Science.gov

Sample records for baf2 caf2 laf3

  1. Vacuum ultraviolet thin films. I - Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 thin films. II - Vacuum ultraviolet all-dielectric narrowband filters

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.; Spann, James F.; Torr, Marsha R.

    1990-01-01

    An iteration process matching calculated and measured reflectance and transmittance values in the 120-230 nm VUV region is presently used to ascertain the optical constants of bulk MgF2, as well as films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on MgF2 substrates. In the second part of this work, a design concept is demonstrated for two filters, employing rapidly changing extinction coefficients, centered at 135 nm for BaF2 and 141 nm for SiO2. These filters are shown to yield excellent narrowband spectral performance in combination with narrowband reflection filters.

  2. Hardness of CaF2 and BaF2 solid lubricants at 25 to 670 deg C

    NASA Technical Reports Server (NTRS)

    Deadmore, Daniel L.; Sliney, Harold E.

    1987-01-01

    Plastic deformation is a prominent factor in determining the lubricating value of solid lubricants. Little information is available and its direct measurement is difficult so hardness, which is an indirect measure of this property was determined for fluoride solid lubricant compositions. The Vickers hardness of BaF2 and CaF2 single crystals was measured up to 670 C in a vacuum. The orientation of the BaF2 was near the (013) plane and the CaF2 was about 16 degrees from the degrees from the (1'11) plane. The BaF2 has a hardness of 83 kg/sq mm at the 25 C and 9 at the 600 C. The CaF2 is 170 at 25 C and 13 at 670 C. The decrease in hardness in the temperature range of 25 to 100 C is very rapid and amounts to 40% for both materials. Melts of BaF2 and CaF2 were made in a platinum crucible in ambient air with compositions of 50 to 100 wt% BaF2. The Vickers hardness of these polycrystalline binary compositions at 25 C increased with increasing CaF2 reaching a maximum of 150 kn/sq mm near the eutectic. The polycrystalline CaF2 was 14% softer than that of the single crystal surface and BsF2 was 30% harder than the single crystal surface. It is estimated that the brittle to ductile transition temperature for CaF2 and BaF2 is less than 100 C for the conditions present in the hardness tester.

  3. Annealing effect on ion conduction of nanosized CaF2/BaF2 multilayers

    NASA Astrophysics Data System (ADS)

    Guo, X. X.; Matei, I.; Jin-Phillipp, N. Y.; van Aken, P. A.; Maier, J.

    2009-06-01

    The transient part of the ion conductivity enhancement in CaF2/BaF2 heterolayers on annealing at elevated temperatures is investigated. It is well established that annealed heterolayers exhibit a strongly increased F- conductivity parallel to the interfaces and a substantial but less strong enhancement perpendicular to the interfaces [N. Sata et al., Nature 408, 946 (2000) and X. X. Guo et al., Appl. Phys. Lett. 91, 103102 (2007)]. This is explained by a F- redistribution from BaF2 to CaF2 as a consequence of contact equilibrium. As to the behavior during annealing, two remarkable features are observed: (i) freshly prepared films show an even higher conductance enhancement if measured in the parallel direction, which decreases on annealing toward the equilibrium situation, while (ii) in the perpendicular direction the conductance variation is very small and of opposite sign. On the basis of the conductivity experiments as a function of temperature, layer-thickness, and anisotropy, in combination with structural investigations by transmission electron microscopy, we conclude that in agreement with earlier experience on composite materials, a high density of unstable defects is formed close to the heterointerfaces during multilayer preparation, which heals off during the temper process. In the final contact equilibrium a regular array of misfit dislocations is left, enabling the epitaxial contact. By assuming that the electroactive unstable microstructural defects are arranged at the heterointerfaces and are charged by fluoride ion trapping, we can explain the experimental features including the space charge overlap using the combined Mott-Schottky and Gouy-Chapman models used previously. The results indicate that the charge density stays approximately constant during the annealing process.

  4. CaF2, BaF2 and SrF2 crystals’ optical anisotropy parameters

    NASA Astrophysics Data System (ADS)

    Snetkov, I. L.; Yakovlev, A. I.; Palashov, O. V.

    2015-09-01

    Using the original method, based on measurements of thermally induced depolarization, the optical anisotropy parameters of CaF2, BaF2 and SrF2 cubic crystals were measured and compared with what is known from the literature. Euler angles of crystallographic axis orientation [C], in which the thermally induced depolarization is minimal, were determined using experimental results for studied fluorides.

  5. Monte Carlo Simulation of Gamma-Ray Response of BaF2 and CaF2

    SciTech Connect

    Gao, Fei; Xie, YuLong; Wang, Zhiguo; Kerisit, Sebastien N.; Wu, Dangxin; Campbell, Luke W.; Van Ginhoven, Renee M.; Prange, Micah P.

    2013-12-01

    We have employed a Monte Carlo (MC) method to study intrinsic properties of two alkaline-earth halides, namely BaF2 and CaF2, relevant to their use as radiation detector materials. The MC method follows the fate of individual electron-hole (e-h) pairs and thus allows for a detailed description of the microscopic structure of ionization tracks created by incident γ-ray radiation. The properties of interest include the mean energy required to create an e-h pair, W, Fano factor, F, the maximum theoretical light yield, and the spatial distribution of e-h pairs resulting from γ-ray excitation. Although W and F vary with incident photon energy at low energies, they tend to constant values at energies higher than 1 keV. W is determined to be 18.9 and 19.8 eV for BaF2 and CaF2, respectively, in agreement with published data. The e-h pair spatial distributions exhibit a linear distribution along the fast electron tracks with high e-h pair densities at the end of the tracks. Most e-h pairs are created by interband transition and plasmon excitation in both scintillators, but the e-h pairs along fast electron tracks in BaF2 are slightly clustered, forming nanoscale domains and resulting in the higher e-h pair densities than in CaF2. Combining the maximum theoretical light yields calculated for BaF2 and CaF2 with those obtained for CsI and NaI shows that the theoretical light yield decreases linearly with increasing band gap energy.

  6. Defect-induced wetting on BaF 2(111) and CaF 2(111) at ambient conditions

    NASA Astrophysics Data System (ADS)

    Cardellach, M.; Verdaguer, A.; Fraxedas, J.

    2011-12-01

    The interaction of water with freshly cleaved (111) surfaces of isostructural BaF2 and CaF2 single crystals at ambient conditions (room temperature and under controlled humidity) has been studied using scanning force microscopy in different operation modes and optical microscopy. Such surfaces exhibit contrasting behaviors for both materials: while on BaF2(111) two-dimensional water layers are formed after accumulation at step edges, CaF2(111) does not promote the formation of such layers. We attribute such opposed behavior to lattice match (mismatch) between hexagonal water ice and the hexagonal (111) surfaces of BaF2(CaF2). Optical microscope images reveal that this behavior also determines the way the surfaces become wetted at a macroscopic level.

  7. Photoluminescence properties of Eu 3+:ZrF 4-BaF 2-LaF 3-YF 3-AlF 3-NaF glasses

    NASA Astrophysics Data System (ADS)

    Kam, C. H.; Buddhudu, S.

    2004-02-01

    This paper presents the results concerning the photoluminescence spectra of 53ZrF 4-20BaF 2-2LaF 3-2YF 3-3AlF 3-(20- x)NaF- xEuF 3 multi-component heavy metal fluoride glasses with the Eu 3+=0.2, 0.4, 0.8, 1.0, 1.2 and 1.4 mol% in order to evaluate the threshold of concentration quenching ( Cq=1 mol%) which corresponds to the concentration limit clearly revealing an intense red emission ( 5D 0→ 7F 2 at 614 nm) from such a luminescent glass. A bright red emission was observed by the naked eye from these materials under an UV source. The dopant ion concentration quenching on the emission behaviour has been ascribed to cross-relaxation and dipole-dipole interactions in the glass matrices. Influence of changes in active ions content (N Eu3+×10 22 cm -3) on the values of inter-ionic distance ( ri Å) and polaron radius ( rp Å) has been verified. The photoluminescence spectra are constituted essentially by six emission transitions of ( 5D 0→ 7F J=0,1,2,3,4,5 ) between the wavelengths of 575 and 720 nm. We have also investigated the dependence of emission intensities and lifetimes on various pump wavelengths and identified a more suitable excitation line at 394 nm, which belongs to the transition 7F 0→ 5L 6 of Eu 3+ ion.

  8. Surface modifications of BaF2 and CaF2 single crystals by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Heller, R.; Wilhelm, R. A.; Facsko, S.; Aumayr, F.

    2014-08-01

    Ion-irradiation of solid surfaces is considered as one of the promising and powerful techniques for material nanostructuring. Recently, slow highly charged ions (HCI) have shown their potential in creating surface nanostructures in various solids. Here, we focus on the surface modifications of BaF2 and CaF2 single crystals by HCI. Despite the fact that both materials belong to alkaline-earth fluorides with the same crystalline structure, they exhibit different sensitivity for HCI-induced nanostructure. We discuss similarities and differences for the creation of HCI-induced nanohillocks and etch pits in both materials and their dependence on potential and kinetic energy deposition. Furthermore, we compare the results with modifications induced by swift heavy ions (SHI), in order to reach a better understanding of the mechanisms responsible for the creation of nanostructures in ionic fluoride single crystals.

  9. Near infrared ultrafast pump-probe spectroscopy with ZrF4-BaF2-LaF3-AlF3-NaF fiber supercontinuum

    NASA Astrophysics Data System (ADS)

    Fischbach, Stefan; Gorbach, Andrey V.; Di Nuzzo, Daniele; Da Como, Enrico

    2015-07-01

    We report on the performance of a setup designed for femtosecond pump-probe spectroscopy in the near infrared (NIR) spectral region. We generate a supercontinuum (SC) probe by coupling 140 fs light pulses at 1550 nm into a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber. The combined high nonlinearity and transparency of the ZBLAN fluoride glass allows us to obtain a SC probe from 1 to 2.6 ?m. The NIR pulses are used to demonstrate a proof of principle experiment probing the relaxation of photo induced excitations in a conjugated polymer:fullerene blend film. The results show the possibility to perform fibre based NIR SC femtosecond spectroscopy at >100 KHz repetition rate and using lasers with pulse energy just above 300 nJ.

  10. Absolute refractive indices and thermal coefficients of CaF2, SrF2, BaF2, and LiF near 157 nm.

    PubMed

    Burnett, John H; Gupta, Rajeev; Griesmann, Ulf

    2002-05-01

    We present high-accuracy measurements for wavelengths near 157 nm of the absolute index of refraction, the index dispersion, and the temperature dependence of the index for the ultraviolet optical materials with cubic symmetry: CaF2, SrF2, BaF2, and LiF. Accurate values of these quantities for these materials are needed for designs of the lens systems for F2 excimer-laser-based exposure tools for 157-nm photolithography. These tools are expected to use CaF2 as the primary optical material and possibly one of the others to correct for chromatic aberrations. These optical properties were measured by the minimum deviation method. Absolute refractive indices were obtained with an absolute accuracy of 5 x 10(-6) to 6 x 10(-6). PMID:12009162

  11. Phase transitions and equations of state of alkaline earth fluorides CaF2 , SrF2 , and BaF2 to Mbar pressures

    NASA Astrophysics Data System (ADS)

    Dorfman, Susannah M.; Jiang, Fuming; Mao, Zhu; Kubo, Atsushi; Meng, Yue; Prakapenka, Vitali B.; Duffy, Thomas S.

    2010-05-01

    Phase transitions and equations of state of the alkaline earth fluorides CaF2 , SrF2 , and BaF2 were examined by static compression to pressures as high as 146 GPa. Angle-dispersive x-ray diffraction experiments were performed on polycrystalline samples in the laser-heated diamond-anvil cell. We confirmed that at pressures less than 10 GPa all three materials undergo a phase transition from the cubic (Fm3¯m) fluorite structure to the orthorhombic (Pnam) cotunnite-type structure. This work has characterized an additional phase transition in CaF2 and SrF2 : these materials were observed to transform to a hexagonal (P63/mmc) Ni2In -type structure between 63-79 GPa and 28-29 GPa, respectively, upon laser heating. For SrF2 , the Ni2In -type phase was confirmed by Rietveld refinement. Volumes were determined as a function of pressure for all high-pressure phases and fit to the third-order Birch-Murnaghan equation of state. For CaF2 and SrF2 , the fluorite-cotunnite transition results in a volume decrease of 8-10% , while the bulk modulus of the cotunnite-type phase is the same or less than that of the fluorite phase within uncertainty. For all three fluorides, the volume reduction associated with the further transition to the Ni2In -type phase is ˜5% . The percentage increase in the bulk modulus (ΔK) across the transition is greater when the cation is smaller. While for BaF2 , ΔK is 10-30% , ΔK values for SrF2 and CaF2 are 45-65% and 20-40% . Although shock data for CaF2 have been interpreted to show a transition to a highly incompressible phase above 100 GPa, this is not consistent with our static equation of state data.

  12. Luminescence and decay behaviour of Tb 3+:ZrF 4-BaF 2-LaF 3-YF 3-AlF 3-NaF optical glasses

    NASA Astrophysics Data System (ADS)

    Kam, C. H.; Buddhudu, S.

    2003-09-01

    The present investigation aims at elucidating the photoluminescence behaviour of Tb 3+ doped 53ZrF 4-20BaF 2-2LaF 3-2YF 3-3AlF 3-(20- x)-NaF- xTbF 3 (where x=0.2,0.4,0.6,0.8,1.0,1.5 and 2.0 mol%) optical glasses. We have measured two prominently intense emission blue group bands ( 5D 3→ 7F j=6,5,4,3 at 382, 415, 436 and 461 nm) and green group bands ( 5D 4→ 7F j=6,5,4,3 at 488, 544, 584 and 623 nm) with an excitation at λexc=229 nm (4f 8→4f 75d 1) from these ZBLYAN glasses. Under a UV source (15 W), more prominent and rich green luminescent colour (544 nm) has been noticed from these terbium glasses. In particular, glass with low Tb 3+ (0.2 mol%) content has displayed the emission transitions of 5D 3→ 7F j=6,5,4,3 and at still higher concentrations these emission bands have disappeared completely because of resonant energy transfer phenomenon or cross-relaxation process. The mechanism behind such a process has been explained in terms of an energy level diagram. Among the seven-terbium glasses, one glass with 1.0 mol% of Tb 3+ (as the optimum content) has revealed an intense green emission.

  13. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  14. Atomized BaF2-CaF7 for Better-Flowing Plasma-Spray Feedstock

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Stanford, Malcolm K.

    2008-01-01

    Atomization of a molten mixture of BaF2 and CaF2 has been found to be superior to crushing of bulk solid BaF2- CaF2 as a means of producing eutectic BaF2-CaF2 powder for use as an ingredient of the powder feedstock of a high-temperature solid lubricant material known as PS304. Developed to reduce friction and wear in turbomachines that incorporate foil air bearings, PS304 is applied to metal substrates by plasma spraying. The constituents of PS304 are: a) An alloy of 80 weight percent Ni and 20 weight percent Cr, b) Cr2O3, c) Ag, and d) The BaF2-CaF2 eutectic, specifically, 62 weight percent BaF2 and 38 weight percent CaF2. The superiority of atomization as a means of producing the eutectic BaF2-CaF2 powder lies in (1) the shapes of the BaF2-CaF2 particles produced and (2) the resulting flow properties of the PS304 feedstock powder: The particles produced through crushing are angular, whereas those produced through atomization are more rounded. PS304 feedstock powder containing the more rounded BaF2-CaF2 particles flows more freely and more predictably, as is preferable for plasma spraying.

  15. Light scattering and computer simulation studies of superionic pure and La-doped BaF2

    NASA Astrophysics Data System (ADS)

    Rammutla, K. E.; Comins, J. D.; Erasmus, R. M.; Netshisaulu, T. T.; Ngoepe, P. E.; Chadwick, A. V.

    2016-03-01

    A combination of both Raman and Brillouin scattering experiments as well as Molecular Dynamics (MD) was used to study the superionic behaviour of BaF2 doped with a wide range of LaF3 concentrations (0 ⩽ x ⩽ 50 mol%). Raman spectroscopy reveals that for undoped BaF2 and those doped with 5% and 10% LaF3, the room temperature spectra show the usual T2g symmetry mode at 241 cm-1 whereas for those doped with 20%, 30% and 50% LaF3, the dominant Raman mode is of the Eg symmetry situated at ∼263, 275 and 286 cm-1, respectively. The Raman linewidths show near linear increases with temperature followed by rapid increases above the characteristic transition temperatures (Tc), being at 1200, 850, 800, 975, 950 and 920 K for LaF3 concentrations of 0, 5, 10, 20, 30 and 50; respectively. The temperature dependence of the squares of the Brillouin frequencies (ΔωB)2 of the LA and TA acoustic modes respectively related to elastic constants C11 and C44 showed linear decreases followed by significant deviations around the same temperatures (Tc), at which the Raman linewidths start to show substantial increases. The complementary studies using MD simulations show that the diffusion coefficients increase markedly above the same temperatures observed experimentally. The extrinsic fluorine ion trajectories were also determined from the MD simulations to better understand the mechanisms of diffusion.

  16. BaF 2 scintillators with wire chamber readout for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Bruyndonckx, P.; Debruyne, J.; Etienne, L.; Gruwé, M.; Guerard, B.; Tavernier, S.; Shuping, Zhang

    1991-12-01

    This work is part of the design study for a medical positron emission tomography (PET) system based on the use of BaF 2 scintillator and photosensitive wire chambers with TMAE. The number of photoelectrons per MEV (phe/MeV) is measured in the wire chamber and on a photomultiplier for crystals from five different suppliers. For the best crystals 26.7±2.0 phe/MeV in TMAE are observed, corresponding to an average quantum efficiency of TMAE for the fast component of BaF 2 of (7.6±0.7)%. The performance of a PET scanner based on this principle was evaluated with a detailed Monte Carlo simulation. It is shown that the reduced energy resolution with wire chambers has only a marginal effect on the scatter rejection in the scanner. Finally LaF 3:Nd 3+ as an alternative to BaF 2 was tested and found to give a disappointing photoelectron yield.

  17. LaF3 insulators for MIS structures

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.; Seiber, B. A.

    1979-01-01

    Thin films of LaF3 deposited on Si or GaAs substrates have been observed to form blocking contacts with very high capacitances. This results in comparatively hysteresis-free and sharp C-V (capacitance-voltage) characteristics for MIS structures. Such structures have been used to study the interface states of GaAs with increased resolution and to construct improved photocapacitive infrared detectors.

  18. Ultralow threshold green lasing and optical bistability in ZBNA (ZrF4-BaF2-NaF-AlF3) microspheres

    NASA Astrophysics Data System (ADS)

    Wu, Yuqiang; Ward, Jonathan M.; Nic Chormaic, Síle

    2010-02-01

    Upconversion lasing and fluorescence from active microspheres fabricated from a novel fluorozirconate, Er3+ doped glass, ZBNA (ZrF4-BaF2-NaF-AlF3), when pumped at 978 nm via a tapered optical fiber is demonstrated. An ultralow, green lasing threshold of ˜3 μW for 550 nm emissions is measured. This is one order of magnitude lower than that previously reported for ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) microspheres. Optical bistability effects in ZBNA microspheres are reported and the bistable mechanism is discussed and attributed to shifts of the whispering gallery modes due to thermal expansion of the sphere, where heating is achieved by optical pumping around 978 nm. The effect of the bistability on the upconversion lasing is examined and we report multiple bistability loops within the microspheres.

  19. An insight into the local Oh →Td instability in BaF2:Mn2+

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, P.; Aramburu, J. A.; Barriuso, M. T.; Moreno, M.

    2010-11-01

    While most complexes in fluorite-type lattices (CaF2, SrF2, CdF2) containing Mn2+ impurities remain cubic at all temperatures, electron paramagnetic resonance (EPR) measurements have shown that the one in BaF2 is tetrahedral below 50K. This surprising behaviour is intrinsic to the centre and not associated to any close defect or pure lattice phase-transition. Through the use of density functional (DFT) calculations we show that the distortion is linked to the unexpected low force constant along the tetrahedral distortion mode with a2u symmetry in these complexes and the large metal-ligand distance existing in BaF2:Mn2+. Ultimately, these facts reflect that, for substitutional impurities in fluorite-type crystals, the ligand-ligand interaction is dominant over the metal-ligand one.

  20. LaF3 nanoparticles surface modified with tryptophan and their optical properties

    NASA Astrophysics Data System (ADS)

    Safronikhin, Anatoly; Ehrlich, Heinrich; Lisichkin, Georgy

    2014-10-01

    LaF3 nanoparticles were synthesized by the double-jet precipitation technique in presence of tryptophan (Trp). The product was investigated by TEM, IR, absorption, and luminescence spectroscopies. Interaction of Trp with the nanoparticles results in formation of complexes between Trp and La3+ ions on the nanoparticle surface. Surface density of Trp was found as 0.7 molecule nm-2. It is shown that the modifier effects on LaF3 nanoparticle growth and stability of the surface modified LaF3 colloids. Luminescent properties of LaF3 nanoparticles modified with Trp (Trp@LaF3) are investigated. It is determined that Trp@LaF3 and Trp have the same profiles of excitation and photoluminescence spectra. Effects of pH, ionic strength, and Trp concentration on luminescence intensity are studied. At the same Trp amounts in the systems, Trp@LaF3 luminescence intensity is about 6 times less than Trp luminescence intensity. Such products can be used as luminescent labels.

  1. Effect of local environment on crossluminescence kinetics in SrF2:Ba and CaF2:Ba solid solutions

    NASA Astrophysics Data System (ADS)

    Terekhin, M. A.; Makhov, V. N.; Lebedev, A. I.; Sluchinskaya, I. A.

    2015-10-01

    Spectral and kinetic properties of extrinsic crossluminescence (CL) in SrF2:Ba(1%) and CaF2:Ba(1%) are compared with those of intrinsic CL in BaF2 and are analyzed taking into account EXAFS data obtained at the Ba LIII edge and results of first-principles calculations. The CL decay time was revealed to be longer in SrF2:Ba and CaF2:Ba compared to BaF2. This fact contradicts the expected acceleration of luminescence decay which could result from an increased overlap of wave functions in solid solutions due to shortening of the Ba-F distance obtained in both EXAFS measurements and first-principles calculations. This discrepancy is explained by the effect of migration and subsequent non-radiative decay of the Ba(5p) core holes in BaF2 and by decreasing of the probability of optical transitions between Ba(5p) states and the valence band in SrF2:Ba and CaF2:Ba predicted by first-principles calculations.

  2. X-Ray Luminescence of LaF3:Tb3+ and LaF3:Ce3+, Tb3+ Water Soluble Nanoparticles

    SciTech Connect

    Liu, Y.; Chen, Wei; Wang, Shaopeng; Joly, Alan G.; Westcott, Sarah L.; Woo, Boon K.

    2008-03-15

    Utilizing scintillation nanoparticles as agents for photodynamic therapy for cancer treatment necessitates the use of biocompatible and water soluble nanoparticles. In this article, we report the synthesis and X-ray luminescence of water soluble Ce and Tb doped LaF3 nanoparticles. The nanoparticles are conjugated with folic acid and meso-tetra (o-carboxyphenyl) porphyrin. X-ray luminescence is observed from the nanoparticles in both powder and solution samples. More importantly, singlet oxygen has been detected from the conjugated system following X-ray excitation. These preliminary observations indicate that water-soluble scintillation nanoparticles can be potentially used in photodynamic therapy for deep-tissue cancer treatment.

  3. Investigation of luminescent properties of LaF3:Nd3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Wyrwas, Marek; Miluski, Piotr; Zmojda, Jacek; Kochanowicz, Marcin; Jelen, Piotr; Sitarz, Maciej; Dorosz, Dominik

    2015-09-01

    Lanthanum fluoride nanoparticles doped with Nd3+ ions obtained via solvothermal method have been presented. Doped nanoparticles were prepared in two-step method. Firstly rare-earth chlorides were synthesized from oxides and then they were used to prepare LaF3 particles. The luminescence spectra shows typical for crystalline materials Stark splitting at 880 nm corresponding 4F3/2 to 4I9/2 level transition and 1060 nm matching 4F3/2 to 4I11/2 level transition. The highest luminescence intensity was achieved for sample doped with 0.75% wt. of Nd3+, and the longest decay time for sample doped with 0.5% wt. which reached 328 μs. The XRD pattern analysis confirmed that obtained material consists of crystalline LaF3, the grain size was estimated from Sherrer's formula and equaled about 25nm.

  4. CaF2:Yb laser ceramics

    NASA Astrophysics Data System (ADS)

    Akchurin, M. Sh.; Basiev, T. T.; Demidenko, A. A.; Doroshenko, M. E.; Fedorov, P. P.; Garibin, E. A.; Gusev, P. E.; Kuznetsov, S. V.; Krutov, M. A.; Mironov, I. A.; Osiko, V. V.; Popov, P. A.

    2013-01-01

    CaF2:Yb fluoride laser ceramics, prepared by hot-forming, exhibit the same optical properties as starting single crystals. Slope efficiency of the Сa0.95Yb0.05F2.05 is equal to 35% in the pulsed mode of laser operation. Decrease of ytterbium concentration in CaF2:Yb samples down to 3 mol.% resulted in the essential improvement of Сa0.97Yb0.03F2.03 thermal conductivity from 3.5 to 4.5 W/m K, but slightly decreased (down to 30%) slope efficiency of the samples under both pulsed and CW mode of operation. Alternative hot-pressing synthesis of CaF2:Yb fluoride laser ceramics provided materials with superior mechanical properties (microhardness Н = 3.2 GPa and fracture toughness К1С = 0.65 МPа m1/2) in comparison with hot-formed and/or single crystal CaF2:Yb specimens. For the first time, lasing has been observed for the novel aforementioned hot-pressed CaF2:Yb ceramics.

  5. Improved luminescence in water-soluble hollow LaF3:Eu3+ nanoparticles by introducing Li+ ions

    NASA Astrophysics Data System (ADS)

    Fan, Ting; Lü, Jiantao; Lin, Futian; Zhou, Zifan

    2016-04-01

    Improved red emission in polyvinylpyrrolidone (PVP)-coated hollow LaF3:Eu3+ nanoparticles by introducing Li+ ions was found for the first time via a one-step template-free hydrothermal method. The hollow formation can be attributed to self-recrystallization and a local Ostwald ripening thermodynamic process. Pores were clearly seen and widely distributed in all LaF3 nanoparticles. The introduction of Li+ ions did not introduce new crystalline phases and resulted in little change in size and morphology of the LaF3 nanoparticles. The main diffraction peaks were found to shift slightly with the Li+ doping concentrations, which indicates that Li+ changes the crystal field environment of Eu3+. The excitation and red emission intensity both doubled when codoped with 7 mol% Li+ ions. The widely distributed pores and improved luminescence properties of our nanoparticles facilitated the construction of new nanocomposites for novel biological applications.

  6. Synthesis and formulation of methotrexate (MTX) conjugated LaF3:Tb(3+)/chitosan nanoparticles for targeted drug delivery applications.

    PubMed

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Aruna, Prakasarao; Ganesan, Singaravelu

    2015-02-01

    Chitosan functionalized luminescent rare earth doped terbium nanoparticles (LaF3:Tb(3+)/chi NPs) as a drug carrier for methotrexate (MTX) was designed using a simple chemical precipitation method. The synthesized chitosan functionalized nanoparticles were found to be spherical in shape with an average diameter of 10-12nm. They are water soluble and biocompatible, in which the hydroxyl and amino functional groups on its surface are utilized for the bioconjugation of the anticancer drug, the methotrexate. The nature of MTX binding with LaF3:Tb(3+)/chi nanoparticles were examined using X-ray diffraction, zeta potential analyzer and transmission electron microscopy. The other interactions due to complex formation between MTX and LaF3:Tb(3+)/chi NPs were carried out by UV-Visible, steady and excited state fluorescence spectroscopy. The photo-physical characterization revealed that the adsorption and release of MTX from LaF3:Tb(3+)/chi NPs is faster than gold nanoparticles and also confirms that this may be due to weak interaction i.e. the Vander Waals force of attraction between the carboxyl and amino group of drug and nanoparticles. The maximum percentage yield and entrapment efficiency of 85.91±0.71 and 83.82± 0.14 were achieved at a stochiometric ratio of 4:5 of MTX and LaF3:Tb(3+)/chi nanoparticles respectively. In addition, antitumoral activity study reveals that MTX conjugated LaF3:Tb(3+)/chi nanoparticles show higher cytotoxic effect on MCF-7 breast cancer cell lines than that of free MTX. PMID:25661354

  7. Gamma irradiation effect on photoluminescence from functionalized LaF3:Ce nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinivasan, T. K.; Panigrahi, B. S.; Arora, A. K.; Venkatraman, B.; Ponraju, D.

    2014-06-01

    Oleic acid coated and uncoated LaF3:Ce nano-phosphor particles were synthesized by a co-precipitation method. Nanoparticles were characterized for their structure, organic coating and optical behavior using an X-ray diffraction, a Transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), UV-vis absorption and Photoluminescence spectroscopy. Sizes of nanoparticles were measured from TEM images and were also estimated using the Scherer formula. UV-vis absorption, Photoluminescent and FTIR measurements were done with nanoparticles before and after gamma irradiation up to a dose of 6.19 kGy. The uncoated nanoparticles exhibit emission only at 305 nm when exited with 250 nm. The oleic acid coated nanoparticles exhibit emissions at 308 and 361 nm when exited with 252 nm. Dependence of photo luminescent intensity on gamma dose was studied and the changes were attributed to radiation induced defect traps and also to the breach or damage in the capping material.

  8. Laser conditioning of LaF 3 MgF 2 dielectric coatings at 248 nm

    NASA Astrophysics Data System (ADS)

    Eva, E.; Mann, K.; Kaiser, N.; Anton, B.; Henking, R.; Ristau, D.; Weissbrodt, P.; Mademann, D.; Raupach, L.; Hacker, E.

    1996-10-01

    Highly reflective LaF3/MgF2 systems for a wavelength of 248 nm on MgF2 and crystalline quartz substrates were investigated. The influence of laser conditioning on damage threshold and absorptance was remarkable in those coatings that had a high initial absorptance. Monitoring with a laser calorimeter revealed the conditioning effect to be a function of the irradiation dose rather than of energy density or pulse rate. Furthermore, x-ray photoelectron spectroscopy and transmission electron microscopy investigations showed that conditioning induces stoichiometric and structural changes in the multilayers, especially in near-surface sublayers, whereas scanning electron microscopy and atomic force microscopy investigations indicated that the surface remains unchanged.

  9. Vacancy distribution and ionic motion in LaF3 studied by 19F NMR

    NASA Astrophysics Data System (ADS)

    Aalders, A. F.; Arts, A. F. M.; de Wijn, H. W.

    1985-10-01

    We report on 19F pulse-NMR experiments on a single crystal of the fast ionic conductor LaF3 from 100 to 1250 K. The spin-lattice relaxation time T1 is measured at frequencies up to 140 MHz, and its counterpart in the rotating frame T1ρ, in spin-locking fields up to 12 G. In the regime of composite free-induction decays two spin-spin relaxation times T2 are extracted. The data are analyzed in terms of the equations of motion of the nuclear magnetizations on two fluorine sublattices, F1 and F2,3, with inclusion of fluorine-fluorine dipolar interactions and relaxation to paramagnetic impurities. To fit all data simultaneously, it appeared essential to assume an energy difference Q between the depth of the potential wells at the F1 and F2,3 sites in the sense that the anion vacancies preferentially populate the F2,3 sublattice. The model then gives realistic values for the activation energies and attempt frequencies for jumps within and between the F1 and F2,3 sublattices, while Q=0.119+/-0.005 eV. Above 400 K, the vacancies occupy, with an increasing concentration, the F1 positions, where the residence time is longer than on the F2,3 sites. The model also accounts for the knee observed in the conductivity of LaF3-structured materials versus reciprocal temperature on the basis of the defect-defect interaction between trapped F1 vacancies and F2,3 vacancies carrying the ionic conductivity.

  10. Solubility of uranium oxide in molten salt electrolysis bath of LiF-BaF2 with LaF3 additive

    NASA Astrophysics Data System (ADS)

    Alangi, Nagaraj; Mukherjee, Jaya; Gantayet, L. M.

    2016-03-01

    The solubility of UO2 in the molten mixtures of equimolar LiF-BaF2(1:1) with LaF3 as additive was studied in the range of 1423 K-1523 K. The molten fluoride salt mixture LiF-BaF2 LaF3 was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%-50% by weight additions of LaF3 in the equimolar LiF-BaF2(1:1) base fluoride salt bath. Solubility of UO2 increased with rise in LaF3 concentration in the molten fluoride in the temperature range of 1423 K-1523 K. At a given concentration of LaF3, the UO2 solubility increased monotonously with temperature. With mixed solvent, when UF4 was added as a replacement of part of LaF3 in LiF-BaF2(1:1)-10 wt% LaF3 and LiF-BaF2(1:1)-30 wt% LaF3, there was an enhancement of solubility of UO2.

  11. Refluxing synthesis, photoluminescence and binding ability to deoxyribonucleic acid of water-soluble rare earth ion-doped LaF3 nanoparticles.

    PubMed

    Wang, Zhenling; Zhang, Yi; Li, Chunyang; Zhang, Xinlei; Chang, Jiazhong; Xie, Jianping; Li, Chengwei

    2014-06-01

    Water-soluble rare earth ion (Ce3+, Tb3+)-doped LaF3 nanoparticles with the ability to bind to deoxyribonucleic acid (DNA) were prepared by the refluxing method in a glycerol/water mixture and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) spectra, and so on. The obtained LaF3:Ce3+, LaF3:Tb3+ and LaF3:Ce3+, Tb3+ nanoparticles are well crystallized with a hexagonal structure and composed of spherical particles with an average size from 11 to 19 nm. The as-prepared samples can be dispersed into water to form a colloidal solution. Under ultraviolet (UV) light irradiation, the emission lines of Tb3+ in the co-doped LaF3:Ce3+, Tb3+ are evidently strengthened compared to those in the single-doped LaF3:Tb3+ nanoparticles, which is due to the energy transfer from Ce3+ to Tb3+ ions in the LaF3:Ce3+, Tb3+ samples. The biological experiment confirms that the water-soluble LaF3:Ce3+, Tb3+ nanoparticles can be bonded to the DNA molecules and emit visible light under UV irradiation. These luminescent nanoparticles could be used similarly to ethidium bromide (EtBr), which has been used extensively as a DNA staining reagent. The advantage that LaF3:Ce3+, Tb3+ nanoparticles have lower toxicity than EtBr makes them a potential reagent instead of EtBr in the DNA staining in biological experiments. PMID:24738421

  12. Trigonal LaF3: a novel SRS-active crystal

    NASA Astrophysics Data System (ADS)

    Kaminskii, A. A.; Lux, O.; Hanuza, J.; Rhee, H.; Eichler, H. J.; Zhang, J.; Tang, D.; Shen, D.; Yoneda, H.; Shirakawa, A.

    2014-12-01

    Trigonal fluoride LaF3, widely known as a host crystal for Ln3+-lasants, was found to be an attractive many-phonon Raman material and a subject for the investigation of different χ(3)-nonlinear optical effects. We present the manifestation of photon-phonon interactions related to stimulated Raman scattering (SRS) and Raman-induced four-wave mixing (RFWM) processes, initiated by picosecond exсitation at room temperature. Sesqui-octave-spanning Stokes and anti-Stokes frequency comb generation as well as many-step cascaded and cross-cascaded up-conversion χ(3)-nonlinear processes have been observed. The recorded spectral lines originated by SRS and RFWM are identified and attributed to the three observed SRS-promoting phonon modes. The lower limit of the steady-state Raman gain coefficient for near-IR first Stokes generation was estimated. Moreover, a brief review of known Ln3+ : LaF3 laser crystals and SRS-active fluorides is given.

  13. Phase Transitions and Equations of State of Alkaline Earth Fluorides CaF2 SrF2 and BaF2 to Mbar Pressures

    SciTech Connect

    S Dorfman; F Jiang; Z Mao; A Kubo; Y Meng; V Prakapenda; T Duffy

    2011-12-31

    Phase transitions and equations of state of the alkaline earth fluorides CaF{sub 2}, SrF{sub 2}, and BaF{sub 2} were examined by static compression to pressures as high as 146 GPa. Angle-dispersive x-ray diffraction experiments were performed on polycrystalline samples in the laser-heated diamond-anvil cell. We confirmed that at pressures less than 10 GPa all three materials undergo a phase transition from the cubic (Fm3{sup -}m) fluorite structure to the orthorhombic (Pnam) cotunnite-type structure. This work has characterized an additional phase transition in CaF{sub 2} and SrF{sub 2}: these materials were observed to transform to a hexagonal (P6{sub 3}/mmc) Ni{sub 2}In-type structure between 63-79 GPa and 28-29 GPa, respectively, upon laser heating. For SrF{sub 2}, the Ni{sub 2}In-type phase was confirmed by Rietveld refinement. Volumes were determined as a function of pressure for all high-pressure phases and fit to the third-order Birch-Murnaghan equation of state. For CaF{sub 2} and SrF{sub 2}, the fluorite-cotunnite transition results in a volume decrease of 8-10%, while the bulk modulus of the cotunnite-type phase is the same or less than that of the fluorite phase within uncertainty. For all three fluorides, the volume reduction associated with the further transition to the Ni{sub 2}In-type phase is {approx}5%. The percentage increase in the bulk modulus ({Delta}K) across the transition is greater when the cation is smaller. While for BaF{sub 2}, {Delta}K is 10-30%, {Delta}K values for SrF{sub 2} and CaF{sub 2} are 45-65% and 20-40%. Although shock data for CaF{sub 2} have been interpreted to show a transition to a highly incompressible phase above 100 GPa, this is not consistent with our static equation of state data.

  14. Formation and Luminescence Phenomena of LaF3:Ce3+ Nanoparticles and Lanthanide-Organic Compounds in Dimethyl Sulfoxide

    SciTech Connect

    Yao, Mingzhen; Joly, Alan G.; Chen, Wei

    2010-01-21

    LaF3:Ce3+ doped nanoparticles were synthesized at different temperatures in dimethyl sulfoxide by the chemical reaction of lanthanum nitrate hydrate and cerium nitrate hexahydrate with ammonium fluoride. The formation of Ce3+ doped LaF3 nanoparticles is confirmed by X-ray diffraction and high resolution transmission electron microscopy. An intense emission at around 310 nm from the d - f transition of Ce3+ was observed from the LaF3:Ce3+ powder samples. However, in solution samples, the ultraviolet emission from Ce3+ is mostly absent, but intense luminescence is observed in the visible range from blue to red. The emission wavelength of the solution samples is dependent on the reaction time and temperature. More interestingly, the emission wavelength varies with the excitation wavelength. Most likely, this emission is from the metalorganic compounds of Ce3+ or La3+ and DMSO as similar phenomena are also observed when lanthanum nitrate hydrate or cerium nitrate hexahydrate are heated in DMSO.

  15. LaF3:Ln mesoporous spheres: controllable synthesis, tunable luminescence and application for dual-modal chemo-/photo-thermal therapy

    NASA Astrophysics Data System (ADS)

    Lv, Ruichan; Yang, Guixin; He, Fei; Dai, Yunlu; Gai, Shili; Yang, Piaoping

    2014-11-01

    In this report, uniform LaF3:Ln mesoporous spheres have been synthesized by a facile and mild in situ ion-exchange method using yolk-like La(OH)3:Ln mesoporous spheres as templates, which were prepared through a self-produced bubble-template route. It was found that the structures of the final LaF3:Ln can simply be tuned by adding a polyetherimide (PEI) reagent. LaF3:Ln hollow mesoporous spheres (HMSs) and LaF3:Ln flower-like mesoporous spheres (FMSs) were obtained when assisted by PEI and in the absence of PEI. The up-conversion (UC) luminescence results reveal that the doping of Nd3+ ions in LaF3:Ln can markedly influence the UC emissions of the products. It is interesting that an obvious thermal effect is achieved due to the energy back-transfer from Tm3+ to Nd3+ ions under 980 nm near-infrared (NIR) irradiation. The LaF3:Yb/Er/Tm/Nd HMSs show good biocompatibility and sustained doxorubicin (DOX) release properties. In particular, upon 980 nm NIR irradiation, the photothermal effect arising from the Nd3+ doping induces a faster DOX release from the drug release system. Moreover, UC luminescence images of LaF3:Yb/Er/Tm/Nd HMSs uptaken by MCF-7 cells exhibit apparent green emission under 980 nm NIR irradiation. Such a multifunctional carrier combining UC luminescence and hyperthermia with the chemotherapeutic drugs should be of high potential for the simultaneous anti-cancer therapy and cell imaging.In this report, uniform LaF3:Ln mesoporous spheres have been synthesized by a facile and mild in situ ion-exchange method using yolk-like La(OH)3:Ln mesoporous spheres as templates, which were prepared through a self-produced bubble-template route. It was found that the structures of the final LaF3:Ln can simply be tuned by adding a polyetherimide (PEI) reagent. LaF3:Ln hollow mesoporous spheres (HMSs) and LaF3:Ln flower-like mesoporous spheres (FMSs) were obtained when assisted by PEI and in the absence of PEI. The up-conversion (UC) luminescence results reveal that the doping of Nd3+ ions in LaF3:Ln can markedly influence the UC emissions of the products. It is interesting that an obvious thermal effect is achieved due to the energy back-transfer from Tm3+ to Nd3+ ions under 980 nm near-infrared (NIR) irradiation. The LaF3:Yb/Er/Tm/Nd HMSs show good biocompatibility and sustained doxorubicin (DOX) release properties. In particular, upon 980 nm NIR irradiation, the photothermal effect arising from the Nd3+ doping induces a faster DOX release from the drug release system. Moreover, UC luminescence images of LaF3:Yb/Er/Tm/Nd HMSs uptaken by MCF-7 cells exhibit apparent green emission under 980 nm NIR irradiation. Such a multifunctional carrier combining UC luminescence and hyperthermia with the chemotherapeutic drugs should be of high potential for the simultaneous anti-cancer therapy and cell imaging. Electronic supplementary information (ESI) available: The SAED pattern of flower-like LaF3:Yb,Er spheres. FT-IR spectra of the La(OH)3:Ln precursor, LaF3:Ln HMSs and LaF3:Ln FMSs. UC emission spectra of the La(OH)3:Yb/Er(Ho/Tm) precursor, LaF3:Yb/Er(Ho/Tm) HMSs, LaF3:Yb/Er(Ho/Tm) FMSs under 980 nm NIR excitation. CIE chromaticity diagram of LaF3:10% Yb/0.5% Tm/x%Nd (x = 0, 1, 2) under 980 nm NIR excitation. CIE chromaticity diagram of LaF3:Yb/Er/Tm/Nd under 980 nm NIR excitation. Infrared thermal images of LaF3:Yb/Er, LaF3:Yb/Er/Tm, and LaF3:Yb/Er/Tm/Nd samples before and after irradiation for 6-8 min under 980 nm laser irradiation with the pump power of 0.6 W cm-2. See DOI: 10.1039/c4nr04336g

  16. Molecular Dynamics Simulations for Melting Temperatures of SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-yu; Cheng, Xin-lu; Fan, Chao-lei; Chen, Qiong; Yuan, Xiao-li

    2009-06-01

    The shell-model molecular dynamics method was applied to simulate the melting temperatures of SrF2 and BaF2 at elevated temperatures and high pressures. The same method was used to calculate the equations of state for SrF2 and BaF2 over the pressure range of 0.1 MPa-3 GPa and 0.1 MPa-7 GPa. Compared with previous results for equations of state, the maximum errors are 0.3% and 2.2%, respectively. Considering the pre-melting in the fluorite-type crystals, we made the necessary corrections for the simulated melting temperatures of SrF2 and BaF2. Consequently, the melting temperatures of SrF2 and BaF2 were obtained for high pressures. The melting temperatures of SrF2 and BaF2 that were obtained by the simulation are in good agreement with available experimental data.

  17. Luminescent and kinetic properties of the polystyrene composites based on BaF2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Demkiv, T. M.; Halyatkin, O. O.; Vistovskyy, V. V.; Gektin, A. V.; Voloshinovskii, A. S.

    2016-02-01

    Luminescence-kinetic properties of polystyrene composites based on BaF2 nanoparticles were studied. The electron emission from the nanoparticles due to the photoelectric effect is the main luminescence excitation mechanism in the case of polystyrene composites loaded with small BaF2 nanoparticles (~20 nm). Scintillation pulse of polystyrene composites possesses only fast decay component with the time constant τ~2 ns, and its emission intensity considerably exceeds the one for pure polystyrene scintillator upon the X-ray excitations.

  18. Eu2+/Eu3+-doped oxyfluoride glass ceramics with LaF3 for white LED color conversion

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hun; Bae, Suk-Rok; Choi, Yong Gyu; Chung, Woon Jin

    2015-03-01

    SiO2-Na2O-Al2O3-LaF3 glasses doped with Eu2+ and Eu3+ were synthesized to realize an inorganic color converter for white LED using 400 nm UV LED. Among various rare earth ions, Eu2+ and Eu3+ showed prominent emission under 400 nm LED excitation. Carbon and EuF3 content were varied to control the ratio of Eu2+ and Eu3+ during the melting process. When the ratio of Eu2+ and Eu3+ within the glass matrix was properly controlled, color coordinates of the photoluminescence spectra could be adjusted to make white colors under 400 nm LED excitation. The emission intensity was increased with subsequent heat treatment which led to the formation of LaF3 nano-crystals. However, almost no conversion was observed when the glasses were actually mounted on UV-LED to make a white LED. Heavy crystallization of the oxyfluoride glasses was thus investigated to improve its scattering of the light source and color conversion efficiency, and its practical feasibility as an inorganic UV-LED color converter was demonstrated.

  19. Improved photoluminescence and thermal stabilization of glycine functionalized LaF3: Ce nanoparticles useful in bioimaging and biotagging

    NASA Astrophysics Data System (ADS)

    Singh, Amit T.; Khandpekar, M. M.

    2015-05-01

    LaF3:Ce nanocrystals doped with glycine have been synthesized from water soluble chlorides and subsequent irradiation by microwave. The XRD spectra confirms the hexagonal phase structure with cell parameter a = b = 7.173 Å and c = 7.211 Å with space group P 3 cl and particle size of 15 nm. The value is in confirmation with the density functional calculation of structural properties by LDA and GGA potentials predicting merohedral twinned structure of tysonite like compounds. The SEM and TEM images show narrow distribution of nanoparticles with hexagonal and assorted morphology having particle size of 25 nm. The SAED pattern confirms the formation of crystallinity of nanocrystals and traces of different elements in the nanocrystals have been detected by EDAX pattern. The FTIR spectrum shows peaks due to weak organic attachments indicating the capping on the core LaF3:Ce by the functional groups of the organic ligands. The UV spectrum shows the presence of multiple absorption edges corresponding to band gap energies at 5.17 eV, 4.87 eV,4.28 eV,3.40 eV indicating the quantum dot structure of inorganic nanocrystals. The photoluminescence of the nanocrystals has been observed by excitation and emission spectra. The peak at 616 nm shows emission of red fluorescence, indicating its possible applications in bio imaging and biotagging. The TGA/DTA graph shows the stable phases of the nanocrystals synthesized.

  20. Structural, optical and dielectric properties of Ce3+, Pr3+, Nd3+ doped LaF3 hexagonal nanoparticles

    NASA Astrophysics Data System (ADS)

    Gaurkhede, S. G.; Khandpekar, M. M.

    2015-06-01

    Well dispersed, elongated and hexagonal LaF3: Ce3+, Pr3+, Nd3+ nanocrystals have been synthesized by microwave assisted technique. X-ray diffraction (XRD) studies indicates the formation of nanocrystals with unit cell parameters a = b = 7.144 A0, c = 7.281 A0, (c/a = 1.019) and unit cell volume of 321.86 (A0)3 of average crystallite size 21 nm have been traced by from XRD analysis and it is close agreement with transmission electron microscope (TEM) analysis. Ultra-violet (UV) absorption spectrum shows an edge at 250 nm indicating presence of wide transparency window region between 200 nm-800 nm. Fundamental groups have been observed in the Fourier transformation infrared (FTIR) and FT-Raman spectra. The blue luminescent properties of the nanoparticles were investigated by excitation and emission spectra. Room temperature Electrical and dielectric properties were studied for the synthesized nanocrystals the values of conductivity & resistivity is found to be in the order of 10-6 Scm-1 and resistivity 105 Ω cm. Low dielectric constant value was observed in the LaF3: Ce3+, Pr3+, and Nd3+ nanocrystals at high frequency indicating its suitability for electro optics applications.

  1. The importance of surface treatment on the amount of light detected from BaF 2

    NASA Astrophysics Data System (ADS)

    Anderson, D. F.; Lamb, D. C.

    1987-10-01

    The effect of the exposure to room air on the light output in the "short" component at 220 nm of BaF 2 crystals is presented. We also show that the light output in this component can be predicted from the measurement of the transmission at two wavelengths.

  2. Response of MEDEA BaF 2 detectors to 20-280 MeV photons

    NASA Astrophysics Data System (ADS)

    Bellia, G.; Alba, R.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Maiolino, C.; Migneco, E.; Piattelli, P.; Sapienza, P.; Frascaria, N.; Lhenry, I.; Roynette, J. C.; Suomijärvi, T.; Alamanos, N.; Auger, F.; Gillibert, A.; Pierroutsakou, D.; Sida, J. L.; Silveira Gomes, P. R.

    1993-05-01

    The response function of MEDEA BaF 2 crystals to high energy photons, up to 280 MeV, has been studied using monochromatic γ-rays from the in flight annihilation of positron beams. The experimental response functions are compared to the results of Monte Carlo simulations based on the EGS3 code and parametrized over the whole investigated energy range.

  3. Enhanced emissions in Tb3+-doped oxyfluoride scintillating glass ceramics containing BaF2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Huang, Lihui; Jia, Shijie; Li, Yang; Zhao, Shilong; Deng, Degang; Wang, Huanping; Jia, Guohua; Hua, Youjie; Xu, Shiqing

    2015-07-01

    Transparent Tb3+-doped glass ceramics containing BaF2 nanocrystals were prepared by melt-quenching method with subsequent heat treatment. The XRD and EDS results showed the precipitated crystalline phase in the glass matrix was BaF2. Under 376 nm light, Tb3+ doped oxyfluoride glass ceramics containing BaF2 nanocrystals showed more intense green emission than the as-made glass, and the emission intensity increased with increasing heat treatment temperature and time. The lifetimes of 541 nm emission of Tb3+ doped oxyfluoride glass ceramics were longer than that of as-made glass, which are in the range from 3.00 ms to 3.55 ms. Under X-ray excitation, the green emission was enhanced in the glass ceramics compared to the as-made glass. The results indicate Tb3+ doped oxyfluoride glass ceramics containing BaF2 nanocrystals could be a material candidate for X-ray glass scintillator for slow event detection.

  4. Paclitaxel conjugated Fe3O4@LaF3:Ce3+,Tb3+ nanoparticles as bifunctional targeting carriers for Cancer theranostics application

    NASA Astrophysics Data System (ADS)

    Mangaiyarkarasi, Rajendiran; Chinnathambi, Shanmugavel; Karthikeyan, Subramani; Aruna, Prakasarao; Ganesan, Singaravelu

    2016-02-01

    The bi-functional Chitosan functionalized magnetite doped luminescent rare earth nanoparticles (Fe3O4@LaF3: Ce3+,Tb3+/chi NPs) as a carrier of paclitaxel (PTX) drug was designed using a co-precipitation and facile direct precipitation method. The synthesized nanoparticles are spherical in shape with a typical diameter of 19-37 nm respectively. They are water soluble, super paramagnetic and biocompatible, in which the amino groups on the nanoparticles surface are used for the conjugation with an anticancer drug, paclitaxel. The nature of PTX binding with Fe3O4@LaF3: Ce3+,Tb3+/chi nanoparticles were studied using X-ray diffraction, vibrating sample magnetometer and scanning electron micrograph. The nature of interactions between PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs due to complex formation were conceded out by various spectroscopic methods viz., UV-visible, steady state and excited state fluorescence spectroscopy. The photo-physical characterization reveals that the adsorption and release of PTX from Fe3O4@LaF3:Tb3+/chi nanoparticles is quicker when compared with other nanoparticles and also confirms that this may be due to the hydrogen bond formation between the hydroxyl group of drug and amino group of nanoparticles respectively. The maximum loading capacity and entrapment efficiency of 83.69% and 80.51% were attained at a ratio of 5:8 of PTX and Fe3O4@LaF3: Ce3+,Tb3+/chi NPs respectively. In addition with that, antitumoral activity study of PTX conjugated Fe3O4@LaF3:Tb3+/chi nanoparticles exhibits increased cytotoxic effects on A549 lung cancer cell lines than that of unconjugated PTX.

  5. Direct growth of nanocrystalline graphitic carbon films on BaF2 by alcohol CVD

    NASA Astrophysics Data System (ADS)

    Tan, Yan; Nakamura, Atsushi; Kubono, Atsushi

    2016-03-01

    Multilayered nanocrystalline graphitic carbon films were directly formed on BaF2 substrates by the alcohol chemical vapor deposition method using ethanol. Domain size was typically 46 nm as estimated from the peak intensity ratios of G- and D-band of the Raman spectra, which were higher than currently reported values for various dielectric substrates. Sheet resistance measured by the four-probe method was 900 Ω/sq. A possible formation mechanism of the graphitic carbon layer was discussed referring to the results of X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) for a composition analysis. It was found that the graphitic carbon layers were formed on the BaO surface, which was produced by the oxidization of the BaF2 substrate by the ethanol source.

  6. Interconnection of defect entropies and enthalpies in BaF2 revisited

    NASA Astrophysics Data System (ADS)

    Skordas, Efthimios S.

    2016-02-01

    Here, we investigate the following key prediction of a thermodynamical model that interrelates the defect parameters with the bulk elastic and expansivity data: for various defect processes in a given matrix material, a proportionality exists between defect entropies and enthalpies. The investigation is focused on BaF2 for which ab initio calculations within density functional theory and the generalized-gradient approximation have been recently made as far as the formation and migration of intrinsic defects are concerned, as well as for the elastic constants. Four defect processes have been studied in BaF2: anion Frenkel formation, fluorine vacancy migration, fluorine interstitial motion and electrical relaxation associated with a single tetravalent uranium. For these processes, the entropies and enthalpies vary by almost two orders of magnitude and reveal a proportionality between them. We find that this proportionality is solely governed by the bulk elasticity and expansivity data, which conforms to the aforementioned thermodynamical model.

  7. Highly Efficient FRET System Capable of Deep Photodynamic Therapy Established on X-ray Excited Mesoporous LaF3:Tb Scintillating Nanoparticles.

    PubMed

    Tang, Yong'an; Hu, Jun; Elmenoufy, Ahmed H; Yang, Xiangliang

    2015-06-10

    Photodynamic therapy (PDT) for deep-seated tumor is largely impeded by the limited penetration depth of excitation light in tissue. X-ray is considered as an ideal energy source to activate photosensitizers (PSs) located deep within the body with the assistance of scintillating nanoparticles (ScNPs). However, the efficacy under this concept is not satisfying due to the low scintillating luminescence and weak energy transfer from ScNPs to PSs. Here, mesoporous LaF3:Tb ScNPs were successfully synthesized by a facile hydrothermal process to act as PS carriers and X-ray energy transducers, owing to their good ionizing radiation stopping power and high luminescence efficiency. The formation mechanism of porous structure was elucidated in detail with classical crystallization theory. After a systematic investigation, LaF3:Tb ScNPs with optimized scintillating luminescence were obtained for loading Rose Bengal (RB) to establish an efficient FRET system, owing to their excellent spectral match. The FRET efficiency between ScNPs and RB was calculated to be as high as 85%. Under irradiation, enhanced (1)O2 generation induced by LaF3:Tb-RB nanocomposites via FRET process was detected. This LaF3:Tb-RB FRET system shows great potential to be applied in X-ray stimulated PDT for deep-seated tumors in the future. PMID:25974980

  8. Mathematical modelling of energy conversion of pulsed electron beam in BaF2 crystal

    NASA Astrophysics Data System (ADS)

    Stepanov, S. A.; Shtan'ko, V. F.; Chinkov, E. P.; Ivanova, T. S.

    2016-02-01

    This paper presents the results of mathematical modeling of spatiotemporal distribution of energy in a BaF2 crystal in an area of dissipation of energy of an pulsed electron beam. Fluence is varied from 0.188 to 0.626 J/cm2. Electron beam pulse duration was 24 ns, and the maximum electron energy of 280 KeV. Based on the obtained of energy distributions temperature change of the material during irradiation were calculated.

  9. A solvent extraction route for CaF2 hollow spheres.

    PubMed

    Guo, Fuqiang; Zhang, Zhifeng; Li, Hongfei; Meng, Shulan; Li, Deqian

    2010-11-21

    A solvent extraction route is proposed to synthesize CaF(2) hollow spheres, which are formed by reversed micelles in a solvent extraction system templating the self-assembly of CaF(2) nanoparticles. PMID:20877846

  10. Optical thermometry based on luminescence behavior of Dy3+-doped transparent LaF3 glass ceramics

    NASA Astrophysics Data System (ADS)

    Bu, Y. Y.; Cheng, S. J.; Wang, X. F.; Yan, X. H.

    2015-11-01

    Dy3+-doped transparent LaF3 glass ceramics were fabricated, and its structures of resulting glass ceramics are studied by the X-ray diffraction and transmission electron microscopy. Optical temperature sensing of the resulting glass ceramics in the temperature range from 298 to 523 K is studied based on the down-conversion luminescence of Dy3+ ion. By using fluorescence intensity ratio method, the 4I15/2 and 4F9/2 of Dy3+ ions are verified as thermally coupled levels. A minimum S R = 1.16 × 10-4 K-1 is obtained at T = 294 K. By doping Eu3+ ion, the overall emission color of Eu3+-Dy3+ co-doped transparent glass ceramics can be tuned from white to yellow with the temperature increase through energy transfer between Eu3+ and Dy3+. Additionally, the thermal stability of the Dy3+ single-doped transparent glass ceramics becomes higher after doping Eu3+ ion.

  11. Influence of LaCl3 concentration and annealing temperature on the diode ideality factor of LaF3/porous-silicon structure prepared by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Hafijur Rahman, Md.; Ismail, Abu Bakar Md.

    2015-08-01

    Effect of LaCl3 concentration and annealing temperature on the diode ideality factor of LaF3/PS heterojunction has been investigated in this report. LaF3 layers have been deposited by a novel chemical bath deposition (CBD) technique. With this simple technique LaF3 produced as LaCl3 are made to react with hydrofluoric acid on the porous silicon (PS) substrate. This enables direct deposition of LaF3 on the pore walls of the PS leading to a successful passivation of PS. The compositions of the deposited LaF3 were confirmed by energy dispersive of X-ray analysis. The diode ideality factor increases with LaCl3 concentration and decreases with annealing temperature. Therefore, by changing the LaCl3 concentration and annealing temperature quality of the LaF3 layer on PS can be optimized. It was also seen that the Ag/LaF3/PS/Si/Ag structure showed the formation of Schottky diode with a threshold voltage of about 5.5 V. From the experimental results it can be concluded that lanthanum fluorides can be deposited into the pores as well as on the top of PS by the CBD technique, which provides the required passivation for PS. This passivation can enable the PS to be considered as an important material for photonics.

  12. Dependency of built-in potential of LaF3/porous-silicon heterostructure prepared by chemical bath deposition technique on the concentration of LaCl3 and annealing temperature

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Hafijur; Ismail, Abu Bakar Md.

    2015-11-01

    Effect of LaCl3 concentration and annealing temperature on the built-in potential of LaF3/PS heterojunction has been investigated in this report. LaF3 layers have been deposited by a novel chemical bath deposition (CBD) technique. With this simple technique LaF3 produced as LaCl3 are made to react with hydrofluoric acid on the porous silicon (PS) substrate. This enables direct deposition of LaF3 on the pore walls of the PS leading to a successful passivation of PS. The compositions of the deposited LaF3 were confirmed by energy dispersive of X-ray analysis. The built-in potential decreases with LaCl3 concentration and increases with annealing temperature. Therefore, by changing the LaCl3 concentration and annealing temperature quality of the LaF3 layer on PS can be optimized. From the experimental results it can be concluded that lanthanum fluorides can be deposited on the PS surface by the CBD technique, which provides the required passivation for PS. This passivation can enable the PS to be considered as an important material for photonics.

  13. F 3 - molecular ions in fluoride crystals

    NASA Astrophysics Data System (ADS)

    Radzhabov, E. A.

    2016-02-01

    The UV absorption spectra of F 3 - molecular ions in LaF3, SrF2, CaF2, and BaF2 crystals doped with rare-earth elements are studied. Comparison of radiation-colored and additively colored crystals reveals the absorption bands of F 3 - hole centers in the region near 6 eV. Nonempirical calculations of optical transitions agree well with experimental results.

  14. Neutron response of the LAMBDA spectrometer and neutron interaction length in BaF2

    NASA Astrophysics Data System (ADS)

    Dey, Balaram; Mondal, Debasish; Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Banerjee, K.; Bhattacharya, Srijit; De, A.; Banerjee, S. R.

    2013-11-01

    We report on the neutron response of the LAMBDA spectrometer developed earlier for high-energy γ-ray measurement. The energy dependent neutron detection efficiency of the spectrometer has been measured using the time-of-flight (TOF) technique and compared with that of an organic liquid scintillator based neutron detector (BC501A). The extracted efficiencies have also been compared with those obtained from Monte Carlo GEANT4 simulation. We have also measured the average interaction length of neutrons in the BaF2 crystal in a separate experiment, in order to determine the TOF energy resolution. Finally, the LAMBDA spectrometer has been tested in an in-beam-experiment by measuring neutron energy spectra in the 4He+93Nb reaction to extract nuclear level density parameters. Nuclear level density parameters obtained by the LAMBDA spectrometer were found to be consistent with those obtained by the BC501A neutron detector, indicating that the spectrometer can be efficiently used as a neutron detector to measure the nuclear level density parameter.

  15. Surface modification of CaF 2 in atomic layer scale by electron beam exposure

    NASA Astrophysics Data System (ADS)

    Hwang, S. M.; Izumi, A.; Tsutsui, K.; Furukawa, S.

    1994-12-01

    Surface modification of CaF 2/Si(111) was studied for the purpose of 1 ML adsorption of group-V atoms on a fluoride surface which is applicable to heteroepitaxy of III—V compound semiconductors on CaF 2. By using Rutherford backscattering (RBS) and X-ray photoelectron spectroscopy (XPS), it was found that 1 ML of As and P were successfully adsorbed on a CaF 2 surface, and that a 1 ML self-limiting adsorption of As for the electron beam exposure was realized. Also, we propose a model for the adsorption conditions depending on the substrate temperature during surface modification.

  16. Time- and energy-resolution measurements of BaF2, BC-418, LYSO and CeBr3 scintillators

    NASA Astrophysics Data System (ADS)

    Ackermann, Ulrich; Egger, Werner; Sperr, Peter; Dollinger, Günther

    2015-06-01

    We have investigated the time and energy resolution (TTiming, ∆E/E) of four different scintillator materials BaF2, BC-418, LYSO and CeBr3 at a gamma energy of 511 keV in views of their possible usage for time, energy and position resolution for positron annihilation experiments. The shape of each scintillator was a cylinder with a diameter of 25 mm and a height of 10 mm readout by a Photonis XP2020/URQ photomultiplier tube. The best single time resolution was determined for each photomultiplier-scintillator setup in a three step optimization process. The optimized single time resolutions (FWHM) for BaF2, BC-418, LYSO and CeBr3 were 119 ps, 117 ps, 269 ps and 127 ps, respectively. We measured the energy resolution of the photomultiplier-scintillator setups which show a photopeak in the energy spectrum. The energy resolutions ∆E/E of BaF2, LYSO and CeBr3 were 9.8%, 9.7% and 5.4%, respectively. The overall most promising material for measuring simultaneously time, energy and position resolution for positron annihilation experiments seems to be CeBr3 due to its very good time and energy resolution characteristics.

  17. A neutron scintillator based on transparent nanocrystalline CaF2:Eu glass ceramic

    NASA Astrophysics Data System (ADS)

    Struebing, Christian; Chong, JooYun; Lee, Gyuhyon; Zavala, Martin; Erickson, Anna; Ding, Yong; Wang, Cai-Lin; Diawara, Yacouba; Engels, Ralf; Wagner, Brent; Kang, Zhitao

    2016-04-01

    There are no efficient Eu2+ doped glass neutron scintillators reported due to low doping concentrations of Eu2+ and the amorphous nature of the glass matrix. In this work, an efficient CaF2:Eu glass ceramic neutron scintillator was prepared by forming CaF2:Eu nanocrystals in a 6Li-containing glass matrix. Through appropriate thermal treatments, the scintillation light yield of the transparent glass ceramic was increased by a factor of at least 46 compared to the as-cast amorphous glass. This improvement was attributed to more efficient energy transfer from the CaF2 crystals to the Eu2+ emitting centers. Further light yield improvement is expected if the refractive index of the glass matrix can be matched to the CaF2 crystal.

  18. Facile fabrication and upconversion luminescence enhancement of LaF3:Yb3+/Ln3+@SiO2 (Ln = Er, Tm) nanostructures decorated with Ag nanoparticles.

    PubMed

    He, Enjie; Zheng, Hairong; Dong, Jun; Gao, Wei; Han, Qingyan; Li, Junna; Hui, Le; Lu, Ying; Tian, Huani

    2014-01-31

    A novel hybrid nanostructure, that is a Ag nanoparticle decorated LaF(3):Yb(3+)/Ln(3+)@SiO(2) nanosphere (Ln=Er, Tm), was constructed by a facile strategy, and characterized by XRD, TEM, FTIR, XPS and UV-vis-NIR absorption. Obvious spectral broadening and red-shift on the surface plasmon resonance were obtained by adjusting the size and configuration of Ag nanoparticles. Effective upconversion luminescence enhancements for Er(3+) and Tm(3+) containing samples were obtained. It is suggested that the luminescence enhancement results from both the excitation and emission processes, and the configuration of the studied hybrid nanostructure is an efficient system to enhance the luminescence emission of rare earth doped nanomaterials. It is believed that the enhancement from the hybrid nanostructure will find great potential in the development of photovoltaic solar cells. PMID:24398901

  19. Growth of a smooth CaF2 layer on NdFeAsO thin film

    NASA Astrophysics Data System (ADS)

    Sumiya, N.; Kawaguchi, T.; Chihara, M.; Tabuchi, M.; Ujihara, T.; Ichinose, A.; Tsukada, I.; Ikuta, H.

    2014-05-01

    We studied the method to grow a smooth and flat CaF2 layer on NdFeAsO thin films since CaF2 is a promising candidate material for the barrier layer of a superconducting junction. When the CaF2 layer was grown at 800°C, the surface was very rough because {111} facets had grown preferentially. However, when CaF2 was grown at lower temperatures and post-annealed in situ at 800°C for 30 min the facets were eliminated and a CaF2 layer with a smooth surface was obtained. Fluorine diffusing from CaF2 into NdFeAsO was observed when CaF2 was grown at high temperatures, but the diffusion was suppressed by lowering the growth temperature to 400°C.

  20. Influence of CaF2 on the Viscosity and Structure of Manganese Ferroalloys Smelting Slags

    NASA Astrophysics Data System (ADS)

    Park, Joo Hyun; Ko, Kyu Yeol; Kim, Tae Sung

    2015-04-01

    Addition of CaF2 to the CaO-SiO2-MnO (CaO/SiO2 = 0.5) system, which corresponds qualitatively to a silicomanganese ferroalloy smelting slag, affected not only the critical (crystallization) temperature ( T CR) but also the viscosity at high temperatures, and its influence on slag properties was strongly dependent on the content of MnO in the slag. The viscosity of CaF2-free 10 mass pct MnO slag was relatively high, i.e., about 10 dPa s at 1773 K (1500 °C), but decreased continuously upon addition of CaF2 to the system. In contrast, the viscosity of the 40 pct MnO system was very low, i.e., 1 dPa s at 1773 K (1500 °C), and CaF2 did not have a large effect. This indicates that Mn2+ is a strong network modifier in manganese ferroalloy smelting slags. Nevertheless, CaF2 addition was very effective at decreasing the viscosity of low MnO slags at low temperatures. The activation energy for the viscous flow of silicate melts decreased linearly in response to CaF2 addition, but this tendency was less pronounced in the more basic composition of the slag. The effect of CaF2 on the viscosity and activation energy for viscous flow of melts was analyzed quantitatively using micro-Raman spectra of quenched glass samples and the silicate polymerization index, i.e., Q3/Q2 ratio. The polymerization index decreased continuously with increasing CaF2 content in less basic (10 pct MnO or C/S = 0.5) slags, whereas it was not affected by CaF2 content in highly basic (40 pct MnO and C/S = 1.0) slags. Bulk thermophysical properties of the CaO-SiO2-MnO-CaF2 slags were quantitatively correlated with the structural information of the slags.

  1. Characterization of electron-beam induced damage structures in natural fluorite, CaF2, by analytical electron microscopy

    NASA Technical Reports Server (NTRS)

    Blake, D. F.; Freund, Friedemann; Allard, L. F.; Echer, C. J.

    1988-01-01

    This paper describes the damage structure induced in natural CaF2 by the electron beam when using TEM. The observed 10-20 nm periodic features with coherent fringe patterns and the pronounced loss of fluorine found after the TEM exposure of 100-line-oriented and 111-oriented sections of CaF2 provides support for the mechanism of damage by decomposition of CaF2 into 2F and Ca, with the Ca precipitates maintaining a close topotaxial relationship with the parent CaF2.

  2. Modification of luminescence spectra of CaF2:Eu2+.

    PubMed

    Singh, Vartika S; Joshi, C P; Moharil, S V; Muthal, P L; Dhopte, S M

    2015-11-01

    CaF2:Eu(2+) is a well known phosphor having efficient excitation in the near ultraviolet (NUV) range. Phosphors with NUV excitation are required in newly emerging applications such as photoluminescence liquid crystal displays (PLLCD), solid-state lighting (SSL), and down-conversion for solar cells. However, emission of CaF2:Eu(2+) is around 424 nm. Eye sensitivity drops considerably at these wavelengths. It is thus not useful for display applications for which emission in one of the primary colours (blue - 450 nm, green - 540 nm or red - 610 nm) is required. Efforts were made to modify the Photoluminescence (PL) spectra of CaF2:Eu(2+) to meet these requirements using co-dopants. A Ca0.49 Sr0.50 Eu0.01 F2 phosphor showing better colour coordinates and having an emission maximum around 440 nm was discovered during these studies. PMID:25736486

  3. Synchrotron spectroscopy of confined carriers in CdF2-CaF2 superlattices

    NASA Astrophysics Data System (ADS)

    Ivanovskikh, K. V.; Hughes-Currie, R. B.; Reid, M. F.; Wells, J.-P. R.; Sokolov, N. S.; Reeves, R. J.

    2016-03-01

    Luminescence spectroscopic and temporal dynamic properties of high energy elementary excitations in CdF2-CaF2 superlattices have been studied utilising excitation with vacuum ultraviolet and X-ray synchrotron radiation while comparing the results with those obtained for CdF2 and CaF2 bulk crystals. It is shown that the optical properties of the superlattice structures are determined by exciton emission in the CdF2 monolayers. The experimental manifestations of exciton confinement phenomena are discussed.

  4. Spectroscopic and relaxation character of the 3P0-3H4 transition in LaF3: Pr3+ measured by photon echoes

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Chiang, K.; Hartmann, S. R.

    1980-01-01

    The hyperfine structure and relaxation character of the terminal levels of the 3P0-3H4 (4777 Å) transition in LaF3: Pr3+ (0.03 at.%) were studied using the photon-echo technique. Using two independent nitrogen-laser pumped dye lasers we have observed modulated photon echoes for pulse separations over a ~10-μsec range. In this interval our modulated photon echoes decay in a simple exponential manner by a factor of 105 and yield a homogeneous linewidth of 70 kHz [full width at half maximum (FWHM)]. Fourier transformation of the echo-modulation data yields directly the nuclear level splittings and their associated linewidths in the 3P0 and 3H4 states. In the 3P0(3H4) state the nuclear splittings are 0.73 and 1.12 MHz (8.48 and 16.68 MHz). The measurements for the nuclear level splittings and associated linewidths in the 3H4 state are in excellent agreement with those obtained from the optical-rf double-resonance experiments of Erickson. We find that the calculated echo modulation is a sensitive function of the relative orientation of the principal axes associated with the ground-and excited-state Hamiltonians. By comparing our experimental and calculated echo-modulation patterns we are able to determine their relative orientations.

  5. Composition versus friction and wear behavior of plasma sprayed WC-(W,Cr)2C-Ni/Ag/BaF2-CaF2 self-lubricating composite coatings for use up to 600 °C

    NASA Astrophysics Data System (ADS)

    Chen, Jianmin; Hou, Guoliang; Chen, Jie; An, Yulong; Zhou, Huidi; Zhao, Xiaoqin; Yang, Jie

    2012-11-01

    This paper reports the composition optimization of self-lubricating composite coatings containing WC-(W,Cr)2C-Ni, silver and fluoride eutectics. Various ingredients obtained by powder blending were studied to determine their optimum content in as-prepared composite coatings. An atmospheric plasma spraying (APS) system was used to deposit promising WC-(W,Cr)2C-Ni/Ag/BaF2-CaF2 self-lubricating composite coatings. The friction and wear behavior of the composite coatings sliding against Si3N4 ball was investigated from room temperature to 600 °C. Results show that silver and fluoride eutectics can effectively reduce the friction coefficient of the coatings and the wear volume loss of counterpart balls over the whole temperature range. Thanks to the highest hardness, WC-(W,Cr)2C-Ni coating without silver and fluoride eutectics has the lowest wear rate at room temperature and 600 °C. However, it has a high friction coefficient and a very high wear rate at 200 and 400 °C, due to severe adhesion wear and fatigue wear thereat. Fortunately, introducing appropriate amount of silver and fluoride eutectics contributes to effectively reduce the wear rate of the composite coatings at 200 and 400 °C. The optimized composite coating consists of 70 wt.% WC-(W,Cr)2C-Ni, 15 wt.% Ag and 15 wt.% BaF2/CaF2, and it has excellent friction and wear performance over a wide range of temperature.

  6. Relaxation and interaction of electronic excitations induced by intense ultra short light pulses in BaF2 scintillator

    NASA Astrophysics Data System (ADS)

    Kirm, M.; Nagirnyi, V.; Vielhauer, S.; Feldbach, E.

    2011-06-01

    Excitation density effects have a pronounced influence on relaxation processes in solids. They come into play in scintillating and dosimetric materials exposed to ionizing radiation or in laser materials operating in intense ultraviolet light fields. The scientific understanding of the underlying process is poor, mainly because most of the studies of light emitting materials under short wavelength excitation have been performed at weak and moderate excitation intensities due to limited availability of powerful light sources. Disembodied data on excitation density effects have been reported for wide-gap dielectrics studied by luminescence spectroscopy, by using such excitation sources as powerful ion beams,1,2pulsed electron beams,2,3 and wide-band hard X-ray synchrotron radiation.4 It is obvious that such non-selective excitation is a good tool for revealing density-related phenomena in these materials in general, but for investigating specific features of relaxation processes in insulators, light sources with well defined parameters are necessary. Since the shortwavelength free electron laser (FEL) technology has been devised by an international consortium at HASYLAB of DESY, resulting in the development of TESLA Test facility (TTF)5 and later in the construction of a dedicated FEL source FLASH in Hamburg,6 more advanced studies became possible. The range of interests towards this light source covers the fields from material science and various other branches of physics to structural biology. The pioneering luminescence study revealed excitation density effects in the decay of Ce3+ 5d-4f luminescence in Y3Al5O12 crystals and luminescence of BaF2 crystals in UV-visible range.7 These results motivated systematic investigations of excitation density effects in wide gap crystals using FEL8,9 and high-harmonic-generated VUV radiation,10 and, at lower energies, femtosecond laser pulses in the UV.11,12 The main goal of the present work is to analyze the same phenomenon in wide-band gap BaF2 crystals, where luminescence centres of different origin (self-trapped excitons and cross-luminescence) are present. Using models developed for explaining the non-linear behaviour of luminescence and exciton-exciton interaction effects causing scintillator non-proportionalities,10,13 simulations of luminescence decay curves are performed. Possible quenching effects in the cross-luminescence decay of BaF2 under XUV excitation have been analyzed by Terekhin et al.14

  7. Ultra-precision process of CaF2 single crystal

    NASA Astrophysics Data System (ADS)

    Yin, Guoju; Li, Shengyi; Xie, Xuhui; Zhou, Lin

    2014-08-01

    This paper proposes a new chemical mechanical polishing (CMP) process method for CaF2 single crystal to get ultraprecision surface. The CMP processes are improving polishing pad and using alkaline SiO2 polishing slurry with PH=8, PH=11 two phases to polish, respectively, and the roughness can be 0.181nm Rq (10μm×10μm). The CMP process can't get high surface figure, so we use ion beam figuring (IBF) technology to obtain high surface figure. However, IBF is difficult to improve the CaF2 surface roughness. We optimize IBF process to improve surface figure and keep good surface roughness too. Different IBF incident ion energy from 400ev to 800ev does not affect on the surface roughness obviously but the depth of material removal is reverse. CaF2 single crystal can get high precision surface figure (RMS=2.251nm) and still keep ultra-smooth surface (Rq=0.207nm) by IBF when removal depth is less than 200nm. The researches above provide important information for CaF2 single crystal to realize ultra-precision manufacture.

  8. Thermoluminescent dosimetric properties of CaF2:Tm produced by combustion synthesis

    NASA Astrophysics Data System (ADS)

    de Vasconcelos, D. A. A.; Barros, V. S. M.; Khoury, H. J.; Asfora, V. K.; Oliveira, R. A. P.

    2016-04-01

    Calcium Fluoride is one of the oldest known thermoluminescent materials and is considered to be one of the most sensitive. This work presents the dosimetric properties results of CaF2:Tm produced by combustion synthesis. The X-ray diffraction confirmed that CaF2 was successfully produced. TL emission spectra, obtained using a Hammamatsu optical spectrometer, have the same lines of commercial CaF2:Tm, although transitions 3P0→3F4 (455 nm) and 1G4→3H6 (482 nm) are shown to be proportionally more intense. The deconvolution technique was employed and seven glow peaks were found similar to the commercial CaF2:Tm. A linear dose response curve was obtained for the range 0.1 mGy to 100 Gy, with the onset of a supralinear behavior at 50 Gy up to 100 Gy. The minimum measurable dose for gamma was around 100 μGy for a 6.0 mm diameter by 1.0 mm in thickness pellet. No significant fading was observed in 60 days of storage, within experimental uncertainties, showing that the main dosimetric peak is stable.

  9. Synthesis and characterization of CaF2:Dy nanophosphor for dosimetric application

    NASA Astrophysics Data System (ADS)

    Bhadane, Mahesh S.; Patil, B. J.; Dahiwale, S. S.; Kulkarni, M. S.; Bhatt, B. C.; Bhoraskar, V. N.; Dhole, S. D.

    2015-06-01

    In this work, nanoparticles (NPs) of dysprosium doped calcium fluoride (CaF2:Dy) 1 mol % has been prepared using simple chemical co-precipitation method and its thermoluminescence (TL) dosimetric properties were studied. The synthesized nanoparticle sample was characterized by X-ray diffraction (XRD) and the particle size of face centered cubic phase NPs was found around 30 nm. The shape, morphology and size were also observed by scanning electron microscopy (SEM). From gamma irradiated CaF2:Dy TL curves, it was observed that the total areas of all the glow peak intensities are dramatically changed with increase in annealing temperature. Further, TL glow curve of the CaF2:Dy at 183 °C annealed at 400 °C, showed very sharp linear response in the dose range from 1 Gy to 750 Gy. This linear response of CaF2:Dy nanophosphor as a function of gamma dose is very useful from radiation dosimetric point of view.

  10. Spectroscopic properties of Pr3+ and Er3+ ions in lead-free borate glasses modified by BaF2

    NASA Astrophysics Data System (ADS)

    Pisarska, Joanna; Pisarski, Wojciech A.; Dorosz, Dominik; Dorosz, Jan

    2015-09-01

    Lead-free oxyfluoride borate glasses singly doped with Pr3+ and Er3+ were prepared and next investigated using absorption and luminescence spectroscopy. In the studied glass system, barium oxide was substituted by BaF2. Two luminescence bands of Pr3+ located at visible spectral region are observed, which correspond to 3P0-3H4 (blue) and 1D2-3H4 (reddish orange) transitions, respectively. The luminescence bands due to 1D2-3H4 transition of Pr3+ are shifted to shorter wavelengths, when BaO was substituted by BaF2. Near-infrared luminescence spectra of Er3+ ions in lead-free borate glasses modified by BaF2 correspond to 4I13/2-4I15/2 transition. Their spectral linewidths increase with increasing BaF2 concentration. The changes in measured lifetimes of rare earth ions are well correlated with the bonding parameters calculated from the optical absorption spectra.

  11. Diode-pumped femtosecond mode-locked Nd, Y-codoped CaF2 laser

    NASA Astrophysics Data System (ADS)

    Zhu, Jiangfeng; Zhang, Lijuan; Gao, Ziye; Wang, Junli; Wang, Zhaohua; Su, Liangbi; Zheng, Lihe; Wang, Jingya; Xu, Jun; Wei, Zhiyi

    2015-03-01

    A passively mode-locked femtosecond laser based on an Nd, Y-codoped CaF2 disordered crystal was demonstrated. The Y3+-codoping in Nd : CaF2 markedly suppressed the quenching effect and improved the fluorescence quantum efficiency and emission spectra. With a fiber-coupled laser diode as the pump source, the continuous wave tuning range covering from 1042 to 1076 nm was realized, while the mode-locked operation generated 264 fs pulses with an average output power of 180 mW at a repetition rate of 85 MHz. The experimental results show that the Nd, Y-codoped CaF2 disordered crystal has potential in a new generation diode-pumped high repetition rate chirped pulse amplifier.

  12. Nanostructuring CaF2 surfaces with slow highly charged ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Ritter, R.; Wachter, G.; Facsko, S.; Lemell, C.; Burgdörfer, J.; Aumayr, F.

    2014-04-01

    In recent years the potential of slow highly charged ions (HCI) as tools for nanostructuring purposes has received considerable attention and a wide range of material classes, from insulating ionic crystals, polymers and ultrathin films, to semiconducting and conducting substrates have been investigated regarding their response to individual HCI impact. For the majority of investigated materials, however, consistent theoretical modeling to supplement with experimental evidence and to satisfactorily explain the complete physical process from ion approach and impact to the formation of an individual nanostructure is still lacking. CaF2, from both an experimental and theoretical point of view, might be considered the most thoroughly investigated material. Combining results from numerous studies has allowed for the generation of a "phase diagram" for nanostructuring of CaF2 in dependence of ion beam parameters. This paves the way for a first unified picture, as implications from this phase diagram should be applicable to similar materials as well.

  13. Cryogenic Temperature-Dependent Refractive Index Measurements of CaF2 and Infrasil 301

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.; Madison, TImothy J.

    2007-01-01

    In order to enable high quality lens design using calcium fluoride (CaF2) and Heraeus Infrasil 30 (Infrasil) at cryogenic temperatures, we have measured the absolute refractive index of prisms of these two materials using the Cryogenic, High-Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, as a function of both wavelength and temperature. For CaF2, we report absolute refractive index and thermo-optic coefficient (dn/dT) at temperatures ranging from 25 to 300 K at wavelengths from 0.4 to 5.6 micrometers; for Infrasil we cover temperatures ranging from 35 to 300K and wavelengths from 0.4 to 3.6 micrometers. We investigate the interspecimen variability between measurements of two unrelated samples of CaF2, and we also compare our results for Infrasil to previous measurements fo Corning 7980 fused silica. Finally, we provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures and compare those results to other data found in the literature.

  14. Studies of the facetting of the polished (100) face of CaF 2

    NASA Astrophysics Data System (ADS)

    Deuster, V.; Schick, M.; Kayser, Th.; Dabringhaus, H.; Klapper, H.; Wandelt, K.

    2003-04-01

    The present paper deals with studies of the facetting of the polished (1 0 0) surface of CaF 2 during annealing and growth in UHV using low energy electron diffraction (LEED), atomic force microscopy (AFM), and transmission electron microscopy (TEM). First morphological modifications of the polished surfaces become visible at temperatures of T=874 K. Surfaces annealed at T=974 K exhibit a micro-roughening with pyramidal protrusions and corresponding depressions. LEED studies indicate the evolution of {1 1 1} facets. Reflexes from the (1 0 0) surface are not seen. After growth of about 660 monolayers of CaF 2 at T=1093 K and a saturation ratio S=33 from the vapor phase, larger pyramid-like or hip roof-like crystallites are developed. The results of AFM height profiles as well as of the LEED investigations indicate again the formation of {1 1 1} facets as proved by their angles of 54.7 o with the base (1 0 0) surface. This shows that the crystallites are homoepitaxially grown on the underlying CaF 2 substrate.

  15. Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructured BaF2 thin film surfaces.

    PubMed

    Yadav, R P; Kumar, Manvendra; Mittal, A K; Pandey, A C

    2015-08-01

    Fractal and multifractal characteristics of self-affine surfaces of BaF2 thin films, deposited on crystalline Si ⟨1 1 1⟩ substrate at room temperature, were studied. Self-affine surfaces were prepared by irradiation of 120 MeV Ag(9+) ions which modified the surface morphology at nanometer scale. The surface morphology of virgin thin film and those irradiated with different ion fluences are characterized by atomic force microscopy technique. The surface roughness (interface width) shows monotonic decrease with ion fluences, while the other parameters, such as lateral correlation length, roughness exponent, and fractal dimension, did not show either monotonic decrease or increase in nature. The self-affine nature of the films is further confirmed by autocorrelation function. The power spectral density of thin films surfaces exhibits inverse power law variation with spatial frequency, suggesting the existence of fractal component in surface morphology. The multifractal detrended fluctuation analysis based on the partition function approach is also performed on virgin and irradiated thin films. It is found that the partition function exhibits the power law behavior with the segment size. Moreover, it is also seen that the scaling exponents vary nonlinearly with the moment, thereby exhibiting the multifractal nature. PMID:26328566

  16. LAMBDA: Large Area Modular BaF2 Detector Array for the measurement of high energy γ rays

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Bhattacharya, Srijit; Pandit, Deepak; Ray, A.; Pal, Surajit; Banerjee, K.; Kundu, S.; Rana, T. K.; Bhattacharya, S.; Bhattacharya, C.; De, A.; Banerjee, S. R.

    2007-11-01

    A large BaF 2 detector array along with its dedicated CAMAC electronics and VME based data acquisition system has been designed, constructed and installed successfully at VECC, Kolkata for studying high energy γ rays ( >8 MeV). The array consists of 162 detector elements. The detectors were fabricated from bare barium fluoride crystals (each measuring 35 cm in length and having cross-sectional area of 3.5×3.5 cm2). The basic properties of the detectors (energy resolution, time resolution, efficiency, uniformity, fast to slow ratio, etc.) were studied exhaustively. Complete GEANT3 Monte Carlo simulations were performed to optimize the detector design and also to generate the response function. The detector system has been used successfully to measure high energy photons from 113Sb, formed by bombarding 145 and 160 MeV 20Ne beams on a 93Nb target. The measured experimental spectra are in good agreement with those from a modified version of the statistical model code CASCADE. In this paper, we present the complete description of this detector array along with its in-beam performance.

  17. High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator

    NASA Astrophysics Data System (ADS)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2011-03-01

    The authors report on the high-performance metal-semiconductor-metal (MSM) photodetectors (PDs) fabricated on high-quality InGaN film by introducing a superwide bandgap calcium fluoride (CaF2) as the insulator. The dark current of the PDs with CaF2 is drastically reduced by six orders of magnitude compared with those without CaF2, resulting in an extremely high discrimination ratio larger than 106 between ultraviolet and visible light. The responsivity at 338 nm is as high as 10.4 A/W biased at 2 V, corresponding to a photocurrent gain around 40. The CaF2 layer behaves as an excellent insulator for the InGaN-based MSM-PDs in dark condition, while it allows the electron injection through the metal/semiconductor interface under ultraviolet illumination, contributing to the photocurrent gain without sacrificing the response time (˜ms).

  18. Fabrication of IR-transparent microfluidic devices by anisotropic etching of channels in CaF2.

    PubMed

    Lehmkuhl, Brynson; Noblitt, Scott D; Krummel, Amber T; Henry, Charles S

    2015-11-21

    A simple fabrication method for generating infrared (IR) transparent microfluidic devices using etched CaF2 is demonstrated. To etch microfluidic channels, a poly(dimethylsiloxane) (PDMS) microfluidic device was reversibly sealed on a CaF2 plate and acid was pumped through the channel network to perform anisotropic etching of the underlying CaF2 surface. To complete the CaF2 microfluidic device, another CaF2 plate was sealed over the etched channel using a 700 nm thick layer of PDMS adhesive. The impact of different acids and their concentrations on etching was studied, with HNO3 giving the best results in terms of channel roughness and etch rates. Etch rate was determined at etching times ranging from 4-48 hours and showed a linear correlation with etching time. The IR transparency of the CaF2 device was established using a Fourier Transform IR microscope and showed that the device could be used in the mid-IR region. Finally, utility of the device was demonstrated by following the reaction of N-methylacetamide and D2O, which results in an amide peak shift to 1625 cm(-1) from 1650 cm(-1), using an FTIR microscope. PMID:26450455

  19. Studies of EPR spectra and defect structure for Er3+ ions in BaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Li, Hui; Kuang, Xiao-Yu; Mao, Ai-Jie; Li, Cheng-Gang

    2013-02-01

    The local lattice structure and electron paramagnetic resonance (EPR) spectra have been studied systematically by diagonalizing 364 × 364 complete energy matrices for a f11 ion in a trigonal ligand-field. By simulating the calculated Stark levels and EPR parameters to the experimental results, the shift parameters are determined for Er3+ ions in BaF2 and SrF2. The results show that the trigonal center is attributed to an interstitial F- ion located at the [1 1 1] axis of the cube, and the nearest ligand close to the charge compensator has a displacement towards central ion by 0.042 Å for L center in BaF2:Er3+ and 0.026 Å for J center in SrF2:Er3+, respectively. Moreover, the relationships between g-factors and shift parameter ΔZ as well as orbit reduction factor k' are discussed.

  20. Simultaneous measurement of (n, γ) and (n, fission) cross sections with the DANCE 4π BaF 2 array

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Chadwick, M. B.; Clement, R. R. C.; Esch, E.-I.; Ethvignot, T.; Granier, T.; Jandel, M.; Macri, R. A.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2007-08-01

    We have recently begun a program of high precision measurements of the key production and destruction reactions of important radiochemical diagnostic isotopes, including several isotopes of uranium, plutonium and americium. The detector for advanced neutron capture experiments (DANCE), a 4π BaF2 array located at the Los Alamos Neutron Science Center, will be used to measure the neutron capture cross sections for most of the isotopes of interest. However, neutron capture measurements on many of the actinides are complicated by the presence of prompt γ-rays arising from low energy neutron-induced fission, which competes with neutron capture to varying degrees. Previous measurements of 235U using the DANCE array have shown that we can partially resolve capture from fission events based on total γ-ray calorimetry (i.e. total γ-ray energy versus γ-ray multiplicity). The addition of a dedicated fission-tagging detector to the DANCE array has greatly improved our ability to separate these two competing processes. In addition to higher quality neutron capture data, the addition of a fission-tagging detector offers a means to determine the capture-to-fission ratio (σγ/σf) in a single measurement, which should reduce the effect of systematic uncertainties. We are currently using a dual parallel-plate avalanche counter (PPAC) with the target material electro-deposited directly on the center cathode foil. This design provides a high efficiency for detecting fission fragments and allows loading of pre-assembled target/detector assemblies into the neutron beam line at DANCE. Results from tests of the fission-tag detector, as well as preliminary results from measurements on 235U and 252Cf that utilized the fission-tag detector will be presented.

  1. Actinide burner fuel: Potential compositions based on the thermodynamic evaluation of MF-PuF 3 (M = Li, Na, K, Rb, Cs) and LaF 3-PuF 3 systems

    NASA Astrophysics Data System (ADS)

    Beneš, O.; Konings, R. J. M.

    2008-07-01

    In previous studies a thermodynamic description of the LiF-NaF-KF-RbF-CsF-LaF 3 system was presented. In order to add PuF 3 to this system the assessments of LiF-PuF 3, NaF-PuF 3, KF-PuF 3, RbF-PuF 3, CsF-PuF 3 and LaF 3-PuF 3 binary phase diagrams have been made. In case of the LiF-PuF 3 and NaF-PuF 3 the assessments have been based on known experimental data. The other binary systems have not been measured yet and the thermodynamic description has been made using the excess parameters from the previously assessed binaries containing LaF 3, which is considered as a proxy compound for PuF 3. The main aim of this study is to analyze potential compositions for a molten salt fast burner fuel.

  2. Photothermal transformation of color centers in CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Aksenova, K. A.; Gainutdinov, R. V.; Ryskin, A. I.

    2015-04-01

    Photothermal transformations of color centers in additively colored calcium fluoride crystals and in a colored crystal with a recorded hologram have been investigated. It is shown that the absorption spectrum of a colored crystal can be reconstructed within the entire transparency range of the matrix crystal by varying both factors affecting the sample—actinic radiation wavelength and temperature—as well as the duration of their effect. This possibility is important for the application of additively colored CaF2 crystals as a holographic medium.

  3. Laser-induced damage resistance of UV coatings on fused silica and CaF2

    NASA Astrophysics Data System (ADS)

    Cho, Byungil; Lyu, Andy; Feldman, Mark

    2012-11-01

    The laser damage resistance (LDR) is a measure of the laser fluence that a coating can withstand without damaging when exposed to a large number of pulses. The LDR of UV coatings has been studied at 266 nm on two common substrate materials. Significantly higher values for the LDR have been measured for the same coating deposited on CaF2 substrate compared to fused silica substrates. Various parameters such as the surface roughness, the absorption and the subsurface damage of these quite different materials were measured in an effort to explain the performance difference. The laser damage morphologies of the coatings were also studied.

  4. Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers.

    PubMed

    Zhang, Cuimiao; Li, Chunxia; Peng, Chong; Chai, Ruitao; Huang, Shanshan; Yang, Dongmei; Cheng, Ziyong; Lin, Jun

    2010-05-17

    Highly uniform and well-dispersed CaF(2) hollow spheres with tunable particle size (300-930 nm) have been synthesized by a facile hydrothermal process. Their shells are composed of numerous nanocrystals (about 40 nm in diameter). The morphology and size of the CaF(2) products are strongly dependent on experimental parameters such as reaction time, pH value, and organic additives. The size of the CaF(2) hollow spheres can be controlled from 300 to 930 nm by adjusting the pH value. Nitrogen adsorption-desorption measurements suggest that mesopores (av 24.6 nm) exist in these hollow spheres. In addition, Ce(3+)/Tb(3+)-codoped CaF(2) hollow spheres can be prepared similarly, and show efficient energy transfer from Ce(3+) to Tb(3+) and strong green photoluminescence of Tb(3+) (541 nm, (5)D(4)-->(7)F(5) transition of Tb(3+), the highest quantum efficiency reaches 77%). The monodisperse CaF(2):Ce(3+)/Tb(3+) hollow spheres also have desirable properties as drug carriers. Ibuprofen-loaded CaF(2):Ce(3+)/Tb(3+) samples still show green luminescence of Tb(3+) under UV irradiation, and the emission intensity of Tb(3+) in the drug-carrier system varies with the released amount of ibuprofen, so that drug release can be easily tracked and monitored by means of the change in luminescence intensity. The formation mechanism and luminescent and drug-release properties were studied in detail. PMID:20391571

  5. Europium-doped LaF3 nanocrystals with organic 9-oxidophenalenone capping ligands that display visible light excitable steady-state blue and time-delayed red emission.

    PubMed

    Irfanullah, Mir; Sharma, Dharmendar Kumar; Chulliyil, Ramya; Chowdhury, Arindam

    2015-02-21

    Visible light excitable and color tunable ∼5% Eu(3+)-doped LaF3 nanocrystals (NCs), containing 9-oxidophenalenone ligands bound to the surface as visible light sensitizers for Eu(3+) dopants, have been synthesized by a facile solution-based method. The crystalline phase structure, size, composition, morphology and luminescence properties of the NCs are characterized using X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and steady-state and time-resolved emission spectroscopy. The results show that these NCs are very small in size (<10 nm), display high degree of crystallinity and have pure tysonite structure of LaF3 with P3[combining macron]c1 space group. The visible light excitation of the capping ligands triggers an alternate display of steady-state, short-lived blue emission (τ < 1 ns) and time-delayed, long-lived sensitized red Eu(3+) emission (τ = 0.41 ms), allowing photoluminescence chromacity tuning as a function of delay time within a specific inorganic composition. The visible light sensitization of the dopant Eu(3+) sites proves more efficient than direct excitation of 5% Eu(3+)-doped LaF3 NCs capped by citrate ligands. The dopant Eu(3+) ions are well protected from non-radiative deactivation through high-energy vibrations of the organic capping ligands which is proved by the long lifetime of the sensitized Eu(3+) emission. The time-resolved emission spectra collected over a period of several milliseconds reveal that the dopant Eu(3+) ions occupy at least three different sites in the NC host. It is further inferred that the sensitized Eu(3+) emission primarily comes from surface dopant sites and sites just underneath the surface of the NCs. We propose that some of the interior Eu(3+) sites also display sensitized emission, which are indirectly populated via Eu(3+) → Eu(3+) energy migration from surface-sensitized Eu(3+) sites of the NCs. PMID:25567779

  6. X-ray excited optical luminescence of CaF2: A candidate for UV water treatment

    NASA Astrophysics Data System (ADS)

    Chen, W.; Ma, L.; Schaeffer, R.; Hoffmeyer, R.; Sham, T.; Belev, G.; Kasap, S.; Sammynaiken, R.

    2015-06-01

    Secondary optical processes are becoming more and more important in health and environmental applications. Ultraviolet produced from secondary emission or scintillation can damage DNA by direct photoexcitation or by the creation of reactive oxygen species. X-ray Excited Optical Luminescence (XEOL) and Time Resolved XEOL (TRXEOL) results for the fast emitter, CaF2:ZnO, that have been treated by heating in air and in vacuum, show that the scintillation from the Self Trapped Exciton (STE) emission of CaF2 at 282 nm is dominated by a slow process (>100 ns). A faster but weaker 10 ns component is also present. The ZnO and CaF2 show independent emission. The ZnO bandgap emission at 390 nm has dominant lifetimes of less than 1 ns.

  7. Estimation Model for Electrical Conductivity of CaF2-CaO-Al2O3 Slags

    NASA Astrophysics Data System (ADS)

    Shi, Guan-yong; Zhang, Ting-an; Dou, Zhi-he; Niu, Li-ping

    2016-04-01

    Electrical conductivity is one of the most important properties of molten slags. It has an important influence on process parameter selection of the electroslag remelting process. In the present work, a new model for estimating electrical conductivity of high-temperature slags has been proposed via calculating the conductivity by electrical conductivity of pure substances and interaction parameters between the different components in the slag has been proposed. In this model, the Arrhenius law is used to describe the relationship between electrical conductivity and temperature of slags. This model has been successfully applied to the CaF2-Al2O3, CaF2-CaO, and CaO-Al2O3, as well as CaF2-CaO-Al2O3 systems, and the calculated results are in good agreement with the measured values.

  8. Fluoride rinse effect on retention of CaF2 formed on enamel/dentine by fluoride application.

    PubMed

    Falcão, Amanda; Masson, Nadia; Leitão, Tarcísio Jorge; Botelho, Juliana Nunes; Ferreira-Nóbilo, Naiara de Paula; Tabchoury, Cínthia Pereira Machado; Tenuta, Livia Maria Andaló; Cury, Jaime Aparecido

    2016-01-01

    Calcium fluoride-like materials ("CaF2") formed on dental surfaces after professional fluoride application are unstable in the oral environment but can be retained longer with a daily NaF mouthrinse. We tested the effect of twice daily 0.05% NaF rinses on the retention of "CaF2" formed on enamel and dentine after applying acidulated phosphate fluoride (APF). "CaF2" formed on enamel/dentine by APF application significantly decreased after exposure to artificial saliva and the 0.05% NaF rinse was ineffective to avoid this reduction. These findings suggest that the combination of APF and 0.05% NaF is not clinically relevant, either for caries or dental hypersensitivity. PMID:27050937

  9. Crystallization of nano calcium fluoride in CaF2-Al2O3-SiO2 system

    NASA Astrophysics Data System (ADS)

    Imanieh, Mohammad Hassan; Yekta, Bijan Eftekhari; Marghussian, V.; Shakhesi, Saeed; Martín, I. R.

    2013-03-01

    The effects of alumina and CaF2 content on the crystallization behavior, fluorine loss, phase separation mechanism and optical properties of oxyfluoride glass ceramics were investigated. Three series of glasses in which their SiO2/Al2O3 ratio was different such as 1.8, 2.18 and 2.5 were examined. Results showed that the adopted ratios played key role significantly in the mechanism of phase separation of the glass. It modified from spinodal decomposition to nucleation and growth by decreasing the mentioned ratio. UV spectroscopy showed that owing to the small size of precipitated CaF2 crystals, i.e. 20 nm, in the glass with a silicon oxide to alumina ratio of 2.18 and initial CaF2 amount of 35 mol%, it remained transparent after heat treatment at 740 °C.

  10. Hyperfine splittings and Zeeman infrared absorption of Tb3+ -doped CaF2 and SrF2

    NASA Astrophysics Data System (ADS)

    Wells, Jon-Paul R.; Jones, Glynn D.

    2009-09-01

    We report on the observation of pseudoquadrupole splittings of sharp infrared-absorption lines of CaF2:Tb3+ . These splittings are large enough to be directly observed because the Tb3+ electronic ground levels consists of two singlets separated by only 0.18cm-1 for the F- C4v center. Both the hyperfine splittings and measured Zeeman splittings for F- C4v centers in CaF2:Tb3+ and SrF2:Tb3+ can be accounted for using wave functions derived from a previously published crystal-field analysis of experimental energy levels.

  11. Neutron beam tests of CsI(Na) and CaF2(Eu) crystals for dark matter direct search

    NASA Astrophysics Data System (ADS)

    Guo, C.; Ma, X. H.; Wang, Z. M.; Bao, J.; Dai, C. J.; Guan, M. Y.; Liu, J. C.; Li, Z. H.; Ren, J.; Ruan, X. C.; Yang, C. G.; Yu, Z. Y.; Zhong, W. L.; Huerta, C.

    2016-05-01

    In recent decades, inorganic crystals have been widely used in dark matter direct search experiments. To contribute to the understanding of the capabilities of CsI(Na) and CaF2(Eu) crystals, a mono-energetic neutron beam is utilized to study the properties of nuclear recoils, which are expected to be similar to signals of dark matter direct detection. The quenching factor of nuclear recoils in CsI(Na) and CaF2Eu, as well as an improved discrimination factor between nuclear recoils and γ backgrounds in CsI(Na), are reported.

  12. The Detector for Advanced Neutron Capture Experiments: A 4{pi} BaF2 Detector for Neutron Capture Measurements at LANSCE

    SciTech Connect

    Ullmann, J.L.; Esch, E.-I.; Haight, R.C.; Hunt, L.; O'Donnell, J.M.; Reifarth, R.; Agvaanluvsan, U.; Alpizar, A.; Hatarik, R.; Bond, E.M.; Bredeweg, T.A.; Kronenberg, A.; Rundberg, R.S.; Vieira, D.J.; Wilhelmy, J.B.; Folden, C.M.; Hoffman, D.C.; Greife, U.; Schwantes, J.M.; Strottman, D.D.

    2005-05-24

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 162-element 4{pi} BaF2 array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as one milligram. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. The design and initial performance results of DANCE is discussed.

  13. Laser damage and ablation of differently prepared CaF2(111) surfaces

    NASA Astrophysics Data System (ADS)

    Sils, J.; Reichling, M.; Matthias, E.; Johansen, H.

    1999-12-01

    Ablation thresholds and damage behavior of cleaved and polished CaF2(111) surfaces produced by single shot irradiation with 248 nm/14 ns laser pulses have been investigated using the photoacoustic mirage technique and scanning electron microscopy. The standard polishing yields an ablation threshold of typically 20 J/cm2. When surfaces are polished chemo-mechanically the threshold is raised to 43 J/cm2. Polishing by diamond turning leads to intermediate values around 30 J/cm2. Cleaved surfaces possess no well-defined damage threshold. The damage topography of conventionally polished surfaces shows ablation of flakes across the laser heated area with cracks along the cleavage planes. In the case of chemo-mechanical polishing only a few cracks appear. Diamond turned surfaces show small optical absorption, but cracks and ablation of tiles. The origin of such different damage behavior is discussed.

  14. Luminescence emission of natural fluorite and synthetic CaF2:Mn (TLD-400)

    NASA Astrophysics Data System (ADS)

    Topaksu, Mustafa; Correcher, Virgilio; Garcia-Guinea, Javier

    2016-02-01

    The luminescence properties of natural white fluorite indicate that it could be employed as radiation dosimeter similarly to synthetic CaF2:Mn (TLD-400). The cathodoluminescence emission of the natural sample (two maxima) meanwhile TLD-400 (one peak) exhibits a different behaviour associated with the chemical composition. The mineral sample displays (i) a significant UV-blue emission associated with different structural defects (negligible in the synthetic sample) and (ii) a shift of the green emission to higher wavelengths respect to the TLD-400. The green induced TL emission also shows significant differences in intensity (higher in TLD-400) and sensitivity. Both samples display a complex induced green TL glow curve that could not be analysed assuming the model based on the discrete trap distribution. The Tm-Tstop method indicates the presence of close overlapping groups of components linked probably to a continuum in the trap distribution rather than a single trapping level.

  15. Effect of surface orientation on dissolution rates and topography of CaF2

    NASA Astrophysics Data System (ADS)

    Godinho, J. R. A.; Piazolo, S.; Evins, L. Z.

    2012-06-01

    This paper reports how during dissolution differences in surface chemistry affect the evolution of topography of CaF2 pellets with a microstructure similar to UO2 spent nuclear fuel. 3D confocal profilometry and atomic force microscopy were used to quantify retreat rates and analyze topography changes on surfaces with different orientations as dissolution proceeds up to 468 h. A NaClO4 (0.05 M) solution with pH 3.6 which was far from equilibrium relative to CaF2 was used. Measured dissolution rates depend directly on the orientation of the exposed planes. The {1 1 1} is the most stable plane with a dissolution rate of (1.2 ± 0.8) × 10-9 mol m-2 s-1, and {1 1 2} the least stable plane with a dissolution rate 33 times faster that {1 1 1}. Surfaces that expose both Ca and F atoms in the same plane dissolve faster. Dissolution rates were found to be correlated to surface orientation which is characterized by a specific surface chemistry and therefore related to surface energy. It is proposed that every surface is characterized by the relative proportions of the three reference planes {1 1 1}, {1 0 0} and {1 1 0}, and by the high energy sites at their interceptions. Based on the different dissolution rates observed we propose a dissolution model to explain changes of topography during dissolution. Surfaces with slower dissolution rate, and inferred lower surface energy, tend to form while dissolution proceeds leading to an increase of roughness and surface area. This adjustment of the surface suggests that dissolution rates during early stages of dissolution are different from the later stages. The time-dependency of this dynamic system needs to be taken into consideration when predicting long-term dissolution rates.

  16. Transmission and reflection studies of thin films in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Peterson, Lennart R.

    1989-01-01

    Both the transmittance and reflectance of 2 mm thick MgF2 substrates and of thin films of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2, and SiO2 deposited on these substrates were measured for the wavelength range 120 nm to 230 nm. Results for BaF2, LaF2 and MgF2 show promise as being good materials from which interference filters can be made. The software and related hardware needed to take large amounts of data automatically in future measurements of the transmittance and reflectance was developed.

  17. FACTORS AFFECTING THE USE OF CAF2:MN THERMOLUMINESCENT DOSIMETERS FOR LOW-LEVEL ENVIRONMENTAL RADIATION MONITORING

    EPA Science Inventory

    An investigation was made of factors affecting the use of commercially-produced CaF2:Mn thermoluminescent dosimeters for low level environmental radiation monitoring. Calibration factors and self-dosing rates were quantified for 150 thermoluminescent dosimeters. Laboratory studie...

  18. Transient liquid assisted nucleation mechanism of YBa2Cu3O7-δ in coated conductor films derived by BaF2 process

    NASA Astrophysics Data System (ADS)

    Gu, Zhao-Hui; Yang, Wen-Tao; Bai, Chuan-Yi; Guo, Yan-Qun; Lu, Yu-Ming; Liu, Zhi-Yong; Lu, Qi; Shu, Gang-Qiang; Cai, Chuan-Bing

    2015-09-01

    It is significant for low-cost preparation of YBa2Cu3O7-δ (YBCO) coated conductors to make clear the mechanism of orientation, copper segregation, and nucleation density in BaF2-derived YBCO crystallization. In the present work, a distinct nucleation mechanism was proposed based on a transient liquid phase induced by the size effect as well as near-equilibrium assumption. With this scheme the nucleation of YBCO prepared by metal-organic deposition (MOD) or the physical vapor deposition BaF2 process was semi-quantitatively analyzed, revealing that the direct driving force for nucleation is YBCO supersaturation in the liquid phase. The theoretical analysis on the nucleation orientation portion is evidenced by the experimental result. Project supported by the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 13111102300 and 11dz1100302), the National Natural Science Foundation of China (Grant Nos. 11174193 and 51202141), the National Basic Research Program of China (Grant Nos. 2011CBA00105), and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 14DZ2260700).

  19. Readout concepts for the suppression of the slow component of BaF2 for the upgrade of the TAPS spectrometer at ELSA

    NASA Astrophysics Data System (ADS)

    Diehl, Stefan; Novotny, Rainer W.; Wohlfahrt, Benjamin; Beck, Reinhard

    2015-02-01

    For the measurement at extremely high interaction rates with fast scintillators, pile-up of consecutive events is a limiting factor. With a decay time of 600 ps of the fast crossluminescence component, Barium Fluoride (BaF2) is one of the fastest inorganic scintillators known today. However, the dominating slow component with a 3 orders of magnitude longer decay time of 630 ns limits the rate capability. To circumvent this limit, different approaches have been made in the past. The slow component can be suppressed for example by doping the crystals with rare earth ions like La3+. The paper will give an overview over the various concepts investigated in the past and present the suppression via optical band pass filters. This method has been chosen for the upgrade of the BaF2 crystals in the most forward region of the TAPS-spectrometer at ELSA in Bonn. It allows to reuse the existing crystals and to achieve a high degree of suppression of the slow component. The focus of the paper will be on the selection of the filters, the achievable rate capability and the energy resolution of the fast component.

  20. Dose response of CaF2:Tm to charged particles of different LET.

    PubMed

    Moyers, M F; Nelson, G A

    2009-08-01

    Thermoluminescent dosimeters are well established for performing calibrations in radiotherapy and for monitoring dose to personnel exposed to low linear energy transfer (LET) ionizing radiation. Patients undergoing light ion therapy and astronauts engaged in space flight are, however, exposed to radiation fields consisting of a mix of low- and high-LET charged particles. In this study, glow curves from CaF2:Tm chips were examined after exposure to various electron and ion beams. The annealing and readout procedures for these chips were optimized for these beams. After a 10 min prereadout annealing at 100 degrees C, the optimized glow curve samples the light output between 95 and 335 degrees C with a heating rate of 2 degrees C/s. The ratio of the integral of the glow curve under peaks 4-6 to the integral under peak 3 was approximately 0.9 for electrons, 1.0 for entrance protons, 1.6 for peak protons, and 2.2 for entrance carbon, silicon, and iron ions. The integral light output per unit dose in water for the iron exposures was about half as much as for the electron exposures. The peak-area-ratio can be used to determine a dose response factor for different LET radiations. PMID:19746804

  1. Ab-initio Calculations of Electronic Properties of Calcium Fluoride (CaF2)

    NASA Astrophysics Data System (ADS)

    Bohara, Bir; Franklin, Lashounda; Malozovsky, Yuriy; Bagayoko, Diola

    We have performed first principle, local density approximation (LDA) calculations of electronic and related properties of cubic calcium fluorite (CaF2) . Our non-relativistic computations employed the Ceperley and Alder LDA potential and the linear combination of atomic orbitals (LCAO) formalism. The implementation of the LCAO formalism followed the Bagayoko, Zhao, and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF). We discuss the electronic energy bands, including the large band gap, total and partial density of states, electron and hole effective masses, and the bulk modulus. Our calculated, indirect (X- Γ) band gap is 12.98 eV; it is 1 eV above an experimental value of 11.8 eV. The calculated bulk modulus (82.89 GPA) is excellent agreement with the experimental result of 82.0 +/-0.7. Our predicted equilibrium lattice constant is 5.42Å. Acknowledgments: This work is funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR], and NSF HRD-1002541, the US Department of Energy, National, Nuclear Security Administration (NNSA) (Award No. DE-NA-0002630), LaSPACE, and LONI-SUBR.

  2. Scintillation response of CaF2 to H and He over a continuous energy range

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwen; Xiang, Xia; Weber, William J.

    2008-06-01

    Recent demands for new radiation detector materials with improved γ-ray detection performance at room temperature have prompted research efforts on both accelerated material discovery and efficient techniques that can be used to identify material properties relevant to detector performance. New material discovery has been limited due to the difficulties of large crystal growth to completely absorb γ-energies; whereas high-quality thin films or small crystals of candidate materials can be readily produced by various modern growth techniques. In this work, an ion-scintillator technique is demonstrated that can be applied to study scintillation properties of thin films and small crystals. The scintillation response of a benchmark scintillator, europium-doped calcium fluoride (CaF2:Eu), to energetic proton and helium ions is studied using the ion-scintillator approach based on a time-of-flight (TOF) telescope. Excellent energy resolution and fast response of the TOF telescope allow quantitative measurement of light yield, nonlinearity and energy resolution over an energy range from a few tens to a few thousands of keV.

  3. An independent measurement of the 12C({alpha}, {gamma})16O cross section with the Karlsruhe 4{pi} BaF2 detector

    SciTech Connect

    Plag, R.; Heil, M.; Kaeppeler, F.; Wisshak, K.

    2006-03-13

    Many measurements of the 12C({alpha}, {gamma})16O cross section have been performed up to now but only a few could measure at energies as low as 1 MeV. All of these measurements at low energy have been carried out using Germanium detectors. The low gamma-ray efficiency of these detectors was compensated by very intense beam currents, which may cause considerable uncertainties due to severe target degradation. A verification of these data with a completely different approach, which could reveal systematic uncertainties, was still missing.The realization of such an independent measurement was performed with the Karlsruhe 4{pi} BaF2 array. Due to its high gamma-ray efficiency the beam current could be substantially reduced thus minimizing the thermal load of the target and avoiding sputtering effects.

  4. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function

    NASA Astrophysics Data System (ADS)

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-11-01

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface.Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca2+-binding ability in the C-terminal lobe suggest that the EF-hand Ca2+-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface. Electronic supplementary information (ESI) available: Supplementary methods and figures. See DOI: 10.1039/c4nr04368e

  5. Responsivity enhancement of mid-infrared PbSe detectors using CaF2 nano-structured antireflective coatings

    NASA Astrophysics Data System (ADS)

    Weng, Binbin; Qiu, Jijun; Yuan, Zijian; Larson, Preston R.; Strout, Gregory W.; Shi, Zhisheng

    2014-01-01

    The CaF2 nano-structures grown by thermal vapor deposition are presented. Significant responsivity improvement (>200%) of mid-infrared PbSe detectors incorporating a 200 nm nano-structured CaF2 coating was observed. The detector provides a detectivity of 4.2 × 1010 cm . Hz1/2/W at 3.8 μm, which outperforms all the reported un-cooled PbSe detectors. Structural investigations show that the coating is constructed by tapered-shape nanostructures, which creates a gradient refractive-index profile. Analogy to moth-eye antireflective mechanism, the gradient refractive-index nanostructures play the major roles for this antireflection effect. Some other possible mechanisms that help enhance the device performance are also discussed in the work.

  6. Structural plasticity of calmodulin on the surface of CaF2 nanoparticles preserves its biological function.

    PubMed

    Astegno, Alessandra; Maresi, Elena; Marino, Valerio; Dominici, Paola; Pedroni, Marco; Piccinelli, Fabio; Dell'Orco, Daniele

    2014-12-21

    Nanoparticles are increasingly used in biomedical applications and are especially attractive as biocompatible and biodegradable protein delivery systems. Herein, the interaction between biocompatible 25 nm CaF2 nanoparticles and the ubiquitous calcium sensor calmodulin has been investigated in order to assess the potential of these particles to serve as suitable surface protein carriers. Calmodulin is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells by changing its conformation in a calcium-dependent manner. Isothermal titration calorimetry and circular dichroism studies have shown that the interaction between calmodulin and CaF2 nanoparticles occurs with physiologically relevant affinity and that the binding process is fully reversible, occurring without significant alterations in protein secondary and tertiary structures. Experiments performed with a mutant form of calmodulin having an impaired Ca(2+)-binding ability in the C-terminal lobe suggest that the EF-hand Ca(2+)-binding motifs are directly involved in the binding of calmodulin to the CaF2 matrix. The residual capability of nanoparticle-bound calmodulin to function as a calcium sensor protein, binding to and altering the activity of a target protein, was successfully probed by biochemical assays. Even if efficiently carried by CaF2 nanoparticles, calmodulin may dissociate, thus retaining the ability to bind the peptide encompassing the putative C-terminal calmodulin-binding domain of glutamate decarboxylase and activate the enzyme. We conclude that the high flexibility and structural plasticity of calmodulin are responsible for the preservation of its function when bound in high amounts to a nanoparticle surface. PMID:25367003

  7. Nano-structuring of CaF2 surfaces by slow highly charged ions: simulation and experiment

    NASA Astrophysics Data System (ADS)

    Wachter, G.; Tökési, K.; Betz, G.; Lemell, C.; Burgdörfer, J.; El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Facsko, S.; Ritter, R.; Aumayr, F.

    2014-04-01

    The impact of individual slow highly charged ions (HCI) on insulators can create nano-scale surface modifications. We present recent experimental results on nano-hillock and etch pit formation on CaF2, where the appearance of surface modifications is observed only above a threshold projectile potential and kinetic energy depending on the type of damage. A proof-of-principle molecular dynamics simulation offers insights into the early stages of damage formation.

  8. X-ray-excited optical luminescence of GGG: Nd 3+ and LaF 3:Nd 3+ — The first experiments on BEPC beam line 4B9A

    NASA Astrophysics Data System (ADS)

    Nie, Yuxin; Zhao, Lizeng; Song, Zengfu; Shu, Deming; Wang, Wei; Liu, Jing; Wang, Motuo; He, Wei; Zhang, Yijuan; Zheng, Hongwei; Xie, Qi

    1990-05-01

    Beam line 4B9A, which collects and focuses 5.5 mrad of synchrotron radiation from a bending magnet port on the Beijing Electron-Positron Collider (BEPC), has been commissioned and has been operating with the BEPC storage ring at 1.6 GeV in parasitic mode and 2.2 GeV in dedicated mode since April 1989. This paper reports the first measurement of the absorption spectra of GGG:Nd 3+ (Gd 3Ga 5O 13:Nd 3+) in the short wavelength region by use of focussed synchrotron radiation on the 4B9A-VUV branch beam line. The upper Stark levels have been assigned from the absorption spectra. On the 4B9A-WX branch, the first XEOL of GGG:Nd 3+ and LaF 3:Nd 3+ has been observed using X-rays focused by a 0.5° glancing incidence angle bent cylindrical mirror.

  9. Radial Diffraction Strength and Elastic Behavior of CaF2 in Low- and High-Pressure Phases

    SciTech Connect

    Kavner,A.

    2008-01-01

    The radial-diffraction lattice behavior of CaF2 was analyzed in its low-pressure (fluorite) and high-pressure phase up to 11.5 GPa using radial x-ray diffraction techniques in the diamond anvil cell. Between 3.5 and 7.1 GPa, fluorite develops a radial-diffraction strength of {approx}0.8 GPa. The corresponding lattice anisotropy of the fluorite phase was measured to be equal to 0.73, in good agreement with previous Brillouin spectroscopy measurements. By 8.8 GPa, CaF2 has undergone a phase transformation to its high-pressure (orthorhombic) phase, with a corresponding volume decrease of 10.4%. By 11.5 GPa, the volume drop between the low-pressure and high-pressure phase has increased to 11.5%. In addition, the high-pressure phase is found to withstand a significantly larger differential stress than the low-pressure fluorite phase, with a large degree of lattice anisotropy. In the maximum stress direction at 8.8 GPa, we observe a time-dependent evolution of the lattice parameters of CaF2, indicating that the high-pressure structure is still undergoing deformation on time scales of hours after the phase boundary has been crossed.

  10. Deformation luminescence produced during application and release of pressure on to gamma-irradiated CaF2:RE crystals.

    PubMed

    Kher, R S; Brahme, N; Banerjee, M; Dhoble, S J; Khokhar, M S K

    2006-01-01

    Calcium fluoride CaF2 is an interesting host lattice for rare earth (RE) activators. CaF2 crystals doped with different concentrations of Dy, Ce, Er and Gd have been grown by the Bridgman technique and their deformation luminescence (DL) induced by room temperature gamma irradiation has been recorded. When a uniaxial pressure is applied on to gamma-irradiated CaF2:RE crystals, initially the DL intensity increases with time, attains a maximum value and then it decreases with time. Although the DL intensity produced during the release of pressure is less, its rise and decay behaviours are similar to that obtained during the application of pressure. The DL intensity depends on dopant, concentration of dopant, irradiation doses and mass of the load or applied pressure. It is suggested that the moving dislocation produced during deformation of crystals capture holes from hole trapped centres (like perturbed Vk centre) and the subsequent radiative recombination of the dislocation holes with electrons give rise to DL. PMID:16698970

  11. Photothermal Conversion of Color Centers in {CaF}2 Crystals: A Process Underlying the Use of Crystals as a Holographic Medium

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Ryskin, A. I.

    2015-09-01

    Photothermal effects in a holographic medium of calcium fluoride crystals with color centers ({CaF}2) are discussed. It is shown that photochromism of this crystal makes it possible to record volume holograms within its volume and to change their physical properties by photothermal treatments. The diffusion-drift mechanism of a hologram recording in {CaF}2 includes the conversion of centers and their redistribution over the crystal bulk. Depending on the readout wavelength, it is possible to read out amplitude, amplitude phase, or phase holograms. The opportunity to record thick holograms in {CaF}2 and their high resistance with respect to non-coherent illumination at an elevated temperature allows forming narrow-band angular and spectral holographic filters in {CaF}2.

  12. Analysis of the photoconduction in CaF2 : Eu2+ crystals using the microwave resonant cavity technique

    NASA Astrophysics Data System (ADS)

    Loudyi, H.; Guyot, Y.; Kazanskii, S. A.; Gâcon, J.-C.; Moine, B.; Pédrini, C.; Joubert, M.-F.

    2008-07-01

    The microwave resonant cavity technique (MRCT) was used to measure the room-temperature photoconductivity spectrum of a CaF2:Eu2+ single crystal between 275 and 450 nm, with the aim of positioning the Eu2+ levels relatively to the bottom of the host conduction band. A photoconductivity signal was detected at laser wavelengths λl≤430nm (hνl≥2.9eV) . Its intensity was observed to exhibit a superlinear dependence on the laser mean power for λl>280nm and an almost linear one at shorter wavelengths, showing that Eu2+ photoionization may involve either a one-photon or a two-step two-photon absorption process. The probabilities of both linear and quadratic processes were determined from measurements of the dependences of the photoconductivity signal intensity versus the mean laser power for several laser wavelengths within the spectral range that is under investigation. The Eu2+ photoionization threshold was estimated at 4.9 eV from the comparison between the MRCT photoconductivity spectrum, the Eu2+ 4f65d(eg) excited-state absorption spectrum, and the calculated density of states of the CaF2 conduction band. In addition, the photoconduction dynamics in two CaF2:Eu2+ samples grown under different experimental conditions was studied. The MRCT signals from the two samples were observed to exhibit different thermal behaviors. This observation is interpreted in terms of differences in trap densities and depths, in connection with thermoluminescence measurements.

  13. Structural properties of Bi2Te3 topological insulator thin films grown by molecular beam epitaxy on (111) BaF2 substrates

    NASA Astrophysics Data System (ADS)

    Fornari, Celso I.; Rappl, Paulo H. O.; Morelhão, Sérgio L.; Abramof, Eduardo

    2016-04-01

    Structural properties of topological insulator bismuth telluride films grown epitaxially on (111) BaF2 with a fixed Bi2Te3 beam flux were systematically investigated as a function of substrate temperature and additional Te flux. A layer-by-layer growth mode is observed since the early stages of epitaxy and remains throughout the whole deposition. Composition of the epitaxial films produced here stays between Bi2Te3 and Bi4Te5, as determined from the comparison of the measured x-ray diffraction curves with calculations. The substrate temperature region, where the growth rate remains constant, is found to be the most appropriate to obtain ordered Bi2Te3 films. Line width of the L = 18 Bi2Te3 diffraction peaks as low as 140 arcsec was obtained, indicating high crystalline quality. Twinning domains density rises with increasing growth temperature and reducing Te extra flux. X-ray reflectivity curves of pure Bi2Te3 films with thickness from 165 to 8 nm exhibited well defined interference fringes, evidencing homogeneous layers with smooth surface. Our results demonstrate that Bi2Te3 films with very well controlled structural parameters can be obtained. High structural quality Bi2Te3 films as thin as only eight quintuple layers grown here are promising candidates for intrinsic topological insulator.

  14. Electrical conductivity of NaF-AlF3-CaF2-Al2O3 melts

    NASA Astrophysics Data System (ADS)

    Bakin, K. B.; Simakova, O. N.; Polyakov, P. V.; Mikhalev, Yu. G.; Simakov, D. A.; Gusev, A. O.

    2010-08-01

    The electrical conductivity of NaF-AlF3-Al2O3 melts with a CaF2 concentration of 5 wt % is measured at a continuously varying cell constant when the molar cryolitic ratio CR = [NaF]/[AlF3] changes from 1.2 to 2.0 [1, 2]. The experimental data are used to obtain a regression equation to describe the dependence of the electrical conductivity of the melts under study on CR, the alumina content, and temperature { χ] = f(CR, [Al2O3], T)}.

  15. Nonlinear luminescence response of CaF2:Eu and YAlO3:Ce to single-ion excitation

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan; Xiang, Xia; Wang, Xuelin; Weber, William J

    2014-01-01

    Pulse-height of CaF2:Eu and YAlO3:Ce scintillators to single H+, He+ and O3+ ions are measured over a continuous energy range using a time-of-flight (TOF) - scintillator - photoelectric multiplier tube (PMT) apparatus. A nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering energy partitioning process. The results show that, in a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) produced by H+, He+ and O3+ ions irradiation, respectively, have significantly different impacts on the response characteristics of these two benchmark scintillators. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of scintillators to irradiation.

  16. Fabrication and Transport Properties of FeSe Thin Films on CaF2 Substrates with Increased Tc

    NASA Astrophysics Data System (ADS)

    Nabeshima, Fuyuki; Imai, Yoshinori; Hanawa, Masafumi; Ichinose, Ataru; Tsukada, Ichiro; Maeda, Atsutaka

    2014-03-01

    Fe(Se,Te) has the simplest crystal structure among Fe-based superconductors. Superconducting transition temperature, Tc, is strongly dependent on the applied pressure. Indeed, strained thin films of FeSe0.5Te0.5 have higher Tc than that of bulk crystals. On the other hand, an end member, FeSe, shows large increase in Tc under pressure compared with Te-doped ones. However there is no report on increased Tc of FeSe thin films except for the interface-induced superconductivity. In the presentation we will report on the first successful introduction of compressive strain in FeSe thin films using CaF2 substrates. As a result, Tczero reaches 11.4 K, which is about 1.5 times higher than that of bulk crystals. We will also report on the transport properties of FeSe thin films on CaF2 in the normal state including the THz conductivity and the Hall resistivity comparing them with the results of FeSe0.5Te0.5 films. Partially supported by Strategic International Collaborative Research Program (SICORP) of Japan Science and Technology Agency.

  17. Influence of some impurities on the emission properties of CaF2:YbF3 crystals

    NASA Astrophysics Data System (ADS)

    Stef, Marius; Nicoara, Irina; Cirlan, Florina; Para, Irina; Velazquez, Matias; Buse, Gabriel

    2015-12-01

    Various concentrations of YbF3 -doped and NaF or PbF2 co-doped CaF2 crystals were grown using the conventional Bridgman method. Transparent colorless crystals were obtained in graphite crucible in vacuum using a shaped graphite furnace. The crystals have been cooled to room temperature using an established procedure. Room temperature absorption spectra have been obtained using a Shimadzu 1650PC spectrophotometer. Photoluminescent properties in IR spectral range were analyzed using a spectrofluorimeter Horiba Fluorolog 3. An IR laser diode at 932 nm was also used an directly injected in the equipment. The emission spectra are influenced by the concentration of co-dopant added to the melt, and the excitation wavelength. The high emission peak at 979 nm overlaps with the absorption peak. The highest intensity in the IR emission (around 1029 nm) is obtained for CaF2:0.72 mol% YbF3 crystal by excitation at 932 nm (diode lamp).

  18. Effects of CaF2 Coating on the Microstructures and Mechanical Properties of Tungsten Inert Gas Welded AZ31 Magnesium Alloy Joints

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Wang, Linzhi; Peng, Dong; Wang, Dan

    2012-11-01

    The effects of CaF2 coating on the macromorphologies of the welded seams were studied by morphological analysis. Microstructures and mechanical properties of butt joints welded with different amounts of CaF2 coatings were investigated using optical microscopy and tensile tests. The welding defects formed in the welded seams and the fracture surfaces were analyzed by scanning electron microscopy. An increase in the amount of CaF2 coating deteriorated the appearances of the welded seams but it improved the weld penetration depth and the depth/width ( D/ W) ratio of the tungsten inert gas (TIG) welded joints. The α-Mg grains and Mg17(Al,Zn)12 intermetallic compound (IMC) were coarser in the case of a higher amount of CaF2 coating. The increase in the amount of CaF2 coating reduced the porosities and total length of solidification cracks in the fusion zone (FZ). The ultimate tensile strength (UTS) value and elongation increased at first and then decreased sharply.

  19. Modification of mechanical properties of e-gun evaporated MgF2 and CaF2 thin films under ion beam bombardment

    NASA Astrophysics Data System (ADS)

    Scaglione, S.; Flori, D.; Emiliani, G.

    1989-12-01

    The effect of ion beam assistance on mechanical properties (hardness and adhesion) of MgF2 and CaF2 thin films has been investigated. These films have been deposited by e-gun evaporation and bombarded during growth with an ion beam produced by a Kaufman source. The Knoop hardness has been calculated after having performed on the samples some indentation by an ultra-microindenter and measured the impression size by an eyepiece mounted on an optical microscope. The film adhesion has been measured by the scratch test technique. To investigate the influence of the ion source parameters on the mechanical properties, different ion beam energies (200-800 eV) have been used. Bombarded samples are harder (610 and 750 kg/mm2 for CaF2 and MgF2 samples, respectively) than unbombarded samples (380 and 300 kg/mm2 for CaF2 and MgF2, respectively). Critical loads (load where the delamination of the coating begins) of 12 and 3 N for bombarded MgF2 and CaF2 respectively and 4 and 1 N for unbombarded MgF2 and CaF2 samples have been found.

  20. Deformation of as-cast LiF-22 mol pct CaF2 hypereutectic salt between 500 and 1015 K

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Whittenberger, J. D.

    1990-01-01

    Results are presented on compression tests conducted on as-cast LiF-22 mol pct CaF2 hypereutectic specimens at nominal strain rates between 1.8 x 10 to the -6th/sec and 0.25/sec over the temperature range 500-1015 K. In all instances, the stress-strain curves showed broad maxima, with negative strain-hardening rates after the peak stress sigma(max). It was found that, at low temperatures and high stresses, the CaF2 lamellae are rigid while the LiF matrix exhibits extensive transgranular cavitation, while at high temperatures and low stresses the CaF2 lamellae break down and spheroidize while the LiF matrix does not cavitate. It was concluded that the mechanical properties of the as-cast hypereutectic LiF-22 mol pct CaF2 are governed by the rate of deformation of the CaF2 phase. It is suggested that, for thermal energy storage applications, a spheroidal microstructure is more desirable than a lamellar structure.

  1. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid.

    PubMed

    Wasem, Matthias; Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-13

    Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  2. Exploring the retention properties of CaF2 nanoparticles as possible additives for dental care application with tapping-mode atomic force microscope in liquid

    PubMed Central

    Köser, Joachim; Hess, Sylvia; Gnecco, Enrico; Meyer, Ernst

    2014-01-01

    Summary Amplitude-modulation atomic force microscopy (AM-AFM) is used to determine the retention properties of CaF2 nanoparticles adsorbed on mica and on tooth enamel in liquid. From the phase-lag of the forced cantilever oscillation the local energy dissipation at the detachment point of the nanoparticle was determined. This enabled us to compare different as-synthesized CaF2 nanoparticles that vary in shape, size and surface structure. CaF2 nanoparticles are candidates for additives in dental care products as they could serve as fluorine-releasing containers preventing caries during a cariogenic acid attack on the teeth. We show that the adherence of the nanoparticles is increased on the enamel substrate compared to mica, independently of the substrate roughness, morphology and size of the particles. PMID:24455460

  3. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    PubMed

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-Dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p < 0.05). Areas of melting, fusion, and cracks were observed. CO2 laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression. PMID:26873502

  4. Glass structure and NIR emission of Er3+ at 1.5 μm in oxyfluoride BaF2-Al2O3-B2O3 glasses

    NASA Astrophysics Data System (ADS)

    Shinozaki, Kenji; Pisarski, Wojciech; Affatigato, Mario; Honma, Tsuyoshi; Komatsu, Takayuki

    2015-12-01

    The glass structure, photoluminescence properties of Eu3+, Judd-Ofelt analysis, and near infrared emissions of Er3+ at 1.5 μm in the oxyfluoride glasses and glass-ceramics of 1Eu2O3- or 1Er2O3-doped 50BaF2-xAl2O3-(50 - x)B2O3 (x = 0-25 mol%) were investigated. It was clarified on the ground of Raman scattering spectroscopy and F1s and O1s XPS measurements that the glass with no Al2O3 (1Er2O3-50BaF2-50B2O3) is composed of BO3, BO2F and BO3F units with F-Ba bonds. The glasses with 25Al2O3 (1Er2O3-50BaF2-25Al2O3-25B2O3) is mainly composed of BO3- and Al(O,F)x units. Existence of non-bridging oxygen was not detected by O1s-XPS spectra. It was proposed that these structures are largely affected on crystallization behavior, e.g., the glass with no Al2O3 forms BaF2 and β-BaB2O4 due to Ba-F bonds and the glass with 25Al2O3 forms BaAlBO3F2 because the glass structure composed of BO3 and Al(O,F) units is similar to the BaAlBO3F2 crystal structure. Judd-Ofelt parameters of Er3+ and Eu3+ in the glasses showed almost the same values in Ω4 and Ω6 for each glass, on the other hand Ω2 decreased with addition of Al2O3. The emission spectra of Er3+ at 1.5 μm in the glasses and glass-ceramics with BaAlBO3F2 crystals showed broad peaks. It is proposed that oxyfluoride glasses and glass-ceramics based on the BaF2-Al2O3-B2O3 system have a high potential for optical device applications such as broadband optical amplifiers.

  5. Self-organization of color centers in holograms recorded in additively colored CaF2 crystals

    NASA Astrophysics Data System (ADS)

    Shcheulin, Aleksandr S.; Angervaks, Aleksandr E.; Veniaminov, Andrey V.; Zakharov, Viktor V.; Fedorov, Pavel P.; Ryskin, Aleksandr I.

    2015-09-01

    The structurization of holographic planes in holograms recorded in CaF2 crystal with color centers was found. It is apparent in the formation of spiral bundles, which pierce the holographic planes. It testifies to the self-organization process of color centers in these planes. This process is supposed to be linked with colloidal centers, 2D metal islets in the crystal lattice, whose formation and decay on hologram recording at temperatures of 150-190 °C may be considered as a dynamic phase transition that facilitates the generation of stable spatially inhomogeneous (dissipative) structures in the form of bundles. They arise on hologram recording and are frozen on cooling of the crystal after the recording process is finished.

  6. Nonlinear Luminescence Response of CaF2:Eu and YAlO3:Ce to Single-Ion Excitation

    SciTech Connect

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan Y.; Xiang, Xia; Wang, Xuelin; Weber, William J.

    2014-01-21

    Understanding scintillation physics and nonproportionality is essential to accelerate materials discovery that has been restricted due to the difficulties inherent to large crystal growth and complex nature of gamma-solid interaction. Taking advantage of less restrictive growth and deposition techniques for smaller crystal sizes or thin films and better fundamental understanding of ion-solid interactions, a unique ion approach is demonstrated to effectively screen candidate scintillators with relatively small size and evaluate their nonlinear scintillation response. Response of CaF2:Eu and YAlO3:Ce scintillators to single ions of H, He, and O3 are measured by the corresponding pulse height over a continuous energy range using a time-of-flightscintillatorphotoelectric multiplier tube apparatus. Nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering the energy partitioning process. In a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) can be produced by energetic H, He and O3 ions, respectively, and significantly different impacts on the response characteristics of these two benchmark scintillators are observed. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of the scintillators to irradiation.

  7. Nonlinear luminescence response of CaF2:Eu and YAlO3:Ce to single-ion excitation

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Zhang, Yanwen; Xiao, Haiyan; Xiang, Xia; Wang, Xuelin; Weber, William J.

    2014-01-01

    Understanding scintillation physics and nonproportionality is essential to accelerate materials discovery that has been restricted due to the difficulties inherent to large crystal growth and complex nature of gamma-solid interaction. Taking advantage of less restrictive growth and deposition techniques for smaller crystal sizes or thin films and better fundamental understanding of ion-solid interactions, a unique ion approach is demonstrated to effectively screen candidate scintillators with relatively small size and evaluate their nonlinear scintillation response. Response of CaF2:Eu and YAlO3:Ce scintillators to single ions of H+, He+, and O3+ are measured by the corresponding pulse height over a continuous energy range using a time-of-flight-scintillator-photoelectric multiplier tube apparatus. Nonlinear response of the scintillators under ionizing ion irradiation is quantitatively evaluated by considering the energy partitioning process. In a differential energy deposition region with negligible displacement damage, the low, medium and high excitation energy deposition density (Dexci) can be produced by energetic H+, He+ and O3+ ions, respectively, and significantly different impacts on the response characteristics of these two benchmark scintillators are observed. For CaF2:Eu, the scintillation efficiency under ion irradiation monotonically decreases with increasing excitation-energy density. In contrast, the response efficiency of YAlO3:Ce scintillation initially increases with excitation-energy density at low excitation-energy densities, goes through a maximum, and then decreases with further increasing excitation-energy density. The fundamental mechanism causing these different response behaviours in the scintillators is based on the competition between the scintillation response and the nonradiative quenching process under different excitation densities, which is also the main origin of the nonlinear response of the scintillators to irradiation.

  8. Erase-mode recording characteristics of photochromic CaF2, SrTiO3, and CaTiO3 crystals.

    NASA Technical Reports Server (NTRS)

    Duncan, R. C., Jr.

    1972-01-01

    Erase-mode optical recording characteristics of photochromic crystal wafers of CaF2:La,Na; CaF2:Ce,Na; SrTiO3:Ni,Mo,Al; and CaTiO3:Ni,Mo have been measured. An argon laser operating at 5145 A was used for both optical recording and optical readout. Sensitometric curves of optical-density change versus logarithm of exposure are shown for a number of erase-beam intensities between 0.2 mW/sq cm and 2 W/sq cm. In this range, time-intensity reciprocity holds for the CaF2 materials but fails for the titanates, particularly at low intensities. The dependences of sensitivity, gamma, and maximum transmission contrast ratio on wafer thickness and material are discussed. Wafers of SrTiO3, CaTiO3, and CaF2 exhibiting approximately equal maximum contrast ratios have relative sensitivities approximately in the ratio 5:2:1, respectively, at an erase intensity of 1 W/sq cm.

  9. Impurity-trapped excitons and electron traps in CaF2:Yb2+ and SrF2:Yb2+ probed by transient photoluminescence enhancement

    NASA Astrophysics Data System (ADS)

    Senanayake, P. S.; Wells, J. P. R.; Reid, M. F.; Berden, G.; Meijerink, A.; Reeves, R. J.

    2013-01-01

    CaF$_2$:Yb$^{2+}$ and SrF$_2$:Yb$^{2+}$ crystals have been investigated by a two-color UV + IR transient photoluminescence enhancement technique. The enhancement gives information about both changes in internal energy levels of the excitons and liberation of electrons from traps in the crystals.

  10. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  11. Radiation Damage Effects in Far Ultraviolet Filters and Substrates

    NASA Technical Reports Server (NTRS)

    Keffer, Charles E.; Torr, Marsha R.; Zukic, Muamer; Spann, James F.; Torr, Douglas G.; Kim, Jongmin

    1993-01-01

    New advances in VUV thin film filter technology have been made using filter designs with multilayers of materials such as Al2O3, BaF2, CaF2, HfO2, LaF3, MgF2, and SiO2. Our immediate application for these filters will be in an imaging system to be flown on a satellite where a 2 X 9 R(sub E) orbit will expose the instrument to approximately 275 krads of radiation. In view of the fact that no previous studies have been made on potential radiation damage of these materials in the thin film format, we report on such an assessment here. Transmittances and reflectances of BaF2, CaF2, HfO2, LaF3, MgF2, and SiO2 thin films on MgF2 substrates, Al2O3 thin films on fused silica substrates, uncoated fused silica and MgF2, and four multilayer filters made from these materials were measured from 120 nm to 180 nm before and after irradiation by 250 krads from a Co-60 gamma radiation source. No radiation-induced losses in transmittance or reflectance occurred in this wavelength range. Additional postradiation measurements from 160 nm to 300 nm indicated a 3 - 5% radiation-induced absorption near 260 nm in some of the samples with MgF2 substrates. From these measurements it is concluded that far ultraviolet filters made from the materials tested should experience less that 5% change from exposure to up to 250 krads of high energy radiation in space applications.

  12. Laser performance of diode-pumped Nd, Y-codoped CaF 2-SrF 2 mixed crystal

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fan, M. W.; Su, L. B.; Jiang, D. P.; Ma, F. K.; Zhang, Q.; Xu, J.

    2014-03-01

    A disordered Nd, Y-codoped CaF2-SrF2 mixed crystal was obtained by the temperature gradient technique (TGT). The absorption and fluorescence spectra of the crystal were measured at room temperature. Diode-pumped continuous-wave (CW) and Q-switched laser operations were demonstrated at 1056 nm with a 0.65 at.% Nd, 10 at.% Y-codoped crystal, for the first time to our knowledge. The CW output power of 724 mW was obtained in a compact linear cavity. Also the Q-switched pulse characteristics of Nd, Y:CaF2-SrF2 laser crystal were reported based on Cr4+:YAG saturable absorbers in a folded cavity. The shortest pulse width of 110 ns and the highest peak power of 383 W were obtained when the initial transmission of the Cr4+:YAG crystals was 90%. The dependence of the operational parameters on the pump power was also investigated experimentally.

  13. Energy deposition by heavy ions: Additivity of kinetic and potential energy contributions in hillock formation on CaF2

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Grygiel, C.; Dufour, C.; Sun, J. R.; Wang, Z. G.; Zhao, Y. T.; Xiao, G. Q.; Cheng, R.; Zhou, X. M.; Ren, J. R.; Liu, S. D.; Lei, Y.; Sun, Y. B.; Ritter, R.; Gruber, E.; Cassimi, A.; Monnet, I.; Bouffard, S.; Aumayr, F.; Toulemonde, M.

    2014-07-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe22+ to Xe30+) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface.

  14. A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1990-01-01

    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems.

  15. Void lattice formation in electron irradiated CaF2: Statistical analysis of experimental data and cellular automata simulations

    NASA Astrophysics Data System (ADS)

    Zvejnieks, G.; Merzlyakov, P.; Kuzovkov, V. N.; Kotomin, E. A.

    2016-02-01

    Calcium fluoride (CaF2) is an important optical material widely used in both microlithography and deep UV windows. It is known that under certain conditions electron beam irradiation can create therein a superlattice consisting of vacancy clusters (called a void lattice). The goal of this paper is twofold. Firstly, to perform a quantitative analysis of experimental TEM images demonstrating void lattice formation, we developed two distinct image filters. As a result, we can easily calculate vacancy concentration, vacancy cluster distribution function as well as average distances between defect clusters. The results for two suggested filters are similar and demonstrate that experimental void cluster growth is accompanied by a slight increase of the void lattice constant. Secondly, we proposed a microscopic model that allows us to reproduce a macroscopic void ordering, in agreement with experimental data, and to resolve existing theoretical and experimental contradictions. Our computer simulations demonstrate that macroscopic void lattice self-organization can occur only in a narrow parameter range. Moreover, we studied the kinetics of a void lattice ordering, starting from an initial disordered stage, in a good agreement with the TEM experimental data.

  16. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  17. Kinetics of Isothermal Melt Crystallization in CaO-SiO2-CaF2-Based Mold Fluxes

    NASA Astrophysics Data System (ADS)

    Seo, Myung-Duk; Shi, Cheng-Bin; Baek, Ji-Yeon; Cho, Jung-Wook; Kim, Seon-Hyo

    2015-10-01

    A kinetic study for isothermal melt crystallization of CaO-SiO2-CaF2-based mold fluxes with different basicity of 0.94 and 1.34 has been carried out systematically by DSC measurements. The kinetic parameters were determined by Johnson-Mehl-Avrami equation. The average Avrami exponent of cuspidine (3CaO·2SiO2·CaF2) crystallization for mold flux of lower basicity (0.94) is calculated to be 3.1, implying that the crystallization mode is instantaneous nucleation followed by 3-dimensional growth. For the mold flux of higher basicity (1.34), the average Avrami exponent of cuspidine equals to 3.4, strongly suggesting that the growth is still 3 dimensional but the nucleation should be continuous. It was found that the effective crystallization rate constant for both mold fluxes increases as the crystallization temperature decreases, showing that the crystallization rate could be governed by nucleation rate. The negative effective activation energy indicates an anti-Arrhenius behavior for crystallization of the mold fluxes studied. Therefore, it is concluded that the melt crystallization for the commercial mold fluxes will be determined by thermodynamics of nucleation which is relevant to degree of undercooling. The morphology of cuspidine crystals observed by SEM agreeds well with the isothermal crystallization kinetics results.

  18. Growth of CsLiB6O10 thin films on Si substrate by pulsed laser deposition using SiO2 and CaF2 as buffer layers

    NASA Astrophysics Data System (ADS)

    Yeo, J. S.; Akella, A.; Huang, T. F.; Hesselink, L.

    1998-03-01

    CsLiB6O10 (CLBO) thin films are grown on Si (100) and (111) substrates using lower index SiO2 and CaF2 as buffer layers by pulsed KrF (248 nm) excimer laser ablation of stoichiometric CLBO targets over a temperature range of 425 to 725°C. A CaF2 buffer layer is grown on Si by laser ablation while SiO2 is prepared by standard thermal oxidation. From extended x-ray analysis, it is determined that CaF2 is growth with preferred orientation on Si (100) at temperatures lower than 525°C while on Si (111) substrate, CaF2 is grown epitaxially over the temperature range; this agrees well with observed reflection high energy electron diffraction patterns. X-ray 2θ-scans indicate that crystalline CLBO are grown on SiO2/Si and CaF2/Si (100). Analysis of reflectance spectra from CLBO/SiO2/Si yields the absorption edge at 182 nm. Surface roughness of the CaF2 and CLBO/CaF2/Si film are 19 and 15 nm, respectively. This relatively rough surface caused by the ablation of wide bandgap CaF2 and CLBO limits the application of CLBO for waveguiding measurement.

  19. Characterization of epitaxial EuS(111) thin films on BaF2(111) and SrF2(111) substrates grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Senba, Shinya; Matsumoto, Naoki; Jomura, Mitsuhiro; Asada, Hironori; Koyanagi, Tsuyoshi; Kishimoto, Kengo; Fukuma, Yasuhiro

    2013-06-01

    We have successfully grown EuS (111) epitaxial films on BaF2 (111) and SrF2 (111) substrates by using molecular beam epitaxy at substrate temperatures ( T S 's) between 100 and 500 °C. Pole figures of X-ray diffraction indicate a high degree of in-plane orientation, and all of the samplesshow very high resistivity. The surface roughness for 10-nm-thick EuS films on BaF2 (111) and SrF2 (111) substrates measured by using atomic force microscopy (AFM) are 0.122 and 0.092 nm, respectively. The Curie temperature of the EuS films increases up to ˜16 K with increasing T S . We also try to manipulate the coercive force, which is an important magnetic property, by Te-doping to achieve an anti-parallel magnetization state between two ferromagnetic layers in spin devices. The obtained coercive force for the Te-doped film (110 Oe) is large compared with that for the undoped one (20 Oe).

  20. Ca-induced structural transformation of the single-domain Si(001) surface: CaF2/Si(001)-4 off

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Dugerjav, Otgonbayar; Arvisbaatar, Amarmunkh; Motlak, Moaaed; Seo, Jae M.

    2014-05-01

    By scanning tunneling microscopy and synchrotron photoemission spectroscopy, it has been found that through CaF2 exposure to the single-domain Si(001)-4 off surface held at 750 C, Si dimers on Si(001) terraces are replaced preferentially by dissociated Ca atoms while F atoms are desorbed. The resulting 2 3 reconstruction saturates the (001) terraces at a coverage between 0.1 and 0.3 monolayers. Additional CaF2 exposure triggers a structural transformation to a stable hill-and-valley structure composed of wider (001)-2 3 terraces and compensating facets comprised of (11 17) and (11 13) units, both with a 6 1 surface reconstruction. This study demonstrates that the periodic width of the single domain Si(001) surface can be modulated through adsorbing Ca atoms while maintaining one-dimensional symmetry along the DB steps and the semiconducting nature of the surface.

  1. To PLAnetary Transit or not? An extremely large field of view camera with a CaF2 component tested in thermo-vacuum

    NASA Astrophysics Data System (ADS)

    Bergomi, M.; Magrin, D.; Farinato, J.; Viotto, V.; Ragazzoni, R.; Brunelli, A.; Dima, M.; Christiansen, P.; Ghigo, M.; Laubier, D.; Pasquier, H.; Piazza, D.; Pagano, I.; Piotto, G.; Basile, G.; Catala, C.

    2012-09-01

    Because of its nicely chromatic behavior, Calcium Fluoride (CaF2) is a nice choice for an optical designer as it can easily solve a number of issues, giving the right extra degree of freedom in the optical design tuning. However, switching from tablet screens to real life, the scarcity of information -and sometimes the bad reputation in term of fragility- about this material makes an overall test much more than a "display determination" experiment. We describe the extensive tests performed in ambient temperature and in thermo-vacuum of a prototype, consistent with flight CTEs, of a 200mm class camera envisaged for the PLATO (PLAnetary Transit and Oscillations of Stars) mission. We show how the CaF2 lens uneventfully succeeded to all the tests and handling procedures, and discuss the main results of the very intensive test campaign of the PLATO Telescope Optical Unit prototype.

  2. Initial CaF2 reactions on Si(1 1 4)-2 × 1: Isolated silicides, faceting and partial CaF adsorption

    NASA Astrophysics Data System (ADS)

    Kim, Hidong; Duvjir, Ganbat; Dugerjav, Otgonbayar; Li, Huiting; Seo, Jae M.

    2015-12-01

    When CaF2 molecules are deposited on Si(1 1 4)-2 × 1 held at 500 °C, two kinds of isolated and symmetric Ca-silicide units are initially formed. With increasing CaF2 deposition to 0.4 ML, instead of the terrace being filled with them, a trench composed of (1 1 3) and (1 1 7) facets appears on the surface as a result of substrate etching induced by dissociated F atoms. Selectively on this (1 1 3) facet, a 2 × 2 CaF overlayer is formed uniformly. In the present studies, using scanning tunneling microscopy and synchrotron photoemission spectroscopy, the origins of such isolation of Ca-silicide units on the (1 1 4) terrace as well as selective adsorption of CaF on the (1 1 3) facet have been disclosed.

  3. Influence of CaF2 and Li2O on the Viscous Behavior of Calcium Silicate Melts Containing 12 wt pct Na2O

    NASA Astrophysics Data System (ADS)

    Park, Hyun Shik; Kim, Hyuk; Sohn, Il

    2011-04-01

    Understanding the viscous behavior of silica-based molten fluxes is essential in maintaining the reliability of steel casting operations and in preventing breakouts. In particular, high concentrations of aluminum in recently developed transformation induced plasticity (TRIP) and twinning induced plasticity (TWIP) steels tend to promote reduction of silica in the mold fluxes that result in the formation of alumina, which in turn increases the viscosity. To counteract this effect, significant amounts of fluidizers such as CaF2 and Li2O are required to ensure that mold fluxes have acceptable lubrication and heat transfer characteristics. The viscous behavior of the slag system based on CaO-SiO2-12 wt pct Na2O with various concentrations of CaF2 and Li2O has been studied using the rotating spindle method to understand the effects on the viscosity with these additives. CaF2 additions up to 8 wt pct were effective in decreasing the viscosity by breaking the network structure of molten fluxes, but CaF2 concentrations above this level had a negligible effect on viscosity. Li2O additions up to 2 wt pct were also effective in decreasing the viscosity, but the effect was comparatively negligible above 2 wt pct. Using Fourier transform infrared (FTIR) analysis of as-quenched slag samples, it was concluded that the viscosity was controlled more effectively by changing the larger complex silicate structures of rings and chains than by changing the amounts of simpler dimers and monomers.

  4. Thermo-optical measurements of ytterbium doped ceramics (Sc2O3, Y203, Lu203, YAG) and crystals (YAG, CaF2) at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Le Garrec, B.; Cardinali, V.; Bourdet, G.

    2013-05-01

    In this paper, we report the measurements of the specific heat, the density and the thermal diffusivity at room and cryogenic temperatures of Ytterbium doped cubic sesquioxides (Sc2O3, Y2O3, Lu2O3) ceramics and of Ytterbium doped crystals (YAG, CaF2). These materials appear to have very interesting properties for setting up high average power laser chains useful for plasma physics and for inertial fusion energy drivers.

  5. Stem Cell Labeling using Polyethylenimine Conjugated (α-NaYbF4:Tm3+)/CaF2 Upconversion Nanoparticles

    PubMed Central

    Zhao, Liang; Kutikov, Artem; Shen, Jie; Duan, Chunying; Song, Jie; Han, Gang

    2013-01-01

    We report on a polyethylenimine (PEI) covalently conjugated (α-NaYbF4:Tm3+)/CaF2 upconversion nanoparticle (PEI-UCNP) and its use for labeling rat mesenchymal stem cells (rMSCs). The PEI-UCNPs absorb and emit near-infrared light, allowing for improved in vivo imaging depth over conventional probes. We found that such covalent surface conjugation by PEI results in a much more stable PEI-UCNP suspension in PBS compared to conventional electrostatic layer by layer (LbL) self-assembling coating approach. We systematically examined the effects of nanoparticle dose and exposure time on rat mesenchymal stem cell (rMSC) cytotoxicity. The exocytosis of PEI-UCNPs from labeled rMSCs and the impact of PEI-UCNP uptake on rMSC differentiation was also investigated. Our data show that incubation of 100-µg/mL PEI-UCNPs with rMSCs for 4 h led to efficient labeling of the MSCs, and such a level of PEI-UCNP exposure imposed little cytotoxicity to rMSCs (95% viability). However, extended incubation of PEI-UCNPs at the 100 µg/mL dose for 24 hour resulted in some cytotoxicity to rMSCs (60% viability). PEI-UCNP labeled rMSCs also exhibited normal early proliferation, and the internalized PEI-UCNPs did not leak out to cause unintended labeling of adjacent cells during a 14-day transwell culture experiment. Finally, PEI-UCNP labeled rMSCs were able to undergo osteogenic and adipogenic differentiation upon in vitro induction, although the osteogenesis of labeled rMSCs appeared to be less potent than that of the unlabeled rMSCs. Taken together, PEI-UCNPs are promising agents for stem cell labeling and tracking. PMID:23606911

  6. High-temperature tribological properties of NiCoCrAlY-WSe2-BaF2·CaF2 solid lubricant coatings prepared by plasma spraying

    NASA Astrophysics Data System (ADS)

    Chen, X. H.; Yuan, X. J.; Xia, J.; Yu, Z. H.

    2015-12-01

    In this paper, NiCoCrAlY-WSe2-BaF2·CaF2 solid lubricant coatings were produced on a substrate by plasma spray and investigated at the high temperature, such as 500 °C and 800 °C. The structure of the coatings was characterized using XRD pattern and scanning electron microscopy. The TC1 (83wt% NiCoCrAlY) coating has a low friction coefficient at 500C, where the WSe2 is a good solid lubricant. The TC2 (65wt% NiCoCrAlY) coating has the low friction coefficient (0.279) at 800°C, due to the formation of BaCrO4 on the surfaces. As a result, the TC2 coating has the optimal tribological property in the wide temperature.

  7. Simple thermodynamic model for the specific heat of the fluorite crystals PbF2, CaF2, and SrCl2

    NASA Astrophysics Data System (ADS)

    Bouteiller, Yves

    1992-04-01

    The excess specific heat for SrCl2, PbF2, and CaF2 fluorite crystals has been computed by means of statistical mechanics using a model derived from the Welch and Dienes phenomenological model for phase transitions. The enthalpy is written in a form that partly takes the long-range interactions into consideration. It is shown that the transition temperature is always attained for low defect concentrations, as experimentally found by Schröter and Nöltig. The calculations are in quantitative agreement with available experimental data.

  8. Temperature-Dependent Refractive Index Measurements of Caf2, Suprasil 3001, and S-FTM16 for the Euclid Near Infrared Spectrometer and Photometer

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank D.

    2015-01-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/d?), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  9. Temperature-dependent refractive index measurements of CaF2, Suprasil 3001, and S-FTM16 for the Euclid near-infrared spectrometer and photometer

    NASA Astrophysics Data System (ADS)

    Leviton, Douglas B.; Miller, Kevin H.; Quijada, Manuel A.; Grupp, Frank U.

    2015-09-01

    Using the Cryogenic High Accuracy Refraction Measuring System (CHARMS) at NASA's Goddard Space Flight Center, we measured absolute refractive indices at temperatures from 100 to 310 K at wavelengths from 0.42 to 3.6 microns for CaF2, Suprasil 3001 fused silica, and S-FTM16 glass in support of lens designs for the Near Infrared Spectrometer and Photometer (NISP) for ESA's Euclid dark energy mission. We report absolute refractive index, dispersion (dn/dλ), and thermo-optic coefficient (dn/dT) for these materials. In this study, materials from different melts were procured to understand index variability in each material. We provide temperature-dependent Sellmeier coefficients based on our data to allow accurate interpolation of index to other wavelengths and temperatures. For calcium fluoride (CaF2) and S-FTM16, we compare our current measurements with CHARMS measurements of these materials made in the recent past for other programs. We also compare Suprasil 3001's indices to those of other forms of fused silica we have measured in CHARMS.

  10. A Density Model Based on the Modified Quasichemical Model and Applied to the NaF-AlF3-CaF2-Al2O3 Electrolyte

    NASA Astrophysics Data System (ADS)

    Robelin, Christian; Chartrand, Patrice

    2007-12-01

    A theoretical model for the density of multicomponent inorganic liquids based on the modified quasichemical model has been presented in a previous article. In the present article, this model is applied to the NaF-AlF3-CaF2-Al2O3 electrolyte. By introducing in the Gibbs energy of the liquid phase, temperature-dependent molar volume expressions for the pure fluorides and oxides, and pressure-dependent excess parameters for the binary (and sometimes higher-order) interactions, it is possible to reproduce, and eventually predict, the molar volume and the density of the multicomponent liquid phase using standard interpolation methods. All available density data for the NaF-AlF3-CaF2-Al2O3 liquid were collected and critically evaluated, and optimized pressure-dependent model parameters have been found. This new volumetric model can be used with Gibbs energy minimization software, to calculate the molar volume and the density of cryolite-based melts used for the electroreduction of alumina in Hall-Héroult cells.

  11. Ab initio calculations on the O2 3--Y3+ center in CaF2 and SrF2: its electronic structure and hyperfine constants

    NASA Astrophysics Data System (ADS)

    Botis, Sanda M.; Adriaens, Davy A.; Pan, Yuanming

    2009-01-01

    The O2 3--Y3+ center in fluorite-type structures (CaF2 and SrF2) has been investigated at the density functional theory (DFT) level using the CRYSTAL06 code. Our calculations were performed by means of the hybrid B3PW method in which the Hartree-Fock exchange is mixed with the DFT exchange functional, using Becke’s three parameter method, combined with the non-local correlation functionals by Perdew and Wang. Our calculations confirm the stability and the molecular character of the O2 3--Y3+ center. The unpaired electron is shown to be almost exclusively localized on and equally distributed between the two oxygen atoms that are separated by a bond distance of 2.47 Å in CaF2 and 2.57 Å in SrF2. The calculated 17O and 19F hyperfine constants for of the O2 3--Y3+ center are in good agreement with their corresponding experimental values reported by previous electron paramagnetic resonance and electron nuclear double resonance studies, while discrepancies are notable for the 89Y hyperfine constants.

  12. Tensile properties of HA 230 and HA 188 after 400 and 2500 hour exposures to LiF-22CaF2 and vacuum at 1093 K

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel

    1990-01-01

    The solid-to-liquid phase transformation of the nominal LiF-20CaF2 eutectic at 1043 K is considered to be an ideal candidate thermal energy storage mechanism for a space based low temperature Brayton cycle solar dynamic system. Although Co, Fe, and Ni superalloys are thought to be suitable containment materials for LiF based salts, long term containment is of concern because molten fluorides are usually corrosive and Cr can be lost into space through evaporation. Two examples of commercially available superalloys in sheet form, the Ni-base material HA 230 and the Co-base material Ha 88, have been exposed to molten LiF-22CaF2, its vapor, and vacuum, at 1093 K, for 400 and 2500 hr. Triplicate tensile testing of specimens subjected to all three environments have been undertaken between 77 to 1200 K. Comparison of the weight gain data, microstructure, and tensile properties indicate that little, if any, difference in behavior can be ascribed to the exposure environment.

  13. Formation and investigation of ultrathin layers of Co2FeSi ferromagnetic alloy synthesized on silicon covered with a CaF2 barrier layer

    NASA Astrophysics Data System (ADS)

    Grebenyuk, G. S.; Gomoyunova, M. V.; Pronin, I. I.; Vyalikh, D. V.; Molodtsov, S. L.

    2016-03-01

    Ultrathin (∼2 nm) films of Co2FeSi ferromagnetic alloy were formed on silicon by solid-phase epitaxy and studied in situ. Experiments were carried out in an ultrahigh vacuum (UHV) using substrates of Si(1 1 1) single crystals covered with a 5 nm thick CaF2 barrier layer. The elemental and phase composition as well as the magnetic properties of the synthesized films were analyzed by photoelectron spectroscopy using synchrotron radiation and by magnetic linear dichroism in photoemission of Fe 3p and Co 3p electrons. The study shows that the synthesis of the Co2FeSi ferromagnetic alloy occurs in the temperature range of 200-400 °C. At higher temperatures, the films become island-like and lose their ferromagnetic properties, as the CaF2 barrier layer is unable to prevent a mass transfer between the film and the Si substrate, which violates the stoichiometry of the alloy.

  14. Phosphate capacity of CaO-AI2O3 slags containing CaF2, BaO, Li2O, or Na2O

    NASA Astrophysics Data System (ADS)

    Nassaralla, C.; Fruehan, R. J.

    1992-03-01

    Phosphorus partition ratios between CaO-Al2O3 and CaO-Al2O3-CaF2 fluxes and Fe-Csat-P alloys have been measured as a function of slag composition at 1500 °C. The effects of additions of BaO, Li2O, and Na2O to the CaO-Al2O3-CaF2 system on the phosphorus partition ratios at 1400 °C and 1300 °C have been measured. From the partition ratio, and assuming that the oxygen potential is controlled by C-CO equilibrium, the phosphate capacities of the fluxes were calculated. Also, the activities of Li2O and Na2O were measured as a function of slag composition at 1300 °C by equilibrating the flux and the metal with Pb-Li or Pb-Na alloy and CO in a graphite crucible. The results indicate that phosphorus partition ratios with carbon-saturated iron and the phosphate capacities for additions of more basic oxides decrease in the following order: Na2Oτ;Li2Oτ;BaO. The activities of Li2O and Na2O in calcium aluminate fluxes have large negative deviations from ideal behavior; the activity coefficients at infinite dilution are on the order of 0.05 and 10-5, respectively.

  15. Improvement of superconductivity in Fe1+yTe0.6Se0.4 induced by annealing with CaF2 and SmF3

    NASA Astrophysics Data System (ADS)

    Li, Xiong; Sun, Yue; Zhang, Yufeng; Zhou, Wei; Yuan, Feifei; Shi, Zhixiang

    2015-10-01

    We report detailed studies of the CaF2 and SmF3 annealing effects in Fe1+yTe0.6Se0.4 single crystals. Superconductivity in Fe1+yTe0.6Se0.4 single crystals was improved after annealing, which strongly suggested the effectiveness of the CaF2 and SmF3 annealing. In detail, no matter which annealing material was employed, the largest values of superconducting transition temperature and critical current density reached about 14 K and 1.0 105 A/cm2 (5 K, in self-field), respectively. Furthermore, compared with the pervious annealing materials, CaF2 and SmF3 are safe and easy-handing.

  16. DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility.

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Mitchell, G.; Vieira, D.; Bredeweg, T.; Ullmann, J.; Jandel, M.; Couture, A.; Keksis, A.; Rundberg, R.; Wilhelmy, J.; O'Donnell, J.; Baramsai, B.; Haight, R.; Wouters, J.; Krticka, M.; Parker, W.; Becker, J.; Agvaanlusan, U.

    2009-10-01

    DANCE (Detector for Advanced Neutron Capture Experiments) is a 4π array of BaF2 crystals installed at LANSCE, Lujan Center. Neutron capture measurements on ^157Gd and ^89Y nuclei were conducted using this facility. The absolute cross sections of the ^89Y(n,γ) reaction was measured for the first time ever in the neutron energy range of 10 eV -- 10 keV and improvements were made in the 10 -- 300 keV range. The error bars were significantly reduced and number of cross section points was increased since the past ^89Y(n,γ) experiments. The ^157Gd(n,γ) cross section was determined at En = 20 eV -- 300 keV by normalizing the experimental DANCE data to a well known resonance taken from the ENDF/B-VII library. Computer simulations of the ^157Gd(n,γ) cascades and DANCE pulse height function were made using DICEBOX and GEANT4 codes and simulated Esum and Eγ spectra are compared to the experimental DANCE data. Values of spin and photon strength function (PSF) of the ^157Gd(n,γ) resonances are provided in the range of En = 2 -- 300 eV using spin dependence upon a γ-ray multiplicity.

  17. Effects of CaF2 vis-a-vis TiO2 as nucleating agent in SiO2-Al2O3-CaO glass-ceramics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Debasis Pradip; Datta, Tanmoy; Das, Sudip Kumar

    2013-06-01

    The independent effects of CaF2 and TiO2 on the glass-ceramics based on SiO2-Al2O3-CaO system have been investigated. The crystallization behavior, microstructure, mechanical properties and chemical resistance of the glass-ceramics were studied by Differential Thermal Analysis (DTA), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), FTIR, mechanical and chemical resistance measurements. The CaF2 containing glass ceramics are found to be much superior to that of TiO2 containing glass ceramics on the basis of sintering strength, mechanical and chemical properties.

  18. Demonstration of nuclear recoil discrimination using recoil range in a mixed CaF 2 + liquid scintillator gel detector for dark matter searches

    NASA Astrophysics Data System (ADS)

    Spooner, N. J. C.; Tovey, D. R.; Peak, C. D.; Roberts, J. W.

    1997-12-01

    We present first measurements on a prototype dark matter detector being developed to achieve event by event discrimination of nuclear recoils from electron recoils below 100 keV by utilising the difference in the recoil ranges of these particles. The detector consists of sub-micron scintillating grains of CaF 2 suspended in Dioxan gel scintillator with matched refractive index. We call this form of detector CASPAR (Cocktail of Alkali halide Scintillating PARticles). We present here results of monoenergetic neutron scattering tests on CASPAR and show how scintillation pulse shape analysis can be used as a powerful means of distinguishing Ca, F, C and H recoil events from electron recoils. > 90% discrimination of Ca and F recoils from electrons at 60 keV was observed for <5% loss of signal.

  19. Thermodynamic evaluation and optimization of the LiF-NaF-KF-MgF2-CaF2 system using the modified quasi-chemical model

    NASA Astrophysics Data System (ADS)

    Chartrand, Patrice; Pelton, Arthur D.

    2001-06-01

    A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the LiF-NaF-KF-MgF2-CaF2 system and optimized model parameters have been found. The model parameters obtained for binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The modified quasi-chemical model for short-range ordering (SRO) was used for the molten salt phase. For solutions with NaF or KF together with MgCl2 or CaCl2, the calculations indicate a large degree of ordering on the cationic sublattice, with Mg-alkali and Ca-alkali second-nearest-neighbor (SNN) pairs being favored.

  20. Spin-Hamiltonian parameters for the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Qing; Zhang, Ying; Lin, Yuan; Zheng, Wen-Chen

    2013-02-01

    The spin-Hamiltonian parameters (g factors g//, g⊥ and zero-field splittings b20, b40, b44, b60, b64) of the tetragonal GdM3+-Fi- centers in CaF2 and SrF2 crystals at T ≈ 1.8 K are calculated from the diagonalization (of energy matrix) method based on the one-electron crystal field mechanism. In the calculations, the crystal field parameters used are estimated from the superposition model with the reported defect structural data obtained from the analyses of superhyperfire interaction constants at the same temperature. The calculated results are in reasonable agreement with the experimental values. It appears that the above defect structural data reported in the previous paper are suitable and the diagonalization (of energy matrix) method is effective to the studies of spin-Hamiltonian parameters for 4f7 ions in crystals.

  1. On the application of CaF2:Eu and SrF2:Eu phosphors in LED based phototherapy lamp

    NASA Astrophysics Data System (ADS)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2013-06-01

    In the last few years the interest of scientific community has been increased towards solid state lighting based on LEDs because of their superior advantages over the conventional fluorescent lamps. As the GaN based LEDs are easily available efforts of the researchers are now on making the new phosphors which are excitable in the near UV region (360-400nm) for solid state lighting. This paper reports the photoluminescence characteristics of CaF2:Eu and SrF2:Eu phosphor prepared by wet chemical method. The violet emission of these phosphors with near UV excitation can be useful in making a phototherapy lamp based on LEDs for treating various skin diseases like acne vulgaris and hyperbilirubinemia.

  2. Temperature dependence of the elastic moduli and damping for polycrystalline LiF-22 pct CaF2 eutectic salt

    NASA Technical Reports Server (NTRS)

    Wolfenden, A.; Lastrapes, G.; Duggan, M. B.; Raj, S. V.

    1991-01-01

    Young's and shear moduli and damping were measured for as-cast polycrystalline LiF-(22 mol pct)CaF2 eutectic specimens as a function of temperature using the piezoelectric ultrasonic composite oscillator technique. The shear modulus decreased with increasing temperature from about 40 GPa at 295 K to about 30 GPa at 1000 K, while the Young modulus decreased from about 115 GPa at 295 K to about 35 GPa at 900 K. These values are compared with those derived from the rule of mixtures using elastic moduli data for LiF and CaF2 single crystals. It is shown that, while the shear modulus data agree reasonably well with the predicted trend, there is a large discrepancy between the theoretical calculations and the Young modulus values, where this disagreement increases with increasing temperature.

  3. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF2 and SrF2 crystals

    NASA Astrophysics Data System (ADS)

    Barandiarán, Zoila; Seijo, Luis

    2015-10-01

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4fN-15d excited states of Y b2+: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b2+ + Ca2+ (Sr2+) → Y b3+ + Ca+ (Sr+) electron phototransfer. This mechanism applies to all the observed Y b2+ 4f-5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b2+ because the Y b3+-Ca+ states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b2+ at the wavelengths of the first 4f-5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b2+ active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f-5d band.

  4. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF2 and SrF2 crystals.

    PubMed

    Barandiarán, Zoila; Seijo, Luis

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF2 and Yb/Sr pairs in SrF2 crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f(N-1)5d excited states of Y b(2+): these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b(2+) + Ca(2+) (Sr(2+)) → Y b(3+) + Ca(+) (Sr(+)) electron phototransfer. This mechanism applies to all the observed Y b(2+) 4f-5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF2:Y b(2+) because the Y b(3+)-Ca(+) states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF2:Y b(2+) at the wavelengths of the first 4f-5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b(2+) active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF2 host, associated with the lowest 4f-5d band. PMID:26472390

  5. Al15Ge4Ni3: A new intergrowth structure with Cu3Au- and CaF2-type building blocks

    NASA Astrophysics Data System (ADS)

    Reichmann, Thomas L.; Jandl, Isabella; Effenberger, Herta S.; Herzig, Peter; Richter, Klaus W.

    2015-05-01

    The new ternary compound Al15Ge4Ni3 (τ2 in the system Al-Ge-Ni) was synthesized in single crystalline form by a special annealing procedure from samples located in the three phase fields [L+Al+τ2] and [L+Ge+τ2]. The crystal structure of Al15Ge4Ni3 was determined by single-crystal X-ray diffraction. The compound crystallizes in a new structure type in space group I4¯3m, Pearson Symbol cI88, cubic lattice parameter a=11.405(1) Å. Phase diagram investigations indicate stoichiometric composition without considerable homogeneity range; τ2 melts peritectically at T=444 °C. The crystal structure of Al15Ge4Ni3 shows a unique combination of simple Cu3Au- and CaF2-type building blocks: a three dimensional network of CaF2-type units, formed by Ni and Al atoms, is interspaced by clusters (Al6Ge8) resembling unit cells of the Cu3Au-type. Both structural motifs are connected by Al-Ge bonds. The ground state energy of the compound was obtained by DFT calculations and the densities of states were analyzed in detail. In addition, electron density maps were calculated in four different sections through the unit cell using the full potential linearized augmented plane-wave (FLAPW) method. The bonding situation in Al15Ge4Ni3 was discussed combining results from electronic calculations with the analysis of the coordination of atoms.

  6. Effect of SiO2 on the Crystallization Behaviors and In-Mold Performance of CaF2-CaO-Al2O3 Slags for Drawing-Ingot-Type Electroslag Remelting

    NASA Astrophysics Data System (ADS)

    Shi, Cheng-Bin; Li, Jing; Cho, Jung-Wook; Jiang, Fang; Jung, In-Ho

    2015-10-01

    The crystallization characteristics of CaF2-CaO-Al2O3 slags with varying amounts of SiO2 were experimentally studied. The effects of slag crystallization behaviors on the horizontal heat transfer and lubrication performance in drawing-ingot-type electroslag remelting (ESR) were also evaluated in terms of as-cast ingots surface quality and drawing-ingot operation. The results show that increasing SiO2 addition from 0 to 6.8 mass pct strongly suppresses the crystallization of ESR type CaF2-CaO-Al2O3 slags. The crystallization temperature of the studied slags decreases with the increase in SiO2 addition. The liquidus temperatures of the slags also show a decreasing trend with increasing SiO2 content. In CaF2-CaO-Al2O3-(SiO2) slags, faceted 11CaO·7Al2O3·CaF2 crystals precipitate first during continuous cooling of the slag melts, followed by the formation of CaF2 at lower temperatures. 11CaO·7Al2O3·CaF2 was confirmed to be the dominant crystalline phase in the studied slags. CaF2-CaO-Al2O3 slags with a small amount of SiO2 addition are favorable for providing sound lubrication and horizontal heat transfer in mold for drawing-ingot-type ESR, which consequently bring the improvement in the surface quality of ESR ingot and drawing-ingot operating practice as demonstrated by plant trials.

  7. The effects of pre-irradiation heat treatment and heating rate on the thermoluminescence glow peaks of natural CaF2

    NASA Astrophysics Data System (ADS)

    Yüksel, Mehmet; Topaksu, Mustafa; Yazici, A. Necmeddin; Yeǧingil, Zehra; Doǧan, Tamer

    In this article, we have investigated the effects of pre-irradiation heat treatments on the thermoluminescence (TL) glow peaks of natural fluorite (CaF2) collected from the central Anatolia region of Turkey. A typical TL glow curve of phosphor consists of four clear glow peaks with maximum intensities occurring at temperatures around 100 °C, 120 °C, 190 °C and 290 °C for a sample irradiated to a dose of 48 Gy and readout at a heating rate of 1 °C/s. It was observed that the intensities of all the TL glow peaks are strongly sensitive to annealing temperatures and durations. Annealing at 450 °C for 15 min was found to be the best for reproducibility of experimental results. The dose-responses of individual TL peaks of this material were also examined after annealing at 450 °C for 15 min by β-irradiation to doses between 0.04 Gy and ≈10.4 kGy. It was observed that the total area and peak heights of all glow peaks showed similar trends with increasing radiation dose; first, they increased linearly up to ≈50 Gy and then saturation effects began above this dose value. The effect of heating rate on the TL glow peaks of the mineral was also studied and it was observed that the intensities of glow peaks are differently affected with variation in heating rate.

  8. A high-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal.

    PubMed

    Atari, N A; Svensson, G K

    1986-01-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields. PMID:3724696

  9. High-resolution digital dosimetric system for spatial characterization of radiation fields using a thermoluminescent CaF2:Dy crystal

    SciTech Connect

    Atari, N.A.; Svensson, G.K.

    1986-05-01

    A high-resolution digital dosimetric system has been developed for the spatial characterization of radiation fields. The system comprises the following: 0.5-mm-thick, 25-mm-diam CaF2:Dy thermoluminescent crystal; intensified charge coupled device video camera; video cassette recorder; and a computerized image processing subsystem. The optically flat single crystal is used as a radiation imaging device and the subsequent thermally stimulated phosphorescence is viewed by the intensified camera for further processing and analysis. Parameters governing the performance characteristics of the system were measured. A spatial resolution limit of 31 +/- 2 microns (1 sigma) corresponding to 16 +/- 1 line pairs/mm measured at the 4% level of the modulation transfer function has been achieved. The full width at half maximum of the line spread function measured independently by the slit method or derived from the edge response function was found to be 69 +/- 4 microns (1 sigma). The high resolving power, speed of readout, good precision, wide dynamic range, and the large image storage capacity make the system suitable for the digital mapping of the relative distribution of absorbed doses for various small radiation fields and the edges of larger fields.

  10. Storing Hydrogen, by Enhancing Diamond Powder Properties under Hydrogen Plasma with CaF2 and KF for Use in Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ochoa, Franklyn E. Colmenares

    2006-12-01

    A fuel cell is like a battery that instead of using electricity to recharge itself, it uses hydrogen. In the fuel cell industry, one of the main problems is storing hydrogen in a safe way and extracting it economically. Gaseous hydrogen requires high pressures which could be very dangerous in case of a collision. The success of hydrogen use depends largely on the development of an efficient storage and release method. In an effort to develop a better hydrogen storage system for fuel cells technology this research investigates the use of 99% pure diamond powder for storing hydrogen. Mixing this powder with a calcium fluoride and potassium fluoride compound in its solid form and treating the surface of the powder with hydrogen plasma, modifies the surface of the diamond. After some filtration through distilled water and drying, the modified diamond is treated with hydrogen. We expect hydrogen to be attracted to the diamond powder surface in higher quantities due to the CaF2 and KF treatment. Due to the large surface area of diamond nanopowder and the electronegative terminal bonds of the fluorine particles on the structure's surface, to the method shows promise in storing high densities of hydrogen.

  11. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    DOE PAGESBeta

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-12-03

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature,Tc, of the material. In this study we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp=Jc xmore » μ₀H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase.« less

  12. Development of very high Jc in Ba(Fe1-xCox)2As2 thin films grown on CaF2

    PubMed Central

    Tarantini, C.; Kametani, F.; Lee, S.; Jiang, J.; Weiss, J. D.; Jaroszynski, J.; Hellstrom, E. E.; Eom, C. B.; Larbalestier, D. C.

    2014-01-01

    Ba(Fe1-xCox)2As2 is the most tunable of the Fe-based superconductors (FBS) in terms of acceptance of high densities of self-assembled and artificially introduced pinning centres which are effective in significantly increasing the critical current density, Jc. Moreover, FBS are very sensitive to strain, which induces an important enhancement in critical temperature, Tc, of the material. In this paper we demonstrate that strain induced by the substrate can further improve Jc of both single and multilayer films by more than that expected simply due to the increase in Tc. The multilayer deposition of Ba(Fe1-xCox)2As2 on CaF2 increases the pinning force density (Fp = Jc × µ0H) by more than 60% compared to a single layer film, reaching a maximum of 84 GN/m3 at 22.5 T and 4.2 K, the highest value ever reported in any 122 phase. PMID:25467177

  13. Angular-dependent vortex pinning mechanism and magneto-optical characterizations of FeSe0.5Te0.5 thin films grown on CaF2 substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Pusheng; Xu, Zhongtang; Ma, Yanwei; Sun, Yue; Tamegai, Tsuyoshi

    2016-03-01

    Magneto-optical (MO) characterizations and the angular-dependent critical current density (J c(Θ)) of epitaxial FeSe0.5Te0.5 (FST) thin films grown on CaF2 single-crystalline substrates were performed. The MO images show typical rooftop patterns in the remanent state from which a large, homogeneous, and almost isotropic self-field J c over 2 × 106 A cm-2 at 8 K was obtained. The vortex pinning mechanism is investigated measuring the magnetic field and angular-dependent critical current density J c. The FST films exhibit small anisotropy of J c in the whole applied magnetic field range below 15 K. The Dew-Hughes model and angular scaling analyses prove that pointlike normal cores, which are distributed randomly in the FST film, dominate the pinning in the FST films on CaF2 substrates.

  14. Structural and thermal characterization of CaO-MgO-SiO2-P2O5-CaF2 glasses

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Rajagopal, Raghu R.; Ferreira, Jose M.

    2012-08-01

    The paper presents the influence of varying CaO/MgO ratio on the structure and thermal properties of CaO-MgO-SiO2-P2O5-CaF2 glasses. A series of eight glass compositions in the glass forming region of diopside (CaMgSi2O6) - fluorapatite [Ca5(PO4)3F] - wollastonite (CaSiO3) ternary system have been designed and synthesized by varying diopside/wollastonite ratio in glasses. The as prepared melt-quenched glasses have been characterized for their structure by infrared spectroscopy (FTIR) and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) spectroscopy. Silicon is predominantly present as Q2 (Si) species, while phosphorus tends to coordinate in orthophosphate environment in all the investigated glasses. The change in CaO/MgO ratio had an insignificant affect on the structure of glasses. The thermal sintering and crystallization parameters for the studied glasses have been obtained from differential thermal analysis (DTA) while crystalline phase fractions in the sintered glass-ceramics have been analyzed by X-ray diffraction adjoined with Rietveld refinement. Diopside, fluorapatite, wollastonite and pseudowollastonite have crystallized as the main crystalline phases in all the glass-ceramics with their content varying with respect to variation in CaO/MgO ratio in glasses. Scanning electron microscopy (SEM) has been used to shed light on the microstructure of glass-ceramics. The possible implications of structure and sintering behaviour of glasses on their bioactivity have been discussed.

  15. Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

    PubMed Central

    Calò, Annalisa; Robles, Oriol Vidal; Santos, Sergio

    2015-01-01

    Summary There has been much interest in the past two decades to produce experimental force profiles characteristic of the interaction between nanoscale objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the attractive part of the force with relatively low noise and without missing information on critical ranges, particularly under ambient conditions where capillary interactions are believed to dominate. Thus a systematic study of the different profiles that may arise in such situations is still lacking. Here we employ the surfaces of CaF2, on which nanoscale water films form, to report on the range and force profiles that might originate by dynamic capillary interactions occurring between an AFM tip and nanoscale water patches. Three types of force profiles were observed under ambient conditions. One in which the force decay resembles the well-known inverse-square law typical of van der Waals interactions during the first 0.5–1 nm of decay, a second one in which the force decays almost linearly, in relatively good agreement with capillary force predicted by the constant chemical potential approximation, and a third one in which the attractive force is almost constant, i.e., forms a plateau, up to 3–4 nm above the surface when the formation of a capillary neck dominates the tip–sample interaction. PMID:25977852

  16. Preliminary Experiments and Determination of the Thermal Gradient in a 12.7 mm CaF2 Furnace Assembly, Humboldt State University Piston-Cylinder Laboratory

    NASA Astrophysics Data System (ADS)

    Schwab, B. E.

    2004-12-01

    A 12.7 mm piston-cylinder laboratory has been established at Humboldt State University. A series of double-thermocouple (DTC) experiments were performed to measure the thermal profile of the furnace assembly following the procedures of Pickering et al. (1998, Amer. Min.). Furnace assemblies consist of a 304 stainless base plug, CaF&_{2} sleeve, straight-walled graphite heater tube, crushable MgO inner parts, and lower graphite plug and ring which allow for extrusion of the graphite heater tube during shortening of the sleeve and MgO pieces. Careful measurement of pre- and post-run assembly parts indicate an average 30-35% shortening of the assembly. DTC results show a thermal peak that is displaced \\sim2.0 mm above the center of the effective furnace, defined as the length of inner MgO pieces post-run. This offset is in the same direction (upward, toward base plug), but slightly less than the offset described by Pickering et al. (1998). A secondary measure of the thermal profile using spinel growth via reaction between MgO and Al_{2}O_{3} assembly parts (e.g., Watson et al., 2002, CMP) is underway. A single partial melting experiment was performed at 1.0 GPa and 1330\\degC for 72 hours using intermediate peridotite starting material INT-A in a graphite-lined Pt capsule with vitreous carbon spheres as a melt sink. Phase compositions were determined by electron microprobe and mass balance calculations were made to determine melt fraction and mineral mode. Initial calculations yield glass:olivine:cpx:opx:spinel proportions of: 5.0:54.2:15.9:23.9:1.1. These preliminary results correspond well with previous work performed at the University of Oregon on the same starting material (Schwab and Johnston, 2001). The best match is with a 1315\\degC experiment (INT-A13) in terms of mode (6.9:53.7:13.4:25.0:1.0) and glass composition, indicating that the temperature of this initial experiment may be slightly cooler than the target temperature, however the results of this interlaboratory comparison are still within the \\pm10-15\\deg$C temperature uncertainty of the piston cylinder apparatus. Additional calibration experiments are ongoing.

  17. The optically stimulated luminescence (OSL) properties of LiF:Mg,TI, Li2B4O7:CU, CaSO4:Tm, and CaF2:MN thermoluminescent (TL) materials.

    PubMed

    Kearfott, Kimberlee J; Geoffrey West, William; Rafique, Muhammad

    2015-05-01

    This paper reports on an investigation into the optically stimulated luminescence (OSL) properties of several known thermoluminescent materials, namely LiF:Mg,Ti, Li2B4O7:Cu, CaSO4:Tm, and CaF2:Mn. Samples were irradiated to air doses of 15mGy, 150mGy and 1.5Gy and analyzed using a commercially available OSL reader system to determine their luminescence response to continuous blue and infrared light (IR) excitation, centered at 470nm and 830nm wavelengths, respectively. CaF2:Mn did not show an OSL response with either IR or blue light stimulation. Li2B4O7:Cu and LiF:Mg,Ti demonstrated relatively weak OSL signals only under blue light excitation. CaSO4:Tm exhibited OSL under both IR and blue light stimulation at sensitivities roughly one order of magnitude less than the OSL response of α-Al2O3:C under the same conditions. PMID:25769010

  18. (α-NaYbF4:Tm3+)/CaF2 Core/Shell Nanoparticles with Efficient Near-Infrared to Near-Infrared Upconversion for High-Contrast Deep Tissue Bioimaging

    PubMed Central

    Chen, Guanying; Shen, Jie; Ohulchanskyy, Tymish Y.; Patel, Nayan J.; Kutikov, Artem; Li, Zhipeng; Song, Jie; Pandey, Ravindra K.; Ågren, Hans; Prasad, Paras N.; Han, Gang

    2012-01-01

    We describe the development of novel and biocompatible core/shell (α-NaYbF4:Tm3+)/CaF2 nanoparticles which exhibit highly efficient NIRin-NIRout upconversion (UC) for high contrast and deep bioimaging. When excited at ~980 nm, these nanoparticles emit photoluminescence (PL) peaked at ~800 nm. The quantum yield of this UC PL under low power density excitation (~0.3 W/cm2) is 0.6±0.1%. This high UC PL efficiency is realized by suppressing surface quenching effects via hetero-epitaxial growth of a biocompatible CaF2 shell which results in a 35-fold increase in the intensity of UC PL from the core. Small animal whole-body UC PL imaging with exceptional contrast (signal-to-background ratio of 310) is shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles (700 pmol/kg). High-contrast UC PL imaging of deep tissues is also demonstrated, using a nanoparticle-loaded synthetic fibrous mesh wrapped around rat femoral bone, and a cuvette with nanoparticle aqueous dispersion - covered with a 3.2-cm thick animal tissue (pork). PMID:22928629

  19. Annealing of electron damage in mid-IR transmitting fluoride glass

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Doremus, Robert H.

    1986-01-01

    Damage in ZrF4-BaF2-LaF3 glass induced by high-energy electrons was studied by ESR and optical spectroscopy. An optical absorption band at 314 nm in the irradiated glass annealed rapidly above about 50 C, probably by a second-order reaction at room temperature; the ESR lines annealed very slowly at room temperature.

  20. Effect of yttria addition on mechanical, physical and biological properties of bioactive MgO-CaO-SiO2-P2O5-CaF2 glass ceramic.

    PubMed

    Al-Haidary, J; Al-Haidari, M; Qrunfuleh, S

    2008-03-01

    Preparation of the bioactive MgO-CaO-SiO2-P2O5-CaF2 glass was carried out utilizing tap casting and powder metallurgy methods. The original composition was modified with 0.2% Y2O3 and carbon additions. The mother and the modified bioglass were examined, and comparative studies were performed between the mother and modified type to study the compositional modification effects on physical, mechanical and biological properties. The histology of mother type showed that this type has a good biocompatibility with no rejection or inflammation reaction with the host bone, and new bone generation and formation were shown in the region of implant. The modification with 0.2% Y2O3 achieved a good improvement in the mechanical properties when compared with the mother system. The histology of this type showed a normal acceptance with no inflammation reactions. On the other hand, the modification with carbon achieved a superior improvement in the mechanical properties compared to the mother bioglass and showed a good acceptance with no inflammation reactions with the host body as well. PMID:18458492

  1. Determination of the Al2O3 content in NaF-AlF3-CaF2-Al2O3 melts at 950 °C by Raman spectroscopy.

    PubMed

    Malherbe, Cedric; Eppe, Gauthier; Gilbert, Bernard

    2014-08-19

    The in situ control of the chemical composition of industrial aluminum smelter is a challenge mainly for physicochemical reasons: high temperature, high surrounding electromagnetic field, and the highly corrosive molten salt electrolyte to deal with. In previous works, we proposed that Raman spectroscopy is a method of choice that could be adapted to real smelters. The laboratory study presented here relies on reproducible Raman spectra recorded on molten mixtures whose compositions are identical to those used during the production of aluminum. A normalization procedure for the Raman spectra is proposed based on the equilibria taking place in the bath. In addition, we discuss two quantitative models to determine the alumina content from the Raman spectra of the molten NaF-AlF3-CaF2-Al2O3 electrolytes. Univariate and multivariate approaches are applied to determine both the COx (alumina content) and the CR (NaF/AlF3 molar ratio) by Raman spectroscopy without referring to an additional internal reference of intensity. The procedure was successfully tested and validated on industrial samples. PMID:25048521

  2. Influence of local structural disorders on spectroscopic properties of multi-component CaF2-Bi2O3-P2O5-B2O3 glass ceramics with Cr2O3 as nucleating agent

    NASA Astrophysics Data System (ADS)

    Suresh, S.; Narendrudu, T.; Yusub, S.; Suneel Kumar, A.; Ravi Kumar, V.; Veeraiah, N.; Krishna Rao, D.

    2016-01-01

    Multi-component CaF2-Bi2O3-P2O5-B2O3 glasses doped with different concentrations of Cr2O3 were crystallized through heat treatment. The prepared glass ceramic samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and differential thermal analysis (DTA). Spectroscopic studies viz., optical absorption, Fourier transform infrared (FTIR), Raman and electron paramagnetic resonance (EPR) were carried out. The XRD, SEM and DTA studies indicated that the samples contain different crystalline phases. Results of optical absorption and EPR studies pointed out the gradual conversion of chromium ions from Cr3 + state to Cr6 + state with an increase of Cr2O3 content from 0.1 to 0.5 mol%. The results of FTIR, Raman and EPR studies revealed that Cr6 + ions participate in the glass network in tetrahedral positions and seemed to increase the polymerization of the glass ceramics. The quantitative analysis of results of the spectroscopic studies further indicated that the glasses crystallized with low concentration of Cr2O3 are favourable for solid state laser devices.

  3. Mechanical properties of Haynes Alloy 188 after exposure to LiF-22CaF2, air, and vacuum at 1093 K for periods up to 10,000 hours

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1992-01-01

    As part of a program to provide reassurance that the cobalt-base superalloy Haynes Alloy 188 can adequately contain a LiF-CaF2 eutectic thermal energy storage salt, 4900- and 10,000-hr exposures of Haynes Alloy 188 to LiF-22CaF2, its vapor, vacuum, and air at 1093 K have been undertaken. Following such exposures, the microstructure has been characterized and the 77 to 1200 K tensile properties measured. In addition, 1050 K vacuum creep-rupture testing of as-received and molten salt- and vacuum-exposed samples has been undertaken. Although slight degradation of the mechanical properties of Haynes Alloy 188 due to prior exposure was observed, basically none of the losses could be ascribed to a particular environment. Hence, observed decreases in properties are due to thermal aging effects, not corrosive attack. In view of these findings, Haynes Alloy 188 is still deemed to be suitable for containment of the eutectic LiF-CaF2 thermal energy storage media.

  4. Mechanical properties of Haynes Alloy 188 after exposure to LiF-22CaF2, air, and vacuum at 1093 K for periods up to 10,000 hours

    SciTech Connect

    Whittenberger, J.D. )

    1992-08-01

    As part of a program to provide reassurance that the cobalt-base superalloy Haynes Alloy 188 can adequately contain a LiF-CaF2 eutectic thermal energy storage salt, 4900- and 10,000-hr exposures of Haynes Alloy 188 to LiF-22CaF2, its vapor, vacuum, and air at 1093 K have been undertaken. Following such exposures, the microstructure has been characterized and the 77 to 1200 K tensile properties measured. In addition, 1050 K vacuum creep-rupture testing of as-received and molten salt- and vacuum-exposed samples has been undertaken. Although slight degradation of the mechanical properties of Haynes Alloy 188 due to prior exposure was observed, basically none of the losses could be ascribed to a particular environment. Hence, observed decreases in properties are due to thermal aging effects, not corrosive attack. In view of these findings, Haynes Alloy 188 is still deemed to be suitable for containment of the eutectic LiF-CaF2 thermal energy storage media. 8 refs.

  5. Influence of heat treatments upon the mechanical properties and in vitro bioactivity of ZrO2-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics.

    PubMed

    Li, Huan-Cai; Wang, Dian-Gang; Meng, Xiang-Guo; Chen, Chuan-Zhong

    2014-09-01

    Zirconia-toughened MgO-CaO-SiO2-P2O5-CaF2 glass-ceramics are prepared using sintering techniques, and a series of heat treatment procedures are designed to obtain a glass-ceramic with improved properties. The crystallization behavior, phase composition, and morphology of the glass-ceramics are characterized. The bending strength, elastic modulus, fracture toughness, and microhardness of the glass-ceramics are investigated, and the effect mechanism of heat treatments upon the mechanical properties is discussed. The bioactivity of glass-ceramics is then evaluated using the in vitro simulated body fluid (SBF) soaking test, and the mechanism whereby apatite forms on the glass-ceramic surfaces in the SBF solution is discussed. The results indicate that the main crystal phase of the G-24 sample undergoing two heat treatment procedures is Ca5(PO4)3F (fluorapatite), and those of the G-2444 sample undergoing four heat treatment procedures are Ca5(PO4)3F and β-CaSiO3 (β-wollastonite). The heat treatment procedures are found to greatly influence the mechanical properties of the glass-ceramic, and an apatite layer is induced on the glass-ceramic surface after soaking in the SBF solution. PMID:25280855

  6. Effect of ZrO(2) additions on the crystallization, mechanical and biological properties of MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics.

    PubMed

    Li, H C; Wang, D G; Meng, X G; Chen, C Z

    2014-06-01

    A series of ZrO(2) doped MgO-CaO-SiO(2)-P(2)O(5)-CaF(2) bioactive glass-ceramics were obtained by sintering method. The crystallization behavior, phase composition, morphology and structure of glass-ceramics were characterized. The bending strength, elastic modulus, fracture toughness, micro-hardness and thermal expansion coefficient (TEC) of glass-ceramics were investigated. The in vitro bioactivity and cytotoxicity tests were used to evaluate the bioactivity and biocompatibility of glass-ceramics. The sedimentation mechanism and growth process of apatites on sample surface were discussed. The results showed that the mainly crystalline phases of glass-ceramics were Ca(5)(PO4)3F (fluorapatite) and β-CaSiO(3). (β-wollastonite). m-ZrO(2) (monoclinic zirconia) declined the crystallization temperatures of glasses. t-ZrO(2) (tetragonal zirconia) increased the crystallization temperature of Ca(5)(PO4)(3)F and declined the crystallization temperature of β-CaSiO(3). t-ZrO(2) greatly increased the fracture toughness, bending strength and micro-hardness of glass-ceramics. The nanometer apatites were induced on the surface of glass-ceramic after soaking 28 days in SBF (simulated body fluid), indicating the glass-ceramic has good bioactivity. The in vitro cytotoxicity test demonstrated the glass-ceramic has no toxicity to cell. PMID:24780435

  7. Structure and Crystallization Kinetics of Glassy CaO-Al2O3-SiO2-CaF2-Na2O Mold Fluxes with Varying Basicity

    NASA Astrophysics Data System (ADS)

    Li, Jiangling; Yan, Baijun; Shu, Qifeng; Chou, Kuochih

    2015-12-01

    The structure and the crystallization kinetics of CaO-Al2O3-SiO2-CaF2-Na2O mold fluxes with varying basicities were investigated by solid-state 29Si nuclear magnetic resonance with magic angular spinning (MAS-NMR) and differential thermal analysis (DTA) technique, respectively. 29Si MAS-NMR study indicated that the increase of basicity decreased the degree of polymerization of mold fluxes. With the increasing basicity, Q 0, Q 2, and Q 3 gradually decreased, while Q 1 gradually increased, and the overall degree of polymerization was reduced. Crystallization analysis showed the cuspidine first crystallized from glass, and wollastonite crystal crystallized at elevated temperature for the samples with basicity (defined as CaO/SiO2 mass ratio) values of 0.9 and 1.0, respectively. Only cuspidine was found to crystallize from glass for the samples with basicity values of 1.1 and 1.2, indicating that the crystallization of wollastonite was suppressed with the increase of basicity. Crystallization kinetics analysis by DTA and field emission scanning electron microscopy equipped with energy dispersive spectroscopy investigation showed that growth mechanism of cuspidine is mainly of the diffusion-controlled three-dimensional growth with the increasing number of nuclei during heating. Activation energies for growth of cuspidine decreased with the increasing basicity of mold flux, which indicated that the crystallization ability was enhanced with the increase of basicity. The relationship between structure and crystallization of mold fluxes was established.

  8. Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO2-P2O5-CaF2 glasses

    SciTech Connect

    Goel, Ashutosh; Rajagopal, Raghu R.; Ferreira, Jose M.

    2011-11-01

    The present study investigates the influence of SrO on structure, apatite forming ability, physico-chemical degradation and sintering behaviour of melt-quenched bioactive glasses with composition: mol.% (36.07 – x) CaO – x SrO - 19.24 MgO – 5.61 P2O5 – 38.49 SiO2 – 0.59 CaF2, where x varies between 0 – 10. The detailed structural analysis of glasses has been made by infra red spectroscopy (FTIR) and magic angle spinning-nuclear magnetic resonance spectroscopy (MAS-NMR). Silicon was predominantly present as Q2 (Si) species while phosphorus was found in orthophosphate type environment in all the investigated glasses. The apatite forming ability of glasses was investigated by immersion of glass powders in simulated body fluid (SBF) for time durations varying between 1 h – 7 days. While increasing Sr2+/Ca2+ ratio in glasses did not affect the structure of glasses significantly, their apatite forming ability was decreased considerably. Further, physico-chemical degradation of glasses has been studied in accordance with ISO 10993-14 “Biological evaluation of medical devices – Part 14: Identification and quantification of degradation products from ceramics” in Tris HCl and citric acid buffer and the possible implications of ion release profile from glasses in different solutions has been discussed. The addition of strontium in glasses led to a 7-fold decrease in chemical degradation of glasses in Tris-HCl. The sintering of glass powders rendered glass-ceramics (GCs) with varying degree of crystallinity and good flexural strength (98-131 MPa) where the mechanical properties depend on the nature and amount of crystalline phases present in GCs.

  9. Multifunctional hollow CaF2:Yb(3+)/Er(3+)/Mn(2+)-poly(2-Aminoethyl methacrylate) microspheres for Pt(IV) pro-drug delivery and tri-modal imaging.

    PubMed

    Deng, Xiaoran; Dai, Yunlu; Liu, Jianhua; Zhou, Ying; Ma, Ping'an; Cheng, Ziyong; Chen, Yinyin; Deng, Kerong; Li, Xuejiao; Hou, Zhiyao; Li, Chunxia; Lin, Jun

    2015-05-01

    Combining the multi-modal medical imaging with cancer therapy in one single system has attracted the great interests for theranostic purpose. In this paper, CaF2:Yb(3+)/Er(3+)/Mn(2+)-poly(2-Aminoethyl methacrylate) (UCHNs-PAMA) hybrid microspheres were successfully fabricated. The synthetic route to the nanocomposite based on a facile hydrothermal method for fabrication of hollow upconversion (UC) nanospheres at first and then post-filling the PAMA interiorly through photo-initiated polymerization. The UCHNs showed orange fluorescence under 980 nm near infrared (NIR) laser excitation, which provided the upconverting luminescence (UCL) imaging modality. Meanwhile, the presence of functional Mn(2+) and Yb(3+) offered the enhanced T1-weighted magnetic resonance (MR) and computed tomography (CT) imaging, respectively. Thanks to introducing amine groups-containing PAMA inside the hollow nanospheres, the Pt(IV) pro-drug, c,c,t-Pt(NH3)2Cl2(OOCCH2CH2COOH)2 (DSP), can be conveniently bonded on the polymer network to construct a nanoscale anti-cancer drug carrier. The UCHNs-PAMA-Pt(IV) nanocomposite shows effective inhibition for Hela cell line via MTT assay. In contrast, Pt(IV) pro-drug and UCHNs-PAMA microspheres behave little cytotoxicity to Hela cells. This should be attributed the fact that the anti-cancer ability can be recovered only when Pt(IV) pro-drug was reduced to Pt(II)-drug in cellular environment. Furthermore, the in vivo experiments on small mice also confirm that the hybrid microspheres have relatively low toxic side effects and high tumor inhibition rate. These findings show that the multifunctional hybrid microspheres have potential to be used as UCL/MR/CT tri-modal imaging contrast agent and anti-cancer drug carriers. PMID:25736505

  10. Particle Size Effects on Flow Properties of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF2 particle size and size distribution on PS304 feedstock powder flowability have been investigated. Angular BaF2-CaF2 eutectic powders were produced by comminution and classified by screening to obtain 38 to 45 microns 45 to 106 microns, 63 to 106 microns, 45 to 53 microns, 63 to 75 microns, and 90 to 106 microns particle size distributions. The fluorides were added incrementally from 0 to 10 wt% to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. The flow rate of the powder blends decreased linearly with increasing concentration of the fluorides. Flow was degraded with decreasing BaF2-CaF2 particle size and with increasing BaF2-CaF2 particle size distribution. A semiempirical relationship is offered to describe the PS304 powder blend flow behavior. The Hausner Ratio confirmed the funnel flow test results, but was slightly less sensitive to differences in BaF2-CaF2 particle size and size distribution. These findings may have applicability to other powders that do not flow easily, such as ceramic powders.

  11. Particle Morphology Effects on Flow Characteristics of PS304 Plasma Spray Coating Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher; Eylon, Daniel

    2002-01-01

    The effects of BaF2-CaF 2 particle morphology on PS304 feedstock powder flow ability have been investigated. BaF2-CaF2 eutectic powders were fabricated by comminution (angular) and by gas atomization (spherical). The fluoride powders were added incrementally to the other powder constituents of the PS304 feedstock: nichrome, chromia, and silver powders. A linear relationship between flow time and concentration of BaF2-CaF2 powder was found. Flow of the powder blend with spherical BaF2-CaF2 was better than the angular BaF2-CaF2. Flow ability of the powder blend with angular fluorides decreased linearly with increasing fluoride concentration. Flow of the powder blend with spherical fluorides was independent of fluoride concentration. Results suggest that for this material blend, particle morphology plays a significant role in powder blend flow behavior, offering potential methods to improve powder flow ability and enhance the commercial potential. These findings may have applicability to other difficult-to-flow powders such as cohesive ceramics.

  12. Materials Data on LaF3 (SG:185) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  13. Materials Data on LaF3 (SG:139) by Materials Project

    DOE Data Explorer

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  14. Crystallization of heavy metal fluoride glasses

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1984-01-01

    The kinetics of crystallization of a number of fluorozirconate glasses were studied using isothermal and dynamic differential scanning calorimetry and X-ray diffraction. The addition of the fluorides LiF, NaF, AlF3, LaF3 to a base glass composition of ZrF4-BaF2 reduced the tendency to crystallize, probably by modifying the viscosity-temperature relation. ZrF4-BaF2-LaF3-AlF3-NaF glass was the most stable against devitrification and perhaps is the best composition for optical fibers with low scattering loss. Some glasses first crystallize out into metastable beta-BaZr2F10 and beta-BaZrF6 phases, which transform into the most stable alpha-phases when heated to higher temperatures. The size of the crystallites was estimated to be about 600 A from X-ray diffraction.

  15. A Study of Mechanochemical Doping of Fluoride Crystals with a Fluorite Structure by Er3+ Ions via Electron Paramagnetic Resonance Spectra

    NASA Astrophysics Data System (ADS)

    Irisova, I. A.; Rodionov, A. A.; Tayurskii, D. A.; Yusupov, R. V.

    2014-05-01

    Using electron paramagnetic resonance (EPR) spectroscopy, we have shown that, upon mecha- noactivated doping of powders of compounds CaF2, SrF2, and BaF2 with Er3+ ions, impurity centers of single erbium ions with cubic symmetry are formed. Investigations of dependences of EPR spectra intensities on the particle size show that the process of mechanochemical doping with Er3+ ions proceeds differently for CaF2, SrF2, and BaF2 host matrices. In the case of CaF2, impurity centers are localized in a very thin near-surface layer of CaF2 particles, in SrF2, the impurity is distributed over the volume of particles, while, in BaF2, there is a layer of a finite thickness for which the probability of doping in the course of mechanosynthesis is very small and the impurity of the rare-earth element is localized in the core of large particles. These data can be explained assuming that the result of mechanosynthesis of particles of fluorides with a fluorite structure doped with Er3+ ions at room temperature is governed by two processes—mechanoactivated diffusion of rare-earth ions into particles and segregation of impurity ions at grain boundaries. In this case, the typical scales for compounds CaF2, SrF2, and BaF2 considerably differ from each other.

  16. Development of infrared sensors using energy transfer/energy upconversion processes: Study of laser excited fluorescence in rare Earth ion doped crystals

    NASA Technical Reports Server (NTRS)

    Nash-Stevenson, S. K.; Reddy, B. R.; Venkateswarlu, P.

    1994-01-01

    A summary is presented of the spectroscopic study of three systems: LaF3:Ho(3+), LaF3:Er(3+) and CaF2:Nd(3+). When the D levels of Ho(3+) in LaF3 were resonantly excited with a laser beam of 640 nm, upconverted emissions were detected from J (416 nm), F (485 nm), and E (546 nm) levels. Energy upconverted emissions were also observed from F and E levels of Ho(3+) when the material was excited with an 800 nm near infrared laser. When the D levels of Er(3+) in LaF3 were resonantly excited with a laser beam of 637 nm, upconverted emissions were detected from the E (540 nm) and P (320, 400, and 468 nm) levels. Energy upconverted emissions were also observed from F, E, and D levels of Er(3+) when the material was resonantly excited with an 804 nm near infrared laser. When the D levels of Nd(3+) in CaF2 were resonantly excited with a laser beam of 577 nm, upconverted emissions were detected from the L (360 and 382 nm), K (418 nm), and I (432 nm) levels. Very weak upconverted emissions were detected when this system was irradiated with a near infrared laser. The numbers in parentheses are the wavelengths of the emissions.

  17. Thermal Effects on a Low Cr Modification of PS304 Solid Lubricant Coating

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; Yanke, Anne M.; DellaCorte, Christopher

    2004-01-01

    PS304 is a high temperature composite solid lubricant coating composed of Ni-Cr, Cr2O3, BaF2-CaF2 and Ag. The effect of reducing chromium content on the formation of voids in the Ni-Cr particles after heat treatment in PS304 coating was investigated. Coatings were prepared with Ni-20Cr or Ni-10Cr powder and in various combinations with the other constituents of PS304 (i.e., chromia, silver and eutectic BaF2-CaF2 powders) and deposited on metal substrates by plasma spray. Specimens were exposed to 650 C for 24 hr or 1090 C for 15 hr and then examined for changes in thickness, coating microstructure and adhesion strength. Specimens with Ni-10Cr generally had less thickness increase than specimens with Ni-20Cr, but there was great variance in the data. Reduction of chromium concentration in Ni-Cr powder tended to reduce the appearance of voids in the Ni-Cr phase after heat exposure. The presence of BaF2-CaF2 resulted in a significant increase in coating adhesion strength after heat treatment, while coatings without BaF2-CaF2 had no significant change. Chemical composition analysis suggested that the void formation was due to oxidation of chromium in the Ni-Cr constituent.

  18. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride.

    PubMed

    Grass, Robert N; Stark, Wendelin J

    2005-04-01

    Non-oxidic salts such as NaCl, CaF2, SrF2 and BaF2 were synthesised using a flame spray method; optional doping of such fluorides with rare earth elements suggests possible applications in optics. PMID:15791326

  19. 5 d-4 f luminescence of Nd3+, Gd3+, Er3+, Tm3+, and Ho3+ ions in crystals of alkaline earth fluorides

    NASA Astrophysics Data System (ADS)

    Radzhabov, E. A.; Prosekina, E. A.

    2011-09-01

    The vacuum ultraviolet emission spectra of alkaline-earth fluoride (CaF2, SrF2, BaF2) crystals with rare earth impurity ions (Nd, Gd, Er, Tm, Ho) have been investigated. The main luminescence bands are described well by the transitions from the lowest excited 5 d state to different 4 f levels of rare earth ions.

  20. Versatile fluoride substrates for Fe-based superconducting thin films

    NASA Astrophysics Data System (ADS)

    Kurth, F.; Reich, E.; Hänisch, J.; Ichinose, A.; Tsukada, I.; Hühne, R.; Trommler, S.; Engelmann, J.; Schultz, L.; Holzapfel, B.; Iida, K.

    2013-04-01

    We demonstrate the growth of Co-doped BaFe2As2 (Ba-122) thin films on CaF2 (001), SrF2 (001), and BaF2 (001) single crystal substrates using pulsed laser deposition. All films are grown epitaxially despite of a large misfit of -10.6% for BaF2 substrate. For all films, a reaction layer is formed at the interface confirmed by X-ray diffraction and for the films grown on CaF2 and BaF2 additionally by transmission electron microscopy. The superconducting transition temperature of the film on CaF2 is around 27 K, whereas the corresponding values of the films on SrF2 and BaF2 are around 22 K and 21 K, respectively. The Ba-122 on CaF2 shows almost identical crystalline quality and superconducting properties as films on Fe-buffered MgO.

  1. Red-to-violet and near-infrared-to-green energy upconversion in LaF3:Er(3+)

    NASA Technical Reports Server (NTRS)

    Reddy, B. R.; Nash-Stevenson, S. K.

    1994-01-01

    When the (sup 4)F(sub 9/2) state was resonantly excited, emission was detected from the higher states (sup 4)S(sub 3/2)((sup 2)H(sub 11/2), (sup 4)G(sub 11/2), and (sup 2)P(sub 3/2) in addition to the resonant emission. Two- and three-photon processes were found to be responsible in populating the (sup 4)S(sub 3/2) and the (sup 2)P(sub 3/2) states, respectively. Energy upconversion efficiencies into the (sup 4)S(sub 3/2) and the (sup 2)P(sub 3/2) states were found to be 7.2 x 10(exp -3) and 1.4 x 10(exp -4), respectively. When the (sup 4)I(sub 9/2) state was resonantly excited we detected green emission from the (sup 4)S(sub 3/2)((sup 2)H(sub 11/2)). The energy upconversion efficiency of this process was found to be 1.4 x 10(exp -3).

  2. NUCLEATION OF YBA(2)CU(3)O(7-D) IN THE BAF(2) PROCESS

    SciTech Connect

    WU,L.; SOLOVYOV,V.F.; WIESMANN,H.J.; ZHU,Y.; SUENAGA,M.

    2001-06-24

    The nucleation of the c-axis aligned and non-c-axis YBa{sub 2}Cu{sub 3}O{sub {approximately}6.1} (YBCO) from precursor films on [001]-cut SrTiO{sub 3} was investigated for the so-called BaF{sub 2} process. Specimens with different thickness were quenched from 735 C, then studied by transmission electron microscopy and x-ray diffraction techniques. Preceding the formation of YBCO nuclei, three intermediate phases of (Y,Ba) oxy-fluoride and a transition phase without F were found in the precursor films. These were structurally and chemically related to the nuclei of YBCO which was found to be deficient in Cu relative to its stoichiometric composition.

  3. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, Guy A.; Workman, Gary

    2004-01-01

    The effects of gravity on the crystallization of ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF glasses have been studied using the NASA KC-135 and a sounding rocket. Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  4. Effects of Gravity on ZBLAN Glass Crystallization

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Ethridge, Edwin C.; Smith, G. A.; Workman, G.

    2003-01-01

    The effects of gravity on the crystallization of ZrF4-BaF2-LaF3-AlF3- NaF glasses have been studied utilizing NASA's KC135 and a sounding rocket, Fibers and cylinders of ZBLAN glass were heated to the crystallization temperature in unit and reduced gravity. When processed in unit gravity the glass crystallized, but when processed in reduced gravity, crystallization was suppressed. A possible explanation involving shear thinning is presented to explain these results.

  5. Effect of microgravity on crystallization of ZBLAN fibers

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    1994-01-01

    ZrF4-BaF2-LaF3-AIF3-NaF (ZBLAN) optical fiber was flown on board the NASA's KC-135 microgravity aircraft to determine the effects of microgravity on crystal growth in this material. Fiber samples were placed in evacuated quartz ampoules and heated to the crystallization temperature in 0g, 1g, and 2g. The 1g and 2g samples were observed to slump and crystallize. The 0g samples showed no evidence of crystallization.

  6. The Effects of a Magnetic Field on the Crystallization of a Fluorozirconate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Lapointe, Michael R.; Jia, Zhiyong

    2006-01-01

    An axial magnetic field of 0.1T was applied to ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fibers during heating to the glass crystallization temperature. Scanning electron microscopy and x-ray diffraction were used to identify crystal phases. It was shown that fibers exposed to the magnetic field did not crystallize while fibers not exposed to the field did crystallize. A hypothesis based on magnetic work was proposed to explain the results and tested by measuring the magnetic susceptibilities of the glass and crystal.

  7. Water Atomization of Barium Fluoride: Calcium Fluoride for Enhanced Flow Characteristics of PS304 Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2003-01-01

    PS304 is a plasma spray deposited solid lubricant coating with feedstock composed of NiCr, Cr2O3, Ag, and BaF2-CaF2 powders. The effects of rounded BaF2-CaF2 particles on the gravity-fed flow characteristics of PS304 feedstock have been investigated. The BaF2-CaF2 powder was fabricated by water atomization using four sets of process parameters. Each of these powders was then characterized by microscopy and classified by screening to obtain 45 to 106 micron particles and added incrementally from 0 to 10 wt% to the other constituents of the PS304 feedstock, namely nichrome, chromia, and silver powders. The relationship between feedstock flow rate, measured with the Hall flowmeter, and concentration of fluorides was found to be linear in each case. The slopes of the lines were between those of the linear relationships previously reported using angular and spherical fluorides and were closer to the relationship predicted using the rule of mixtures. The results offer a fluoride fabrication technique potentially more cost-effective than gas atomization processes or traditional comminution processes.

  8. Excitation of Pr3+ ions in alkaline-earth fluorides

    NASA Astrophysics Data System (ADS)

    Radzhabov, E.; Nagirnyi, V.

    2010-11-01

    Emission and excitation spectra of CaF2, SrF2, BaF2 doped by PrF3 were measured in vacuum ultraviolet region at 11 K. Emission spectra of several 5d-4f bands of CaF2 and BaF2 show evident vibronic structure with apparent line separated by 400 cm-1 from the main zero phonon line. No such structure was observed in SrF2-Pr. The absence of vibronic structure in SrF2 is assumed to be caused by the closeness of a local vibronic frequency to the lattice phonon one. Excitation spectra of 4f-4f and 5d-4f transitions are substantially different pointing on to the different excitation mechanisms of both groups of lines. The 4f-4f lines show an intense excitation peak adjacent to the exciton peak. This infers that excitons created near to Pr3+ ions can feed the 4f-4f transitions. The efficiency of excitation of the 4f-4f and 5d-4f emission bands is quite low in the region of band-to-band transitions. An apparent peak at 19 eV in the excitation spectrum of the BaF2-Pr 5d-4f emission (230 nm) coincides well with that of the crossluminescence. No similar peaks were observed in CaF2 or SrF2 excitation spectra. We conclude that the main channel of energy transfer from the host to Pr3+ ions is realized resonantly through crossluminescence in BaF2-Pr.

  9. On the cosmic-ray induced background in neutral pion production measurements with a BaF 2 multidetector

    NASA Astrophysics Data System (ADS)

    Badalà, A.; Barbera, R.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.; Russo, G.; Turrisi, R.

    1995-02-01

    The problem of the cosmic-ray induced background in neutral pion production measurements with barium fluoride multidetectors is discussed. As a reference example, the response to cosmic rays of the MEDEA photon spectrometer is studied. The interaction of the cosmic radiation with the experimental filter has been treated by means of full Monte Carlo computer simulations with the GEANT3 code. The results of the simulations are compared with experimental data and general criteria to minimize the cosmic background are discussed.

  10. Synthesis and the luminescent properties of the Nd3+ ions doped three kinds of fluoride nanocrystals in organic solvents

    NASA Astrophysics Data System (ADS)

    Chen, Zhuo; Tian, Changyong; Bo, Shuhui; Liu, Xinhou; Zhen, Zhen

    2015-10-01

    Oleic acid (OA)-modified LaF3:Nd, NaYF4:Nd and CaF2:Nd nanocrystals (NCs) with the different Nd3+ ion concentration (2% and 5%) have been prepared. The structure and morphology of NCs were identified by XRD, TEM, FT-IR and TGA. The size of OA-modified NC is a mean diameter of 5-10 nm and can be dispersed in common organic solvents to form a transparent solution. The optical loss of NCs in organic solvent is the first time to discuss in this work. The luminescence properties of NCs were also characterized and studied by fluorescence spectrometer. The nanoparticles in solid and in the solution all exhibited the strong emission at the 1060 nm when the materials were excited around 800 nm. Compared with the LaF3 and CaF2 matrix, NaYF4 as the host can protect the Nd3+ ions more efficiently away from the nonradiative transitions. The longest luminescent lifetime of the solid NaYF4:2%Nd NCs was up to 136 μs, and the little difference of the fluorescence lifetime existed between the NCs in solid state and in solution. The low optical loss in organic solvent indicated that the Nd3+ ions-doped fluoride NCs are promising materials for optical amplification fields.

  11. Structure and diffusion of intrinsic defects, adsorbed hydrogen, and water molecules at the surface of alkali-earth fluorides calculated using density functional theory

    NASA Astrophysics Data System (ADS)

    Foster, A. S.; Trevethan, T.; Shluger, A. L.

    2009-09-01

    Using periodic density functional theory, we calculate the structure and migration energies of fluorine vacancies and interstitials in the bulk and at the stoichiometric bulk-truncated surface of three alkali-earth fluorides: CaF2 , SrF2 , and BaF2 . We then study the adsorption of water and hydrogen, in both molecular and dissociated form, at the ideal surface, and at neutral and charged vacancies in the surface and subsurface layers. The results demonstrate that in nearly all cases molecular adsorption is strongly favored. For the most probable configurations on the surfaces, we also studied the migration paths and barriers, and found that water is highly mobile on the surface, even when adsorbed at defects. In general, CaF2 and SrF2 show similar behavior with respect to water, while adsorption energies and migration barriers for BaF2 are smaller. Finally, we discuss our results in the context of recent experimental Atomic Force Microscopy studies on CaF2 and compare to calculations on other insulating surfaces.

  12. New observations on the pressure dependence of luminescence from Eu2+-doped MF2 (M = Ca, Sr, Ba) fluorides.

    PubMed

    Su, Fu Hai; Chen, Wei; Ding, Kun; Li, Guo Hua

    2008-05-29

    The luminescence from Eu(2+) ions in MF2 (M = Ca, Sr, Ba) fluorides has been investigated under the pressure range of 0-8 GPa. The emission band originating from the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) ions in CaF2 and SrF2 shows the red-shift as increasing pressure with pressure coefficients of -17 meV/GPa for CaF2 and -18 meV/GPa for SrF2. At atmospheric pressure, the emission spectrum of BaF2:Eu(2+) comprises two peaks at 2.20 and 2.75 eV from the impurity trapped exciton (ITE) and the self-trapped exciton (STE), respectively. As the pressure is increased, both emission peaks shift to higher energies, and the shifting rate is slowed by the phase transition from the cubic to orthorhombic phase at 4 GPa. Due to the phase transition at 4-5 GPa pressure, the ITE emission disappears gradually, and the STE emission is gradually replaced by the 4f(6)5d(1) --> 4f(7) transition of Eu(2+). Above 5 GPa, the pressure behavior of the 4f(6)5d(1) --> 4f(7) transition of Eu(2+) in BaF2:Eu(2+) is the same as the normal emission of Eu(2+) in CaF2 and SrF2 phosphors. PMID:18444634

  13. Use of space to commercially produce ZBLAN optical fibers

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1996-03-01

    Construction of the International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in 1g due to the lack of gravity induced convection effects. One such product is ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) glass. At the present time this material is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation is due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing ZBLAN in a microgravity environment.

  14. Graphene Q-switched Ho(3+)-doped ZBLAN fiber laser at 1190  nm.

    PubMed

    Liu, Shujing; Zhu, Xiushan; Zhu, Gongwen; Balakrishnan, Kaushik; Zong, Jie; Wiersma, Kort; Chavez-Pirson, Arturo; Norwood, R A; Peyghambarian, N

    2015-01-15

    We report Q-switched pulse operation of holmium (Ho(3+))-doped ZrF(4)-BaF(2)-LaF(3)-AlF(3)-NaF (ZBLAN) at ∼1190  nm in an all-fiber ring laser by using a fiber-optic graphene saturable absorber, which was fabricated by depositing graphene onto the flat surface of a side-polished D-shaped fiber. Stable Q-switched operation was established at a pump power of 180 mW with a repetition rate of 24 kHz and pulse width of 5.7 μs. When the pump power was increased to 1125 mW, 0.44 μJ Q-switched pulses with a repetition rate of 111 kHz and a pulse width of 0.8 μs were generated. PMID:25679830

  15. Fluoride glass starting materials - Characterization and effects of thermal treatment

    NASA Technical Reports Server (NTRS)

    Chen, William; Dunn, Bruce; Shlichta, Paul; Neilson, George F.; Weinberg, Michael C.

    1987-01-01

    The production of heavy metal fluoride (HMF) glasses, and the effects of thermal treatments on the HMF glasses are investigated. ZrF4, BaF2, AlF3, LaF3, and NaF were utilized in the synthesis of zirconium-barium-lanthanum-aluminum-sodium fluoride glass. The purity of these starting materials, in particular ZrF4, is evaluated using XRD analysis. The data reveal that low temperature heating of ZrF4-H2O is effective in removing the water of hydration, but causes the production of ZrF4 and oxyfluorides; however, dehydration followed by sublimation results in the production of monoclinic ZrFe without water or oxyfluoride contaminants.

  16. [Effect of bivalent alkaline earth fluorides introduction on thermal stability and spectroscopic properties of Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses].

    PubMed

    Hu, Yue-bo; Zhang, Xin-na; Zhou, Da-li; Jiao, Qing; Wang, Rong-fei; Huang, Jin-feng; Long, Xiao-bo; Qiu, Jian-bei

    2012-01-01

    Transparent Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses alone containing MgF2, CaF2, SrF2 or BaF2 and nano-glass-ceramics only containing BaF2 were prepared. The thermal stabilities and the up-conversion emission properties of the samples were investigated. Analyses of absorbance spectra reveal that the UV cutoff band moves slightly to shortwave band with the doping bivalent cation mass increasing. The results show that the emission color can be adjusted by changing the alkaline earth cation species in the glass matrixes, especially as Mg2+ is concerned, and the emission intensity can increase notably by heating the glass containing alkaline-earth fluoride into glass ceramic containing alkaline-earth fluoride nanocrystals or increasing the content of bivalent alkaline earth fluorides. PMID:22497127

  17. Brillouin lasing with a CaF2 whispering gallery mode resonator.

    PubMed

    Grudinin, Ivan S; Matsko, Andrey B; Maleki, Lute

    2009-01-30

    Stimulated Brillouin scattering with both pump and Stokes beams in resonance with whispering gallery modes of an ultrahigh Q calcium fluoride resonator is demonstrated for the first time. The resonator is pumped with 1064 nm light and has 3 muW Brillouin lasing threshold. The scattering is observed due to the unique morphology of the resonator reducing the phase mismatch between the optical modes and the hypersound wave. PMID:19257418

  18. Spectroscopic Studies of Pulsed-Laser-Induced Damage Sites in Heated CaF2 Crystals

    SciTech Connect

    Bozlee, Brian J.; Exarhos, Gregory J.; Teel, Randy W.

    1999-09-01

    Proceedings contain all papers presented at the 13th Symposium on Optical Materials for High-Powered Lasers, held at the National Institute of Standards and Technology in Boulder, CO, 28 Sept. - 1 Oct. 1998.

  19. Biomedical graphite and CaF2 preparation and measurement at PRIME Lab

    NASA Astrophysics Data System (ADS)

    Jackson, George S.; Einstein, Jane A.; Kubley, Tom; Martin, Berdine; Weaver, Connie M.; Caffee, Marc

    2015-10-01

    The biomedical program at PRIME Lab has prepared radiocarbon and 41Ca as tracers for a variety of applications. Over the last decade several hundred 14C samples and several thousand 41Ca samples have been measured per year. Biomedical samples pose challenges that are relatively rare in the AMS community. We will discuss how to prepare and compensate for samples that have isotope ratios above the dynamic range of AMS, high interference rates, and small samples sizes. In the case of 41Ca, the trade off in the chromatography between yield and sample cleanliness will be analyzed. Secondary standards that have isotope ratios commonly encountered in our applications are routinely prepared. We use material from the Joint Research Centre's Institute for Reference Materials and Measurement: IRMM-3701/4, 3701/5, and 3701/6 and a standard produced by PRIME Lab for 41Ca. We use International Atomic Energy Agency's IAEA C-3, IAEA C-7, IAEA C-8, and a ∼12.5× modern oxalic acid secondary standard supplied by Lawrence Livermore National Laboratory for 14C. We will discuss our precision, reproducibility, and the relative agreement between our measured and the reported values for these materials.

  20. Spectroscopic, luminescent and laser properties of nanostructured CaF2:Tm materials

    NASA Astrophysics Data System (ADS)

    Lyapin, A. A.; Fedorov, P. P.; Garibin, E. A.; Malov, A. V.; Osiko, V. V.; Ryabochkina, P. A.; Ushakov, S. N.

    2013-08-01

    The laser quality transparent СаF2:Tm fluoride ceramics has been prepared by hot forming. Comparative study of absorption and emission spectra of СаF2:Tm (4 mol.% TmF3) ceramic and single crystal samples demonstrated that these materials possess almost identical spectroscopic properties. Laser oscillations of СаF2:Tm ceramics were obtained at 1898 nm under diode pumping, with the slope efficiency of 5.5%. Also, the continuous-wave (CW) laser have been obtained for СаF2:Tm single crystal at 1890 nm pumped by a diode laser was demonstrated.

  1. Persistent spectral holeburning in CaF_2:Tm^3+:D^-

    NASA Astrophysics Data System (ADS)

    Strickland, N. M.; Cone, R. L.; Macfarlane, R. M.

    1998-03-01

    We report the observation of persistent spectral holeburning on the ^3H6 arrow ^3H4 transition of the trivalent thulium ion at 800 nm, with the goal of obtaining long-term persistence for optical storage, frequency references and signal processing. Deuteration treatment of rare-earth doped calcium fluoride gives rise to a number of new spectroscopic centers in which a rare-earth ion is adjacent to one or more negative deuteride ions. Laser-induced migration of the deuteride ions associated with such centers gives rise to bleaching of the rare-earth absorption profile. In the case of Tm^3+, hole widths of 18 MHz have been measured, and the holes show no measurable degradation 6 hours after burning. The strong ^3H_6(1)arrow ^3H_4(1) transitions of these Tm^3+ centers are favorable for application as frequency references as they have no hyperfine structure, and diode lasers are available in this spectral region.

  2. Tunability of laser based on Yb-doped hot-pressed CaF2 ceramics

    NASA Astrophysics Data System (ADS)

    Sulc, Jan; Doroshenko, Maxim E.; Jelínková, Helena; Basiev, Tasoltan T.; Konyushkin, Vasilii A.; Osiko, Vyacheslav V.

    2012-06-01

    The aim of presented study was an investigation of tunability of diode pumped laser based on hot-pressed Yb:CaF2 ceramics. The tested Yb:CaF2 sample was in the form of 3.5mm thick plane-parallel face-polished plate (without AR coatings). The Yb3+ concentration was 5.5 %. A fiber (core diameter 200 μm, NA= 0.22) coupled laser diode (LIMO, HLU25F200-980) with emission at wavelength 976 nm, was used for longitudinal Yb:CaF2 pumping. The laser diode was operating in the pulsed regime (4 ms pulse length, 20 Hz repetition rate). The duty-cycle 8% ensured a low thermal load even under the maximum diode pumping power amplitude 10W (crystal sample was only air-cooled). This radiation was focused into the crystal (pumping beam waist diameter ~ 170 μm). The 145mm long semi-hemispherical laser resonator consisted of a flat pumping mirror (HR @ 1.01 - 1.09 μm, HT @ 0.97 μm) and curved (r = 150mm) output coupler with a reflectivity of ~ 98% @ 1.01 - 1.09 μm. Tuning of the ytterbium laser was accomplished by using a birefringent filter (single 1.5mm thick quartz plate) placed inside the optical resonator at the Brewster angle between the output coupler and the laser active medium. The extremely broad and smooth tuning was obtained. The laser was continuously tunable over ~ 66nm (from 1015nm to 1081 nm) and the tuning band was mostly limited by free spectral range of used birefringent filter. The tunability FWHM was 40 nm corresponding bandwidth 10 THz results in Fourier limited gaussian pulse width ~ 40 fs (FWHM). The maximum output power amplitude 0.68W was obtained at wavelength 1054nm for absorbed pump power amplitude 6W. The laser slope efficiency was 15%.

  3. Generation of optical frequency combs with a CaF2 resonator.

    PubMed

    Grudinin, Ivan S; Yu, Nan; Maleki, Lute

    2009-04-01

    We demonstrate optical frequency combs using the fluorite whispering gallery mode resonator as a nonlinear Kerr medium. Two regimes of generation are observed, giving the record low repetition rate of 13 GHz, equal to the cavity's free spectral range (FSR) or high repetition rates of multiples of cavity FSR. An intermediate regime was also observed. Raman lasing spectrum similar to modulation instability in fibers was observed for the first time to the best of our knowledge. PMID:19340157

  4. Pressure-induced Structrual Transitino in CaF2 Nanocrystals

    SciTech Connect

    J Wang; J Hao; Q Wang; Y Jin; F Li; B Liu; Q Li; B Liu; Q Cui

    2011-12-31

    The structural transition of CaF{sub 2} nanocrystals was studied by in situ high pressure synchrotron radiation X-ray diffraction measurements up to about 46.5?GPa at ambient temperature. A pressure-induced fluorite structure (Fm3m) to orthorhombic PbCl{sub 2}-type structure (Pnma) transition starts at 14.0?GPa, and phase transition is sluggish. The orthorhombic phase of nanocrystalline CaF{sub 2} is stable up to 46.5?GPa. The enhancement of transition pressure in CaF{sub 2} nanocrystals as compared with the corresponding bulk material is mainly caused by the surface energy difference between the phases involved.

  5. Materials Data on CaF2 (SG:62) by Materials Project

    SciTech Connect

    Kristin Persson

    2014-11-02

    Computed materials data using density functional theory calculations. These calculations determine the electronic structure of bulk materials by solving approximations to the Schrodinger equation. For more information, see https://materialsproject.org/docs/calculations

  6. Phase Diagram for Nanostructuring CaF2 Surfaces by Slow Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.; Wilhelm, R. A.; Heller, R.; Facsko, S.; Lemell, C.; Wachter, G.; Burgdörfer, J.; Ritter, R.; Aumayr, F.

    2012-09-01

    The impact of individual slow highly charged ions (HCI) on alkaline earth halide and alkali halide surfaces creates nano-scale surface modifications. For different materials and impact energies a wide variety of topographic alterations have been observed, ranging from regularly shaped pits to nanohillocks. We present experimental evidence for the creation of thermodynamically stable defect agglomerations initially hidden after irradiation but becoming visible as pits upon subsequent etching. A well defined threshold separating regions with and without etch-pit formation is found as a function of potential and kinetic energies of the projectile. Combining this novel type of surface defects with the previously identified hillock formation, a phase diagram for HCI induced surface restructuring emerges. The simulation of the energy deposition by the HCI in the crystal provides insight into the early stages of the dynamics of the surface modification and its dependence on the kinetic and potential energies.

  7. Synthesis and Characterization of Nd(3+)-Doped CaF2 Nanoparticles.

    PubMed

    Yuan, Dan; Li, Weiwei; Mei, Bingchu; Song, Jinghong

    2015-12-01

    The Ca(1-x)F(2+x):Nd(x) nanoparticles were synthesized by chemical direct precipitation method. X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Image analyzer, absorption spectrum and transmittance were taken to characterization the phases, morphologies, sizes, size distribution and optical properties of the samples. The results indicate that the Ca(1-x)F(2+x):Nd(x) samples can be rationally modified in size and morphology by altering the Nd3+ ions doping concentration. With increasing concentration of Nd3+ ions, the particle size decreased from 24 to 14 nm, the intensity of the diffraction peaks decreased, the Ca(1-x)F(2+x):Nd(x) particles aggregated ion of the formed clusters which should have an effect on both speed and orientation of the particles growth. The transmittance of ceramics with a thickness of 2 mm showed that the transmittance can reach 90% when the doping concentration was 5%, which should be profitable for LD pumping. PMID:26682406

  8. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    NASA Technical Reports Server (NTRS)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  9. Spatial inhomogeneity in crystalline materials and saddle-type congruent melting points in ternary systems

    NASA Astrophysics Data System (ADS)

    Fedorov, P. P.; Buchinskaya, Irina I.

    2012-01-01

    Solidification of multicomponent melts to solid solutions is considered in terms of thermodynamic topological analysis. The use of phase portraits of systems for finding congruent melting points (invariant points) is discussed. Methods for predicting the existence of invariant points in ternary systems are considered. An example analysis is presented for two series of fluoride systems (CaF2-SrF2-RF3 and SrF2-BaF2-RF3, where R are rare-earth elements). The stability of melt crystallization in the vicinity of congruent melting singular points of solid solutions is discussed. The bibliography includes 104 references.

  10. Properties of fluoride microresonators for mid-IR applications

    NASA Astrophysics Data System (ADS)

    Grudinin, Ivan S.; Mansour, Kamjou; Yu, Nan

    2016-05-01

    We study crystalline fluoride microresonators for mid-infrared applications. Whispering gallery mode resonators were fabricated with BaF$_2$, CaF$_2$ and MgF$_2$ crystals. The quality factors were measured at wavelengths of 1.56 {\\mu}m and 4.58 {\\mu}m. The impacts of fabrication technique, impurities, multiphonon absorption and surface water are investigated. It is found that MgF2 resonators have room temperature Q factor of $8.3\\times 10^6$ at wavelength of 4.58 {\\mu}m, limited by multiphonon absorption.

  11. A multiple pulse zero crossing NMR technique, and its application to F-19 chemical shift measurements in solids

    NASA Technical Reports Server (NTRS)

    Burum, D. P.; Elleman, D. D.; Rhim, W.-K.

    1978-01-01

    A simple multiple-pulse 'zero crossing technique' for accurately determining the first moment of a solid-state NMR spectrum is introduced. This technique was applied to obtain the F-19 chemical shift versus pressure curves up to 5 kbar for single crystals of CaF2 (0.29 + or - 0.02 ppm/kbar) and BaF2 (0.62 + or - 0.05 ppm/kbar). Results at ambient temperature and pressure are also reported for a number of other fluorine compounds. Because of its high data rate, this technique is potentially several orders of magnitude more sensitive than similar CW methods.

  12. Élimination du bore du silicium par plasma inductif sous champ électrique

    NASA Astrophysics Data System (ADS)

    Combes, R.; Morvan, D.; Picard, G.; Amouroux, J.

    1993-05-01

    We analyzed purification mechanisms of silicon by inductive plasma with a fluoride slag. The aim is to study boron elimination from doped electronic grade silicon in function of the nature of the slag to obtain a photovoltaic grade silicon. The steady began with the calculation and the comparison of the stability diagram of boron compounds in presence of CaF2, BaF2 and MgF2. This study led us to conclude that BaF2 is the better slag for silicon purification. This has been confirmed by experience. In a second time, we made purifications under electric bias to enhance slag efficiency. We noticed that BaF2 is more sensitive to electric bias than other slags. Nous avons analysé le mécanisme de purification du silicium sous plasma inductif en présence d'un laitier fluoré. L'objectif principal est d'étudier l'élimination du bore du silicium électronique dopé en fonction de la nature du fluorure pour obtenir un silicium de qualité photovoltaïque. L'étude a commencé par l'établissement et la comparaison de diagrammes des composés du bore en présence de CaF2, de MgF2 et de BaF2. Nous avons déduit de cette première étude que BaF2 est le meilleur laitier pour la purification du silicium. Ceci a été corroboré par l'expérience. Nous avons ensuite opéré en présence d'un champ électrique dans le but d'améliorer encore l'efficacité des laitiers. Nous avons constaté que BaF2 est plus sensible au champ électrique que les deux autres laitiers utilisés.

  13. Pressure induced structural and magnetic phase transition in magnesium nitrides MgNx (x = 1, 2, 3): A first principles study

    NASA Astrophysics Data System (ADS)

    Rajeswarapalanichamy, R.; Sudhapriyanga, G.; Cinthia, A. Jemmy; Santhosh, M.; Murugan, A.

    2014-04-01

    The structural and magnetic properties of magnesium nitrides are investigated by the first principles calculations based on density functional theory using Vienna ab-initio simulation package. The calculated lattice parameters are in good agreement with the available results. A pressure-induced structural phase transition from NaCl to CsCl in MgN, CaF2 to AlB2 in MgN2 and LaF3 to BiF3 phase in MgN3 is observed. At ambient condition MgN and MgN3 are stable in the ferromagnetic state. On further increasing the pressure, a ferromagnetic to non magnetic transition is observed in MgN.

  14. Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt. percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt. percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Friction coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity in PM212/Au was not determined, it may be due to particle morphology differences between the gold and silver and their effect on powder metallurgy processing.

  15. Evaluation of Advanced Solid Lubricant Coatings for Foil Air Bearings Operating at 25 and 500 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Fellenstein, James A.; Benoy, Patricia A.

    1998-01-01

    The tribological properties of one chrome oxide and one chrome carbide based solid lubricant coating were evaluated in a partial-arc foil bearing at 25 and 500 C. Start/stop bearing operation up to 20,000 cycles were run under 10 kPa (1.5 psi) static deadweight load. Bearing friction (torque) was measured during the test. Specimen wear and SEM/EDS surface analyses were conducted after testing to understand and elucidate the tribological characteristics observed. The chrome oxide coating which contains both (Ag) and (BaF2/CaF2) for low and high temperature lubrication, exhibited low friction in sliding against Al2O3 coated foils at 25 and 500 C. The chrome carbide coating, which lacked a low temperature lubricant but contained BaF2/CaF2 as a high temperature lubricant, exhibited high friction at 25 C and low friction at 500 C against both bare and Al2O3 coated superalloy foil surfaces. Post test surface analyses suggest that improved tribological performance is exhibited when a lubricant film from the coating transfers to the foil surface.

  16. Epitaxy versus oriented heterogeneous nucleation of organic crystals on ionic substrates

    NASA Astrophysics Data System (ADS)

    Sarma, K. R.; Shlichta, P. J.; Wilcox, W. R.; Lefever, R. A.

    1997-04-01

    It is plausible to assume that epitaxy is a special case of heterogeneous nucleation in which a restrictive crystallographic relationship exists between substrate and deposit orientations. This would mean that epitaxial substrates should always induce a perceptible reduction in the critical supercooling for nucleation of the deposit. To test this hypothesis, the critical supercoolings of six organic compounds were measured on glass and 11 single-crystal cleaved substrates including (0001) graphite, (001) mica, (111) BaF 2, SrF 2, and CaF 2, and (100) KCl, KBr, KI, NaCl, NaF, and LiF. Reductions in supercooling (with reference to glass substrates) were checked many times for repeatability and reproducibility and shown in almost all cases to have a standard deviation of 1 C or less. Acetanilide, benzoic acid, and p-bromochlorobenzene showed a wide range of supercooling reductions and were oriented on all crystalline substrates. Naphthalene and p-dibromobenzene showed only slight supercooling reductions but were oriented on all substrates, including glass. Benzil showed strong supercooling reductions only for mica and KI but was oriented not only in these cases but also with KI, BaF 2, CaF 2, and graphite. There was little correlation between degree of lattice match and either supercooling reduction or degree of preferred orientation. These results suggest that, for the systems and geometry studied, forces such as molecular dipole binding and growth anisotropy had a stronger effect than lattice match.

  17. Simultaneous measurement of (n,{gamma}) and (n,fission) cross sections with the DANCE 4{pi} BaF2 array

    SciTech Connect

    Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; Chadwick, M. B.; Hunt, L. F.; O'Donnell, J. M.; Rundberg, R. S.; Schwantes, J. M.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Becker, J. A.; Clement, R. R. C.; Esch, E.-I.; Macri, R. A.; Wu, C.-Y.; Ethvignot, T.; Granier, T.; Yurkon, J. E.

    2006-03-13

    Neutron capture cross section measurements on many of the actinides are complicated by low-energy neutron-induced fission, which competes with neutron capture to varying degrees depending on the nuclide of interest. Measurements of neutron capture on 235U using the Detector for Advanced Neutron Capture Experiments (DANCE) have shown that we can partially resolve capture from fission events based on total photon calorimetry (i.e. total {gamma}-ray energy and {gamma}-ray multiplicity per event). The addition of a fission-tagging detector to the DANCE array will greatly improve our ability to separate these two competing processes so that improved neutron capture and (n,{gamma})/(n,fission) cross section ratio measurements can be obtained. The addition of a fission-tagging detector to the DANCE array will also provide a means to study several important issues associated with neutron-induced fission, including (n,fission) cross sections as a function of incident neutron energy, and total energy and multiplicity of prompt fission photons. We have focused on two detector designs with complementary capabilities, a parallel-plate avalanche counter and an array of solar cells.

  18. Nanocomposite containing CaF2 nanoparticles: Thermal cycling, wear and long-term water-aging

    PubMed Central

    Weir, Michael D.; Moreau, Jennifer L.; Levine, Eric D.; Strassler, Howard D.; Chow, Laurence C.; Xu, Hockin H. K.

    2012-01-01

    Objectives Fluoride (F) releasing dental restoratives are promising to promote remineralization and combat caries. The objectives of this study were to develop nanocomposite containing calcium fluoride nanoparticles (nCaF2), and to investigate the long-term mechanical durability including wear, thermal-cycling and long-term water-aging behavior. Methods Two types of fillers were used: nCaF2 with a diameter of 53 nm, and glass particles of 1.4 μm. Four composites were fabricated with fillers of: (1) 0% nCaF2 + 65% glass; (2) 10% nCaF2 + 55% glass; (3) 20% nCaF2 + 45% glass; (4) 30% nCaF2 + 35% glass. Three commercial materials were also tested. Specimens were subjected to thermal-cycling between 5 °C and 60 °C for 105 cycles, three-body wear for 4×105 cycles, and water-aging for 2 years. Results After thermal-cycling, the nCaF2 nanocomposites had flexural strengths in the range of 100-150 MPa, five times higher than the 20-30 MPa for resin-modified glass ionomer (RMGI). The wear scar depth showed an increasing trend with increasing nCaF2 filler level. Wear of nCaF2 nanocomposites was within the range of wear for commercial controls. Water-aging decreased the strength of all materials. At 2 years, flexural strength was 94 MPa for nanocomposite with 10% nCaF2, 60 MPa with 20% nCaF2, and 48 MPa with 30% nCaF2. They are 3-6 fold higher than the 15 MPa for RMGI (p < 0.05). SEM revealed air bubbles and cracks in a RMGI, while composite control and nCaF2 nanocomposites appeared dense and solid. Significance Combining nCaF2 with glass particles yielded nanocomposites with long-term mechanical properties that were comparable to those of a commercial composite with little F release, and much better than those of RMGI controls. These strong long-term properties, together with their F release being comparable to RMGI as previously reported, indicate that the nCaF2 nanocomposites are promising for load-bearing and caries-inhibiting restorations. PMID:22429937

  19. Application of a volume holographic grating in a CaF2 crystal for measuring linear displacements with nanoscale accuracy

    NASA Astrophysics Data System (ADS)

    Shcheulin, A. S.; Angervaks, A. E.; Kupchikov, A. K.; Verkhovskii, E. B.; Ryskin, A. I.

    2014-12-01

    A holographic method for measuring linear displacements based on the use of a highly stable volume scale hologram recorded in an additively colored calcium fluoride crystal with photochromic color centers is proposed and experimentally approved. The essence of this method lies in measuring and analyzing harmonic signals formed during linear displacement of crystal with a volume hologram in an external interference field. A physical model of the formation of harmonic signals in photodetectors when measuring displacements is considered, and a mathematical method for calculating linear displacements by plotting a Lissajous figure is substantiated. A laboratory breadboard of a device for measuring linear displacements in a range of 10 mm, limited by the aperture of crystal with a recorded 8.7-mm-thick hologram, is designed. When using a scale hologram with a period of 2.18 μm and a 632.8-nm He-Ne laser for reading this hologram, the error in measuring displacements by this method is 9 nm at a resolution of 3 nm.

  20. Biaxially-Textured Photovoltaic Film Crystal Silicon on Ion Beam Assisted Deposition CaF2 Seed Layers on Glass

    SciTech Connect

    Groves, J. R.; Li, J. B.; Clemens, B. M.; LaSalvia, V.; Hasoon, F.; Branz, H. M.; Teplin, C. W.

    2012-05-01

    We grow biaxially textured heteroepitaxial crystal silicon (c-Si) films on display glass as a low-cost photovoltaic material. We first fabricate textured CaF{sub 2} seed layers using ion-beam assisted deposition, then coat the CaF{sub 2} with a thin, evaporated epitaxial Ge buffer and finally deposit heteroepitaxial silicon on the Ge. The silicon is grown by hot-wire chemical vapor deposition, a high-rate, scalable epitaxy technology. Electron and X-ray diffraction confirm the biaxial texture of the CaF{sub 2} and epitaxial growth of the subsequent layers. Transmission electron microscopy reveals columnar silicon grains about 500 nm across. We fabricate a proof-of-concept epitaxial film c-Si solar cell with an open circuit voltage of 375 mV that is limited by minority carrier lifetime.

  1. Growth of YbF 3-doped CaF 2 crystals and characterization of Yb 3+/Yb 2+ conversion

    NASA Astrophysics Data System (ADS)

    Nicoara, Irina; Stef, Marius; Pruna, Andreea

    2008-04-01

    Calcium fluoride crystals doped with YbF 3 and PbF 2-, NaF- and LiF-codoped were grown using the vertical Bridgman method. Transparent, high quality, with various high Yb 2+ contents in the as-grown crystals has been obtained using a special procedure. The optical absorption spectra reveal the characteristic ultraviolet (UV) absorption bands of the divalent Yb ions. Influence of the codoping with Pb 2+, Li + and Na + ions on the absorption spectra and on the Yb 2+ ions content has been studied. High-intensity emission bands in the near-UV spectral region, not reported before, have been observed for excitation by 230 nm. A comparison of our results with those obtained by other authors is also given.

  2. Investigation of the Environmental Durability of a Powder Metallurgy Material

    NASA Technical Reports Server (NTRS)

    Ward, LaNita D.

    2004-01-01

    PM304 is a NASA-developed composite powder metallurgy material that is being developed for high temperature applications such as bushings in high temperature industrial furnace conveyor systems. My goal this summer was to analyze and evaluate the effects that heat exposure had on the PM304 material at 500 C and 650 C. The material is composed of Ni-Cr, Ag, Cr2O3, and eutectic BaF2-CaF2. PM304 is designed to eliminate the need for oil based lubricants in high temperature applications, while reducing friction and wear. However, further investigation was needed to thoroughly examine the properties of PM304. The effects of heat exposure on PM304 bushings were investigated. This investigation was necessary due to the high temperatures that the material would be exposed to in a typical application. Each bushing was cut into eight sections. The specimens were heated to 500 C or 650 C for time intervals from 1 hr to 5,000 hrs. Control specimens were kept at room temperature. Weight and thickness measurements were taken before and after the bushing sections were exposed to heat. Then the heat treated specimens were mounted and polished side by side with the control specimens. This enabled optical examination of the material's microstructure using a metallograph. The specimens were also examined with a scanning electron microscope (SEM). The microstructures were compared to observe the effects of the heat exposure. Chemical analysis was done to investigate the interactions between Ni-Cr and BaF2-CaF2 and between Cr2O3 and BaF2-CaF2 at high temperature. To observe this, the two compounds that were being analyzed were mixed in a crucible in varied weight percentages and heated to 1100 C in a furnace for approximately two hours. Then the product was allowed to cool and was then analyzed by X-ray diffraction. Interpretation of the results is in progress.

  3. Computer-based methods for thermodynamic analysis of materials processing

    NASA Astrophysics Data System (ADS)

    Kaufman, L.

    1983-11-01

    The data base previously developed for multicomponent Sialon Ceramic phase diagrams has been expanded to cover Ce2O3, BeO and Y2O3 additions. Isothermal sections in the MgO-Si3N4-SiO2, Y2O3-SiO2-SiN4 and Ce2O3-SiO2-Si3N4 system near 2000 K were computed and compared with limited experimental data. The trajectory of ordering temperatures for A2/B2 and B2/D03 reactions has been computed along the Fe3Si-Fe3Al composition path in the BCC of the Fe-A1-Si system and compared with experiment. The two phase (fcc & bcc) fields for ordered phases in the iron-aluminum-nickel, iron-aluminum-manganese, and the iron-nickel-manganese system between 700 C and 1200 C. Construction of a data base for fluoride systems consisting of systems containing ZrF4 which are employed to synthesize fluoride glasses has been initiated and used to calculate the composition of maximum liquid stability in the ZrF4-LaF3-BaF2 and the ZrF4-BaF2-NaF systems where glass formation has been observed. The calculations have been extended to consider the effects of AlF3 additions on the glass compositions with good results. An analysis of the titanium-carbon-nitrogen system coupling the thermochemical and phase diagram data was performed to calculate the ternary phase diagram and thermochemical properties over a range of temperature.

  4. Thermal expansion measurements on four optical materials from room temperature to 10 k.

    PubMed

    Browder, J S; Ballard, S S

    1972-04-01

    In a continuing study of the physical properties of optical materials, measurements are reported of the linear thermal expansion coefficients for four ir-transmitting materials in the temperature range 10-300 K. A new glass and three polycrystalline materials were investigated by use of a three-terminal capacitance- type dilatometer incorporated into a cryostat. The glass, designated No. 20 by Texas Instruments, Inc., is a nonoxide chalcogenide glass with the composition Ge(33)Se(55)As(l2). One of the po]ycrystalline materials studied, T-12 (Harshaw Chemical Co.), is an optically integral two-phase material composed of equal molar proportions of CaF(2) and BaF(2). The other two materials are microcrystalline, hot-pressed forms of CdS and CdTe (Irtran 6), manufactured by the Eastman Kodak Co. PMID:20119054

  5. Tribological Performance of PM300 Solid Lubricant Bushings for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Striebing, Donald R.; Stanford, Malcolm K.; DellaCorte, Christopher; Rossi, Anne M.

    2007-01-01

    PM300 is a high temperature solid lubricant material produced through conventional powder metallurgy processing. PM300 is a combination of metal binder (NiCr), hardener (Cr2O3) and lubricant (Ag and BaF2/CaF2) phases and is in commercial use in high temperature furnace conveyors. In this paper, the tribological characteristics of PM300 are evaluated using a newly developed bushing test rig in which PM300 bushings are loaded against rotating steel shafts at temperatures from 25 to 650 C. The data shows that friction and wear are low to moderate and that the lubrication performance (friction) improves with increasing temperature. Several alternative PM300 compositions are evaluated which do not contain silver and are targeted at aircraft gas turbine applications in which environmental compatibility of silver is a concern. It is expected that the data resulting from this research will further the commercialization of this technology.

  6. Preliminary Evaluation of PS300: A New Self-Lubricating High Temperature Composite Coating for Use to 800 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, C.; Edmonds, B. J.

    1995-01-01

    This paper introduces PS300, a plasma sprayed, self-lubricating composite coating for use in sliding contacts at temperatures to 800 C. PS300 is a metal bonded chrome oxide coating with silver and BaF2/CaF2 eutectic solid lubricant additives. PS300 is similar to PS200, a chromium carbide based coating, which is currently being investigated for a variety of tribological applications. In pin-on-disk testing up to 650 C, PS300 exhibited comparable friction and wear properties to PS200. The PS300 matrix, which is predominantly chromium oxide rather than chromium carbide, does not require diamond grinding and polishes readily with silicon carbide abrasives greatly reducing manufacturing costs compared to PS200. It is anticipated that PS300 has potential for sliding bearing and seal applications in both aerospace and general industry.

  7. Effects of Humidity On the Flow Characteristics of PS304 Plasma Spray Feedstock Powder Blend

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2002-01-01

    The effects of environmental humidity on the flow characteristics of PS304 feedstock have been investigated. Angular and spherical BaF2-CaF2 powder was fabricated by comminution and by atomization, respectively. The fluorides were added incrementally to the nichrome, chromia, and silver powders to produce PS304 feedstock. The powders were dried in a vacuum oven and cooled to a Tom temperature under dry nitrogen. The flow of the powder was studied from 2 to 100 percent relative humidity (RH) The results suggest that the feedstock flow is slightly degraded with increasing humidity below 66 percent RH and is more affected above 66 percent RH. There was no flow above 88 percent RH. Narrower particle size distributions of the angular fluorides allowed flow up to 95 percent RH. These results offer guidance that enhances the commercial potential for this material system.

  8. Some electronic and magnetic properties of Fluoride ion in Fluoride structure nanocrystals

    NASA Astrophysics Data System (ADS)

    Imtani, Ali Nasir

    2012-01-01

    We have investigated the effects of the environment potential around Fluoride ion on some important electronic and magnetic properties such as dipole polarisability, moment of oscillator strengths S(k) and magnetic susceptibility. The theoretical procedure is based on the variational-perturbation theory with two parameter trial functions incorporated in an ionic model. We estimate these properties in four cases for Fluoride ion; free ion, ion under different potentials, ion in the crystals and ion in nanocrystal, CdF2, CaF2, PbF2, SrF2 and BaF2. Our results indicate that these properties vary with ion environments and the free state of Fluoride ion has higher values and there is linearity behaviour of these properties with lattice constant. For Fluoride ion in nanocrystal, we have found that there is an extra parameter that can also affect the dipole polarisability, the number of ions in the structure.

  9. Patterning of insulating surfaces by electronic excitation

    NASA Astrophysics Data System (ADS)

    Akcöltekin, S.; Akcöltekin, E.; Roll, T.; Lebius, H.; Schleberger, M.

    2009-05-01

    The interaction of swift heavy ions with any material is governed by a strong electronic excitation. In insulators this often leads to permanent modifications. We have irradiated various insulating materials (SrTiO3,TiO2,Al2O3,CaF2,SrF2,BaF2,andLiF) with swift heavy ions and have studied the irradiated surfaces by means of scanning force microscopy. For all materials used in this study we find one nanosized hillock per incident ion if the beam is oriented perpendicular with respect to the surface. Under oblique angles we find elongated chains of discontinuous nanodots on all crystalline materials investigated here.

  10. Ceramic planar waveguide structures for amplifiers and lasers

    NASA Astrophysics Data System (ADS)

    Konyushkin, V. A.; Nakladov, A. N.; Konyushkin, D. V.; Doroshenko, Maxim E.; Osiko, Vyacheslav V.; Karasik, Aleksandr Ya

    2013-01-01

    Ceramic and crystalline weakly guiding optical fibres with the core - cladding refractive index difference of 10-2 - 10-4 are fabricated by a hot pressing method. The waveguides with one or several cores for operation in the spectral range 0.2 - 5 μm are produced. The waveguides are based on CaF2, SrF2, and BaF2 ceramics and crystals and their solid solutions doped with trivalent Pr, Nd, Tb, Dy, Yb, Ho, Er, and Tm ions, as well as on LiF ceramics and crystals with colour centres. The first results of investigation of the lasing properties of ceramic SrF2 : NdF waveguides under diode pumping are presented, and the prospects of further investigation are discussed.

  11. Electronic structure of fluorides: general trends for ground and excited state properties

    NASA Astrophysics Data System (ADS)

    Cadelano, E.; Cappellini, G.

    2011-05-01

    The electronic structure of fluorite crystals are studied by means of density functional theory within the local density approximation for the exchange correlation energy. The ground-state electronic properties, which have been calculated for the cubic structures CaF2, SrF2, BaF2, CdF2, HgF2, β-PbF2, using a plane waves expansion of the wave functions, show good comparison with existing experimental data and previous theoretical results. The electronic density of states at the gap region for all the compounds and their energy-band structure have been calculated and compared with the existing data in the literature. General trends for the ground-state parameters, the electronic energy-bands and transition energies for all the fluorides considered are given and discussed in details. Moreover, for the first time results for HgF2 have been presented.

  12. Study of the fluorine content in precursor and Tl-based thin films by resonant nuclear reaction method

    NASA Astrophysics Data System (ADS)

    Jergel, Mi.; Cheang-Wong, J. C.; Rickards, J.; Jergel, Ma.; Chromik, S.; Falcony, C.; Pleceník, A.; Andrade, E.

    2001-05-01

    We prepared thin Tl-based films from Ba-Ca-Cu-(O,F) precursors containing various amount of fluorine. The precursor films, 150-200 nm thick, were deposited on MgO substrates by sequential thermal evaporation of BaF 2, Cu and CaF 2 components. Before thallination, some of these precursors underwent a various degree of an ex-situ vacuum annealing with the aim to remove fluorine from the films. The fluorine content of three types of precursor films (as-deposited, partially annealed, fully annealed) was investigated by the resonant nuclear reaction method. Precursors were then thallinated and the amount of fluorine in superconducting films was measured again. Besides, films were characterized by resistance vs. temperature measurements and by X-ray diffraction (Bragg-Brentano and grazing incidence geometry) as well as by Rutherford back-scattering spectrometry (chemical composition). Results of these investigations are reported.

  13. Fluorescence and phosphorescence of photomultiplier window materials under electron irradiation

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Bredekamp, J. H.

    1974-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation were investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV grade, optical grade, and electron-irradiated samples of MGF2 and LiF, CaF2, BaF2, sapphire, fused silica, and UV transmitting glasses were obtained over the spectral range of 200 nm to 650 nm. Fluorescence yields, expressed as the number of counts in a solid angle of 2 pi steradian per 1MeV of incident electron energy deposited, were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively.

  14. The Cryogenic, High-Accuracy, Refraction Measuring System (CHARMS): A New Facility for Cryogenic Infrared through Vacuum Far-Ultraviolet Refractive Index Measurements

    NASA Technical Reports Server (NTRS)

    Frey, Bradley J.; Leviton, Douglas B.

    2004-01-01

    The optical designs of future NASA infrared (IR) missions and instruments, such as the James Webb Space Telescope's (JWST) Near-Mixed Camera (NIRCam), will rely on accurate knowledge of the index of refraction of various IR optical materials at cryogenic temperatures. To meet this need, we have developed a Cryogenic, High-Accuracy Refraction Measuring System (CHARMS). In this paper we discuss the completion of the design and construction of CHARMS as well as the engineering details that constrained the final design and hardware implementation. In addition, we will present our first light, cryogenic, IR index of refraction data for LiF, BaF2, and CaF2, and compare our results to previously published data for these materials.

  15. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1998-01-01

    This paper describes the friction and wear performance of PS304, a modified chrome oxide based coating, for foil gas bearings. PS304 contains 60 wt% NiCr binder, 20 wt% Cr2O3 hardener, and 10 wt% each Ag, and BaF2/CaF2 lubricants. For evaluation, the coating is plasma spray deposited onto test journals which are slid against a superalloy partial arc foil bearing. The test load was 10 KPa (1.5 psi) and the bearings were run under start/stop cyclic conditions. The data show good wear performance of the bearing, especially at temperatures above 25 deg. C. Bearing friction was moderate (micron approx. or equal to 0.4) over the entire temperature range. Based upon the results obtained, the PS304 coating has promise for high temperature, oil-free turbomachinery applications.

  16. Far Ultraviolet Refractive Index of Optical Materials for Solar Blind Channel (SBC) Filters for HST Advanced Camera for Surveys

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.; Madison, Timothy J.; Petrone, Peter

    1998-01-01

    Refractive index measurements using the minimum deviation method have been carried out for prisms of a variety of far ultraviolet optical materials used in the manufacture of Solar Blind Channel (SBC) filters for the HST Advanced Camera for Surveys (ACS). Some of the materials measured are gaining popularity in a variety of high technology applications including high power excimer lasers and advanced microlithography optics operating in a wavelength region where high quality knowledge of optical material properties is sparse. Our measurements are of unusually high accuracy and precision for this wavelength region owing to advanced instrumentation in the large vacuum chamber of the Diffraction Grating Evaluation Facility (DGEF) at Goddard Space Flight Center (GSFC). Index values for CaF2, BaF2, LiF, and far ultraviolet grades of synthetic sapphire and synthetic fused silica are reported and compared with values from the literature.

  17. Density Measurement of Molten Alkaline-Earth Fluorides Using Archimedean Dual-Sinker Method

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Yanagase, Kei-ichi; Anbo, Yusuke; Aono, Masahiro; Hoshino, Yosuke; Sato, Yuzuru

    2015-11-01

    The densities of molten alkaline-earth fluorides ({MgF}2, {CaF}2, {SrF}2, and {BaF}2) were measured over the temperature range from 1526 K to 1873 K at ambient pressure using an Archimedean dual-sinker densitometer designed and set up by the authors. The volume difference between two sinkers was precisely determined by considering the wetting conditions between tungsten sinkers and water; appropriate experimental techniques were developed. The wetting condition became unstable when the sinkers were being moved for immersion in water, because the sinkers were moved in a direction that increased the contact angle. The wetting condition became stable when the sinkers were pulled up from the water, because the sinkers were moved in a direction that decreased the contact angle. The force exerted by the surface tension was efficiently canceled, and the volume difference became constant when the sinkers were pulled up. In this study, the total uncertainty was about 0.3 % at a maximum. The densities measured at high temperatures showed good linearity, with small scatter, over a wide temperature range. The densities and molar volumes increased in the following order: {MgF}2, {CaF}2, {SrF}2, and {BaF}2. The thermal-expansion coefficients showed anomalous behavior. The large thermal-expansion coefficient of {MgF}2 is attributed to a decrease in the cohesive force as a result of a partial loss of the coulombic force, because of the high charge density.

  18. Commercial Production of Heavy Metal Fluoride Glass Fiber in Space

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  19. Commercial production of heavy metal fluoride glass fiber in space

    NASA Astrophysics Data System (ADS)

    Tucker, Dennis S.; Workman, Gary L.; Smith, Guy A.

    1998-01-01

    International Space Station Alpha (ISSA) will provide a platform not only for materials research but also a possible means to produce products in space which cannot be easily produced on the ground. Some products may even be superior to those now produced in unit gravity due to the lack of gravity induced convection effects. Our research with ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN glass) has shown that gravity does indeed play a major role in the crystallization behavior of this material. At the present time ZBLAN is being produced on earth in fiber optic form for use in surgical lasers and fiber optic lasers among other applications. High attenuation coefficients, however, have kept this material from being used in other applications such as long haul data transmission links. The high attenuation coefficients are due to impurities which can be removed through improved processing techniques and crystals which can only be removed or prevented from forming by processing in a reduced gravity environment.

  20. ZBLAN Microgravity Study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Smith, Guy A.; OBrien, Sue; Adcock, Leonard

    1995-01-01

    One of the greatest obstacles with the fluorozirconate ZBLAN (ZrF4-BaF2-LaF3-AIF3-NaF) is the problem of devitrification. Fluoride glasses have a narrow working range and the viscosity is a strong function of temperature. Rates of nucleation and growth of crystals in the glass depend on the viscosity, making these glasses unstable and prone to crystallization. The viscosity of ZBLAN at the drawing temperature is low, usually between two to five poise, so it is difficult to obtain fibers from their preform melts without crystallization. The preforms usually contain heterogeneous nuclei which grow into microcrystallites above the glass transition temperature, T(g). Since microcrystallites in an optical fiber cause extrinsic light scattering losses of the optical signal, fiber drawing must be completed in a short time to minimize the generation of light scattering centers. To keep these losses to a minimum and to fabricate low scattering loss fibers and other optical components, this research deals with the possibility of minimizing crystallite formation by removing the gravitational influence of solutal segregation of the ZBLAN elements. This report reviews the early work on the KC-135 aircraft, the development of the ZBLAN Rocket Experiment, preparations at the White Sands Missile Range, analysis of the flight and ground test results, lessons learned and future experimentation.

  1. Rare-earth doped colour tuneable up-conversion ZBLAN phosphor for enhancing photocatalysis

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Sierra, M.; Redondas, A.; Ruggiero, E.; Salassa, L.; Borges, M. E.; Esparza, P.

    2015-03-01

    Rare-earth doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride glasses have been successfully synthesized showing outstanding UV-VIS up-conversion luminescence of Er3+ and Tm3+, sensitized by Yb3+ ions, under near-infrared excitation at 980 nm. The ratio between blue, green and red up-conversion emission bands can be adjusted by varying the pump power density of the incident infrared radiation, resulting in a controlled tuneability of the overall emitting colour from greenish to yellowish. Additionally, the observed high energy UV intense up-conversion emissions are suitable to enhance photocatalytic activity of main water-splitting semiconductor electrodes (such as TiO2) used in sustainable production of hydrogen. Photocatalysis and photolysis degradation of methylene blue in water under sun-like irradiation using benchmark photocatalyst (TiO2 Degussa P25) have been boosted by 20% and by a factor of 2.5 respectively, due to the enhancement of UV radiation that reaches the TiO2 particles by the addition of ZBLAN powder into a slurry-type photo-reactor. Hence, up-conversion ZBLAN phosphors contribute to demonstrate the possibility of transforming the incoming infrared radiation into the UV region needed to bridge the gap of photocatalytic semiconductors.

  2. Intervalence charge transfer luminescence: Interplay between anomalous and 5d - 4f emissions in Yb-doped fluorite-type crystals

    NASA Astrophysics Data System (ADS)

    Barandiarán, Zoila; Seijo, Luis

    2014-12-01

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb2+-Yb3+ mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb2+-doped CaF2 and SrF2, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb2+-Yb3+ mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f14-1A1g→ 4f13(2F7/2)5deg-1T1u absorption in the Yb2+ part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb3+ moiety is in the higher 4f13(2F5/2) multiplet. The Yb2+-Yb3+ → Yb3+-Yb2+ IVCT emission consists of an Yb2+ 5deg → Yb3+ 4f7/2 charge transfer accompanied by a 4f7/2 → 4f5/2 deexcitation within the Yb2+ 4f13 subshell: [2F5/25deg,2F7/2] → [2F7/2,4f14]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF2, SrF2, BaF2, and SrCl2: the presence of IVCT luminescence in Yb-doped CaF2 and SrF2; its coexistence with regular 5d-4f emission in SrF2; its absence in BaF2 and SrCl2; the quenching of all emissions in BaF2; and the presence of additional 5d-4f emissions in SrCl2 which are absent in SrF2. They also allow to interpret and reproduce recent experiments on transient photoluminescence enhancement in Yb2+-doped CaF2 and SrF2, the appearance of Yb2+ 4f-5d absorption bands in the excitation spectra of the IR Yb3+ emission in partly reduced CaF2:Yb3+ samples, and to identify the broadband observed in the excitation spectrum of the so far called anomalous emission of SrF2:Yb2+ as an IVCT absorption, which corresponds to an Yb2+ 4f5/2 → Yb3+ 4f7/2 electron transfer.

  3. Intervalence charge transfer luminescence: interplay between anomalous and 5d - 4f emissions in Yb-doped fluorite-type crystals.

    PubMed

    Barandiarán, Zoila; Seijo, Luis

    2014-12-21

    In this paper, we report the existence of intervalence charge transfer (IVCT) luminescence in Yb-doped fluorite-type crystals associated with Yb(2+)-Yb(3+) mixed valence pairs. By means of embedded cluster, wave function theory ab initio calculations, we show that the widely studied, very broad band, anomalous emission of Yb(2+)-doped CaF2 and SrF2, usually associated with impurity-trapped excitons, is, rather, an IVCT luminescence associated with Yb(2+)-Yb(3+) mixed valence pairs. The IVCT luminescence is very efficiently excited by a two-photon upconversion mechanism where each photon provokes the same strong 4f(14)-1A1g→ 4f(13)((2)F7/2)5deg-1T1u absorption in the Yb(2+) part of the pair: the first one, from the pair ground state; the second one, from an excited state of the pair whose Yb(3+) moiety is in the higher 4f(13)((2)F5/2) multiplet. The Yb(2+)-Yb(3+) → Yb(3+)-Yb(2+) IVCT emission consists of an Yb(2+) 5deg → Yb(3+) 4f7/2 charge transfer accompanied by a 4f7/2 → 4f5/2 deexcitation within the Yb(2+) 4f(13) subshell: [(2)F5/25deg,(2)F7/2] → [(2)F7/2,4f(14)]. The IVCT vertical transition leaves the oxidized and reduced moieties of the pair after electron transfer very far from their equilibrium structures; this explains the unexpectedly large band width of the emission band and its low peak energy, because the large reorganization energies are subtracted from the normal emission. The IVCT energy diagrams resulting from the quantum mechanical calculations explain the different luminescent properties of Yb-doped CaF2, SrF2, BaF2, and SrCl2: the presence of IVCT luminescence in Yb-doped CaF2 and SrF2; its coexistence with regular 5d-4f emission in SrF2; its absence in BaF2 and SrCl2; the quenching of all emissions in BaF2; and the presence of additional 5d-4f emissions in SrCl2 which are absent in SrF2. They also allow to interpret and reproduce recent experiments on transient photoluminescence enhancement in Yb(2+)-doped CaF2 and SrF2, the appearance of Yb(2+) 4f-5d absorption bands in the excitation spectra of the IR Yb(3+) emission in partly reduced CaF2:Yb(3+) samples, and to identify the broadband observed in the excitation spectrum of the so far called anomalous emission of SrF2:Yb(2+) as an IVCT absorption, which corresponds to an Yb(2+) 4f5/2 → Yb(3+) 4f7/2 electron transfer. PMID:25527954

  4. Cold shock induces apoptosis of dorsal root ganglion neurons plated on infrared windows.

    PubMed

    Aboualizadeh, Ebrahim; Mattson, Eric C; O'Hara, Crystal L; Smith, Amanda K; Stucky, Cheryl L; Hirschmugl, Carol J

    2015-06-21

    The chemical status of live sensory neurons is accessible with infrared microspectroscopy of appropriately prepared cells. In this paper, individual dorsal root ganglion (DRG) neurons have been prepared with two different protocols, and plated on glass cover slips, BaF2 and CaF2 substrates. The first protocol exposes the intact DRGs to 4 °C for between 20-30 minutes before dissociating individual neurons and plating 2 hours later. The second protocol maintains the neurons at 23 °C for the entire duration of the sample preparation. The visual appearance of the neurons is similar. The viability was assessed by means of trypan blue exclusion method to determine the viability of the neurons. The neurons prepared under the first protocol (cold exposure) and plated on BaF2 reveal a distinct chemical signature and chemical distribution that is different from the other sample preparations described in the paper. Importantly, results for other sample preparation methods, using various substrates and temperature protocols, when compared across the overlapping spectral bandwidth, present normal chemical distribution within the neurons. The unusual chemically specific spatial variation is dominated by a lack of protein and carbohydrates in the center of the neurons and signatures of unraveling DNA are detected. We suggest that cold shock leads to apoptosis of DRGs, followed by osmotic stress originating from ion gradients across the cell membrane leading to cell lysis. PMID:26000346

  5. Effect of group velocity dispersion on supercontinuum generation and filamentation in transparent solids

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, Jayashree A.; Deshpande, Rucha A.; Nath, Arpita; Dota, Krithika; Mathur, Deepak; Dharmadhikari, Aditya K.

    2014-10-01

    We experimentally investigate the spectral extent and spectral profile of the supercontinuum (SC) generated in transparent solids: barium fluoride, calcium fluoride, and fused silica upon irradiation by intense femtosecond-long pulses of 800, 1,380, and 2,200 nm light. These wavelengths correspond to the normal and anomalous group velocity dispersion (GVD) regimes in fused silica calcium fluoride and barium fluoride. We observe an isolated (anti-Stokes) wing on the blue side most prominently in fused silica but also in CaF2. The SC conversion efficiency is measured for the long wavelengths used in our experiments. We also present results on filamentation in BaF2 in the anomalous GVD regime, including visualization of focusing-refocusing events within the crystal; the size of a single filament is also determined. The 15-photon absorption cross section in BaF2 is deduced to be 6.5 × 10-190 cm30 W-15 s-1.

  6. Interfacial chemical reaction and multiple gap state formation on three layer cathode in organic light-emitting diode: Ca/BaF2/Alq3

    NASA Astrophysics Data System (ADS)

    Kim, Tae Gun; Lee, Hyunbok; Yi, Yeonjin; Lee, Seung Mi; Kim, Jeong Won

    2015-07-01

    A three layer cathode is a promising stack structure for long lifetime and high efficiency in organic light-emitting diodes. The interfacial chemical reactions and their effects on electronic structures for alkaline-earth metal (Ca, Ba)/Alq3 [tris(8-hydroxyquinolinato)aluminum] and Ca/BaF2/Alq3 are investigated using in-situ X-ray and ultraviolet photoelectron spectroscopy, as well as molecular model calculation. The BaF2 interlayer initially prevents direct contact between Alq3 and the reactive Ca metal, but it is dissociated into Ba and CaF2 by the addition of Ca. As the Ca thickness increases, the Ca penetrates the interlayer to directly participate in the reaction with the underlying Alq3. This series of chemical reactions takes place irrespective of the BaF2 buffer layer thickness as long as the Ca overlayer thickness is sufficient. The interface reaction between the alkaline-earth metal and Alq3 generates two energetically separated gap states in a sequential manner. This phenomenon is explained by step-by-step charge transfer from the alkaline-earth metal to the lowest unoccupied molecular orbital states of Alq3, forming new occupied states below the Fermi level.

  7. Nanosecond UV laser damage and ablation from fluoride crystals polished by different techniques

    NASA Astrophysics Data System (ADS)

    Reichling, M.; Sils, J.; Johansen, H.; Matthias, E.

    Ablation thresholds and damage behavior of cleaved and polished surfaces of CaF2, BaF2, LiF and MgF2 subjected to single-shot irradiation with 248 nm/14 ns laser pulses have been investigated using the photoacoustic mirage technique and scanning electron microscopy. For CaF2, standard polishing yields an ablation threshold of typically 20 J/cm2. When the surface is polished chemo-mechanically, the threshold can be raised to 43 J/cm2, while polishing by diamond turning leads to intermediate values around 30 J/cm2. Cleaved surfaces possess no well-defined damage threshold. When comparing different fluoride surfaces prepared by diamond turning it is found that the damage resistivity roughly scales with the band gap. We find an ablation threshold of 40 J/cm2 for diamond turned LiF while the MgF2 surface can withstand a fluence of more than 60 J/cm2 without damage. The damage topography of conventionally polished surfaces shows flaky ablation across the laser-heated area with cracks along the cleavage planes. No ablation is observed in the case of chemo- mechanical polishing; only a few cracks appear. Diamond turned surfaces show small optical absorption but mostly cracks and ablation of flakes and, in some cases, severe damage in the form of craters larger than the irradiated area. The origin of such different damage behavior is discussed.

  8. Static evaluation of surface coatings for compliant gas bearings in an oxidizing atmosphere to 650 C

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Gray, S.

    1978-01-01

    Hard wear-resistant coatings and soft low shear strength coatings were developed for an air-lubricated compliant journal bearing for a future automotive gas turbine engine. The coatings were expected to function in either 540 or 650 C ambient. Soft lubricant coatings were generally limited in temperature. Therefore emphasis was on the hard wear-resistant coatings. The coating materials covered were TiC, B4C, Cr3C2, WC, SiC, CrB2, TiB2, Cr2O3, Al2O3, Si3N4, Tribaloy 800, CaF2, CaF2-BaF2 eutectic, Ni-Co, silver, CdO-graphite and proprietary compounds. The coatings on test coupons were subjected to static oven screening tests. The test consisted of exposure of material samples in an oven for 300 h at the maximum temperature (540 or 650 C) and ten temperature cycles from room temperature to the maximum service temperature. On the basis of the specimen examinations the following coatings were recommended for future wear tests: TiC (sputtered), Cr2O3 (sputtered), Si3N4 (sputtered), CdO and graphite (fused), Kaman DES (a proprietary coating), CrB2 (plasma sprayed), Cr3C2 (detonation gun) and NASA PS-106 (plasma sprayed).

  9. Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF m - RF n ( m < n ≤ 4) systems

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.

    2012-05-01

    The manifestation of gross nonstoichiometry in MF m - RF n systems ( m < n ≤ 4) has been studied. Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state (˜200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences ( m ≠ n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF2) and tysonite (LaF3). Systems of fluorides of 27 elements ( M 1+ = Na, K; M 2+ = Ca, Sr, Ba, Cd, Pb; R 3+ = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R 4+ = Zr, Hf, Th, U) are selected; nonstoichiometric M 1 - x R x F m(1 - x) + nx phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF2 - RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.

  10. Nonstoichiometric fluorides—Solid electrolytes for electrochemical devices: A review

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Sobolev, B. P.

    2007-09-01

    The solid electrolytes with fluorine-ion conductivity that were revealed during the analysis of the phase diagrams of the MF m - RF n systems within the program of search for new multicomponent fluoride crystalline materials carried out at the Shubnikov Institute of Crystallography, Russian Academy of Sciences, are described. The most widespread and promising materials are the nonstoichiometric phases with fluorite (CaF2) and tysonite (LaF3) structures, which are formed in the MF2- RF3 systems ( M = Ca, Sr, Ba, Cd, or Pb; R = Sc, Y, or La-Lu). These phases have superionic fluorine conductivity due to the anion sublattice disorder. The ionic conductivity of crystals of both structure types has been studied and the limits of its change with composition and temperature are determined. Nonstoichiometric fluorides are used as solid electrolytes in chemical sensors, fluorine sources, and batteries. The prospects of the use of fluorine-ion conductors in solid-state electrochemical devices, principles of their operation, and the problems of optimization of their composition are discussed.

  11. A method for compensating the polarization aberration of projection optics in immersion lithography

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Li, Yanqiu; Liu, Lihui; Han, Chunying; Liu, Xiaolin

    2014-08-01

    As the numerical aperture (NA) of 193nm immersion lithography projection optics (PO) increasing, polarization aberration (PA) leads to image quality degradation seriously. PA induced by large incident angle of light, film coatings and intrinsic birefringence of lens materials cannot be ignored. An effective method for PA compensation is to adjust lens position in PO. However, this method is complicated. Therefore, in this paper, an easy and feasible PA compensation method is proposed: for ArF lithographic PO with hyper NA (NA=1.2), which is designed by our laboratory, the PA-induced critical dimension error (CDE) can be effectively reduced by optimizing illumination source partial coherent factor σout. In addition, the basic idea of our method to suppress pattern placement error (PE) is to adopt anti-reflection (AR) multi-layers MgF2/LaF3/MgF2 and calcium fluoride CaF2 of [111] crystal axes. Our simulation results reveal that the proposed method can effectively and quantificationally compensate large PA in the optics. In particular, our method suppresses the dynamic range of CDE from -12.7nm ~ +4.3nm to -1.1nm ~ +1.2nm, while keeping PE at an acceptable level.

  12. Near-infrared photocatalysts of BiVO4/CaF2:Er3+, Tm3+, Yb3+ with enhanced upconversion properties

    NASA Astrophysics Data System (ADS)

    Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Gu, Lin; Miao, Chen; Yuan, Haiping; Shan, Aidang

    2014-01-01

    Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO).Upconversion photocatalysts have the potential to absorb the near-infrared (NIR) light in solar energy and improve the photocatalytic performance. A hierarchical upconversion photocatalyst of BiVO4 (BVO)/CaF2:Er3+, Tm3+, Yb3+ (CF) combined with the narrow-band semiconductor of BVO and the luminescence agent of CF to enhance upconversion properties was synthesized via the hydrothermal method. The CF particles were deposited homogeneously on the surface of the BVO/CF composite with regular dendritic structure, which led to efficient upconversion emissions. The upconversion emission intensity of the BVO/CF composite was 8 times higher than that of pure CF, through tailoring the crystal symmetry of lanthanide ions by Bi3+ ions. The upconverted ultraviolet (361 and 379 nm), violet (408 nm), and blue (485 nm) light was able to excite BVO for photocatalysis in BVO/CF under NIR irradiation, which improved the degradation rate of methyl orange (MO). Electronic supplementary information (ESI) available: Additional tables and figures. See DOI: 10.1039/c3nr05266d

  13. Spectroscopic and laser properties of Tm3+ optical centers in CaF2 crystal under 795?nm diode laser excitation

    NASA Astrophysics Data System (ADS)

    Doroshenko, M. E.; Alimov, O. K.; Papashvili, A. G.; Martynova, K. A.; Konyushkin, V. A.; Nakladov, A. N.; Osiko, V. V.

    2015-12-01

    The dynamics of Tm3+ optical center formation with increasing thulium concentration and the influence of different optical centers on the fluorescence and laser properties of the 2 ?m 3F43H6 transition under ~795?nm laser diode excitation is studied.

  14. 4.5 W mid-infrared supercontinuum generation in a ZBLAN fiber pumped by a Q-switched mode-locked Tm3+- doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kneis, C.; Donelan, B.; Berrou, A.; Manek-Hönninger, I.; Cadier, B.; Robin, T.; Poulain, M.; Joulain, F.; Eichhorn, M.; Kieleck, C.

    2015-02-01

    The generation of mid-infrared (mid-IR) supercontinuum (SC) radiation, ranging from 2 - 5 μm, is subject of intense research due to its wide range of applications. A very popular host media for mid-IR SC generation are soft glass fibers owing to their low-loss transmission in the mid-IR wavelength regime, particularly fluoride fibers are very attractive for high-power operation. In this research study, a diode-pumped Q-switched mode-locked (QML) thulium (Tm3+)-doped double-clad silica fiber laser is used to pump a ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fiber for mid-IR SC generation. The QML regime of the fiber laser is actively generated by two acousto-optic modulators. The Tm3+-fiber laser provided up to 23.5 W (26 W) of average output power in QML (continuous wave) regime with a slope efficiency of 36 % (32 %). The measured beam quality has been close to the diffraction-limit in QML regime. The system delivered mode-locked pulses with a duration of 7.5 ps, measured with a commercial autocorrelator system, at a repetition rate of 46 MHz. The Q-switched envelopes had a width between 50 and 150 ns depending on the output power level and the adjustable repetition rate. Mid-IR SC with an average output power in all spectral bands of 4.5 W have been achieved with more than 3 W/ 1.7 W/ 1 W/ 0.36 W after a long-wave-pass filter with a 3 dB-edge at 2.15 μm/ 2.65 μm/ 3.1 μm/ 3.5 μm.

  15. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber pumped by amplified picosecond pulses at 2 ?m

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Liu, Jiang; Shi, Hongxing; Tan, Fangzhou; Jiang, Yijian; Wang, Pu

    2015-03-01

    We report high power all fiber mid-infrared (mid-IR) supercontinuum (SC) generation in a single-mode ZBLAN (ZrF4- BaF2-LaF3-AlF3-NaF) fiber with up to 21.8 W average output power from 1.9 to beyond 3.8 ?m pumped by amplified picosecond pulses from a master oscillator power amplifier (MOPA) based on small-core single-mode thulium-doped fiber (TDF) with injected seed pulse width of 24 ps and repetition of 93.6 MHz at 1963 nm. The optical-optical conversion efficiency from the 793 nm pump laser of the last stage thulium-doped fiber amplifier (TDFA) to mid-IR SC output is 17%. It is, to the best of our knowledge, the highest average power mid-IR SC generation in a ZBLAN fiber to date. In addition, a noise-like fiber oscillator based on a nonlinear loop mirror (NOLM) with wavepacket width of ~1.4 ns and repetition rate of 3.36 MHz at 1966 nm is also used as a seed of the MOPA for mid-IR SC generation in the ZBLAN fiber. At last, a mid-IR SC from 1.9 to beyond 3.6 ?m with average output power of 14.3W, which is limited by injected noise-like pulses power, is generated. The optical-optical conversion efficiency from the 793 nm pump laser of the last stage TDFA to mid-IR SC output is 14.9%. This proves the amplified noise-like pulses are also appropriate for high power mid-IR SC generation in the ZBLAN fiber.

  16. Mid-infrared supercontinuum laser system and its biomedical applications

    NASA Astrophysics Data System (ADS)

    Xia, Chenan

    A mid-infrared supercontinuum (SC) laser system is developed, which provides a continuous spectrum from ˜0.8 to ˜4.5 microm and is pumped by amplified nanosecond laser diode pulses. The SC laser uses ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fluoride fibers. The SC light source is all-fiber-integrated with no moving parts, operates at room temperature, and eliminates the need of mode-locked lasers. The time-averaged power of the SC is scalable up to 10.5 W by amplifying the pump pulses using cladding-pumped erbium/ytterbium co-doped fiber power amplifiers. SC has also been generated in silica fibers with spectrum extending to ˜3 microm and an average power up to 5.3 W. The SC laser system comprises an all-fiber-spliced high power pump laser system followed by nonlinear optical generation fibers, i.e. ZBLAN and silica fibers. The SC generation is initiated by breaking up the nanosecond diode pulses into femtosecond pulses through modulation instability, and the spectrum is then broadened through the interplay of self-phase modulation, parametric four-wave mixing, and stimulated Raman scattering. Theoretical simulations have been carried out to study the SC generation mechanism by numerically solving the generalized nonlinear Schrodinger equation. The SC long wavelength edge is limited by the intrinsic fiber material absorption, i.e. ˜3 microm in silica fibers and ˜4.5 microm in ZBLAN fibers, respectively. Mid-infrared absorption spectroscopy of the constituents of normal artery, e.g. endothelial cells and smooth muscle cells, and atherosclerotic plaques, e.g. adipose tissue, macrophages and foam cells, and selective ablation of lipid-rich tissues have also been demonstrated using the SC laser system.

  17. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  18. Up-conversion emission tuning in triply-doped Yb3+/Tm3+/Er3+ novel fluoro-phosphate glass and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Ledemi, Yannick; Trudel, Andrée.-Anne; Rivera, Victor A. G.; Messaddeq, Younes

    2014-03-01

    New Yb3+, Er3+ and Tm3+ triply doped fluoro-phosphate glasses belonging to the system NaPO3-YF3-BaF2-CaF2 have been prepared by the classical melt-casting technique. Glasses containing up to 10 wt.% of rare-earth ions fluorides have been obtained and characterized by using differential scanning calorimetry (DSC), UV-visible-near-infrared spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and optically homogeneous glass-ceramics have been reproducibly obtained by appropriate heat treatment in view to manage the red, green and blue emissions upon 975 nm laser excitation. According to the applied thermal heat-treatment, a large enhancement of intensity of the up-conversion emission - from 10 to 160 times higher - has been achieved in the glassceramics compared to that of glasses, suggesting incorporation of the rare-earth ions into the crystalline phase. Furthermore, a large range of color rendering has been observed in these materials by controlling the laser excitation power and material crystallization rate. Time-resolved luminescence experiments as well as X-ray diffractometry and scanning electron microscopy techniques have been employed in order to understand and correlate the multicolor emission changes to the crystallization behavior of this material. A progressive phase transformation of the fluorite-type CaF2-based nanocrystals initially generated was observed along with increasing heat-treatment time, thus modifying the rare earth ions spectroscopic features.

  19. Friction and Wear Characteristics of a Modified Composite Solid Lubricant Plasma Spray Coating

    NASA Technical Reports Server (NTRS)

    Stanford, M. K.; DellaCorte, C.

    2004-01-01

    LCR304 is a solid lubricant coating composed of Ni-10Cr, Cr2O3, BaF2-CaF2 and Ag and developed for dimensional stability in high temperature air. This coating is a modification of PS304, which differs in that the Ni-Cr constituent contains 20wt% Cr. The tribological characteristics of LCR304 were evaluated by pin-on-disk and foil air bearing rig testing from 25 to 650 C and compared to previous test results with PS304. For both tests, the friction coefficient decreased as temperature increased from 25 to 650 C. Wear generally decreased with increasing temperature for all pin-on-disk tests. LCR304 coated components produced the least wear of Inconel X-750 counterface materials at 427 and 650 C. These results indicate that the LCR304 coating has potential as a replacement for PS304 in, for example, low cycle (minimum wear) applications where dimensional stability is imperative.

  20. Crystal structure of the Fe-member of usovite.

    PubMed

    Weil, Matthias

    2015-06-01

    Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II) dialuminium tetra-deca-fluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14), with Fe(2+) cations replacing the Mg(2+) cations. The principal building units are distorted [CaF8] square-anti-prisms (point group symmetry 2), [FeF6] octa-hedra (point group symmetry -1) and [AlF6] octa-hedra that are condensed into undulating (2) ∞[CaFeAl2F14](4-) layers parallel (100). The Ba(2+) cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), versus underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba2Ca1.310 (15)Fe0.690 (15)Al2F14 [model (I)] and Ba2CaFe0.90 (1)Al2F14 [model (II)]. PMID:26090139

  1. Composition optimization of chromium carbide based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1987-01-01

    A test program to determine the optimum composition of chromium carbide based solid lubricant coatings for compliant gas bearings is described. The friction and wear properties of the coatings are evaluated using a foil gas bearing test apparatus. The various coatings were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized nickel-chromium alloy foils. The test bearings were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. The bearings were tested for 9000 start/stop cycles or until the specimen wear reached a predetermined failure level. In general, the addition of silver and eutectic to the chromium carbide base stock significantly reduced foil wear and increased journal coating wear. The optimum coating composition, PS212 (70 wt% metal bonded Cr3C2, 15 wt% Ag, 15% BaF2/CaF2 eutectic), reduced foil wear by a factor of two and displayed coating wear well within acceptable limits. The load capacity of the bearing using the plasma-sprayed coating prior to and after a run-in period was ascertained and compared to polished Inconel 718 specimens.

  2. Tribological composition optimization of chromium-carbide-based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.

  3. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  4. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3

    NASA Astrophysics Data System (ADS)

    Huang, Feifei; Ma, Yaoyao; Li, Weiwei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    AlF3-based glasses (AlF3-YF3-CaF2-BaF2-SrF2-MgF2) with enhanced thermal and chemical stability were synthesized and compared with the well-known fluorozirconate glass (ZBLAN). The 2.7 μm mid-infrared emission in the AlF3-based glasses was also investigated through the absorption and emission spectra. Both the temperature of glass transition and the characteristic temperatures (ΔT, Hr, kgl) of the fluoroaluminate glasses were much larger than those of the ZBLAN glasses. The corrosion phenomenon can be observed by naked-eye, and the transmittance dropped dramatically (0% at 3 μm) when the ZBLAN glass was placed into distilled water. However, the AlF3-based glass was relatively stable. The fluoroaluminate glasses possessed large branching ratio (20%) along with the emission cross section (9.4×10-21 cm-2) of the Er3+:4I11/2-->4I13/2 transition. Meanwhile, the enhanced 2.7 μm emission in highly Er3+-doped AYF glass was obtained. Therefore, these results showed that this kind of fluoride glass has a promising application for solid state lasers at 3 μm.

  5. The influence of TeO2 on thermal stability and 1.53 μm spectroscopic properties in Er(3+) doped oxyfluorite glasses.

    PubMed

    Wang, Fengchao; Cai, Muzhi; Chen, Rong; Jing, Xufeng; Li, Bingpeng; Tian, Ying; Zhang, Junjie; Xu, Shiqing

    2015-11-01

    In this work, the thermal and spectroscopic properties of Er(3+)-doped oxyfluorite glass based on AMCSBYT (AlF3-MgF2-CaF2-SrF2-BaF2-YF3-TeO2) system for different TeO2 concentrations from 6 to 21 mol% is reported. After adding a suitable content of TeO2, the thermal ability of glass improves significantly whose ΔT and S can reach to 118 °C and 4.47, respectively. The stimulated emission cross-section reaches to 7.80×10(-21) cm(2) and the fluorescence lifetime is 12.18 ms. At the same time, the bandwidth characteristics reach to 46.41×10(-21) cm(2) nm and the gain performance is 63.73×10(-21) cm(2) ms. These results show that the optical performances of this oxyfluorite glass are very well. Hence, AMCSBYT glass with superior performances might be a useful material for applications in optical amplifier around 1.53 μm. PMID:26037501

  6. Thermal conductivity of single crystals with a fluorite structure: Cadmium fluoride

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Fedorov, P. P.; Osiko, V. V.

    2010-03-01

    The thermal conductivity of Ca, Sr, Ba, and Cd difluoride single crystals and the CdF2 samples doped by 3 mol % NdF3, 15 mol % HoF3, and 10 mol % ErF3 has been studied using the method of steady longitudinal heat flow in the temperature range 50-300 K. The thermal conductivity of the matrices of these compounds decreases in the order CaF2-SrF2-BaF2-CdF2. The temperature dependences of the phonon mean free path for these crystals have been calculated from experimental data and exhibit different behaviors. It has been assumed that the intense phonon scattering observed in the undoped CdF2 sample is caused by the specific features of the processes of phonon-phonon scattering. The formation of heterovalent solid solutions of cadmium difluoride and rare-earth trifluorides is accompanied by a drastic decrease in the thermal conductivity and a change in its character from that typical of dielectric single crystals to that typical of glassy materials.

  7. X-Ray Absorption Spectroscopy and Computer Modelling Study of Nanocrystalline Binary Alkaline Earth Fluorides

    NASA Astrophysics Data System (ADS)

    Chadwick, A. V.; Düvel, A.; Heitjans, P.; Pickup, D. M.; Ramos, S.; Sayle, D. C.; Sayle, T. X. T.

    2015-04-01

    Nanocrystalline samples of Ba1-xCaxF2 prepared by high-energy milling show an unusually high F- ion conductivity, which exhibit a maximum in the magnitude and a minimum in the activation energy at x = 0.5. Here, we report an X-ray absorption spectroscopy (XAS) at the Ca and Sr K edges and the Ba L3 edge and a molecular dynamics (MD) simulation study of the pure and mixed fluorides. The XAS measurements on the pure binary fluorides, CaF2, SrF2 and BaF2 show that high-energy ball-milling produces very little amorphous material, in contrast to the results for ball milled oxides. XAS measurements of Ba1-xCaxF2 reveal that for 0 < x <1 there is considerable disorder in the local environments of the cations which is highest for x = 0.5. Hence the maximum in the conductivity corresponds to the composition with the maximum level of local disorder. The MD calculations also show a highly disordered structure consistent with the XAS results and similarly showing maximum disorder at x = 0.5.

  8. 2.7 μm emission of high thermally and chemically durable glasses based on AlF3.

    PubMed

    Huang, Feifei; Ma, Yaoyao; Li, Weiwei; Liu, Xueqiang; Hu, Lili; Chen, Danping

    2014-01-01

    AlF3-based glasses (AlF3-YF3-CaF2-BaF2-SrF2-MgF2) with enhanced thermal and chemical stability were synthesized and compared with the well-known fluorozirconate glass (ZBLAN). The 2.7 μm mid-infrared emission in the AlF3-based glasses was also investigated through the absorption and emission spectra. Both the temperature of glass transition and the characteristic temperatures (ΔT, Hr, k(gl)) of the fluoroaluminate glasses were much larger than those of the ZBLAN glasses. The corrosion phenomenon can be observed by naked-eye, and the transmittance dropped dramatically (0% at 3 μm) when the ZBLAN glass was placed into distilled water. However, the AlF3-based glass was relatively stable. The fluoroaluminate glasses possessed large branching ratio (20%) along with the emission cross section (9.4×10(-21) cm(-2)) of the Er(3+):(4)I(11/2)→(4)I(13/2) transition. Meanwhile, the enhanced 2.7 μm emission in highly Er(3+)-doped AYF glass was obtained. Therefore, these results showed that this kind of fluoride glass has a promising application for solid state lasers at 3 μm. PMID:24402172

  9. Photomultiplier window materials under electron irradiation - Fluorescence and phosphorescence

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.; Pieper, G. F.; Bredekamp, J. H.

    1975-01-01

    The fluorescence and phosphorescence of photomultiplier window materials under electron irradiation have been investigated using a Sr-90/Y-90 beta emitter as the electron source. Spectral emission curves of UV-grade, optical-grade, and electron-irradiated samples of MgF2 and LiF, and of CaF2, BaF2, sapphire, fused silica, and UV-transmitting glasses were obtained over the 200-650-nm spectral range. Fluorescence yields were determined on these materials utilizing photomultiplier tubes with cesium telluride, bialkali, and trialkali (S-20) photocathodes, respectively. Optical-grade MgF2 and LiF, as well as electron-irradiated UV-grade samples of these two materials, show enhanced fluorescence due to color-center formation and associated emission bands in the blue and red wavelength regions. Large variations in fluorescence intensities were found in UV-grade sapphire samples of different origins, particularly in the red end of the spectrum, presumably due to various amounts of chromium-ion content. Phosphorescence decay with time is best described by a sum of exponential terms, with time constants ranging from a few minutes to several days.

  10. Self-lubricating coatings for high-temperature applications

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1987-01-01

    Some present-day aeropropulsion systems impose severe demands on the thermal and oxidative stability of lubricant, bearing, and seal materials. These demands will be much more severe for operational systems around the turn of the century. Solid lubricants with maximum temperature capabilities of about 1100 C are known. Unfortunately, none of the solid lubricants with the highest temperature capabilities are effective below approximately 400 C. However, research shows that silver and stable fluorides, such as calcium and barium fluoride act synergistically to provide lubrication from below room temperature to approximately 900 C. Plasma-sprayed, self-lubricating composite coatings that were developed at Lewis are described. Background information is given on coatings, designed as PS100 and PS101, that contain the solid lubricants in a Nichrome matrix. These coatings have low friction coefficients over a wide temperature range, but they have inadequate wear resistance for some long-duration applications. Wear resistance was dramatically improved in a recently developed coating PS200, by replacing the Nichrome matrix material with metal-bonded chromium carbide containing dispersed silver and calcium fluoride/barium fluoride eutectic (CaF2/BaF2). The lubricants control friction and the carbide matrix provides excellent wear resistance. Successful tests of these coatings are discussed.

  11. Tribological and mechanical comparison of sintered and hipped PM212: High temperature self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Bogdanski, Michael S.

    1992-01-01

    Selected tribological, mechanical and thermophysical properties of two versions of PM212 (sintered and hot isostatically pressed, HIPped) are compared. PM212, a high temperature self-lubricating composite, contains 70 wt percent metal bonded chromium carbide, 15 wt percent CaF2/BaF2 eutectic and 15 wt percent silver. PM212 in the sintered form is about 80 percent dense and has previously been shown to have good tribological properties from room temperature to 850 C. Tribological results of a fully densified, HIPped version of PM212 are given. They are compared to sintered PM212. In addition, selected mechanical and thermophysical properties of both types of PM212 are discussed and related to the tribological similarities and differences between the two PM212 composites. In general, both composites display similar friction and wear properties. However, the fully dense PM212 HIPped composite exhibits slight lower friction and wear than sintered PM212. This may be attributed to its generally higher strength properties. The sintered version displays stable wear properties over a wide load range indicating its promise for use in a variety of applications. Based upon their properties, both the sintered and HIPped PM212 have potential as bearing and seal materials for advanced high temperature applications.

  12. Tribological and mechanical comparison of sintered and HIPped PM212 - High temperature self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher; Sliney, Harold E.; Bogdanski, Michael S.

    1992-01-01

    Selected tribological, mechanical and thermophysical properties of two versions of PM212 (sintered and hot isostatically pressed, HIPped) are compared. PM212, a high temperature self-lubricating composite, contains 70 wt percent metal bonded chromium carbide, 15 wt percent CaF2/BaF2 eutectic and 15 wt percent silver. PM212 in the sintered form is about 80 percent dense and has previously been shown to have good tribological properties from room temperature to 850 C. Tribological results of a fully densified, HIPped version of PM212 are given. They are compared to sintered PM212. In addition, selected mechanical and thermophysical properties of both types of PM212 are discussed and related to the tribological similarities and differences between the two PM212 composites. In general, both composites display similar friction and wear properties. However, the fully dense PM212 HIPped composite exhibits slight lower friction and wear than sintered PM212. This may be attributed to its generally higher strength properties. The sintered version displays stable wear properties over a wide load range indicating its promise for use in a variety of applications. Based upon their properties, both the sintered and HIPped PM212 have potential as bearing and seal materials for advanced high temperature applications.

  13. Nanostructures created in SiO2 surface: A comparison between the impingement by slow highly charged ions and by swift heavy ions

    NASA Astrophysics Data System (ADS)

    El-Said, A. S.

    2012-07-01

    Swift heavy ions (SHI) of MeV-GeV energy lead to the creation of nanometric surface structures as well as modifications in the bulk along the ion penetration depth. Recently, similar surface modifications have been observed for the impact of individual slow highly charged ions (HCI). Non-amorphizable ionic-halide single crystals, like KBr, CaF2 and BaF2, are considered as the most intensively studied materials after irradiation with HCI. In this contribution we study the creation of surface nanostructures in an amorphizable material, namely SiO2 quartz after irradiation with slow highly charged Xe ions from the Electron Beam Ion Trap at Helmholtz Zentrum Dresden-Rossendorf and swift xenon ions from Universal Linear Accelerator at GSI in Darmstadt. After irradiation at room temperature, the crystals were investigated by scanning force microscopy. For both SHI and HCI, the created nanostructures exhibit the shape of hillocks. Moreover UV-VIS spectroscopy was performed to identify the defects created by ion irradiation at high fluence. The results are discussed in terms of the creation mechanisms driven by the dependence on both potential and kinetic energies of the ions.

  14. A far ultraviolet polarization analyzer for rocket use.

    PubMed

    Heath, D F

    1968-03-01

    A rocket version of a far uv polarization analyzer has been constructed to measure the polarization of resonantly scattered sunlight. The rotating, eight-plate, LiF polarization analyzer has principal transmittances which vary from k(1) = 0.088 and k(2) = 0.0037 at H Lyman-alpha to k(1) = 0.623 and k(2) = 0.075 at 2500 A. The region from 1200 A to 2000 A is divided into four intervals by using filters of CaF(2), BaF(2), and Al(2)O(3) in conjunction with the solar blindness of the CsI photocathode. The calculated polarizations, which are a direct consequence of the Zeeman effect, are given for some of the uv multiplets which could contribute to the uv day airglow in planetary atmospheres. Departures from the calculated polarizations may be due to the effects of multiple scattering, collisional excitation, and hyperfine structure. The observed polarization of the sum of the lines which constitute a multiplet is dependent upon the relative population (a measure of the temperature) of the ground states of the multiplet. PMID:20068612

  15. The activity of calcium in calcium-metal-fluoride fluxes

    NASA Astrophysics Data System (ADS)

    Ochifuji, Yuichiro; Tsukihashi, Fumitaka; Sano, Nobuo

    1995-08-01

    The standard Gibbs energy of reaction Ca (1) + O (mass pct, in Zr) = CaO (s) has been determined as follows by equilibrating molten calcium with solid zirconium in a CaO crucible: Δ G° = -64,300(±700) + 19.8(±3.5) T J/mol (1373 to 1623 K) The activities of calcium in the CaOsatd-Ca- MF2 ( M: Ca, Ba, Mg) and CaOsatd-Ca-NaF systems were measured as a function of calcium composition at high calcium contents at 1473 K on the basis of the standard Gibbs energy. The activities of calcium increase in the order of CaF2, BaF2, and MgF2 at the same calcium fraction of these fluxes. The observed activities are compared with those estimated by using the Temkin model for ionic solutions. Furthermore, the possibility of the removal of tramp elements such as tin, arsenic, antimony, bismuth, and lead from carbon-saturated iron by using calcium-metal-fluoride fluxes is discussed.

  16. Evaluation of particle size distributions produced during ultra-violet nanosecond laser ablation and their relative contributions to ion densities in the inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Moses, Lance M.; Farnsworth, Paul B.

    2015-11-01

    Relative contributions to ion densities in the inductively coupled plasma (ICP) of particles of various sizes produced by laser ablation (LA) were investigated. Particles generated by 266 nm, ns LA of BaF2, CaF2, and a scandium aluminum alloy, characterized using SEM, consisted of hard and soft agglomerates, spherical particles, and irregularly-shaped particles. Although soft agglomerates and spherical particles were common to aerosols generated by LA in all cases, hard agglomerates appeared to be unique to the scandium aluminum alloy, while irregularly-shaped exfoliated particles were unique to the calcium and barium fluoride windows. The spatial distributions of Ca, Ba, and Sc ions in the ICP were determined from laser-induced fluorescence images taken with filters of pore sizes from 1-8 μm added in-line to the transport tube upstream from the ICP. In all cases, a significant fraction of the ions formed in the ICP originated from micron-sized particles. Differences in the penetration depths of nanometer-sized agglomerates and micron-sized particles were about 2 mm for Ca and 1 mm for Ba. Differences in the penetration depths of nanometer and micron-sized agglomerates observed in the case of aluminum scandium were much less significant. This suggests that micron-sized hard-agglomerates and nanometer-sized soft-agglomerates experience very similar vaporization patterns. Additionally, there was evidence that flow patterns in the transport tube affect the trajectories of particles entering the plasma.

  17. Nonstoichiometry in inorganic fluorides: 2. Ionic conductivity of nonstoichiometric M 1 - x R xF2 + x and R 1 - y M yF3 - y crystals ( M = Ca, Sr, Ba; R are rare earth elements)

    NASA Astrophysics Data System (ADS)

    Sobolev, B. P.; Sorokin, N. I.

    2014-11-01

    The peak manifestation of nonstoichiometry in fluoride systems in the number of phases with valuable properties and wide homogeneity ranges is 45 MF2- RF3 systems, where M = Ca, Sr, Ba and R are 15 rare earth elements from La to Lu and Y (with Pm and Sc excluded). A deviation from stoichiometry in crystals of the M 1 - x R xF2 + x (CaF2 fluorite type) and R 1 - y M yF3 - y (LaF3 tysonite type) phases is responsible for the fluorine superionic conductivity σ. The range of variation in σ with changes in the qualitative ( M, R) and quantitative ( x, y) compositions in both structure types is very wide. The σ value changes by a factor of 108 in the M 1 - x R xF2 + x phases (at 500 K) and by a factor of 106 in the R 1 - y M yF3 - y phases (at 293 K). Changing compositions, one can also obtain crystals with σ values large enough for their use as fluorine-conducting solid electrolytes. Phases promising for solid electrolytes were revealed in the MFm- RFn systems ( m < n ≤ 4), which were studied within the program of searching for new multicomponent fluoride materials at the Institute of Crystallography, Russian Academy of Sciences (IC RAS). Superionic conductivity is one of the peak manifestations of the influence of defect structure of nonstoichiometric crystals on their properties. The subject of this review is the results of the studies performed at the IC RAS on the ionic conductivity of single crystals of the M 1 - x R xF2 + x and R 1 - y M yF3 - y nonstoichiometric phases.

  18. Optical absorption and fluorescence properties of Dy3+: SFB glasses

    NASA Astrophysics Data System (ADS)

    Maheswari, D. Uma; Kumar, J. Suresh; Sasikala, T.; Mohan Babu, A.; Pavani, K.; Jang, Kiwan; Rama Moorthy, L.

    2009-07-01

    This paper presents the preparation and spectroscopic characterization of Dy3+-doped sodium fluoroborate (SFB) glasses of the type (50-x) B2O3 + 25 Na2O + 10 CaF2 + 10 AlF3 + 5 LaF3 + x DyF3 (x = 0.01, 0.1, 0.5,1.0, 2.0 and 4.0 mol%). By measuring the area under absorption bands, the experimental oscillator strengths are determined. The Judd-Ofelt (J-O) intensity parameters Ωλ (λ = 2, 4, 6) are evaluated by the least square fit method. These phenomenological parameters are used to predict luminescence properties of the lanthanide ions in SFB glasses. Photoluminescence spectra and lifetimes of 4F9/2 level of Dy3+ ions in these glasses have been measured by exciting with 348 nm line of xenon flash lamp. The measured decay curves exhibit single exponential at lower concentrations of 0.01, 0.1, 0.5 and 1.0 mol% and non-exponential at higher concentrations of 2.0 and 4.0 mol%. The predicted τR and (βR values of 4F9/2 transition are compared with the experimentally measured values. From the magnitude of stimulated emission cross sections (σe), branching ratios (βm), multiphonon relaxation rates (WMP), the most potential laser transitions are identified and the utility of these glasses as laser active material is discussed.

  19. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  20. Preparation and tribological properties of fluorosilane surface-modified lanthanum trifluoride nanoparticles as additive of fluoro silicone oil

    NASA Astrophysics Data System (ADS)

    Hou, Xiao; He, Jie; Yu, Laigui; Li, Zhiwei; Zhang, Zhijun; Zhang, Pingyu

    2014-10-01

    LaF3 nanoparticles surface-modified with fluorosilane were synthesized by surface modification technology. The size, morphology and phase structure of as-prepared surface-modified LaF3 nanoparticles were analyzed by means of X-ray diffraction and transmission electron microscopy. The tribological properties of surface-modified LaF3 nanoparticles as additive of fluoro silicone oil were evaluated with a four-ball machine, and the morphology and elemental composition of worn steel surfaces were examined with a scanning electron microscope and an X-ray photoelectron spectroscope. Results show that 3-(heptafluoroisopropoxy)propyltriethoxysilane as the modifier is able to improve the dispersibility of LaF3 nanoparticles in fluoro silicone oil. Moreover, when the optimum concentration, 0.08 wt.% of fluorosilane surface-modified LaF3 is added into fluoro silicone oil, as-synthesized fluorosilane surface-modified LaF3 nanoparticles exhibit excellent anti-wear as additive in fluoro silicone oil. The wear scar diameter under the optimum concentration is always smaller than that under the lubrication of fluoro silicone oil alone. Especially, when the load is 500 N, 600 N and 700 N, the wear scar diameter is reduced by 17%, 43% and 42%, respectively. In addition, during the friction process, LaF3 nanoparticles are deposited on the rubbed steel surface to form LaF3 deposition layer which functions jointly with the boundary lubricating film thereby resulting in improved tribological properties.

  1. Diopside (CaO-MgO-2SiO2)-fluorapatite (9CaO-3P2O5-CaF2) glass-ceramics: Potential materials for bone tissue engineering

    SciTech Connect

    Kansal, Ishu; Goel, Ashutosh; Tulyaganov, Dilshat U.; Pascual, Maria J.; Lee, Hye-Young; Kim, Hae-Won; Ferreira, Jose M.

    2011-08-18

    Glass-ceramics in the diopside (CaMgSi2O6) - fluorapatite [Ca5(PO4)3F] system are potential candidates for restorative dental and bone implant materials. In the present study, a series of glasses along diopside - fluorapatite binary system have been prepared with varying diopside/fluorapatite ratios for their potential applications in bone tissue engineering. The glasses were obtained from compositions with fluorapatite contents varying between 0-40 wt.%. The sintering ability and crystallization kinetics of as obtained amorphous glasses have been studied through hot-stage microscopy (HSM) and differential thermal analysis (DTA), respectively while crystalline phase evolution in sintered GCs has been followed by X-ray diffraction (XRD) adjoined with Rietveld-R.I.R. technique and scanning electron microscopy (SEM). Further, biodegradation and apatite forming ability of glass-ceramics were investigated by immersion of glass-ceramic discs in simulated body fluid (SBF) solution while chemical degradation and weight loss of glass-ceramics were studied by immersion in Tris-HCl in accordance with standard ISO 10993-14. The addition of fluorapatite (10-25 wt.%) in diopside glass system significantly enhanced the sintering ability of glass-ceramics and improved their apatite forming ability along with their biodegradation behaviour. Moreover, the in vitro cellular responses to glass-ceramics showed good cell viability and significant stimulation of osteoblastic differentiation, suggesting the possible use of the glass-ceramics for bone regeneration.

  2. Mechanisms for the Crystallization of ZBLAN

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin C.; Tucker, Dennis S.; Kaukler, William; Antar, Basil

    2003-01-01

    The objective of this ground based study is to test the hypothesis that shear thinning (the non-Newtonian response of viscosity to shear rate) is a viable mechanism to explain the observation of enhanced glass formation in numerous low-g experiments. In 1-g, fluid motion results from buoyancy forces and surface tension driven convection. This fluid flow will introduce shear in undercooled liquids in 1-g. In low-g it is known that fluid flows are greatly reduced so that the shear rate in fluids can be extremely low. It is believed that some fluids may have weak structure in the absence of flow. Very small shear rates could cause this structure to collapse in response to shear resulting in a lowering of the viscosity of the fluid. The hypothesis of this research is that: Shear thinning in undercooled liquids decreases the viscosity, increasing the rate of nucleation and crystallization of glass forming melts. Shear in the melt can be reduced in low-g, thus enhancing undercooling and glass formation. The viscosity of a model glass (lithium di-silicate, L2S) often used for crystallization studies has been measured at very low shear rates using a dynamic mechanical thermal analyzer. Our results are consistent with increasing viscosity with a lowering of shear rates. The viscosity of L2S may vary as much as an order of magnitude depending on the shear rate in the temperature region of maximum nucleation and crystal growth. Classical equations for nucleation and crystal growth rates, are inversely related to the viscosity and viscosity to the third power respectively. An order of magnitude variation in viscosity (with shear) at a given temperature would have dramatic effects on glass crystallization Crystallization studies with the heavy metal fluoride glass ZBLAN (ZrF2-BaF2-LaF3-AlF3-NaF) to examine the effect of shear on crystallization are being initiated. Samples are to be melted and quenched under quiescent conditions at different shear rates to determine the effect on crystallization. The results from this study are expected to advance the current scientific understanding of glass formation in low-g and glass crystallization under glass molding conditions and will improve the scientific understanding of technological processes such as fiber pulling, bulk amorphous alloys, and glass fabrication processes.

  3. The study of devitrification processes in heavy-metal fluoride glasses.

    PubMed

    Dunkley, Ian R; Smith, Reginald W; Varma, Sudhanshu

    2004-11-01

    Heavy-metal fluoride glasses are very promising optical fiber materials because of their predicted ultralow loss and long transparency range. Although conventional silica fibers have attained their theoretical minimum loss of 0.15 dB/km, fluoride glasses have the potential to yield losses of only 0.001 dB/km. Fluoride glasses also exhibit transparency into mid-IR frequencies, a region inaccessible to silica fibers. However, this group of glasses is very unstable to devitrification during both bulk glass synthesis and fiber-drawing. This instability has limited their commercial exploitation to a small niche market in the laser industry. The ZBLAN glass (53ZrF(4)-20BaF(2)-4LaF(3)-3AlF(3)-20NaF) is the most promising of these materials since its fiber-drawing region lies on the edge, or possibly just outside its crystallization region. It is believed that additional research into understanding the nucleation mechanics involved in the devitrification of fluoride glasses will lead to the development of technology to suppress such nucleation, or at least minimize the associated crystallization temperature region, allowing high optical quality fibers to be produced. It has recently been demonstrated that a microgravity environment can suppress devitrification in ZBLAN glass preform preparation, and that devitrification may be reduced when preparing ZBLAN terrestrially in a containerless facility. It is believed that the role of viscosity is critical in the devitrification mechanism of ZBLAN glass and in determining the optimum fiber-drawing temperature. Unfortunately, viscosity data for fluoride glasses are only available above the melting point and around the glass transition. A piezoelectric viscometer has been developed and is being used to determine the missing viscosity data in the fiber-drawing and crystallization temperature regions. Shear thinning of the glasses and/or the application of hydrostatic pressure on the glasses have been recently proposed to be responsible for devitrification during fiber-drawing at 1 g and in reduced gravity. The study we report here is to explore the extent to which such a proposal is realistic. PMID:15644353

  4. Single mode optical fiber based devices and systems for mid-infrared light generation, communication and metrology

    NASA Astrophysics Data System (ADS)

    Kulkarni, Ojas P.

    Fiber-optic systems and devices for broadband mid-infrared light generation, communication and optical metrology are developed in this thesis. Using the nonlinear properties of low mid-infrared loss ZrF4-BaF 2-LaF3-AlF3-NaF (ZBLAN) fiber, a mid-infrared supercontinuum (SC) laser based on a thulium-doped fiber amplifier (TDFA) with spectrum extending from ˜1.9-4.5 microm is demonstrated. A higher efficiency, power-scalable, all-fiber integrated mid-infrared light source is realized capable of generating ˜0.7 W time-average power in wavelengths beyond 3.8 microm. The novelty of the laser lies in its two-step spectral shifting architecture. First, amplified laser diode pulses at 1.55 microm are used to generate a SC extending beyond 2 microm in standard SMF using modulation-instability initiated pulse break-up. A TDFA stage is then used to amplify the ˜2 microm components in the standard SMF continuum. By subsequently coupling the amplified ˜2 microm pulses in to a ZBLAN fiber, an SC with up to ˜2.6 W average power, and ˜9% optical conversion efficiency from the power-amp pump to mid-IR output is demonstrated. The two-step methodology leads to extension in the long wavelength edge of the SC from 4.2 microm to ˜4.5 microm, compared to previously demonstrated systems and ˜2.5 times higher optical efficiency in generating wavelengths beyond 3.8 microm. Numerical simulations are also presented based on solving the generalized non-linear Schrodinger equation to verify and extend experimental results. A broadband surface-normal optical modulator for communication applications with operation demonstrated over 1200--2400 nm is also presented. The modulator uses free-carrier effect in GaAs and mode selectivity of SMF to generate up to ˜43% modulation depth with a maximum operating speed of ˜270 MHz. The broad wavelength range of operation of the modulator can potentially enable higher throughput wavelength-division multiplexed optical network architectures based on broadband light sources. Finally, an optical probe for detection of porosity defects in automotive parts is presented. The probe relies on the spatial coherence properties of SMF output to detect defects as small as ˜50 microm lateral dimensions in bores down to 5 mm diameter. The probe uses a novel two-directional scattering-based non-contact approach to detect and classify defects on surfaces, where human inspection is labor-intensive.

  5. The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Smith, Guy A.

    2004-01-01

    Heavy metal fluoride glasses are used in such applications as fiber lasers and laser amplifiers. ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) is one of the more commonly used heavy metal fluoride glasses. ZBLAN is an infrared transmitter and has a theoretical attenuation coefficient of 0.002 db/km. However, due to impurities and small crystallites this attenuation coefficient has not been achieved to date. ZBLAN is a fragile glass which can lead to rapid crystallization, if the glass is not cooled rapidly to below the glass transition temperature or if the glass is reheated near the crystallization temperature for any period of time. Studies carried on at Marshall Space Flight Center and the University of Alabama in Huntsville since 1993 have shown that heating ZBLAN glass at the crystallization temperature in reduced gravity results in a suppression of crystallization when compared to ZBLAN processed in unit gravity. These studies utilized NASA's KC-135 aircraft and the Conquest sounding rocket. In the first series of experiments, short lengths of ZBLAN fiber were heated to the crystallization temperature in reduced gravity on board the KC- 135 and the Conquest sounding rocket and compared with fibers heated in unit gravity. The fibers processed in reduced gravity showed no evidence of crystallization when studied with x-ray diffraction and scanning electron microscopy. However, the fibers processed in unit gravity were completely crystallized. Subsequent experiments included heating small pieces of ZBLAN glass at the crystallization temperature while viewing with a video camera to follow the crystallization phenomenon. In this experiment crystallization was observed in reduced gravity, however, it was suppressed when compared to heating in unit gravity. In the most recent experiment on board the KC-135, rapid thermal analysis of ZBLAN was performed. A mechanism to explain the observations has been proposed. This mechanism is based on shear thinning whereby, the glass undergoes a reduction in viscosity in the 10(exp 5) - 10(exp 7) poise range, allowing more rapid diffusion and thus crystallization. It is proposed that this mechanism is suppressed in reduced gravity. An experiment is presently being conducted to test this theory. With increased knowledge of ZBLAN behavior in reduced gravity, three low earth orbit tiber drawing facilities have been designed. One would be suitable for use on the International Space Station, another while aboard the Space Shuttle and the third system is a fully automated facility which would operate independently of the ISS or Shuttle in a free float mode. The primary benefits of free floating a facility in LEO includes a higher quality of microgravity and reduced safety concerns since it is not in a manned environment.

  6. Structural and luminescence behaviour of Er3+ doped telluro-fluoroborate glasses

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Suthanthirakumar, P.; Vijayakumar, R.; Marimuthu, K.

    2015-03-01

    The Er3+ doped telluro-fluoroborate glasses with the chemical composition (30 - x)B2O3 + 30TeO2 + 16ZnO + 10ZnF2 + 7CaF2 + 7BaF2 + xEr2O3 (x = 0.05, 0.1, 0.5, 0.75, 1.0 and 3 in wt%) have been prepared by melt quenching technique and characterized through XRD, SEM, FTIR, Raman, absorption and luminescence spectral analysis. The XRD and SEM measurements were made to examine the amorphous nature. The presence of various stretching and bending vibration modes of functional groups have been investigated through FTIR and Raman spectra. The bonding parameters (? bar and ?) were calculated from the absorption spectra to claim the covalent/ionic nature of the metal-ligand bond in the prepared glasses. From the absorption spectra, optical band gap energies (Eopt) corresponding to the direct and indirect allowed transitions were calculated to analyze the electronic band structure. The Urbach energy values have also been estimated and discussed. The Judd-Ofelt (JO) intensity parameters (?? (? = 2, 4, 6)) were determined from the absorption spectra in order to study the symmetry around the RE ion site and used to compute the radiative properties such as transition probability (AR), stimulated emission cross-section ( ?PE) and branching ratios (?R) for the different emission transitions. The emission intensities of the prepared glasses were characterized through CIE 1931 chromaticity diagram and the results were discussed and compared with the reported literature.

  7. The effect of prolonged exposure to 750 C air on the tribological performance of PM212

    NASA Technical Reports Server (NTRS)

    Bemis, Kirk; Bogdanski, Michael S.; Dellacorte, Christopher; Sliney, Harold E.

    1994-01-01

    The effect of prolonged exposure to 750 C air on the tribological performance and dimensional stability of PM212, a high temperature, self-lubricating composite, is studied. PM212, by weight, contains 70 percent metal-bonded Cr3C2, 15 percent BaF2/CaF2 eutectic, and 15 percent silver. Rub blocks were fabricated from PM212 by cold isostatic pressing followed by sintering. Prior to tribo-testing, the rub blocks were exposed to 750 C air for periods ranging from 100 to 1000 hours. Then, the rub blocks were slid against nickel-based superalloy disks in a double-rub-block tribometer in air under a 66 N load at temperatures from 25 to 750 C with a sliding velocity of 0.36 m/s. Unexposed rub blocks were tested for baseline comparison. Friction coefficients ranged from 0.24 to 0.37 for the unexposed rub blocks and from 0.32 to 0.56 for the exposed ones. Wear for both the composite blocks and superalloy disks was typically in the moderate to low range of 10(exp -5) to 10(exp -6) mm(exp 3)/N-m. Friction and wear data were similar for the rub blocks exposed for 100, 500, and 1000 hours. Prolonged exposure to 750 C air increased friction and wear of the PM212 rub blocks at room temperature, but their triboperformance remained unaffected at higher temperatures, probably due to the formation of lubricious metal oxides. Dimensional stability of the composite was studied by exposing specimens of varying thicknesses for 500 hours in air at 750 C. Block thicknesses were found to increase with increased exposure time until steady state was reached after 100 hours of exposure, probably due to oxidation.

  8. Chromatic correction for a VIS-SWIR zoom lens using optical glasses

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Williams, Daniel J. L.; McCarthy, Peter; Visconti, Anthony J.; Bentley, Julie L.; Moore, Duncan T.

    2015-09-01

    With the advancement in sensors, hyperspectral imaging in short wave infrared (SWIR 0.9 μm to 1.7 μm) now has wide applications, including night vision, haze-penetrating imaging, etc. Most conventional optical glasses can be material candidates for designing in the SWIR as they transmit up to 2.2 μm. However, since SWIR is in the middle of the glasses' major absorption wavebands in UV and IR, the flint glasses in SWIR are less dispersive than in the visible spectrum. As a result, the glass map in the SWIR is highly compressed, with crowns and flints all clustering together. Thus correcting for chromatic aberration is more challenging in the SWIR, since the Abbé number ratio of the same glass combination is reduced. Conventionally, fluorides, such as CaF2 and BaF2, are widely used in designing SWIR system due to their unique dispersion properties, even though they are notorious for poor manufacturability or even high toxicity. For lens elements in a zoom system, the ray bundle samples different sections of the each lens aperture as the lens zooms. This creates extra uncertainty in correcting chromatic aberrations. This paper focuses on using only commercially available optical glasses to color-correct a 3X dual-band zoom lens system in the VIS-SWIR. The design tools and techniques are detailed in terms of material selections to minimize the chromatic aberrations in such a large spectrum band and all zoom positions. Examples are discussed for designs with different aperture stop locations, which considerably affect the material choices.

  9. Molecular simulation investigation on the interaction between barrier-to-autointegration factor dimer or its Gly25Glu mutant and LEM domain of emerin.

    PubMed

    Shang, Yu-Dong; Zhang, Ji-Long; Wang, Yan; Zhang, Hong-Xing; Zheng, Qing-Chuan

    2014-11-01

    The interaction between barrier-to-autointegration factor dimer (BAF2) and LEM domain of emerin (Em(LEM)) was studied by molecular simulation methods. Nonspecific fragment of double-strand DNA molecule was docked with each chain of BAF2 by ZDOCK program. The model of DNA2:BAF2:Em(LEM) was thus constructed. The mutant Gly25Glu of BAF2 was manually constructed to explore the detailed effect of the mutation on the binding of BAF2 and Em(LEM). It has been experimentally suggested that point mutation Gly25Glu can disturb the binding between BAF2 and Em(LEM). Then, molecular dynamics (MD) simulations were performed on DNA2:BAF2(WT):Em(LEM) and DNA2:BAF2(MT):Em(LEM) complexes. 30ns trajectories revealed that the trajectory fluctuations of MT complex are more violent than that of the WT complex. Further, the binding free energy analysis showed that the electronegative residues Asp57, Glu61 and Asp65 from chain A, glu36 from chain B of BAF2 mainly contribute to interact with Em(LEM). Besides, a stable π-π stack between trp62 and phe39 from BAF2(WT) chain B is destroyed by Glu25 in BAF2(MT). As a result, trp62 forms an interaction with glu25, and phe39 converts to strengthen affinity to Em(LEM). On the other hand, Trp62 from chain A also forms a strong interaction with MT Glu25. Thus, with the docking of DNA, BAF2(MT) has higher affinity with Em(LEM) than BAF2(WT). PMID:25462326

  10. Insulators for Pb(1-x)Sn(x)Te

    NASA Technical Reports Server (NTRS)

    Tsuo, Y. H.; Sher, A.

    1981-01-01

    Thin films of LaF3 were e-gun and thermally deposited on several substrates. The e-gun deposited films are fluorine deficient, have high ionic conductivities that persist to 77 K, and high effective dielectric constants. The thermally deposited material tends to be closer to stoichiometric, and have higher effective breakdown field strengths. Thermally deposited LaF3 films with resistivities in excess of 10 to the 12th power ohms - cm were deposited on metal coated glass substrates. The LaF3 films were shown to adhere well to PbSnTe, surviving repeated cycles between room temperature and 77 K. The LaF3 films on GaAs were also studied.

  11. New infrared detectors and solar cells

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1979-01-01

    The inventions and published papers related to the project are listed. The research with thin films of LaF3 deposited on GaAs substrates is reported along with improvements in photocapacitative MIS infrared detectors.

  12. [Study on the vacuum ultraviolet transmittance of barium fluoride crystals at different temperature].

    PubMed

    Peng, Ru-Yi; Fu, Li-Ping; Tao, Ye

    2014-03-01

    Two VUV-grade BaF2 windows with 0.5 mm-thick and 1 mm-thick respectively were selected to study the transmittance variety with the temperature. The results show that the cutoff wavelength of BaF2 crystals will shift towards the long wave with the increase in temperature. In a certain temperature range, BaF2 crystals can depress 130.4 nm radiation well, and also has a high transmittance at 135.6 nm. Compared with the reported method in which SrF2 crystals can be applied to suppress 130.4 nm stray light by heating, BaF2 crystal can inhibit the 130. 4 nm emission line completely, and thus reduce the power consumption of the device at the same time. This indicates that BaF2 crystals can play an important role in the ionosphere optical remote sensing detection. PMID:25208398

  13. PS300 Tribomaterials Evaluated at 6500C by Bushing Test Rig

    NASA Technical Reports Server (NTRS)

    Striebing, Donald R.; DellaCorte, Christopher

    2004-01-01

    A new facility has been developed to test the tribological behavior (friction and wear) of PS300 solid lubricant bushings at high temperatures. PS300 is a commercially available solid lubricant invented at the NASA Glenn Research Center. It can be prepared as a plasma spray coating or as a free-standing powder metallurgy component, designated PM300. PS300 and PM300 composites are designed to lubricate sliding components at temperatures above the capability of today's best oils, greases, and solid lubricants. One of the primary applications being pursued for PM300 is the development of bushings for use in high-temperature machinery. Examples include inlet guide vane bushings for gas turbines and conveyors, and bearings for industrial furnaces and ovens. Encouraging preliminary field trials indicate that PS300 and PM300 lubricant materials have been commercialized successfully in several industrial applications. However, the lack of laboratory performance data has hindered further commercialization especially for new applications that differ significantly from the established experience base. The purpose of the newly developed bushing test rig will be to determine the performance characteristics of PM300, and other materials, under conditions closely matching intended applications. The data will be used to determine engineering friction and wear rates and to estimate the life expectancy of bushings for new applications. In the new rig, the bushing is loaded against a rotating shaft inside a furnace enclosure (see the preceding photograph). Loads can vary from 5 to 200 N, speeds from 1 to 400 rpm, and temperatures from 25 to 800 C. Furnace temperature, bushing temperature, shaft speed, and torque are monitored during the test, and wear of both the bushing and the shaft is measured after testing is completed. Initially, PM300 bushings will be evaluated and compared with lower temperature, traditional bushing materials like graphite and porous bronze. The baseline PM304 composition is 60 wt% NiCr (a binder), 20 wt% Cr2O3 (a hardener), 10 wt% BaF2/CaF2 (a high-temperature lubricant), and 10 wt% Ag (a low-temperature lubricant). Future research efforts will include determining the effects of load, sliding speed, and temperature on tribological performance and, possibly, tailoring composition for specific applications. We expect that the availability of measured performance data will enhance the market penetration of PM300 technology.

  14. A Wide-Field Camera for 1-2.5mu M Imaging at the 2.3 and 6.5m Telescopes

    NASA Astrophysics Data System (ADS)

    McCarthy, D. W.; Ge, J.; Hinz, J. L.; Finn, R. A.; Low, F. J.; Cheselka, M.; Salvestrini, K.

    1998-12-01

    The advent of large format focal plane arrays permits efficient wide-field imaging at near-infrared wavelengths. We have commissioned a new camera (PISCES) to provide circular fields of 8.5 and 3.0 arcmin diameter at the f/9 foci of the 2.3m Bok telescope and 6.5m MMT. The design uses refractive optics with spherical lenses made from conventional materials (CaF_2, BaF_2, IR-SiO_2). The dewar window is an achromatic doublet which produces a high quality pupil image. A cold pupil stop yields low emissivity by baffling the telescope's central obscuration, primary edge, and spider vanes. Pupil-viewing optics provide precise alignment of the telescope pupil. Four additional lenses then reimage the telescope focal plane at f/3.3, leading to scales of 0.5 and 0.18 arcsec/pixel, respectively. These scales are well matched to the seeing at the two sites. The focal plane array is a 1024x1024 pixel HgCdTe (HAWAII readout) detector from Rockwell. PISCES utilizes an SDSU array controller based on fiber-optic communication with a PCI-bus computer. Performance measurements have been conducted at the 2.3m telescope. Image quality is FWHM <2 pixels across the full array from 1-2.5mu m. Overall instrument transmission is 50-55%, including the detector quantum efficiency. Emissivity is measured to be 5-7%. On the 2.3m telescope, point source detection limits of J=17.5, H=17.0, K_s=16.5 (10-sigma/min) are achieved routinely. At the 6.5m MMT we anticipate an improvement of ~ 2 magnitudes. PISCES is currently being used for scientific studies of quasar environments (Finn et al., this conference), searches for brown dwarfs as common proper motion companions, and imaging of star formation regions. PISCES and its successor (ARIES) on the 6.5m MMT are supported by the NSF through grant AST-9623788.

  15. Chitosan conjugation: a facile approach to enhance the cell viability of LaF₃:Yb,Er upconverting nanotransducers in human breast cancer cells.

    PubMed

    Gayathri, Sethuraman; Ghosh, Oriparambil Sivaraman Nirmal; Sudhakara, P; Viswanath, Annamraju Kasi

    2015-05-01

    In this study, chitosan functionalized LaF3:Yb,Er upconverting nanotransducers (UCNTs) with controlled size and shape have been successfully synthesized by a facile one pot precipitation method. The chitosan encapsulated UCNTs show bright upconversion fluorescence upon excitation with 974 nm NIR region. The average crystallite size of UCNTs about 7.6 nm was achieved using chitosan mediated synthesis. The FTIR result confirms the chitosan coating over the LaF3:Yb,Er nanoparticles. Due to the surface modification using natural biopolymer chitosan, the as-prepared nanocrystals show excellent biocompatibility even at high dose at 200 μg/ml. To the best of our knowledge the presented work is the first report on in vitro analysis of chitosan conjugated LaF3:Yb,Er upconverting nanocrystals in human breast (MCF-7) cancer cells. These nanotransducers can be used as luminescent probes for bioimaging and deep tissue cancer therapeutic applications. PMID:25659702

  16. Enhanced electrochemical properties of fluoride-coated LiCoO2 thin films

    PubMed Central

    2012-01-01

    The electrochemical properties of fluoride-coated lithium cobalt oxide [LiCoO2] thin films were characterized. Aluminum fluoride [AlF3] and lanthanum fluoride [LaF3] coating layers were fabricated on a pristine LiCoO2 thin film by using a spin-coating process. The AlF3- and LaF3-coated films exhibited a higher rate capability, cyclic performance, and stability at high temperature than the pristine film. This indicates that the AlF3 and LaF3 layers effectively protected the surface of the pristine LiCoO2 film from the reactive electrolyte. PMID:22221488

  17. Studies of radiation defects in cerium, europium and terbium activated oxyfluoride glasses and glass ceramics

    NASA Astrophysics Data System (ADS)

    Elsts, E.; Rogulis, U.; Bulindzs, K.; Smits, K.; Zolotarjovs, A.; Trinkler, L.; Kundzins, K.

    2015-03-01

    Terbium, cerium and europium activated oxyfluoride glasses and glass ceramics have been studied by thermally stimulated luminescence (TSL) and optical absorption techniques after the X-ray irradiation. A creation of colour centres in oxyfluoride glass matrix and TSL peaks depending on the activator type were observed. LaF3 and rare earth activators were analysed by SEM-EDS.

  18. Microstructures and properties of superconducting Y-ErBaCuO thin films obtained from disordered Y-ErBaF2Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Merlo, V.; Messi, R.; Paoluzi, L.; Scopa, L.

    1991-01-01

    The preparation procedure used to obtain superconducting thin films by radio frequency magnetron sputtering of a single mosaic target is described in detail. The single mosaic target is composed of (Y-Er), BaF2, and Cu.

  19. Microstructures and properties of superconducting Y-Er-BaCu-O thin films obtained from disordered Y-Er-BaF2-Cu films

    NASA Technical Reports Server (NTRS)

    Cikmach, P.; Diociaiuti, M.; Fontana, A.; Giovannella, C.; Iannuzzi, M.; Lucchini, C.; Messi, R.; Paoluzi, L.; Scopa, L.; Tripodi, P.

    1990-01-01

    Since the first reports on superconducting thin films obtained by evaporating BaF2, Cu and Y(sup 1), or Yb or Er(sup 2), several others have followed. All these reports describe thin films prepared by means of molecular beam cells or electron guns. Researchers show that films with similar properties can be obtained by radio frequency sputtering of a single mosaic target composed by Y-Er, BaF2 and Cu. Process steps are described.

  20. Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest

    NASA Astrophysics Data System (ADS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Xiaoxu; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Enhancement of light harvest for dye excitation is a persistent objective in dye-sensitized solar cell (DSSC). We present here the fabrication of titanium dioxide/calcium fluoride (TiO2/CaF2) photoanodes for efficient DSSC applications. Owing to the interference effect of incident light beams reflected from TiO2/CaF2 and CaF2/electrolyte interfaces, the light intensity and therefore dye excitation have been markedly enhanced. The crystal structure and therefore photovoltaic performance are optimized by adjusting CaF2 dosage. A maximum power conversion efficiency of 7.66% is measured from the DSSC employing TiO2/0.5 wt% CaF2 nanocrystallite in comparison with 6.02% for the solar cell with pristine TiO2 anode.

  1. Microstructural characterization in nanocrystalline ceramic thin films

    NASA Astrophysics Data System (ADS)

    Kim, Hakkwan

    The primary objective of this research is to investigate the effects of process variables on microstructure in several fluoride and oxide thin films prepared by vapor deposition, in order to predict the properties and behaviors of nanocrystalline thin film materials. There are three distinct stages of this research. The first stage focuses on measuring of the porosity in polycrystalline thin films of a variety of fluorides as a function of the substrate temperature during deposition, and discussing the mechanism by which the porosity varies as a function of the process variables. We have measured the porosity in thin films of lithium fluoride (LiF), magnesium fluoride (MgF2), barium fluoride (BaF 2) and calcium fluoride (CaF2) using an atomic force microscope (AFM) and a quartz crystal thickness monitor. The porosity is very sensitive to the substrate temperature and decreases as the substrate temperature increases. Consistent behavior is observed among all of the materials in this study. The second stage is to understand the film microstructure including grain growth and texture development, because these factors are known to influence the behavior and stability of polycrystalline thin films. This study focuses on grain growth and texture development in polycrystalline lithium fluoride thin films using dark field (DF) transmission electron microscopy (TEM). It is demonstrated that we can isolate the size distribution of <111> surface normal grains from the overall size distribution, based on simple and plausible assumptions about the texture. The {111} texture formation and surface morphology were also observed by x-ray diffraction (XRD) and AFM, respectively. The grain size distributions become clearly bimodal as the annealing time increases, and we deduce that the short-time size distributions are also a sum of two overlapping peaks. The smaller grain-size peak in the distribution corresponds to the {111}-oriented grains which do not grow significantly, while all other grains increase in size with annealing time. A novel feature of the LiF films is that the {111} texture component strengthens with annealing, despite the absence of growth for these grains, through the continued nucleation of new grains. The third stage focuses on the evaluation of triple junction energy in nanocrystalline ZrO2 thin films. Grain boundaries and triple junctions are important aspects of the microstructure of most crystalline materials, and it is necessary to understand them to be able to predict the behavior of bulk polycrystals and polycrystalline thin films. Triple junctions, where three grains or grain boundaries meet, become increasingly important in nanocrystalline materials where they occupy an increasing fraction of the total volume of the material. It would therefore be of great significance to know whether, and if so how triple junction energy varies. In this study we evaluate triple junction energies in nanocrystalline ZrO2 thin films using thickness mapping images produced by energy filtered transmission electron microscopy (EFTEM), which enable us to measure the surface topography associated with grain boundaries and triple junctions. In our films, the triple junction energy is deduced to be either zero (within the accuracy of the measurement) for most, but significantly positive for a few of the junctions.

  2. Role of ultrathin metal fluoride layer in organic photovoltaic cells: mechanism of efficiency and lifetime enhancement.

    PubMed

    Lim, Kyung-Geun; Choi, Mi-Ri; Kim, Ji-Hoon; Kim, Dong Hun; Jung, Gwan Ho; Park, Yongsup; Lee, Jong-Lam; Lee, Tae-Woo

    2014-04-01

    Although rapid progress has been made recently in bulk heterojunction organic solar cells, systematic studies on an ultrathin interfacial layer at the electron extraction contact have not been conducted in detail, which is important to improve both the device efficiency and the lifetime. We find that an ultrathin BaF2 layer at the electron extraction contact strongly influences the open-circuit voltage (Voc ) as the nanomorphology evolves with increasing BaF2 thickness. A vacuum-deposited ultrathin BaF2 layer grows by island growth, so BaF2 layers with a nominal thickness less than that of single-coverage layer (?3 nm) partially cover the polymeric photoactive layer. As the nominal thickness of the BaF2 layer increased to that of a single-coverage layer, the Voc and power conversion efficiency (PCE) of the organic photovoltaic cells (OPVs) increased but the short-circuit current remained almost constant. The fill factor and the PCE decreased abruptly as the thickness of the BaF2 layer exceeded that of a single-coverage layer, which was ascribed to the insulating nature of BaF2 . We find the major cause of the increased Voc observed in these devices is the lowered work function of the cathode caused by the reaction and release of Ba from thin BaF2 films upon deposition of Al. The OPV device with the BaF2 layer showed a slightly improved maximum PCE (4.0 %) and a greatly (approximately nine times) increased device half-life under continuous simulated solar irradiation at 100 mW cm(-2) as compared with the OPV without an interfacial layer (PCE=2.1 %). We found that the photodegradation of the photoactive layer was not a major cause of the OPV degradation. The hugely improved lifetime with cathode interface modification suggests a significant role of the cathode interfacial layer that can help to prolong device lifetimes. PMID:24616332

  3. Investigation of Water-Soluble X-ray Luminescence Nanoparticles for Photodynamic Activation

    SciTech Connect

    Liu, Yuanfang; Chen, Wei; Wang, Shaopeng; Joly, Alan G.

    2008-01-28

    In this letter, we report the synthesis of LaF3:Tb3+-MTCP (meso-Tetra(4-carboxyphenyl) porphine) nanoparticle conjugates and investigate the energy transfer as well as singlet oxygen generation following X-ray irradiation. Our observations indicate that LaF3:Tb3+-MTCP nanoparticle conjugates are efficient photodynamic agents that can be initiated by X-rays at a reasonably low dose. The addition of folic acid to facilitate targeting to folate receptors on tumor cells has no effect on the quantum yield of singlet oxygen in the nanoparticle-MTCP conjugates. Our pilot studies indicate that water-soluble scintillation nanoparticles can be potentially used to activate photodynamic therapy as a promising deep cancer treatment.

  4. Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1974-01-01

    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development.

  5. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    PubMed

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields. PMID:20828167

  6. Synthesis and characterization of lanthanide based nanomaterials for radiation detection and biomedical applications

    NASA Astrophysics Data System (ADS)

    Yao, Mingzhen

    2011-12-01

    Lanthanide based nanomaterials have shown a great potential in various areas such as luminescence imaging, luminescent labels, and detection of cellular functions. Due to the f-f transitions of the metal ion, luminescence of lanthanide ions is characterized by sharp and narrow emissions. In this dissertation lanthanide based nanoparticles such as Ce3+, Eu3+ and other lanthanide ions doped LaF3 were synthesized, their characterization, encapsulation and embedding into hybrid matrix were investigated and some of their biomedical and radiological applications were studied. DMSO is a common solvent which has been used widely for biological applications. LaF3:Ce nanoparticles were synthesized in DMSO and it was found that their fluorescent emission originates from the metal-to-ligand charge-transfer excited states. After conjugation with PpIX and then encapsulation within PLGA, the particles show efficient uptake by cancer cells and great cytotoxicity, which is promising for applications in cancer treatments. However, the emission of Eu3+ in DMSO is totally different from LaF3:Ce, very strong characteristic luminescence is observed but no emissions from metal-to-ligand charge-transfer excited states as observed in LaF3:Ce in DMSO. Besides, it is very interesting to see that the coupling of Eu 3+ with O-H oscillations after water was introduced has an opposite effect on emission peaks at 617 nm and its shoulder peak at 613 nm. As a result, the intensity ratio of these two emissions has a nearly perfect linear dependence on increasing water concentration in Eu-DMSO, which provides a very convenient and valuable method for water determination in DMSO. Ce3+ has been well known as an emitter for radiation detection due to its very short decay lifetime. However, its emission range limited the environment in which the detection system works. Whereas, Quantum dots have high luminescence quantum efficiency but their low stopping power results in very weak scintillation luminescence. Nanocompounds formed with CdTe quantum dots and LaF3:Ce nanoparticles optimize both stopping power and scintillation efficiency based on energy transfer from LaF3:Ce to CdTe. Hybrid matrix materials such as ORMOSIL have superior mechanical properties and a better processability than pure molecular material which could be used as carrier of radiation material. Moreover, embedding a lanthanide complex in a hybrid matrix enhances its thermal stability and luminescence output. LaF3:Ce doped ORMOSIL was synthesized by using two different LaF3:Ce, the nanoparticle doping concentration can reach up to 15.66% while its transparency and luminescent properties were maintained. These materials are very promising for radiation detection.

  7. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Peters, W. A.; Clement, R. R. C.; Bardayan, D. W.; Smith, M. S.; Stech, E.; Strauss, S.; Tan, W. P.; Wiescher, M.; Madurga, M.; Vandle Collaboration

    2013-10-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. We will determine the cross section with two complementary approaches. First, we will bombard a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; second, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. My poster outlines the motivation for this experiment, explains the stages of this experiment, the current experimental setup, and preliminary data. This work is supported by the NNSA.

  8. Measurement of the 19F(α,n) Cross Section for Nuclear Safeguards Science

    NASA Astrophysics Data System (ADS)

    Reingold, C. S.; Cizewski, J. A.; Burcher, S.; Manning, B.; Peters, W. A.; Clement, R. R. C.; Smith, M. S.; Bardayan, D. W.; Stech, E.; Tan, W. P.; Madurga, M.; Ilyushkin, S.; Thompson, S.; Vandle Collaboration

    2014-09-01

    A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. A precise measurement of the 19F(α,n) cross section will improve Non Destructive Assays (NDA) of UF6 and other actinide-fluoride samples via neutron detection techniques. The cross section will be determined with two complementary approaches. We have already bombarded a LaF3 target with a pulsed 4He beam from the Notre Dame FN tandem accelerator; next, we will send a fluorine beam from the ORNL tandem through a pure helium gas target. The neutron spectra from both of these reactions will be measured using the Versatile Array of Neutron Detectors at Low Energy (VANDLE), and coincident γ rays with a HPGe detector. We report here on data taken with VANDLE and a HPGe detector on a LaF3 target. This poster outlines the motivation for this experiment, explains the stages of this experiment, and presents both of our experimental setups and preliminary data. This work is supported by the NNSA, NSF, and DOE.

  9. Ionic conductivity of ScF3 single crystals (ReO3 type)

    NASA Astrophysics Data System (ADS)

    Sorokin, N. I.; Karimov, D. N.; Grebenev, V. V.; Sobolev, B. P.

    2016-03-01

    Electrical conductivity σ of ScF3 single crystals (sp. gr. Pmoverline 3 m, ReO3 structure type) has been studied by impedance spectroscopy and compared with the electrical conductivity of rare earth HoF3 (β-YF3 type) and LaF3 (tysonite type) trifluorides. ScF3 crystals obtained by Bridgman directional solidification have ionic conductivity σ = 4 × 10-8 S/cm at 673 K. It is smaller than the σ values for LaF3 (sp. gr. Poverline 3 c1) and HoF3 (sp. gr. Pnma) single crystals by a factor of 104-105. The low conductivity of ScF3 crystals is due to the weak coordinating ability (coordination number CN = 6) and low electronic polarizability (α cat = 1.1 Å3) of Sc3+ ions. Mobile V F + vacancies and less mobile interstitial V i - ions (defects are formed according to the Frenkel mechanism) are involved in the ion transport. HoF3 and LaF3 single crystals have a high coordinating ability (CN = 9 for Ho3+ and CN = 11 for La3+) and a high electronic polarizability of cations (α cat = 1.6-1.9 Å3 for Ho3+ and α cat = 2.2 Å3 for La3+). Only mobile V F + vacancies (defects are formed according to the Schottky mechanism) are involved in ion transport.

  10. Nanocrystallization in Fluorochlorozirconate Glass-Ceramics

    PubMed Central

    Alvarez, Carlos J.; Liu, Yuzi; Leonard, Russell L.; Johnson, Jacqueline A.; Petford-Long, Amanda K.

    2014-01-01

    Heat treating fluorochlorozirconate (FCZ) glasses nucleates nanocrystals in the glass matrix, resulting in a nanocomposite glass-ceramic that has optical properties suitable for use as a medical imaging plate. Understanding the way in which the nanocrystal nucleation proceeds is critical to controlling the optical behavior. The nucleation and growth of nanocrystals in FCZ glass-ceramics was investigated with in situ transmission electron microscopy heating experiments. The experiments showed the nucleation and growth of previously unreported BaF2 nanocrystals in addition to the expected BaCl2 nanocrystals. Chemical analysis of the BaF2 nanocrystals shows an association with the optically active dopant previously thought only to interact with BaCl2 nanocrystals. The association of the dopant with BaF2 crystals suggests that it plays a role in the photoluminescent (PL) properties of FCZ glass-ceramics. PMID:24707056

  11. Photoluminescence properties of Ho3+ ion in lithium-fluoroborate glass containing different modifier oxides

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Rajesh, D.; Ratnakaram, Y. C.

    2014-04-01

    Trivalent holmium (0.5 mol%) doped lithium fluoro-borate glasses with the chemical compositions 49.5Li2B4O7-20BaF2-10NaF-20MO (where M=Mg, Ca, Cd and Pb), 49.5Li2B4O7-20BaF2-10NaF-10MgO-10CaO and 49.5Li2B4O7-20BaF2-10NaF-10CdO-10PbO were synthesized and investigated their photoluminescence properties. The variation in chemical composition by varying modifier oxides causes changes in the structural spectroscopic behavior of Ho3+ ions. These changes are examined by UV-VIS- NIR and luminescence spectroscopic techniques. The visible luminescence spectra were obtained by exciting samples at 409 nm radiation.

  12. Interfacial reactions and microstructure of BaTiO 3 films prepared using fluoride precursor method

    NASA Astrophysics Data System (ADS)

    Fujihara, Shinobu; Schneller, Theodor; Waser, Rainer

    2004-01-01

    Interfacial reactions of BaF 2 and TiO 2 were investigated in preparing BaTiO 3 thin films using a fluoride precursor method. Trifluoroacetate solutions were prepared from barium acetate, titanium tetraisopropoxide (TTIP), and trifluoroacetic acid (TFA, CF 3COOH) with additives such as water and acetylacetone. The solutions were deposited on platinized Si wafers by spin-coating, were pyrolysed at 400 °C in air and were finally heated typically at 700 °C in a water vapor atmosphere. The perovskite BaTiO 3 phase was obtained although a small portion of BaF 2 remained unreacted. Thus, the films were characterized as the mixture of BaTiO 3, BaF 2, and amorphous TiO 2. Influence of the solution chemistry on the phase evolution and microstructure was examined in order to discuss the reaction pathway of the perovskite phase.

  13. Optical transitions of Ho(3+) in oxyfluoride glasses and upconversion luminescence of Ho(3+)/Yb(3+)-codoped oxyfluoride glasses.

    PubMed

    Feng, Li; Wu, Yinsu

    2015-05-01

    Optical properties of Ho(3+)-doped SiO2-BaF2-ZnF2 glasses have been investigated on the basis of the Judd-Ofelt theory. Judd-Ofelt intensity parameters, radiative transition probabilities, fluorescence branching ratios and radiative lifetimes have been calculated for different glass compositions. Upconversion emissions were observed in Ho(3+)/Yb(3+)-codoped SiO2-BaF2-ZnF2 glasses under 980nm excitation. The effects of composition, concentration of the doping ions, and excitation pump power on the upconversion emissions were also systematically studied. PMID:25703369

  14. Time-resolved spectroscopy of 5d-4f transitions in Pr3+ doped alkali-earth fluorides

    NASA Astrophysics Data System (ADS)

    Shendrik, R.; Radzhabov, E.; Nagirnyi, V.

    2010-11-01

    We measured time-resolved spectra and emission decay times under pulsed X-ray and synchrotron excitation in alkali-earth fluorides doped with Pr3+ ions. Two fast decay components were found in the emission spectra of BaF2-Pr3+ and SrF2-Pr3+ . These were 4 ns and 21 ns in BaF2-Pr3+ and 8 and 24 ns in SrF2-Pr3+. The intensity of the faster components 4 ns and 8 ns depended on concentration of Pr3+. Thus, the presence of aggregates might be the cause of such faster components.

  15. Lead-barium fluoroborate glass ceramics doped with Nd3+ or Er3+

    NASA Astrophysics Data System (ADS)

    Petrova, O. B.; Sevostjanova, T. S.; Anurova, M. O.; Khomyakov, A. V.

    2016-02-01

    Lead-barium fluoroborate glasses in the PbF2-BaF2-B2O3, PbF2-BaO-B2O3, and PbO- BaF2-B2O3 systems doped with rare-earth ions (Nd3+ or Er3+) are synthesized and studied. It is shown that, based on these glasses, it is possible to produce transparent glass ceramics with fluoride crystalline phases, including ceramics with one crystalline phase of the fluorite structure. The spectral and luminescent properties of the doped glasses, glass ceramics, and polycrystalline complex fluorides containing Pb, Ba, and rare ions are studied.

  16. Characterization of the glow-peak fading properties of six common thermoluminescent materials.

    PubMed

    Harvey, John A; Haverland, Nathan P; Kearfott, Kimberlee J

    2010-10-01

    The pre-irradiation and post-irradiation fading rates of the thermoluminescent glow peaks of six commonly used thermoluminescent dosimeters under controlled environmental conditions over approximately 30 d are examined. Glow peaks were fit to the first-order kinetics model using a computerized glow curve deconvolution program. Dosimeters studied were LiF:Mg,Ti, CaF(2):Dy, CaF(2):Tm, CaF(2):Mn, LiF:Mg,Cu,P, and CaSO(4):Dy. LiF:Mg,Ti and LiF:Mg,Cu,P experienced significant pre-irradiation fading. All types except CaF(2):Mn experienced post-irradiation fading. Ratios of glow-peak areas were fit to exponential decay functions when possible. PMID:20554212

  17. Positron production using a 1.7 MV pelletron accelerator

    NASA Astrophysics Data System (ADS)

    Alcantara, K. F.; Crivelli, P.; Santos, A. C. F.

    2013-04-01

    We report the foremost phase of a fourth generation positron source, being constructed at the Federal University of Rio de Janeiro. Positron yields are reported by making use of the 19F(p,αe+e-)16O reaction, where the fluorine target is in the form of a CaF2 pellet. Positron production has been observed by detecting 511 keV annihilation gamma rays emerging from the irradiated CaF2 target.

  18. Luminescence of rare-earth ions in epitaxial fluoride layers

    NASA Astrophysics Data System (ADS)

    Sokolov, Nikolai S.; Yakovlev, Nikolai L.

    1996-01-01

    Epitaxial fluoride layers (CaF2, SrF2 and CdF2) were grown and doped with rare- earth ions by means of molecular beam epitaxy. This technique allows creation of new fluoride heterostructures (including superlattices) with high level and controlled profile of doping. Photoluminescence spectra of divalent ions (Eu2+ and Sm2+) were used to study strains and stress relaxation in the films. In the structures grown by MBE one can observe effects which are not actual in bulk crystals. They are crossing of 4f6 and 4f55d levels of Sm2+ ions in CaF2 layers with tensile strain as high as 2%, new shape of inhomogeneously broadened Sm2+ zero phonon emission line in very thin CaF2 layers arising from modification of strain fields of defects near the surface, bleaching of photoluminescence of RE ions in thin CaF2:Sm2+ layers on Si(111) and in CdF2-CaF2:Eu2+ superlattices. Luminescence of trivalent ions (Nd3+ and Er3+) in CaF2 films is quenched at much higher concentration of the dopants than in bulk crystals. It makes these films very attractive for potential optoelectronic applications.

  19. Mechanisms for Species-Selective Oriented Crystal Growth at Organic Templates

    SciTech Connect

    Kewalramani,S.; Kim, K.; Evmenenko, G.; Zschack, P.; Karapetrova, E.; Bai, J.; Dutta, P.

    2007-01-01

    Langmuir monolayers floating on supersaturated aqueous subphases can act as templates for the growth of oriented inorganic films--a 'bioinspired' nucleation process. We have performed in situ grazing incidence x-ray diffraction studies of the selective nucleation of BaClF and BaF2 under fatty acid monolayers. The arrangement of the fatty acid headgroups, the monolayer charge, and ion-specific effects all play important roles in selecting the inorganic species. When the monolayer is in a neutral state, both BaClF and BaF2 nucleate at the interface and are well aligned, but when the monolayer headgroup is deprotonated, only oriented BaF2 grows at the interface. We also observe an enhanced alignment of BaF2 crystals during growth from highly supersaturated solutions, presumably due to reorganization of preformed crystals at the organic template. These results show that a delicate interplay between multiple factors governs the oriented growth of inorganic films at organic templates.

  20. Recent Research with the Detector for Advanced Neutron Capture Experiments (dance) at the LOS Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.

    2014-09-01

    The DANCE detector at Los Alamos is a 160 element, nearly 4π BaF2 detector array designed to make measurements of neutron capture on rare or radioactive nuclides. It has also been used to make measurements of gamma-ray multiplicity following capture and gamma-ray output from fission. Several examples of measurements are briefly discussed.

  1. Measurement of the 241Am and the 243Am Neutron Capture Cross Sections at the n_TOF Facility at CERN

    NASA Astrophysics Data System (ADS)

    Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Massimi, C.; Meaze, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2014-05-01

    The capture cross sections of 241Am and 243Am were measured at the n_TOF facility at CERN in the epithermal energy range with a BaF2 Total Absorption Calorimeter. A preliminary analysis of the 241Am and a complete analysis of the 243Am measurement, including the data reduction and the resonance analysis, have been performed.

  2. The improved scintillation crystal lead tungstate scintillation for PET

    NASA Astrophysics Data System (ADS)

    Wan, Youbao; WU, Rurong; Xiao, Linrong; Zhang, Jianxin; Yang, Peizhi; Yan, Hui

    2009-07-01

    As a valuable material for the detecting of γ-ray, PbWO4 and BaF2:PbWO4 crystals were grown by a novel multi-crucible temperature gradient system developed by ourselves. Utilizing a topical partial heating method, this system can form a topical partial high temperature in its hearth. Thus this system could melt raw materials in step by step as requirement. The advantage of this method is that there would be solid obstruct left on the melt in the procedure of the crystal growing up. The left obstruct could prevent the volatilization of the component in the melt. Hence it is helpful for the composition homogenization in the crystal. The system also offers a sustaining device for multi-crucibles and thus it can grow many crystals simultaneity. The optical properties and scintillation properties of the crystals were studied. The results reveal that the ions doping improves the scintillation properties of the crystal. The transmittance spectra show that the transmittance of BaF2:PbWO4 crystals are better than that of PbWO4 crystals. For the PbWO4 crystals, their absorption edge is at 325nm, and their maximum transmittance is 68%. For the BaF2:PbWO4 crystals, their absorption edge is at 325nm and their maximum transmittance is upto76%. The X-ray excited luminescence spectra shows that the luminescence peak is at 420nm for the samples of PbWO4 crystal while the peak is at 430nm for the samples of BaF2:PbWO4 crystal respectively. The luminescence intensity of the samples of BaF2:PbWO4 crystal is about two times than that of PbWO4 crystal. And their peak shape is different for the two kind of crystal. The light yield of BaF2:PbWO4 crystals is about 2.9 times than that of PbWO4 crystal Analyzing these scintillation properties, we find that the VPb 3+ and VO- defects do harm for the optical properties of the crystal. Ions doping method could reduce the defect concentration and improving its illumination performance of the crystal. Specially, the doped F- ions in O2- site can induce the aberrance of the [WO4]2- tetrahedron and form [WO3F]- tetrahedron which has more active blue light yield, thus improve the light yield of the crystal. The improved light yield of BaF2:PbWO4 crystals is valuable for the medical diagnosing instrument PET and CT with high resolving power

  3. Locally increased mortality of gamma-irradiated cells in presence of lanthanide-halide nanoparticles

    NASA Astrophysics Data System (ADS)

    Withers, Nathan J.; Glazener, Natasha N.; Plumley, John B.; Akins, Brian A.; Rivera, Antonio C.; Cook, Nathaniel C.; Smolyakov, Gennady A.; Timmins, Graham S.; Osi?ski, Marek

    2011-03-01

    Cerium-doped lanthanum fluoride colloidal nanocrystals (NCs) offer a way to improve radiation therapy through the enhanced absorption of high-energy photons. The use of Monte Carlo simulation allows the direct calculation of the macroscopic dose enhancement factor (MDEF), a figure of merit for NC-enhanced radiation therapy. Our simulations of brachytherapy using an Ir-192 source agree with previous work on the subject for gold NCs and show effectiveness of LaF3:10%Ce NCs to be approximately 50% that of gold. Polyethylene-glycol-capped LaF3:10%Ce NCs were synthesized, isolated, suspended in phosphate buffered saline (PBS), and characterized with transmission electron microscopy, dynamic light scattering, photoluminescence spectroscopy, and absorption spectroscopy. LaF3:10%Ce NCs were used in radiation dose enhancement experiments that involved an incoming 662 keV gamma flux from dual Cs-137 sources to test the mortality of Saccharomyces cerevisiae. At a small loading of 1.8 mg NC/g of PBS, the experiment did not produce a measurable increased mortality. To understand the results, additional Monte Carlo simulations revealed that the photon energy of 662 keV gamma rays is far from optimal, providing only a 4% increase in dose for a concentration of 18 mg of NCs / g of PBS. Further simulations showed that the optimal photon energy for this technique is 60 keV, tripling the absorbed dose for a concentration of 18 mg of NCs / g of PBS.

  4. Dynamics of 23 (1/CM) Phonons in Lanthanum-Fluoride and the Effects of Resonant Raman Scattering.

    NASA Astrophysics Data System (ADS)

    Yom, Sang Seop

    The dynamics of 23 cm('-1) phonons in LaF(,3) doubly doped with Pr('3+) and Dy('3+) have been studied at low temperatures with magnetic fields up to 30 kG. The two crystal field states, ('1)D(,2)(I) and (II), of Pr('3+) ion are chosen as the source and detector of the phonons while the ground state manifolds, ('6)H(,15/2)(I) and (II), of Dy('3+) ion are tuned to the 23 cm('-1) phonons. We discuss the resonant Raman scattering of the 23 cm('-1) phonons by Dy('3+) ions. In singly doped LaF(,3):0.05% Pr('3+), the anharmonic phonon lifetime (600 ns) is obtained from the decay of the phonon-induced ('1)D(,2)(II) hot luminescence after selective optical excitation with a Nd:YAG pumped dye laser (bandwidth (TURN)0.3 cm('-1)). The long-time tail of the time-resolved spectrum shows an effect of thermal phonons which are generated by the upconversion process involving the ('3)P(,0) state. The phonon lifetime is reduced to 50 ns in more concentrated samples (0.5% Pr('3+)). In a doubly-doped sample (0.05% Pr('3+) and 0.01% Dy('3+)), the lifetime is reduced by up to a factor of 6 when the transitions within the ('6)H(,15/2) ground manifold of Dy('3+) are tuned with a magnetic field into resonance with the 23 cm('-1) phonons. Our model calculation shows that the 23 cm('-1) phonons downshift their energy by Raman processes resulting in a shorter 23 cm('-1) phonon decay time when the Zeeman components of the ('6)H(,15/2)(I and II) states of Dy('3+) are resonant with the phonon energy. Resonances are observed at 15.9 and 22.7 kG, consistent with the observed Dy('3+) splittings. Finally, we report the potential usefulness of systems such as LaF(,3):Er('3+), LaF(,3):Dy('3+), and YAlO(,3):Er('3+) for further phonon studies. We confirm that two magnetically inequivalent sites exist in the YAlO(,3):Er('3+) system. Some experiments are suggested to investigate the large wavevector phonon dynamics further.

  5. Simultaneous determination of tantalum and hafnium in silicates by neutron activation analysis

    USGS Publications Warehouse

    Greenland, L.P.

    1968-01-01

    A neutron activation procedure suitable for the routine determination of tantalum and hafnium in silicates is described. The irradiated sample is fused with sodium peroxide and leached, and the insoluble hydroxides are dissolved in dilute hydrofluoric acid-hydrochloric acid. After LaF3 and AgCl scavenges, tantalum and hafnium are separated by anion exchange. Tantalum is obtained radiochemically pure; 233Pa and 95Zr contaminants in the hafnium fraction are resolved by ??-ray spectrometry. The chemical yield of the procedure is detemined after counting by re-irradiation. Values for the 8 U.S. Geological Survey standard rocks are reported. ?? 1968.

  6. Probing Atom-Surface Interactions Using Rb Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Sedlacek, Jonathon; Kübler, Harald; Ewel, Charles; Shaffer, James

    2014-05-01

    Alkali Rydberg atoms close to a dielectric surface can resonantly excite surface phonon-polaritons, by decaying into a nearby Rydberg state. In our experiment, rubidium atoms are trapped in a mirror-MOT and are brought close to a dielectric surface in a magnetic trap, where Rydberg excitiation takes place. We are exploring the controlled coupling of Rydberg atoms to surfaces such as quartz, LaF3, and PPLN. Engineered materials such as PPLN allow for control over surface phonon-polariton resonance frequencies and bandwidths, enabling increased coupling strength. Engineering the surface allows for coupling to surface phonon-polaritions at much greater distances.

  7. Construction of prototypes of a new class of infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1976-01-01

    A class of infrared detectors is proposed and experimental results are presented for a prototype device. The material used is LaF3, an ionic conductor with a capacitance that varies exponentially with temperature. The detectivity of a prototype detector is estimated from measured signal voltages and incident power, and a Johnson noise voltage calculated from the measured resistance. For the parameters characterizing this device the estimated detectivity is consistent with a theoretical prediction. The theory further predicts an optimum detectivity for much thinner devices than the prototypes.

  8. Nanostructured LaF{sub 3}:Ce Quantum Dot Nuclear Radiation Detector

    SciTech Connect

    Guss, P., Guise, R., Reed, M., Mukhopadhyay, S., Yuan, D.

    2010-11-01

    Many radioactive isotopes have low energy X-rays and high energy gamma rays of interest for detection. The goal of the work presented was to demonstrate the possibility of measuring both low-energy X-rays and relatively high-energy gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, or cerium bromide. The key accomplishments of the project was the building and acquisition of the LaF3:Ce nanocomposite detectors. Nanocomposite detectors are sensitive to {gamma}s as well as ns and X-rays.

  9. The influence of restricted geometry of diamagnetic nanoporous media on 3He relaxation

    NASA Astrophysics Data System (ADS)

    Alakshin, E. M.; Gazizulin, R. R.; Zakharov, M. Yu.; Klochkov, A. V.; Morozov, E. V.; Salikhov, T. M.; Safin, T. R.; Safiullin, K. R.; Tagirov, M. S.; Shabanova, O. B.

    2015-01-01

    This is an experimental study of the spin kinetics of 3He in contact with diamagnetic samples of inverse opals SiO2, and LaF3 nanopowder. It is demonstrated that the nuclear magnetic relaxation of the absorbed 3He occurs due to the modulation of dipole-dipole interaction by the quantum motion in the two-dimensional film. It is found that the relaxation of liquid 3He occurs through a spin diffusion to the absorption layer, and that the restricted geometry of diamagnetic nanoporous media has an influence on the 3He relaxation.

  10. A computerized glow curve analysis (GCA) method for WinREMS thermoluminescent dosimeter data using MATLAB.

    PubMed

    Harvey, John A; Rodrigues, Miesher L; Kearfott, Kimberlee J

    2011-09-01

    A computerized glow curve analysis (GCA) program for handling of thermoluminescence data originating from WinREMS is presented. The MATLAB program fits the glow peaks using the first-order kinetics model. Tested materials are LiF:Mg,Ti, CaF(2):Dy, CaF(2):Tm, CaF(2):Mn, LiF:Mg,Cu,P, and CaSO(4):Dy, with most having an average figure of merit (FOM) of 1.3% or less, with CaSO(4):Dy 2.2% or less. Output is a list of fit parameters, peak areas, and graphs for each fit, evaluating each glow curve in 1.5 s or less. PMID:21561783

  11. Bleaching effects in photoluminescence of rare-earth ions in fluoride heterostructures

    NASA Astrophysics Data System (ADS)

    Gastev, S. V.; Alvarez, J. C.; Vitvinsky, V. V.; Sokolov, Nikolai S.; Khilko, A. Y.

    1996-01-01

    Bleaching effects in photoluminescence (PL) of rare earth Sm2+ ions in CaF2:Sm/Si(111) heterostructures and Eu2+ ions in [CdF2/CaF2:EU]n/Si(111) superlattices have been observed for the first time. The PL was excited by He-Ne ((lambda) equals 633 nm) and N2 ((lambda) $equals 337 nm) lasers respectively. It was found that illumination of wavelength (lambda)

  12. Quantification of fluorite mass-content in powdered ores using a Laser-Induced Breakdown Spectroscopy method based on the detection of minor elements and CaF molecular bands

    NASA Astrophysics Data System (ADS)

    Álvarez, C.; Pisonero, J.; Bordel, N.

    2014-10-01

    Laser Induced Breakdown Spectroscopy (LIBS) is investigated as a fast and robust method to determine the fluorite (CaF2) mass-content of powdered ore samples. Calibrating samples covering a wide CaF2 concentration range (from 2.3 to 97.6%) are employed. LIBS operating conditions are optimized for the analysis of elemental emission lines and molecular bands, respectively. In particular, LIBS emission intensities from different CaF molecular bands are evaluated to calibrate the fluorite concentration as an alternative to the use of atomic fluorine F I emission lines. Furthermore, the determination of LIBS emission signals from minor elements (e.g. Si I and Mg I) is studied to further improve the accuracy and precision of pure fluorite sample analyses (e.g. [CaF2] > 75%). The proposed LIBS method avoids the tedious dissolution processes that are required by other analytical methods employed in mining industry for the quantitative analysis of fluorite.

  13. Standardized cell samples for midIR technology development

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Rommel, Christina E.; Kemper, Björn; Schnekenburger, Jürgen

    2015-03-01

    The application of midIR spectroscopy towards human cell and tissue samples is impaired by the need for technical solutions and lacking sample standards for technology development. We here present the standardization of stable test samples for the continuous development and testing of novel optical system components. We have selected cell lines representing the major cellular skin constituents keratinocytes and fibroblasts (NIH-3T3, HaCaT). In addition, two skin cancer cell types (A-375 and SK-MEL-28 cells) were analyzed. Cells were seeded on CaF2 substrates and measured dried and under aqueous medium as well as fixated and unfixated. Several independent cell preparations were analyzed with an FTIR spectrometer in the wave number range from 1000 - 4000 cm-1. The obtained data demonstrate that fixed and dehydrated cells on CaF2 can be stored in pure ethanol for several weeks without significant losses in quality of the spectral properties. The established protocol of cell seeding on CaF2 substrates, chemical fixation, dehydration, storage under ethanol and air-drying is suitable for the production of reliable midIR standards. The retrieved spectra demonstrate that fixed cells on CaF2 can be prepared reproducibly; with stable midIR spectral properties over several weeks and properties mimicking reliable unfixed cells. Moreover, the fixated samples on CaF2 show clear differences in the cell type specific spectra that can be identified by principle component analysis. In summary, the standardized cell culture samples on CaF2 substrates are suitable for the development of a midIR device and the optimization of the specific midIR spectra.

  14. Up/down conversion switching by adjusting the pulse width of red laser beams in LaF₃:Tm³⁺ nanocrystals.

    PubMed

    Gao, Dangli; Tian, Dongping; Xiao, Guoqing; Chong, Bo; Yu, Genghua; Pang, Qing

    2015-08-01

    We demonstrate a versatile approach to fine-tuning the ratio of blue to near-infrared emission intensity from Tm3+ ions in LaF3 nanocrystals by adjusting the pulse widths and excitation wavelengths of red laser beams. The mechanism of color-tunable Tm3+ emission by pulse widths is explored, and a mechanism based on promoting the population of some luminescence levels and cutting off the population of others by suitably adjusting pulse duration is proposed. The underlying reason of excitation wavelength-modulated emission is ascribed to tuning absorption probability ratio of ground state absorption to excited state absorption by tuning the matching degree between the energies of excitation wavelength and ground (excited) state absorption of Tm3+. The ability of our LaF3:Tm3+ nanocrystals to emit variable emissions on demand in response to pulse width and excitation wavelength provides keen insights into controlling the population processes of luminescent levels and offers a versatile approach for tuning the spectral output. PMID:26258362

  15. Photoluminescence of cerium fluoride and cerium-doped lanthanum fluoride nanoparticles and investigation of energy transfer to photosensitizer molecules.

    PubMed

    Cooper, Daniel R; Kudinov, Konstantin; Tyagi, Pooja; Hill, Colin K; Bradforth, Stephen E; Nadeau, Jay L

    2014-06-28

    CexLa1-xF3 nanoparticles have been proposed for use in nanoscintillator-photosensitizer systems, where excitation of nanoparticles by ionizing radiation would result in energy transfer to photosensitizer molecules, effectively combining the effects of radiotherapy and photodynamic therapy. Thus far, there have been few experimental investigations of such systems. This study reports novel synthesis methods for water-dispersible Ce0.1La0.9F3/LaF3 and CeF3/LaF3 core/shell nanoparticles and an investigation of energy transfer to photosensitizers. Unbound deuteroporphyrin IX 2,4-disulfonic acid was found to substantially quench the luminescence of large (>10 nm diameter) aminocaproic acid-stabilized nanoparticles at reasonable concentrations and loading amounts: up to 80% quenching at 6% w/w photosensitizer loading. Energy transfer was found to occur primarily through a cascade, with excitation of "regular" site Ce(3+) at 252 nm relayed to photosensitizer molecules at the nanoparticle surface through intermediate "perturbed" Ce(3+) sites. Smaller (<5 nm) citrate-stabilized nanoparticles were coated with the bisphosphonate alendronate, allowing covalent conjugation to chlorin e6 and resulting in static quenching of the nanoparticle luminescence: ∼50% at ∼0.44% w/w. These results provide insight into energy transfer mechanisms that may prove valuable for optimizing similar systems. PMID:24827162

  16. Microstructural and ionic transport studies of hydrothermally synthesized lanthanum fluoride nanoparticles

    NASA Astrophysics Data System (ADS)

    Patro, L. N.; Kamala Bharathi, K.; Ravi Chandra Raju, N.

    2014-12-01

    This article presents the structural and transport characteristics of hydrothermally synthesized LaF3 nanoparticles with an average crystallite size of 35nm. The phase formation of the material is confirmed by both X-ray diffraction and transmission electron microscopy techniques. In addition, phase purity of the LaF3 nanoparticles is corroborated by micro-Raman spectroscopy studies. The complex impedance plots at different temperatures reveal that the conductivity is predominantly due to the intrinsic bulk grains and the conductivity relaxation is non-Debye in nature. The frequency variation of conductivity exhibits dispersion at higher frequencies that can be explained with the frame work of Almond-West formalism. The conduction process is controlled by the mobility of the charge carriers and the charge of transport of mobile fluoride ions occur through hopping mechanism. The scaling behavior of both frequency dependence of conductivity and complex impedance plots at different temperatures confirm that the relaxation mechanism of the mobile fluoride ions is independent of temperature.

  17. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  18. Multiple-magnetic field 139La NMR and density functional theory investigation of the solid lanthanum(III) halides.

    PubMed

    Ooms, Kristopher J; Feindel, Kirk W; Willans, Mathew J; Wasylishen, Roderick E; Hanna, John V; Pike, Kevin J; Smith, Mark E

    2005-09-01

    Results from a solid-state 139La NMR spectroscopic investigation of the anhydrous lanthanum(III) halides (LaX3; X=F, Cl, Br, I) at applied magnetic fields of 7.0, 9.4, 11.7, 14.1, and 17.6 T are presented and highlight the advantages of working at high applied magnetic field strengths. The 139La quadrupolar coupling constants are found to range from 15.55 to 24.0 MHz for LaCl3 and LaI3, respectively. The lanthanum isotropic chemical shifts exhibit an inverse halogen dependence with values ranging from -135 ppm for LaF3 to 700 ppm for LaI3, which represents nearly half of the total lanthanum chemical shift range. The spans of the magnetic shielding tensors also vary widely, from 35 to 650 ppm for the solid LaF3 through LaI3. DFT calculations of the 139La electric field gradient and magnetic shielding tensors have been performed and provide a qualitative interpretation of the trends observed experimentally. PMID:16125375

  19. Characteristics of thin calcium fluoride barrier layers for field-effect transistors and functional electronic devices

    NASA Astrophysics Data System (ADS)

    Illarionov, Yu. Yu.; Vexler, M. I.; Suturin, S. M.; Fedorov, V. V.; Sokolov, N. S.

    2010-05-01

    Thin (2-7 monolayer thick) layers of calcium fluoride (CaF2) of device quality have been obtained using molecular beam epitaxy on Si(111) substrates. The current-voltage characteristics of metal-insulator-semiconductor (MIS) structures with these films well correspond to theoretical results obtained with correctly taking into account the conserved transverse wave vector component of tunneling carriers. According to calculations, the tunneling currents in CaF2 based MIS structures are smaller than those in the standard structures with oxides used in field-effect transistors.

  20. Response of TL materials to diagnostic radiology X radiation beams.

    PubMed

    Maia, Ana F; Caldas, Linda V E

    2010-01-01

    The main objective of this study was to carry out a direct performance comparison among some known types of TLDs-three types of CaSO(4):Dy pellets, sintered Al(2)O(3) pellets, LiF:Mg,Ti (Harshaw TLD-100), CaF(2):Dy (Harshaw TLD-200) and CaF(2):Mn (Harshaw TLD-400)-in the energy and dose ranges of diagnostic radiology beams. Several dosimetric characteristics were evaluated, such as reproducibility, sensitivity, calibration curves, lower dose limits and energy dependence. PMID:20097569

  1. Spectroscopic properties of Yb3+-doped TeO2—BaO—BaF2—Nb2O5-based oxyfluoride tellurite glasses

    NASA Astrophysics Data System (ADS)

    Lin, She-Bao; Wang, Peng-Fei; She, Jiang-Bo; Guo, Hai-Tao; Xu, Shen-Nuo; Yu, Cheng-Long; Liu, Chun-Xiao; Peng, Bo

    2014-09-01

    A series of oxyfluoride glasses with the compositions of 75 mol% TeO2, 10 mol% Nb2O5, (15 mol%-x) BaO, x BaF2 (x = 0 mol%, 5 mol%, 10 mol%, 15 mol%) doped with Yb2O3 were prepared by the melt-quenching method. Their emission cross-sections, fluorescence lifetimes, and gain properties were investigated by using the absorption spectra and the fluorescence decay curves. The results show that by substituting BaF2 for BaO, the emission cross-section decreases from 1.37 pm2 to 1.21 pm2, and the fluorescence lifetime increases from 0.71 ms to 0.96 ms. These properties indicate that this oxyfluoride tellurite glass may have potential uses as the Yb2O3-doped gain medium in a solid laser.

  2. A simple radionuclide-driven single-ion source.

    PubMed

    Montero Díez, M; Twelker, K; Fairbank, W; Gratta, G; Barbeau, P S; Barry, K; DeVoe, R; Dolinski, M J; Green, M; LePort, F; Müller, A R; Neilson, R; O'Sullivan, K; Ackerman, N; Aharmin, B; Auger, M; Benitez-Medina, C; Breidenbach, M; Burenkov, A; Cook, S; Daniels, T; Donato, K; Farine, J; Giroux, G; Gornea, R; Graham, K; Hagemann, C; Hall, C; Hall, K; Hallman, D; Hargrove, C; Herrin, S; Karelin, A; Kaufman, L J; Kuchenkov, A; Kumar, K; Lacey, J; Leonard, D S; Mackay, D; MacLellan, R; Mong, B; Niner, E; Odian, A; Piepke, A; Pocar, A; Prescott, C Y; Pushkin, K; Rollin, E; Rowson, P C; Sinclair, D; Slutsky, S; Stekhanov, V; Vuilleumier, J-L; Wichoski, U; Wodin, J; Yang, L; Yen, Y-R

    2010-11-01

    We describe a source capable of producing single barium ions through nuclear recoils in radioactive decay. The source is fabricated by electroplating (148)Gd onto a silicon α-particle detector and vapor depositing a layer of BaF(2) over it. (144)Sm recoils from the alpha decay of (148)Gd are used to dislodge Ba(+) ions from the BaF(2) layer and emit them in the surrounding environment. The simultaneous detection of an α particle in the substrate detector allows for tagging of the nuclear decay and of the Ba(+) emission. The source is simple, durable, and can be manipulated and used in different environments. We discuss the fabrication process, which can be easily adapted to emit most other chemical species, and the performance of the source. PMID:21133463

  3. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1991-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectrics having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writing capability, complex device structures like three terminal hybrid semiconductor/superconductor transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray deffraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  4. In-situ integrated processing and characterization of thin films of high temperature superconductors, dielectrics and semiconductors by MOCVD

    NASA Technical Reports Server (NTRS)

    Singh, R.; Sinha, S.; Hsu, N. J.; Thakur, R. P. S.; Chou, P.; Kumar, A.; Narayan, J.

    1990-01-01

    In this strategy of depositing the basic building blocks of superconductors, semiconductors, and dielectric having common elements, researchers deposited superconducting films of Y-Ba-Cu-O, semiconductor films of Cu2O, and dielectric films of BaF2 and Y2O3 by metal oxide chemical vapor deposition (MOCVD). By switching source materials entering the chamber, and by using direct writting capability, complex device structures like three-terminal hybrid semiconductors/superconductors transistors can be fabricated. The Y-Ba-Cu-O superconducting thin films on BaF2/YSZ substrates show a T(sub c) of 80 K and are textured with most of the grains having their c-axis or a-axis perpendicular to the substrate. Electrical characteristics as well as structural characteristics of superconductors and related materials obtained by x-ray defraction, electron microscopy, and energy dispersive x-ray analysis are discussed.

  5. Development of MBE grown Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region

    NASA Technical Reports Server (NTRS)

    Miller, M. D.

    1981-01-01

    Diodes lasers are fabricated using multiple source molecular beam expitaxial growth of (PbSn)Te on BaF2 substrates. Methods for crystal growth, crystal transfer, and device fabrication by photolithographic techniques were developed. The lasers operate in the spectra range from 10 microns to 14 microns and at temperatures from 12K to 60K continuous wave and to 95 K pulsed.

  6. Optical properties of Ce3+ doped fluorophosphates scintillation glasses

    NASA Astrophysics Data System (ADS)

    Yao, Yongxin; Liu, Liwan; Zhang, Yu; Chen, Danping; Fang, Yongzheng; Zhao, Guoying

    2016-01-01

    Fluorophosphates (P2O5-BaO-BaF2-Al2O3-Gd2O3-Ce2O3) glasses with different Gd2O3 and BaF2 concentrations have been prepared by a melt quenching method. The effect of Gd2O3 and BaF2 on the glass performance including the density, absorption as well as luminescence properties under both ultraviolet (UV) and X-ray excitation was studied systematically. Energy transfer from Gd3+ to Ce3+ plays an important role in the scintillation mechanism of these glasses and the optimum concentration of Gd2O3 is found to be approximately 3 mol%. The highest integrated light emission intensity of these glass samples excited by X-ray is 25% of BGO and the decay time constants are in the range of 25-35 ns, much shorter than the 300 ns decay time of BGO. Meanwhile, replacing lighter compound BaO with the BaF2 can increase the density of the glasses and also improve the light yield.

  7. Variation of photoluminescence features in Pr3+ doped lithium-fluoro-borate glass by changing different modifier oxides (MgO, CaO, CdO and PbO)-Judd-Ofelt theory application

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Rajesh, D.; Babu, S.; Ratnakaram, Y. C.

    2015-06-01

    Pr3+ (1.0 mol%) doped different modifier oxide based six lithium-fluoro-borate glasses with chemical composition of 49Li2B4O7-20BaF2-10NaF-20MO (where M= Mg, Ca, Cd and Pb), 49Li2B4O7-20BaF2-10NaF-10MgO-10CaO and 49Li2B4O7-20BaF2-10NaF-10CdO-10PbO were prepared by conventional melt quenching technique. Judd-Ofelt theory has been applied for evaluating the Judd-Ofelt intensity parameters for Pr3+ ion in these glass compositions and are in turn to used to predict radiative properties such as radiative transition probabilities (AT), branching ratios (β) and stimulated emission cross-section (σP). Stimulated emission cross-section (σp) of prominent emission transitions, 3P0→3H4 and 1D2→3H4 of Pr3+ ion in all lithium-fluoro-borate glasses were calculated. Among all the emission transitions, 3P0→3H4 posseses higher branching ratio and stimulated emission cross-section in Mg-Ca glass, which leads to the best laser excitation at 487 nm wavelength.

  8. Development of low-absorption AR coatings for CO2 laser by ion assisted deposition

    NASA Astrophysics Data System (ADS)

    Iwamoto, Hiromi; Ebata, Keiji; Nanba, Hirokuni

    2003-02-01

    We have developed an anti-reflection (AR) coating technique designed for high power carbon dioxide (CO2) lasers that has low absorption and high resistance to humidity. This was achieved by performing ion-assisted deposition (IAD) using a Xe ion beam to apply BaF2 and ZnSe used as coating materials with extremely low bulk absorption coefficients. It was found that to achieve highly compact BaF2 thin films with low absorption on polycrystalline ZnSe substrates, both a surface flatness treatment using Xe ion bombardment and an optimized IAD condition of relatively low ion energy up to 200 eV are required. The absorption of the new (BaF2/ZnSe) AR coated ZnSe lens is 0.10 to 0.12%, approximately half that of conventional (ThF4/ZnSe) AR coated lenses. The new lens has both excellent anti-aging performance and a high resistance to humidity.

  9. Highly Compressed Two-Dimensional Form of Water at Ambient Conditions

    PubMed Central

    Kaya, Sarp; Schlesinger, Daniel; Yamamoto, Susumu; Newberg, John T.; Bluhm, Hendrik; Ogasawara, Hirohito; Kendelewicz, Tom; Brown, Gordon E.; Pettersson, Lars G. M.; Nilsson, Anders

    2013-01-01

    The structure of thin-film water on a BaF2(111) surface under ambient conditions was studied using x-ray absorption spectroscopy from ambient to supercooled temperatures at relative humidity up to 95%. No hexagonal ice-like structure was observed in spite of the expected templating effect of the lattice-matched (111) surface. The oxygen K-edge x-ray absorption spectrum of liquid thin-film water on BaF2 exhibits, at all temperatures, a strong resemblance to that of high-density phases for which the observed spectroscopic features correlate linearly with the density. Surprisingly, the highly compressed, high-density thin-film liquid water is found to be stable from ambient (300 K) to supercooled (259 K) temperatures, although a lower-density liquid would be expected at supercooled conditions. Molecular dynamics simulations indicate that the first layer water on BaF2(111) is indeed in a unique local structure that resembles high-density water, with a strongly collapsed second coordination shell. PMID:23323216

  10. Dissociative Binding of Carboxylic Acid Ligand on Nanoceria Surface in Aqueous Solution: A Joint in Situ Spectroscopic Characterization and First-Principles Study

    SciTech Connect

    Lu, Zhou; Karakoti, Ajay S.; Velarde Ruiz Esparza, Luis A.; Wang, Weina; Yang, Ping; Thevuthasan, Suntharampillai; Wang, Hongfei

    2013-11-21

    Carboxylic acid is a common ligand anchoring group to functionalize nanoparticle surfaces. Its binding structures and mechanisms as a function of the oxidation states of metal oxide nanoparticle surfaces are not well characterized experimentally. We present an in situ sum frequency generation vibrational spectroscopy (SFG-VS) study on the binding of deuterated acetic acid on ceria nanoparticles in the aqueous solution. In the SFG experiment, ceria nanoparticles were deposited on the flat surface of a CaF2 hemisphere in contact with acetic acid solutions. While the ceria nanoparticle deprotonated the acetic acid, the CaF2 surface could not. Thus, the binding of the deprotonated acetic acid on ceria can be selectively probed. SFG spectra revealed that the binding modes of the carboxylate group depend on the oxidation states of the ceria surfaces. SFG polarization analysis suggested that the bidentate chelating and bridging binding modes co-exist on the reduced ceria surfaces, while the oxidized ceria surfaces are dominated by the bidentate bridging mode. The direct spectroscopic evidence helps to clarify the binding structures and mechanisms on the ceria nanoparticles. Furthermore, the middle-infrared (IR) transparent CaF2 and its chemical inertness make CaF2 and similar substrate materials good candidates for direct SFG-VS measurement of nanoparticle surface reactions and binding chem-istry.

  11. Nanoscale Characterization of Self-Ordered Metal-Insulator Nanostructured Magnetic Films

    NASA Astrophysics Data System (ADS)

    Fedotova, J.; Kasiuk, J.; Milosavljević, M.; Przewoznik, J.; Kapusta, Cz.

    2013-05-01

    The paper summarizes features in magnetic states of nanocomposite films like superparamagnetic relaxation, exchange interactions, enhanced magnetic anisotropy, originating from their granular nanostructure and related to various combinations of metallic (FeCo(Zr) alloy) nanoparticles and insulating (Al2O3, PbZrTiO3, CaF2) matrix as well as films deposition regimes.

  12. All-optical Photonic Oscillator with High-Q Whispering Gallery Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Strekalov, Dmitry; Mohageg, Makan; Iltchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrated low threshold optical photonic hyper-parametric oscillator in a high-Q 10(exp 10) CaF2 whispering gallery mode resonator which generates stable 8.5 GHz signal. The oscillations result from the resonantly enhanced four wave mixing occurring due to Kerr nonlinearity of the material.

  13. Lattice dynamics and thermal conductivity of calcium fluoride via first-principles investigation

    NASA Astrophysics Data System (ADS)

    Qi, Yuan-Yuan; Zhang, Tian; Cheng, Yan; Chen, Xiang-Rong; Wei, Dong-Qing; Cai, Ling-Cang

    2016-03-01

    The lattice thermal conductivity of CaF2 is accurately computed from a first-principles theoretical approach based on an iterative solution of the Boltzmann transport equation. The second- and third-order interatomic force constants are generated from a real-space finite-difference supercell approach. Then, the force constants for both the second- and third-order potential interactions are used to calculate the lattice thermal conductivity and related physical quantities of CaF2 at temperatures ranging from 30 K to 1500 K. The obtained lattice thermal conductivity 8.6 W/(m.K) for CaF2 at room temperature agrees better with the experimental value than other theoretical data, demonstrating the promise of this parameter-free approach in providing precise descriptions of the lattice thermal conductivity of materials. The obtained dielectric parameters and phonon spectrum of CaF2 accord well with available data. Meanwhile, the temperature dependence curves of the lattice thermal conductivity, heat capacity, and phonon mean free path are presented.

  14. The mechanical properties of fluoride salts at elevated temperatures. [candidate thermal energy storage materials for solar dynamic systems

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Whittenberger, J. D.

    1989-01-01

    The deformation behavior of CaF2 and LiF single crystals compressed in the 111 and the 100 line directions, respectively, are compared with the mechanical properties of polycrystalline LiF-22 (mol pct) CaF2 eutectic mixture in the temperature range 300 to 1275 K for strain rates varying between 7 x 10 to the -7th and 0.2/s. The true stress-strain curves for the single crystals were found to exhibit three stages in an intermediate range of temperatures and strain rates, whereas those for the eutectic showed negative work-hardening rates after a maximum stress. The true stress-strain rate data for CaF2 and LiF-22 CaF2 could be represented by a power-law relation with the strain rate sensitivities lying between 0.05 and 0.2 for both materials. A similar relation was found to be unsatisfactory in the case of LiF.

  15. Prevention of enamel demineralization with a novel fluoride strip: enamel surface composition and depth profile

    PubMed Central

    Lee, Bor-Shiunn; Chou, Po-Hung; Chen, Shu-Yu; Liao, Hua-Yang; Chang, Che-Chen

    2015-01-01

    There is no topically applicable low concentration fluoride delivery device available for caries prevention. This study was aimed to assess the use of a low concentration (1450 ppm) fluoride strip as an effective fluoride delivery system against enamel demineralization. The enamel surface composition and calcium-deficient hydroxyapatite or toothpaste treatments were investigated using X-ray photoelectron spectroscopy. In vitro enamel demineralization was assayed using a pH cycling model and the dissolution of calcium ions from the treated specimens was quantified using ion chromatography. After 24-hr fluoride-strip treatment, the enamel was covered with a CaF2 layer which showed a granular morphology of 1 μm in size. Below the CaF2 layer was a region of mixed fluorapatite and CaF2. Fluoride infiltrated extensively in enamel to produce highly fluorinated fluorohydroxyapatite. In comparison, low-fluoride-level fluorinated fluorohydroxyapatite was formed on the enamel specimen exposed to toothpaste. The treatments with the fluoride strip as short as 1 hr significantly inhibited enamel demineralization. The fluoride strip was effective for topical fluoride delivery and inhibited in vitro demineralization of enamel by forming CaF2 and fluoride-containing apatites at the enamel surface. It exhibited the potential as an effective fluoride delivery device for general use in prevention of caries. PMID:26293361

  16. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach.

    PubMed

    Kulshrestha, Shatavari; Khan, Shakir; Hasan, Sadaf; Khan, M Ehtisham; Misba, Lama; Khan, Asad U

    2016-02-01

    Biofilm formation on the tooth surface is the root cause of dental caries and periodontal diseases. Streptococcus mutans is known to produce biofilm which is one of the primary causes of dental caries. Acid production and acid tolerance along with exopolysaccharide (EPS) formation are major virulence factors of S. mutans biofilm. In the current study, calcium fluoride nanoparticles (CaF2-NPs) were evaluated for their effect on the biofilm forming ability of S. mutans in vivo and in vitro. The in vitro studies revealed 89 % and 90 % reduction in biofilm formation and EPS production, respectively. Moreover, acid production and acid tolerance abilities of S. mutans were also reduced considerably in the presence of CaF2-NPs. Confocal laser scanning microscopy and transmission electron microscopy images were in accordance with the other results indicating inhibition of biofilm without affecting bacterial viability. The qRT-PCR gene expression analysis showed significant downregulation of various virulence genes (vicR, gtfC, ftf, spaP, comDE) associated with biofilm formation. Furthermore, CaF2-NPs were found to substantially decrease the caries in treated rat groups as compared to the untreated groups in in vivo studies. Scanning electron micrographs of rat's teeth further validated our results. These findings suggest that the CaF2-NPs may be used as a potential antibiofilm applicant against S. mutans and may be applied as a topical agent to reduce dental caries. PMID:26610805

  17. Fluorspar

    USGS Publications Warehouse

    Miller, M.

    2002-01-01

    In 2001, one mine in Utah produced a small quantity of fluorspar. The majority of fluorspar consumed in the United States continued to come from imports or material purchased from the US National Defense Stockpile (NDS). In addition, a small amount of synthetic fluorspar (CaF2) was produced from industrial waste streams.

  18. Fluorspar

    USGS Publications Warehouse

    Miller, M.

    2003-01-01

    The United States had a small quantity of fluorspar production from one mine in Utah during 2002. Most of the fluorspar consumed in the United States continued to come from imports or material purchased from the National Defense Stockpile (NDS). In addition, a small amount of synthetic fluorspar (CaF2) was produced from industrial waste streams.

  19. Fluorspar

    USGS Publications Warehouse

    Miller, M.

    2012-01-01

    World fluorspar demand continued to show signs of recovery from 2008-2009 recession. In 2011, nearly all fluorspar (CaF2) consumed in the United States was imported. Hastie Mining and Trucking Co. produced some fluorspar as a byproduct from its limestone quarry operations in Illinois. In addition, a small amount of usable synthetic fluorspar was produced from industrial waste streams.

  20. Verification of threshold activation detection (TAD) technique in prompt fission neutron detection using scintillators containing 19F

    NASA Astrophysics Data System (ADS)

    Sibczynski, P.; Kownacki, J.; Moszyński, M.; Iwanowska-Hanke, J.; Syntfeld-Każuch, A.; Gójska, A.; Gierlik, M.; Kaźmierczak, Ł.; Jakubowska, E.; Kędzierski, G.; Kujawiński, Ł.; Wojnarowicz, J.; Carrel, F.; Ledieu, M.; Lainé, F.

    2015-09-01

    In the present study ⌀ 5''× 3'' and ⌀ 2''× 2'' EJ-313 liquid fluorocarbon as well as ⌀ 2'' × 3'' BaF2 scintillators were exposed to neutrons from a 252Cf neutron source and a Sodern Genie 16GT deuterium-tritium (D+T) neutron generator. The scintillators responses to β- particles with maximum endpoint energy of 10.4 MeV from the n+19F reactions were studied. Response of a ⌀ 5'' × 3'' BC-408 plastic scintillator was also studied as a reference. The β- particles are the products of interaction of fast neutrons with 19F which is a component of the EJ-313 and BaF2 scintillators. The method of fast neutron detection via fluorine activation is already known as Threshold Activation Detection (TAD) and was proposed for photofission prompt neutron detection from fissionable and Special Nuclear Materials (SNM) in the field of Homeland Security and Border Monitoring. Measurements of the number of counts between 6.0 and 10.5 MeV with a 252Cf source showed that the relative neutron detection efficiency ratio, defined as epsilonBaF2 / epsilonEJ-313-5'', is 32.0% ± 2.3% and 44.6% ± 3.4% for front-on and side-on orientation of the BaF2, respectively. Moreover, the ⌀ 5'' EJ-313 and side-on oriented BaF2 were also exposed to neutrons from the D+T neutron generator, and the relative efficiency epsilonBaF2 / epsilonEJ-313-5'' was estimated to be 39.3%. Measurements of prompt photofission neutrons with the BaF2 detector by means of data acquisition after irradiation (out-of-beam) of nuclear material and between the beam pulses (beam-off) techniques were also conducted on the 9 MeV LINAC of the SAPHIR facility.

  1. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine

    PubMed Central

    Cheng, Lei; Weir, Michael D.; Xu, Hockin H. K.; Kraigsley, Alison M.; Lin, Nancy J.; Lin-Gibson, Sheng; Zhou, Xuedong

    2012-01-01

    Objectives Previous studies have developed calcium phosphate and fluoride releasing composites. Other studies have incorporated chlorhexidine (CHX) particles into dental composites. However, CHX has not been incorporated in calcium phosphate and fluoride composites. The objectives of this study were to develop nanocomposites containing amorphous calcium phosphate (ACP) or calcium fluoride (CaF2) nanoparticles and CHX particles, and investigate S. mutans biofilm formation and lactic acid production for the first time. Methods Chlorhexidine was frozen via liquid nitrogen and ground to obtain a particle size of 0.62 µm. Four nanocomposites were fabricated with fillers of: Nano ACP; nano ACP+10% CHX; nano CaF2; nano CaF2+10% CHX. Three commercial materials were tested as controls: A resin-modified glass ionomer, and two composites. S. mutans live/dead assay, colony-forming unit (CFU) counts, biofilm metabolic activity, and lactic acid were measured. Results Adding CHX fillers to ACP and CaF2 nanocomposites greatly increased their antimicrobial capability. ACP and CaF2 nanocomposites with CHX that were inoculated with S. mutans had a growth medium pH > 6.5 after 3 d, while the control commercial composites had a cariogenic pH of 4.2. Nanocomposites with CHX reduced the biofilm metabolic activity by 10–20 folds and reduced the acid production, compared to the controls. CFU on nanocomposites with CHX were three orders of magnitude less than that on commercial composite. Mechanical properties of nanocomposites with CHX matched a commercial composite without fluoride. Significance The novel calcium phosphate and fluoride nanocomposites could be rendered antibacterial with CHX to greatly reduce biofilm formation, acid production, CFU and metabolic activity. The antimicrobial and remineralizing nanocomposites with good mechanical properties may be promising for a wide range of tooth restorations with anti-caries capabilities. PMID:22317794

  2. [Study on the Influence of Mineralizer on the Preparation of Calcium Aluminates Based on Infrared Spectroscopy].

    PubMed

    Fan, Wei; Wang, Liang; Zheng, Huai-li; Chen, Wei; Tang, Xiao-min; Shang, Juan-fang; Qian, Li

    2015-05-01

    In this study, effect of mineralizer on the structure and spectraproperties of calcium aluminates formation was extensively studied. Medium or low-grade bauxite and calcium carbonate were used as raw material and mineralizer CaF2 as additive. Calcium aluminates can be obtained after mixing fully, calcination and grinding. The prepared calcium aluminates can be directly used for the production of polyaluminiumchloride (PAC), polymeric aluminum sulfate, sodium aluminate and some other water treatment agents. The calcium aluminates preparation technology was optimized by investigating the mass ratio of raw materials (bauxiteand calcium carbonate) and mineralizer CaF2 dosage. The structure and spectra properties of bauxite and calcium aluminates were characterized by Fourier transform infrared(FTIR) spectroscopy analysis and the mineralization mechanism of the mineralizer was studied. FTIR spectra indicated that the addition of mineralizer promoted the decomposition and transformation of the diaspore, gibbsite and kaolinite, the decomposition of calcium carbonate, and more adequately reaction between bauxite and calcium carbonate. In addition, not only Ca in calcium carbonate and Si in bauxite were more readily reacted, but also Si-O, Si-O-Al and Al-Si bonds in the bauxite were more fractured which contributed to the release of Al in bauxite, and therefore, the dissolution rate of Al2O3 could be improved. The dissolution rate of Al2O3 can be promoted effectively when the mineralizer CaF2 was added in a mass ratio amount of 3%. And the mineralizer CaF2 cannot be fully functioned, when its dosage was in a mass percent of 1. 5%. Low-grade bauxite was easier to sinter for the preparation of calcium aluminates comparing with the highgrade one. The optimum material ratio for the preparation of calcium aluminates calcium at 1 250 °C was the mass ratio between bauxite and calcium carbonate of 1 : 0. 6 and mineralizer CaF2 mass ratio percent of 3%. PMID:26415430

  3. Mixedness determination of rare earth-doped ceramics

    NASA Astrophysics Data System (ADS)

    Czerepinski, Jennifer H.

    The lack of chemical uniformity in a powder mixture, such as clustering of a minor component, can lead to deterioration of materials properties. A method to determine powder mixture quality is to correlate the chemical homogeneity of a multi-component mixture with its particle size distribution and mixing method. This is applicable to rare earth-doped ceramics, which require at least 1-2 nm dopant ion spacing to optimize optical properties. Mixedness simulations were conducted for random heterogeneous mixtures of Nd-doped LaF3 mixtures using the Concentric Shell Model of Mixedness (CSMM). Results indicate that when the host to dopant particle size ratio is 100, multi-scale concentration variance is optimized. In order to verify results from the model, experimental methods that probe a mixture at the micro, meso, and macro scales are needed. To directly compare CSMM results experimentally, an image processing method was developed to calculate variance profiles from electron images. An in-lens (IL) secondary electron image is subtracted from the corresponding Everhart-Thornley (ET) secondary electron image in a Field-Emission Scanning Electron Microscope (FESEM) to produce two phases and pores that can be quantified with 50 nm spatial resolution. A macro was developed to quickly analyze multi-scale compositional variance from these images. Results for a 50:50 mixture of NdF3 and LaF3 agree with the computational model. The method has proven to be applicable only for mixtures with major components and specific particle morphologies, but the macro is useful for any type of imaging that produces excellent phase contrast, such as confocal microscopy. Fluorescence spectroscopy was used as an indirect method to confirm computational results for Nd-doped LaF3 mixtures. Fluorescence lifetime can be used as a quantitative method to indirectly measure chemical homogeneity when the limits of electron microscopy have been reached. Fluorescence lifetime represents the compositional fluctuations of a dopant on the nanoscale while accounting for billions of particles in a fast, non-destructive manner. The significance of this study will show how small-scale fluctuations in homogeneity limit the optimization of optical properties, which can be improved by the proper selection of particle size and mixing method.

  4. Dimorphism of RF3 ( R = La-Nd) crystals based on the data of X-ray diffraction studies

    NASA Astrophysics Data System (ADS)

    Bolotina, N. B.; Chernaya, T. S.; Verin, I. A.; Khrykina, O. N.; Sobolev, B. P.

    2016-01-01

    The ratio of two forms of tysonite in nominally pure single crystals of RF3 ( R = La-Nd) obtained from melts under identical conditions (the as-grown state) is studied for the first time by X-ray diffraction. Crystals of RF3 with R = La-Nd belong to the ?-LaF3 structural type (space group Pbar 3c1, Z = 6) and form twins. Samples 0.2-0.4 in diameter contain inclusions of the high-temperature a form (space group P63/ mmc, Z = 2). It is shown that twinning and dimorphism of the RF3 crystals ( R = La-Nd) have a common structural basis.

  5. Nano- and micro-sized rare-earth carbonates and their use as precursors and sacrificial templates for the synthesis of new innovative materials.

    PubMed

    Kaczmarek, Anna M; Van Hecke, Kristof; Van Deun, Rik

    2015-04-21

    This review focuses on rare-earth carbonate materials of nano- and micro-size. It discusses in depth the different types of rare-earth carbonate compounds, diverse synthetic approaches and possibilities for chemical tuning of the size, shape and morphology. The interesting luminescence properties of lanthanide doped rare-earth carbonates and their potential applications for example as efficient white light sources and biolabels are reviewed. Additionally the use of these materials as precursors for the synthesis of nano-/micro-sized oxides, and their application as sacrificial templates for morphology-controlled synthesis of other materials such as YVO4, LaF3, NaYF4 and others is overviewed. PMID:25714401

  6. Uniformity Masks Design Method Based on the Shadow Matrix for Coating Materials with Different Condensation Characteristics

    PubMed Central

    2013-01-01

    An intuitionistic method is proposed to design shadow masks to achieve thickness profile control for evaporation coating processes. The proposed method is based on the concept of the shadow matrix, which is a matrix that contains coefficients that build quantitive relations between shape parameters of masks and shadow quantities of substrate directly. By using the shadow matrix, shape parameters of shadow masks could be derived simply by solving a matrix equation. Verification experiments were performed on a special case where coating materials have different condensation characteristics. By using the designed mask pair with complementary shapes, thickness uniformities of better than 98% are demonstrated for MgF2 (m = 1) and LaF3 (m = 0.5) simultaneously on a 280 mm diameter spherical substrate with the radius curvature of 200 mm. PMID:24227996

  7. Spectroscopic, thermal and cw dual-wavelength laser characteristics of Nd:LaF3 single crystal

    NASA Astrophysics Data System (ADS)

    Hong, Jiaqi; Zhang, Lianhan; Li, Jing; Wang, Zhaowei; He, Jingliang; Zhang, Peixiong; Wang, Yaqi; Hang, Yin

    2016-03-01

    A Nd-doped LaF3 crystal was grown by Czochralski method, and the rocking curves of (0 0 2) and (1 1 0) diffraction planes show good crystallinity quality of the as-grown crystal. Room-temperature fluorescence spectrum and transmittance spectrum of Nd:LaF3 crystal were investigated, both indicating probable dual-wavelength emissions at ∼1.04 μm and ∼1.06 μm. The thermal diffusivity and thermal conductivity of Nd:LaF3 crystal were detailed studied. Cw dual-wavelength laser operation of Nd:LaF3 single crystal at 1040 nm and around 1065 nm with LD pumping was demonstrated. A maximum output power of 302 mW was obtained with a slope efficiency of about 18.5% with respect to the pump power. The results of our study indicate the Nd:LaF3 crystal a promising laser crystal.

  8. Resonant inelastic x-ray scattering at the lanthanum L3 edge

    NASA Astrophysics Data System (ADS)

    Journel, L.; Mariot, J.-M.; Rueff, J.-P.; Hague, C. F.; Krill, G.; Nakazawa, M.; Kotani, A.; Rogalev, A.; Wilhelm, F.; Kappler, J.-P.; Schmerber, G.

    2002-07-01

    Pre-edge structure, not resolved in La L3 x-ray-absorption spectra, has been observed in LaS and in two La-Ni intermetallics using resonant inelastic x-ray scattering (RIXS). The 2p3d RIXS data were successfully simulated using a schematic representation of the densities of unoccupied states. It is concluded that the pre-edge structure is largely dominated by dipole transitions involving hybridized 4f states. No such hybridization occurs for LaF3. In this case multiplet calculations performed within an atomic model clearly indicate that pre-edge structure observed in both the x-ray-absorption spectrum and the 2p3d RIXS data originates from quadrupole transitions.

  9. Upconversion luminescence of Yb 3+/Tb 3+ co-doped tellurite glasses

    NASA Astrophysics Data System (ADS)

    Kochanowicz, Marcin; Zmojda, Jacek; Dorosz, Dominik; Miluski, Piotr; Dorosz, Jan

    2014-05-01

    In the article the upconversion luminescence ofTeO2- GeO2 - PbO - PbF2- BaO - Nb2O5 - LaF3 glass system co-doped withYb 3+ /Tb 3+ under 976 nm laser diode excitation was investigated. The influence of Tb2O3concentration on the luminescent properties was determined. Measured strong luminescence at492, 547, 588, 622 nm correspond to 5D4→7FJ (J=6, 4, 3) transitions. Energy transfer (ET) mechanism involved in observed emission was discussed. The highest upconversion emission intensity was obtained in the tellurite glass co-doped with 0.5 Yb2O3/0.5 Tb2O3 (mol%).

  10. Damage precursor measurements on UV optical coatings

    NASA Astrophysics Data System (ADS)

    Ettrich, K.; Blaschke, Holger; Welsch, Eberhard

    1995-07-01

    For application in UV thin film optics the thermal contribution to the laser-induced optical breakdown was investigated utilizing time-resolved photothermal probe beam deflection (MIRAGE) technique. The potentiality of this method for the determination of both the subdamage range and the onset of single-shot-damage of Al2O3/SiO2 and LaF3/MgF2 high-reflective coatings by using the thermal branch of the MIRAGE technique could be demonstrated. Examining the dielectric mirrors by 248 nm KrF laser irradiation, distinct damage precursor features were found. Thus, the physical origin of the UV-pulsed radiation breakdown in HR coatings can be elucidated.

  11. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host

    NASA Astrophysics Data System (ADS)

    del Rosal, Blanca; Pérez-Delgado, Alberto; Misiak, Małgorzata; Bednarkiewicz, Artur; Vanetsev, Alexander S.; Orlovskii, Yurii; Jovanović, Dragana J.; Dramićanin, Miroslav D.; Rocha, Ueslen; Upendra Kumar, K.; Jacinto, Carlos; Navarro, Elizabeth; Martín Rodríguez, Emma; Pedroni, Marco; Speghini, Adolfo; Hirata, Gustavo A.; Martín, I. R.; Jaque, Daniel

    2015-10-01

    The spectroscopic properties of different infrared-emitting neodymium-doped nanoparticles (LaF3:Nd3+, SrF2:Nd3+, NaGdF4: Nd3+, NaYF4: Nd3+, KYF4: Nd3+, GdVO4: Nd3+, and Nd:YAG) have been systematically analyzed. A comparison of the spectral shapes of both emission and absorption spectra is presented, from which the relevant role played by the host matrix is evidenced. The lack of a "universal" optimum system for infrared bioimaging is discussed, as the specific bioimaging application and the experimental setup for infrared imaging determine the neodymium-doped nanoparticle to be preferentially used in each case.

  12. Rare-earth fluorescence in novel oxyfluoride glasses and glass-ceramics

    NASA Astrophysics Data System (ADS)

    Dejneka, Matthew J.

    1998-04-01

    Transparent oxyfluoride glass-ceramics can provide a low- phonon energy fluoride environment for active rare earth ions while maintaining the durability, formability, and mechanical strength of an oxide glass. Fluorescence from RE doped samples indicate substantial partitioning into the fluoride crystals. Eu3+ doped glasses emit only red luminescence from the 5D0, but after treatment emit blue, green, and red luminescence, indicative of a low phonon energy rare earth environment. Er3+ doped samples show broadening and flattening of the 1530 emission band upon heat treatment, making them attractive for broad band amplifiers. Cerammed Pr3+ doped samples exhibit 240 microsecond(s) 1G4 fluorescent lifetimes, which indicates a 1310 nm quantum efficiency of 8%. It was determined that active rare earth partitioning into the LaF3 nanocrystallites that form upon heat treatment are responsible for the novel optical properties of these hybrid materials.

  13. Nanoscintillators for radiation detection

    NASA Astrophysics Data System (ADS)

    Hall, Ryan Gregory

    In the search for faster, more effective methods for detection of and protection against radiological weapons, advances in materials for radiation detection are a critical component of any successful strategy. This work focuses on producing inexpensive, but highly sensitive, nanoparticle alternatives to existing single-crystal installations. Attention is given to particular types of promising inorganic scintillators: LaF3, yttrium-aluminum-garnet (YAG), and SrF2, each one an inorganic host doped with additional elements that encourage luminescent decay and increase effective Z-value. I examine the possible routes to synthesize these compounds, and the difficulties and benefits of each method. After synthesizing these materials, testing was performed to determine comparative performance against each other and commercial solutions, identify structural and compositional characteristics, and explore routes for fixing the scintillators into a detector assembly. The unifying goal is to develop a scintillating material suitable for consistent dosimetry and radio-isotope identification applications.

  14. Luminescence Decay Dynamics and Trace Biomaterials Detection Potential of Surface-Functionalized Nanoparticles

    PubMed Central

    Cheng, Kwan H.; Aijmo, Jacob; Ma, Lun; Yao, Mingzhen; Zhang, Xing; Como, John; Hope-Weeks, Louisa J.; Huang, Juyang; Chen, Wei

    2009-01-01

    We have studied the luminescence decay and trace biomaterials detection potential of two surface-functionalized nanoparticles, poly(ethylene glycol) bis(carboxymethyl) ether-coated LaF3:Ce,Tb (~20 nm) and thioglycolic acid-coated ZnS/Mn (~5 nm). Upon UV excitation, these nanoparticles emitted fluorescence peaking at 540 and 597 nm, respectively, in solution. Fluorescence imaging revealed that these nanoparticles targeted the trace biomaterials from fingerprints that were deposited on various nonporous solid substrates. Highly ordered, microscopic sweat pores within the friction ridges of the fingerprints were labeled with good spatial resolutions by the nanoparticles on aluminum and polymethylpentene substrates, but not on glass or quartz. In solution, these nanoparticles exhibited multicomponent fluorescence decays of resolved lifetimes ranging from nano-to microseconds and of average lifetimes of ~24 and 130 µs for the coated LaF3:Ce,Tb and ZnS:Mn, respectively. The long microsecond-decay components are associated with the emitters at or near the nanocrystal core surface that are sensitive to the size, surface-functionalization, and solvent exposure of the nanoparticles. When the nanoparticles were bound to the surface of a solid substrate and in the dried state, a decrease in the microsecond decay lifetimes was observed, indicative of a change in the coating environment of the nanocrystal surface upon binding and solvent removal. The average decay lifetimes for the surface-bound ZnS:Mn in the dried state were ~60, 30, and 11 µs on quartz, aluminum, and polymethylpentene, respectively. These values were still 2 orders of magnitude longer than the typical fluorescence decay background of most substrates (e.g., ~0.36 µs for polymethylpentene) in trace forensic evidence detections. We conclude that coated ZnS: Mn nanoparticles hold great promise as a nontoxic labeling agent for ultrasensitive, time-gated, trace evidence detections in nanoforensic applications. PMID:20072713

  15. Effect of modifier oxides on absorption and emission properties of Eu3+ doped different lithium fluoroborate glass matrices

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Balakrishna, A.; Rajesh, D.

    2012-11-01

    Eu3+ doped lithium fluoroborate glass with different modifier oxides (Li2B4O7-BaF2-NaF-MO where M=Mg, Ca, Cd and Pb) and combinations of modifier oxides (Li2B4O7-BaF2-NaF-MgO+CaO, Li2B4O7-BaF2-NaF-CdO+PbO) were prepared by means of melt quenching method. These glass samples were analyzed by absorption, photoluminescence and decay curve measurements. The relative merits of thermal correction to the spectral intensities originating from the ground state (7F0) of different absorption bands of Eu3+ are calculated. From the optical absorption measurements and using the Judd-Ofelt (J-O) theory, J-O parameters (Ωλλ=2, 4 and 6) have been obtained which are used to predict the radiative properties such as radiative transition probabilities (A), radiative life-times (τR), and branching ratios (βr) for certain transitions in all the glass matrices. From the emission spectra, peak stimulated emission cross-sections (σP) are obtained for the emission transitions, 5D0→7F1, 5D0→7F2, 5D0→7F3 and 5D0→7F4 of Eu3+ in lithium fluoroborate glass matrix with different modifier oxides. The fluorescence decay curves of the 5D0→7F2 transition have been measured and analyzed for all the glass matrices.

  16. Spectroscopic analysis of Ho3+ transitions in different modifier oxide based lithium-fluoro-borate glasses

    NASA Astrophysics Data System (ADS)

    Balakrishna, A.; Rajesh, D.; Ratnakaram, Y. C.

    2014-10-01

    In recent investigations it was observed that the presence of different structural groups in borate glasses was favorable for spectroscopic investigations of rare earth doped borate glasses. Consequent to these observations, the heavy metal fluoride glasses doped with Ho3+ ions received much attention due to their wide transparency in the ultraviolet to infrared region. Keeping these observations in view, the present paper makes an attempt to present spectral investigations of Ho3+ doped lithium-fluoro-borate glasses of the compositions Li2B4O7-BaF2-NaF-MO (where M=Mg, Ca, Cd and Pb), Li2B4O7-BaF2-NaF-MgO-CaO and Li2B4O7-BaF2-NaF-CdO-PbO. These rare earth doped glasses were synthesized by melt quenching technique and an investigation was carried out to observe the structural (SEM and FT-IR) and optical (absorption and luminescence) properties. The paper also aims at the determination of three phenomenological Judd-Ofelt intensity parameters and special attention was paid to study the emission properties by employing the J-O intensity parameters. The visible emission spectra of Ho3+ ion in different lithium-fluoro-borate glasses were recorded by exciting the samples at 409 nm. The results revealed that among all the glass matrices, cadmium glass matrix have shown higher stimulated emission cross-section, which indicates that this is a good lasing material at this wavelength and highly useful for laser excitation.

  17. Formation of YBa2Cu3O7 superconducting films by ion implantation

    NASA Astrophysics Data System (ADS)

    Nastasi, M.; Tesmer, J. R.; Hollander, M. G.; Smith, J. F.; Maggiore, C. J.

    1988-05-01

    Superconducting thin films were fabricated by ion implanting Y into a base material formed by the coevaporation of BaF2 and Cu. The implantations were carried out at 77 K and resulted in the formation of an amorphous Y-Ba-Cu-F surface layer. Oxygen annealing with the addition of water vapor renders the base material insulating with a room-temperature resistance of 100,000 ohm. An identical annealing treatment on the Y-implanted material produces a superconductor with an onset temperature of 85 K.

  18. Reproducible technique for fabrication of thin films of high transition temperature superconductors

    NASA Astrophysics Data System (ADS)

    Mankiewich, P. M.; Scofield, J. H.; Skocpol, W. J.; Howard, R. E.; Dayem, A. H.

    1987-11-01

    A new process to make films of Y1Ba2Cu3O7 using coevaporation of Y, Cu, and BaF2 on SrTiO3 substrates is reported. The films have high transition temperatures (up to 91 K for a full resistive transition), high critical current densities (10 to the 6th A/sq cm at 81 K), and a reduced sensitivity to fabrication and environmental conditions. Because of the lower reactivity of the films, the authors have been able to pattern them in both the pre-annealed and postannealed states using conventional positive photoresist technology.

  19. Measurement of the Gd157(n,?) reaction with the DANCE ? calorimeter array

    NASA Astrophysics Data System (ADS)

    Chyzh, A.; Baramsai, B.; Becker, J. A.; Be?v?, F.; Bredeweg, T. A.; Couture, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Kroll, J.; Krti?ka, M.; Mitchell, G. E.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Walker, C. L.; Wilhelmy, J. B.; Wouters, J. M.; Wu, C. Y.

    2011-07-01

    The Gd157(n,?) reaction was measured with the DANCE ? calorimeter (consisting of 160 BaF2 scintillation detectors) at the Los Alamos Neutron Science Center. The multiplicity distributions of the ? decay were used to determine the resonance spins up to En=300 eV. The ?-ray energy spectra for different multiplicities were measured for the s-wave resonances. The shapes of these spectra were compared with simulations based on the use of the DICEBOX statistical model code. Simulations showed that the scissors mode is required not only for the ground-state transitions but also for transitions between excited states.

  20. Detection of η mesons in heavy-ion collisions at 100 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Badalà, A.; Barbera, R.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.; Turrisi, R.

    1997-02-01

    A study of the detection of η mesons in heavy-ion collisions at 100 MeV/nucleon by a large array of BaF 2 modules has been carried out using full GEANT3 simulations. The most probable decay modes of the η mesons have been considered. Invariant mass spectra from the detection of two or more electromagnetic showers are discussed. The different sources of contamination are evaluated. The detection limits in terms of production cross section are discussed. An analysis of experimental data taken at 95 MeV/nucleon with the MEDEA array showed a few events which are compatible with the η → γγ decay.

  1. Spin Measurements of n +87Sr for Level Density Studies

    NASA Astrophysics Data System (ADS)

    Gunsing, F.; Fraval, K.; Mathelie, M.; Valenta, S.; Bečvář, F.; Rusev, G.; Tonchev, A. P.; Mitchell, G.; Baramsai, B.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-05-01

    We have used the 4π BaF2 gamma-ray detector array at the n_TOF neutron time-of-flight facility at CERN for an experiment in order to determine the spins of resonances of n +87Sr by measuring the gamma-ray spectra and multiplicity distributions. The first results are presented here. We have assigned the orbital momentum ℓ to all evaluated resonances on the basis of their neutron widths. Further we have assigned the spin J to 16 s-wave resonances on based the population of low-lying levels.

  2. Data Acquisition System for the Detector for Advanced Neutron Capture Experiments (DANCE)

    NASA Astrophysics Data System (ADS)

    Bredeweg, T. A.; Reifarth, R.; Ullmann, J. L.; Haight, R. C.; O'Donnell, J. M.; Wouters, J. M.; Wilhelmy, J. B.; Rundberg, R. S.; Vieira, D. J.

    2003-04-01

    Nuclear and high energy physics experiments continue to grow in complexity. This increase in "experimental" complexity requires a matching increase in the complexity of the system used to acquire the data from the experimental apparatus. The Detector for Advanced Neutron Capture Experiments (DANCE), a 4π BaF2 array located at the Manuel J. Lujan Jr. Neutron Scattering Center at Los Alamos National Laboratory is a prime example of this increasing experimental complexity. We will describe several of the important issues that arose during the development of a data acquisition system based on MIDAS/ROOT, and the methods used to overcome these issues.

  3. On-line ion chemistry for the AMS analysis of 90Sr and 135,137Cs

    NASA Astrophysics Data System (ADS)

    Eliades, J.; Zhao, X.-L.; Litherland, A. E.; Kieser, W. E.

    2013-01-01

    The analysis of 90Sr by AMS has so far required the use of very large tandem accelerators in order to separate the isobar 90Zr by the rate-of-energy-loss method. The analysis of 135,137Cs by AMS has never been attempted as the separation of the isobars 135,137Ba by the traditional method requires even higher energies, so that this approach would become prohibitively expensive for routine analysis. Following the successful demonstration of Cl--S- separation by the Isobar Separator, the same apparatus was used to test the separation of other pairs of isobars. Surprisingly effective results were obtained with NO2 gas in the cases of SrF3--ZrF3- and CsF2--BaF2- separations. Reduction factors of ∼4 × 10-6 for ZrF3-/SrF3- and ∼2 × 10-5 for BaF2-/CsF2- were measured. SrF3- and CsF2- are both super-halogen anions and are preferentially produced in the ion source rather than ZrF3- and BaF2- when using the PbF2 matrix-assisted method. Reduction factors for ion source production with such targets of ∼3 × 10-5 for ZrF3--SrF3- and ∼5 × 10-4 for BaF2--CsF2- were found. The combined methods would suggest a theoretical detection sensitivity for 90Sr/Sr ∼6 × 10-16, 135Cs/Cs ∼7 × 10-15 and 137Cs/Cs ∼1 × 10-14, assuming 10 ppm Zr and Ba contamination in the AMS targets. In addition to the earlier Cl--S- separation work, these measurements further illustrate the potential of on-line ion chemical methods for broadening the analytical scope of small AMS systems.

  4. Growth, modulation and photoresponse characteristics of vertically aligned ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Kar, J. P.; Das, S. N.; Choi, J. H.; Lee, T. I.; Seo, J.; Lee, T.; Myoung, J. M.

    2011-03-01

    Vertically aligned, c-axis oriented zinc oxide (ZnO) nanowires were grown on Si substrate by metal organic chemical vapor deposition (MOCVD) technique, where sputtered aluminum nitride (AlN) film was used as an intermediate layer and thermally evaporated barium fluoride (BaF 2) film as a sacrificial layer. The aspect ratio and density of the nanowires were also varied using only Si microcavity without any interfacial or sacrificial layer. The UV detectors inside the microcavity have shown the higher on-off current ratio and fast photoresponse characteristics. The photoresponse characteristics were significantly varied with the aspect ratio and the density of nanowires.

  5. [Development of X-ray excited fluorescence spectrometer].

    PubMed

    Ni, Chen; Gu, Mu; Di, Wang; Cao, Dun-Hua; Liu, Xiao-Lin; Huang, Shi-Ming

    2009-08-01

    An X-ray excited fluorescence spectrometer was developed with an X-ray tube and a spectrometer. The X-ray tube, spectrometer, autocontrol method and data processing selected were roundly evaluated. The wavelength and detecting efficiency of the apparatus were calibrated with the mercury and tungsten bromine standard lamps, and the X-ray excited emission spectra of BaF2, Cs I (Tl) crystals were measured. The results indicate that the apparatus has advantages of good wavelength resolution, high stability, easy to operation and good radioprotection. It is a wery effective tool for exploration of new scintillation materials. PMID:19839360

  6. Upconversion use for viewing and recording infrared images

    NASA Astrophysics Data System (ADS)

    Pollack, S. A.; Chang, D. B.; Shih, I.-Fu; Tzeng, R.

    1987-10-01

    The upconversion of 1.54 micron radiation to shorter wavelengths has been studied in CaF2 crystals doped with Er (3+) ions. Experimental measurements of the intensity dependence and temporal behavior of the upconverted radiation give results in good qualitative agreement with a simple model of a cooperative luminescence process. Measurements with a silicon diode matrix array (DMA) of the spatial distribution of the luminescence from screens of CaF2 doped with ER (3+), which were irradiated with an Er laser, showed that the resolution is not limited by the cooperative luminescent process but is determined by the granularity and/or thickness of the screens. Good results on 1.54 micron beam profiles were obtained with a computer-based image recording system incorporating the screen-DMA combination. A linear dependence on intensity without saturation of the DMA was achieved by interposing neutral density filters between the screen and the DMA.

  7. Crossover from hole- to electron-dominant regions in iron-chalcogenide superconductors induced by Te/Se substitution

    NASA Astrophysics Data System (ADS)

    Tsukada, Ichiro; Nabeshima, Fuyuki; Ichinose, Ataru; Komiya, Seiki; Hanawa, Masafumi; Imai, Yoshinori; Maeda, Atsutaka

    2015-04-01

    We have investigated a Te/Se substitution effect on the field dependence of Hall resistivity in FeSe1-xTex (x = 0.5-0.7) thin films grown on LaAlO3 and CaF2 substrates. By observing the magnetic field dependence of Hall resistivity, the crossover from hole- to electron-dominant regions is observed to occur between x = 0.5 and 0.6 in the films on LaAlO3, while no such crossover is observed in those on CaF2. The results indicate that the substitution of Te for Se effectively acts as electron doping, while the lattice strain also has an additional effect on the balance of hole and electron densities. These two factors can be independently used to optimize superconducting transition temperature so as to tune the doping level near the boundary where the hole density becomes equal to the electron density.

  8. Control of magnetic anisotropy in (111)SmAl2 films

    NASA Astrophysics Data System (ADS)

    Avisou, A.; Dufour, C.; Dumesnil, K.

    2008-04-01

    This study enlightens how the magnetic anisotropy might be tailored in magnetic films by the proper choice of the substrate. Single crystalline (111)SmAl2 films have been grown by molecular beam epitaxy on two substrates: (112¯0)Al2O3 and (111)CaF2. Hysteresis loops measured along the different crystallographic directions are the signature of the following: (i) a uniaxial anisotropy with an easy direction perpendicular to the (111) growth plane when the film is grown on Al2O3; (ii) a [111] hard magnetic direction when the film is grown on CaF2. This effect can be understood if we consider the influence of the thermal strains on the various energy terms which govern the easy magnetization direction. The relevant parameters to determine the easy magnetization direction are the relative sign and absolute values of the strains and of the magnetoelastic constants.

  9. Enhancement of photoluminescence and upconversion in Er-Yb codoped nanocrystalline glass-ceramics

    NASA Astrophysics Data System (ADS)

    Yoo, Mi-Yeon; Lee, Jin-Ho; Jeong, Hong-Myeong; Lim, Ki-Soo; Babu, P.

    2013-09-01

    Oxyfluoride glass ceramics containing CaF2 nanocrystals were prepared with dopants of Er2O3 and Yb2O3 through melt-quenching and proper thermal treatments. Emission spectra, emission decay and energy dispersive X-ray spectroscopy analysis of the glass ceramics indicated the incorporation of rare earth ions into CaF2 nanocrystals. Photoluminescence intensity of the glass-ceramics has been increased more than a hundred times compared with that of the precursor glass. We also obtained enormous enhancement in upconversion emission and relative population increase of the 4F9/2 level by energy transfer process under excitation at 980 nm in resonance with the 2F5/2 of Yb3+ and 4I11/2 of Er3+ ions.

  10. Some studies on a solid state sulfur probe for coal gasification systems

    NASA Technical Reports Server (NTRS)

    Jacob, K. T.; Rao, D. B.; Nelson, H. G.

    1977-01-01

    Measurements on the solid electrolyte cell (Ar + H(2) + H(2)S/CaS + CaF(2) + (Pt)//CaF(2)//(Pt) + CaF(2) + CaS/H(2) + H(2)+Ar) show that the emf of the cell is directly related to the difference in sulfur potentials established at the Ar + H(2) + H(2)S/electrode interfaces. The electrodes convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient. Response time of the probe varies from approximately 9 hr at 990 K to 2.5 hr at 1225 K. The conversion of calcium sulfide and/or calcium fluoride into calcium oxide is not a problem anticipated in commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

  11. Coupling of phonon-polariton modes at dielectric-dielectric interfaces by the ATR technique

    NASA Astrophysics Data System (ADS)

    Cocoletzi, G. H.; Olvera Hernández, J.; Martínez Montes, G.

    1989-08-01

    We report the calculated ATR dispersion relation of the interface phonon-polariton modes in the prism-dielectric-dielectric configuration. Comparison of electromagnetic dispersion relations (EMDR) with the ATR dispersion relations are presented for three different interfaces: I) GaAs/GaP, II) CdF2/CaF2 and III) CaF2/GaP in two propagation windows, using the Otto and Kretschmann geometries for p-polarized light. We have studied the three cases using angle and frequency scans for each window and geometry. The results indicate that it is possible to excite and detect phonon-polariton modes at the dielectric-dielectric interface.

  12. Atomic scale control of hexaphenyl molecules manipulation along functionalized ultra-thin insulating layer on the Si(1 0 0) surface at low temperature (9 K).

    PubMed

    Chiaravalloti, Franco; Dujardin, Gérald; Riedel, Damien

    2015-02-11

    Ultra-thin CaF2 layers are grown on the Si(1 0 0) surface by using a Knudsen cell evaporator. These epitaxial structures are studied with a low temperature (9 K) scanning tunneling microscope and used to electronically decouple hexaphenyl molecules from the Si surface. We show that the ultra-thin CaF2 layers exhibit stripe structures oriented perpendicularly to the silicon dimer rows and have a surface gap of 3.8 eV. The ultra-thin semi-insulating layers are also shown to be functionalized, since 80% of the hexaphenyl molecules adsorbed on these structures self-orients along the stripes. Numerical simulations using time-dependent density functional theory allow comparison of computed orbitals of the hexaphenyl molecule with experimental data. Finally, we show that the hexaphenyl molecules can be manipulated along or across the stripes, enabling the molecules to be arranged precisely on the insulating surface. PMID:25414151

  13. VUV-spectroscopy of Ce3+ -doped crystals with fluorite-type structure

    NASA Astrophysics Data System (ADS)

    Bezhanov, V.; Chernov, S.; Kolobanov, V.; Kirkin, R.; Mikhailin, V.; Karimov, D.

    2010-11-01

    The spectral properties of two-component Ca1-xSrxF2:Ce3+(0.05 mol%) (x = 0.75, 0.41, 0.25, 0.14) crystals in UV spectral region were investigated. It was shown that spectral properties of Ca1-xSrxF2:Ce3+(0.05 mol%) in UV spectral region have intermediate position between those for pure CaF2 and SrF2 crystals. The optical constants were calculated from reflectance spectrum for CaF2, SrF2, Ca1-xSrxF2:Ce3+(0.05 mol%) (x = 0.75, 0.25) crystals by use of Kramers-Kronig relations for complex reflection coefficient and Fresnel formulas.

  14. Recovery Behavior of Separating Britholite (Ca3Ce2[(Si,P)O4]3F) Phase from Rare-Earth-rich Slag by Centrifugal Casting

    NASA Astrophysics Data System (ADS)

    Li, Juncheng; Guo, Zhancheng; Yang, Tao; Yue, Zicheng; Ma, Changhao

    2015-05-01

    A new approach to separate britholite phase from the rare-earth-rich slag by super gravity was investigated. With the parameter of G = 500, t = 5 min, T = 1423 K, almost all britholite phase is enriched in the concentrate, while the tailing is made up of CaF2 phase. Under the hypothesis that the RE exists in the slag in terms of RE2O3, with the gravity coefficient G = 500, t = 5 min and T = 1423 K, the mass fraction of RE2O3 in the concentrate is up to 24.67%, while the mass fraction of CaF2 in the tailing is 50.01%. Considering that the mass fraction of RE2O3 is 12.01% in the parallel sample, the recovery ratio of rare earth in the concentrate is up to 76.47% by centrifugal separation.

  15. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging

    NASA Astrophysics Data System (ADS)

    Hao, Shuwei; Yang, Liming; Qiu, Hailong; Fan, Rongwei; Yang, Chunhui; Chen, Guanying

    2015-06-01

    We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background.We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02287h

  16. Behavior of nitrogen in a nitrogen-containing chromium-manganese steel during electroslag remelting

    NASA Astrophysics Data System (ADS)

    Linchevskii, B. V.; Rigina, L. G.; Takhirov, A. A.

    2013-06-01

    Electroslag remelting of a high-alloyed steel with high contents of nitrogen, chromium, and manganese in an electroslag furnace has been studied. CaF2-MgO-SiO2 slag developed at TsNIITMASh and allowing remelting process at a temperature of 1520-1560°C is used as a flux. It is found that electroslag remelting of high-alloyed steels with a high nitrogen concentration does not change the nitrogen content.

  17. The stoichiometric solubility of calcium orthophosphates.

    PubMed

    Hagen, A R

    1975-11-01

    On the assumption that the calcium orthophosphates dissolve stoichiometrically, the solubility of Hap, Fap, DCPD, OCP and TCP, as well as of CaCO3 and CaF2, have been calculated in terms of grams of solid phase per liter under equilibrium conditions. As exemplified in the text, these calculated solubilities facilitate the understanding of the complex behavior of the orthophosphates when in solution. PMID:1060161

  18. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  19. The PRIME Lab biomedical program

    NASA Astrophysics Data System (ADS)

    Jackson, George S.; Elmore, David; Rickey, Frank A.; Musameh, Sharif M.; Sharma, Pankaj; Hillegonds, Darren; Coury, Louis; Kissinger, Peter

    2000-10-01

    The biomedical accelerator mass spectrometry (AMS) initiative at PRIME Lab including the status of equipment and sample preparation is described. Several biomedical projects are underway involving one or more of the nuclides: 14C, 26Al and 41Ca. Routine production of CaF 2 and graphite is taking place. Finally, the future direction and plans for improvement of the biomedical program at PRIME Lab are discussed.

  20. Hyper-Parametric Oscillations in a Whispering Gallery Mode Fluorite Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Mohageg, Makan; Ilchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    This viewgraph presentation summarizes the hyper-parametric oscillations observations of the fluorite resonator. The reporters have observed various nonlinear effects in ultra-high Q crystalline whispering gallery mode (WGM) resonators. In particular, it was demonstrated a low threshold optical hyper-parametric oscillations in a high-Q (Q=1010) CaF2 WGM resonator. The oscillations result from the resonantly enhanced four-wave-mixing occurring due to Kerr nonlinearity of the material.

  1. Metal C ring window seal

    NASA Astrophysics Data System (ADS)

    Duignan, Michael T.; Gerhardt, David J.; Whitney, W. T.

    1989-11-01

    We have constructed an optical cell with CaF2 windows which are sealed with metal C rings. We have demonstrated vacuum leak rates for He of less than ˜10-9 std atm cc/s between 20 and 110 °C, as well as pressure cycling between ˜10-4 Pa and ˜5 MPa. This seal is useful where outgassing or permeability of elastomeric O rings would present problems.

  2. Rear leit observation

    NASA Astrophysics Data System (ADS)

    Dawson, P.; Ferguson, A. J. L.; Walmsley, D. G.

    1982-11-01

    We have observed light emission from the rear of CaF 2-roughened Al-I-Au tunnel sandwiches. Like the forward emitted light, its spectral intensity shows a sharp drop at energies > 2.5 eV. We interpret the results in terms of both emissions being mediated by a common surface or interface plasmon; the plasmon is damped above 2.5 eV by excitation of an interband transition in Au.

  3. Lubricating Properties of Some Bonded Fluoride and Oxide Coatings for Temperature to 1500 F

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1960-01-01

    The lubricating properties of some experimental ceramic coatings, diffusion-bonded fluoride coatings, and ceramic-bonded fluoride coatings were determined. The experiments were conducted in an air atmosphere at a sliding velocity of 430 feet per minute and at temperatures from 75 to 1500 F. Several ceramic coatings provided substantial reductions in friction coefficient and rider wear (compared with the unlubricated metals). For example, a cobaltous oxide (CoO) base coating gave friction coefficients of 0.24 to 0.36 within the temperature range of 75 to 1400 F; serious galling and welding of the metal surfaces were prevented. The friction coefficients were higher than the arbitrary maximum (0.2) usually considered for effective boundary lubrication. However, when a moderately high friction coefficient can be tolerated, this type of coating may be a useful antiwear composition. Diffusion-bonded calcium fluoride (CaF2) on Haynes Stellite 21 and on Inconel X gave friction coefficients of 0.1 to 0.2 at 1500 F. Endurance life was dependent on the thermal history of the coating; life improved with increased exposure time at elevated temperatures prior to running. Promising results were obtained with ceramic-bonded CaF2 on Inconel X. Effective lubrication and good adherence were obtained with a 3 to 1 ratio of CaF2 to ceramic. A very thin sintered and burnished film of CaF2 applied to the surface of this coating further improved lubrication, particularly above 1350 F. The friction coefficient was 0.2 at 500 F and decreased with increasing temperature to 0.06-at 1500 F. It was 0.25 at 75 F and 0.22 at 250 F.

  4. A method for the production of composite scintillators for dosimetry in diagnostic radiology.

    PubMed

    Nowotny, R; Taubeck, A

    2009-03-21

    Plastic scintillators are used in the dosimetry of photons in radiotherapy. Their use in diagnostic radiology is affected by the drop in response at lower photon energies due to inadequate composition (effective atomic number) and chemical quenching. To compensate for this deficiency, a method for the production of composite polystyrene-based plastic scintillators was devised allowing the incorporation of inorganic scintillation powder. Disks of 10 mm diameter and 1 mm thickness optimized for a flat energy response referred to kerma in air were produced using CaWO(4), ZnS:Ag and CaF(2):Eu as additives. In an HVL range of 2.26-13.69 mmAl, the response was within an interval of +/-2.8% for CaF(2):Eu as additive, +/-3.2% for CaWO(4) and +/-10.9% for ZnS:Ag, respectively. The response of a commercial plastic scintillator (BC470) stays within +/-13.6%. The temperature dependence of the composite scintillator using CaF(2):Eu is lowest with a variation of +3.7% to -3.6% in an interval from 5 degrees C to 45 degrees C. The deficiency in photon absorption at lower energies due to the effective atomic number is reduced but not fully compensated by the additive scintillators. The optimized concentrations were established for the scintillator dimensions used. PMID:19218738

  5. Effect of aluminum phosphate additions on composition of three-component plasma-sprayed solid lubricant

    NASA Technical Reports Server (NTRS)

    Jacobson, T. P.; Young, S. G.

    1982-01-01

    Image analysis (IA) and electron microprobe X-ray analysis (EMXA) were used to characterize a plasma-sprayed, self-lubricating coating, NASA LUBE PS106, specified by weight percent as 35NiCr-35Ag-30CaF2. To minimize segregation of the powder mixture during the plasma-spraying procedure, monoaluminum phosphate was added to form agglomerate particles. Three concentrations of AlPO4 were added to the mixtures: 1.25, 2.5, and 6.25 percent by weight. Analysis showed that 1.25 wt% AlPO4 yielded a CaF2 deficiency, 2.5 wt% kept the coating closest to specification, and 6.25 wt% yielded excess CaF2 as well as more impurities and voids and a deficiency in silver. Photomicrographs and X-ray maps are presented. The methods of IA and EMXA complement each other, and the reasonable agreement in the results increases the confidence in determining the coating composition.

  6. Thermochemistry of calcium oxide and calcium hydroxide in fluoride slags

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, S.; Mitchell, A.

    1990-08-01

    Calcium oxide activity in binary CaF2-CaO and ternary CaF2-CaO-Al2O3 and CaF2-CaO-SiO2 slags has been determined by CO2-slag equilibrium experiments at 1400 °C. The carbonate ca-pacity of these slags has also been computed and compared with sulfide capacity data available in the literature. The similarity in trends suggests the possibility of characterizing carbonate capacity as an alternative basicity index for fluoride-base slags. Slag-D2O equilibrium experi-ments are performed at 1400°C with different fluoride-base slags to determine water solubility at two different partial pressures of D2O, employing a new slag sampling technique. A novel isotope tracer detection technique is employed to analyze water in the slags. The water solubility data found show higher values than the previous literature data by an order of magnitude but show a linear relationship with the square root of water vapor partial pressure. The activity of hydroxide computed from the data is shown to be helpful in estimating water solubility in in-dustrial electroslag remelting (ESR) slags.

  7. Study of the presence of fluorine in the recycled fractions during carbothermal treatment of EAF dust.

    PubMed

    Menad, N; Ayala, J N; Garcia-Carcedo, Fernando; Ruiz-Ayúcar, E; Hernández, A

    2003-01-01

    Carbothermal treatment tests of electric arc furnace dusts (EAFD) using the Waelz kiln process were carried out in pilot-scale for the production of zinc oxide. The association of halides in the EAFD, and the recycled products, such as zinc oxide fumes and high-grade iron contents fractions were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. XRD reveals the presence of chlorine and fluorine in the dusts in the form of KCl, NaCl and CaF2. An ultra-pure fraction of zinc was obtained after the Double Leaching Waelz Oxide (DLWO) process was performed on the zinc oxide fumes. The halide contents were reduced to approximately 100 ppm Cl and 700 ppm F. The rest of these elements are in the form of CaF2. About 65% F is volatilised as lead and zinc fluorides, 15% is expected in the magnetic fractions and 20% in non-magnetic fractions as CaF2 and MnF2, respectively. PMID:12909089

  8. Study of resin-bonded calcia investment: Part 1. Setting time and compressive strength.

    PubMed

    Nakai, A

    2000-09-01

    This study was carried out to develop a new titanium casting investment consisting of calcia as the refractory material and a cold-curing resin system as the binder. The setting time of the investment was investigated under different N,N-dimethyl-p-toluidine (DMPT) contents in methyl methacrylate monomer (MMA) and benzoyl peroxide (BPO) contents in calcia without any sintering agent. The effects of the sintering agents, which were calcium fluoride (CaF2) and calcium chloride (CaCl2), on the compressive strength of the investments were investigated at room temperature before and after heating to two different temperatures. The shortest setting time (68 minutes) of the investment was obtained at 0.37 DMPT/BPO (1.5 vol% /1.0 mass%) ratio by mass. The highest strength (16.5 MPa) was obtained from the investment which contained 2 mass% CaF2 and was heated to 1,100 degrees C. It was found that the developed calcia investment containing 2 mass% CaF2 has a possibility for use in titanium castings. PMID:11218848

  9. Effect of Fluorine on the Structure of High Al2O3-Bearing System by Molecular Dynamics Simulation

    NASA Astrophysics Data System (ADS)

    Fan, Guozheng; He, Shengping; Wu, Ting; Wang, Qian

    2015-08-01

    Calcium aluminosilicate is the most important slag system in continuous casting, while CaF2 is commonly used as a fluxing agent in mold fluxes. In this study, the structural properties of the CaO-Al2O3-SiO2-CaF2 system with varying fluorine content have been investigated by molecular dynamics simulation using the pairwise potential model. The results showed that with the substitution of oxygen ions by fluorine ions, the average bond length of Si-O remained unchanged, while the average bond length of Al-O increased from 1.74 to 1.75 Å. The addition of fluorine contributed to the increase in the bridging oxygen proportion and the network connectivity ( Q n ) degree, suggesting that the polymerization of melts was enhanced. Meanwhile, the threefold-coordinated Al was found when mass fraction of fluorine was increased, and it was due to that the fluorine ions substituted the oxygen ions and formed the [AlO3F] tetrahedron. The Al avoidance principle is not applicable in the CaO-Al2O3-SiO2-CaF2 system with a high content of Al2O3.

  10. Ultra-high resistive and anisotropic CoPd-CaF2 nanogranular soft magnetic films prepared by tandem-sputtering deposition

    NASA Astrophysics Data System (ADS)

    Naoe, Masayuki; Kobayashi, Nobukiyo; Ohnuma, Shigehiro; Iwasa, Tadayoshi; Arai, Ken-Ichi; Masumoto, Hiroshi

    2015-10-01

    Ultra-high resistive and anisotropic soft magnetic films for gigahertz applications are desirable to demonstrate the really practical films. Here we present a study of novel nanogranular films fabricated by tandem-sputtering deposition. Their electromagnetic properties and nanostructure have also been discussed. These films consisted of nanocrystallized CoPd alloy-granules and CaF2 matrix, and a specimen having a composition of (Co0.69Pd0.31)52-(Ca0.31F0.69)48 exhibited distinct in-plane uniaxial anisotropy after uniaxial field annealing with granule growth. Its complex permeability spectra have a ferromagnetic resonance frequency extending to the Super-High-Frequency band due to its higher anisotropy field, and its frequency response was quite well reproduced by a numerical calculation based on the Landau-Lifshitz-Gilbert equation. Furthermore, it was clarified that the CaF2-based nanogranular film exhibits a hundredfold higher electrical resistivity than conventional oxide or nitride-based films. Higher resistivity enables the film thickness to achieve a margin exceeding threefold against eddy current loss. The greater resistivity of nanogranular films is attributed to the wide energy bandgap and superior crystallinity of CaF2 matrix.

  11. Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET.

    PubMed

    Mondal, Nagendra Nath

    2009-10-01

    This study presents Monte Carlo Simulation (MCS) results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF) PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu(2)SiO(5): Ce in short LSO), Barium Fluoride (BaF(2)) and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr(3)) scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF(2) and LaBr(3), although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work) method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom. PMID:20098551

  12. X-ray excited optical luminescence studies on the system BaXY(X,Y=F, Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Rajan, K. Govinda; Jestin Lenus, A.

    2005-08-01

    The present paper reports the experimental observations on the x-ray excited optical luminescence (XEOL) along with the afterglow and colour center features found for the barium salts, represented by the formula, BaXY, where X and Y are the halides. The system thus consists of four dihalides (BaF_{2},ldots,BaI_{2}) and six mixed halides (BaFCl,{ldots},BaBrI). To start with, it was found that on two of the binary halides of barium, BaClI and BaBrI, no literature exists, and so these were prepared for the first time and their crystal structures were determined. An x-ray generator of 3-kW rating was next coupled to a spectrometer via a high throughput fiberoptic sensor for recording the luminescence spectra under x-irradiation. Also presented in this paper are the observations on the BaXY compounds in which about 0.1 mole% of Eu^{2+} was doped, in order to study the efficiency between the prompt luminescence and the photostimulated luminescence in these compounds. The crystal structure varies from fluorite (BaF_{2}), to matlockite (BaFX) and finally to orthorhombic (BaCl_{2}, ldots,BaBrI) for these compounds. Hence searching for systematics and empirical relations in the observed XEOL behaviour of these compounds is still a challenging problem.

  13. Understanding Low Energy Gamma Emission from Fission and Capture with DANCE

    NASA Astrophysics Data System (ADS)

    Wilburn, Grey; Couture, Aaron; Mosby, Shea

    2012-10-01

    Los Alamos National Laboratory's Detector for Advanced Neutron Capture Experiments (DANCE) consists of 160 barium fluoride (BaF2) detectors in a 4? array used to study cross-section measurements from neutron capture reactions. Further, recent studies have taken advantage of DANCE to study the gamma emission from fission, which is not well characterized. Neutron capture is studied because of its relevance to nuclear astrophysics (almost all elements heavier than iron are formed via neutron capture) and nuclear energy, where neutron capture is a poison in the reactor. Gamma ray cascades following neutron capture and fission include photons with energies between 100 keV and 10 MeV. DANCE uses a ^6LiH sphere to attenuate scattered neutrons, the primary background in DANCE. Unfortunately, it also attenuates low energy gamma rays. In order to quantify this effect and validate simulations, direct measurements of low energy gammas were made with a high purity germanium (HPGe) crystal. HPGe's allow for high resolution measurements of low energy gamma rays that are not possible using the BaF2 crystals. The results and their agreement with simulations will be discussed.

  14. Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in barium fluoride

    NASA Astrophysics Data System (ADS)

    Dharmadhikari, A. K.; Rajgara, F. A.; Mathur, D.

    2006-03-01

    We report the results of a study of white light generation in a 7.5 cm long crystal of a high band-gap material, barium fluoride, using ultrashort (<42 fs) laser pulses over a range of values of incident laser power that extend up to more than three orders of magnitude larger than the critical power for self-focusing (Pcr). We explore white light generation and the intensity and spectral distributions within filaments that are formed as a result of the interplay of self-focusing and plasma-induced defocusing. The onset of plasma effects occurs at power levels in excess of 7 GW for ultrashort pulses in BaF2. For incident power levels that are three orders of magnitude larger than the critical power, blue-shifting of the incident laser wavelength is observed in addition to asymmetric continuum generation. The blue shift enables us to estimate the temporal variation of the electron density in the plasma that is generated within the BaF2 crystal.

  15. Monte Carlo simulation studies on scintillation detectors and image reconstruction of brain-phantom tumors in TOFPET

    PubMed Central

    Mondal, Nagendra Nath

    2009-01-01

    This study presents Monte Carlo Simulation (MCS) results of detection efficiencies, spatial resolutions and resolving powers of a time-of-flight (TOF) PET detector systems. Cerium activated Lutetium Oxyorthosilicate (Lu2SiO5: Ce in short LSO), Barium Fluoride (BaF2) and BriLanCe 380 (Cerium doped Lanthanum tri-Bromide, in short LaBr3) scintillation crystals are studied in view of their good time and energy resolutions and shorter decay times. The results of MCS based on GEANT show that spatial resolution, detection efficiency and resolving power of LSO are better than those of BaF2 and LaBr3, although it possesses inferior time and energy resolutions. Instead of the conventional position reconstruction method, newly established image reconstruction (talked about in the previous work) method is applied to produce high-tech images. Validation is a momentous step to ensure that this imaging method fulfills all purposes of motivation discussed by reconstructing images of two tumors in a brain phantom. PMID:20098551

  16. Correlated fluorine diffusion and ionic conduction in the nanocrystalline F(-) solid electrolyte Ba(0.6)La(0.4)F(2.4)-(19)F T1(ρ) NMR relaxation vs. conductivity measurements.

    PubMed

    Preishuber-Pflügl, F; Bottke, P; Pregartner, V; Bitschnau, B; Wilkening, M

    2014-05-28

    Chemical reactions induced by mechanical treatment may give access to new compounds whose properties are governed by chemical metastability, defects introduced and the size effects present. Their interplay may lead to nanocrystalline ceramics with enhanced transport properties being useful to act as solid electrolytes. Here, the introduction of large amounts of La into the cubic structure of BaF2 served as such an example. The ion transport properties in terms of dc-conductivity values of the F(-) anion conductor Ba1-xLaxF2+x (here with x = 0.4) considerably exceed those of pure, nanocrystalline BaF2. So far, there is only little knowledge about activation energies and jump rates of the elementary hopping processes. Here, we took advantage of both impedance spectroscopy and (19)F NMR relaxometry to get to the bottom of ion jump diffusion proceeding on short-range and long-range length scales in Ba0.6La0.4F2.4. While macroscopic transport is governed by an activation energy of 0.55 to 0.59 eV, the elementary steps of hopping seen by NMR are characterised by much smaller activation energies. Fortunately, we were able to deduce an F(-) self-diffusion coefficient by the application of spin-locking NMR relaxometry. PMID:24728404

  17. Self-organized homo-epitaxial growth in nonlinear optical BaAlBO3F2 crystal crossing lines patterned by laser in glass

    NASA Astrophysics Data System (ADS)

    Shinozaki, K.; Abe, S.; Honma, T.; Komatsu, T.

    2015-11-01

    Crystallization processing of glasses is important as a novel technique for the development of new optical materials, and laser-induced crystallization provides a new challenge in science and technology of materials. Nonlinear optical BaAlBO3F2 crystal lines with crossing, bending, and spiral shapes were patterned at the surface of 2NiO-49BaF2-24.5Al2O3-24.5B2O3 (mol%) and 2.9NiO-48.5BaF2-24.3Al2O3-24.3B2O3 (mol%) glasses by laser irradiation (Yb:YVO4 laser with a wavelength of 1080 nm) and the orientation state of BaAlBO3F2 crystals was examined from birefringence image observations. The birefringence images indicate that the growth of highly c-axis oriented BaAlBO3F2 crystals follows along the laser scanning direction even if the laser scanning direction changes, and in particular the direction of the c-axis of BaAlBO3F2 crystals changes gradually at the crossing and bending points. The model of "self-organized homo-epitaxial growth" is proposed for the crystal orientation at the crossing and bending points, as a new crystal growth science and engineering beyond the wise providence of nature.

  18. Evaluation of outgassing from a fluorinated resist for 157-nm lithography

    NASA Astrophysics Data System (ADS)

    Irie, Shigeo; Fujii, Kiyoshi; Itakura, Yasuo; Kawasa, Youichi; Egawa, Keiji; Uchino, Ikuo; Sumitani, Akira; Itani, Toshiro

    2004-05-01

    We have evaluated the outgassing products and the in-situ transmittance of a contaminated CaF2 substrate for monocyclic fluoropolymers with four protecting groups: methoxymethyl (MOM), tert-butoxycarbonyl (t-BOC), menthoxymethyl (MM), and 2-cyclohexylcyclohexyloxymethyl (CCOM). We have also evaluated the same type of fluoropolymer with seven kinds of photo-acid generators (PAGs) added to a base fluoropolymer solution. We found little correlation between the total amount of outgassing from the polymer and the decreasing rate of the CaF2 substrate transmittance caused by outgassing adhesion. Although the MOM protecting group generated the largest amount of outgassing products, the most substantial decrease in the transmittance was observed for the t-BOC protecting group. Also, the outgassing products due to use of a PAG did not greatly reduce the absorption coefficient of a CaF2 substrate regardless of the kind of PAG. Therefore, the absorption coefficient of the outgassing-contaminated CaF2 substrate appears to be more sensitive to the type of protecting group, especially the t-BOC protecting group including a t-butyl unit, rather than the type of fluoropolymer or PAG. We analyzed the substrate surface contaminant due to the t-butyl unit by x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and time-of-flight secondary ion mass spectrometry (TOF-SIMS), and found that increasing amounts of organic compounds, containing mainly C- and H-atoms, were adhered to and deposited on the substrate surface with an increasing irradiation dose. We speculate that the contaminants on a CaF2 surface with or without an anti-reflective coating were formed not only through mere physical adsorption, but also through certain chemical combinations. We conclude that in terms of material design of the fluoropolymer resist for 157-nm lithography, we need to pay attention to the protecting group of polymers, especially the t-BOC or t-butyl protecting group, which generates isobutene product during 157-nm irradiation.

  19. Photon Echo Modulation in Praseodymium(iii) Doped Lanthanum-Trifluoride

    NASA Astrophysics Data System (ADS)

    Chiang, Kophu

    When measured as a function of laser pulse separation, photon echoes in solids often display a periodic variation in amplitude. Modulation phenomena of this kind occur whenever the two levels of the photon echo transition consist of several very closely spaced levels such that the energy splittings are small compared to the spectral linewidths of the pulsed lasers used, so that the excitation pulses are able to coherently excite the system into a superposition of several ground and excited states. The modulation frequencies of the photon echoes arising from such a coherently excited multi-level system are determined by the magnitude of the energy splittings within the multiplets, but the exact form of the modulation pattern depends on the interaction Hamiltonian used to describe the energy level structures of the ground and excited states. The photon echo modulation technique has been utilized to measure the hyperfine structure and relaxation characteristics of the terminal levels of the ('3)H(,4) - ('3)P(,0) (477.7 nm) transition in Praseodymium doped Lanthanum trifluoride (LaF(,3):P4('3+)). Using two home -made nitrogen laser pumped dye lasers modulated photon echoes have been observed over a 8 (mu)sec range of pulse separations. In this range, the echoes decay in a simple exponential manner by a factor of 10('5) and yield a homogeneous linewidth of 70 Khz (FWHM) for a 0.03% LaF(,3):Pr('3+) sample. Experiments performed with a less concentrated sample (0.01%) show that the homogeneous linewidth is even narrower, and is about 40 Khz (FWHM). By Fourier transforming the echo modulation data it was possible to determine the hyperfine energy level splittings and their associated linewidths in both the ground ('3)H(,4) and excited ('3)P(,0) states. The splittings for the ('3)H(,4) state have been determined to be 8.48 and 16.68 Mhz, which are in excellent agreement with the results of an optical-RF double resonance experiment performed by Erickson. The excited state hyperfine splittings are found to be 0.73 Mhz and 1.12 Mhz. Numerical calculations of the photon echo modulation pattern, using the theory proposed by Grischkowsky and Hartmann, are in excellent agreement with the experimentally observed modulation pattern. The calculated echo modulation curves were found to be very sensitive to the relative orientations of the principal axes associated with the ground and excited state interaction Hamiltonians. Comparison of theoretical patterns with the observed pattern have enabled us to estimate their relative orientations. Photon echo experiments performed on another transition in LaF(,3):Pr('3+) (the ('3)H(,4) - ('1)D(,2) transition at 592.2 nm) have, so far, been less amenable to theoretical analysis, partly because the sum of the energy splittings in the ('1)D(,2) state (as measured by Erickson) is almost equal to an energy splittings in the ground ('3)H(,4) state. Less than perfect agreement between experimental and calculated modulation curves for the ('3)H(,4) - ('1)D(,2) transition indicated the possibility of an error in the currently accepted values of the ('1)D(,2) energy splittings. But a photon echo nuclear double resonance (PENDOR) experiment has shown, however, that the energy splittings as determined by Erickson are correct.

  20. Measuring 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S. D.; Thompson, S.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Smith, K.; Avetisyan, R.; Long, A.; Battaglia, A.; Marley, S.; Gyurjinyan, A.; Ilyushkin, S.; O'Malley, P. D.; Madurga, M.; Paulauskas, S. V.; Taylor, S.; Febbraro, M.

    2014-09-01

    UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. UF6 is used in many parts of the Uranium Fuel Cycle, and various techniques are used by nonproliferation agencies to monitor and account for the material. One of the most promising non-destructive assay (NDA) methods consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method, however, currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have used the Versatile Array of Neutron Detectors at Low Energy (VANDLE) to measure the cross section and coincident neutron spectrum over an energy range pertinent to NDA in a two part experiment: First at Notre Dame with a LaF3 target and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and preliminary results will be presented. This work is funded in part by NSF Grant 1068192, DOE Office of Science, and the NNSA Office of Defense Nuclear Nonproliferation R&D.

  1. A low-fluorine solution with a 2:1 F/Ba mole ratio for the fabrication of YBCO films

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Feng, Feng; Zhao, Yue; Tang, Xiao; Xue, Yunran; Shi, Kai; Huang, Rongxia; Qu, Timing; Wang, Xiaohao; Han, Zhenghe; Grivel, Jean-Claude

    2014-03-01

    In previously reported low-fluorine MOD-YBCO studies, the lowest F/Ba mole ratio of the precursor solution was 4.5. Further lowering the F/Ba ratio would bring benefits for the environment, thick film deposition, and an understanding of the heat treatment process. On the other hand, the F/Ba ratio must be at least 2 for full conversion of the Ba-precursor to BaF2 to avoid the formation of BaCO3, which is detrimental to the superconducting performance of YBCO films. In this study, a solution with a 2:1 F/Ba mole ratio was developed, and the fluorine content of this solution was approximately only 10.3% of that used in the conventional TFA-MOD method. Attenuated total reflectance-Fourier transform-infrared spectra (ATR-FT-IR) revealed that BaCO3 was remarkably suppressed in the as-pyrolyzed film—and eliminated at 700 °C. Thus, YBCO films with a critical current density (Jc) of over 5 MA cm-2 (77 K, 0 T, 200 nm thickness) could be obtained on lanthanum aluminate single-crystal substrates. In situ FT-IR spectra showed that no obvious fluorinated gaseous by-products were detected in the pyrolysis step, which indicated that all F atoms might remain in the film as fluorides. X-ray diffraction θ/2θ scans showed the presence of BaF2—but not of Y F3 or CuF2—in films quenched at 400-800 °C. The formation priority of BaF2 over Y F3 and CuF2 was interpreted by examining the chemical equilibrium of the potential reactions. Our study could enlarge the synthesis window of precursor solutions for MOD-YBCO fabrication, and serve as a foundation for continuously and systematically studying the influence of fluorine content in the precursor solutions.

  2. Influence of modifier oxides on spectroscopic properties of Sm3+ doped lithium fluoroborate glass

    NASA Astrophysics Data System (ADS)

    Ratnakaram, Y. C.; Balakrishna, A.; Rajesh, D.; Seshadri, M.

    2012-11-01

    Sm3+ doped lithium fluoro-borate glasses with different modifier oxides (Li2B4O7-BaF2-NaF-MO where M = Mg, Ca, Cd and Pb) and combinations of modifier oxides (Li2B4O7-BaF2-NaF-MgO+CaO, Li2B4O7-BaF2-NaF-CdO+PbO) were prepared by means of melt quenching method. These samples were characterized by XRD, FTIR, optical absorption and fluorescence techniques at room temperature. The XRD profiles of all the glasses confirm their amorphous nature and the FTIR spectra reveal the presence of BO3 and BO4 units along with the strong OH- groups in the glass matrices. The influence of modifier oxides on Judd-Ofelt (J-O) intensity parameters and intensity of the emission lines are reported. Judd-Ofelt theory is used to study the spectral properties and to calculate the radiative transition probabilities (AT), branching ratios (βR), integrated absorption cross sections (Σ) and radiative lifetimes (τR) for certain spectral transitions. From the emission spectral analysis, emission cross-sections (σP) are calculated for the four emission transitions, 4G5/2 → 6H5/2, 4G5/2 → 6H7/2, 4G5/2 → 6H9/2 and 4G5/2 → 6H11/2 of Sm3+ ion in different lithium fluoro-borate glasses. Among the four transitions, it is observed that the transition 4G5/2 → 6H7/2 has higher emission cross-section (σP) in all the glass matrices, except in Mg, Cd and Mg-Ca glass matrices. The non-exponential nature of the luminescence decay curves of 4G5/2 level of Sm3+ doped glass matrices are also reported.

  3. Lead Tungstate and Silicon Photomultipliers for Transmission Z-spectroscopy in Cargo Inspection Systems

    NASA Astrophysics Data System (ADS)

    Langeveld, Willem G. J.; Janecek, Martin

    The bremsstrahlung X-ray spectrum in high-energy, high-intensity X-ray cargo inspection systems is attenuated and modified by cargo materials depending on the cargo atomic number (Z). Spectroscopy of transmitted x rays is thus useful to measure the approximate Z of the cargo. Due to the broad features of the energy spectrum, excellent energy resolution is not required. Such "Z-Spectroscopy" (Z-SPEC) is possible at low enough count rates. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), can also be used, complementing Z-SPEC at high count rates. Both approaches require fast X-ray detectors and fast digitizers. Z-SPEC, in particular, benefits from very fast scintillators, in order to avoid signal pile-up.Preferentially, Z-SPEC, Z-SCAN and cargo imaging are implemented in a single detector array to reduce system cost, weight, and complexity. To preserve good spatial resolution of the imaging subsystem, dense scintillators are required. Previously, we studied ZnO, BaF2 and PbWO4, as well as suitable photo-detectors, read-out electronics and digitizers. ZnO is not suitable because it self-absorbs its scintillation light. BaF2 emits in the UV, either requiring fast wavelength shifters or UV-sensitive solid state read-out devices, and it also has a long decay time component. PbWO4 is currently the most attractive choice because it does not have these problems, but it is significantly slower and has low light output. There is thus a need for alternative fast high-density scintillators that emit visible light. Alternatively, there is a need for a fast solid-state read-out device that is sensitive to UV light for use with BaF2, or other UV-emitting scintillators. Here, we present results of tests performed with PbWO4 crystals, reflector materials and silicon photomultipliers.

  4. Beta-Gamma Coincidence Counting Using an Yttrium Aluminum Perovskit and Bismuth Germanate Phoswich Scintillator

    SciTech Connect

    McIntyre, Justin I.; Schrom, Brian T.; Aalseth, Craig E.; Cooper, Matthew W.; Hayes, James C.; Heimbigner, Tom R.; Hossbach, Todd W.; Hubbard, Charles W.; Litke, Kevin E.; Ripplinger, Mike D.; Seifert, Carolyn E.; Suarez, Reynold

    2006-02-27

    Abstract– Phoswich detectors (two scintillators attached to the same photomultiplier-tube) have been used in the past to measure either betas or gammas separately but were not used to measure beta-gamma coincidence signatures. These coincidence signatures are very important for the detection of many fission products and are exploited to detect four radioxenon isotopes using the Automated Radioxenon Sampler/Analyzer (ARSA) [1]. Previous PNNL work with a phoswich detector used a commercially available, thin disk of scintillating CaF2(Eu) and a 2” thick NaI(Tl) crystal in a phoswich arrangement. Studies with this detector measured the beta-gamma coincidence signatures from 133Xe, 214Pb and 214Bi [2]. This scintillator combination worked but was not a good match in scintillation light decay times, 940-ns for CaF2(Eu) and 230 ns for NaI(Tl). Additionally, a 6 mm thick quartz window was placed between the NaI(Tl) and the CaF2 to ensure a hermetic seal for the NaI(Tl) crystal . This dead layer significantly reduced the detection probability of the low energy x-rays and gammas that are part of the coincidence signatures for 214Pb, 214Bi and the radioxenons. Further research showed that Yttrium aluminum perovskit (YAP) and bismuth germanate (BGO) have very good scintillation light characteristics and no hermetic seal requirements. The 27-ns scintillation light decay time of YAP and the 300-ns decay time for BGO are a good match between fast and slow light output. The scintillation light output was measured using XIATM digital signal processing readout electronics, and the fast (YAP) and slow (BGO) light components allowed discrimination between the beta and gamma contributions of the radioactive decays. In this paper we discuss the experimental setup and results obtained with this new phoswich detector and the applications beyond radioxenon gas measurements.

  5. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods.

    PubMed

    Paik, Taejong; Diroll, Benjamin T; Kagan, Cherie R; Murray, Christopher B

    2015-05-27

    Self-assembly of multicomponent anisotropic nanocrystals with controlled orientation and spatial distribution allows the design of novel metamaterials with unique shape- and orientation-dependent collective properties. Although many phases of binary structures are theoretically proposed, the examples of multicomponent assemblies, which are experimentally realized with colloidal anisotropic nanocrystals, are still limited. In this report, we demonstrate the formation of binary and ternary superlattices from colloidal two-dimensional LaF3 nanodisks and one-dimensional CdSe/CdS nanorods via liquid interfacial assembly. The colloidal nanodisks and nanorods are coassembled into AB-, AB2-, and AB6-type binary arrays determined by their relative size ratio and concentration to maximize their packing density. The position and orientation of anisotropic nanocrystal building blocks are tightly controlled in the self-assembled binary and ternary lattices. The macroscopic orientation of the superlattices is further tuned by changing the liquid subphase used for self-assembly, resulting in the formation of lamellar-type binary liquid crystalline superlattices. In addition, we demonstrate a novel ternary superlattice self-assembled from two different sizes of nanodisks and a nanorod, which offers the unique opportunity to design multifunctional metamaterials. PMID:25927895

  6. Laser deposition and structuring of laser active planar waveguides of Er:ZBLAN, Nd:YAG and Nd:GGG for integrated waveguide lasers

    NASA Astrophysics Data System (ADS)

    Gottmann, Jens; Moiseev, Leonid; Wortmann, Dirk; Vasilief, Ion; Starovoytova, Larisa; Ganser, Dimitri; Wagner, Ralph

    2007-02-01

    Laser radiation is used both for the deposition of the laser active thin films and for the micro structuring to define wave guiding structures for the fabrication of waveguide lasers. Thin films of Er:ZBLAN (a glass consisting of ZrF 4, BaF II, LaF 3, AlF 3, NaF, ErF 3) for green upconversion lasers (545 nm), Nd:YAG (Y 3Al 5O 12) and Nd:GGG (Gd 3Ga 5O 12) for infrared lasers (1064 nm) are produced. Manufacturing of the laser active waveguides by micro-structuring is done using fs laser ablation of the deposited films. The structural and optical properties of the films and the damping losses of the structured waveguides are determined in view of the design and the fabrication of compact and efficient diode pumped waveguide lasers. The resulting waveguides are polished, provided with resonator mirrors, pumped using diode lasers and characterized. Laser operation of a ridge waveguide structure grown by pulsed laser deposition and structured by fs laser ablation is demonstrated. A 1 ?m thick, 100 ?m wide and 3 mm long structured waveguide consisting of amorphous neodymium doped Gd 3Ga 5O 12 has shown laser activity at 1.068 ?m when pumped by a diode laser at 808 nm.

  7. Down-converter based on rare earth doped fluoride glass to improve Si-based solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Alombert Goget, G.; Ristic, D.; Chiasera, A.; Varas, S.; Ferrari, M.; Righini, G. C.; Dieudonné, B.; Boulard, B.

    2011-05-01

    The solar cells efficiency may be improved by better exploitation of the solar spectrum, making use of the downconversion mechanism, where one high energy photon is cut into two low energy photons. The choice of the matrix is a crucial point to obtain an efficient down-conversion process with rare-earth ions. When energy transfer between rare earth ions is used to activate this process, high emission and absorption cross sections as well as low cutoff phonon energy are mandatory. A low phonon energy host lattice reduces non-radiative transition rates leading to the increase of the luminescent quantum yield and of the energy transfer efficiency. Recently, some studies have demonstrated that fluoride and oxyfluoride glasses may be valid systems to support an effective quantum cutting process. As a fluoride material, the relatively low phonon energy, around 600cm-1, of the ZLAG (70ZrF4 23.5LaF3 0.5AlF3 6GaF3 in mol%) glass makes it highly suitable for applications involving energy transfers. In this study, attention is focused on the assessment of the energy transfer efficiency between the Pr3+ and Yb3+ ions in bulk fluoride glasses ZLAG.

  8. Multifunctional inorganic-organic hybrid nanospheres for rapid and selective luminescence detection of TNT in mixed nitroaromatics via magnetic separation.

    PubMed

    Ma, Yingxin; Huang, Sheng; Wang, Leyu

    2013-11-15

    Rapid, sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) in aqueous solution differentiating from other nitroaromatics and independent of complicated instruments is in high demand for public safety and environmental monitoring. Despite of many methods for TNT detection, it is hard to differentiate TNT from 2,4,6-trinitrophenol (TNP) due to their highly similar structures and properties. In this work, via a simple and versatile method, LaF3ːCe(3+)-Tb(3+)and Fe3O4 nanoparticle-codoped multifunctional nanospheres were prepared through self-assembly of the building blocks. The luminescence of these nanocomposites was dramatically quenched via adding nitroaromatics into the aqueous solution. After the magnetic separation, however, the interference of other nitroaromatics including 2,4,6-trinitrophenol (TNP), 2,4-dinitrotoluene (DNT), and nitrobenzene (NB) was effectively overcome due to the removal of these coexisting nitroaromatics from the surface of nanocomposites. Due to the formation of TNT(-)-RCONH3(+), the TNT was attached to the surface of the nanocomposites and was quantitatively detected by the postexposure luminescence quenching. Meanwhile, the luminescence intensity is negatively proportional to the concentration of TNT in the range of 0.01-5.0 μg/mL with the 3σ limit of detection (LOD) of 10.2 ng/mL. Therefore, the as-developed method provides a novel strategy for rapid and selective detection of TNT in the mixture solution of nitroaromatics by postexposure luminescence quenching. PMID:24148441

  9. Evidence of energy transfer in nanoparticle-porphyrins conjugates for radiation therapy enhancement

    NASA Astrophysics Data System (ADS)

    Kudinov, Konstantin; Cooper, Daniel; Tyagi, Pooja; Bekah, Devesh; Bhattacharyya, Dhrittiman; Hill, Colin; Ha, Jonathan Kin; Nadeau, Jay; Bradforth, Stephen

    2015-03-01

    We report progress towards combining radiation therapy (RT) and photodynamic therapy (PDT) using scintillating nanoparticle (NP)-photosensitizer conjugates. In this approach, scintillating NPs are excited by clinically relevant ionizing radiation sources and subsequently transfer energy to conjugated photosensitizers via FRET, acting as an energy mediator between ionizing radiation and photosensitizer molecules. The excited photosensitizers generate reactive oxygen species that can induce local damage and immune response. Advantages of the scheme include: 1) Compared with traditional radiation therapy, a possible decrease of the total radiation dose needed to eliminate the lesion; 2) Compared with traditional PDT, the ability to target deeper and more highly pigmented lesions; 3) The possibility of additional photosensitizing effects due to the scintillation of the nanoparticles. In this work, the photosensitizer molecule chlorin e6 was covalently bound to the surface of LaF3:Ce NPs. After conjugation, the photoluminescence intensity of NPs decreased, and fluorescence lifetime of conjugated chlorin e6 became sensitive to excitation wavelength, suggesting rapid FRET. In addition, scintillation spectra of nanoparticles were measured. Preliminary calculations suggest that the observed scintillation efficiencies are sufficient to enhance RT. In vitro cancer cell studies suggest conjugates are taken up by cells. Survival curves with radiation exposure suggest that the particles alone cause radiosensitization comparable to that seen with gold nanoparticles.

  10. Investigation into nanostructured lanthanum halides and CeBr3 for nuclear radiation detection

    NASA Astrophysics Data System (ADS)

    Guss, Paul; Guise, Ronald; Mukhopadhyay, Sanjoy; Yuan, Ding

    2011-09-01

    Nanocomposites may enable the use of scintillator materials such as cerium-doped lanthanum fluoride (LaF3:Ce) and cerium bromide (CeBr3) without requiring the growth of large crystals. Nanostructured detectors may allow us to engineer immensely sized detectors of flexible form factors that will have a broad energy range and an energy resolution sufficient to perform isotopic identification. Furthermore, nanocomposites are easy to prepare and very low in cost. It is much less costly to use nanocomposites rather than grow large whole crystals of scintillator materials; with nanocomposites fabricated on an industrial scale, costs are even less. Nanostructured radiation scintillator detectors may improve quantum efficiency and provide vastly improved detector form factors. Quantum efficiencies up to 60% have been seen in photoluminescence from silicon nanocrystals in a densely packed ensemble. We have fabricated nanoparticles with sizes <10 nm and characterized their nanocomposite radiation detector properties. This work investigates the properties of the nanostructured radiation scintillator in order to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using nanostructured lanthanum bromide, lanthanum fluoride, or CeBr3. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  11. Investigation into Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation Detection

    SciTech Connect

    Guss, P. P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-07-06

    Nanocomposites may enable the use of scintillator materials such as cerium-doped lanthanum fluoride (LaF3:Ce) and cerium bromide (CeBr3) without requiring the growth of large crystals [1]. Nanostructured detectors may allow us to engineer immensely sized detectors of flexible form factors that will have a broad energy range and an energy resolution sufficient to perform isotopic identification. Furthermore, nanocomposites are easy to prepare and very low in cost. It is much less costly to use nanocomposites rather than grow large whole crystals of scintillator materials; with nanocomposites fabricated on an industrial scale, costs are even less. Nanostructured radiation scintillator detectors may improve quantum efficiency and provide vastly improved detector form factors. Quantum efficiencies up to 60% have been seen in photoluminescence from silicon nanocrystals in a densely-packed ensemble [2]. We have fabricated nanoparticles with sizes <10 nm and characterized their nanocomposite radiation detector properties. This work investigates the properties of the nanostructured radiation scintillator in order to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using nanostructured lanthanum bromide, lanthanum fluoride, or CeBr3. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

  12. Time-resolved photo-phonon spectroscopy

    NASA Astrophysics Data System (ADS)

    Lisin, V. N.; Shegeda, A. M.

    2006-03-01

    A rather simple method is discussed to study at once optical absorption spectra, excited-states nonradiative relaxation and propagation of the nonequilibrium phonons emitted during this process in doped dielectrics. The technique utilizes the time-resolved superconductive bolometer detection of these phonons at temperature T=2 K and optical excitation with a pulsed tunable dye laser. Observed, at fixed delay time after the laser pulse action, excitation spectra of the phonons well coincide with already known absorption spectra of both single doped ions and pairs of the nearest neighbors. In some crystals both the satellite lines and uncontrollable impurities lines (Nd 3+ in system LaF 3:Pr 3+) are well resolved in the phonon excitation spectra. This talks about high sensitivity of the used method. Time evolution of the phonon excitation spectra contains in itself the information on energy transfer mechanisms and has allowed to reveal the new types of doped ion cites (Cr 3+ in ruby). The study of a time dependence of bolometer signal versus the phonon propagation distance at fixed laser wave length has allowed to determine nonradiative relaxation time, a phonon propagation type and parameters of the phonon scattering rates.

  13. Vacuum deposited optical coatings experiment (AO 138-4)

    NASA Technical Reports Server (NTRS)

    Charlier, Jean

    1991-01-01

    The aim of this experiment was to test the optical behavior of 20 components and coatings subjected to space exposure. Most of them are commonly used for their reflective or transmittive properties in spaceborne optics. They consist in several kind of metallic and dielectric mirrors designed for the 0.12 to 10 microns spectrum, UV, and NIR bandpass filters, visible, and IR antireflecting coatings, visible/IR dichroic beam splitters, and visible beam splitter. The coatings were deposited on various substrates such as glasses, germanium, magnesium fluoride, quartz, zinc selenide, and kanigened aluminum. Several coating materials were used such as Al, Ag, Au, MgF2, LaF3, ThF3, ThF4, SiO2, TiO2, ZrO2, Al2O3, MgO, Ge, and ZnSe. Five samples of each component were manufactured. Two flight samples were mounted in such a way that one was directly exposed to space and the other looking backwards. The same arrangement was used for the spare samples stored on ground in a box identical to the flight one and they were kept under vacuum during the LDEF mission. Finally, one set of reference components was stocked in a sealed box under a dry nitrogen atmosphere. By comparing the preflight and postflight optical performances of the five samples of each component, it is possible to detect the degradations due to the space exposure.

  14. Effect of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped in transparent glass-ceramics

    NASA Astrophysics Data System (ADS)

    Kim Dan, Ho; Zhou, Dacheng; Wang, Rongfei; Jiao, Qing; Yang, Zhengwen; Song, Zhiguo; Yu, Xue; Qiu, Jianbei

    2014-12-01

    The glass and glass-ceramics samples with composition of 50SiO2-10AlF3-(30-x)BaF2-5TiO2-3.95LaF3- xMnCO3-0.05ErF3-1YbF3 (in mol%, x=0, 0.5, 0.8, 1.0, and 1.2) were prepared using the conventional quenching techniques. The effects of Mn2+ ions on the enhancement red upconversion emission of Mn2+/Er3+/Yb3+ tri-doped transparent glass-ceramics under the changing of heat treatment temperatures and concentrations of Mn2+ ions were investigated. The structural investigation carried out by X-ray diffraction (XRD), and transmission electron microscopy evidenced the formation of cubic Ba2LaF7 nanocrystals. The efficiency upconversion emission of Mn2+/Er3+/Yb3+ tri-doped was observed in the glass-ceramics. The upconversion mechanism and energy transfer between Mn2+-Yb3+ dimer and Er3+ ions were investigated.

  15. Excimer mirror thin film laser damage competition

    NASA Astrophysics Data System (ADS)

    Stolz, Christopher J.; Blaschke, Holger; Jensen, Lars; Mädebach, Heinrich; Ristau, Detlev

    2011-12-01

    Excimer lasers are a critical technology for the $400 billion annual market of manufactured integrated circuits. Other uses of excimer lasers include medical applications such as laser eye surgery and micro-machining industrial applications. Ultraviolet laser mirrors are used for beam steering, therefore high reliability is desired for such commercial industrial applications. A laser damage competition of excimer mirror coatings creates the opportunity to survey private industry, governmental institutions, and university labs allowing a direct laser resistance comparison of samples tested under identical conditions. The major requirement of the submitted coatings was a minimum reflectance of 97% at 193 nm at normal incidence. The choice of coating materials, design, and deposition method were left to the participant. Damage testing was performed with a 193 nm excimer laser at a pulse length of 13 ns. A double blind test assured sample and submitter anonymity so only a summary of the deposition process, coating materials, layer count and spectral results are presented. In summary, a 70× difference was seen in the twelve submitted mirror samples, with the highest laser resistant sample being deposited by resistive heating and composed of three materials (LaF3, AlF3, & MgF2). Laser resistance was strongly affected by substrate cleaning, coating deposition method, and coating material selection whereas layer count had a minimal impact.

  16. Improving Tribological Properties of Multialkylated Cyclopentanes under Simulated Space Environment: Two Feasible Approaches.

    PubMed

    Fan, Xiaoqiang; Wang, Liping; Li, Wen; Wan, Shanhong

    2015-07-01

    Space mechanisms require multialkylated cyclopentanes (MACs) more lubricious, more reliable, more durable, and better adaptive to harsh space environments. In this study, two kinds of additives were added into MACs for improving the tribological properties under simulated space environments: (a) solid nanoparticles (tungsten disulfide (WS2), tungsten trioxide (WO3), lanthanum oxide (La2O3), and lanthanum trifluoride (LaF3)) for steel/steel contacts; (b) liquid additives like zinc dialkyldithiophosphate (ZDDP) and molybdenum dialkyldithiocarbamate (MoDTC) for steel/steel and steel/diamond-like carbon (DLC) contacts. The results show that, under harsh simulated space environments, addition of the solid nanoparticles into MACs allows the wear to be reduced by up to one order magnitude, while liquid additives simultaneously reduce friction and wear by 80% and 93%, respectively. Friction mechanisms were proposed according to surface/interface analysis techniques, such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). The role of solid nanoparticles in reducing friction and wear mainly depends on their surface enhancement effect, and the liquid additives are attributed to the formation of tribochemical reaction film derived from ZDDP and MoDTC on the sliding surfaces. PMID:26067481

  17. Coprecipitation of Ti, Zr, and Hf as Rf homologs with La fluoride from solutions of hydrofluoric acid

    NASA Astrophysics Data System (ADS)

    Aksenov, N. V.; Bozhikov, G. A.; Berdonosov, S. S.; Lebedev, V. Ya.; Dmitriev, S. N.

    2011-07-01

    The discovery of relatively longer half-lives of transactinides {104/267}Rf ( T 1/2 ˜ 1.3 h) and {105/268}Db( T 1/2 ˜ 29 h) offers new approaches for the study of chemical properties of Rf and Db in solutions. This work examines the effects that the pH of a solution, HF concentration, the concentration of proper ions in the solution, the presence of foreign multivalent ions in the solution, and the contact time of liquid and solid phases have on the coprecipitation of radioisotopes of group-4 elements Ti, Zr, and Hf with fluoride La. The morphology of the solid phase was studied using electron microscopy methods (SEM and TEM); an X-ray phase analysis of the obtained solid phases was performed. It was inferred that the fluoride forms of Zr and Hf cocrystallize with LaF3. The possibilities of using coprecipitation for examining the influence that the relativistic effects have on the chemical properties of Rf and Db were discussed.

  18. Measured 19F(α,n) with VANDLE for Nuclear Safeguards

    NASA Astrophysics Data System (ADS)

    Peters, William; Clement, R. C. C.; Smith, M. S.; Pain, S.; Febbraro, M.; Pittman, S.; Thomspon, S.; Grinder, M.; Cizewski, J. A.; Reingold, C.; Manning, B.; Burcher, S.; Bardayan, D. W.; Tan, W.-P.; Stech, E.; Smith, M. K.; Avetisyan, R.; Gyurjinyan, A.; Lowe, M.; Ilyushkin, S.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Taylor, S. Z.; Smith, K.

    2015-10-01

    One of the most promising non-destructive assay (NDA) methods to monitor UF6 canisters consists of measuring gross neutron rates induced by uranium-decay alpha particles reacting with the fluorine and emitting a neutron. This method currently lacks reliable nuclear data on the 19F(α,n) reaction cross section to determine an accurate neutron yield rate for a given sample of UF6. We have measured the cross section and coincident neutron spectrum for the alpha-decay energy range using the VANDLE system. This experiment had two parts: first at Notre Dame with a LaF3 target and and a pulsed alpha-particle beam, and second at ORNL with a windowless He-gas target and a 19F beam. The motivation for this measurement and cross section results will be presented. This work is funded in part by the DOE Office of Science, the National Nuclear Security Administration SSAA and the Office of Defense Nuclear Nonproliferation R&D, and the NSF.

  19. Ionic liquid synthesis of luminescent nano-cubes and their microstructure characterization

    NASA Astrophysics Data System (ADS)

    Ma, Qianmin; Ping, Lulu; Zhang, Helen Meihua; Yang, Jinglian; Wang, Qianming

    2015-07-01

    Regular CaF2:Eu3+ nano-cubes undergo ionic liquid (diallyldimethylammonium tetrafluoroborate, abbreviated as DTB)-mediated synthesis reactions in the presence of Eu(NO3)3?6H2O. The formation of uniform and mono-dispersed particles relies primarily on a one-pot hydrothermal method. The correlations between reaction temperature, doping concentration and crystalline structures have been clarified. In addition, the photoluminescence features and their influencing factors were extensively studied. In the case of Eu3+ containing phosphors, the application of new structure directing reagents will be convenient for the design of functional nanomaterials.

  20. Spatially localized measurement of thermal conductivity using a hybrid photothermal technique

    SciTech Connect

    David H Hurley; Marat Khafizov; Zilong Hua; Rory Kennedy; Heng Ban

    2012-05-01

    A photothermal technique capable of measuring thermal conductivity with micrometer lateral resolution is presented. This technique involves measuring separately the thermal diffusivity, D, and thermal effusivity, e, to extract the thermal conductivity, k=(e2/D)1/2. To generalize this approach, sensitivity analysis was conducted for materials having a range of thermal conductivities. Experimental validation was sought using two substrate materials, SiO2 and CaF2, both coated with thin titanium films. The measured conductivities compare favorably with literature values.

  1. Scintillation properties of SrF2 and SrF2-Ce3+ crystals

    NASA Astrophysics Data System (ADS)

    Shendrik, R. Yu.; Radzhabov, E. A.; Nepomnyashchikh, A. I.

    2013-07-01

    This Letter presents the results of measuring scintillation properties of pure SrF2 crystals and crystals activated by various concentrations of Ce3+ ions. The light yield of these materials is compared to that of the known scintillators NaI-Tl and CaF2-Eu2+. Strontium fluoride crystals activated with Ce3+ ions are found to be characterized by high light yield and to be promising materials for use in scintillation detectors employed for γ-ray well logging.

  2. Distribution of niobium or tantalum between fluorine-containing slag and iron in blast furnace smelting

    NASA Astrophysics Data System (ADS)

    Han, Qiyong; Deng, Jian; Huang, Shiliang; Fang, Ying

    1990-10-01

    The distribution of Nb or Ta between iron and slag in blast furnace smelting is closely related to Si-Nb or Si-Ta equilibrium. Most of the Nb or Ta enters the iron when the equilibrium distribution of Nb or Ta is reached. The equilibrium distribution ratios of Nb and Ta are substantially independent of both the basicity and the CaF2 content of the slag but are markedly affected by the reaction temperature. The Ta contents in slag and iron were measured by the radioactive isotope182Ta.

  3. Analysis of the electroluminescence features of silicon metal-insulator-semiconductor structures as a tool for diagnostics of the injection properties of a dielectric layer

    NASA Astrophysics Data System (ADS)

    Illarionov, Yu. Yu.; Vexler, M. I.; Isakov, D.; Fedorov, V. V.; Sing, Yew Kwang

    2013-10-01

    A technique for diagnostics of the injection properties of thin dielectric layers based on analysis of the data on silicon electroluminescence in a metal-insulator-semiconductor structure is proposed. The possibility of applying this technique to control the electron injection energy (in particular, when the barrier parameters are poorly known) is demonstrated by the example of samples with CaF2 and HfO2/SiO2. The results obtained are important for application of the insulators under study in microelectronic devices.

  4. Laser-Induced Damage of Calcium Fluoride

    SciTech Connect

    Espana, A.; Joly, A.G.; Hess, W.P.; Dickinson, J.T.

    2004-01-01

    As advances continue to be made in laser technology there is an increasing demand for materials that have high thresholds for laser-induced damage. Laser damage occurs when light is absorbed, creating defects in the crystal lattice. These defects can lead to the emission of atoms, ions and molecules from the sample. One specific field where laser damage is of serious concern is semiconductor lithography, which is beginning to use light at a wavelength of 157 nm. CaF2 is a candidate material for use in this new generation of lithography. In order to prevent unnecessary damage of optical components, it is necessary to understand the mechanisms for laser damage and the factors that serve to enhance it. In this research, we study various aspects of laser interactions with CaF2, including impurity absorbance and various forms of damage caused by incident laser light. Ultraviolet (UV) laser light at 266 nm with both femtosecond (fs) and nanosecond (ns) pulse widths is used to induce ion and neutral particle emission from cleaved samples of CaF2. The resulting mass spectra show significant differences suggesting that different mechanisms for desorption occur following excitation using the different pulse durations. Following irradiation by ns pulses at 266 nm, multiple single-photon absorption from defect states is likely responsible for ion emission whereas the fs case is driven by a multi-photon absorption process. This idea is further supported by the measurements made of the transmission and reflection of fs laser pulses at 266 nm, the results of which reveal a non-linear absorption process in effect at high incident intensities. In addition, the kinetic energy profiles of desorbed Ca and K contaminant atoms are different indicating that a different mechanism is responsible for their emission as well. Overall, these results show that purity plays a key role in the desorption of atoms from CaF2 when using ns pulses. On the other hand, once the irradiance reaches high levels, like that of the fs case, significant desorption is possible due to multi-photon absorption by the intrinsic material.

  5. Furnaces: Improving low cement castables by non-wetting additives

    NASA Astrophysics Data System (ADS)

    Afshar, Saied; Allaire, Claude

    2001-08-01

    Aluminosilicate castables, which are widely used in aluminum transformation furnaces, are susceptible to chemical reactions between molten aluminum and the furnace refractory lining. To prevent those reactions, commercial additives such as BaSO4, CaF2, and AlF3 are generally added in castables. This article presents and analyzes the effect of various amounts of the above additives as well as the influence of pre-firing temperatures on the corrosion behavior of an aluminosilicate low cement castable matrix in contact with liquid Al-5%Mg alloy.

  6. Detection of thin film NMR spectrum by Magnetic Resonance Force Microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Kwon, Sungmin; Lee, Soonchil; Won, Soonho

    2014-03-01

    NMR is widely used in many fields due to its powerful advantages such as nondestructive, chemically selective detection, and local probing. However, because of its low sensitivity, it is difficult to investigate thin film samples by conventional NMR. MRFM is the combined technic of NMR and Scanning Probe Microscopy (SPM), and it enabled exceptional sensitivity increasement of NMR detection. We succeeded in detecting general thin film NMR spectrum for the first time by modifying the MRFM. CaF2 34nm thin film NMR was detected and we observed 20 Gauss spectrum in proximity to bulk spectrum which is about 10 Gauss.

  7. NMR spin-lattice relaxation time T(1) of thin films obtained by magnetic resonance force microscopy.

    PubMed

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment. PMID:25828244

  8. NMR spin-lattice relaxation time T1 of thin films obtained by magnetic resonance force microscopy

    NASA Astrophysics Data System (ADS)

    Saun, Seung-Bo; Won, Soonho; Kwon, Sungmin; Lee, Soonchil

    2015-05-01

    We obtained the NMR spectrum and the spin-lattice relaxation time (T1) for thin film samples by magnetic resonance force microscopy (MRFM). The samples were CaF2 thin films which were 50 nm and 150 nm thick. T1 was measured at 18 K using a cyclic adiabatic inversion method at a fixed frequency. A comparison of the bulk and two thin films showed that T1 becomes shorter as the film thickness decreases. To make the comparison as accurate as possible, all three samples were loaded onto different beams of a multi-cantilever array and measured in the same experimental environment.

  9. Technology for Solar Array Production on the Moon

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Silicon, aluminum, and glass are the primary raw materials that will be required for production of solar arrays on the moon. A process sequence is proposed for producing these materials from lunar regolith is proposed, consisting of separating the required materials from lunar rock with fluorine. Fluorosilane produced by this process is reduced to silicon; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O. Aluminum, calcium oxide, and magnesium oxide are recovered to manufacture structural materials and glass.

  10. Technological possibilities of processing the sublimates of electron-beam remelting of niobium to form ferroniobium

    NASA Astrophysics Data System (ADS)

    Chumarev, V. M.; Leont'ev, L. I.; Potapov, V. I.; Udoeva, L. Yu.; Upolovnikova, A. G.

    2012-01-01

    The possibility of melting of ferroniobium from the sublimates of electron-beam remelting of niobium ingots is studied using thermodynamic analysis and a "hot" simulation. The basic requirements for the conditions of processing of sublimates with various (Nb/Al)met ratios are evaluated and determined. A ferroalloy the contents of controlled impurities in which correspond to certain ferroniobium grades of Russian and foreign standards is produced by melting of charges containing the sublimates, a deoxidizer (Fe2O3), and a flux (CaO, CaF2) in an electroslag furnace.

  11. Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers.

    PubMed

    Savchenkov, Anatoliy A; Ilchenko, Vladimir S; Di Teodoro, Fabio; Belden, Paul M; Lotshaw, William T; Matsko, Andrey B; Maleki, Lute

    2015-08-01

    We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF2 and MgF2 whispering-gallery-mode resonators pumped with continuous-wave room-temperature quantum cascade lasers. The combs were centered at 4.5 μm, the longest wavelength to date. A frequency comb wider than one half of an octave was demonstrated when approximately 20 mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10(8). PMID:26258334

  12. Generation of Kerr combs centered at 45 μm in crystalline microresonators pumped with quantum-cascade lasers

    NASA Astrophysics Data System (ADS)

    Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Di Teodoro, Fabio; Belden, Paul M.; Lotshaw, William T.; Matsko, Andrey B.; Maleki, Lute

    2015-08-01

    We report on the generation of mid-infrared Kerr frequency combs in high-finesse CaF$_2$ and MgF$_2$ whispering-gallery mode resonators pumped with continuous wave room temperature quantum cascade lasers. The combs were centered at 4.5$\\mu$m, the longest wavelength to date. A frequency comb wider than a half of an octave was demonstrated when approximately 20mW of pump power was coupled to an MgF2 resonator characterized with quality factor exceeding 10$^8$.

  13. Atomic force microscope studies of fullerene films - Highly stable C60 fcc (311) free surfaces

    NASA Technical Reports Server (NTRS)

    Snyder, Eric J.; Tong, William M.; Williams, R. S.; Anz, Samir J.; Anderson, Mark S.

    1991-01-01

    Atomic force microscopy and X-ray diffractometry were used to study 1500 A-thick films of pure C60 grown by sublimation in ultrahigh vacuum onto a CaF2 (111) substrte. Topographs of the films did not reveal the expected close-packed structures, but they showed instead large regions that correspond to a face-centered cubic (311) surface and distortions of this surface. The open (311) structure may have a relatively low free energy because the low packing density contributes to a high entropy of the exposed surface.

  14. Analysis of multiple pulse NMR in solids

    NASA Technical Reports Server (NTRS)

    Rhim, W.-K.; Elleman, D. D.; Vaughan, R. W.

    1973-01-01

    The general problems associated with the removal of the effects of dipolar broadening from solid-state NMR spectra are analyzed. The effects of finite pulse width and H sub 1 inhomogeneity are shown to have limited the resolution of previous pulse cycles, and a new eight-pulse cycle designed to minimize these problems is discussed. Spectra for F-19 in CaF2 taken with this cycle are presented which show residual linewidth near 10 Hz. The feasibility of measuring proton chemical shift tensors is discussed.

  15. Liquidus Temperatures of Cryolite Melts With Low Cryolite Ratio

    NASA Astrophysics Data System (ADS)

    Apisarov, Alexei; Dedyukhin, Alexander; Nikolaeva, Elena; Tinghaev, Pavel; Tkacheva, Olga; Redkin, Alexander; Zaikov, Yurii

    2011-02-01

    The effect of calcium fluoride on liquidus temperatures of the cryolite melts with a low cryolite ratio (CR) was studied. The systems KF-NaF-AlF3 and KF-LiF-AlF3 with CRs of 1.3, 1.5, and 1.7 have been investigated. The liquidus curves of systems containing CaF2 are different and depend on the K/(K + Na) and K/(K + Li) ratios. In potassium cryolite with CRs of 1.3 and 1.5, the calcium fluoride solubility is low and increases with NaF (LiF) concentration.

  16. Thermal transformation of quaternary compounds in NaF-CaF 2-AlF 3 system

    NASA Astrophysics Data System (ADS)

    Zaitseva, Julia N.; Yakimov, Igor S.; Kirik, Sergei D.

    2009-08-01

    Details of quaternary compounds formation in the system NaF-CaF 2-AlF 3 are specified. To achieve this aim, the samples of phases NaCaAlF 6 and Na 2Ca 3Al 2F 14 have been obtained by high-temperature solid-phase synthesis. Their thermal behavior when heated up to 800 °C has been studied using the methods of high-temperature X-ray diffraction (XRD) and thermal analysis (TA). The system under consideration can be regarded as a quasibinary section CaF 2-NaAlF 4, where at T=745-750 °C invariant equilibrium is implemented with the phases CaF 2-NaCaAlF 6-Na 2Ca 3Al 2F 14-(liquid melt)-(NaAlF 4). The peculiarity of the equilibrium is NaAlF 4 metastability at normal pressure. Below the equilibrium temperature the quaternary phase Na 2Ca 3Al 2F 14 is stable and NaCaAlF 6 above this temperature. The phase NaCaAlF 6 fixed by rapid quenching from high temperatures and when heated up to 640 °C decomposes, yielding Na 2Ca 3Al 2F 14. Further heating in vacuum at temperature up to 740 °C results in decomposition of Na 2Ca 3Al 2F 14 into CaF 2 and Na 3AlF 6. The expected reverse transformation of Na 2Ca 3Al 2F 14 into NaCaAlF 6 has not been observed under experimental conditions. Transformations in bulk samples reveal direct and reverse transformation of quaternary phases. SynopsisThermal transformation of the quaternary compounds in system (NaF-CaF 2-AlF 3) was investigated using high-temperature X-ray diffraction (XRD) and thermal analysis (TA). In the system the invariant equilibrium is implemented with the phases CaF 2-NaCaAlF 6-Na 2Ca 3Al 2F 14-(liquid melt)-(NaAlF 4) at T=745-750 °C.

  17. Heat conductivity of Ca1- x R x F2+ x ( R = La, Ce, or Pr; 0 ≤ x ≤ 0.25) heterovalent solid solutions

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Fedorov, P. P.; Konyushkin, V. A.

    2015-09-01

    Heat conductivity of crystals of Ca1- x R x F2 + x ( R = La, Ce, or Pr; 0 ≤ x ≤ 0.25) solid solutions with a fluorite structure has been experimentally investigated in the temperature range of 50-300 K. The introduction of heterovalent impurities into CaF2 significantly reduces heat conductivity, especially at low temperatures. The concentration dependences of the heat conductivity of the solid solutions studied are close because they contain defect clusters of the same type.

  18. Intergranular fracture of lithium fluoride-22 percent calcium fluoride hypereutectic salt at 800 K

    NASA Technical Reports Server (NTRS)

    Raj, Subramanium V.; Whittenberger, J. Daniel

    1990-01-01

    Substantial strain-hardening was noted during the initial stages of deformation in constant-velocity compression tests conducted on as-cast samples of the LiF-22 mol pct CaF2 hypereutectic salt at 800 K. The deformed specimens exhibited extensive grain-boundary cracking and cavitation, suggesting that such cracking, in conjunction with interfacial sliding, is important for cavity nucleation at grain boundaries and at the LiF-CaF2 interfaces. Cavity growth and interlinkage occur through the preferential failure of the weaker LiF phase.

  19. Generation of ultrashort 90 µJ deep-ultraviolet pulses by dual broadband frequency doubling with β-BaB2O4 crystals at 1 kHz

    NASA Astrophysics Data System (ADS)

    Zhou, Chun; Kanai, Teruto; Watanabe, Shuntaro

    2015-01-01

    Fourth-harmonic pulses of a 1 kHz chirped-pulse amplification (CPA) Ti:sapphire laser have been generated by a scheme of dual broadband frequency doubling with two β-BaB2O4 (BBO) crystals. The pulse energy was 90 µJ with a bandwidth of 2.7 nm (full width at half maximum, FWHM) at a central wavelength of 220 nm. The pulse width was measured to be 45 fs by autocorrelation with the two-photon fluorescence of CaF2, which was much smaller than that (120 fs) obtained by conventional frequency conversion.

  20. Background-free, highly sensitive surface-enhanced IR absorption of rhodamine 6G molecules deposited onto an array of microholes in thin silver film

    NASA Astrophysics Data System (ADS)

    Danilov, Pavel N.; Gonchukov, Sergey A.; Ionin, Andrey A.; Khmelnitskii, Roman A.; Kudryashov, Sergey I.; Nguyen, Trang T. H.; Rudenko, Andrey A.; Saraeva, Irina N.; Zayarny, Dmitry A.

    2016-05-01

    Selective IR absorption at 1261 cm-1 enhanced by 455 times, was demonstrated for rhodamine 6G molecules, covering a 2D-photonic crystal, represented by a regular array of 4-micron wide holes in a 30 nm thick silver film on a CaF2 substrate. The reference absorption lines were taken near 2900 cm-1, where the IR radiation is freely channeling through the microholes, indicating the reference substrate coverage by the dye molecules for its relative internal calibration. The limit of background-free detection for the analyte was determined at the level ~10-2 monolayer.

  1. Count rate performance and deadtime analysis of the new 3D PETRRA PET camera

    NASA Astrophysics Data System (ADS)

    Wells, Kevin; Kakana, Christina; Ott, Robert J.; Flower, M.; Divoli, Antigoni; Meriaux, Sebastian; Bateman, J. E.; Stephenson, R.; Duxbury, D.; Spill, E. J.

    2001-12-01

    We report on the count-rate performance of the unique PETRRA positron camera at activities up to 60MBq. The camera consists of two large area detectors, each comprising a tiled array of 10mm thick BaF2 scintillation crystals interfaced to a multi-step avalanche chamber filled with 4.2mbar of pure TMAE vapor. Preliminary results demonstrate coincident count rates of over 80kcps for a cylindrical (20x20cm3) phantom with 50MBq of F-18 in the field-of-view using a 20ns coincidence time window. Each component of the readout cycle has been characterized in terms of dead-time loss. The camera's dead-time related count loss is well-described by a paralysable model with a dead-time of ~500ns. Other sources of count rate loss are also discussed.

  2. High critical currents and flux creep effects in e-gun deposited epitaxially 00L oriented superconducting YBa2Cu3O7-? films

    NASA Astrophysics Data System (ADS)

    Dam, B.; Stollman, G. M.; Berghuis, P.; Guo, S. Q.; Flipse, C. F. J.; Lensink, J. G.; Griessen, R. P.

    1989-02-01

    Thin films of YBa2Cu3O7-? have been made by codeposition of Cu, Y and BaF2 in a UHV system. Annealing in humid oxygen at 835 C produces high quality single phase preferentially c oriented films. In 1000 thin films the transport current density is larger than 106 A/cm2 at 86 K. Even 500 films prove to be superconducting above 77 K. Extrapolation to zero field of the magnetization data obtained from torque experiments are consistent with the current transport data. This indicates that the sample is homogeneous and the critical state model can be applied. Both magnetic relaxation measurements and flux creep resistivity in a magnetic field indicate the importance of thermally activated processes.

  3. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    NASA Astrophysics Data System (ADS)

    Si, Weidong; Zhang, Cheng; Wu, Lijun; Ozaki, Toshinori; Gu, Genda; Li, Qiang

    2015-08-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  4. Crystal Identification In Modular Array Detectors For High Spatial Resolution PET

    NASA Astrophysics Data System (ADS)

    Weinberg, Irving N.; Dahlbom, Magnus; Ricci, Anthony; Hoffman, Edward J.

    1986-01-01

    The use of detector arrays in PET has been proposed and studied as a economical means of obtaining very high resolution images. The properties of detector arrays for use in high resolution PET scanners were investigated. Analytical approximations and Monte Carlo simulations were used to design detector arrays consisting of six to eight crystals coupled to two photomultipliers to allow identification of the individual crystals. Arrays of 2.85 mm thick crystals of Bismuth Germanate (BGO), Gadolinium Orthosilicate (GSO), and Barium Fluoride (BaF2) were examined. The effect of interdetector materials such as lead, and plastic on positioning accuracy was tested. Assembled arrays of six 2.85 mm thick BG0 crystals yielded line spread function FWHMs of 2.4 to 3.2 millimeters. The limiting resolution of detector arrays was found to be defined by the scintillation light yield of the crystals, the light gathering efficiency of the detector arrays, and the fraction of interdetector scatter.

  5. Annihilation Radiation Gauge for Relative Density and Multiphase Fluid Monitoring

    NASA Astrophysics Data System (ADS)

    Vidal, A.; Viesti, G.; Pino, F.; Barros, H.; Sajo-Bohus, L.

    2014-03-01

    The knowledge of the multi-phase flow parameters are important for the petroleum industry, specifically during the transport in pipelines and network related to exploitation's wells. Crude oil flow is studied by Monte Carlo simulation and experimentally to determine transient liquid phase in a laboratory system. Relative density and fluid phase time variation is monitored employing a fast nuclear data acquisition setup that includes two large volume BaF2 scintillator detectors coupled to an electronic chain and data display in a LabView® environment. Fluid parameters are determined by the difference in count rate of coincidence pulses. The operational characteristics of the equipment indicate that 2 % deviation in the CCR corresponds to a variation, on average, of 20 % in the fraction of liquid of the multiphase fluid.

  6. Multiphase monitoring by annihilation radiation coincidence mode

    NASA Astrophysics Data System (ADS)

    Vidal, A.; Viesti, G.; Osorio, C.; Pino, F.; Horvath, A.; Barros, H.; Caldogno, M.; Greaves, E. D.; Sajo-Bohus, L.

    2012-02-01

    A multiphase monitoring system employing nuclear techniques is reported, which is aimed to provide a rapid - decision tool in oilfield applications. Liquid phase time variation is monitored employing two large volume BaF2 detectors. The radioisotope source of 22Na is a positron emitter, therefore two antiparallel gammas are produced per decay, and phase flow in pipes is related to the count rate of gamma pulses in coincidence providing information on transient liquid phase during transport. Oil, gas, water fraction measurements were performed at a specialized test station assembled in our laboratory to model a wide range of field operating conditions. The time dependence of the mixed substances is monitored with the two most relevant hydrodynamic parameters, the density (type of the fluid) and the flow rate, in a LabView® environment. Performance of the monitoring system; its limitations and the possibility for further improvements are also provided.

  7. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    DOE PAGESBeta

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk.more » With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.« less

  8. Firing condition for entire reactions of fluorides with water vapor in metalorganic deposition method using trifluoroacetate

    NASA Astrophysics Data System (ADS)

    Araki, T.; Takahashi, Y.; Yamagiwa, K.; Iijima, Y.; Takeda, K.; Yamada, Y.; Shibata, J.; Hirayama, T.; Hirabayashi, I.

    2001-08-01

    To obtain the YBa 2Cu 3O 7- x (YBCO) film on buffered metal tapes, we have to fire films below 800C and avoid formation of BaF 2 in the films which leads to low Jc by metalorganic deposition using trifluoroacetate method. By estimating each process condition to reaction rate of fluorides with water vapor in precursor, we can established firing profile for YBCO film on buffered metal substrate at 725C. With the profile, we can successfully obtained YBCO film on CeO 2/YSZ/hastelloy, which has critical current density ( Jc) of 1.72 MA/cm 2 (77 K, 0 T) and thickness of 1860 .

  9. Room temperature persistent photoconductivity in p-PbTe and p-PbTe:BaF2

    NASA Astrophysics Data System (ADS)

    de Castro, S.; Soares, D. A. W.; Peres, M. L.; Rappl, P. H. O.; Abramof, E.

    2014-10-01

    We investigated the persistent photoconductivity effect observed in p-PbTe:BaF2 and undoped p-PbTe films in the temperature range of T = 100-300 K. It was observed that the PPC effect scales with temperature and that there is a transition in the relaxation time behavior around ˜150 K. We found that the transition is caused by the particular dynamics of the hole carries between the energy barriers that characterize the traps originated from disorder present in the samples. The analysis was performed by comparing the theory of the random potential with the experimental data and revealed the presence of both random local potential fluctuations and localized states, which can be attributed to the presence of disorder due BaF2 doping and Te vacancies.

  10. Structure and photosensitive homojunctions based on Pb1- x Sn x Se epitaxial films

    NASA Astrophysics Data System (ADS)

    Nuriev, I. R.; Nazarov, A. M.; Faradzhev, N. V.

    2012-03-01

    The growth of epitaxial films of Pb1 - x Sn x Se solid solutions of different chemical compositions ( x = 0.02-0.05) on freshly cleaved BaF2(111) faces and the structure of these films have been investigated. Photosensitive p- n homojunctions have been prepared on their basis. The homojunctions are fabricated in a unified technological cycle without breaking vacuum based on n- and p-type films of high structural quality ( W 1/2 = 90-100″) that were grown using an additional selenium vapor source. The photosensitivity peak is found to shift to longer wavelengths with an increase in the Sn content in the films grown; this effect is explained by narrowing the band gap with a change in the composition.

  11. Holmium-doped fluorotellurite microstructured fibers for 2.1 μm lasing.

    PubMed

    Yao, Chuanfei; He, Chunfeng; Jia, Zhixu; Wang, Shunbin; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2015-10-15

    Holmium (Ho3+)-doped fluorotellurite microstructured fibers based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. By using a 1.992 μm fiber laser as the pump source, lasing at 2.077 μm is obtained from a 27 cm long Ho3+-doped fluorotellurite microstructured fiber. The maximum unsaturated power is about 161 mW and the corresponding slope efficiency is up to 67.4%. The influence of fiber length on lasing at 2.1 μm is also investigated. Our results show that Ho3+-doped fluorotellurite microstructured fibers are promising gain media for 2.1 μm laser applications. PMID:26469597

  12. Measurement of Neutron Capture Cross Section of 62Ni in the keV-Region

    SciTech Connect

    Alpizar-Vicente, A. M.; Hatarik, R.; Bredeweg, T. A.; Esch, E.-I.; Haight, R. C.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Greife, U.

    2006-03-13

    The neutron capture cross section of 62Ni, relative to gold as a standard, was determined in the energy range from 250 eV to 100 keV. This energy range covers the region between 5 keV to 20 keV, which is not available in ENDF. Capture events are detected with the 160-fold 4{pi} BaF2 Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. One of the challenges was to process the high count rate of 4 MHz, which required an optimization of the data acquisition software. The neutron energy was determined by the time-of-flight technique using a flight path of 20.25 m. The sample mass of the 96% enriched 62Ni target was 210 mg and it was mounted in a 1.5 {mu}m thick Mylar foil.

  13. Optical and electronic properties of bismuth-implanted glasses

    NASA Astrophysics Data System (ADS)

    Hughes, M. A.; Federenko, Y.; Lee, T. H.; Yao, J.; Gholipour, B.; Gwilliam, R. M.; Homewood, K. P.; Hewak, D. W.; Elliott, S. R.; Curry, R. J.

    2014-03-01

    Photoluminescence (PL) and excitation spectra of Bi melt-doped oxide and chalcogenide glasses are very similar, indicating the same Bi center is present. When implanted with Bi, chalcogenide, phosphate and silica glasses, and BaF2 crystals, all display characteristically different PL spectra to when Bi is incorporated by melt-doping. This indicates that ion implantation is able to generate Bi centers which are not present in samples whose dopants are introduced during melting. Bi-related PL bands have been observed in glasses with very similar compositions to those in which carrier-type reversal has been observed, indicating that these phenomena are related to the same Bi centers, which we suggest are interstitial Bi2+ and Bi clusters.

  14. Photon intensity interferometry with multidetectors

    NASA Astrophysics Data System (ADS)

    Badalà, A.; Barbera, R.; Palmeri, A.; Pappalardo, G. S.; Riggi, F.; Russo, A. C.; Russo, G.; Turrisi, R.

    1994-12-01

    The technique of two-photon interferometry in heavy ion collisions at the intermediate energies is discussed and the importance of a new methodology, used in the treatment of the experimental data, is evidenced. For the first time, both the relative momentum, qrel, and the relative energy, q0, of the two correlated photons have been simultaneously used to extract the source size and lifetime of the emitting source. As an application, the performances of the BaF 2 ball of the MEDEA multidetector as a photon intensity interferometer have been evaluated. The response of such a detector to correlated pairs of photons has been studied through full GEANT3 simulations. The effects of the experimental filter on the photon correlation function have been investigated, and the noise, induced in the correlation signal by cosmic radiation, neutral pion decay, and γ-conversion, has also been estimated.

  15. Measurement of the 97Mo(n ,γ ) reaction with the DANCE γ calorimeter array

    NASA Astrophysics Data System (ADS)

    Walker, C. L.; Krtička, M.; Baramsai, B.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Haight, R. C.; Jandel, M.; Kroll, J.; Mitchell, G. E.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Wilhelmy, J. B.

    2015-07-01

    Spectra of γ rays following the 97Mo(n ,γ ) reaction were measured as a function of incident neutron energy with the DANCE (Detector for Advanced Neutron Capture Experiments) array of 160 BaF2 scintillation detectors at the Los Alamos Neutron Science Center using an enriched 97Mo target. These spectra were used for the assignment of spins of the 97Mo resonances up to neutron energy En=1.7 keV, as well as in the study of photon strength functions (PSFs) in 98Mo. Analysis of the spectra with the nuclear statistical model showed that they can be well reproduced with the same PSF models which well described the γ decay following slow neutron capture in 95Mo. On the other hand, the spectra are inconsistent with PSFs describing some other experimental data in 98Mo.

  16. 63Ni (n ,γ ) cross sections measured with DANCE

    NASA Astrophysics Data System (ADS)

    Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.

    2015-10-01

    The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.

  17. Detection of landmines by using 14 MeV neutron tagged beams.

    PubMed

    Lunardon, M; Nebbia, G; Pesente, S; Viesti, G; Barbui, M; Cinausero, M; D'Erasmo, G; Palomba, M; Pantaleo, A; Filippini, V

    2004-07-01

    A large-area scanning system using 14 MeV tagged neutrons has been built. The associated (4)He particles emitted in the D+T reaction are detected in an array of Parallel Plate Avalanche Counters that defines a scanning plane having about 10 x 100 cm(2) area. Coincident gamma-rays are detected by 10 BaF(2) scintillators. The capability of the system to determine the presence and the position of samples and to perform an on-line background subtraction is demonstrated. Test with landmines are also reported. This technique allows a significant improvement of the signal-to-noise ratio searching for hidden threat materials. The use with portable sealed-tube generators is foreseen. PMID:15145437

  18. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    SciTech Connect

    Si, W.; Zhang, C.; Wu, L.; Ozaki, T.; Gu, G.; Li, Q.

    2015-09-01

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF2 crystalline substrates respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  19. Single crystal growth of BaFBr:Eu storage phosphor with alkali impurities

    NASA Astrophysics Data System (ADS)

    Shalaev, A. A.; Radzhabov, E. A.

    2005-02-01

    BaFBr:Eu 2+ is a commercial storage phosphor which is widely used in medical X-ray diagnostics, replacing conventional photographic film. The BaFBr crystals were grown by the Shteber method in a graphite crucible in helium-fluorine atmosphere in order to reduce oxygen contamination. The stoichiometric mixtures of BaBr 2 and BaF 2 were used. All samples were doped with 0.1 mol% of Eu 2+, the concentrations of alkali in the crystals are 0.0002-0.01%. The X-ray storage phosphor BaFBr:Eu 2+ doped with alkali impurities (Na +, K +, Rb +) gives a photostimulated spectrum shifted to the lower photon energies. The photostimulation luminescence (PSL) intensity considerably increases compared to BaFBr:Eu 2+ upon room-temperature X-ray irradiation. This redshift of the photostimulation spectrum is caused by formation of F A-centers in the Br - sublattice as electron traps.

  20. Measurement of the Neutron Capture Cross Section of the Fissile Isotope 235U with the CERN n_TOF Total Absorption Calorimeter and a Fission Tagging Based on Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Balibrea, J.; Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Berthoumieux, E.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kawano, T.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lampoudis, C.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Massimi, C.; Meaze, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Stetcu, I.; Sabaté, M.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2014-05-01

    Current and future nuclear technologies require more accurate nuclear data on (n,γ) cross sections and the α-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission γ-ray background competing with the weaker γ-ray cascades used as the experimental signature of the (n,γ) process. A specific setup was used at the CERN n_TOF facility in 2012 for the measurement of the (n,γ) cross section and α-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists of a set of micromegas fission detectors surrounding the 235U samples all placed inside a segmented BaF2 Total Absorption Calorimeter.