming microorganisms associated with spacecraft surfaces can withstand space environmental conditions and subsequent proliferation on another solar body. Such forward contamination would jeopardize future life detection or sample return technologies. The prime focus of NASA s planetary protection efforts is the development of strategies for inactivating resistance-bearing micro-organisms. Eradi cation techniques can be designed to target resistance-conferring microbial populations by first identifying and understanding their physiologic and biochemical capabilities that confers its elevated tolerance (as is being studied in Deinococcus phoenicis, as a result of this description). Furthermore, hospitals, food, and government agencies frequently use biological indicators to ensure the efficacy of a wide range of radiation-based sterilization processes. Due to their resistance to a variety of perturbations, the nonspore forming D. phoenicis may be a more appropriate biological indicator than those currently in use. The high flux of cosmic rays during space travel and onto the unshielded surface of Mars poses a significant hazard to the survival of microbial life. Thus, radiation-resistant microorganisms are of particular concern that can survive extreme radiation, desiccation, and low temperatures experienced during space travel. Spore-forming bacteria, a common inhabitant of spacecraft assembly facilities, are known to tolerate these extreme conditions. Since the Viking era, spores have been utilized to assess the degree and level of microbiological contamination on spacecraft and their associated spacecraft assembly facilities. Members of the non-sporeforming bacterial community such as Deinococcus radiodurans can survive acute exposures to ionizing radiation (5 kGy), ultraviolet light (1 kJ/m2), and desiccation (years). These resistive phenotypes of Deinococcus enhance the potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  19. Effects of Dry Storage and Resubmersion of Oysters on Total Vibrio vulnificus and Total and Pathogenic (tdh+/trh+) Vibrio parahaemolyticus Levels.

    PubMed

    Kinsey, Thomas P; Lydon, Keri A; Bowers, John C; Jones, Jessica L

    2015-08-01

    Vibrio vulnificus (Vv) and Vibrio parahaemolyticus (Vp) are the two leading causes of bacterial illnesses associated with raw shellfish consumption. Levels of these pathogens in oysters can increase during routine antifouling aquaculture practices involving dry storage in ambient air conditions. After storage, common practice is to resubmerge these stored oysters to reduce elevated Vv and Vp levels, but evidence proving the effectiveness of this practice is lacking. This study examined the changes in Vv and in total and pathogenic (thermostable direct hemolysin gene and the tdh-related hemolysin gene, tdh+ and trh+) Vp levels in oysters after 5 or 24 h of dry storage (28 to 32°C), followed by resubmersion (27 to 32°C) for 14 days. For each trial, replicate oyster samples were collected at initial harvest, after dry storage, after 7 days, and after 14 days of resubmersion. Oysters not subjected to dry storage were collected and analyzed to determine natural undisturbed vibrio levels (background control). Vibrio levels were measured using a most-probable-number enrichment followed by real-time PCR. After storage, vibrio levels (excluding tdh+ and trh+ Vp during 5-h storage) increased significantly (P < 0.001) from initial levels. After 7 days of resubmersion, Vv and total Vp levels (excluding total Vp in oysters stored for 5 h) were not significantly different (P < 0.1) from levels in background oysters. Vv and total and pathogenic Vp levels were not significantly different (P > 0.1) from levels in background oysters after 14 days of resubmersion, regardless of dry storage time. These data demonstrate that oyster resubmersion after dry storage at elevated ambient temperatures allows vibrio levels to return to those of background control samples. These results can be used to help minimize the risk of Vv and Vp illnesses and to inform the oyster industry on the effectiveness of routine storing and resubmerging of aquaculture oysters. PMID:26219373

  20. Chitin and Products of Its Hydrolysis in Vibrio cholerae Ecology.

    PubMed

    Markov, E Yu; Kulikalova, E S; Urbanovich, L Ya; Vishnyakov, V S; Balakhonov, S V

    2015-09-01

    The role of chitin and its hydrolysis products generated by Vibrio cholerae chitinases in mechanisms of its adaptation in water environments, metabolism, preservation, acquisition of pathogenic potential, and its epidemiological value are reviewed. Chitin utilization by V. cholerae as a source of energy, carbon, and nitrogen is described. Chitin association promotes biofilm formation on natural chitinous surfaces, increasing V. cholerae resistance to adverse factors in ecological niches: the human body and water environments with its inhabitants. Hydrolytic enzymes regulated by the corresponding genes result in complete chitin biodegradation by a chitinolytic catabolic cascade. Consequences of V. cholerae cell and chitin interaction at different hierarchical levels include metabolic and physiological cell reactions such as chemotaxis, cell division, biofilm formation, induction of genetic competence, and commensalic and symbiotic mutual relations with higher organisms, nutrient cycle, pathogenicity for humans, and water organisms that is an example of successful interrelation of bacteria and substratum in the ecology of the microorganism. PMID:26555464

  1. Studies on the haemolytic activity of El Tor vibrios*

    PubMed Central

    Feeley, John. C.; Pittman, Margaret

    1963-01-01

    In view of reports of inconsistent results with the haemolytic test for identification of the El Tor biotype of Vibrio cholerae, a study was made of the experimental variables involved in order to achieve more precise standardization of the procedure. It was found that different types of media and different incubation times of a culture in a particular medium exerted a profound influence on the results. The authors describe the materials and conditions for performance of a reliable haemolytic test, and consider that, when properly performed, the haemolytic test should be a valuable epidemiological tool. The persistence of haemolysin in cultures of strains from the El Tor Quarantine Station during incubation is in contrast to its early disappearance in cultures of more recent isolates. Evidence is presented that the haemolytic activity of a strain may become altered during subculture, since rugose variants of recent strains resemble the old El Tor strains in haemolysin persistence. PMID:13944689

  2. Adsorption of Vibrio parahaemolyticus onto Chitin and Copepods

    PubMed Central

    Kaneko, Tatsuo; Colwell, Rita R.

    1975-01-01

    Vibrio parahaemolyticus was observed to adsorb onto chitin particles and copepods. The efficiency of adsorption was found to be dependent on pH and on the concentration of NaCl and other ions found in seawater. Highest efficiency was observed in water samples collected from Chesapeake Bay and lowest in water from the open sea. V. parahaemolyticus was found to adsorb onto chitin with the highest efficiency of the several bacterial strains tested. Escherichia coli and Pseudomonas fluorescens did not adsorb onto chitin. The adsorption effect is considered to be one of the major factors determining the distribution of this species and affecting the annual cycle of V. parahaemolyticus in the estuarine system. PMID:234715

  3. [Identification of Vibrio cholerae O1 by flow cytometry].

    PubMed

    Alvarado-Alemán, F J; González-Bonilla, C; Wong-Arambula, C; Gutiérrez-Cogco, L; Sepúlveda-Amor, J; Kumate-Rodríguez, J

    1994-01-01

    A total of 72 peptonated water samples suspected of carrying Vibrio cholerae were assessed by laser flow cytometry (LFC) and compared with positive culture. We used a direct fluorescence technique using polyclonal (PolAb) and monoclonal antibodies (MoAb) conjugated to fluorescein. The PolAb were able to detect 33 positive samples. A clear difference among the 20 positive samples was found with only three V. cholerae O1 false negatives when MoAb were used whereas all 13 V. cholerae Non O1 samples were detected. The correlation index comparing control autofluorescence with peptonated water samples show a R = 0.69, versus 0.96 with pure V. cholerae O1 strains. Our data suggest that the LFC technique is able to recognize V. cholerae O1 from a mixture of microorganisms with high sensitivity and specificity in a few hours. PMID:7701139

  4. Identification and characterization of Vibrio cholerae surface proteins by radioiodination

    SciTech Connect

    Richardson, K.; Parker, C.D.

    1985-04-01

    Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride- lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides.

  5. Somatic O antigen relationship of Brucella and Vibrio cholerae.

    PubMed

    Feeley, J C

    1969-09-01

    The antigenic relationship between Brucella species and Vibrio cholerae was examined by agglutinin and agglutinin-absorption tests by using rabbit antisera. Brucella antisera agglutinated only the Inaba serotype of V. cholerae and at low titer. Inaba-reactive antibody was absorbed by either heat-stable (100 C, 2 hr) Ogawa or Inaba O antigens. Cholera antisera from rabbits immunized with either O or HO antigens of either Ogawa or Inaba serotypes contained brucella agglutinins. This activity was absorbed completely from Ogawa antisera by either Ogawa or Inaba O antigens but only partially from Inaba antisera by Ogawa O antigen. These findings support the claim of Gallut that the cross-reaction is due to heat-stable O antigens of V. cholerae rather than heat-labile flagellar antigens as described in many text books. The cross-reactive component is more dominant in the Inaba than in the Ogawa serotype of V. cholerae. PMID:5370272

  6. Vibrio vulnificus Bacteriophage SSP002 as a Possible Biocontrol Agent

    PubMed Central

    Lee, Hyun Sung; Choi, Slae; Shin, Hakdong

    2014-01-01

    A novel Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to the Siphoviridae family, was isolated from the coastal area of the Yellow Sea of South Korea. Host range analysis revealed that the growth inhibition of phage SSP002 is relatively specific to V. vulnificus strains from both clinical and environmental samples. In addition, a one-step growth curve analysis and a bacteriophage stability test revealed a latent period of 65 min, a burst size of 23 ± 2 PFU, as well as broad temperature (20°C to 60°C) and pH stability (pH 3 to 12) ranges. A Tn5 random transposon mutation of V. vulnificus and partial DNA sequencing of the inserted Tn5 regions revealed that the flhA, flhB, fliF, and fleQ mutants are resistant to SSP002 phage infection, suggesting that the flagellum may be the host receptor for infection. The subsequent construction of specific gene-inactivated mutants (flhA, flhB, fliF, and fleQ) and complementation experiments substantiated this. Previously, the genome of phage SSP002 was completely sequenced and analyzed. Comparative genomic analysis of phage SSP002 and Vibrio parahaemolyticus phage vB_VpaS_MAR10 showed differences among their tail-related genes, supporting different host ranges at the species level, even though their genome sequences are highly similar. An additional mouse survival test showed that the administration of phage SSP002 at a multiplicity of infection of 1,000 significantly protects mice from infection by V. vulnificus for up to 2 months, suggesting that this phage may be a good candidate for the development of biocontrol agents against V. vulnificus infection. PMID:24212569

  7. Distinct Roles of the Repeat-Containing Regions and Effector Domains of the Vibrio vulnificus Multifunctional-Autoprocessing Repeats-in-Toxin (MARTX) Toxin

    PubMed Central

    Kim, Byoung Sik; Gavin, Hannah E.

    2015-01-01

    ABSTRACT Vibrio vulnificus is a seafood-borne pathogen that destroys the intestinal epithelium, leading to rapid bacterial dissemination and death. The most important virulence factor is the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin comprised of effector domains in the center region flanked by long repeat-containing regions which are well conserved among MARTX toxins and predicted to translocate effector domains. Here, we examined the role of the repeat-containing regions using a modified V. vulnificus MARTX (MARTXVv) toxin generated by replacing all the internal effector domains with ?-lactamase (Bla). Bla activity was detected in secretions from the bacterium and also in the cytosol of intoxicated epithelial cells. The modified MARTXVv toxin without effector domains retained its necrotic activity but lost its cell-rounding activity. Further, deletion of the carboxyl-terminal repeat-containing region blocked toxin secretion from the bacterium. Deletion of the amino-terminal repeat-containing region had no effect on secretion but completely abolished translocation and necrosis. Neither secretion nor translocation was affected by enzymatically inactivating the cysteine protease domain of the toxin. These data demonstrate that the amino-terminal and carboxyl-terminal repeat-containing regions of the MARTXVv toxin are necessary and sufficient for the delivery of effector domains and epithelial cell lysis in vitro but that effector domains are required for other cytopathic functions. Furthermore, Ca2+-dependent secretion of the modified MARTXVv toxin suggests that nonclassical RTX-like repeats found in the carboxyl-terminal repeat-containing region are functionally similar to classical RTX repeats found in other RTX proteins. PMID:25827415

  8. Development of Salt-Resistant Active Transport in a Moderately Halophilic Bacterium

    PubMed Central

    Kushner, D. J.; Hamaide, Francette; MacLeod, R. A.

    1983-01-01

    The moderately halophilic bacterium Vibrio costicola accumulates ?-aminoisobutyric acid (AIB) by active transport. Substantial amounts of Na+ ions are needed for this transport. This is not due to an ionic requirement for respiration; cells respire as well as KCl as in NaCl but do not transport AIB in KCl. In cells grown in the presence of 1.0 or 2.0 M NaCl, AIB transport took place in higher NaCl concentrations than in cells grown in the presence of 0.5 M NaCl. The latter cells developed salt-resistant transport when they were exposed to 1.0 M NaCl in the presence of chloramphenicol and other antibiotics that inhibit protein synthesis. Two levels of salt-resistant transport were observed. One level (resistance to 3.0 M NaCl) developed in 1.0 M NaCl without the addition of nutrients, did not seem to require an increase in internal solute concentration, and was not lost when cells grown in 1.0 M NaCl were suspended in 0.5 M NaCl. The second level (resistance to 4.0 M NaCl) developed in 1.0 M NaCl only when nutrients were added, may have required an increased internal solute concentration, and was lost when 1.0 M NaCl-grown cells were suspended in 0.5 M NaCl or KCl. Among the substances that stimulated the development of salt-resistant AIB transport, betaine was especially active. Furthermore, direct addition of betaine permitted cells to transport AIB at higher NaCl concentrations. High salt concentrations inhibited endogenous respiration to a lesser extent than AIB transport, especially in 0.5 M NaCl-grown cells. Thus, these concentrations of salt did not inhibit AIB transport by inhibiting respiration. However, oxidation of glucose and oxidation of succinate were at least as sensitive to high salt concentrations as AIB transport, suggesting that a salt-sensitive transport step(s) is involved in the oxidation of these substrates. PMID:6826519

  9. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    SciTech Connect

    Arai, Shigeki; Yonezawa, Yasushi; Ishibashi, Matsujiro; Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro; Tokunaga, Hiroko; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded ?-sheet core with 19 surrounding ?-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup ?} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior comprising 329 C atoms from completely buried residues, whereas that of VAP comprised 264 C atoms, which may maintain the stability of HaAP under low-salt conditions. These characteristics of HaAP may be responsible for its unique functional adaptation permitting activity over a wide range of salt concentrations.

  10. Analysis of 16S-23S rRNA Intergenic Spacer Regions of Vibrio cholerae and Vibrio mimicus

    PubMed Central

    Chun, Jongsik; Huq, Anwarul; Colwell, Rita R.

    1999-01-01

    Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3? end of the 16S and the 5? end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae. PMID:10224020

  11. Survey on antimicrobial resistance patterns in Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 in Germany reveals carbapenemase-producing Vibrio cholerae in coastal waters

    PubMed Central

    Bier, Nadja; Schwartz, Keike; Guerra, Beatriz; Strauch, Eckhard

    2015-01-01

    An increase in the occurrence of potentially pathogenic Vibrio species is expected for waters in Northern Europe as a consequence of global warming. In this context, a higher incidence of Vibrio infections is predicted for the future and forecasts suggest that people visiting and living at the Baltic Sea are at particular risk. This study aimed to investigate antimicrobial resistance patterns among Vibrio vulnificus and Vibrio cholerae non-O1/non-O139 isolates that could pose a public health risk. Antimicrobial susceptibility of 141 V. vulnificus and 184 V. cholerae non-O1/non-O139 strains isolated from German coastal waters (Baltic Sea and North Sea) as well as from patients and retail seafood was assessed by broth microdilution and disk diffusion. Both species were susceptible to most of the agents tested (12 subclasses) and no multidrug-resistance was observed. Among V. vulnificus isolates, non-susceptibility was exclusively found toward aminoglycosides. In case of V. cholerae, a noticeable proportion of strains was non-susceptible to aminopenicillins and aminoglycosides. In addition, resistance toward carbapenems, quinolones, and folate pathway inhibitors was sporadically observed. Biochemical testing indicated the production of carbapenemases with unusual substrate specificity in four environmental V. cholerae strains. Most antimicrobial agents recommended for treatment of V. vulnificus and V. cholerae non-O1/non-O139 infections were found to be effective in vitro. However, the occurrence of putative carbapenemase producing V. cholerae in German coastal waters is of concern and highlights the need for systematic monitoring of antimicrobial susceptibility in potentially pathogenic Vibrio spp. in Europe. PMID:26579088

  12. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminococcus albus 7 is a highly cellulolytic rumen bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome for this microbe. This genome will be useful for rumen microbiology, cellulosome biology, and in biofuel production, as one of its major fermentation product...

  13. Mutations affecting predation ability of the soil bacterium Myxococcus xanthus

    E-print Network

    Singer, Mitchell

    Mutations affecting predation ability of the soil bacterium Myxococcus xanthus Vinh D. Pham,1, USA Received 9 December 2004 Revised 17 February 2005 Accepted 17 February 2005 Myxococcus xanthus. xanthus to prey on other bacteria. INTRODUCTION Myxococcus xanthus is a ubiquitous, soil

  14. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  15. Environmental influences on Vibrio populations in northern temperate and boreal coastal waters (Baltic and Skagerrak Seas).

    PubMed

    Eiler, Alexander; Johansson, Mona; Bertilsson, Stefan

    2006-09-01

    Even if many Vibrio spp. are endemic to coastal waters, their distribution in northern temperate and boreal waters is poorly studied. To identify environmental factors regulating Vibrio populations in a salinity gradient along the Swedish coastline, we combined Vibrio-specific quantitative competitive PCR with denaturant gradient gel electrophoresis-based genotyping. The total Vibrio abundance ranged from 4 x 10(3) to 9.6 x 10(4) cells liter(-1), with the highest abundances in the more saline waters of the Skagerrak Sea. Several Vibrio populations were present throughout the salinity gradient, with abundances of single populations ranging from 5 x 10(2) to 7 x 10(4) cells liter(-1). Clear differences were observed along the salinity gradient, where three populations dominated the more saline waters of the Skagerrak Sea and two populations containing mainly representatives of V. anguillarum and V. aestuarianus genotypes were abundant in the brackish waters of the Baltic Sea. Our results suggest that this apparent niche separation within the genus Vibrio may also be influenced by alternate factors such as nutrient levels and high abundances of dinoflagellates. A V. cholerae/V. mimicus population was detected in more than 50% of the samples, with abundances exceeding 10(3) cells liter(-1), even in the cold (annual average water temperature of around 5 degrees C) and low-salinity (2 to 4 per thousand) samples from the Bothnian Bay (latitude, 65 degrees N). The unsuspected and widespread occurrence of this population in temperate and boreal coastal waters suggests that potential Vibrio pathogens may also be endemic to cold and brackish waters and hence may represent a previously overlooked health hazard. PMID:16957222

  16. Environmental Influences on Vibrio Populations in Northern Temperate and Boreal Coastal Waters (Baltic and Skagerrak Seas)†

    PubMed Central

    Eiler, Alexander; Johansson, Mona; Bertilsson, Stefan

    2006-01-01

    Even if many Vibrio spp. are endemic to coastal waters, their distribution in northern temperate and boreal waters is poorly studied. To identify environmental factors regulating Vibrio populations in a salinity gradient along the Swedish coastline, we combined Vibrio-specific quantitative competitive PCR with denaturant gradient gel electrophoresis-based genotyping. The total Vibrio abundance ranged from 4 × 103 to 9.6 × 104 cells liter?1, with the highest abundances in the more saline waters of the Skagerrak Sea. Several Vibrio populations were present throughout the salinity gradient, with abundances of single populations ranging from 5 × 102 to 7 × 104 cells liter?1. Clear differences were observed along the salinity gradient, where three populations dominated the more saline waters of the Skagerrak Sea and two populations containing mainly representatives of V. anguillarum and V. aestuarianus genotypes were abundant in the brackish waters of the Baltic Sea. Our results suggest that this apparent niche separation within the genus Vibrio may also be influenced by alternate factors such as nutrient levels and high abundances of dinoflagellates. A V. cholerae/V. mimicus population was detected in more than 50% of the samples, with abundances exceeding 103 cells liter?1, even in the cold (annual average water temperature of around 5°C) and low-salinity (2 to 4‰) samples from the Bothnian Bay (latitude, 65°N). The unsuspected and widespread occurrence of this population in temperate and boreal coastal waters suggests that potential Vibrio pathogens may also be endemic to cold and brackish waters and hence may represent a previously overlooked health hazard. PMID:16957222

  17. Additive Function of Vibrio vulnificus MARTXVv and VvhA Cytolysins Promotes Rapid Growth and Epithelial Tissue Necrosis During Intestinal Infection

    PubMed Central

    Jeong, Hee-Gon; Satchell, Karla J. F.

    2012-01-01

    Vibrio vulnificus is a pathogen that causes both severe necrotizing wound infections and life-threatening food-borne infections. Food-borne infection is particularly lethal as the infection can progress rapidly to primary septicemia resulting in death from septic shock and multiorgan failure. In this study, we use both bioluminescence whole animal imaging and V. vulnificus bacterial colonization of orally infected mice to demonstrate that the secreted multifunctional-autoprocessing RTX toxin (MARTXVv) and the cytolysin/hemolysin VvhA of clinical isolate CMCP6 have an important function in the gut to promote early in vivo growth and dissemination of this pathogen from the small intestine to other organs. Using histopathology, we find that both cytotoxins can cause villi disruption, epithelial necrosis, and inflammation in the mouse small intestine. A double mutant deleted of genes for both cytotoxins was essentially avirulent, did not cause intestinal epithelial tissue damage, and was cleared from infected mice by 36 hours by an effective immune response. Therefore, MARTXVv and VvhA seem to play an additive role for pathogenesis of CMCP6 causing intestinal tissue damage and inflammation that then promotes dissemination of the infecting bacteria to the bloodstream and other organs. In the absence of these two secreted factors, we propose that this bacterium is unable to cause intestinal infection in humans. PMID:22457618

  18. Early steps in the European eel (Anguilla anguilla)-Vibrio vulnificus interaction in the gills: role of the RtxA13 toxin.

    PubMed

    Callol, Agnès; Pajuelo, David; Ebbesson, Lars; Teles, Mariana; MacKenzie, Simon; Amaro, Carmen

    2015-04-01

    Vibrio vulnificus is an aquatic gram-negative bacterium that causes a systemic disease in eels called warm-water vibriosis. Natural disease occurs via water born infection; bacteria attach to the gills (the main portal of entry) and spread to the internal organs through the bloodstream, provoking host death by haemorrhagic septicaemia. V. vulnificus produces a toxin called RtxA13 that hypothetically interferes with the eel immune system facilitating bacterial invasion and subsequent death by septic shock. The aim of this work was to study the early steps of warm-water vibriosis by analysing the expression of three marker mRNA transcripts related to pathogen recognition (tlr2 and tlr5) and inflammation (il-8) in the gills of eels infected by immersion with either the pathogen or a mutant deficient in rtxA13. Results indicate a differential response that is linked to the rtx toxin in the expression levels of the three measured mRNA transcripts. The results suggest that eels are able to distinguish innocuous from harmful microorganisms by the local action of their toxins rather than by surface antigens. Finally, the cells that express these transcripts in the gills are migratory cells primarily located in the second lamellae that re-locate during infection suggesting the activation of a specific immune response to pathogen invasion in the gill. PMID:25613341

  19. In vitro and in vivo antimicrobial efficacy of natural plant-derived compounds against Vibrio cholerae of O1 El Tor Inaba serotype.

    PubMed

    Kim, Hyung-Ip; Kim, Ji-Ae; Choi, Eun-Jin; Harris, Jason B; Jeong, Seong-Yeop; Son, Seok-Jun; Kim, Younghoon; Shin, Ok Sarah

    2015-01-01

    In this study, we investigated antibacterial activities of 20 plant-derived natural compounds against Gram-negative enteric pathogens. We found that both flavonoids and non-flavonoids, including honokiol and magnolol, possess specific antibacterial activities against V. cholerae, but not against other species of Gram-negative bacterium which we tested. Using various antibacterial assays, we determined that there was a dose-dependent bactericidal and biofilm inhibitory activity of honokiol and magnolol against Vibrio cholerae. In addition to antibacterial activities, these molecules also induced an attenuating effect on reactive oxygen species (ROS) production and pro-inflammatory responses generated by macrophages in response to lipopolysaccharides (LPS). Additionally, Caenorhabditis elegans lethality assay revealed that honokiol and magnolol have an ability to extend a lifespan of V. cholerae-infected worms, contributing to prolonged survival of worms after lethal infection. Altogether, our data show for the first time that honokiol and magnolol may be considered as attractive protective or preventive food adjuncts for cholera. PMID:25516242

  20. Vibrio vulnificus VvpE inhibits mucin 2 expression by hypermethylation via lipid raft-mediated ROS signaling in intestinal epithelial cells

    PubMed Central

    Lee, S-J; Jung, Y H; Oh, S Y; Jang, K K; Lee, H S; Choi, S H; Han, H J

    2015-01-01

    Mucin is an important physical barrier against enteric pathogens. VvpE is an elastase encoded by Gram-negative bacterium Vibrio vulnificus; however, the functional role of VvpE in intestinal mucin (Muc) production is yet to be elucidated. The recombinant protein (r) VvpE significantly reduced the level of Muc2 in human mucus-secreting HT29-MTX cells. The repression of Muc2 induced by rVvpE was highly susceptible to the knockdown of intelectin-1b (ITLN) and sequestration of cholesterol by methyl-?-cyclodextrin. We found that rVvpE induces the recruitment of NADPH oxidase 2 and neutrophil cytosolic factor 1 into the membrane lipid rafts coupled with ITLN to facilitate the production of reactive oxygen species (ROS). The bacterial signaling of rVvpE through ROS production is uniquely mediated by the phosphorylation of ERK, which was downregulated by the silencing of the PKC?. Moreover, rVvpE induced region-specific methylation in the Muc2 promoter to promote the transcriptional repression of Muc2. In two mouse models of V. vulnificus infection, the mutation of the vvpE gene from V. vulnificus exhibited an increased survival rate and maintained the level of Muc2 expression in intestine. These results demonstrate that VvpE inhibits Muc2 expression by hypermethylation via lipid raft-mediated ROS signaling in the intestinal epithelial cells. PMID:26086960

  1. Establishment of stable GFP-tagged Vibrio aestuarianus strains for the analysis of bacterial infection-dynamics in the Pacific oyster, Crassostrea gigas.

    PubMed

    Aboubaker, Mohamed Houmed; Sabrié, Justine; Huet, Martial; Koken, Marcel

    2013-06-28

    Several marine pathogens are thought to be implicated in the summer mortality phenomenon that strikes the Pacific oyster stocks (Crassostrea gigas) in Europe since more than a decade. Although, since 2008, a herpes virus variant (microvar) is considered the main responsible for juvenile mortalities, the role of several associated bacteria is less clear. One of these, Vibrio aestuarianus, has often been detected in moribund oysters, and laboratory challenges proved its involvement in oyster death. However, the mechanisms by which this pathogen enters the oyster and transmits in-between specimens or collaborates with other pathogens remain thus far almost unknown. To establish genuine model strains, which allow the detection of the bacteria during the first hours of infection, both a highly pathogenic (02/41) and a weakly pathogenic strain (01/308) were transformed with green fluorescent protein-expression vectors. The clones obtained were compared to the parental strains for their growth characteristics, basic metabolism, antibiotic-resistance and virulence. The 02/41 derivative was in all aspects indistinguishable from the parental strain. In contrast, in the 01/308 strain GFP expression led to a significant increase of virulence pointing to the dangers of GFP-tagging. The 02/41 GFP strain allows easy quantification by flow cytometry in both seawater and oyster haemolymph, and most importantly, its in situ detection will permit discerning the bacterium's routes inside the oyster tissues. PMID:23583012

  2. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5? RNA-seq

    PubMed Central

    Skalenko, Kyle S.; Goldman, Seth R.; Knoblauch, Jared G.; Dove, Simon L.; Nickels, Bryce E.

    2015-01-01

    Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, “primer-dependent initiation,” (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5? ends (5? RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T?1A+1 or G?1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´. PMID:26131907

  3. A label-free multi-functionalized graphene oxide based electrochemiluminscence immunosensor for ultrasensitive and rapid detection of Vibrio parahaemolyticus in seawater and seafood.

    PubMed

    Sha, Yuhong; Zhang, Xuan; Li, Wenrou; Wu, Wei; Wang, Sui; Guo, Zhiyong; Zhou, Jun; Su, Xiurong

    2016-01-15

    A label-free electrochemiluminescence (ECL) immunosensor for ultrasensitive and rapid detection of marine pathogenic bacterium Vibrio parahaemolyticus (VP) in seawater and seafood was developed based on multi-functionalized graphene oxide, which was prepared with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and VP antibody (anti-VP) simultaneously immobilized on the surface of magnetic graphene oxide (nanoFe3O4@GO). ABEI and anti-VP acted as the electrochemiluminophore and the capture device for VP respectively. Good conductivity and two-dimensional structure of the nanoFe3O4@GO enabled all the ABEI, immobilized on GO, electrochemically active and thus improved the detection sensitivity. Under optimal conditions, the ECL intensity decreased with increasing logarithmic concentrations of VP in the range of 10-10(8)CFU/mL, with a detection limit of 5CFU/mL for seawater and 5CFU/g for seafood. This ECL immunosensor showed high specificity, stability and reproducibility for the detection of VP. In addition, the ECL immunosensor has been successfully used to determine the concentration of VP in seawater and seafood rapidly, with a recovery of 94.4-112.0% and RSD 4.1-11.7%. Therefore, the developed immunosensor shows great prospect for practical application. PMID:26592599

  4. A single qrr gene is necessary and sufficient for LuxO-mediated regulation in Vibrio fischerimmi_7309 1556..1567

    E-print Network

    Ruby, Edward G.

    A single qrr gene is necessary and sufficient for LuxO-mediated regulation in Vibrio fischerimmi-day vibrio lineages. To demonstrate that a single qrr gene is sufficient to mediate repression of LitR, the global regulator in Vibrio fischeri, we have performed a series of genetic and phenotypic analyses

  5. A single qrr gene is necessary and sufficient for LuxO-mediated regulation in Vibrio fischerimmi_7309 1..12

    E-print Network

    McFall-Ngai, Margaret

    A single qrr gene is necessary and sufficient for LuxO-mediated regulation in Vibrio fischerimmi-day vibrio lineages. To demonstrate that a single qrr gene is sufficient to mediate repression of LitR, the global regulator in Vibrio fischeri, we have performed a series of genetic and phenotypic analyses

  6. Sediment and vegetation as reservoirs of Vibrio vulnificus in the Tampa Bay Estuary and Gulf of1 Eva Chase*, Suzanne Young* and Valerie J. Harwood1

    E-print Network

    Lajeunesse, Marc J.

    1 Sediment and vegetation as reservoirs of Vibrio vulnificus in the Tampa Bay Estuary and Gulf of1 Running Head: Alternative habitats of Vibrio vulnificus20 21 AEM Accepted Manuscript Posted Online 30 for Microbiology. All Rights Reserved. #12;2 Abstract22 The opportunistic pathogen Vibrio vulnificus occurs

  7. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletionemi_2608 655..668

    E-print Network

    McFall-Ngai, Margaret

    Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletionemi_2608 655..668 M. S of naturally occurring, non- bioluminescent strains of Vibrio fischeri. These `dark' V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions

  8. Effect of Climate Change on the Concentration and Associated Risks of Vibrio Spp. in Dutch Recreational Waters.

    PubMed

    Sterk, Ankie; Schets, Franciska M; de Roda Husman, Ana Maria; de Nijs, Ton; Schijven, Jack F

    2015-09-01

    Currently, the number of reported cases of recreational- water-related Vibrio illness in the Netherlands is low. However, a notable higher incidence of Vibrio infections has been observed in warm summers. In the future, such warm summers are expected to occur more often, resulting in enhanced water temperatures favoring Vibrio growth. Quantitative information on the increase in concentration of Vibrio spp. in recreational water under climate change scenarios is lacking. In this study, data on occurrence of Vibrio spp. at six different bathing sites in the Netherlands (2009-2012) were used to derive an empirical formula to predict the Vibrio concentration as a function of temperature, salinity, and pH. This formula was used to predict the effects of increased temperatures in climate change scenarios on Vibrio concentrations. For Vibrio parahaemolyticus, changes in illness risks associated with the changed concentrations were calculated as well. For an average temperature increase of 3.7 °C, these illness risks were calculated to be two to three times higher than in the current situation. Current illness risks were, varying per location, on average between 10(-4) and 10(-2) per person for an entire summer. In situations where water temperatures reached maximum values, illness risks are estimated to be up to 10(-2) and 10(-1) . If such extreme situations occur more often during future summers, increased numbers of ill bathers or bathing-water-related illness outbreaks may be expected. PMID:25809307

  9. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms

    PubMed Central

    Seghal Kiran, George; Nishanth Lipton, Anuj; Kennedy, Jonathan; Dobson, Alan DW; Selvin, Joseph

    2014-01-01

    A halotolerant thermostable lipase was purified and characterized from the marine bacterium Oceanobacillus sp. PUMB02. This lipase displayed a high degree of stability over a wide range of conditions including pH, salinity, and temperature. It was optimally active at 30 °C and pH 8.0 respectively and was stable at higher temperatures (50–70 °C) and alkaline pH. The molecular mass of the lipase was approximately 31 kDa based on SDS-PAGE and MALDI-ToF fingerprint analysis. Conditions for enhanced production of lipase by Oceanobacillus sp. PUMB02 were attained in response surface method-guided optimization with factors such as olive oil, sucrose, potassium chromate, and NaCl being evaluated, resulting in levels of 58.84 U/ml being achieved. The biofilm disruption potential of the PUMB02 lipase was evaluated and compared with a marine sponge metagenome derived halotolerant lipase Lpc53E1. Good biofilm disruption activity was observed with both lipases against potential food pathogens such as Bacillus cereus MTCC1272, Listeria sp. MTCC1143, Serratia sp. MTCC4822, Escherichia coli MTCC443, Pseudomonas fluorescens MTCC1748, and Vibrio parahemolyticus MTCC459. Phase contrast microscopy, scanning electron microscopy, and confocal laser scanning microscopy showed very effective disruption of pathogenic biofilms. This study reveals that marine derived hydrolytic enzymes such as lipases may have potential utility in inhibiting biofilm formation in a food processing environment and is the first report of the potential application of lipases from the genus Oceanobacillus in biofilm disruption strategies. PMID:25482232

  10. Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation.

    PubMed

    Koenig, Jeremy E; Bourne, David G; Curtis, Bruce; Dlutek, Marlena; Stokes, H W; Doolittle, W Ford; Boucher, Yan

    2011-06-01

    Integron cassette arrays in a dozen cultivars of the most prevalent group of Vibrio isolates obtained from mucus expelled by a scleractinian coral (Pocillopora damicornis) colony living on the Great Barrier Reef were sequenced and compared. Although all cultivars showed >99% identity across recA, pyrH and rpoB genes, no two had more than 10% of their integron-associated gene cassettes in common, and some individuals shared cassettes exclusively with distantly-related members of the genus. Of cassettes shared within the population, a number appear to have been transferred between Vibrio isolates, as assessed by phylogenetic analysis. Prominent among the mucus Vibrio cassettes with potentially inferable functions are acetyltransferases, some with close similarity to known antibiotic-resistance determinants. A subset of these potential resistance cassettes were shared exclusively between the mucus Vibrio cultivars, Vibrio coral pathogens and human pathogens, thus illustrating a direct link between these microbial niches through exchange of integron-associated gene cassettes. PMID:21270840

  11. Detection, Isolation, and Identification of Vibrio cholerae from the Environment

    PubMed Central

    Huq, Anwar; Haley, Bradd J.; Taviani, Elisa; Chen, Arlene; Hasan, Nur A.; Colwell, Rita R.

    2012-01-01

    Recent molecular advances in microbiology have greatly improved the detection of bacterial pathogens in the environment. Improvement and a downward trend in the cost of molecular detection methods have contributed to increased frequency of detection of pathogenic microorganisms where traditional culture-based detection methods have failed. Culture methods also have been greatly improved and the confluence of the two suites of methods provides a powerful tool for detection, isolation, and characterization of pathogens. While molecular detection provides data on the presence and type of pathogens, culturing methods allow a researcher to preserve the organism of interest for “–omics” studies, such as genomic, metabolomic, secretomic, and transcriptomic analysis, which are rapidly becoming more affordable. This has yielded a clearer understanding of the ecology and epidemiology of microorganisms that cause disease. Specifically, important advances have been made over the past several years on isolation, detection, and identification of Vibrio cholerae, the causative agent of cholera in humans. In this unit, we present commonly accepted methods for isolation, detection, and characterization of V. cholerae, providing more extensive knowledge of the ecology and epidemiology of this organism. This unit has been fully revised and updated from the earlier unit (Huq, Grim et al. 2006) with the latest knowledge and additional information not previously included. We have also taken into account of cost of reagents and equipment that may be prohibitive for many researchers and have, therefore, included protocols for all laboratories, including those with limited resources, likely to be located in regions of cholera endemicity. PMID:22875567

  12. Thymine auxotrophy as an attenuating marker in Vibrio cholerae.

    PubMed

    Attridge, S R

    1995-07-01

    Vibrio cholerae CVD102 is a thymine-dependent auxotroph of CVD101, a cholera toxin A-B+ candidate live oral cholera vaccine. Previous clinical experience with these strains suggested that, by restricting intestinal growth, thymine auxotrophy is attenuating for V. cholerae. Studies in the infant mouse cholera model cast doubt upon this conclusion however. Stable thyA mutants selected from each of three pathogenic strains showed unimpaired gut colonization in mixed-infection competition experiments. Similar results were obtained using thyA mutants selected from two atoxigenic strains, including CVD101. Further studies with CVD102 showed that the reduced colonization potential of this strain could not be compensated by the provision of a functional thyA+ gene in trans. CVD102 shows reduced synthesis of toxin-coregulated pili (TCP) during in vitro growth, suggesting the presence of a second, undefined mutation in this strain. Given the critical role of TCP in intestinal colonization, it seems probable that this previously unrecognized mutation is responsible for the poor in vivo performance of CVD102. PMID:8559036

  13. Expression of enterotoxigenic Escherichia coli colonization factors in Vibrio cholerae.

    PubMed

    Favre, Didier; Lüdi, Stefan; Stoffel, Michael; Frey, Joachim; Horn, Michael P; Dietrich, Guido; Spreng, Simone; Viret, Jean-François

    2006-05-15

    As a first step towards a vaccine against diarrhoeal disease caused by enterotoxigenic Escherichia coli (ETEC), we have studied the expression of several ETEC antigens in the live attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Colonization factors (CF) CFA/I, CS3, and CS6 were expressed at the surface of V. cholerae CVD 103-HgR. Both CFA/I and CS3 required the co-expression of a positive regulator for expression, while CS6 was expressed without regulation. Up-regulation of CF expression in V. cholerae was very efficient, so that high amounts of CFA/I and CS3 similar to those in wild-type ETEC were synthesized from chromosomally integrated CF and positive regulator loci. Increasing either the operon and/or the positive regulator gene dosage resulted in only a small increase in CFA/I and CS3 expression. In contrast, the level of expression of the non-regulated CS6 fimbriae appeared to be more dependent on gene dosage. While CF expression in wild-type ETEC is known to be tightly thermoregulated and medium dependent, it seems to be less stringent in V. cholerae. Finally, co-expression of two or three CFs in the same strain was efficient even under the control of one single regulator gene. PMID:16581160

  14. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  15. Proteomic analysis of Vibrio cholerae outer membrane vesicles

    PubMed Central

    Altindis, Emrah; Fu, Yang; Mekalanos, John J.

    2014-01-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon. The ToxT expression profile and potential contribution to virulence of these proteins were assessed using ToxT and in vivo RNA-seq, Tn-seq, and cholera stool proteomic and other genome-wide data sets. Thirteen OMV-associated proteins appear to be essential for cell growth, and therefore may represent antibacterial drug targets. Another 12 nonessential OMV proteins, including DegP protease, were required for intestinal colonization in rabbits. Comparative proteomics of a degP mutant revealed the importance of DegP in the incorporation of nine proteins into OMVs, including ones involved in biofilm matrix formation and various substrates of the type II secretion system. Taken together, these results suggest that DegP plays an important role in determining the content of OMVs and also affects phenotypes such as intestinal colonization, proper function of the type II secretion system, and formation of biofilm matrix. PMID:24706774

  16. A proteome reference map for Vibrio cholerae El Tor.

    PubMed

    Coelho, Ana; de Oliveira Santos, Eidy; Faria, Mauro Luiz da Hora; de Carvalho, Daniela Palermo; Soares, Marcia Regina; von Kruger, Wanda Maria Almeida; Bisch, Paulo Mascarello

    2004-05-01

    A proteome reference map has been constructed for Vibrio cholerae El Tor, in the pI range of 4.0 to 7.0. The map is based on two-dimensional gels (2-D) and the identification, by peptide mass fingerprint, of proteins in 94 spots, corresponding to 80 abundant proteins. Two strains are compared, strain N16961 and a Latin American El Tor strain C3294. The consensus map contains 340 spots consistently seen with both strains grown in Luria-Bertani broth (LB) or minimal M9 medium. The results were obtained from nine gels run with 18 cm immobilized pH gradient strips and precast gels. The 2-D gels were anchored to real N16961 proteins identified by mass spectrometry. Various energy metabolism components and periplasmic ATP-binding cassette (ABC) transporter proteins were identified among the abundant proteins. Two isoforms of OmpU were found. Five operons are proposed and seven hypothetical proteins were experimentally confirmed. Comparisons are made with protein 2-D gels for a classical strain and to microarray analysis available for the N16961 El Tor strain. New results were obtained from the proteome analysis, indicating an abundance of periplasmic ABC transporter proteins not found in microarray studies. PMID:15188416

  17. Characterization of the lipopolysaccharide from Vibrio cholerae 395 (Ogawa).

    PubMed Central

    Kabir, S

    1982-01-01

    The chemical structure and biological properties of the lipopolysaccharide (LPS) from Vibrio cholerae 395 (Ogawa), isolated by the phenol-water procedure, were studied. Upon acid hydrolysis, the LPS was split into its polysaccharide and lipid A moieties. The polysaccharide contained both neutral (glucose, heptose, fructose) and amino (glucosamine, quinovosamine) sugars. The LPS contained the acid-labile amino sugar, 4-amino-arabinose, which was absent in the Inaba serotype of V. cholerae. The LPS differed from the LPSs of Enterobacteriaceae by the absence of 2-keto-3-deoxyoctonate and the presence of fructose. Analysis of the methylated polysaccharide by gas-liquid chromatography and mass spectrometry showed that it had a branched structure with glucose and heptose residues primarily appearing at the nonreducing-end groups. Interactions with lectins, concanavalin A. and wheat germ agglutinin suggested that terminal glucose residues were alpha linked, whereas terminal glucosamine residues were connected by alpha-1,3 linkages. The major fatty acids of the LPS were C14:0, C16:0, C12h:0, and C14h:0 compounds, of which only the C14h:0 were amide linked, the remainder being ester linked to the backbone. Biological studies showed that the LPS possessed endotoxic properties such as lethality, pyrogenicity, limulus lysate gelation, and ability to induce non-specific resistance to infection. Thus, the LPS from V. cholerae 395 (Ogawa) possessed both common and distinct features as compared with the LPSs from the Enterobacteriaceae. Images PMID:7152669

  18. Vibrio coralliilyticus Search Patterns across an Oxygen Gradient

    PubMed Central

    Winn, Karina M.; Bourne, David G.; Mitchell, James G.

    2013-01-01

    The coral pathogen, Vibrio coralliilyticus shows specific chemotactic search pattern preference for oxic and anoxic conditions, with the newly identified 3-step flick search pattern dominating the patterns used in oxic conditions. We analyzed motile V. coralliilyticus cells for behavioral changes with varying oxygen concentrations to mimic the natural coral environment exhibited during light and dark conditions. Results showed that 3-step flicks were 1.4× (P?=?0.006) more likely to occur in oxic conditions than anoxic conditions with mean values of 18 flicks (95% CI?=?0.4, n?=?53) identified in oxic regions compared to 13 (95% CI?=?0.5, n?=?38) at anoxic areas. In contrast, run and reverse search patterns were more frequent in anoxic regions with a mean value of 15 (95% CI?=?0.7, n?=?46), compared to a mean value of 10 (95% CI?=?0.8, n?=?29) at oxic regions. Straight swimming search patterns remained similar across oxic and anoxic regions with a mean value of 13 (95% CI?=?0.7, n?=?oxic: 13, anoxic: 14). V. coralliilyticus remained motile in oxic and anoxic conditions, however, the 3-step flick search pattern occurred in oxic conditions. This result provides an approach to further investigate the 3-step flick. PMID:23874480

  19. Structural and Thermodynamic Characterization of Vibrio fischeri CcdB*

    PubMed Central

    De Jonge, Natalie; Hohlweg, Walter; Garcia-Pino, Abel; Respondek, Michal; Buts, Lieven; Haesaerts, Sarah; Lah, Jurij; Zangger, Klaus; Loris, Remy

    2010-01-01

    CcdBVfi from Vibrio fischeri is a member of the CcdB family of toxins that poison covalent gyrase-DNA complexes. In solution CcdBVfi is a dimer that unfolds to the corresponding monomeric components in a two-state fashion. In the unfolded state, the monomer retains a partial secondary structure. This observation correlates well with the crystal and NMR structures of the protein, which show a dimer with a hydrophobic core crossing the dimer interface. In contrast to its F plasmid homologue, CcdBVfi possesses a rigid dimer interface, and the apparent relative rotations of the two subunits are due to structural plasticity of the monomer. CcdBVfi shows a number of non-conservative substitutions compared with the F plasmid protein in both the CcdA and the gyrase binding sites. Although variation in the CcdA interaction site likely determines toxin-antitoxin specificity, substitutions in the gyrase-interacting region may have more profound functional implications. PMID:19959472

  20. ?-Hydroxyketone Synthesis and Sensing by Legionella and Vibrio

    PubMed Central

    Tiaden, André; Hilbi, Hubert

    2012-01-01

    Bacteria synthesize and sense low molecular weight signaling molecules, termed autoinducers, to measure their population density and community complexity. One class of autoinducers, the ?-hydroxyketones (AHKs), is produced and detected by the water-borne opportunistic pathogens Legionella pneumophila and Vibrio cholerae, which cause Legionnaires’ disease and cholera, respectively. The “Legionella quorum sensing” (lqs) or “cholera quorum sensing” (cqs) genes encode enzymes that produce and sense the AHK molecules “Legionella autoinducer-1” (LAI-1; 3-hydroxypentadecane-4-one) or cholera autoinducer-1 (CAI-1; 3-hydroxytridecane-4-one). AHK signaling regulates the virulence of L. pneumophila and V. cholerae, pathogen-host cell interactions, formation of biofilms or extracellular filaments, expression of a genomic “fitness island” and competence. Here, we outline the processes, wherein AHK signaling plays a role, and review recent insights into the function of proteins encoded by the lqs and cqs gene clusters. To this end, we will focus on the autoinducer synthases catalysing the biosynthesis of AHKs, on the cognate trans-membrane sensor kinases detecting the signals, and on components of the down-stream phosphorelay cascade that promote the transmission and integration of signaling events regulating gene expression. PMID:22736983

  1. Predation Response of Vibrio fischeri Biofilms to Bacterivorus Protists

    PubMed Central

    Chavez-Dozal, Alba; Gorman, Clayton; Erken, Martina; Steinberg, Peter D.; McDougald, Diane

    2013-01-01

    Vibrio fischeri proliferates in a sessile, stable community known as a biofilm, which is one alternative survival strategy of its life cycle. Although this survival strategy provides adequate protection from abiotic factors, marine biofilms are still susceptible to grazing by bacteria-consuming protozoa. Subsequently, grazing pressure can be controlled by certain defense mechanisms that confer higher biofilm antipredator fitness. In the present work, we hypothesized that V. fischeri exhibits an antipredator fitness behavior while forming biofilms. Different predators representing commonly found species in aquatic populations were examined, including the flagellates Rhynchomonas nasuta and Neobodo designis (early biofilm feeders) and the ciliate Tetrahymena pyriformis (late biofilm grazer). V. fischeri biofilms included isolates from both seawater and squid hosts (Euprymna and Sepiola species). Our results demonstrate inhibition of predation by biofilms, specifically, isolates from seawater. Additionally, antiprotozoan behavior was observed to be higher in late biofilms, particularly toward the ciliate T. pyriformis; however, inhibitory effects were found to be widespread among all isolates tested. These results provide an alternative explanation for the adaptive advantage and persistence of V. fischeri biofilms and provide an important contribution to the understanding of defensive mechanisms that exist in the out-of-host environment. PMID:23144127

  2. Construction of genetically marked Vibrio cholerae O1 vaccine strains.

    PubMed

    Ketley, J M; Michalski, J; Galen, J; Levine, M M; Kaper, J B

    1993-07-15

    Attenuated Vibrio cholerae O1 vaccine strains lacking the gene encoding the A subunit of cholera toxin have proven efficacious in preventing experimental cholera. As these strains move from closed, contained testing environments to large-scale field trials, a readily assayable phenotypic trait to distinguish a vaccine strain from wild-type V. cholerae O1 is desirable. We have constructed three derivatives of the attenuated V. cholerae strain CVD 103 which carry a mercury resistance or urease marker in the hlyA gene. CVD 103-HgR was constructed using a protracted marker-exchange procedure; this strain was found to have somewhat lowered colonisation efficiency in infant mice in comparison to its parent strain, CVD 103. The insertion of the resistance marker was repeated using a suicide vector system; CVD 103-HgR2 was found to colonise infant mice as efficiently as CVD 103. Strain CVD 103-UR, in which sequences encoding urease were inserted using a suicide vector, also colonised infant mice as well as CVD 103. The genetically marked strains CVD 103-HgR, CVD 103-HgR2 and CVD 103-UR form the basis for a generation of defined oral vaccines that may give single-dose, long-lasting protection to populations at risk from cholera. PMID:8359676

  3. ATP-association to intrabacterial nanotransportation system in Vibrio cholerae.

    PubMed

    Matsuzaki, Yuji; Wu, Hong; Nakano, Takashi; Nakahari, Takashi; Sano, Kouichi

    2015-12-01

    Vibrio cholerae colonizes the lumen of the proximal small intestine, which has an alkaline environment, and secretes cholera toxin (CT) through a type II secretion machinery. V. cholerae possesses the intrabacterial nanotransportation system (ibNoTS) for transporting CT from the inner portion toward the peripheral portion of the cytoplasm, and this system is controlled by extrabacterial pH. Association of ATP with ibNoTS has not yet been examined in detail. In this study, we demonstrated by immunoelectron microscopy that ibNoTS of V. cholerae under the extrabacterial alkaline condition was inhibited by ATP inhibitors, 2,4-dinitrophenol (DNP), a protonophore, or 8-amino-adenosine which produces inactive form of ATP. The inhibition of CT transport can be reversed by neutralization of DNP. Those inhibitions were associated with decrease of CT secretion by which ibNoTS followed. We propose that ATP closely associates with V. cholerae ibNoTS for transporting CT. PMID:25986680

  4. Vibrio cholerae Hemagglutinin/Protease Degrades Chironomid Egg Masses

    PubMed Central

    Halpern, Malka; Gancz, Hanan; Broza, Meir; Kashi, Yechezkel

    2003-01-01

    Cholera is a severe diarrheal disease caused by specific serogroups of Vibrio cholerae that are pathogenic to humans. The disease does not persist in a chronic state in humans or animals. The pathogen is naturally present as a free-living organism in the environment. Recently, it was suggested that egg masses of the nonbiting midge Chironomus sp. (Diptera) harbor and serve as a nutritive source for V. cholerae, thereby providing a natural reservoir for the organism. Here we report that V. cholerae O9, O1, and O139 supernatants lysed the gelatinous matrix of the chironomid egg mass and inhibited eggs from hatching. The extracellular factor responsible for the degradation of chironomid egg masses (egg mass degrading factor) was purified from V. cholerae O9 and O139 and was identified as the major secreted hemagglutinin/protease (HA/P) of V. cholerae. The substrate in the egg mass was characterized as a glycoprotein. These findings show that HA/P plays an important role in the interaction of V. cholerae and chironomid egg masses. PMID:12839800

  5. Isolation of a bacterium capable of degrading peanut hull lignin

    SciTech Connect

    Kerr, T.A.; Kerr, R.D.; Benner, R.

    1983-11-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter species, was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled (/sup 14/C) lignin-labeled lignocellulose and (/sup 14/C)cellulose-labeled lignocellulose from the cordgrass Spartina alterniflora and could also degrade (/sup 14/C) Kraft lignin from slash pine. After 10 days of incubation with (/sup 14/C) cellulose-labeled lignocellulose or (/sup 14/C) lignin-labeled lignocellulose from S. alterniflora, the bacterium mineralized 6.5% of the polysaccharide component and 2.9% of the lignin component. (Refs. 24).

  6. Vibrio alginolyticus Associated Chronic Myringitis Acquired in Mediterranean Waters of Turkey

    PubMed Central

    Citil, Burak Ekrem; Derin, Serhan; Sankur, Funda; Sahan, Murat; Citil, Mahmut Ugur

    2015-01-01

    Vibrio alginolyticus was originally classified as biotype 2 of Vibrio parahaemolyticus. Most clinical isolates are recovered from superficial wounds or the external ear infections. V. alginolyticus is acknowledged to be nearly nonpathogenic in humans. The reason for presence of V. alginolyticus's virulence is uncertain. We describe a chronic myringitis case in a 47-year-old female due to V. alginolyticus. According to her anamnesis, it was detected that she had sea bathing history in Mugla Coast in Turkey. Pure isolation of V. alginolyticus was obtained from external auditory canal's culture. Investigation and antimicrobial susceptibility of the isolate were performed by the automatized BD Phoenix system and Kirby-Bauer disk diffusion method, respectively. The bacteria were sensitive to all antibiotics. This case was presented to pay attention to Vibrio alginolyticus infections. PMID:26605095

  7. ULTRASTRUCTURE OF LIGHT ORGANS OF LOLIGINID SQUIDS AND THEIR BACTERIAL SYMBIONTS: A NOVEL MODEL SYSTEM FOR THE STUDY OF MARINE SYMBIOSES

    PubMed Central

    GUERRERO-FERREIRA, R. C.; NISHIGUCHI, M. K.

    2010-01-01

    The class Cephalopoda (Phylum Mollusca), encompassing squids and octopuses, contains multiple species that are characterized by the presence of specialized organs known to emit light. These complex organs have a variety of morphological characteristics ranging from groups of simple, light-producing cells, to highly specialized organs (light organs) with cells surrounded by reflectors, lenses, light guides, color filters, and muscles. Bacteriogenic light organs have been well characterized in sepiolid squids, but a number of species in the family Loliginidae are also known to contain bacteriogenic light organs. Interest in loliginid light organ structure has recently arisen because of their potential as ecological niches for Vibrio harveyi, a pathogenic marine bacterium. This also implies the importance of loliginid light organs as reservoirs for V. harveyi persistence in the ocean. The present study utilized transmission and scanning electron microscopy to characterize the morphology of loliginid light organs and determined the location of bacterial symbiont cells within the tissue. It was determined that the rod-shaped loliginid symbionts lack flagella, as similarly observed in other light organ-associated bacteria. Also, the interaction of individual cells to light organ tissue is not as defined as reported for other squid-Vibrio systems. In addition, SEM observations show the presence of two pores leading to the bacterial chamber. Data presented here offer support for the hypothesis of environmental transfer of bacterial symbionts in loliginid squids. PMID:21152248

  8. Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus

    DOEpatents

    Tucker, Melvin P. (Lakewood, CO); Grohmann, Karel (Littleton, CO); Himmel, Michael E. (Littleton, CO); Mohagheghi, Ali (Golden, CO)

    1992-01-01

    A substantially purified high molecular weight cellulase enzyme having a molecular weight of between about 156,000 to about 203,400 daltons isolated from the bacterium Acidothermus cellulolyticus (ATCC 43068) and a method of producing it are disclosed. The enzyme is water soluble, possesses both C.sub.1 and C.sub.x types of enzymatic activity, has a high degree of stability toward heat and exhibits both a high optimum temperature activity and high inactivation characteristics.

  9. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    PubMed Central

    Shao, Z; Mages, W; Schmitt, R

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization. Images PMID:7961434

  10. Occurrence, seasonality and infectivity of Vibrio strains in natural populations of mussels Mytilus galloprovincialis.

    PubMed

    Romero, Alejandro; Costa, María del; Forn-Cuni, Gabriel; Balseiro, Pablo; Chamorro, Rubén; Dios, Sonia; Figueras, Antonio; Novoa, Beatriz

    2014-02-19

    Widespread and large-scale mortalities of bivalve molluscs significantly affect their production. A number of pathogens have been identified as the primary causes of death in oysters or clams, especially bacteria of the genus Vibrio. We evaluated the occurrence, seasonality and infectivity of Vibrio strains associated with natural mussel (Mytilus galloprovincialis) populations. In particular, different isolates of V. splendidus and V. aestuarianus were analysed because they were associated with major oyster mortalities in areas where mussels are cultured without presenting mortalities. The presence of both Vibrio spp. was analysed bimonthly in mussels, water, sediment, plankton and other associated fauna from 2 sites in Galicia (NW Spain), the region with the highest mussel production in Europe. Environmental factors were also considered. The pathogenicity of different Vibrio isolates was analysed by performing experimental infections in mussels with strains isolated from the field. Results showed that Vibrio populations were mainly influenced by changes in water temperature and salinity. V. splendidus was dominant during the warm months and V. aestuarianus was predominant throughout the cold season. The sediment was the most important natural reservoir for bacteria. Experimental infections showed the extreme resistance of mussels to bacterial pathogens. Isolates of V. splendidus and V. aestuarianus were only moderately pathogenic for mussels in intramuscular infections and bath infections, and mortalities only occurred when animals were infected with a high bacterial concentration in adverse environmental conditions (hypoxia and 25°C). Although the pathogenicity of the Vibrio strains isolated from the wild was low for mussels, their potential risk for other bivalves cannot be ignored. PMID:24553420

  11. A Foodborne Outbreak of Gastroenteritis Caused by Vibrio parahaemolyticus and Norovirus through Non-Seafood Vehicle

    PubMed Central

    Cai, Wenfeng; Liu, Jianping; Ma, Xiaowei; Xie, Chaojun; Zheng, Chuangliang; Zhuo, Li; Cao, Xianbang; Tan, Hailing; Li, Baisheng; Xie, Huaping; Liu, Yufei; Ip, Dennis

    2015-01-01

    Foodborne outbreaks caused by a mixed infection of Vibrio parahaemolyticus and norovirus have rarely been described. We reported a mixed outbreak of Vibrio parahaemolyticus and norovirus causing acute gastroenteritis in 99 staff members of a company in Guangdong, China, in May 2013, following consumption of roasted duck, an uncommon non-seafood vehicle for such mixed infection, in one meal served in the company's catering service. Epidemiological and laboratory findings indicated that a single asymptomatic food handler was the source of both pathogens, and the high rate of infection of both pathogens was exacerbated by the setting’s suboptimal food hygiene practice. PMID:26376317

  12. Genome Sequence of Temperate Vibrio parahaemolyticus Bacteriophage vB_VpaS_MAR10

    PubMed Central

    Alanis Villa, Argentina; Kropinski, Andrew M.; Abbasifar, Reza; Abbasifar, Arash

    2012-01-01

    Vibrio parahaemolyticus is recognized as one of the main causes of human gastroenteritis associated with seafood. We have fully sequenced the genome of a newly isolated phage, vB_VpaS_MAR10, which lysed 61.9% of the V. parahaemolyticus strains tested. Phage MAR10 is a temperate siphovirus, and its genome consists of double-stranded DNA (dsDNA) with a size of 78,751 bp, a G+C content of 49.70%, and 104 open reading frames. Bioinformatic analysis shows that phage MAR10 is closely related to Vibrio phage SSP002. PMID:23166255

  13. Vibrio Fluvialis: An Unusual Enteric Pathogen of Increasing Public Health Concern

    PubMed Central

    Igbinosa, Etinosa O.; Okoh, Anthony I.

    2010-01-01

    In developing countries, the fraction of treated wastewater effluents being discharged into watersheds have increased over the period of time, which have led to the deteriorations of the qualities of major rivers in developing nations. Consequently, high densities of disease causing bacteria in the watersheds are regularly reported including incidences of emerging Vibrio fluvialis. Vibrio fluvialis infection remains among those infectious diseases posing a potentially serious threat to public health. This paper addresses the epidemiology of this pathogen; pathogenesis of its disease; and its clinical manifestations in humans. PMID:21139853

  14. Vibrio mexicanus sp. nov., isolated from a cultured oyster Crassostrea corteziensis.

    PubMed

    González-Castillo, Adrián; Enciso-Ibarrra, Julissa; Bolán-Mejia, M Carmen; Balboa, Sabela; Lasa, Aide; Romalde, Jesús L; Cabanillas-Beltrán, Hector; Gomez-Gil, Bruno

    2015-08-01

    A bacterial strain was taxonomically characterised by means of a genomic approach comprising 16S rRNA gene sequence analysis, multilocus sequence analysis (MLSA), the DNA G+C content, whole genome analyses (ANI and GGDC) and phenotypic characterisation. The strain CAIM 1540(T) was isolated from a cultured oyster Crassostrea corteziensis in La Cruz, Sinaloa state, México. The isolate was found to be catalase and oxidase positive, cells were observed to be motile, O/129-sensitive and facultatively anaerobic. The almost-complete 16S rRNA gene sequence placed this strain within the genus Vibrio; the closest related species were found to be Vibrio aestivus, Vibrio marisflavi, Vibrio maritimus and Vibrio variabilis with similarity values of 99.02, 97.05, 96.70, and 96.59 % respectively. MLSA of four housekeeping genes (ftsZ, gapA, recA, and topA) was performed with the closely related species. A draft genome sequence of strain CAIM 1540(T) was obtained. The DNA G+C content of this strain was determined to be 43.7 mol%.The ANI values with V. aestivus were 89.6 % (ANIb), 90.6 % (ANIm) and a GGDC value of 39.5 ± 2.5 % was obtained; with V. marisflavi the genomic similarities were 71.5 % (ANIb), 85.5 % (ANIm) and 20.2 ± 2.3 % (GGDC); with V. maritimus 72.6 % (ANIb), 85.7 % (ANIm) and 22.0 ± 2.0 % (GGDC); and with V. variabilis 72.6 % (ANIb), 85.8 % (ANIm) and 21.6 ± 1.6 % (GGDC). These ANI and GGDC values are below the threshold for the delimitation of prokaryotic species, i.e. 95-96 and 70 %, respectively. Phenotypic characters also showed differences with the closest related species analysed. The results presented here support the description of a novel species, for which the name Vibrio mexicanus sp. nov. is proposed, with strain CAIM 1540(T) (= CECT 8828(T), = DSM 100338(T)) as the type strain. In addition, we found that the recently described species Vibrio thalassae and Vibrio madracius might be a single species because the values of ANIb 95.8 %, ANIm 96.6 % and GGDC 70.2 ± 2.9 % are above the accepted species thresholds. PMID:26021481

  15. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium.

    PubMed

    Yun, Eun Ju; Lee, Saeyoung; Kim, Hee Taek; Pelton, Jeffrey G; Kim, Sooah; Ko, Hyeok-Jin; Choi, In-Geol; Kim, Kyoung Heon

    2015-05-01

    The catabolic fate of the major monomeric sugar of red macroalgae, 3,6-anhydro-L-galactose (AHG), is completely unknown in any organisms. AHG is not catabolized by ordinary fermentative microorganisms, and it hampers the utilization of red macroalgae as renewable biomass for biofuel and chemical production. In this study, metabolite and transcriptomic analyses of Vibrio sp., a marine bacterium capable of catabolizing AHG as a sole carbon source, revealed two key metabolic intermediates of AHG, 3,6-anhydrogalactonate (AHGA) and 2-keto-3-deoxy-galactonate; the corresponding genes were verified in vitro enzymatic reactions using their recombinant proteins. Oxidation by an NADP(+) -dependent AHG dehydrogenase and isomerization by an AHGA cycloisomerase are the two key AHG metabolic processes. This newly discovered metabolic route was verified in vivo by demonstrating the growth of Escherichia coli harbouring the genes of these two enzymes on AHG as a sole carbon source. Also, the introduction of only these two enzymes into an ethanologenic E.?coli strain increased the ethanol production in E.?coli by fermenting both AHG and galactose in an agarose hydrolysate. These findings provide not only insights for the evolutionary adaptation of a central metabolic pathway to utilize uncommon substrates in microbes, but also a metabolic design principle for bioconversion of red macroalgal biomass into biofuels or industrial chemicals. PMID:25156229

  16. Phenotypic characterization of Vibrio vulnificus biotype 2, a lipopolysaccharide-based homogeneous O serogroup within Vibrio vulnificus.

    PubMed Central

    Biosca, E G; Oliver, J D; Amaro, C

    1996-01-01

    In this study, we have reevaluated the taxonomic position of biotype 2 of Vibrio vulnificus. For this purpose, we have biochemically and serologically characterized 83 biotype 2 strains from diseased eels, comparing them with 17 biotype 1 strains from different sources. Selected strains were also molecularly analyzed and tested for eel and mouse pathogenicity. Results have shown that biotype 2 (i) is biochemically homogeneous, indole production being the main trait that distinguishes it from biotype 1, (ii) presents small variations in DNA restriction profiles and outer membrane protein patterns, some proteins being immunologically related to outer membrane proteins from biotype 1, (iii) expresses a common lipopolysaccharide (LPS) profile, which is immunologically identical among strains and distinct from that of LPS of tested biotype 1 strains, and (iv) contains at least two high-Mr plasmids. Regarding host range, we have confirmed that both biotypes are pathogenic for mice but only biotype 2 is pathogenic for eels. On the basis of these data, we propose that biotype 2 of V. vulnificus constitutes an LPS-based O serogroup which is phenotypically homogeneous and pathogenic for eels. In this article, the serogroup is designated serogroup E (for eels). PMID:8975619

  17. The natural furanone (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone disrupts

    E-print Network

    Wood, Thomas K.

    disrupts quorum sensing in Vibrio harveyi. Bioluminescence experiments with signal molecule receptor double, the compound was found to block quorum sensing-regulated bioluminescence by interacting with a component

  18. Probing the folding pathway of bacterial luciferase via mutagenesis 

    E-print Network

    Corley, Lori Denee

    1997-01-01

    Bacterial luciferase from Vibrio harveyi is a heterodimeric protein consisting of homologous [ ] and [ ] subunits. It has been shown to undergo reversible denaturation in urea with spectrally distinct species along the folding pathway...

  19. Evaluation of Ice Slurries as a Control for Postharvest Growth of Vibrio spp. in Oysters and Potential for Filth Contamination.

    PubMed

    Lydon, Keri Ann; Farrell-Evans, Melissa; Jones, Jessica L

    2015-07-01

    Raw oyster consumption is the most common route of exposure for Vibrio spp. infections in humans. Vibriosis has been increasing steadily in the United States despite efforts to reduce the incidence of the disease. Research has demonstrated that ice is effective in reducing postharvest Vibrio spp. growth in oysters but has raised concerns of possible contamination of oyster meat by filth (as indicated by the presence of fecal coliform bacteria or Clostridium perfringens). This study examined the use of ice slurries (<4.5°C) to reduce Vibrio growth. Ice slurries showed rapid internal cooling of oysters, from 23.9°C (75°F) to 10°C (50°F) within 12 min. The initial bacterial loads in the ice slurry waters were near the limits of detection. Following repeated dipping of oysters into ice slurries, water samples exhibited significant (P < 0.05) increases in median levels of fecal coliforms (9.5 most probable number [MPN]/100 ml), C. perfringens (280 MPN/100 ml), Vibrio vulnificus (11,250 MPN/ml), and total Vibrio parahaemolyticus (3,900 MPN/ml). The microbial load in oyster meat, however, was unchanged after 15 min of submergence, with no significant differences (P < 0.05) in levels of filth indicator (range, 250 to 720 MPN/100 g) or Vibrio spp. (range, 9,000 to 20,000 MPN/g) bacteria. These results support the use of ice slurries as a postharvest application for rapid cooling of oysters to minimize Vibrio growth. PMID:26197291

  20. Real-time PCR assay for rapid detection and quantification of Vibrio aestuarianus in oyster and seawater: a useful tool for epidemiologic studies.

    PubMed

    Saulnier, Denis; De Decker, Sophie; Haffner, Philippe

    2009-05-01

    Because Vibrio aestuarianus is known to cause serious infections in Pacific oyster Crassostrea gigas, a real-time PCR assay was developed targeting the dnaJ gene of this bacterium. Only V. aestuarianus strains isolated from C. gigas mortality events in different geographic areas and the reference strain tested positive, whereas no amplification products was obtained with type strains belonging to 23 other species of Vibrio. Sensitivity and reproducibility of the method were assessed using either seawater or oyster homogenate samples spiked with one V. aestuarianus strain. All these samples were stored at -20 degrees C in order to mimic retrospective or grouped natural sample analysis without quantification bias due to prolonged freezing. Analysis of standard curves revealed excellent correlation values between light microscopy cell enumerations and PCR Threshold Cycle (Ct) values, and acceptable PCR reaction efficiencies for all type of samples. Quantification curves of both sample types were equivalent, with a detection level as low as 1.6 V. aestuarianus cells in the PCR reaction tube, corresponding to 1.6 x 10(2) cells ml(-1) and 1.6 x 10(2) cells mg(-1) in seawater and entire oyster samples, respectively, taking into account the dilution factor used for appropriate template DNA preparation. Comparison of PCR assay reproducibility according to the complexity of samples revealed that seawater samples gave more reproducible quantification measures than samples from oyster homogenate, with precision of measured Ct values inferior to 0.4 and 0.6 respectively at 99% confidence. Use of the real-time PCR assay allowed us to monitor V. aestuarianus load in oysters naturally infected with this pathogen. Furthermore, we were able to detect V. aestuarianus in samples of seawater in which oysters had been reared and in algal cultures used for feeding oysters. Because of the rapidity and reliability of the real-time PCR assay method used in this study, just a few hours are needed compared with the two days required using the classic culture method, this technique will be particularly valuable in mollusc pathology laboratories, for monitoring the source and course of infections by V. aestuarianus in pathogenesis and epidemiologic studies, as well as for designing appropriate prophylactic control measures. PMID:19318049

  1. Inhibition of virulence potential of Vibrio cholerae by natural compounds

    PubMed Central

    Yamasaki, Shinji; Asakura, Masahiro; Neogi, Sucharit Basu; Hinenoya, Atsushi; Iwaoka, Emiko; Aoki, Shunji

    2011-01-01

    The rise in multi-drug resistant Vibrio cholerae strains is a big problem in treatment of patients suffering from severe cholera. Only a few studies have evaluated the potential of natural compounds against V. cholerae. Extracts from plants like ‘neem’, ‘guazuma’, ‘daio’, apple, hop, green tea and elephant garlic have been shown to inhibit bacterial growth or the secreted cholera toxin (CT). However, inhibiting bacterial growth like common antimicrobial agents may also impose selective pressure facilitating development of resistant strains. A natural compound that can inhibit virulence in V. cholerae is an alternative choice for remedy. Recently, some common spices were examined to check their inhibitory capacity against virulence expression of V. cholerae. Among them methanol extracts of red chili, sweet fennel and white pepper could substantially inhibit CT production. Fractionation of red chili methanol extracts indicated a hydrophobic nature of the inhibitory compound(s), and the n-hexane and 90 per cent methanol fractions could inhibit >90 per cent of CT production. Purification and further fractionation revealed that capsaicin is one of the major components among these red chili fractions. Indeed, capsaicin inhibited the production of CT in various V. cholerae strains regardless of serogroups and biotypes. The quantitative reverse transcription real-time PCR assay revealed that capsaicin dramatically reduced the expression of major virulence-related genes such as ctxA, tcpA and toxT but enhanced the expression of hns gene that transcribes a global prokaryotic gene regulator (H-NS). This indicates that the repression of CT production by capsaicin or red chili might be due to the repression of virulence genes transcription by H-NS. Regular intake of spices like red chili might be a good approach to fight against devastating cholera. PMID:21415500

  2. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    PubMed Central

    Belas, M R; Colwell, R R

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral flagella, bacterial adsorption did not follow the Langmuir adsorption isotherm; instead, proportional adsorption kinetics were observed. The adsorption of some polarly flagellated bacteria exhibited surface saturation kinetics. However, the binding index (the product of the number of binding sites and bacterial affinity to the surface) of polarly flagellated bacteria differed significantly from that of laterally flagellated bacteria, suggesting that polarly flagellated bacteria adsorb to chitin by a different mechanism from that used by the laterally flagellated bacteria. From the results of dual-label adsorption competition experiments, in which polarly flagellated V. cholerae competed with increasing concentrations of laterally flagellated V. parahaemolyticus, it was observed that laterally flagellated bacteria inhibited the adsorption of polarly flagellated bacteria. In contrast, polarly flagellated bacteria enhanced the adsorption of V. cholerae. In competition experiments, where V. parahaemolyticus competed against increasing concentrations of other bacteria, polarly flagellated bacteria enhanced V. parahaemolyticus adsorption significantly, whereas laterally flagellated bacteria only slightly enhanced the process. The direct correlation observed between surface saturation kinetics, the production of lateral flagella, and the ability of laterally flagellated bacteria to inhibit the adsorption of polarly flagellated bacteria suggests that lateral flagella represent a component of bacterial structure that is important in the adsorption of laterally flagellated bacteria to surfaces. A model for adsorption events of laterally flagellated bacteria is proposed, based on the evidence presented. Images PMID:7107559

  3. O-antigen and Core Carbohydrate of Vibrio fischeri Lipopolysaccharide

    PubMed Central

    Post, Deborah M. B.; Yu, Liping; Krasity, Benjamin C.; Choudhury, Biswa; Mandel, Mark J.; Brennan, Caitlin A.; Ruby, Edward G.; McFall-Ngai, Margaret J.; Gibson, Bradford W.; Apicella, Michael A.

    2012-01-01

    Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other Gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of l-glycero-d-manno-heptose, d-glycero-d-manno-heptose, glucose, 3-deoxy-d-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid. PMID:22247546

  4. A Dye-Decolorizing Peroxidase from Vibrio cholerae.

    PubMed

    Uchida, Takeshi; Sasaki, Miho; Tanaka, Yoshikazu; Ishimori, Koichiro

    2015-11-01

    The dye-decolorizing peroxidase (DyP) protein from Vibrio cholerae (VcDyP) was expressed in Escherichia coli, and its DyP activity was assayed by monitoring degradation of a typical anthraquinone dye, reactive blue 19 (RB19). Its kinetic activity was obtained by fitting the data to the Michaelis-Menten equation, giving kcat and Km values of 1.3 ± 0.3 s(-1) and 50 ± 20 ?M, respectively, which are comparable to those of other DyP enzymes. The enzymatic activity of VcDyP was highest at pH 4. A mutational study showed that two distal residues, Asp144 and Arg230, which are conserved in a DyP family, are essential for the DyP reaction. The crystal structure and resonance Raman spectra of VcDyP indicate the transfer of a radical from heme to the protein surface, which was supported by the formation of the intermolecular covalent bond in the reaction with H2O2. To identify the radical site, each of nine tyrosine or two tryptophan residues was substituted. It was clarified that Tyr129 and Tyr235 are in the active site of the dye degradation reaction at lower pH, while Tyr109 and Tyr133 are the sites of an intermolecular covalent bond at higher pH. VcDyP degrades RB19 at lower pH, while it loses activity under neutral or alkaline conditions because of a change in the radical transfer pathway. This finding suggests the presence of a pH-dependent switch of the radical transfer pathway, probably including His178. Although the physiological function of the DyP reaction is unclear, our findings suggest that VcDyP enhances the DyP activity to survive only when it is placed under a severe condition such as being in gastric acid. PMID:26431465

  5. Inhibition of virulence potential of Vibrio cholerae by natural compounds.

    PubMed

    Yamasaki, Shinji; Asakura, Masahiro; Neogi, Sucharit Basu; Hinenoya, Atsushi; Iwaoka, Emiko; Aoki, Shunji

    2011-02-01

    The rise in multi-drug resistant Vibrio cholerae strains is a big problem in treatment of patients suffering from severe cholera. Only a few studies have evaluated the potential of natural compounds against V. cholerae. Extracts from plants like 'neem', 'guazuma', 'daio', apple, hop, green tea and elephant garlic have been shown to inhibit bacterial growth or the secreted cholera toxin (CT). However, inhibiting bacterial growth like common antimicrobial agents may also impose selective pressure facilitating development of resistant strains. A natural compound that can inhibit virulence in V. cholerae is an alternative choice for remedy. Recently, some common spices were examined to check their inhibitory capacity against virulence expression of V. cholerae. Among them methanol extracts of red chili, sweet fennel and white pepper could substantially inhibit CT production. Fractionation of red chili methanol extracts indicated a hydrophobic nature of the inhibitory compound(s), and the n-hexane and 90 per cent methanol fractions could inhibit >90 per cent of CT production. Purification and further fractionation revealed that capsaicin is one of the major components among these red chili fractions. Indeed, capsaicin inhibited the production of CT in various V. cholerae strains regardless of serogroups and biotypes. The quantitative reverse transcription real-time PCR assay revealed that capsaicin dramatically reduced the expression of major virulence-related genes such as ctxA, tcpA and toxT but enhanced the expression of hns gene that transcribes a global prokaryotic gene regulator (H-NS). This indicates that the repression of CT production by capsaicin or red chili might be due to the repression of virulence genes transcription by H-NS. Regular intake of spices like red chili might be a good approach to fight against devastating cholera. PMID:21415500

  6. RpoS Controls the Vibrio cholerae Mucosal Escape Response

    PubMed Central

    Otto, Glen; Miller, Michael C; Wu, Cheng Yen; Schoolnik, Gary K

    2006-01-01

    Vibrio cholerae causes a severe diarrhoeal disease by secreting a toxin during colonization of the epithelium in the small intestine. Whereas the initial steps of the infectious process have been intensively studied, the last phases have received little attention. Confocal microscopy of V. cholerae O1-infected rabbit ileal loops captured a distinctive stage in the infectious process: 12 h post-inoculation, bacteria detach from the epithelial surface and move into the fluid-filled lumen. Designated the “mucosal escape response,” this phenomenon requires RpoS, the stationary phase alternative sigma factor. Quantitative in vivo localization assays corroborated the rpoS phenotype and showed that it also requires HapR. Expression profiling of bacteria isolated from ileal loop fluid and mucus demonstrated a significant RpoS-dependent upregulation of many chemotaxis and motility genes coincident with the emigration of bacteria from the epithelial surface. In stationary phase cultures, RpoS was also required for upregulation of chemotaxis and motility genes, for production of flagella, and for movement of bacteria across low nutrient swarm plates. The hapR mutant produced near-normal numbers of flagellated cells, but was significantly less motile than the wild-type parent. During in vitro growth under virulence-inducing conditions, the rpoS mutant produced 10- to 100-fold more cholera toxin than the wild-type parent. Although the rpoS mutant caused only a small over-expression of the genes encoding cholera toxin in the ileal loop, it resulted in a 30% increase in fluid accumulation compared to the wild-type. Together, these results show that the mucosal escape response is orchestrated by an RpoS-dependent genetic program that activates chemotaxis and motility functions. This may furthermore coincide with reduced virulence gene expression, thus preparing the organism for the next stage in its life cycle. PMID:17054394

  7. Induction of Protease Activity in Vibrio anguillarum by Gastrointestinal Mucus

    PubMed Central

    Denkin, Steven M.; Nelson, David R.

    1999-01-01

    The effect of gastrointestinal mucus on protease activity in Vibrio anguillarum was investigated. Protease activity was measured by using an azocasein hydrolysis assay. Cells grown to stationary phase in mucus (200 ?g of mucus protein/ml) exhibited ninefold-greater protease activity than cells grown in Luria-Bertani broth plus 2% NaCl (LB20). Protease induction was examined with cells grown in LB20 and resuspended in mucus, LB20, nine-salts solution (NSS [a carbon-, nitrogen-, and phosphorus-free salt solution]), or marine minimal medium (3M) (?109 CFU/ml). Induction of protease activity occurred 60 to 90 min after addition of mucus and was ?70-fold greater than protease activity measured in cells incubated in either LB20 or 3M. Mucus was fractionated into aqueous and chloroform-methanol-soluble fractions. The aqueous fraction supported growth of V. anguillarum cells, but did not induce protease activity. The chloroform-methanol-soluble fraction did not support growth, nor did it induce protease activity. When the two fractions were mixed, protease activity was induced. The chloroform-methanol-soluble fraction did not induce protease activity in cells growing in LB20. EDTA (50 mM) inhibited the protease induced by mucus. Upon addition of divalent cations, Mg2+ (100 mM) was more effective than equimolar amounts of either Ca2+ or Zn2+ in restoring activity, suggesting that the mucus-inducible protease was a magnesium-dependent metalloprotease. An empA mutant strain of V. anguillarum did not exhibit protease activity after exposure to mucus, but did grow in mucus. Southern analysis and PCR amplification confirmed that V. anguillarum M93 contained empA. These data demonstrate that the empA metalloprotease of V. anguillarum is specifically induced by gastrointestinal mucus. PMID:10427048

  8. Features governing symbiont persistence in the squid-vibrio association

    PubMed Central

    Koch, Eric J.; Miyashiro, Tim; McFall-Ngai, Margaret J.; Ruby, Edward G.

    2013-01-01

    Experimental studies of the interaction between host and symbiont in a maturing symbiotic organ have presented a challenge for most animal-bacterial associations. Advances in the rearing of the host squid Euprymna scolopes have enabled us to explore the relationship between a defect in symbiont light production and late-stage development (e.g., symbiont persistence and tissue morphogenesis) by experimental colonization with specific strains of the symbiont Vibrio fischeri. During the first four weeks post-inoculation of juvenile squid, the population of wild-type V. fischeri increased 100-fold; in contrast, a strain defective in light production (?lux) colonized normally the first day, but exhibited an exponential decline to undetectable levels over subsequent weeks. Co-colonization of organs by both strains affected neither the trajectory of colonization by wild type, nor the decline of ?lux levels. Uninfected animals retained the ability to be colonized for at least two weeks post-hatch. However, once colonized by the wild-type strain for 5 days, a subsequent experimentally induced loss of the symbionts could not be followed by a successful recolonization, indicating the host’s entry into a refractory state. However, animals colonized by the ?lux before the loss of their symbionts were receptive to recolonization. Analyses of animals colonized with either a wild-type or a ?lux strain revealed slight, if any, differences in the developmental regression of the ciliated light-organ tissues that facilitate the colonization process. Thus, some other feature(s) of the ?lux strain’s defect also may be responsible for its inability to persist, and its failure to induce a refractory state in the host. PMID:24118200

  9. Complete topology of the RNF complex from Vibrio cholerae.

    PubMed

    Hreha, Teri N; Mezic, Katherine G; Herce, Henry D; Duffy, Ellen B; Bourges, Anais; Pryshchep, Sergey; Juarez, Oscar; Barquera, Blanca

    2015-04-21

    RNF is a redox-driven ion (Na(+) and in one case possibly H(+)) transporter present in many prokaryotes. It has been proposed that RNF performs a variety of reactions in different organisms, delivering low-potential reducing equivalents for specific cellular processes. RNF shares strong homology with the Na(+)-pumping respiratory enzyme Na(+)-NQR, although there are significant differences in subunit and redox cofactor composition. Here we report a topological analysis of the six subunits of RNF from Vibrio cholerae. Although individual subunits from other organisms have previously been studied, this is the first complete, experimentally derived, analysis of RNF from any one source. This has allowed us to identify and confirm key properties of RNF. The putative NADH binding site in RnfC is located on the cytoplasmic side of the membrane. FeS centers in RnfB and RnfC are also located on the cytoplasmic side. However, covalently attached FMNs in RnfD and RnfG are both located in the periplasm. RNF also contains a number of acidic residues that correspond to functionally important groups in Na(+)-NQR. The acidic residues involved in Na(+) uptake and many of those implicated in Na(+) translocation are topologically conserved. The topology of RNF closely matches the topology represented in the newly published structure of Na(+)-NQR, consistent with the close relation between the two enzymes. The topology of RNF is discussed in the context of the current structural model of Na(+)-NQR, and the proposed functionality of the RNF complex itself. PMID:25831459

  10. Infaunal Burrows Are Enrichment Zones for Vibrio parahaemolyticus?†

    PubMed Central

    Gamble, Megan D.; Lovell, Charles R.

    2011-01-01

    Vibrio parahaemolyticus, a species that includes strains known to be pathogenic in humans, and other Vibrionaceae are common, naturally occurring bacteria in coastal environments. Understanding the ecology and transport of these organisms within estuarine systems is fundamental to predicting outbreaks of pathogenic strains. Infaunal burrows serve as conduits for increased transport of tidal waters and V. parahaemolyticus cells by providing large open channels from the sediment to salt marsh tidal creeks. An extensive seasonal study was conducted at the North Inlet Estuary in Georgetown, SC, to quantify Vibrionaceae and specifically V. parahaemolyticus bacteria in tidal water, fiddler crab (Uca pugilator, Uca pugnax) burrow water, and interstitial pore water. Numbers of V. parahaemolyticus bacteria were significantly higher within burrow waters (4,875 CFU ml?1) than in creek water (193 CFU ml?1) and interstitial pore water (128 CFU ml?1), demonstrating that infaunal burrows are sites of V. parahaemolyticus enrichment. A strong seasonal trend of increased abundances of Vibrionaceae and V. parahaemolyticus organisms during the warmer months of May through September was observed. Multilocus sequence typing (MLST) analysis of isolates presumed to be V. parahaemolyticus from creek water, pore water, and burrow water identified substantial strain-level genetic variability among V. parahaemolyticus bacteria. Analysis of carbon substrate utilization capabilities of organisms presumed to be V. parahaemolyticus also indicated physiological diversity within this clade, which helps to explain the broad distribution of these strains within the estuary. These burrows are “hot spots” of Vibrionaceae and V. parahaemolyticus cell numbers and strain diversity and represent an important microhabitat. PMID:21478307

  11. [Molecular Detection Methods for Vibrio parahaemolyticus in Seafood].

    PubMed

    Nishio, Tomohiro; Ohtsuka, Kayoko; Oda, Midori; Sugiyama, Kanji; Hara-Kudo, Yukiko

    2015-07-01

    To detect Vibrio parahaemolyticus in seafood, we evaluated efficient combinations of molecular methods with DNA extraction methods using heat extraction and alkaline heat extraction, and PCR, real-time PCR and loop-mediated isothermal amplification (LAMP) assays were performed targeting V parahaemolyticus species-specific genes (tlh and rpoD) and pathogenic factors genes (tdh and trh). The species-specific genes were detected in all combinations of two strains (a tdh * trh1-positive strain and a trh2-positive strain), two kinds of shellfish (oyster and bloody clams) and molecular methods with tlh-real time PCR or rpoD-LAMP assays with DNA of alkaline heat extraction at 85-145cfu/test level. tdh was detected in both seafoods with real time PCR assay with DNA of heat extraction at 85cfu/test level, and detected with the LAMP and real time PCR assays with DNA of alkaline heat extraction at 85cfu/test level. Detection of both trh1 and trh2 with the PCR assay with DNA of alkaline heat extraction was comparatively high though trh2 was detected with the LAMP assay with DNA of alkaline heat extraction at 145cfu/test level. It, however, is necessary to investigate more sensitive trh-detection methods. In this study, the results indicated that tlh-real time PCR or rpoD-LAMP, tdh-real time PCR and tdh-LAMP assays with DNA of alkaline heat extraction are relatively-sensitive methods to detect V. parahaemolyticus in seafood. PMID:26554219

  12. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov.

    PubMed Central

    Sawabe, Tomoo; Ogura, Yoshitoshi; Matsumura, Yuta; Feng, Gao; Amin, AKM Rohul; Mino, Sayaka; Nakagawa, Satoshi; Sawabe, Toko; Kumar, Ramesh; Fukui, Yohei; Satomi, Masataka; Matsushima, Ryoji; Thompson, Fabiano L.; Gomez-Gil, Bruno; Christen, Richard; Maruyama, Fumito; Kurokawa, Ken; Hayashi, Tetsuya

    2013-01-01

    To date 142 species have been described in the Vibrionaceae family of bacteria, classified into seven genera; Aliivibrio, Echinimonas, Enterovibrio, Grimontia, Photobacterium, Salinivibrio and Vibrio. As vibrios are widespread in marine environments and show versatile metabolisms and ecologies, these bacteria are recognized as one of the most diverse and important marine heterotrophic bacterial groups for elucidating the correlation between genome evolution and ecological adaptation. However, on the basis of 16S rRNA gene phylogeny, we could not find any robust monophyletic lineages in any of the known genera. We needed further attempts to reconstruct their evolutionary history based on multilocus sequence analysis (MLSA) and/or genome wide taxonomy of all the recognized species groups. In our previous report in 2007, we conducted the first broad multilocus sequence analysis (MLSA) to infer the evolutionary history of vibrios using nine housekeeping genes (the 16S rRNA gene, gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA), and we proposed 14 distinct clades in 58 species of Vibrionaceae. Due to the difficulty of designing universal primers that can amplify the genes for MLSA in every Vibrionaceae species, some clades had yet to be defined. In this study, we present a better picture of an updated molecular phylogeny for 86 described vibrio species and 10 genome sequenced Vibrionaceae strains, using 8 housekeeping gene sequences. This new study places special emphasis on (1) eight newly identified clades (Damselae, Mediterranei, Pectenicida, Phosphoreum, Profundum, Porteresiae, Rosenbergii, and Rumoiensis); (2) clades amended since the 2007 proposal with recently described new species; (3) orphan clades of genomospecies F6 and F10; (4) phylogenetic positions defined in 3 genome-sequenced strains (N418, EX25, and EJY3); and (5) description of V. tritonius sp. nov., which is a member of the “Porteresiae” clade. PMID:24409173

  13. Detection of the thermostable direct hemolysin gene and related DNA sequences in Vibrio parahaemolyticus and other vibrio species by the DNA colony hybridization test.

    PubMed Central

    Nishibuchi, M; Ishibashi, M; Takeda, Y; Kaper, J B

    1985-01-01

    A specific gene probe for the Vibrio parahaemolyticus thermostable direct hemolysin gene was constructed and used to examine the presence or absence of the thermostable direct hemolysin gene or related DNA sequences in V. parahaemolyticus and other vibrios by the DNA colony hybridization method. The gene probe consisted of a 406-base-pair, completely internal fragment covering 71% of the structural gene with PstI linkers added to the ends. Six copies of this 415-base-pair PstI fragment were cloned into plasmid pBR322, which yielded large amounts of the probe DNA. One hundred forty-one V. parahaemolyticus strains were tested with the gene probe, and the results were compared with those of phenotypic assays for the thermostable direct hemolysin. All Kanagawa phenomenon-positive strains were gene positive. However, 86% of the strains that exhibited weak Kanagawa phenomenon and 16% of Kanagawa phenomenon-negative strains also reacted with the gene probe. Immunological methods for the detection of the thermostable direct hemolysin (modified Elek test, enzyme-linked immunosorbent assay) showed better correlation with gene probe results. All gene-positive strains produced hemolysin detectable in the enzyme-linked immunosorbent assay, although occasional strains showed weak reaction. The modified Elek test was slightly less sensitive than the enzyme-linked immunosorbent assay. All gene-negative strains were also negative in these immunological assays. One hundred twenty-one strains of Vibrio spp. other than V. parahaemolyticus were tested with the gene probe; only Vibrio hollisae strains reacted with the probe under stringent conditions. PMID:4030087

  14. Identification and characteristic analysis of the ampC gene encoding beta-lactamase from Vibrio fischeri.

    PubMed

    Weng, Shu-Fen; Chao, Yuh-Fen; Lin, Juey-Wen

    2004-02-13

    Vibrio fischeri ATCC 7744 is an ampicillin resistant (Amp(r)) marine luminous bacterium. The MIC test indicates that V. fischeri is highly resistant to penicillins, and susceptible to cephalosporins. V. fischeri ampC gene was cloned and identified. Nucleotide sequence of an unidentified ufo gene and the ampC, ppiB genes (GenBank Accession No. AY438037) has been determined; whereas the ampC gene encodes the beta-lactamase (AmpC) and the ppiB gene encodes the peptidyl-prolyl cis-trans isomerase B. Alignment and comparison show that V. fischeri beta-lactamase is homologous to the related species'. The specific amino acid residues STFK (62nd to 65th), SDN (122nd to 124th), and D (155th) located 34 residues downstream from the SDN loop of the class A beta-lactamases are highly conserved, but the KTG is not found. V. fischeri ampC gene encoding beta-lactamase has a calculated M(r) 31,181 and comprises 283 amino acid residues (pI 5.35). There is a signal peptide of 18 amino acid residues MKIKPFLFGLIVLANNAI in the pro-beta-lactamase, which functioned for secretion; thus, the matured protein only has M(r) 29,197 and comprises 265 amino acid residues (pI 4.95). SDS-PAGE and the beta-lactamase functional assays elicit that the M(r) of the beta-lactamases are close to 29kDa. IEF and the beta-lactamase functional assays show that the beta-lactamases' pI are close to 4.8 as predicted. The results elucidate that V. fischeri ampC gene and the cloned ampC gene in Escherichia coli are the same one. The gene order of the ampC and the related genes is -ufo-(P*-intern)-ampC-ppiB--> (P*-intern: intern promoter for sub-regulation), whereas the P*-intern promoter displays the function to lead the ampC gene's expression for stress response. PMID:14741712

  15. gbpA as a Novel qPCR Target for the Species-Specific Detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in Environmental, Stool, and Historical Continuous Plankton Recorder Samples

    PubMed Central

    Vezzulli, Luigi; Stauder, Monica; Grande, Chiara; Pezzati, Elisabetta; Verheye, Hans M.; Owens, Nicholas J. P.; Pruzzo, Carla

    2015-01-01

    The Vibrio cholerae N-acetyl glucosamine-binding protein A (GbpA) is a chitin-binding protein involved in V. cholerae attachment to environmental chitin surfaces and human intestinal cells. We previously investigated the distribution and genetic variations of gbpA in a large collection of V. cholerae strains and found that the gene is consistently present and highly conserved in this species. Primers and probe were designed from the gbpA sequence of V. cholerae and a new Taq-based qPCR protocol was developed for diagnostic detection and quantification of the bacterium in environmental and stool samples. In addition, the positions of primers targeting the gbpA gene region were selected to obtain a short amplified fragment of 206 bp and the protocol was optimized for the analysis of formalin-fixed samples, such as historical Continuous Plankton Recorder (CPR) samples. Overall, the method is sensitive (50 gene copies), highly specific for V. cholerae and failed to amplify strains of the closely-related species Vibrio mimicus. The sensitivity of the assay applied to environmental and stool samples spiked with V. cholerae ATCC 39315 was comparable to that of pure cultures and was of 102 genomic units/l for drinking and seawater samples, 101 genomic units/g for sediment and 102 genomic units/g for bivalve and stool samples. The method also performs well when tested on artificially formalin-fixed and degraded genomic samples and was able to amplify V. cholerae DNA in historical CPR samples, the earliest of which date back to August 1966. The detection of V. cholerae in CPR samples collected in cholera endemic areas such as the Benguela Current Large Marine Ecosystem (BCLME) is of particular significance and represents a proof of concept for the possible use of the CPR technology and the developed qPCR assay in cholera studies. PMID:25915771

  16. Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri

    E-print Network

    McFall-Ngai, Margaret

    Toxicity cutoff of aromatic hydrocarbons for luminescence inhibition of Vibrio fischeri So Polycyclic aromatic hydrocarbons a b s t r a c t Effects of individual petroleum hydrocarbons hydrocarbons, including benzene and its derivatives and polycyclic aromatic hydrocarbons (PAHs), were chosen

  17. Murine macrophage inflammatory cytokine production and immune activation in response to Vibrio parahaemolyticus infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is the most common cause of bacterial seafood-related illness in the United States. Currently, there is a dearth of literature regarding immunity to infection with this pathogen. Here we studied V. parahaemolyticus-infected RAW 264.7 murine macrophage detecting both pro- and...

  18. Draft Genome Sequence of the Marine Pathogen Vibrio coralliilyticus RE22.

    PubMed

    Spinard, Edward; Kessner, Linda; Gomez-Chiarri, Marta; Rowley, David C; Nelson, David R

    2015-01-01

    Vibrio coralliilyticus RE22 is a causative agent of vibriosis in larval bivalves. We report here the draft genome sequence of V. coralliilyticus RE22 and describe additional virulence factors that may provide insight into its mechanism of pathogenicity. PMID:26634766

  19. A cluster of Vibrio cholerae O1 infections in French travelers to Rajasthan (India), May 2006.

    PubMed

    Tarantola, Arnaud; Vaucel, Jacques; Laviolle, Céline; Quilici, Marie-Laure; Thiolet, Jean-Michel; Fournier, Jean-Michel

    2008-01-01

    A woman aged 60 years was hospitalized for Vibrio cholerae serogroup O1 cholera. Twenty-six fellow travelers and 48 health care workers who cared for the patient were individually traced and contacted. Of the 23/27 travelers with diarrhea during the trip, 4 presented antibodies. There was no person-to-person transmission. PMID:18666928

  20. Antimicrobial Drug Resistance of Vibrio cholerae, Democratic Republic of the Congo

    PubMed Central

    Miwanda, Berthe; Moore, Sandra; Muyembe, Jean-Jacques; Nguefack-Tsague, Georges; Kabangwa, Ickel Kakongo; Ndjakani, Daniel Yassa; Mutreja, Ankur; Thomson, Nicholas; Thefenne, Helene; Garnotel, Eric; Tshapenda, Gaston; Kakongo, Denis Kandolo; Kalambayi, Guy

    2015-01-01

    We analyzed 1,093 Vibrio cholerae isolates from the Democratic Republic of the Congo during 1997–2012 and found increasing antimicrobial drug resistance over time. Our study also demonstrated that the 2011–2012 epidemic was caused by an El Tor variant clonal complex with a single antimicrobial drug susceptibility profile. PMID:25897570

  1. Vibrio natriegens: A Rapidly Growing Micro-Organism Ideally Suited for Class Experiments

    ERIC Educational Resources Information Center

    Mullenger, L.; Gill, Nijole R.

    1973-01-01

    Describes five microbiological experiments using the marine organism Vibrio natriegens. This organism is highly suitable for laboratory work because it is non-pathogenic and grows extremely rapidly, having the distinction of the lowest mean generation time yet recorded (9.8 minutes). (JR)

  2. Evaluation of reference genes in Vibrio parahaemolyticus for gene expression analysis using quantitative RT-PCR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio parahaemolyticus is a significant human pathogen capable of causing foodborne gastroenteritis associated with the consumption of contaminated raw or undercooked seafood. Quantitative RT-PCR (qRT-PCR) is a useful tool for studying gene expression in V. parahaemolyticus to characterize the viru...

  3. Diversity of Vibrio spp in Karstic Coastal Marshes in the Yucatan Peninsula

    PubMed Central

    2015-01-01

    Coastal bodies of water formed by the combination of seawater, underground rivers and rainwater comprise the systems with the greatest solar energy flow and biomass production on the planet. These characteristics make them reservoirs for a large number species, mainly microorganisms. Bacteria of the genus Vibrio are natural inhabitants of these environments and their presence is determined by variations in the nutrient, temperature and salinity cycles generated by the seasonal hydrologic behavior of these lagoon systems. This study determined the diversity of the genus Vibrio in 4 coastal bodies of water on the Yucatan Peninsula (Celestun Lagoon, Chelem Lagoon, Rosada Lagoon and Sabancuy Estuary). Using the molecular technique of 454 pyrosequencing, DNA extracted from water samples was analyzed and 32,807 reads were obtained belonging to over 20 culturable species of the genus Vibrio and related genera. OTU (operational taxonomic unit) richness and Chao2 and Shannon Weaver diversity indices were obtained with the database from this technique. Physicochemical and environmental parameters were determined and correlated with Vibrio diversity measured in OTUs. PMID:26252792

  4. Draft genome sequence of Strain ATCC 17802(T), the type strain of Vibrio parahaemolyticus.

    PubMed

    Yang, Ning; Liu, Ming; Luo, Xuesong; Pan, Jicheng

    2015-12-01

    We report the draft genome of Vibrio parahaemolyticus ATCC 17802(T), containing 5067729bp. The G+C content of the genome is 45.24 %. This strain possesses genes encoding a Type III secretion system 1, a Type III secretion system 2 and a Tdh related hemolysin (TRH). Its taxonomically important phenotypes were also experimentally characterized. PMID:26021549

  5. Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries.

    PubMed Central

    Colwell, R R; Seidler, R J; Kaper, J; Joseph, S W; Garges, S; Lockman, H; Maneval, D; Bradford, H; Roberts, N; Remmers, E; Huq, I; Huq, A

    1981-01-01

    Vibrio cholerae serotype O1 has been isolated from Chesapeake Bay in Maryland and estuaries and sewers in Louisiana. The occurrence of V. cholerae O1 in the aquatic environment in the absence of human disease suggests that this organism survives and multiples in the natural environment. PMID:7235699

  6. Isolation of Vibrio cholerae serotype O1 from the eastern oyster, Crassostrea virginica.

    PubMed Central

    Hood, M A; Ness, G E; Rodrick, G E

    1981-01-01

    Two strains of Vibrio cholerae serotype O1 Inaba were isolated from eastern oysters, Crassostrea virginica, collected from estuarine waters in Florida during April 1980. The oyster meats and waters from which the oysters were collected had low fecal coliform counts, and the area had no prior evidence of sewage contamination. PMID:7235700

  7. Draft Genome Sequence of the Marine Pathogen Vibrio coralliilyticus RE22

    PubMed Central

    Spinard, Edward; Kessner, Linda; Gomez-Chiarri, Marta; Rowley, David C.

    2015-01-01

    Vibrio coralliilyticus RE22 is a causative agent of vibriosis in larval bivalves. We report here the draft genome sequence of V. coralliilyticus RE22 and describe additional virulence factors that may provide insight into its mechanism of pathogenicity. PMID:26634766

  8. RESPONSES OF OYSTERS AND THEIR HEMOCYTES TO CLINICAL AND ENVIRONMENTAL ISOLATES OF VIBRIO PARAHAEMOLYTICUS

    EPA Science Inventory

    Interactions of Vibrio parahaemolyticus with oysters and oyster hemocytes were studied using three environmental isolates (1094, 1163 and ATCC 17802) and three clinical isolates (2030, 2062, 2107). Clinical isolates were from patients who became ill during the June 1998 food pois...

  9. Hydrogen peroxide causes Vibrio vulnificus bacteriolysis accelerated by sulfonyl fluoride compounds.

    PubMed

    Yoshimura, Michinobu; Tamura, Tetsuro; Iida, Ken-Ichiro; Shiota, Susumu; Nakayama, Hiroaki; Yoshida, Shin-Ichi

    2015-11-01

    Induction of bacteriolysis of Vibrio vulnificus cells by 10 mM hydrogen peroxide (H2O2) was analyzed. All Vibrio species examined, except for Vibrio hollisae, were lysed by 10 mM H2O2. Bacteriophage induction was not the cause of H2O2-induced bacteriolysis. Autolysis is also known to cause bacteriolysis. VvpS protein is a serine protease of V. vulnificus essential for autolysis. vvpS mutant underwent H2O2-induced bacteriolysis in the same manner as the wild type. Protease inhibitors including serine protease inhibitors did not inhibit H2O2-induced bacteriolysis, which means that bacteriolysis is not due to autolysis. Unexpectedly, H2O2-induced bacteriolysis was accelerated by adding 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) and phenylmethylsulfonyl fluoride which are serine protease inhibitors. The hydroxyl radical was generated by H2O2-AEBSF interaction. It was considered that H2O2-induced bacteriolysis was caused by the hydroxyl radical which was generated by Fenton reaction, and possibly mediated by AEBSF. Deferoxamine, an agent chelating ferric ion and Fenton reaction inhibitor, suppressed both H2O2-induced bacteriolysis and its acceleration by AEBSF. This suggests that both phenomena were Fenton reaction dependent, and hydroxyl radical generated by Fenton reaction caused bacteriolysis of V. vulnificus though the reason for high susceptibility of Vibrio species to hydroxyl radical is not known. PMID:26316164

  10. A Two-Step Synthesis of Virstatin, a Virulence Inhibitor of "Vibrio cholerae"

    ERIC Educational Resources Information Center

    McDonald, Chriss E.

    2009-01-01

    Virstatin, an "N"-butanoic acid substituted naphthalimide, inhibits the ability of "Vibrio cholerae" to cause disease. A three-week experiment involving synthesis, purification, and spectral characterization of this compound is described. This experiment is appropriate for organic chemistry. It has been performed with three lab sections of about…

  11. COSPECIATION BETWEEN HOSTS AND SYMBIONTS: The Sepiolid Squid-Vibrio Mutualism

    E-print Network

    McFall-Ngai, Margaret

    COSPECIATION BETWEEN HOSTS AND SYMBIONTS: The Sepiolid Squid- Vibrio Mutualism MICHELE K). Although these mutualisms have evolved as part of a new "evolutionary innovation" (Margulis, 1989 on determining the coevolution of the mutualism? Does the evolution of specific recognition factors help

  12. UPTAKE, PERSISTENCE, AND LOCALIZATION OF VIRULENT AND AVIRULENT VIBRIO VULNIFICUS IN THE EASTERN OYSTER, CRASSOSTREA VIRGINICA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vibrio vulnificus is a human pathogen commonly found in estuarine environments. Foodborne illness is associated with the consumption of raw oysters and can produce gastroenteritis and life-threatening septicemia. Depuration is one of the common methods to purge microbial contaminants from oysters....

  13. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    SciTech Connect

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  14. Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation

    NASA Astrophysics Data System (ADS)

    Nguyen, Hung; Le, Ly; Ho, Tu Bao

    2014-06-01

    Antarctic bacterium antifreeze proteins (AFPs) protect and support the survival of cold-adapted organisms by binding and inhibiting the growth of ice crystals. The mechanism of the anti-freezing process in a water environment at low temperature of Antarctic bacterium AFPs remains unclear. In this research, we study the effects of Antarctic bacterium AFPs by coarse grained simulations solution at a temperature range from 262 to 273 K. The results indicated that Antarctic bacterium AFPs were fully active in temperatures greater than 265 K. Additionally, the specific temperature ranges at which the water molecules become completely frozen, partially frozen, and not frozen were identified.

  15. Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation.

    PubMed

    Nguyen, Hung; Le, Ly; Ho, Tu Bao

    2014-06-14

    Antarctic bacterium antifreeze proteins (AFPs) protect and support the survival of cold-adapted organisms by binding and inhibiting the growth of ice crystals. The mechanism of the anti-freezing process in a water environment at low temperature of Antarctic bacterium AFPs remains unclear. In this research, we study the effects of Antarctic bacterium AFPs by coarse grained simulations solution at a temperature range from 262 to 273?K. The results indicated that Antarctic bacterium AFPs were fully active in temperatures greater than 265?K. Additionally, the specific temperature ranges at which the water molecules become completely frozen, partially frozen, and not frozen were identified. PMID:24929413

  16. Quantitative Microbial Risk Assessment of Pathogenic Vibrios in Marine Recreational Waters of Southern California

    PubMed Central

    Dickinson, Gregory; Lim, Keah-ying

    2013-01-01

    This study investigated the occurrence of three types of vibrios in Southern California recreational beach waters during the peak marine bathing season in 2007. Over 160 water samples were concentrated and enriched for the detection of vibrios. Four sets of PCR primers, specific for Vibrio cholerae, V. parahaemolyticus, and V. vulnificus species and the V. parahaemolyticus toxin gene, respectively, were used for the amplification of bacterial genomic DNA. Of 66 samples from Doheny State Beach, CA, 40.1% were positive for V. cholerae and 27.3% were positive for V. parahaemolyticus, and 1 sample (1.5%) was positive for the V. parahaemolyticus toxin gene. Of the 96 samples from Avalon Harbor, CA, 18.7% were positive for V. cholerae, 69.8% were positive for V. parahaemolyticus, and 5.2% were positive for the V. parahaemolyticus toxin gene. The detection of the V. cholerae genetic marker was significantly more frequent at Doheny State Beach, while the detection of the V. parahaemolyticus genetic marker was significantly more frequent at Avalon Harbor. A probability-of-illness model for V. parahaemolyticus was applied to the data. The risk for bathers exposed to recreational waters at two beaches was evaluated through Monte Carlo simulation techniques. The results suggest that the microbial risk from vibrios during beach recreation was below the illness benchmark set by the U.S. EPA. However, the risk varied with location and the type of water recreation activities. Surfers and children were exposed to a higher risk of vibrio diseases. Microbial risk assessment can serve as a useful tool for the management of risk related to opportunistic marine pathogens. PMID:23104412

  17. Clonal relationships among classical Vibrio cholerae O1 strains isolated between 1961 and 1992 in Bangladesh.

    PubMed Central

    Faruque, S M; Abdul Alim, A R; Rahman, M M; Siddique, A K; Sack, R B; Albert, M J

    1993-01-01

    In Bangladesh, the replacement of classical Vibrio cholerae by the E1 Tor biotype in 1968 and the reappearance of the classical biotype and its coexistence with the E1 Tor biotype after 1982 were never adequately explained. We have analyzed 23 classical V. cholerae isolates collected between 1961 and 1968, 14 classical isolates collected between 1982 and 1992 from the capital city, Dhaka, and 6 classical V. cholerae isolates collected from two southern districts of Bangladesh and studied restriction endonuclease cleavage patterns of rRNA genes (ribotypes) to investigate the clonal relationships among the isolates. Southern blots of total DNA digested with restriction enzyme BamHI, BglI, EcoRI, HindIII, or PstI were probed, using a cloned Escherichia coli rRNA operon. While restriction enzymes BamHI, EcoRI, and PstI failed to differentiate the isolates on the basis of ribotyping, BglI and HindIII produced digestion patterns that allowed differentiation. Ribotyping the isolates with BglI and HindIII revealed five different clones (ribotypes IA, IB, IIA, IC, and IIC) of classical vibrios in Bangladesh. Strains belonging to ribotypes IA and IB were isolated in Dhaka before 1968, and one ribotype (IA) was again isolated between 1982 and 1992. Ribotype IIA was isolated in 1988 and 1989, when both clones (IA and IIA) of classical vibrios coexisted with the EI Tor vibrios. Isolates belonging to ribotypes IC and IIC were collected in the southern districts of Bangladesh and were clearly different from those collected in Dhaka between 1968 and 1992 by ribotyping analysis with BglI. These results support the previous assumption that classical vibrios were never completely replaced in Bangladesh and also demonstrate the existence of more than one genetically different clone of classical V. cholerae. Images PMID:7691878

  18. The effect of storage time on Vibrio spp. and fecal indicator bacteria in an Isco autosampler.

    PubMed

    Ghazaleh, Maite N; Froelich, Brett A; Noble, Rachel T

    2014-09-01

    Monitoring concentrations of bacterial pathogens and indicators of fecal contamination in coastal and estuarine ecosystems is critical to reduce adverse effects to public health. During storm events, particularly hurricanes, floods, Nor'easters, and tropical cyclones, sampling of coastal and estuarine waters is not generally possible due to safety concerns. It is particularly important to monitor waters during these periods as it is at precisely these times that pathogenic bacteria such as Vibrio spp. and fecal indicator bacteria concentrations fluctuate, potentially posing significant risks to public health. Automated samplers, such as the Isco sampler, are commonly used to conduct remote sample collection. Remote sampling is employed during severe storm periods, thereby reducing risk to researchers. Water samples are then stored until conditions are safe enough to retrieve them, typically in less than 21h, to collect the samples. Concerns exist regarding potential "bottle effects", whereby containment of sample might result in altered results. While these effects are well documented in samples being held for 24h or more, there is little data on bottle effects occurring during the first 24h of containment, and less still on the specific effects related to this type of sampling regime. Estuarine water samples were collected in the fall of 2013, placed into an Isco autosampler and subsampled over time to determine the effects of storage within this type of autosampling device. Vibrio spp. and fecal indicator bacteria were quantified using replicated culture-based methods, including Enterolert™ and membrane filtration. The experiments demonstrated no significant impact of storage time when comparing concentrations of total Vibrio spp., Vibrio vulnificus, Vibrio parahaemolyticus, or Enterococcus spp. after storage compared to original concentrations. However, the findings also suggested that increased variability and growth can occur during the middle of the day. Therefore, if at all possible, analysis schedules should be modified to account for this variability, e.g. collection of samples after overnight storage should occur as early in the morning as practicable. PMID:25008356

  19. Method for Detecting Small Numbers of Vibrio cholerae in Very Polluted Substrates

    PubMed Central

    Sechter, I.; Gerichter, Ch.B.; Cahan, D.

    1975-01-01

    A method is presented for the indirect detection of Vibrio cholerae by the multiplication of two specific bacteriophages: ?H74/64 for El-Tor vibrios, and phage group IV (Mukerjee) for classical vibrios. The product to be examined is seeded in alkaline tryptone water for enrichment, as in the classical method, and is then incubated for 6 h at 37 C. Thereafter, a loopful is transferred to each of two nutrient broth (pH 9) tubes. One of these receives a drop of phage ?H74/64; the other receives a drop of phage group IV. The stock phages are diluted so as to contain about 3,800 plaque-forming units in one drop; this is the maximum amount which, when added to 10 ml of broth, will not be detected in a loopful of 1 mm diameter. The tubes containing phage ?H74/64 are incubated at 42 C; those with phage group IV are incubated at 37 C. After 18 h the cultures are killed by agitation with chloroform, and a 1-mm loopful is deposited on a layer seeded with the detector strains: Makassar 757 for El-Tor phage and V. cholerae 154 for classical cholera phage. After 4 to 5 h at 37 C, lysis appears on the spot areas if there has been phage multiplication in the respective broth tubes. With experimentally contaminated sewage water, vegetables, or stools, 1 to 10 cholera vibrios were detected in every sample. In rare cases, false-positive results were obtained by multiplication of the phage on non-cholera vibrios. PMID:239631

  20. Application of chitosan microparticles for reduction of vibrio species in seawater and live oysters (Crassostrea virginica).

    PubMed

    Fang, Lei; Wolmarans, Bernhard; Kang, Minyoung; Jeong, Kwang C; Wright, Anita C

    2015-01-01

    Human Vibrio infections associated with consumption of raw shellfish greatly impact the seafood industry. Vibrio cholerae-related disease is occasionally attributed to seafood, but V. vulnificus and V. parahaemolyticus are the primary targets of postharvest processing (PHP) efforts in the United States, as they pose the greatest threat to the industry. Most successful PHP treatments for Vibrio reduction also kill the molluscs and are not suitable for the lucrative half-shell market, while nonlethal practices are generally less effective. Therefore, novel intervention strategies for Vibrio reduction are needed for live oyster products. Chitosan is a bioactive derivative of chitin that is generally recognized as safe as a food additive by the FDA, and chitosan microparticles (CMs) were investigated in the present study as a potential PHP treatment for live oyster applications. Treatment of broth cultures with 0.5% (wt/vol) CMs resulted in growth cessation of V. cholerae, V. vulnificus, and V. parahaemolyticus, reducing culturable levels to nondetectable amounts after 3 h in three independent experiments. Furthermore, a similar treatment in artificial seawater at 4, 25, and 37°C reduced V. vulnificus levels by ca. 7 log CFU/ml after 24 h of exposure, but 48 h of exposure and elevated temperature were required to achieve similar results for V. parahaemolyticus and V. cholerae. Live oysters that either were artificially inoculated or contained natural populations of V. vulnificus and V. parahaemolyticus showed significant and consistent reductions following CM treatment (5%) compared to the amounts in the untreated controls. Thus, the results strongly support the promising potential for the application of CMs as a PHP treatment to reduce Vibrio spp. in intact live oysters. PMID:25381244