Science.gov

Sample records for bag-1 overexpression attenuates

  1. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ.

    PubMed

    Papadakis, E S; Barker, C R; Syed, H; Reeves, T; Schwaiger, S; Stuppner, H; Troppmair, J; Blaydes, J P; Cutress, R I

    2016-01-01

    Mammary MCF-10A cells seeded on reconstituted basement membrane form spherical structures with a hollow central lumen, termed acini, which are a physiologically relevant model of mammary morphogenesis. Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional protein overexpressed in breast cancer and ductal carcinoma in situ. When present in the nucleus Bag-1 is predictive of clinical outcome in breast cancer. Bag-1 exists as three main isoforms, which are produced by alternative translation initiation from a single mRNA. The long isoform of Bag-1, Bag-1L, contains a nuclear localisation sequence not present in the other isoforms. When present in the nucleus Bag-1L, but not the other Bag-1 isoforms, can interact with and modulate the activities of estrogen-, androgen- and vitamin D-receptors. Overexpression of Bag-1 mRNA in MCF-10A is known to produce acini with luminal filling reminiscent of ductal carcinoma in situ. As this mRNA predominantly overexpresses the short isoform of Bag-1, Bag-1S, we set out to examine whether the nuclear Bag-1L isoform is sufficient to drive premalignant change by developing a Bag-1L-overexpressing MCF-10A model. Two clones differentially overexpressing Bag-1L were grown in two-dimensional (2D) and three-dimensional (3D) cultures and compared with an established model of HER2-driven transformation. In 2D cultures, Bag-1L overexpression reduced proliferation but did not affect growth factor responsiveness or clonogenicity. Acini formed by Bag-1L-overexpressing cells exhibited reduced luminal clearing when compared with controls. An abnormal branching morphology was also observed which correlated with the level of Bag-1L overexpression, suggesting further malignant change. Treatment with Thio-2, a small-molecule inhibitor of Bag-1, reduced the level of branching. In summary, 3D cultures of MCF-10A mammary epithelial cells overexpressing Bag-1L demonstrate a premalignant phenotype with features of ductal carcinoma in situ. Using this

  2. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ

    PubMed Central

    Papadakis, E S; Barker, C R; Syed, H; Reeves, T; Schwaiger, S; Stuppner, H; Troppmair, J; Blaydes, J P; Cutress, R I

    2016-01-01

    Mammary MCF-10A cells seeded on reconstituted basement membrane form spherical structures with a hollow central lumen, termed acini, which are a physiologically relevant model of mammary morphogenesis. Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional protein overexpressed in breast cancer and ductal carcinoma in situ. When present in the nucleus Bag-1 is predictive of clinical outcome in breast cancer. Bag-1 exists as three main isoforms, which are produced by alternative translation initiation from a single mRNA. The long isoform of Bag-1, Bag-1L, contains a nuclear localisation sequence not present in the other isoforms. When present in the nucleus Bag-1L, but not the other Bag-1 isoforms, can interact with and modulate the activities of estrogen-, androgen- and vitamin D-receptors. Overexpression of Bag-1 mRNA in MCF-10A is known to produce acini with luminal filling reminiscent of ductal carcinoma in situ. As this mRNA predominantly overexpresses the short isoform of Bag-1, Bag-1S, we set out to examine whether the nuclear Bag-1L isoform is sufficient to drive premalignant change by developing a Bag-1L-overexpressing MCF-10A model. Two clones differentially overexpressing Bag-1L were grown in two-dimensional (2D) and three-dimensional (3D) cultures and compared with an established model of HER2-driven transformation. In 2D cultures, Bag-1L overexpression reduced proliferation but did not affect growth factor responsiveness or clonogenicity. Acini formed by Bag-1L-overexpressing cells exhibited reduced luminal clearing when compared with controls. An abnormal branching morphology was also observed which correlated with the level of Bag-1L overexpression, suggesting further malignant change. Treatment with Thio-2, a small-molecule inhibitor of Bag-1, reduced the level of branching. In summary, 3D cultures of MCF-10A mammary epithelial cells overexpressing Bag-1L demonstrate a premalignant phenotype with features of ductal carcinoma in situ. Using this

  3. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    SciTech Connect

    Maier, Jana V.; Volz, Yvonne; Berger, Caroline; Schneider, Sandra; Cato, Andrew C.B.

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  4. A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells

    PubMed Central

    Papadakis, Emmanouil; Robson, Natalia; Yeomans, Alison; Bailey, Sarah; Laversin, Stephanie; Beers, Stephen; Sayan, A. Emre; Ashton-Key, Margaret; Schwaiger, Stefan; Stuppner, Hermann; Troppmair, Jakob; Packham, Graham; Cutress, Ramsey

    2016-01-01

    Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial. PMID:26958811

  5. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis

    SciTech Connect

    Lee, San San; Crabb, Simon J.; Janghra, Nari; Carlberg, Carsten; Williams, Ann C.; Cutress, Ramsey I.; Packham, Graham; Hague, Angela

    2007-09-10

    In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1{alpha},25-dihydroxyvitamin D{sub 3.} BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1{alpha},25-dihydroxyvitamin D{sub 3}. By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis.

  6. Alteration of the stability of Bag-1 protein in the control of olfactory neuronal apoptosis.

    PubMed

    Sourisseau, T; Desbois, C; Debure, L; Bowtell, D D; Cato, A C; Schneikert, J; Moyse, E; Michel, D

    2001-04-01

    Normal apoptosis occurs continuously in the olfactory neuroepithelium of adult vertebrates, making it a useful model for studying neuronal apoptosis. Here we demonstrate that overexpression of the anti-apoptotic Bag-1 gene in olfactory neuronal cells confers a strong resistance to apoptosis. Conversely decreased levels of Bag-1 were found to precede a massive wave of olfactory neuronal apoptosis triggered by synaptic target ablation. We show that the decrease is brought about by ubiquitination and subsequent degradation of the Bag-1 protein. The ring finger protein Siah-2 is a likely candidate for the ubiquitination reaction since Siah-2 mRNA accumulated in lesioned olfactory neuroepithelium and overexpression of Siah-2 stimulated Bag-1 ubiquitination and degradation in transient expression assays. These results together identify destabilization of Bag-1 as a necessary step in olfactory neuronal apoptosis. PMID:11257006

  7. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis.

    PubMed

    Singh, Sudhir; Manson, Scott R; Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J; Austin, Paul F; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  8. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  9. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    SciTech Connect

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  10. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy

    PubMed Central

    Li, Ran; Bai, Jian; Ding, Liang; Gu, Rong; Wang, Lian; Xu, Biao

    2016-01-01

    Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure. PMID:26914935

  11. Thioflavin S (NSC71948) interferes with Bcl-2-associated athanogene (BAG-1)-mediated protein-protein interactions.

    PubMed

    Sharp, Adam; Crabb, Simon J; Johnson, Peter W M; Hague, Angela; Cutress, Ramsey; Townsend, Paul A; Ganesan, A; Packham, Graham

    2009-11-01

    The C-terminal BAG domain is thought to play a key role in BAG-1-induced survival and proliferation by mediating protein-protein interactions, for example, with heat shock proteins HSC70 and HSP70, and with RAF-1 kinase. Here, we have identified thioflavin S (NSC71948) as a potential small-molecule chemical inhibitor of these interactions. NSC71948 inhibited the interaction of BAG-1 and HSC70 in vitro and decreased BAG-1:HSC70 and BAG-1:HSP70 binding in intact cells. NSC71948 also reduced binding between BAG-1 and RAF-1, but had no effect on the interaction between two unrelated proteins, BIM and MCL-1. NSC71948 functionally reversed the ability of BAG-1 to promote vitamin D3 receptor-mediated transactivation, an activity of BAG-1 that depends on HSC70/HSP70 binding, and reduced phosphorylation of p44/42 mitogen-activate protein kinase. NSC71948 can be used to stain amyloid fibrils; however, structurally related compounds, thioflavin T and BTA-1, had no effect on BAG-1:HSC70 binding, suggesting that structural features important for amyloid fibril binding and inhibition of BAG-1:HSC70 binding may be separable. We demonstrated that NSC71948 inhibited the growth of BAG-1 expressing human ZR-75-1 breast cancer cells and wild-type, but not BAG-1-deficient, mouse embryo fibroblasts. Taken together, these data suggest that NSC71948 may be a useful molecule to investigate the functional significance of BAG-1 C-terminal protein interactions. However, it is important to recognize that NSC71948 may exert additional "off-target" effects. Inhibition of BAG-1 function may be an attractive strategy to inhibit the growth of BAG-1-overexpressing cancers, and further screens of additional compound collections may be warranted. PMID:19690191

  12. Live Attenuated Shigella dysenteriae Type 1 Vaccine Strains Overexpressing Shiga Toxin B Subunit ▿

    PubMed Central

    Wu, Tao; Grassel, Christen; Levine, Myron M.; Barry, Eileen M.

    2011-01-01

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens. PMID:21969003

  13. Attenuation of Cigarette Smoke-Induced Emphysema in Mice by Apolipoprotein A-1 Overexpression.

    PubMed

    Kim, Chorong; Lee, Ji-Min; Park, Sung-Woo; Kim, Ki-Sun; Lee, Myoung Won; Paik, Sanghyun; Jang, An Soo; Kim, Do Jin; Uh, Sootaek; Kim, Yonghoon; Park, Choon-Sik

    2016-01-01

    Chronic inflammation, oxidative stress, and proteolysis participate primarily in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. COPD is a highly prevalent smoking-related disease for which no effective therapy exists to improve the disease course. Although apolipoprotein A-1 (ApoA1) has antiinflammatory and antioxidant properties as well as cholesterol efflux potential, its role in cigarette smoke (CS)-induced emphysema has not been determined. Therefore, we investigated whether human ApoA1 transgenic (TG) mice, with conditionally induced alveolar epithelium to overexpress ApoA1, are protected against the CS-induced lung inflammatory response and development of emphysema. In this study, ApoA1 levels were significantly decreased in the lungs of patients with COPD and in the lungs of mice exposed to CS. ApoA1 TG mice did not develop emphysema when chronically exposed to CS. Compared with the control TG mice, ApoA1 overexpression attenuated lung inflammation, oxidative stress, metalloprotease activation, and apoptosis in CS-exposed mouse lungs. To explore a plausible mechanism of antiapoptotic activity of ApoA1, alveolar epithelial cells (A549) were treated with CS extract (CSE). ApoA1 prevented CSE-induced translocation of Fas and downstream death-inducing signaling complex into lipid rafts, thereby inhibiting Fas-mediated apoptosis. Taken together, the data showed that ApoA1 overexpression attenuated CS-induced lung inflammation and emphysema in mice. Augmentation of ApoA1 in the lung may have therapeutic potential in preventing smoking-related COPD/emphysema. PMID:26086425

  14. PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy.

    PubMed

    Kang, Chounghun; Ji, Li Li

    2016-04-01

    Loss of mitochondrial structural and functional integrity plays a critical role in the pathogenesis of muscle disuse atrophy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) has been suggested to modulate autophagy-lysosome pathway (mitophagy) during muscle atrophy, but clear evidence is still lacking. In the current study, we tested the hypothesis that overexpression of PGC-1α via in vivo transfection would ameliorate mitophagy in mouse tibialis anterior muscle subjected to two weeks of immobilization (IM), followed by remobilization (RM). While mitochondrial biogenesis and antioxidant enzymes are decreased, all autophagic and mitophagic protein markers such as Beclin-1, Bnip3, PINK1, parkin, Mul1 and the LC3II/LC3I ratio were increased in IM-RM muscle together with activation of FoxO pathway. Overexpression of PGC-1α significantly increased mitochondrial DNA proliferation and oxidative enzyme activity, whereas it mitigated oxidative stress and mitochondrial ubiquination in IM-RM muscle. Protein contents of PINK1, parkin and Mul1 in mitochondria decreased by approximately 50% with PGC-1α treatment. Furthermore, PGC-1α overexpression suppressed FoxO1 and FoxO3 activation along with a decreased LC3II/LC3I ratio. Importantly, PGC-1α attenuated IM-RM-induced ubiquination and degradation of mitofusion protein Mfn2. Muscle apoptotic tendency, measured by Bax/Bcl2 ratio and caspase-3 activity, were elevated with IM-RM, but unaffected by PGC-1α. We conclude that overexpression of PGC-1α by in vivo transfection can inhibit activation of mitophagy pathway in the atrophying muscle caused by immobilization. PMID:26746585

  15. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation

    PubMed Central

    Touvier, T; De Palma, C; Rigamonti, E; Scagliola, A; Incerti, E; Mazelin, L; Thomas, J-L; D'Antonio, M; Politi, L; Schaeffer, L; Clementi, E; Brunelli, S

    2015-01-01

    Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2α/Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies. PMID:25719247

  16. Overexpression of Dimethylarginine Dimethylaminohydrolase 1 Attenuates Airway Inflammation in a Mouse Model of Asthma

    PubMed Central

    Kinker, Kayla G.; Gibson, Aaron M.; Bass, Stacey A.; Day, Brandy P.; Deng, Jingyuan; Medvedovic, Mario; Figueroa, Julio A. Landero; Hershey, Gurjit K. Khurana; Chen, Weiguo

    2014-01-01

    Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses. PMID:24465497

  17. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction.

    PubMed

    Thapa, Dharendra; Nichols, Cody E; Lewis, Sara E; Shepherd, Danielle L; Jagannathan, Rajaganapathi; Croston, Tara L; Tveter, Kevin J; Holden, Anthony A; Baseler, Walter A; Hollander, John M

    2015-02-01

    Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complex I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore, measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of

  18. Overexpression of Heat Shock Protein 72 Attenuates NF-κB Activation Using a Combination of Regulatory Mechanisms in Microglia

    PubMed Central

    Khammash, Mustafa; Giffard, Rona G.

    2014-01-01

    Overexpression of the inducible heat shock protein 70, Hsp72, has broadly cytoprotective effects and improves outcome following stroke. A full understanding of how Hsp72 protects cells against injury is elusive, though several distinct mechanisms are implicated. One mechanism is its anti-inflammatory effects. We study the effects of Hsp72 overexpression on activation of the transcription factor NF-κB in microglia combining experimentation and mathematical modeling, using TNFα to stimulate a microglial cell line stably overexpressing Hsp72. We find that Hsp72 overexpression reduces the amount of NF-κB DNA binding activity, activity of the upstream kinase IKK, and amount of IκBα inhibitor phosphorylated following TNFα application. Simulations evaluating several proposed mechanisms suggest that inhibition of IKK activation is an essential component of its regulatory activities. Unexpectedly we find that Hsp72 overexpression reduces the initial amount of the RelA/p65 NF-κB subunit in cells, contributing to the attenuated response. Neither mechanism in isolation, however, is sufficient to attenuate the response, providing evidence that Hsp72 relies upon multiple mechanisms to attenuate NF-κB activation. An additional observation from our study is that the induced expression of IκBα is altered significantly in Hsp72 expressing cells. While the mechanism responsible for this observation is not known, it points to yet another means by which Hsp72 may alter the NF-κB response. This study illustrates the multi-faceted nature of Hsp72 regulation of NF-κB activation in microglia and offers further clues to a novel mechanism by which Hsp72 may protect cells against injury. PMID:24516376

  19. Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e

    PubMed Central

    XU, YONG; LIU, ZHIFEN; SONG, XI; ZHANG, KERANG; LI, XINGRONG; LI, JIANHONG; YAN, XU; LI, YUAN; XIE, ZHONGCHEN; ZHANG, HUI

    2015-01-01

    Previous studies have demonstrated that dysregulation of micro (mi)RNAs is associated with the etiology of various neuropsychiatric disorders, including depression and schizophrenia. Cerebralcare Granule® (CG) is a Chinese herbal medicine, which has been reported to have an ameliorative effect on brain injury by attenuating blood-brain barrier disruption and improving hippocampal neural function. The present study aimed to evaluate the cognitive behavior of rats continuously overexpressing miRNA-30e (lenti-miRNA-30e), prior to and following the administration of CG. In addition, the mechanisms underlying the ameliorative effects of CG were investigated. The cognitive ability of the rats was assessed using an open-field test and a Morris water maze spatial reference/working memory test. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect neuronal apoptosis in the dentate gyrus of the hippocampus. Immunohistochemical analysis and western blotting were conducted to detect the expression levels of B-cell lymphoma 2 (BCL-2) and ubiquitin-conjugating enzyme 9 (UBC9), in order to examine neuronal apoptosis. The lenti-miRNA-30e rats exhibited increased signs of anxiety, depression, hyperactivity and schizophrenia, which resulted in a severe impairment in cognitive ability. Furthermore, in the dentate gyrus of these rats, the expression levels of BCL-2 and UBC9 were reduced and apoptosis was increased. The administration of CG alleviated cognitive impairment, enhanced the expression levels of BCL-2 and UBC9, and reduced apoptosis in the dentate gyrus in the lenti-miRNA-30e rats. No significant differences were detected in behavioral indicators between the lenti-miRNA-30e rats treated with CG and the normal controls. These findings suggested that CG exerts a potent therapeutic effect, conferred by its ability to enhance the expression levels of BCL-2 and UBC9, which inhibits the apoptotic process in neuronal cells. Therefore, CG may be

  20. Overexpression of angiotensin-converting enzyme 2 attenuates tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats

    PubMed Central

    Wang, Yang-Kai; Shen, Du; Hao, Qiang; Yu, Qiang; Wu, Zhao-Tang; Deng, Yu; Chen, Yan-Fang; Yuan, Wen-Jun; Hu, Qi-Kuan; Su, Ding-Feng

    2014-01-01

    The rostral ventrolateral medulla (RVLM) plays a key role in cardiovascular regulation. It has been reported that tonically active glutamatergic input to the RVLM is increased in hypertensive rats, whereas angiotensin-converting enzyme 2 (ACE2) in the brain has been suggested to be beneficial to hypertension. This study was designed to determine the effect of ACE2 gene transfer into the RVLM on tonically active glutamatergic input in spontaneously hypertensive rats (SHRs). Lentiviral particles containing enhanced green fluorescent protein (lenti-GFP) or ACE2 (lenti-ACE2) were injected bilaterally into the RVLM. Both protein expression and activity of ACE2 in the RVLM were increased in SHRs after overexpression of ACE2. A significant reduction in blood pressure and heart rate in SHRs was observed 6 wk after lenti-ACE2 injected into the RVLM. The concentration of glutamate in microdialysis fluid from the RVLM was significantly reduced by an average of 61% in SHRs with lenti-ACE2 compared with lenti-GFP. ACE2 overexpression significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity evoked by bilateral injection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nl) into the RVLM in SHRs. Therefore, we suggest that ACE2 overexpression in the RVLM attenuates the enhanced tonically active glutamatergic input in SHRs, which may be an important mechanism underlying the beneficial effect of central ACE2 to hypertension. PMID:24838502

  1. Overexpression of ΔFosB Is Associated With Attenuated Cocaine-Induced Suppression of Saccharin Intake in Mice

    PubMed Central

    Freet, Christopher S.; Steffen, Cathy; Nestler, Eric J.; Grigson, Patricia S.

    2010-01-01

    Rodents suppress intake of saccharin when it is paired with a drug of abuse (Goudie, Dickins, & Thornton, 1978; Risinger & Boyce, 2002). By the authors’ account, this phenomenon, referred to as reward comparison, is thought to be mediated by anticipation of the rewarding properties of the drug (P. S. Grigson, 1997; P. S. Grigson & C. S. Freet, 2000). Although a great deal has yet to be discovered regarding the neural basis of reward and addiction, it is known that overexpression of ΔFosB is associated with an increase in drug sensitization and incentive. Given this, the authors reasoned that overexpression of ΔFosB should also support greater drug-induced devaluation of a natural reward. To test this hypothesis, NSE-tTA × TetOp-ΔFosB mice (Chen et al., 1998) with normal or overexpressed ΔFosB in the striatum were given access to a saccharin cue and then injected with saline, 10 mg/kg cocaine, or 20 mg/kg cocaine. Contrary to the original prediction, overexpression of ΔFosB was associated with attenuated cocaine-induced suppression of saccharin intake. It is hypothesized that elevation of ΔFosB not only increases the reward value of drug, but the reward value of the saccharin cue as well. PMID:19331462

  2. Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice.

    PubMed

    Wang, Qiang; Zhang, Yunrong; Li, De; Zhang, Yan; Tang, Bing; Li, Gang; Yang, Yongjian; Yang, Dachun

    2016-08-01

    Transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel with high permeability to Ca2+. Intracellular Ca2+ signaling is an essential regulator of endothelial nitric oxide (NO) synthase (eNOS) that plays a beneficial role in myocardial fibrosis. The aim of the present study was to determine the role of TRPV1 in isoproterenol-induced myocardial fibrosis. Transgenic mice overexpressing TRPV1 were generated on a C57BL/6J genetic background. An animal model of myocardial fibrosis was created by subcutaneously injecting the mice with isoproterenol. We found that the wild-type mice exhibited a significant increase in heart/body weight ratio, left ventricle/body weight ratio, left ventricular end-diastolic pressure (LVEDP), the cardiac fibrotic lesion area and collagen content, as well as a marked decrease in eNOS phosphorylation and NO/cyclic guanosine monophosphate (cGMP) levels at 2 weeks after the administration of isoproterenol (all p<0.01). However, these changes were significantly attenuated in the TRPV1 transgenic mice (p<0.05 or p<0.01). Moreover, the beneficial effects on myocardial fibrosis exerted by the overexpression of TRPV1 were attenuated by the administration of the eNOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (all p<0.05). Similar anti-fibrotic effects were observed in in vitro experiments with primary cultured cardiac fibroblasts. The findings of our study suggest that TRPV1 overexpression attenuates isoproterenol‑induced myocardial fibrosis. PMID:27314441

  3. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone.

    PubMed

    Van Laar, Victor S; Berman, Sarah B; Hastings, Teresa G

    2016-07-01

    Mitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD

  4. Dimethylarginine dimethylaminohydrolase (DDAH) overexpression attenuates agricultural organic dust extract-induced inflammation

    PubMed Central

    Bailey, KL; Wyatt, TA; Wells, SM; Klein, EB; Robinson, JE; Romberger, DJ; Poole, JA

    2013-01-01

    Modern, industrialized farming practices have lead to working conditions that include high levels of airborne dust. Agricultural workers inhale these complex organic dusts on a daily basis, leading to airway inflammation and higher risk for developing chronic obstructive pulmonary disease. The mechanisms regulating the organic dust-induced airway inflammatory response are not well-defined. We investigated whether overexpression of dimethylarginine dimethylaminohydrolase (DDAH) would lead to diminished pulmonary inflammation in an animal model of organic dust extract exposure. We instilled wild-type (WT) and DDAH overexpressing mice with an aqueous organic dust extract (ODE) collected from a swine confinement building. We found that inflammatory indices such as neutrophil influx and inflammatory cytokine production was lower in the DDAH overexpressing mice compared to WT after organic dust extract (ODE) instillation. We went on to determine how DDAH was mediating the decrease in inflammation induced by ODE. PKCα and PKCε play an essential role in the ODE inflammatory response. In a model of lung slices from WT and DDAH overexpressing mice, we demonstrated an increase in PKCα and PKCε in the WT mice exposed to ODE. This increase was diminished in the DDAH overexpressing mice exposed to ODE. We also tested an important component of the ODE, peptidoglycan (PGN). We noted a similar decrease in neutrophils and inflammatory cytokines in the DDAH overexpressing animals instilled with PGN compared to WT. In conclusion, our studies found a role for DDAH in regulating the ODE-triggered activation of epithelial PKCα and PKCε, a previously unrecognized mechanism of action. This ultimately results in diminished pulmonary inflammation. PMID:25221746

  5. Transgenic overexpression of neuroglobin attenuates formation of smoke-inhalation-induced oxidative DNA damage, in vivo, in the mouse brain.

    PubMed

    Lee, Heung Man; Greeley, George H; Englander, Ella W

    2011-12-15

    Acute inhalation of combustion smoke causes neurological deficits in survivors. Inhaled smoke includes carbon monoxide, noxious gases, and a hypoxic environment, which disrupt oxygenation and generate free radicals. To replicate a smoke-inhalation scenario, we developed an experimental model of acute exposure to smoke for the awake mouse/rat and detected induction of biomarkers of oxidative stress. These include inhibition of mitochondrial respiratory complexes and formation of oxidative DNA damage in the brain. DNA damage is likely to contribute to neuronal dysfunction and progression of brain injury. In the search for strategies to attenuate the smoke-initiated brain injury, we produced a transgenic mouse overexpressing the neuronal globin protein neuroglobin. Neuroglobin was neuroprotective in diverse models of ischemic/hypoxic/toxic brain injuries. Here, we report lesser inhibition of respiratory complex I and reduced formation of smoke-induced DNA damage in neuroglobin transgenic compared to wild-type mouse brain. DNA damage was assessed using the standard comet assay, as well as a modified comet assay done in conjunction with an enzyme that excises oxidized guanines that form readily under conditions of oxidative stress. Both comet assays revealed that overexpressed neuroglobin attenuates the formation of oxidative DNA damage, in vivo, in the brain. These findings suggest that elevated neuroglobin exerts neuroprotection, in part, by decreasing the impact of acute smoke inhalation on the integrity of neuronal DNA. PMID:22001746

  6. Overexpression of Swedish mutant APP in aged astrocytes attenuates excitatory synaptic transmission.

    PubMed

    Katsurabayashi, Shutaro; Kawano, Hiroyuki; Ii, Miyuki; Nakano, Sachiko; Tatsumi, Chihiro; Kubota, Kaori; Takasaki, Kotaro; Mishima, Kenichi; Fujiwara, Michihiro; Iwasaki, Katsunori

    2016-01-01

    Amyloid precursor protein (APP), a type I transmembrane protein, has different aspects, namely, performs essential physiological functions and produces β-amyloid peptide (Aβ). Overexpression of neuronal APP is responsible for synaptic dysfunction. In the central nervous system, astrocytes - a major glial cell type - have an important role in the regulation of synaptic transmission. Although APP is expressed in astrocytes, it remains unclear whether astrocytic overexpression of mutant APP affects synaptic transmission. In this study, the effect of astrocytic overexpression of a mutant APP on the excitatory synaptic transmission was investigated using coculture system of the transgenic (Tg) cortical astrocytes that express the human APP695 polypeptide with the double mutation K670N + M671L found in a large Swedish family with early onset Alzheimer's disease, and wild-type hippocampal neuron. Significant secretion of Aβ 1-40 and 1-42 was observed in cultured cortical astrocytes from the Tg2576 transgenic mouse that genetically overexpresses Swedish mutant APP. Under the condition, Tg astrocytes did not affect excitatory synaptic transmission of cocultured wild-type neurons. However, aged Tg astrocytes cultured for 9 weeks elicited a significant decrease in excitatory synaptic transmission in cocultured neurons. Moreover, a reduction in the number of readily releasable synaptic vesicles accompanied a decrease in the number of excitatory synapses in neurons cocultured with aged Tg astrocytes. These observations indicate that astrocytic expression of the mutant APP is involved in the downregulation of synaptic transmission with age. PMID:26733247

  7. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion

    PubMed Central

    Zhou, Yuan; Li, Rong-Ji; Li, Meng; Liu, Xuelian; Zhu, Hong-Yan; Ju, Zhong; Miao, Xiuhua

    2016-01-01

    G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway. PMID:27145805

  8. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion.

    PubMed

    Zhou, Yuan; Li, Rong-Ji; Li, Meng; Liu, Xuelian; Zhu, Hong-Yan; Ju, Zhong; Miao, Xiuhua; Xu, Guang-Yin

    2016-01-01

    G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway. PMID:27145805

  9. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats.

    PubMed

    Yang, Guo-Hong; Zhou, Xin; Ji, Wen-Jie; Zeng, Shan; Dong, Yan; Tian, Lu; Bi, Ying; Guo, Zhao-Zeng; Gao, Fei; Chen, Hong; Jiang, Tie-Min; Li, Yu-Ming

    2014-02-15

    Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling. We demonstrated upregulation of TonEBP, increased macrophage infiltration, and enhanced lymphangiogenesis in the left ventricles of spontaneously hypertensive rats (SHR) that were fed a HS diet (8.0% NaCl). Then, retrovirus vectors capable of overexpression (ΔNΔC/VEGF-C/Cys152Ser, used for overexpressing VEGF-C) and blocking (VEGFR-3-Rg, used for trapping of bioactive VEGF-C) of VEGF-C and control vector (pLPCX) were intravenously administered to SHR from week 9 of a 12-wk HS loading period. At the end of the HS challenge, overexpression of VEGF-C led to enhanced cardiac lymphangiogenesis, decreased myocardial fibrosis, and macrophage infiltration, preserved left ventricular functions, as well as decreased blood pressure level compared with the HS group and the control vector-treated HS group. In contrast, systemic blocking of VEGF-C was associated with elevation of blood pressure level and an exacerbation of hypertensive left ventricular remodeling, as indicated by increased fibrosis and macrophage infiltration, and diminished lymphangiogenesis. Hence, our findings highlight that VEGF-C/VEGFR-3 is a promising therapeutic target to attenuate hypertensive left ventricular remodeling induced by HS intake, presumably via blood pressure-dependent and -independent mechanisms. PMID:24337460

  10. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  11. Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production.

    PubMed

    Nandi, Manasi; Kelly, Peter; Vallance, Patrick; Leiper, James

    2008-02-01

    GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo. PMID:18372436

  12. CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice

    PubMed Central

    Chen, Guangzhi; Xu, Renfan; Zhang, Shasha; Wang, Yinna; Wang, Peihua; Edin, Matthew L.; Zeldin, Darryl C.

    2014-01-01

    Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti-inflammatory, antiapoptotic, and antioxidatant effects, and cardiovascular protection. Liver has abundant epoxygenase expression and high levels of EET production; however, the roles of epoxygenases in liver diseases remain to be elucidated. In this study, we investigated the protection against high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice with endothelial-specific CYP2J2 overexpression (Tie2-CYP2J2-Tr). After 24 wk of high-fat diet, Tie2-CYP2J2-Tr mice displayed attenuated NAFLD compared with controls. Tie2-CYP2J2-Tr mice showed significantly decreased plasma triglyceride levels and liver lipid accumulation, improved liver function, reduced inflammatory responses, and less increase in hepatic oxidative stress than wild-type control mice. These effects were associated with inhibition of NF-κB/JNK signaling pathway activation and enhancement of the antioxidant defense system in Tie2-CYP2J2-Tr mice in vivo. We also demonstrated that 14,15-EET treatment protected HepG2 cells against palmitic acid-induced inflammation and oxidative stress. 14,15-EET attenuated palmitic acid-induced changes in NF-κB/JNK signaling pathways, malondialdehyde generation, glutathione levels, reactive oxygen species production, and NADPH oxidase and antioxidant enzyme expression in HepG2 cells in vitro. Together, these results highlight a new role for CYP epoxygenase-derived EETs in lipotoxicity-related inflammation and oxidative stress and reveal a new molecular mechanism underlying EETs-mediated anti-inflammatory and antioxidant effects that could aid in the design of new therapies for the prevention and treatment of NAFLD. PMID:25389366

  13. CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice.

    PubMed

    Chen, Guangzhi; Xu, Renfan; Zhang, Shasha; Wang, Yinna; Wang, Peihua; Edin, Matthew L; Zeldin, Darryl C; Wang, Dao Wen

    2015-01-15

    Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti-inflammatory, antiapoptotic, and antioxidatant effects, and cardiovascular protection. Liver has abundant epoxygenase expression and high levels of EET production; however, the roles of epoxygenases in liver diseases remain to be elucidated. In this study, we investigated the protection against high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice with endothelial-specific CYP2J2 overexpression (Tie2-CYP2J2-Tr). After 24 wk of high-fat diet, Tie2-CYP2J2-Tr mice displayed attenuated NAFLD compared with controls. Tie2-CYP2J2-Tr mice showed significantly decreased plasma triglyceride levels and liver lipid accumulation, improved liver function, reduced inflammatory responses, and less increase in hepatic oxidative stress than wild-type control mice. These effects were associated with inhibition of NF-κB/JNK signaling pathway activation and enhancement of the antioxidant defense system in Tie2-CYP2J2-Tr mice in vivo. We also demonstrated that 14,15-EET treatment protected HepG2 cells against palmitic acid-induced inflammation and oxidative stress. 14,15-EET attenuated palmitic acid-induced changes in NF-κB/JNK signaling pathways, malondialdehyde generation, glutathione levels, reactive oxygen species production, and NADPH oxidase and antioxidant enzyme expression in HepG2 cells in vitro. Together, these results highlight a new role for CYP epoxygenase-derived EETs in lipotoxicity-related inflammation and oxidative stress and reveal a new molecular mechanism underlying EETs-mediated anti-inflammatory and antioxidant effects that could aid in the design of new therapies for the prevention and treatment of NAFLD. PMID:25389366

  14. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling

    PubMed Central

    Mashukova, Anastasia; Kozhekbaeva, Zhanna; Forteza, Radia; Dulam, Vipin; Figueroa, Yolanda; Warren, Robert; Salas, Pedro J.

    2014-01-01

    ABSTRACT Atypical PKC (ι/λ and ζ; hereafter referred to as aPKC) is a key player in the acquisition of epithelial polarity and participates in other signaling cascades including the control of NF-κB signaling. This kinase is post-translationally regulated through Hsp70-mediated refolding. Previous work has shown that such a chaperoning activity is specifically localized to keratin intermediate filaments. Our work was performed with the goal of identifying the molecule(s) that block Hsp70 activity on keratin filaments during inflammation. A transcriptional screen allowed us to focus on BAG-1, a multi-functional protein that assists Hsp70 in nucleotide exchange but also blocks its activity at higher concentrations. We found the BAG-1 isoform BAG-1M upregulated threefold in human Caco-2 cells following stimulation with tumor necrosis factor receptor α (TNFα) to induce a pro-inflammatory response, and up to sixfold in mouse enterocytes following treatment with dextran sodium sulfate (DSS) to induce colitis. BAG-1M, but no other isoform, was found to co-purify with intermediate filaments and block Hsp70 activity in the keratin fraction but not in the soluble fraction within the range of concentrations found in epithelial cells cultured under control and inflammation conditions. Constitutive expression of BAG-1M decreased levels of phosphorylated aPKC. By contrast, knockdown of BAG-1, blocked the TNFα-induced decrease of phosphorylated aPKC. We conclude that BAG-1M mediates Hsp70 inhibition downstream of NF-κB. PMID:24876225

  15. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression

    PubMed Central

    de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-01-01

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  16. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    PubMed

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  17. Gene cloning and characterization of the protein encoded by the Neospora caninum bradyzoite-specific antigen gene BAG1.

    PubMed

    Kobayashi, T; Narabu, S; Yanai, Y; Hatano, Y; Ito, A; Imai, S; Ike, K

    2013-06-01

    Neospora caninum is an Apicomplexan parasite that causes repeated abortion and stillbirth in cattle. The aim of this study was to clone the gene encoding the N. caninum orthologue (NcBAG1) of the Toxoplasma gondii bradyzoite-specific protein TgBAG1 and characterize its expression pattern in the parasite. Isolation of the full-length 684-bp gene revealed that it shared 78.3% sequence similarity with TgBAG1. NcBAG1 encodes a predicted protein of 227 amino acids with 80.3% similarity to TgBAG1. A putative signal peptide sequence and an invariant GVL motif characteristic of small heat-shock proteins were identified in the predicted N. caninum amino acid sequence. We expressed the NcBAG1 gene as a recombinant glutathione S-transferase fusion protein (rNcBAG1) in Escherichia coli and used the purified 60 kDa protein to obtain a monoclonal antibody (Mab). rNcBAG1 reacted to Mabs specific for NcBAG1 and TgBAG1. No reaction between the NcBAG1 Mab and N. caninum tachyzoites was observed. Although the predicted molecular mass of NcBAG1 is 25 kDa, Western blot analysis of parasite lysates using the NcBAG1 Mab revealed a cross-reactive protein of approximately 30 kDa. Additionally, immunofluorescence assays using the tachyzoite-specific Mab for NcSAG1 and the bradyzoite-specific Mab for TgBAG1 or NcSAG4 revealed NcBAG1-specific expression in bradyzoites in cultures exposed to sodium nitroprusside, a reagent that increases the frequency of bradyzoites. Interestingly, the NcBAG1 protein was identified in the cytoplasm of the bradyzoite-stage parasites. This preliminary analysis of the NcBAG1 gene will assist investigations into the role of this protein in N. caninum . PMID:23245337

  18. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  19. Overexpression of hypoxia-inducible factor prolyl hydoxylase-2 attenuates hypoxia-induced vascular endothelial growth factor expression in luteal cells.

    PubMed

    Zhang, Zhenghong; Pang, Xunsheng; Tang, Zonghao; Yin, Dingzhong; Wang, Zhengchao

    2015-09-01

    Vascular endothelial growth factor (VEGF)-dependent angiogenesis has a crucial role in the corpus luteum formation and their functional maintenances in mammalian ovaries. A previous study by our group reported that activation of hypoxia‑inducible factor (HIF)‑1α signaling contributes to the regulation of VEGF expression in the luteal cells (LCs) in response to hypoxia and human chorionic gonadotropin. The present study was designed to test the hypothesis that HIF prolyl‑hydroxylases (PHDs) are expressed in LCs and overexpression of PHD2 attenuates the expression of VEGF induced by hypoxia in LCs. PHD2-overexpressing plasmid was transfected into LC2 cells, and successful plasmid transfection and expression was confirmed by reverse transcription quantitative polymerase chain reaction and western blot analysis. In addition, the present study investigated changes of HIF‑1α and VEGF expression after incubation under hypoxic conditions and PHD2 transfection. PHD2 expression was significantly higher expressed than the other two PHD isoforms, indicating its major role in LCs. Moreover, a significant increase of VEGF mRNA expression was identified after incubation under hypoxic conditions, which was, however, attenuated by PHD2 overexpression in LCs. Further analysis also indicated that this hypoxia‑induced increase in the mRNA expression of VEGF was consistent with increases in the protein levels of HIF‑1α, which is regulated by PHD-mediated degradation. In conclusion, the results of the present study indicated that PHD2 is the main PHD expressed in LCs and hypoxia‑induced VEGF expression can be attenuated by PHD2 overexpression through HIF‑1α‑mediated mechanisms in LCs. This PHD2-mediated transcriptional activation may be one of the mechanisms regulating VEGF expression in LCs during mammalian corpus luteum development. PMID:25975603

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. PMID:24995995

  1. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells

    PubMed Central

    Zook, Erin C.; Krishack, Paulette A.; Zhang, Shubin; Zeleznik-Le, Nancy J.; Firulli, Anthony B.; Witte, Pamela L.

    2011-01-01

    The forkhead box n1 (Foxn1) transcription factor is essential for thymic organogenesis during embryonic development; however, a functional role of Foxn1 in the postnatal thymus is less well understood. We developed Foxn1 transgenic mice (Foxn1Tg), in which overexpression of Foxn1 is driven by the human keratin-14 promoter. Expression of the Foxn1 transgene increased the endogenous Foxn1 levels. In aged mice, overexpression of Foxn1 in the thymus attenuated the decline in thymocyte numbers, prevented the decline in frequency of early thymic progenitors, and generated a higher number of signal joint TCR excised circle. Histologic studies revealed that structural alterations associated with thymic involution were diminished in aged Foxn1 Tg. Total numbers of EpCAM+ MHC II+ and MHC IIhi thymic epithelial cells were higher in young and old Foxn1Tg and more EpCAM+ MHC IIhi TEC expressed Ki-67 in aged Foxn1Tg compared with WT. Furthermore, Foxn1Tg displayed a significant reduction in the expansion of splenic CD4+ memory compartments and attenuated the decline in CD4+ and CD8+ naive compartments. Our data indicate that manipulation of Foxn1 expression in the thymus ameliorates thymopoiesis in aged mice and offer a strategy to combat the age-associated decline in naive T-cell production and CD4 naive/memory ratios in the elderly. PMID:21908422

  2. Angiotensin II-Induced Hypertension Is Attenuated by Overexpressing Copper/Zinc Superoxide Dismutase in the Brain Organum Vasculosum of the Lamina Terminalis

    PubMed Central

    Collister, John P.; Taylor-Smith, Heather; Drebes, Donna; Nahey, David; Tian, Jun; Zimmerman, Matthew C.

    2016-01-01

    Angiotensin II (AngII) can access the brain via circumventricular organs (CVOs), including the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), to modulate blood pressure. Previous studies have demonstrated a role for both the SFO and OVLT in the hypertensive response to chronic AngII, yet it is unclear which intracellular signaling pathways are involved in this response. Overexpression of copper/zinc superoxide dismutase (CuZnSOD) in the SFO has been shown to attenuate the chronic hypertensive effects of AngII. Presently, we tested the hypothesis that elevated levels of superoxide (O2∙−) in the OVLT contribute to the hypertensive effects of AngII. To facilitate overexpression of superoxide dismutase, adenoviral vectors encoding human CuZnSOD or control adenovirus (AdEmpty) were injected directly into the OVLT of rats. Following 3 days of control saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Blood pressure increased 33 ± 8 mmHg in AdEmpty rats (n = 6), while rats overexpressing CuZnSOD (n = 8) in the OVLT demonstrated a blood pressure increase of only 18 ± 5 mmHg after 10 days of AngII infusion. These results support the hypothesis that overproduction of O2∙− in the OVLT plays an important role in the development of chronic AngII-dependent hypertension. PMID:26881025

  3. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  4. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer

    PubMed Central

    Basu, Anamika; Cajigas-Du Ross, Christina K.; Rios-Colon, Leslimar; Mediavilla-Varela, Melanie; Daniels-Wells, Tracy R.; Leoh, Lai Sum; Rojas, Heather; Banerjee, Hiya; Martinez, Shannalee R.; Acevedo-Martinez, Stephanny; Casiano, Carlos A.

    2016-01-01

    Prostate cancer (PCa) mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3), whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa. PMID:26771192

  5. GABA(A) receptor overexpression in the lateral hypothalamic area attenuates gastric ischemia‑reperfusion injury in rats.

    PubMed

    Gao, Lin; Zhu, Tao; Xie, Guilin; Lou, Xiangxin; Li, Shibao; Zhou, Yan; Deng, Zhenxu; Chu, Dechang; Lou, Jiyu; Du, Dongshu

    2015-02-01

    Excessive activation of the greater splanchnic nerve (GSN) has previously been determined to contribute to the progression of gastric ischemia‑reperfusion (GI‑R) injury. The present study was designed to estimate the protective effects of GABAA receptor (GABA(A)R) overexpression in the lateral hypothalamic area (LHA) against GI‑R injury. The GI‑R injury model was induced in rats by clamping the celiac artery for 30 min and then reperfusing for 1 h. Microinjection of recombinant adenoviral vectors overexpressing GABA(A)R (Ad‑GABA(A)R) or control adenoviral vectors (Ad‑Con) into the LHA was conducted in GI‑R and normal control rats. Significant protective effects were observed on day 2 after Ad‑GABA(A)R treatment in the GI‑R injury rats. Ad‑GABA(A)R treatment reduced plasma norepinephrine levels, plasma angiotensin II levels and peripheral GSN activity, but increased the gastric mucosal blood flow, as compared with Ad‑Con treatment. These results indicate that adenoviral vector‑induced GABA(A)R overexpression in the LHA blunts GSN activity and subsequently alleviates the effects of gastric injury in GI‑R rats. PMID:25354809

  6. Down-regulation of Bcl-2-interacting protein BAG-1 confers resistance to anti-cancer drugs.

    PubMed

    Takahashi, Noriko; Yanagihara, Miyako; Ogawa, Yuzi; Yamanoha, Banri; Andoh, Toshiwo

    2003-02-14

    BAG-1 was originally identified as a binding partner of anti-apoptotic factor Bcl-2 [Takayama et al., Cell 80 (1995) 279-284]. Exogenous expression of BAG-1 was reported to confer cells resistance to several stresses [Chen et al., Oncogene 21 (2002) 7050]. We have obtained human cervical cancer HeLa cells with down-regulated BAG-1 levels by using a highly specific and efficient RNA interference approach. Surprisingly, cells with down-regulated BAG-1 exhibited significantly lower sensitivity against several anti-cancer drugs than parental cells expressing normal levels of the protein. Furthermore, growth rate of the cells was reduced when BAG-1 was down-regulated. Activity of ERK pathway appeared to be decreased in BAG-1 down-regulated cells, as shown by the reduced phosphorylation of ERK1/2 proteins. Taken together resistance against anti-cancer drugs acquired by BAG-1 down-regulated cells may well be accounted for by the retardation of cell cycle progression, implicating the importance of BAG-1 in cell growth regulation. PMID:12565851

  7. IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells

    SciTech Connect

    Yoshino, Kei; Motoyama, Satoru; Koyota, Souichi; Shibuya, Kaori; Usami, Shuetsu; Maruyama, Kiyotomi; Saito, Hajime; Minamiya, Yoshihiro; Sugiyama, Toshihiro; Ogawa, Jun-ichi

    2011-01-28

    Research highlights: {yields} TE-12 cell had greater radiosensitivity and higher levels of caspase 3/7 activity for radiotherapy than TE-5 or TE-9 cells. {yields} The expression of IGFBP3 and BAG1 was five or more times higher in TE-12 cell in DNA microarrays analysis. {yields} Knocking down IGFBP3 and/or BAG1 expression using targeted siRNA diminished their susceptibility to radiation. -- Abstract: Identification of reliable markers of radiosensitivity and the key molecules that enhance the susceptibility of esophageal cancer cells to anticancer treatments would be highly desirable. To identify molecules that confer radiosensitivity to esophageal squamous carcinoma cells, we assessed the radiosensitivities of the TE-5, TE-9 and TE-12 cloneA1 cell lines. TE-12 cloneA1 cells showed significantly greater susceptibility to radiotherapy at 5 and 10 Gy than either TE-5 or TE-9 cells. Consistent with that finding, 24 h after irradiation (5 Gy), TE-12 cloneA1 cells showed higher levels of caspase 3/7 activity than TE-5 or TE-9 cells. When we used DNA microarrays to compare the gene expression profiles of TE-5 and TE-12 cloneA1 cells, we found that the mRNA and protein expression of insulin-like growth factor binding protein 3 (IGFBP3) and Bcl-2-associated athanogene 1 (BAG1) was five or more times higher in TE-12 cloneA1 cells than TE-5 cells. Conversely, knocking down expression of IGFBP3 and BAG1 mRNA in TE-12 cloneA1 cells using small interfering RNA (siRNA) significantly reduced radiosensitivity. These data suggest that IGFBP3 and BAG1 may be key markers of radiosensitivity that enhance the susceptibility of squamous cell esophageal cancer to radiotherapy. IGFBP3 and BAG1 may thus be useful targets for improved and more individualized treatments for patients with esophageal squamous cell carcinoma.

  8. PGC-1α overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization.

    PubMed

    Kang, Chounghun; Goodman, Craig A; Hornberger, Troy A; Ji, Li Li

    2015-10-01

    Prolonged immobilization (IM) causes skeletal muscle atrophy characterized by mitochondrial deterioration and proteolysis. Muscle remobilization (RM) increases reactive oxygen species generation, proinflammatory cytokine expression, and oxidative stress, preventing muscle from quick recovery. Thus, we hypothesized that overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) via in vivo transfection would promote mitochondrial biogenesis and antioxidant defense, thus ameliorating the aforementioned deteriorations in a mouse model with 14-d IM followed by 5-d RM. PGC-1α transfection in tibialis anterior muscle resulted in a 7.2- and 4-fold increase in PGC-1α content in cytosol and nucleus, respectively. Mitochondrial biogenic (cytochrome c, mitochondrial transcription factor A), morphologic (mitochondrial density, mDNA/nDNA ratio), and functional (cytochrome c oxidase activity, ATP synthesis rate) markers, as well as fiber cross-sectional area, significantly increased in IM-RM muscle by PGC-1α overexpression. These effects were accompanied by an 18% decrease in H2O2, 30% decrease in nuclear factor-κB-DNA binding, and 25% reduction of IL-1β and-6 production in IM-RM muscle. There was a 34% increase in superoxide dismutase-2 activity, along with a 3.5-fold increase in NAD-dependent deacetylase sirtuin-3 expression caused by enhanced PGC-1α-estrogen-related receptor α binding. Our findings highlighted the importance of PGC-1α in protecting muscle from metabolic and redox disturbances caused by IM. PMID:26178167

  9. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose.

    PubMed

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-09-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ‑1 protein expression. The overexpression of DJ‑1 by transfection with a DJ‑1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO‑1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ‑1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  10. ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the glucocorticoid receptor

    SciTech Connect

    Hong, Wei; Chen, Linfeng; Liu, Yunde; Gao, Weizhen

    2009-12-04

    The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 did not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process.

  11. Hsp70 Cochaperones HspBP1 and BAG-1M Differentially Regulate Steroid Hormone Receptor Function

    PubMed Central

    Knapp, Regina T.; Wong, Michael J. H.; Kollmannsberger, Lorenz K.; Gassen, Nils C.; Kretzschmar, Anja; Zschocke, Jürgen; Hafner, Kathrin; Young, Jason C.; Rein, Theo

    2014-01-01

    Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), and the androgen receptor (AR). BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology. PMID:24454860

  12. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation.

    PubMed

    André, Fanny; Corazao-Rozas, Paola; Idziorek, Thierry; Quesnel, Bruno; Kluza, Jérome; Marchetti, Philippe

    2016-09-16

    The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towards pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS. PMID:27416758

  13. Yi Qi Qing Re Gao Attenuates Podocyte Injury and Inhibits Vascular Endothelial Growth Factor Overexpression in Puromycin Aminonucleoside Rat Model

    PubMed Central

    Zhan, Yongli; Yang, Liping; Wen, Yumin; Liu, Huijie; Zhang, Haojun; Zhu, Bin; Han, Wenbing; Gu, Yanting; Sun, Xueyan; Dong, Xi; Zhao, Tingting; Ma, Huixia; Li, Ping

    2014-01-01

    Proteinuria is the hallmark of chronic kidney disease. Podocyte damage underlies the formation of proteinuria, and vascular endothelial growth factor (VEGF) functions as an autocrine/paracrine regulator. Yi Qi Qing Re Gao (YQQRG) has been used to treat proteinuria for more than two decades. The objective of this study was to investigate the protective effect and possible mechanisms of YQQRG on puromycin aminonucleoside (PAN) rat model. Eighty male Sprague-Dawley rats were randomized into sham group, PAN group, PAN + YQQRG group, and PAN + fosinopril group. Treatments were started 7 days before induction of nephrosis (a single intravenous injection of 40 mg/kg PAN) until day 15. 24 h urinary samples were collected on days 5, 9, and 14. The animals were sacrificed on days 3, 10, and 15, respectively. Blood samples and renal tissues were obtained for detection of biochemical and molecular biological parameters. YQQRG significantly reduced proteinuria, elevated serum albumin, and alleviated renal pathological lesions. YQQRG inhibited VEGF-A, nephrin, podocin, and CD2AP mRNA expression and elevated nephrin, podocin, and CD2AP protein levels starting on day 3. In conclusion, YQQRG attenuates podocyte injury in the rat PAN model through downregulation of VEGF-A and restoration of nephrin, podocin, and CD2AP protein expression. PMID:24963322

  14. AAV8-Mediated In Vivo Overexpression of miR-155 Enhances the Protective Capacity of Genetically Attenuated Malarial Parasites

    PubMed Central

    Hentzschel, Franziska; Hammerschmidt-Kamper, Christiane; Börner, Kathleen; Heiss, Kirsten; Knapp, Bettina; Sattler, Julia M; Kaderali, Lars; Castoldi, Mirco; Bindman, Julia G; Malato, Yann; Willenbring, Holger; Mueller, Ann-Kristin; Grimm, Dirk

    2014-01-01

    Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases. PMID:25189739

  15. Over-expression of copper/zinc superoxide dismutase in the median preoptic nucleus attenuates chronic angiotensin II-induced hypertension in the rat.

    PubMed

    Collister, John P; Bellrichard, Mitch; Drebes, Donna; Nahey, David; Tian, Jun; Zimmerman, Matthew C

    2014-01-01

    The brain senses circulating levels of angiotensin II (AngII) via circumventricular organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s) involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2·-) scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·- in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD) or control vector (AdEmpty) were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Rats over-expressing CuZnSOD (n = 7) in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9). These results support the hypothesis that production of O2·- in the MnPO contributes to the development of chronic AngII-dependent hypertension. PMID:25474089

  16. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    PubMed

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role

  17. Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells.

    PubMed

    Ozfiliz, Pelin; Kizilboga, Tugba; Demir, Salih; Alkurt, Gizem; Palavan-Unsal, Narçin; Arisan, Elif Damla; Dinler-Doganay, Gizem

    2015-07-01

    Bag-1, Bcl-2 associated athanogene-1, is a multifunctional protein that can regulate a wide variety of cellular processes: proliferation, cell survival, transcription, apoptosis and motility. Bag-1 interacts with various targets in the modulation of these pathways; yet molecular details of Bag-1's involvement in each cellular event are still unclear. We first showed that forced Bag-1 expression promotes cell survival and prevents drug-induced apoptosis in MCF-7 breast cancer cells. Increased mRNA expressions of c-myc protooncogene and ornithine decarboxylase (ODC), biosynthetic enzyme of polyamines, were detected in Bag-1L+ cells, and western blots against the protein product of c-Myc and ODC confirmed these findings. Once ODC, a c-Myc target, gets activated, polyamine biosynthesis increases. We observed enhanced polyamine content in the Bag-1L+ cells. On the contrary, when polyamine catabolic mechanisms were investigated, Bag-1 silencing suppressed biosynthesis of polyamines because of the downregulation of ODC and upregulation of PAO. Exposure of cells to apoptotic inducers enhances the cell death mechanism by producing toxic products such as H2 O2 and aldehydes. Bag-1L+ cells prevented drug-induced PAO activation leading to a decrease in H2 O2 production following cisplatin or paclitaxel treatment. In this line, our results suggested that Bag-1 indirectly affects cell survival through c-Myc activated signalling that causes elevation of ODC levels, leading to an increase of the polyamine content. PMID:26178413

  18. Nuclear respiratory factor 1 overexpression attenuates anti-benzopyrene‑7,8-diol-9,10-epoxide-induced S-phase arrest of bronchial epithelial cells.

    PubMed

    Wu, Jing; Wang, Yaning; Wo, Da; Zhang, Lijuan; Li, Jue

    2016-05-01

    Nuclear respiratory factor 1 (NRF-1) has important roles in the regulation of several key metabolic genes required for cellular growth and respiration. A previous study by our group indicated that NRF‑1 is involved in mitochondrial dysfunction induced by the environmental pollutant benzo[a]pyrene in the 16HBE human bronchial epithelial cell line. In the present study, it was observed that its genotoxic metabolite, anti‑benzopyrene‑7,8‑diol‑9,10‑epoxide (BPDE), triggered cell cycle arrest in S‑phase in 16HBE cells by activating ataxia-telangiectasia (ATM)/checkpoint kinase (Chk)2 and ATM and Rad3 related (ATR)/Chk1 signaling pathways. NRF‑1 expression was suppressed by BPDE after treatment for 6 h. Flow cytometric analysis revealed that NRF‑1 overexpression attenuated cell cycle arrest in S‑phase induced by BPDE. In line with this result, DNA‑damage checkpoints were activated following NRF‑1 overexpression, as demonstrated by increased phosphorylation of ATM, Chk2 and γH2AX, but not ATR and Chk1, according to western blot analysis. It was therefore indicated that NRF‑1 overexpression attenuated BPDE‑induced S‑phase arrest via the ATM/Chk2 signaling pathway. PMID:27035420

  19. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice.

    PubMed

    Miyamoto, Yoshiaki; Ishikawa, Yudai; Iegaki, Noriyuki; Sumi, Kazuyuki; Fu, Kequan; Sato, Keiji; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Uno, Kyosuke; Nitta, Atsumi

    2014-08-01

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens (NAc) of mice with methamphetamine (METH) treatment. Previously we reported that suppression of Shati/Nat8l enhanced METH-induced behavioral alterations via dopaminergic neuronal regulation. However, the physiological mechanisms of Shati/Nat8l on the dopaminergic system in the brain are unclear. In this study, we injected adeno-associated virus (AAV) vector containing Shati/Nat8l into the NAc or dorsal striatum (dS) of mice, to increase Shati/Nat8l expression. Overexpression of Shati/Nat8l in the NAc, but not in the dS, attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference in mice. Moreover, the Shati/Nat8l overexpression in the NAc attenuated the elevation of extracellular dopamine levels induced by METH in in vivo microdialysis experiments. These behavioral and neurochemical alterations due to Shati/Nat8l overexpression in the NAc were inhibited by treatment with selective group II metabotropic glutamate receptor type 2 and 3 (mGluR2/3) antagonist LY341495. In the AAV vector-injected NAc, the tissue contents of both N-acetylaspartate and N-acetylaspartylglutamate (NAAG), endogenous mGluR3 agonist, were elevated. The injection of peptidase inhibitor of NAAG or the perfusion of NAAG itself reduced the basal levels of extracellular dopamine in the NAc of naive mice. These results indicate that Shati/Nat8l in the NAc, but not in the dS, plays an important suppressive role in the behavioral responses to METH by controlling the dopaminergic system via activation of group II mGluRs. PMID:24559655

  20. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  1. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes.

    PubMed

    Markandeya, Yogananda S; Phelan, Laura J; Woon, Marites T; Keefe, Alexis M; Reynolds, Courtney R; August, Benjamin K; Hacker, Timothy A; Roth, David M; Patel, Hemal H; Balijepalli, Ravi C

    2015-09-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca(2+) cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca(2+) signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca(2+) current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  2. Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro.

    PubMed

    Huang, Wenbai; Liu, Zhan'ao; Zhou, Guanzhou; Ling, Jianmin; Tian, Ailing; Sun, Nianfeng

    2016-08-01

    Apoptosis disorder is generally regarded as an important mechanism of carcinogenesis. Inducement of tumor cell apoptosis can be an effectual way to treat cancer. Bcl-2-associated athanogene 1 (Bag-1) is a positive regulator of Bcl-2 which is an anti-apoptotic gene. Bag-1 is highly expressed in colorectal cancer, which plays a critical role in promoting metastasis, poor prognosis, especially in anti-apoptotic function, and is perhaps a valuable gene target for colorectal cancer therapy. Recently, we applied a novel non-viral gene carrier, magnetic gold nanoparticle, and mediated plasmid pGPH1/GFP/Neo-Bag-1-homo-825 silencing Bag-1 gene for treating colorectal cancer in vivo and in vitro. By mediating with magnetic gold nanoparticle, siRNA plasmid was successfully transfected into cell. In 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, magnetic gold nanoparticle had no significant cytotoxicity and by which delivered RNA plasmid inhibited cell viability significantly (P < 0.05). Downregulation of Bag-1 promoted cell apoptosis (∼47.0 %) in vitro and significantly decreased tumor growth when the cells were injected into nude mice. Based on the studies in vivo, the relative expression of Bag-1 was 0.165 ± 0.072 at mRNA level and ∼60 % at protein level. In further study, C-myc and β-catenin, mainly molecules of Wnt/β-catenin pathway, were decreased notably when Bag-1 were silenced in nanoparticle plasmid complex-transfected Balb c/nude tumor xenograft. In conclusion, Bag-1 is confirmed an anti-apoptosis gene that functioned in colorectal cancer, and the mechanism of Bag-1 gene causing colorectal cancer may be related to Wnt/β-catenin signaling pathway abnormality and suggested that magnetic gold nanoparticle-delivered siRNA plasmid silencing Bag-1 is an effective gene therapy method for colorectal cancer. PMID:26846101

  3. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    SciTech Connect

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  4. Association between polymorphisms of BAG-1 and XPD and chemotherapy sensitivity in advanced non-small-cell lung cancer patients treated with vinorelbine combined cisplatin regimen.

    PubMed

    Li, Ping; Wang, Ya-Di; Cheng, Jian; Chen, Jun-Chen; Ha, Min-Wen

    2015-12-01

    BCL-2 Associated athanogene 1 (BAG-1) and Xeroderma pigmentosum group D (XPD) are involved in the nucleotide excision repair pathway and DNA repair. We aimed to investigate whether polymorphisms in BAG-1 and XPD have effects on chemotherapy sensitivity and survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with vinorelbine combined cisplatin (NP) regimen. A total of 142 patients with diagnosed advanced NSCLC were recruited in the current study. NP regimen was applied for all eligible patients. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for BAG-1 (codon 324) and XPD (codons 312 and 751) genotyping. The treatment response was evaluated according to the RECIST guidelines. Progression-free survival (PFS) and overall survival (OS) were record as median and end point, respectively. As for BAG-1 codon 324, the chemotherapy sensitivity in NSCLC patients with CT genotype was 0.383 times of those with CC genotype (P < 0.05). With respect to XPD codon 751, the chemotherapy sensitivity in NSCLC patients with Lys/Gln genotype was 0.400 times of those with Lys/Lys genotype (P < 0.05). In addition, NSCLC patients carrying combined C/C genotype at codon 324 in BAG-1, Asp/Asp of XPD codon 312, and Lys/Lys of XPD codon 751 produced a higher efficacy of NP chemotherapy compared to those carrying mutation genotypes (all P < 0.05). Further, there were significant differences in PFS between patients with combined C/C genotype of BAG-1 codon 324, Lys/Lys genotype of XPD codon 751, and Asp/Asp genotype of XPD codon 312 and patients carrying BAG-1 codon 324 C/T genotype, XPD codon751 Lys/Gln genotype, and XPD codon312 Asp/Asn genotype (P < 0.05). Multivariate Cox regression analysis indicated that the combined wild-type of codon 324 XPD, codon 751 XPD, and codon 312 BAG-1 is the protective factor for OS and PFS, and clinical stages is the risk factor for OS and PFS. In conclusion, our research

  5. Cardiac Overexpression of Metallothionein Rescues Cold Exposure-Induced Myocardial Contractile Dysfunction through Attenuation of Cardiac Fibrosis Despite Cardiomyocyte Mechanical Anomalies

    PubMed Central

    Zhang, Yingmei; Hu, Nan; Hua, Yinan; Richmond, Kacy L.; Dong, Feng; Ren, Jun

    2012-01-01

    Cold exposure is associated with an increased prevalence for cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy metal scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca2+ derangement, fibrosis, ER stress and apoptosis. Echocardiographic, cardiomyocyte function and Masson trichrome staining were evaluated in friendly virus B (FVB) and cardiac-specific metallothionein transgenic mice following cold exposure (3 mo, 4°C). Cold exposure increased plasma levels of norepinephrine, endothelin-1 and TGF-β, reduced plasma NO levels and cardiac antioxidant capacity, enlarged ventricular end systolic diameter, compromised fractional shortening, promoted ROS production and apoptosis, and suppressed ER stress marker Bip, calregulin and phospho-eIF2α accompanied with cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H2O2- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggested that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis. PMID:22565031

  6. Human mesenchymal stem cells overexpressing the IL-33 antagonist soluble IL-1 receptor-like-1 attenuate endotoxin-induced acute lung injury.

    PubMed

    Martínez-González, Itziar; Roca, Oriol; Masclans, Joan R; Moreno, Rafael; Salcedo, Maria T; Baekelandt, Veerle; Cruz, Maria J; Rello, Jordi; Aran, Josep M

    2013-10-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by pulmonary edema attributable to alveolar epithelial-interstitial-endothelial injury, associated with profound inflammation and respiratory dysfunction. The IL-33/IL-1 receptor-like-1 (ST2) axis plays a key role in the development of immune-inflammatory responses in the lung. Cell-based therapy has been recently proposed as an effective alternative for the treatment of ALI and ARDS. Here, we engineered human adipose tissue-derived mesenchymal stem cells (hASCs) overexpressing soluble IL-1 receptor-like-1 (sST2), a decoy receptor for IL-33, in order to enhance their immunoregulatory and anti-inflammatory properties when applied in a murine ALI model. We administered both hASCs and hASC-sST2 systemically at 6 hours after intranasal LPS instillation, when pathological changes had already occurred. Bioluminescence imaging, immunohistochemistry, and focused transcriptional profiling confirmed the increased presence of hASCs in the injured lungs and the activation of an immunoregulatory program (CXCR-4, tumor necrosis factor-stimulated gene 6 protein, and indoleamine 2,3-dioxygenase up-regulation) in these cells, 48 hours after endotoxin challenge. A comparative evaluation of hASCs and the actions of hASC-sST2 revealed that local sST2 overproduction by hASC-sST2 further prevented IL-33, Toll-like receptor-4, IL-1β, and IFN-γ induction, but increased IL-10 expression in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in protein content, differential neutrophil counts, and proinflammatory cytokine (TNF-α, IL-6, and macrophage inflammatory protein 2) concentrations in bronchoalveolar lavage fluid. In addition, hASC-sST2-treated ALI lungs showed preserved alveolar architecture, an absence of apoptosis, and minimal inflammatory cell infiltration. These results suggest that h

  7. Control of steroid receptor dynamics and function by genomic actions of the cochaperones p23 and Bag-1L

    PubMed Central

    Cato, Laura; Neeb, Antje; Brown, Myles

    2014-01-01

    Molecular chaperones encompass a group of unrelated proteins that facilitate the correct assembly and disassembly of other macromolecular structures, which they themselves do not remain a part of. They associate with a large and diverse set of coregulators termed cochaperones that regulate their function and specificity. Amongst others, chaperones and cochaperones regulate the activity of several signaling molecules including steroid receptors, which upon ligand binding interact with discrete nucleotide sequences within the nucleus to control the expression of diverse physiological and developmental genes. Molecular chaperones and cochaperones are typically known to provide the correct conformation for ligand binding by the steroid receptors. While this contribution is widely accepted, recent studies have reported that they further modulate steroid receptor action outside ligand binding. They are thought to contribute to receptor turnover, transport of the receptor to different subcellular localizations, recycling of the receptor on chromatin and even stabilization of the DNA-binding properties of the receptor. In addition to these combined effects with molecular chaperones, cochaperones are reported to have additional functions that are independent of molecular chaperones. Some of these functions also impact on steroid receptor action. Two well-studied examples are the cochaperones p23 and Bag-1L, which have been identified as modulators of steroid receptor activity in nuclei. Understanding details of their regulatory action will provide new therapeutic opportunities of controlling steroid receptor action independent of the widespread effects of molecular chaperones. PMID:25422595

  8. Brain Tissue Cysts in Infected Mice with RH-Strain of Toxoplasma gondii and Evaluation of BAG1 and SAG1 Genes Expression

    PubMed Central

    Selseleh, Monavar; Modarressi, MH; Shojaee, S; Mohebali, M; Eshraghian, MR; Selseleh, Mina; Keshavarz, H

    2013-01-01

    Background Toxoplasma gondii is an obligate intracellular parasite that infects humans at high prevalence rates. The virulent RH strain of T. gondii is generally considered to have lost its cyst forming capacity. This study performed to obtain tissue cysts in mice infected with tachyzoites of RH strain treated with sulfadiazine (SDZ). It provides the opportunity to analyze the conversion of tachyzoite to bradyzoite stage of the RH strain, followed by stage-specific gene-expression analyzing. Methods Two groups of Swiss-Webster and BALB/c mice were infected subcutaneously with 104 tachyzoites of T. gondii, RH strain and given SDZ (300 mg/l) with NaHCO3 (5 g-1) in drinking water from day1 to day 14 post infection (p.i). The infected mice were sacrificed on day 50 post infection. Their brains were removed and the numbers of tissue cysts were microscopically counted. Total RNA was extracted from brains and cDNA synthesis was carried out. Finally, RT-PCR (Reverse transcription PCR) was used to detect the expression of bradyzoite (BAG1) and tachyzoite (SAG1) specific genes during tachyzoite / bradyzoite stage conversion. Results Sixty five percent of all infected mice were survived. Cysts were detectable in mice brain (45%) on day 50 p.i. Also RT-PCR of the brain samples was positive for SAG1 and BAG1. Conclusion It seems that conversion of tachyzoites to bradyzoites in brain of mice undergoing SDZ was not completed until 50 days after inoculation. PMID:23682258

  9. BAG-1/SODD, HSP70, and HSP90 are potential prognostic markers of poor survival in node-negative breast carcinoma.

    PubMed

    Davidson, Ben; Valborg Reinertsen, Kristin; Trinh, Don; Reed, Wenche; Bøhler, Per Johannes

    2016-08-01

    The objective of this study was to analyze the expression and clinical role of 13 signaling molecules in a large cohort of breast carcinoma patients with long follow-up period. Breast carcinomas (n=410) were analyzed for protein expression of phosphorylated mitogen-activated protein kinases (p-ERK, p-JNK, p-p38) and phosphoinositide 3-kinase signaling pathway proteins (p-AKT, p-mTOR, p-p70S6K); the BAG family proteins BAG-1 and BAG-4/SODD; the antiapoptotic protein Bcl-2; the inhibitor of apoptosis family member Survivin; and the heat shock protein family members HSP27, HSP70, and HSP90. Protein expression was studied for association with clinicopathological parameters and survival. Significantly higher expression of p-AKT (P<.001), p-mTOR (P<.001), p-p70S6K (P<.001), Bcl-2 (P<.001), BAG-4/SODD (P<.001), HSP27 (P<.001), HSP70 (P=.012), HSP90 (P<.001), and Survivin (P=.004) was found in infiltrating ductal and lobular carcinomas compared to mucinous carcinomas. Bcl-2 expression was significantly higher in grades 1 and 2 compared to grade 3 carcinomas (P<.001). p-AKT expression was higher in tumors more than 2cm (P=.027), whereas p-mTOR expression was lowest in tumors more than 5cm (P=.019). Higher BAG-4/SODD, HSP70, and HSP90 expression was associated with poor overall survival (P=.016, P=.039, and P=.023, respectively) in univariate analysis, whereas the only independent prognosticator in Cox multivariate survival analysis was tumor diameter (P=.003). In conclusion, BAG-4/SODD, HSP70, and HSP90 are potential prognostic markers in node-negative breast carcinoma that merit further research. PMID:27038683

  10. Quantitative nature of overexpression experiments

    PubMed Central

    Moriya, Hisao

    2015-01-01

    Overexpression experiments are sometimes considered as qualitative experiments designed to identify novel proteins and study their function. However, in order to draw conclusions regarding protein overexpression through association analyses using large-scale biological data sets, we need to recognize the quantitative nature of overexpression experiments. Here I discuss the quantitative features of two different types of overexpression experiment: absolute and relative. I also introduce the four primary mechanisms involved in growth defects caused by protein overexpression: resource overload, stoichiometric imbalance, promiscuous interactions, and pathway modulation associated with the degree of overexpression. PMID:26543202

  11. Hand1 overexpression inhibits medulloblastoma metastasis.

    PubMed

    Asuthkar, Swapna; Guda, Maheedhara R; Martin, Sarah E; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J; Velpula, Kiran K

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. PMID:27297109

  12. Rotary antenna attenuator

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  13. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  14. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  15. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  16. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  17. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  18. The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line

    PubMed Central

    Golestan, Ali; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Hamidinia, Maryam; Takhshid, Mohammad Ali

    2015-01-01

    Background: Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. The expression of N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in CRC. The aim of this study was to investigate the effect of NDRG2 overexpression on cell proliferation and invasive potential of SW48 cells. Methods: SW48 cells were transfected with a plasmid overexpressing NDRG2. After stable transfection, the effect of NDRG2 overexpression on cell proliferation was evaluated by MTT assay. The effects of NDRG2 overexpression on cell migration, invasion and cell motility and matrix metalloproteinase 9 (MMP9) activities were also investigated using matrigel transwell assay, wound healing assay and gelatin zymography, respectively. Results: MTT assay showed that overexpression of NDRG2 caused attenuation of SW48 cell proliferation. Transwell and wound healing assay revealed that NDRG2 overexpression led to inhibition of migration, invasion, and motility of SW48 cells. The overexpression of NDRG2 also reduced the activity of secreted MMP-9. Conclusions: The results of this study suggest that NDRG2 overexpression inhibits proliferation and invasive potential of SW48 cells, which likely occurs via suppression of MMP-9 activity. PMID:26379350

  19. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models

    PubMed Central

    Mázala, Davi A. G.; Pratt, Stephen J. P.; Chen, Dapeng; Molkentin, Jeffery D.; Lovering, Richard M.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca2+ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr−/− mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr+/− mice to generate mdx/Utr−/−/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca2+ handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca2+-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr−/−/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr−/− vs. WT mice, but only 1.5-fold greater in mdx/Utr−/−/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr−/− vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca2+ control as a therapeutic approach for DMD. PMID:25652448

  20. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  1. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  2. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  3. Fiber Optic Attenuators

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mike Buzzetti designed a fiber optic attenuator while working at Jet Propulsion Laboratory, intended for use in NASA's Deep Space Network. Buzzetti subsequently patented and received an exclusive license to commercialize the device, and founded Nanometer Technologies to produce it. The attenuator functions without introducing measurable back-reflection or insertion loss, and is relatively insensitive to vibration and changes in temperature. Applications include cable television, telephone networks, other signal distribution networks, and laboratory instrumentation.

  4. Expression of Escherichia coli virulence usher protein attenuates wild-type Salmonella.

    PubMed

    Yang, Xinghong; Suo, Zhiyong; Thornburg, Theresa; Holderness, Kathryn; Cao, Ling; Lim, Timothy; Walters, Nancy; Kellerman, Laura; Loetterle, Linda; Avci, Recep; Pascual, David W

    2012-01-01

    Generation of a live attenuated vaccine for bacterial pathogens often requires prior knowledge of the pathogen's virulence factors. We hypothesized an alternative approach of heterologous gene expression would make a wild-type (wt) pathogen more susceptible to host cell killing, thus, resulting in immunization. As proof of concept, the heterologous expression of enterotoxigenic E. coli (ETEC) colonization factor antigen I (CFA/I) was tested to attenuate Salmonella. The overexpression of CFA/I resulted in significant attenuation of wt Salmonella. In-depth studies revealed the attenuation depended on the co-expression of chaperone (CfaA) and usher (CfaC) proteins. Remarkably, the CfaAC-attenuated Salmonella conferred protection against wt Salmonella challenge. Mechanistic study indicated CfaAC made Salmonella outer membranes permeable, causing Salmonella to be vulnerable to host destruction. Thus, enhancing bacterial permeability via CfaAC represents an alternative method to attenuate pathogens despite the presence of unknown virulence factors. PMID:22286706

  5. Seismic attenuation in Florida

    SciTech Connect

    Bellini, J.J.; Bartolini, T.J.; Lord, K.M.; Smith, D.L. . Dept. of Geology)

    1993-03-01

    Seismic signals recorded by the expanded distribution of earthquake seismograph stations throughout Florida and data from a comprehensive review of record archives from stations GAI contribute to an initial seismic attenuation model for the Florida Plateau. Based on calculations of surface particle velocity, a pattern of attenuation exists that appears to deviate from that established for the remainder of the southeastern US. Most values suggest greater seismic attenuation within the Florida Plateau. However, a separate pattern may exist for those signals arising from the Gulf of Mexico. These results have important implications for seismic hazard assessments in Florida and may be indicative of the unique lithospheric identity of the Florida basement as an exotic terrane.

  6. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  7. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  8. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells.

    PubMed

    Sehrawat, Anuradha; Singh, Shivendra V

    2016-05-01

    Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals. © 2015 Wiley Periodicals, Inc. PMID:25857724

  9. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  10. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney.

    PubMed

    Oelusarz, Anna; Nichols, Lanita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-10-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis, that lead to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, and over a 500 fold up-regulation in 2 year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of PKA, src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 up-regulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  11. Tritium Attenuation by Distillation

    SciTech Connect

    Wittman, N.E.

    2001-07-31

    The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

  12. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer.

    PubMed

    Li, Aihua; King, Jonathan; Moro, Aune; Sugi, Mark D; Dawson, David W; Kaplan, Jeffrey; Li, Gang; Lu, Xuyang; Strieter, Robert M; Burdick, Marie; Go, Vay Liang W; Reber, Howard A; Eibl, Guido; Hines, O Joe

    2011-03-01

    Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the CXC chemokine family, has been shown to be involved in angiogenesis, tumor growth, and metastasis. The objective of this study was to determine the relationship between CXCL5 expression and tumor progression in human pancreatic cancer and to elucidate the mechanism underlying CXCL5-mediated tumor angiogenesis and cancer growth. We report herein that CXCL5 is overexpressed in human pancreatic cancer compared with paired normal pancreas tissue. Overexpression of CXCL5 is significantly correlated with poorer tumor differentiation, advanced clinical stage, and shorter patient survival. Patients with pancreatic cancer and CXCL5 overexpression who underwent resection of cancer had a mean survival time 25.5 months shorter than that of patients who did not overexpress CXCL5. Blockade of CXCL5 or its receptor CXCR2 by small-interfering RNA knockdown or antibody neutralization attenuated human pancreatic cancer growth in a nude mouse model. Finally, we demonstrated that CXCL5 mediates pancreatic cancer-derived angiogenesis through activation of several signaling pathways, including protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and signal transducer and activator of transcription (STAT) in human endothelial cells. These data suggest that CXCL5 is an important mediator of tumor-derived angiogenesis and that it may serve as a survival factor for pancreatic cancer. Blockade of either CXCL5 or CXCR2 may be a critical adjunct antiangiogenic therapy against pancreatic cancer. PMID:21356384

  13. Overexpression of CXCL5 Is Associated With Poor Survival in Patients With Pancreatic Cancer

    PubMed Central

    Li, Aihua; King, Jonathan; Moro, Aune; Sugi, Mark D.; Dawson, David W.; Kaplan, Jeffrey; Li, Gang; Lu, Xuyang; Strieter, Robert M.; Burdick, Marie; Go, Vay Liang W.; Reber, Howard A.; Eibl, Guido; Hines, O. Joe

    2011-01-01

    Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the CXC chemokine family, has been shown to be involved in angiogenesis, tumor growth, and metastasis. The objective of this study was to determine the relationship between CXCL5 expression and tumor progression in human pancreatic cancer and to elucidate the mechanism underlying CXCL5-mediated tumor angiogenesis and cancer growth. We report herein that CXCL5 is overexpressed in human pancreatic cancer compared with paired normal pancreas tissue. Overexpression of CXCL5 is significantly correlated with poorer tumor differentiation, advanced clinical stage, and shorter patient survival. Patients with pancreatic cancer and CXCL5 overexpression who underwent resection of cancer had a mean survival time 25.5 months shorter than that of patients who did not overexpress CXCL5. Blockade of CXCL5 or its receptor CXCR2 by small-interfering RNA knockdown or antibody neutralization attenuated human pancreatic cancer growth in a nude mouse model. Finally, we demonstrated that CXCL5 mediates pancreatic cancer–derived angiogenesis through activation of several signaling pathways, including protein kinase B (Akt), extracellular signal–regulated kinase (ERK), and signal transducer and activator of transcription (STAT) in human endothelial cells. These data suggest that CXCL5 is an important mediator of tumor-derived angiogenesis and that it may serve as a survival factor for pancreatic cancer. Blockade of either CXCL5 or CXCR2 may be a critical adjunct antiangiogenic therapy against pancreatic cancer. PMID:21356384

  14. Clusterin Attenuates the Development of Renal Fibrosis

    PubMed Central

    Jung, Gwon-Soo; Kim, Mi-Kyung; Jung, Yun-A; Kim, Hye-Soon; Park, In-Sun; Min, Bon-Hong; Lee, Ki-Up; Kim, Jung-Guk

    2012-01-01

    Upregulation of clusterin occurs in several renal diseases and models of nephrotoxicity, but whether this promotes injury or is a protective reaction to injury is unknown. Here, in the mouse unilateral ureteral obstruction model, obstruction markedly increased the expression of clusterin, plasminogen activator inhibitor-1 (PAI-1), type I collagen, and fibronectin. Compared with wild-type mice, clusterin-deficient mice exhibited higher levels of PAI-1, type I collagen, and fibronectin and accelerated renal fibrosis in response to obstruction. In cultured rat tubular epithelium-like cells, adenovirus-mediated overexpression of clusterin inhibited the expression of TGF-β–stimulated PAI-1, type I collagen, and fibronectin. Clusterin inhibited TGF-β–stimulated Smad3 activity via inhibition of Smad3 phosphorylation and its nuclear translocation. Moreover, intrarenal delivery of adenovirus-expressing clusterin upregulated expression of clusterin in tubular epithelium-like cells and attenuated obstruction-induced renal fibrosis. In conclusion, clusterin attenuates renal fibrosis in obstructive nephropathy. These results suggest that upregulation of clusterin during renal injury is a protective response against the development of renal fibrosis. PMID:22052058

  15. Model-Based Design of Growth-Attenuated Viruses

    PubMed Central

    Lim, Kwang-il; Lang, Tobias; Lam, Vy; Yin, John

    2006-01-01

    Live-virus vaccines activate both humoral and cell-mediated immunity, require only a single boosting, and generally provide longer immune protection than killed or subunit vaccines. However, growth of live-virus vaccines must be attenuated to minimize their potential pathogenic effects, and mechanisms of attenuation by conventional serial-transfer viral adaptation are not well-understood. New methods of attenuation based on rational engineering of viral genomes may offer a potentially greater control if one can link defined genetic modifications to changes in virus growth. To begin to establish such links between genotype and growth phenotype, we developed a computer model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied, nonsegmented, negative-stranded RNA virus. Our model incorporated established regulatory mechanisms of VSV while integrating key wild-type infection steps: hijacking of host resources, transcription, translation, and replication, followed by assembly and release of progeny VSV particles. Generalization of the wild-type model to allow for genome rearrangements matched the experimentally observed attenuation ranking for recombinant VSV strains that altered the genome position of their nucleocapsid gene. Finally, our simulations captured previously reported experimental results showing how altering the positions of other VSV genes has the potential to attenuate the VSV growth while overexpressing the immunogenic VSV surface glycoprotein. Such models will facilitate the engineering of new live-virus vaccines by linking genomic manipulations to controlled changes in virus gene-expression and growth. PMID:16948530

  16. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  17. Overexpression of Cytochrome c by a Recombinant Rabies Virus Attenuates Pathogenicity and Enhances Antiviral Immunity

    PubMed Central

    Pulmanausahakul, Rojjanaporn; Faber, Milosz; Morimoto, Kinjiro; Spitsin, Sergei; Weihe, Eberhard; Hooper, D. Craig; Schnell, Matthias J.; Dietzschold, Bernhard

    2001-01-01

    The pathogenicity of individual rabies virus strains appears to correlate inversely with the extent of apoptotic cell death they induce and with the expression of rabies virus glycoprotein, a major inducer of an antiviral immune response. To determine whether the induction of apoptosis by rabies virus contributes to a decreased pathogenicity by stimulating antiviral immunity, we have analyzed these parameters in tissue cultures and in mice infected with a recombinant rabies virus construct that expresses the proapoptotic protein cytochrome c. The extent of apoptosis was strongly increased in primary neuron cultures infected with the recombinant virus carrying the active cytochrome c gene [SPBN-Cyto c(+)], compared with cells infected with the recombinant virus containing the inactive cytochrome c gene [SPBN-Cyto c(−)]. Mortality in mice infected intranasally with SPBN-Cyto c(+) was substantially lower than in SPBN-Cyto c(−)-infected mice. Furthermore, virus-neutralizing antibody (VNA) titers were significantly higher in mice immunized with SPBN-Cyto c(+) at the same dose. The VNA titers induced by these recombinant viruses paralleled their protective activities against a lethal rabies virus challenge infection, with SPBN-Cyto c(+) revealing an effective dose 20 times lower than that of SPBN-Cyto c(−). The strong increase in immunogenicity, coupled with the marked reduction in pathogenicity, identifies the SPBN-Cyto c(+) construct as a candidate for a live rabies virus vaccine. PMID:11602721

  18. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice.

    PubMed

    Tjondrokoesoemo, Andoria; Schips, Tobias; Kanisicak, Onur; Sargent, Michelle A; Molkentin, Jeffery D

    2016-03-15

    Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD. PMID:26744329

  19. Kif14 overexpression accelerates murine retinoblastoma development.

    PubMed

    O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W

    2016-10-15

    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo. PMID:27270502

  20. Fluid dynamic bowtie attenuators

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.

  1. Downhole pressure attenuation apparatus

    SciTech Connect

    Ricles, T.D.; Barton, J.A.

    1992-02-18

    This patent describes a process for preventing damage to tool strings and other downhole equipment in a well caused by pressures produced during detonation of one or more downhole explosive devices. It comprises adding to a tool string at least one pressure attenuating apparatus for attenuating the peak pressure wave and quasi-static pressure pulse produced by the explosive devices, the pressure attenuating apparatus including an initially closed relief vent including tubing means supporting a plurality of charge port assemblies each including an explosive filled shaped charge and a prestressed disc, the shaped charges interconnected by a detonating cord, the amount of explosive in each shaped charge being sufficient to rupture its associated disc without damaging surrounding tubular bodies in the well, and a vent chamber defined by the tubing means and providing a liquid free volume, and opening the relief vent substantially contemporaneously with downhole explosive device detonation by detonating the shaped charges to rupture the discs of the charge port assemblies.

  2. Flexible graphene based microwave attenuators.

    PubMed

    Byun, Kisik; Ju Park, Yong; Ahn, Jong-Hyun; Min, Byung-Wook

    2015-02-01

    We demonstrate flexible 3 dB and 6 dB microwave attenuators using multilayer graphene grown by the chemical vapor deposition method. On the basis of the characterized results of multilayer graphene and graphene-Au ohmic contacts, the graphene attenuators are designed and measured. The flexible graphene-based attenuators have 3 dB and 6 dB attenuation with a return loss of less than -15 dB at higher than 5 GHz. The devices have shown durability in a bending cycling test of 100 times. The circuit model of the attenuator based on the characterized results matches the experimental results well. PMID:25590144

  3. Control algorithms for dynamic attenuators

    SciTech Connect

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  4. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes. PMID:24268679

  5. Overexpression of neurotrophin-3 in skeletal muscle alters normal and injury-induced limb control.

    PubMed

    Taylor, M D; Vancura, R; Williams, J M; Riekhof, J T; Taylor, B K; Wright, D E

    2001-01-01

    Transgenic overexpression of neurotrophin-3 (NT-3) in mice increases the number of surviving proprioceptive sensory components, including primary sensory neurons, gamma motoneurons and muscle spindles. The numbers of surviving alpha motoneurons are not affected by NT-3 overexpression (Wright et al., Neuron 19: 503-517, 1997). We have assessed the consequences NT-3-stimulated increase in the proprioceptive sensory system by measuring locomotive abilities of mice that overexpress NT-3 in all skeletal muscles (myo/NT-3 mice). In adulthood, one myo/NT-3 transgenic line continues to express NT-3 at high levels in muscle and maintains a hypertrophied proprioceptive system (high-OE myo/NT-3 mice). Compared to wildtypes, high-OE myo/NT-3 mice have nine times the amount of NT-3 protein in the medial gastrocnemius at six weeks of age. Although appearing normal during ordinary activity, high-OE myo/NT-3 mice display a distinct clasping phenotype when lifted by the tail. High-OE myo/NT-3 mice show severe locomotor deficits when performing beam walking and rotorod testing. These mice also demonstrate aberrant foot positioning during normal walking. However, following sciatic nerve crush, overexpression of NT-3 prevents further abnormalities in paw positioning, suggesting NT-3 may attenuate sensorimotor deficits that occur in response to sciatic nerve injury. Our results suggest that increases in proprioceptive sensory neurons, spindles and gamma motoneurons, along with continued postnatal NT-3 overexpression in muscle significantly disrupt normal locomotor control. Importantly, however, NT-3 may lessen initial deficits and thus improve functional recovery after peripheral nerve injury, suggesting these mice may serve as a good model to study NT-3's role in neuroprotection of proprioceptive afferents. PMID:11794730

  6. Suppression of ricinoleic acid toxicity by ptl2 overexpression in fission yeast Schizosaccharomyces pombe.

    PubMed

    Yazawa, Hisashi; Ogiso, Masayo; Kumagai, Hiromichi; Uemura, Hiroshi

    2014-11-01

    We previously succeeded to obtain a high content of ricinoleic acid (RA), a hydroxylated fatty acid with great values as a petrochemical replacement, in fission yeast Schizosaccharomyces pombe by introducing Claviceps purpurea oleate Δ12-hydroxylase gene (CpFAH12). Although the production was toxic to S. pombe cells, we identified plg7, encoding phospholipase A2, as a multicopy suppressor that restored the growth defect by removing RA from phospholipids and induced secretion of a part of the released free RA into culture media. In this study, we extended our analysis and examined the effect of triglyceride (TG) lipase overexpression on the tolerance to RA toxicity and RA productivity. S. pombe has three TG lipase genes, ptl1, ptl2, and ptl3, which have high protein sequence similarities to each other and to Saccharomyces cerevisiae counterparts TGL3, TGL4, and TGL5, but only ptl2 overexpression suppressed the growth defect induced by RA production, and the culture grown at 20 °C secreted free RA into media like plg7 overexpression. Suppression by ptl2 was independent of plg7, and a large amount of free RA was accumulated in the cells concomitant with the decrease in RA moieties in phospholipids. Furthermore, the suppression by ptl2 was attenuated by bromoenol lactone (BEL), a phospholipase A2 specific inhibitor, suggesting that Ptl2p may have phospholipase activity. Simultaneous overexpression of ptl2 and plg7 in the FAH12 integrant increased secretion and intracellular accumulation of RA 1.2- and 1.3-fold, respectively, compared to those with single overexpression of plg7 on day 10 at 20 °C. PMID:25109267

  7. Digitally Controlled Beam Attenuator

    NASA Astrophysics Data System (ADS)

    Peppler, W. W.; Kudva, B.; Dobbins, J. T.; Lee, C. S.; Van Lysel, M. S.; Hasegawa, B. H.; Mistretta, C. A.

    1982-12-01

    In digital fluorographic techniques the video camera must accommodate a wide dynamic range due to the large variation in the subject thickness within the field of view. Typically exposure factors and the optical aperture are selected such that the maximum video signal is obtained in the most transmissive region of the subject. Consequently, it has been shown that the signal-to-noise ratio is severely reduced in the dark regions. We have developed a prototype digital beam attenuator (DBA) which will alleviate this and some related problems in digital fluorography. The prototype DBA consists of a 6x6 array of pistons which are individually controlled. A membrane containing an attenuating solu-tion of (CeC13) in water and the piston matrix are placed between the x-ray tube and the subject. Under digital control the pistons are moved into the attenuating material in order to adjust the beam intensity over each of the 36 cells. The DBA control unit which digitizes the image during patient positioning will direct the pistons under hydraulic control to produce a uniform x-ray field exiting the subject. The pistons were designed to produce very little structural background in the image. In subtraction studies any structure would be cancelled. For non-subtraction studies such as cine-cardiology we are considering higher cell densities (eg. 64x64). Due to the narrow range of transmission provided by the DBA, in such studies ultra-high contrast films could be used to produce a high resolution quasi-subtraction display. Additional benefits of the DBA are: 1) reduced dose to the bright image areas when the dark areas are properly exposed. 2) improved scatter and glare to primary ratios, leading to improved contrast in the dark areas.

  8. Radiation Imaging and Attenuation

    NASA Astrophysics Data System (ADS)

    Davison, Candace; Yocum, Douglas

    2008-03-01

    X-ray and neutron images are used to demonstrate materials' different radiation attenuation properties. This leads to discussion of applications in medicine, industry and research. The Penn State Radiation Science and Engineering Center (RSEC) uses neutron radioscopy to image the inside of a working hydrogen fuel cell. This is one of the many educational activities that are conducted when students visit the RSEC. To encourage pre-college students to apply these principles and learn more about nuclear technology, we are sponsoring a design competition. For more information visit www.rsec.psu.edu

  9. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  10. Chopping-Wheel Optical Attenuator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1988-01-01

    Star-shaped rotating chopping wheel provides adjustable time-averaged attenuation of narrow beam of light without changing length of optical path or spectral distribution of light. Duty cycle or attenuation factor of chopped beam controlled by adjusting radius at which beam intersects wheel. Attenuation factor independent of wavelength. Useful in systems in which chopping frequency above frequency-response limits of photodetectors receiving chopped light. Used in systems using synchronous detection with lock-in amplifiers.

  11. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  12. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  13. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance

    PubMed Central

    Bellerby, Rebecca; Smith, Chris; Kyme, Sue; Gee, Julia; Günthert, Ursula; Green, Andy; Rakha, Emad; Barrett-Lee, Peter; Hiscox, Stephen

    2016-01-01

    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer. PMID:27379207

  14. Calpastatin overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury

    PubMed Central

    Schoch, Kathleen M.; Evans, Heather N.; Brelsfoard, Jennifer M.; Madathil, Sindhu K.; Takano, Jiro; Saido, Takaomi C.; Saatman, Kathryn E.

    2012-01-01

    Traumatic brain injury (TBI) results in abrupt, initial cell damage leading to delayed neuronal death. The calcium-activated proteases, calpains, are known to contribute to this secondary neurodegenerative cascade. Although the specific inhibitor of calpains, calpastatin, is present within neurons, normal levels of calpastatin are unable to fully prevent the damaging proteolytic activity of calpains after injury. In this study, increased calpastatin expression was achieved using transgenic mice that overexpress the human calpastatin (hCAST) construct under control of a calcium-calmodulin dependent kinase II α promoter. Naïve hCAST transgenic mice exhibited enhanced neuronal calpastatin expression and significantly reduced protease activity. Acute calpain-mediated spectrin proteolysis in the cortex and hippocampus induced by controlled cortical impact brain injury was significantly attenuated in calpastatin overexpressing mice. Aspects of posttraumatic motor and cognitive behavioral deficits were also lessened in hCAST transgenic mice compared to their wildtype littermates. However, volumetric analyses of neocortical contusion revealed no histological neuroprotection at either acute or long-term time points. Partial hippocampal neuroprotection observed at a moderate injury severity was lost after severe TBI. This study underscores the effectiveness of calpastatin overexpression in reducing calpain-mediated proteolysis and behavioral impairment after TBI, supporting the therapeutic potential for calpain inhibition. In addition, the reduction in spectrin proteolysis without accompanied neocortical neuroprotection suggests the involvement of other factors that are critical for neuronal survival after contusion brain injury. PMID:22572592

  15. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. PMID:26471299

  16. The Overexpression of Twinkle Helicase Ameliorates the Progression of Cardiac Fibrosis and Heart Failure in Pressure Overload Model in Mice

    PubMed Central

    Tanaka, Atsushi; Ide, Tomomi; Fujino, Takeo; Onitsuka, Ken; Ikeda, Masataka; Takehara, Takako; Hata, Yuko; Ylikallio, Emil; Tyynismaa, Henna; Suomalainen, Anu; Sunagawa, Kenji

    2013-01-01

    Myocardial mitochondrial DNA (mtDNA) copy number decreases in heart failure. In post-myocardial infarction mice, increasing mtDNA copy number by overexpressing mitochondrial transcription factor attenuates mtDNA deficiency and ameliorates pathological remodeling thereby markedly improving survival. However, the functional significance of increased mtDNA copy number in hypertensive heart disease remains unknown. We addressed this question using transgenic mice that overexpress Twinkle helicase (Twinkle; Tg), the mtDNA helicase, and examined whether Twinkle overexpression protects the heart from left ventricular (LV) remodeling and failure after pressure overload created by transverse aortic constriction (TAC). Twinkle overexpression increased mtDNA copy number by 2.2±0.1-fold. Heart weight, LV diastolic volume and wall thickness were comparable between Tg and wild type littermates (WT) at 28 days after TAC operation. LV end-diastolic pressure increased in WT after TAC (8.6±2.8 mmHg), and this increase was attenuated in Tg (4.6±2.6 mmHg). Impaired LV fractional shortening after TAC operation was also suppressed in Tg, as measured by echocardiography (WT: 16.2±7.2% vs Tg: 20.7±6.2%). These LV functional improvements were accompanied by a decrease in interstitial fibrosis (WT: 10.6±1.1% vs Tg: 3.0±0.6%). In in vitro studies, overexpressing Twinkle using an adenovirus vector in cultured cardiac fibroblasts significantly suppressed mRNA of collagen 1a, collagen 3a and connective tissue growth factor, and angiotensin II-induced transforming growth factor β1 expression. The findings suggest that Twinkle overexpression prevents LV function deterioration. In conclusion, Twinkle overexpression increases mtDNA copy number and ameliorates the progression of LV fibrosis and heart failure in a mouse pressure overload model. Increasing mtDNA copy number by Twinkle overexpression could be a novel therapeutic strategy for hypertensive heart disease. PMID:23840758

  17. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  18. An attenuated philosophical gentleman.

    PubMed

    Christie, John R R

    2014-06-20

    Dr. Joseph Black had at one time, a house near us to the west. He was a striking and beautiful person; tall, very thin, and cadaverously pale; his hair carefully powdered, though there was little of it except what was collected in a long thin queue; his eyes dark, clear and large, like deep pools of pure water. He wore black speckless clothes, silk stockings, silver buckles, and either a slim green umbrella, or a genteel brown cane. The general frame and air were feeble and slender. The wildest boy respected Black. No lad could be irreverent toward a man so pale, so gentle, so elegant and so illustrious. So he glided, like a spirit, through our rather mischievous sportiveness, unharmed. He died seated, with a bowl of milk upon his knee, of which his ceasing to be did not spill a drop; a departure which it seemed, after the event, might have been foretold of this attenuated philosophical gentleman. PMID:24921110

  19. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  20. Range Restriction and Attenuation Corrections.

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Mendoza, Jorge L.

    The present paper reviews the techniques commonly used to correct an observed correlation coefficient for the simultaneous influence of attenuation and range restriction effects. It is noted that the procedure which is currently in use may be somewhat biased because it treats range restriction and attenuation as independent restrictive influences.…

  1. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  2. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney.

    PubMed

    Tang, Wan Xin; Wu, Wei Hua; Zeng, Xiao Xi; Bo, Hong; Huang, Song Min

    2012-04-01

    Diabetic nephropathy (DN) is a serious complication of diabetes with a poorly defined etiology and limited treatment options. Early intervention is key to preventing the progression of DN. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling, and is involved in the pathogenesis of numerous diseases. Furthermore, Mfn2 is also closely associated with the development of diabetes, but its functional roles in the diabetic kidney remain unknown. This study investigated the effect of Mfn2 at an early stage of DN. Mfn2 was overexpressed by adenovirus-mediated gene transfer in streptozotocin-induced diabetic rats. Clinical parameters (proteinuria, albumin/creatinine ratio), pathological changes, ultra-microstructural changes in nephrons, expression of collagen IV and phosph-p38, ROS production, mitochondrial function, and apoptosis were evaluated and compared with diabetic rats expressing control levels of Mfn2. Endogenous Mfn2 expression decreased with time in DN. Compared to the blank transfection control group, overexpression of Mfn2 decreased kidney weight relative to body weight, reduced proteinuria and ACR, and improved pathological changes typical of the diabetic kidney, like enlargement of glomeruli, accumulation of ECM, and thickening of the basement membrane. In addition, Mfn2 overexpression inhibited activation of p38, and the accumulation of ROS; prevented mitochondrial dysfunction; and reduced the synthesis of collagen IV, but did not affect apoptosis of kidney cells. This study demonstrates that Mfn2 overexpression can attenuate pathological changes in the kidneys of diabetic rats. Further studies are needed to clarify the underlying mechanism of this protective function. Mfn2 might be a potential therapeutic target for the treatment of early stage DN. PMID:22095488

  3. Capsule depolymerase overexpression reduces Bacillus anthracis virulence.

    PubMed

    Scorpio, Angelo; Chabot, Donald J; Day, William A; Hoover, Timothy A; Friedlander, Arthur M

    2010-05-01

    Capsule depolymerase (CapD) is a gamma-glutamyl transpeptidase and a product of the Bacillus anthracis capsule biosynthesis operon. In this study, we examined the effect of modulating capD expression on B. anthracis capsule phenotype, interaction with phagocytic cells and virulence in guinea pigs. Transcriptional fusions of capD were made to the genes encoding heat-shock protein 60 (hsp60) and elongation factor Tu (EFTu), and to capA, a B. anthracis capsule biosynthesis gene. Translation signals were altered to improve expression of capD, including replacing the putative ribosome-binding site with a consensus sequence and the TTG start codon with ATG. CapD was not detected by immunoblotting in lysates from wild-type B. anthracis Ames but was detected in strains engineered with a consensus ribosome-binding site for capD. Strains overexpressing capD at amounts detected by immunoblotting were found to have less surface-associated capsule and released primarily lower-molecular-mass capsule into culture supernatants. Overexpression of capD increased susceptibility to neutrophil phagocytic killing and adherence to macrophages and resulted in reduced fitness in a guinea pig model of infection. These data suggest that B. anthracis may have evolved weak capD expression resulting in optimized capsule-mediated virulence. PMID:20110296

  4. Nucleophosmin is overexpressed in thyroid tumors

    SciTech Connect

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra; Fabbro, Dora; Di Loreto, Carla; Bulotta, Stefania; Deganuto, Marta; Paron, Igor; Tell, Gianluca; Puxeddu, Efisio; Filetti, Sebastiano; Russo, Diego; Damante, Giuseppe

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  5. Attenuation of Vaccinia Virus.

    PubMed

    Yakubitskiy, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2015-01-01

    Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections. PMID:26798498

  6. Calorie Restriction Attenuates Monocrotaline-induced Pulmonary Arterial Hypertension in Rats

    PubMed Central

    Ding, Mingge; Lei, Jingyi; Qu, Yinxian; Zhang, Huan; Xin, Weichuan; Ma, Feng; Liu, Shuwen; Li, Zhichao; Jin, Faguang

    2015-01-01

    Abstract: Calorie restriction (CR) is one of the most effective nonpharmacological interventions protecting against cardiovascular disease, such as hypertension in the systemic circulation. However, whether CR could attenuate pulmonary arterial hypertension (PAH) is largely unknown. The PAH model was developed by subjecting the rats to a single subcutaneous injection of monocrotaline. CR lowered mean pulmonary arterial pressure (mPAP) and reduced vascular remodeling and right ventricular hypertrophy in PAH rats. Meanwhile, CR attenuated endothelial dysfunction as evidenced by increased relaxation in response to acetylcholine. The beneficial effects of CR were associated with restored sirtuin-1 (SIRT1) expression and endothelial nitric oxide synthase (eNOS) phosphorylation and reduced eNOS acetylation in pulmonary arteries of PAH rats. To further clarify the role of SIRT1 in the protective effects of CR, adenoviral vectors for overexpression of SIRT1 were administered intratracheally at 1 day before monocrotaline injection. Overexpression of SIRT1 exhibited similar beneficial effects on mPAP and endothelial function, and increased eNOS phosphorylation and reduced eNOS acetylation in the absence of CR. Moreover, SIRT1 overexpression attenuated the increase in mPAP in hypoxia-induced PAH animals. Overall, the present data demonstrate that CR may serve as an effective treatment of PAH, and targeting the SIRT1/eNOS pathway may improve treatment of PAH. PMID:25636073

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  8. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) reduces age-related neuronal degeneration in the mouse cochlea.

    PubMed

    Ruan, Q; Zeng, S; Liu, A; Chen, Z; Yu, Z; Zhang, R; He, J; Bance, M; Robertson, G; Yin, S; Wang, J

    2014-11-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and whether the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons between 3 and 14 months of age in comparison with wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  9. Overexpression of Sirtuin 6 suppresses cellular senescence and NF-κB mediated inflammatory responses in osteoarthritis development

    PubMed Central

    Wu, Yaosen; Chen, Linwei; Wang, Ye; Li, Wanli; Lin, Yan; Yu, Dongsheng; Zhang, Liang; Li, Fangcai; Pan, Zhijun

    2015-01-01

    The aim of our study was to evaluate if Sirt6, a NAD + dependent histone deacetylase, plays a protective role in cartilage degeneration by suppressing cellular senescence and inflammatory responses. The expression level of sirt6 in normal and OA human knee articular cartilage was compared by immunofluorescence and western blotting. The effect of sirt6 overexpression on replicative senescence of chondrocytes and NF-κB target genes expression was evaluated. Histological assessment of OA mice knee joint was carried out to assess the in vivo effects of sirt6 overexpression on mice chondrocytes. We found sirt6 level was significantly decreased in the articular chondrocytes of OA patients compare to normal human. SA-β-gal staining revealed that overexpression of sirt6 suppressed replicative senescence of chondrocytes. Meanwhile, the expression of NF-κB dependent genes were significantly attenuated by sirt6 overxpression. Safranin-O staining and OARSI score of knee joint cartilage in OA mice revealed that Lenti-Sirt6 intraarticular injection could protect mice chondrocytes from degeneration. These data strongly suggest that overexpression of Sirt6 can prevent OA development by reducing both the inflammatory response and chondrocytes senescence. Therefore, the development of specific activators of Sirt6 may have therapeutic potential for the treatment of OA. PMID:26639398

  10. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) Reduces Age-related Neuronal Degeneration in the Mouse Cochlea

    PubMed Central

    Ruan, Qingwei; Zeng, Shan; Liu, Aiguo; Chen, Zhengnong; Yu, Zhuowei; Zhang, Ruxin; He, jingchun; Bance, Manohar; Robertson, George; Yin, Shankai; Wang, Jian

    2016-01-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and if the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons (SGNs) between 3– 14 months of age in comparison to wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  11. Overexpressed oncogenic tumor-self antigens

    PubMed Central

    Bright, Robert K; Bright, Jennifer D; Byrne, Jennifer A

    2014-01-01

    Overexpressed tumor-self antigens represent the largest group of candidate vaccine targets. Those exhibiting a role in oncogenesis may be some of the least studied but perhaps most promising. This review considers this subset of self antigens by highlighting vaccine efforts for some of the better known members and focusing on TPD52, a new promising vaccine target. We shed light on the importance of both preclinical and clinical vaccine studies demonstrating that tolerance and autoimmunity (presumed to preclude this class of antigens from vaccine development) can be overcome and do not present the obstacle that might have been expected. The potential of this class of antigens for broad application is considered, possibly in the context of low tumor burden or adjuvant therapy, as is the need to understand mechanisms of tolerance that are relatively understudied. PMID:25483660

  12. bcl-2 overexpression promotes myocyte proliferation

    PubMed Central

    Limana, Federica; Urbanek, Konrad; Chimenti, Stefano; Quaini, Federico; Leri, Annarosa; Kajstura, Jan; Nadal-Ginard, Bernardo; Izumo, Seigo; Anversa, Piero

    2002-01-01

    To determine the influence of Bcl-2 on the developmental biology of myocytes, we analyzed the population dynamics of this cell type in the heart of transgenic (TG) mice overexpressing Bcl-2 under the control of the α-myosin heavy chain promoter. TG mice and non-TG (wild type, WT) mice were studied at 24 days, 2 months, and 4 months after birth. Bcl-2 overexpression produced a significant increase in the percentage of cycling myocytes and their mitotic index. These effects were strictly connected to the expression of the transgene, as demonstrated in isolated myocytes. The formation of mitotic spindle and contractile ring was identified in replicating cells. These typical aspects of mitosis were complemented with the demonstration of karyokinesis and cytokinesis to provide structural evidence of cell division. Apoptosis was low at all ages and was not affected by Bcl-2. The higher cell replication rate in TG was conditioned by a decrease in the expression of the cell-cycle inhibitors, p21WAF1 and p16INK4a, and by an increase in Mdm2-p53 complexes. In comparison with WT, TG had 0.4 × 106, 0.74 × 106, and 1.2 × 106 more myocytes in the left ventricle at 24 days, 2 months, and 4 months, respectively. Binucleated myocytes were 12% and 25% larger in WT than in TG mice at 2 and 4 months of age. Taken together, these observations reveal a previously uncharacterized replication-enhancing function of Bcl-2 in myocytes in vivo in the absence of stressful conditions. PMID:11983915

  13. Overexpression of GTP Cyclohydrolase 1 Feedback Regulatory Protein Is Protective in a Murine Model of Septic Shock

    PubMed Central

    Starr, Anna; Sand, Claire A.; Heikal, Lamia; Kelly, Peter D.; Spina, Domenico; Crabtree, Mark; Channon, Keith M.; Leiper, James M.; Nandi, Manasi

    2014-01-01

    ABSTRACT Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis. Under inflammatory conditions, GCH1 activity and hence BH4 levels are increased, supporting pathological NOS activity. GCH1 activity can be controlled through allosteric interactions with GCH1 feedback regulatory protein (GFRP). We investigated whether overexpression of GFRP can regulate BH4 and NO production and attenuate cardiovascular dysfunction in sepsis. Sepsis was induced in mice conditionally overexpressing GFRP and wild-type littermates by cecal ligation and puncture. Blood pressure was monitored by radiotelemetry, and mesenteric blood flow was quantified by laser speckle contrast imaging. Blood biochemistry data were obtained using an iSTAT analyzer, and BH4 levels were measured in plasma and tissues by high-performance liquid chromatography. Increased BH4 and NO production and hypotension were observed in all mice, but the extents of these pathophysiological changes were attenuated in GFRP OE mice. Perturbations in blood biochemistry were similarly attenuated in GFRP OE compared with wild-type controls. These results suggest that GFRP overexpression regulates GCH1 activity during septic shock, which in turn limits BH4 bioavailability for iNOS. We conclude that the GCH1-GFRP axis is a critical regulator of BH4 and NO production and the cardiovascular derangements that occur in septic shock. PMID:25046538

  14. Overexpression of GTP cyclohydrolase 1 feedback regulatory protein is protective in a murine model of septic shock.

    PubMed

    Starr, Anna; Sand, Claire A; Heikal, Lamia; Kelly, Peter D; Spina, Domenico; Crabtree, Mark; Channon, Keith M; Leiper, James M; Nandi, Manasi

    2014-11-01

    Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis. Under inflammatory conditions, GCH1 activity and hence BH4 levels are increased, supporting pathological NOS activity. GCH1 activity can be controlled through allosteric interactions with GCH1 feedback regulatory protein (GFRP). We investigated whether overexpression of GFRP can regulate BH4 and NO production and attenuate cardiovascular dysfunction in sepsis. Sepsis was induced in mice conditionally overexpressing GFRP and wild-type littermates by cecal ligation and puncture. Blood pressure was monitored by radiotelemetry, and mesenteric blood flow was quantified by laser speckle contrast imaging. Blood biochemistry data were obtained using an iSTAT analyzer, and BH4 levels were measured in plasma and tissues by high-performance liquid chromatography. Increased BH4 and NO production and hypotension were observed in all mice, but the extents of these pathophysiological changes were attenuated in GFRP OE mice. Perturbations in blood biochemistry were similarly attenuated in GFRP OE compared with wild-type controls. These results suggest that GFRP overexpression regulates GCH1 activity during septic shock, which in turn limits BH4 bioavailability for iNOS. We conclude that the GCH1-GFRP axis is a critical regulator of BH4 and NO production and the cardiovascular derangements that occur in septic shock. PMID:25046538

  15. Low-Dose Bafilomycin Attenuates Neuronal Cell Death Associated with Autophagy-Lysosome Pathway Dysfunction

    PubMed Central

    Pivtoraiko, Violetta N.; Harrington, Adam J.; Mader, Burton J.; Luker, Austin M.; Caldwell, Guy A.; Caldwell, Kim A.; Roth, Kevin A.; Shacka, John J.

    2010-01-01

    We have shown previously that the plecomacrolide antibiotics bafilomycin A1 and B1 significantly attenuate cerebellar granule neuron death resulting from agents that disrupt lysosome function. To further characterize bafilomycin-mediated cytoprotection, we examined its ability to attenuate the death of naïve and differentiated neuronal SH-SY5Y human neuroblastoma cells from agents that induce lysosome dysfunction in vitro, and from in vivo dopaminergic neuron death in C. elegans. Low-dose bafilomycin significantly attenuated SH-SY5Y cell death resulting from treatment with chloroquine, hydroxychloroquine amodiaquine and staurosporine. Bafilomycin also attenuated the chloroquine-induced reduction in processing of cathepsin D, the principal lysosomal aspartic acid protease, to its mature “active” form. Chloroquine induced autophagic vacuole accumulation and inhibited autophagic flux, effects that were attenuated upon treatment with bafilomycin and were associated with a significant decrease in chloroquine-induced accumulation of detergent-insoluble α-synuclein oligomers. In addition, bafilomycin significantly and dose-dependently attenuated dopaminergic neuron death in C. elegans resulting from in vivo over-expression of human wild-type α-synuclein. Together, our findings suggest that low-dose bafilomycin is cytoprotective in part through its maintenance of the autophagy-lysosome pathway, and underscores its therapeutic potential for treating Parkinson Disease and other neurodegenerative diseases that exhibit disruption of protein degradation pathways and accumulation of toxic protein species. PMID:20534000

  16. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction

    PubMed Central

    Li, Jian-Si; Zhang, Qing-Fang; Wang, Yu-Xiao; Zhao, Shi-Lei; Yu, Jing; Wang, Chang; Qin, Ying; Wei, Qiu-Ju; Lv, Gui-Xiang; Li, Bing

    2016-01-01

    Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1) is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG) mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO) model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT) mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis. PMID:26765329

  17. ZIC1 Overexpression Is Oncogenic in Liposarcoma

    PubMed Central

    Brill, Elliott; Gobble, Ryan; Angeles, Christina; Lagos-Quintana, Mariana; Crago, Aimee; Laxa, Bernadette; DeCarolis, Penelope; Zhang, Lei; Antonescu, Cristina; Socci, Nicholas D.; Taylor, Barry S.; Sander, Chris; Koff, Andrew; Singer, Samuel

    2012-01-01

    Liposarcomas are aggressive mesenchymal cancers with poor outcomes that exhibit remarkable histologic diversity, with five recognized subtypes. Currently, the mainstay of therapy for liposarcoma is surgical excision since liposarcomas are often resistant to traditional chemotherapy. In light of the high mortality associated with liposarcoma and the lack of effective systemic therapy, we sought novel genomic alterations driving liposarcomagenesis that might serve as therapeutic targets. ZIC1, a critical transcription factor for neuronal development, is overexpressed in all five subtypes of liposarcoma compared with normal fat and in liposarcoma cell lines compared with adipose-derived stem cells (ASC). Here we show that ZIC1 contributes to the pathogenesis of liposarcoma. ZIC1 knockdown inhibits proliferation, reduces invasion, and induces apoptosis in dedifferentiated and myxoid/round cell liposarcoma cell lines, but not in either ASC or a lung cancer cell line with low ZIC1 expression. ZIC1 knockdown is associated with increased nuclear expression of p27 protein, and the down-regulation of pro-survival target genes: BCL2L13, JunD, Fam57A, and EIF3M. Our results demonstrate that ZIC1 expression is essential for liposarcomagenesis and that targeting ZIC1 or its downstream targets may lead to novel therapy for liposarcoma. PMID:20713527

  18. Overexpression of protein disulfide isomerase in Aspergillus.

    PubMed

    El-Adawi, H; Khanh, N Q; Gassen, H

    2000-10-01

    One of the major problems with the production of biotechnologically valuable proteins has been the purification of the product. For Escherichia coli and Saccharomyces cerevisiae, there are several techniques for the purification of intracellular proteins, but these are time consuming and often result in poor yields. Purification can be considerably facilitated, if the product is secreted from the host cell. In the work presented, we have constructed an expression vector (pSGNH2) for the secretion of protein disulfide isomerase (PDI; EC 5.3.4.1) from Aspergillus niger, in which the retention signal His-Asp-Glu-Leu (H-D-E-L) was modified to Ala-Leu-Glu-Gln (A-L-E-Q) via the polymerase chain reaction (PCR) method. The PDI gene was placed under the control of the A. oryzae alpha-amylase promoter. This expression vector was transformed into A. niger NRRL3, resulting in PDI secretion into the medium. The catalytic activity of overexpressed PDI from A. niger was indistinguishable from that of PDI isolated from bovine liver. With further strain improvement and optimization of culture conditions, it could be possible to raise the PDI production to the bioprocessing scale. PMID:10977899

  19. Frequent Nek1 overexpression in human gliomas.

    PubMed

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  20. Cooperation between Dmp1 Loss and Cyclin D1 Overexpression in Breast Cancer

    PubMed Central

    Zhu, Sinan; Mott, Ryan T.; Fry, Elizabeth A.; Taneja, Pankaj; Kulik, George; Sui, Guangchao; Inoue, Kazushi

    2014-01-01

    Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1–cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1–induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1+/+;MMTV-cyclin D1 and Dmp1+/+;MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer. PMID:23938323

  1. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation.

    PubMed

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-05-18

    The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  2. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  3. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements.

    PubMed

    Santos, Joana; Mesquita, Diana; Barros-Silva, João D; Jerónimo, Carmen; Henrique, Rui; Morais, António; Paulo, Paula; Teixeira, Manuel R

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease. PMID:26097883

  4. Astrocyte-Specific Overexpression of Nrf2 Protects Striatal Neurons from Mitochondrial Complex II Inhibition

    PubMed Central

    Calkins, Marcus J.; Vargas, Marcelo R.; Johnson, Delinda A.; Johnson, Jeffrey A.

    2010-01-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that is known to regulate a variety of cytoprotective genes through the antioxidant response element (ARE). This endogenous response is one of the major pathways by which cells are protected from xenobiotic or innate oxidative insults. Furthermore, in neural systems, astrocyte-specific activation of Nrf2 is known to protect neurons. In previous work, our laboratory found that Nrf2 protects from intrastriatal injections of the mitochondrial complex II inhibitor malonate. Here, we extend these results to show that multiple methods of astrocyte-specific Nrf2 overexpression provide protection from neurotoxicity in vivo. GFAP-Nrf2 transgenic mice are significantly more resistant to malonate lesioning. This outcome is associated with an increased basal resistance, but more so, an enhanced Nrf2 response to lesioning that attenuated the ensuing neurotoxicity. Furthermore, striatal transplantation of neuroprogenitor cells overexpressing Nrf2 that differentiate into astrocytes after grafting also significantly reduced malonate toxicity. Overall, these data establish that enhanced astrocytic Nrf2 response and Nrf2 preconditioning are both sufficient to protect from acute lesions from mitochondrial complex II inhibition. PMID:20211941

  5. Brain injury-induced proteolysis is reduced in a novel calpastatin overexpressing transgenic mouse

    PubMed Central

    Schoch, Kathleen M.; von Reyn, Catherine R.; Bian, Jifeng; Telling, Glenn C.; Meaney, David F.; Saatman, Kathryn E.

    2013-01-01

    The calpain family of calcium-dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α-spectrin, collapsin response mediator protein-2, and voltage-gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain-mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in TBI and neurodegenerative disorders. PMID:23305291

  6. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    PubMed

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  7. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements

    PubMed Central

    Santos, Joana; Mesquita, Diana; Barros-Silva, João D.; Jerónimo, Carmen; Henrique, Rui; Morais, António; Paulo, Paula; Teixeira, Manuel R.

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease. PMID:26097883

  8. PGC-1α overexpression protects against aldosterone-induced podocyte depletion: role of mitochondria

    PubMed Central

    Zhao, Min; Yuan, Yanggang; Bai, Mi; Ding, Guixia; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2016-01-01

    Growing evidence has shown that podocyte number is a critical determinant for the development of glomerulosclerosis and progressive renal failure. We previously reported that mitochondrial dysfunction (MtD) is an early event in podocyte injury. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is an important modulator of mitochondrial biogenesis. Here, we investigated the role of PGC-1α overexpression in podocyte depletion and the involvement of mitochondria in this process. Following chronic aldosterone (Aldo) infusion for 14 days, we observed a remarkable podocyte loss, podocyte phenotypic changes, and albuminuria in WT mice. However, all these abnormalities were significantly attenuated in PGC-1α transgenic mice. Next, we examined mitochondrial function in both genotypes with or without Aldo infusion. As expected, Aldo-induced MtD in glomeruli was markedly improved in PGC-1α transgenic mice. In vitro, Aldo induced podocyte detachment and phenotypic changes in line with MtD in dose- and time-dependent manners. Similarly, ethidium bromide, an inducer of MtD, mimicked Aldo effects on podocyte detachment and phenotypic alterations. Notably, overexpression of PGC-1α in podocytes entirely reversed Aldo-induced podocyte detachment, phenotypic changes, and MtD. Taken together, these findings demonstrate that PGC-1α protects against podocyte depletion and phenotypic changes possibly by maintaining normal mitochondrial function. PMID:26943584

  9. Overexpression of amyloid-β protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade.

    PubMed

    Bartley, Matthew G; Marquardt, Kristin; Kirchhof, Danielle; Wilkins, Heather M; Patterson, David; Linseman, Daniel A

    2012-01-01

    Aberrant processing of amyloid-β protein precursor (AβPP) into amyloid-β (Aβ) fragments underlies the formation of senile plaques in Alzheimer's disease (AD). Moreover, Aβ fragments, particularly Aβ(42), exert direct toxic effects within neurons including the induction of mitochondrial oxidative stress (MOS). Interestingly, individuals with Down syndrome (DS) frequently develop early onset AD as a major co-morbid phenotype. One hypothesis for AD associated with DS involves the overexpression of wild type (WT) AβPP protein, due to its location on chromosome 21. However, the mechanism by which the overexpression of WT AβPP might trigger MOS and induce cell death is presently unclear. Here we show that transient overexpression of DsRed2-tagged AβPP (WT) in CHO cells induces caspase-3 activation and nuclear fragmentation indicative of apoptosis. AβPP localizes to the mitochondrial fraction of transfected CHO cells and induces glutathione-sensitive opening of the mitochondrial permeability transition pore (mPTP) and cytochrome c release. MOS and intrinsic apoptosis induced by AβPP are significantly inhibited by co-expression of Bcl-2 or treatment with either glutathione or a pan-caspase inhibitor. The mPTP inhibitor, cyclosporin A, also significantly attenuates AβPP-induced apoptosis. AβPP-induced apoptosis is unaffected by a β-secretase inhibitor and is independent of detectable Aβ(42); however, a γ-secretase inhibitor significantly protects against AβPP overexpression, suggesting a possible role of the AβPP intracellular domain in cell death. These data indicate that overexpression of WT AβPP is sufficient to induce MOS and intrinsic apoptosis, suggesting a novel pro-oxidant role for AβPP at mitochondria which may be relevant in AD and DS disease pathologies. PMID:22133762

  10. PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice

    PubMed Central

    Zhao, Qingbin; Zhang, Junfang; Wang, Huifang

    2015-01-01

    Increasing evidences have accumulated that endothelial dysfunction is involved in the pathogenesis of hypertension. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) has been identified as an essential factor that protects against endothelial dysfunction in vascular pathologies. However, the functional role of PGC-1α in hypertension is not well understood. Using an adenovirus infection model, we tested the hypothesis that PGC-1α overexpression retards the progression of hypertension in deoxycorticosterone acetate (DOCA)-salt mice model through preservation of the function of endothelium. We first demonstrated that PGC-1α expression not only in conductance and resistance arteries but also in endothelial cells was decreased after DOCA-salt treatment. In PGC-1α adenovirus-infected mice, the elevation of blood pressure in DOCA-salt mice was attenuated, as determined using tail-cuff measurement. Furthermore, PGC-1α overexpression inhibited the decrease in nitric oxide (NO) generation and the increase in superoxide anion (O2−) production in DOCA-salt-treated mice, in parallel with improved endothelium-dependent relaxation. Rather than affecting endothelial NO synthase (eNOS) total expression and phosphorylation, PGC-1α significantly inhibited eNOS uncoupling, as evidenced by increased eNOS homodimerization, BH4 levels, GTP-cyclohydrolase 1 (GTPCH1) and dihydrofolate reductase (DHFR) expression and heat-shock protein (Hsp)90–eNOS interaction. Our findings demonstrate that PGC-1α overexpression preserves eNOS coupling, enhances NO generation, improves endothelium-dependent relaxation and thus lowers blood pressure, suggesting that up-regulation of PGC-1α may be a novel strategy to prevent and treat hypertension. PMID:26182379

  11. Ventilator-induced lung injury is reduced in transgenic mice that overexpress endothelial nitric oxide synthase.

    PubMed

    Takenaka, Kaori; Nishimura, Yoshihiro; Nishiuma, Teruaki; Sakashita, Akihiro; Yamashita, Tomoya; Kobayashi, Kazuyuki; Satouchi, Miyako; Ishida, Tatsuro; Kawashima, Seinosuke; Yokoyama, Mitsuhiro

    2006-06-01

    Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space. PMID:16399791

  12. Kidney-specific Overexpression of Sirt1 Protects against Acute Kidney Injury by Retaining Peroxisome Function

    PubMed Central

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Sueyasu, Keiko; Washida, Naoki; Tokuyama, Hirobumi; Tzukerman, Maty; Skorecki, Karl; Hayashi, Koichi; Itoh, Hiroshi

    2010-01-01

    Sirt1, a NAD-dependent protein deacetylase, is reported to regulate intracellular metabolism and attenuate reactive oxidative species (ROS)-induced apoptosis leading to longevity and acute stress resistance. We created transgenic (TG) mice with kidney-specific overexpression of Sirt1 using the promoter sodium-phosphate cotransporter IIa (Npt2) driven specifically in proximal tubules and investigated the kidney-specific role of Sirt1 in the protection against acute kidney injury (AKI). We also elucidated the role of number or function of peroxisome and mitochondria in mediating the mechanisms for renal protective effects of Sirt1 in AKI. Cisplatin-induced AKI decreased the number and function of peroxisomes as well as mitochondria and led to increased local levels of ROS production and renal tubular apoptotic cells. TG mice treated with cisplatin mitigated AKI, local ROS, and renal tubular apoptotic tubular cells. Consistent with these results, TG mice treated with cisplatin also exhibited recovery of peroxisome number and function, as well as rescued mitochondrial function; however, mitochondrial number was not recovered. Immunoelectron microscopic findings consistently demonstrated that the decrease in peroxisome number by cisplatin in wild type mice was restored in transgenic mice. In HK-2 cells, a cultured proximal tubule cell line, overexpression of Sirt1 rescued the cisplatin-induced cell apoptosis through the restoration of peroxisome number, although the mitochondria number was not restored. These results indicate that Sirt1 overexpression in proximal tubules rescues cisplatin-induced AKI by maintaining peroxisomes number and function, concomitant up-regulation of catalase, and elimination of renal ROS levels. Renal Sirt1 can be a potential therapeutic target for the treatment of AKI. PMID:20139070

  13. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    PubMed

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. PMID:16222706

  14. Sound attenuation in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Resa, P.; Montero de Espinosa, F.

    2013-02-01

    In this work, the attenuation of ultrasonic elastic waves propagating through magnetorheological (MR) fluids is analysed as a function of the particle volume fraction and the magnetic field intensity. Non-commercial MR fluids made with iron ferromagnetic particles and two different solvents (an olive oil based solution and an Araldite-epoxy) were used. Particle volume fractions of up to 0.25 were analysed. It is shown that the attenuation of sound depends strongly on the solvent used and the volume fraction. The influence of a magnetic field up to 212 mT was studied and it was found that the sound attenuation increases with the magnetic intensity until saturation is reached. A hysteretic effect is evident once the magnetic field is removed.

  15. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  16. NATURAL ATTENUATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    The protocol will simply describe in detail, with references and illustrations, the approach currently used by staff of the SPRD to evaluate natural attenuation of chlorinated solvents in ground water. Staff of SPRD, and staff of the Air Force Center for environmental excellence...

  17. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  18. Raf-kinase inhibitor protein attenuates microglia inflammation in an in vitro model of intracerebral hemorrhage.

    PubMed

    Wang, J; Du, J; Miao, C; Lian, H

    2016-01-01

    Microglia mediated neuroinflammation plays a crucial role in intracerebral hemorrhage (ICH). Raf kinase inhibitor protein (RKIP), a member of the phosphatidylethanolamine-binding protein (PEBP) family, is a negative regulator of inflammatory responses. However, the expression and anti-inflammatory effects of RKIP in microglia after ICH have not been reported. Therefore, in the current study, we investigated the effects of RKIP on inflammatory responses in erythrocyte lysate-treated BV2 microglia. Furthermore, we analyzed the detailed molecular mechanisms underlying the anti-inflammatory effects of RKIP in microglia. Our results showed that the expression level of RKIP was significantly decreased by erythrocyte lysate treatment in BV2 microglia. Overexpression of RKIP inhibited the production of pro-inflammatory molecules. In addition, overexpression of RKIP attenuated neuronal cell death induced by activated microglia. Moreover, RKIP suppressed the activation of NF-κB signaling pathway in erythrocyte lysis-treated BV2 cells. In conclusion, these data suggest that overexpression of RKIP attenuated microglia inflammation through inhibiting the NF-κB signaling pathway in erythrocyte lysis-treated BV2 cells. The present study provides evidence that RKIP may be used as an effective molecular target for the treatment of ICH. PMID:27262809

  19. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  20. [Overexpression of FKS1 to improve yeast autolysis-stress].

    PubMed

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing. PMID:26955712

  1. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  2. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

    PubMed Central

    Turner, Bradley J.; Alfazema, Neza; Sheean, Rebecca K.; Sleigh, James N.; Davies, Kay E.; Horne, Malcolm K.; Talbot, Kevin

    2014-01-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. PMID:24210254

  3. Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability

    PubMed Central

    Wang, Y.; Buggia-Prévot, V.; Zavorka, M. E.; Bleackley, R. C.; MacDonald, R. G.; Thinakaran, G.

    2015-01-01

    Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability. PMID:25939386

  4. Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-γ Disrupts Vascular Wall Structure and Function

    PubMed Central

    Kleinhenz, Jennifer M.; Murphy, Tamara C.; Pokutta-Paskaleva, Anastassia P.; Gleason, Rudolph L.; Lyle, Alicia N.; Taylor, W. Robert; Blount, Mitsi A.; Cheng, Juan; Yang, Qinglin; Sutliff, Roy L.; Hart, C. Michael

    2015-01-01

    Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE). Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis. PMID:26451838

  5. Drug target identification using a trypanosome overexpression library.

    PubMed

    Begolo, Daniela; Erben, Esteban; Clayton, Christine

    2014-10-01

    Elucidation of molecular targets is very important for lead optimization during the drug development process. We describe a direct method to find targets of antitrypanosomal compounds against Trypanosoma brucei using a trypanosome overexpression library. As proof of concept, we treated the library with difluoromethylornithine and DDD85646 and identified their respective targets, ornithine decarboxylase and N-myristoyltransferase. The overexpression library could be a useful tool to study the modes of action of novel antitrypanosomal drug candidates. PMID:25049244

  6. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide

    PubMed Central

    Dabral, Neha; Jain-Gupta, Neeta; Seleem, Mohamed N.; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2015-01-01

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice. PMID:26157707

  7. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  8. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    SciTech Connect

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  9. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  10. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. PMID:26218450

  11. Natural and enhanced attenuation of metals

    SciTech Connect

    Rouse, J.V.; Pyrih, R.Z.

    1996-12-31

    The ability of natural earthen materials to attenuate the movement of contamination can be quantified in relatively simple geochemical experiments. In addition, the ability of subsurface material to attenuate potential contaminants can be enhanced through modifications to geochemical parameters such as pH or redox conditions. Such enhanced geochemical attenuation has been demonstrated at a number of sites to be a cost-effective alternative to conventional pump and treat operations. This paper describes the natural attenuation reactions which occur in the subsurface, and the way to quantify such attenuation. It also introduces the concept of enhanced geochemical attenuation, wherein naturally-occurring geochemical reactions can be used to achieve in situ fixation. The paper presents examples where such natural and enhanced attenuation have been implemented as a part of an overall remedy.

  12. Tagging Strategies Strongly Affect the Fate of Overexpressed Caveolin-1

    PubMed Central

    Han, Bing; Tiwari, Ajit; Kenworthy, Anne K

    2015-01-01

    Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1. PMID:25639341

  13. Ubiquilin-1 Overexpression Increases the Lifespan and Delays Accumulation of Huntingtin Aggregates in the R6/2 Mouse Model of Huntington's Disease

    PubMed Central

    Chang, Lydia; Terrillion, Chantelle E.; Gould, Todd D.; Boehning, Darren F.; Monteiro, Mervyn J.

    2014-01-01

    Huntington's Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice. PMID:24475300

  14. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.

    PubMed

    Hu, Jianzhong; Lang, Ye; Zhang, Tao; Ni, Shuangfei; Lu, Hongbin

    2016-07-22

    Peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) is a crucial neuronal regulator in the brain. However, its role in the spinal cord and the underlying regulating mechanisms remain poorly understood. Our previous study demonstrated that PGC-1α is significantly down-regulated following acute spinal cord injury (SCI) in rats. The current study aimed to explore the effects of PGC-1α overexpression on the injured spinal cord by establishing a contusive SCI model in adult Sprague-Dawley rats, followed by immediate intraspinal injection of lentiviral vectors at rostral and caudal sites 3mm from the lesion epicenter. Hindlimb motor function was monitored using the Basso-Beattie-Bresnahan Locomotor Rating Scale (BBB scores), and cords were collected. Transfection efficiency analysis showed that lentivirus successfully induced enhanced PGC-1α expression. This resulted in attenuated apoptotic changes and a greater number of surviving spinal neurons, as determined by transmission electron microscopy and Nissl staining, respectively. Western blot and immunofluorescence analyses revealed increased growth-associated protein 43 and 5-hydroxytryptamine expression, two key markers of axonal regeneration. Importantly, BBB scores showed improved hindlimb motor functional recovery. Moreover, quantitative real-time polymerase chain reaction analysis demonstrated significantly inhibited RhoA, ROCK1, and ROCK2 mRNA expression, revealing a potential mechanism of PGC-1α overexpression following traumatic SCI. Altogether, these results suggest that gene delivery of PGC-1α exerts a significant neuroprotective effect following traumatic SCI, which could serve as a promising treatment for repair of the injured cord, and RhoA-ROCK pathway inhibition may partially underlie this neuroprotection. PMID:27132229

  15. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    SciTech Connect

    Park, Choa; Lee, YoungJoo

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  16. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    PubMed

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  17. Differences between normal and alpha-synuclein overexpressing SH-SY5Y neuroblastoma cells after Abeta(1-42) and NAC treatment.

    PubMed

    Hunya, Akos; Földi, István; Szegedi, Viktor; Soós, Katalin; Zarándi, Márta; Szabó, Antal; Zádori, Dénes; Penke, Botond; Datki, Zsolt L

    2008-03-28

    Alpha-synuclein (alphaSN) plays a major role in numerous neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Intracellular inclusions containing aggregated alphaSN have been reported in Alzheimer's and Parkinson's affected brains. Moreover, a proteolytic fragment of alphaSN, the so-called non-amyloid component of Alzheimer's disease amyloid (NAC) was found to be an integral part of Alzheimer's dementia related plaques. Despite the extensive research on this topic, the exact toxic mechanism of alphaSN remains elusive. We have taken the advantage of an alphaSN overexpressing SH-SY5Y cell line and investigated the effects of classical apoptotic factors (e.g. H(2)O(2), amphotericin B and ruthenium red) and aggregated disease-related peptides on cell viability compared to wild type neuroblastoma cells. It was found that alphaSN overexpressing cells are more sensitive to aggregated peptides treatment than normal expressing counterparts. In contrast, cells containing elevated amount of alphaSN were less vulnerable to classical apoptotic stressors than wild type cells. In addition, alphaSN overexpression is accompanied by altered phenotype, attenuated proliferation kinetics, increased neurite arborisation and decreased cell motility. Based on these results, the alphaSN overexpressing cell lines may represent a good and effective in vitro model for Alzheimer's and Parkinson's disease. PMID:18355641

  18. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  19. Imaging Rayleigh wave attenuation with USArray

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang

    2016-07-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave traveltime and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the traveltime field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.

  20. Imaging Rayleigh wave attenuation with USArray

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang

    2016-04-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface-wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave travel time and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the travel-time field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.

  1. PPARα and PPARγ protect against HIV-1-induced MMP-9 overexpression via caveolae-associated ERK and Akt signaling

    PubMed Central

    Huang, Wen; András, Ibolya E.; Rha, Geun Bae; Hennig, Bernhard; Toborek, Michal

    2011-01-01

    Activation of matrix metalloproteinase-9 (MMP-9) is involved in HIV-1-induced disruption of the blood-brain barrier (BBB). In the present study, we hypothesize that peroxisome proliferator-activated receptor (PPAR)-α or PPARγ can protect against HIV-1-induced MMP-9 overexpression in brain endothelial cells (hCMEC cell line) by attenuating cellular oxidative stress and down-regulation of caveolae-associated redox signaling. Exposure to HIV-1-infected monocytes induced phosphorylation of ERK1/2 and Akt in hCMEC by 2.5- and 3.6-fold, respectively; however, these effects were attenuated by overexpression of PPARα or PPARγ and by silencing of caveolin-1 (cav-1). Coculture of hCMEC with HIV-1-infected monocytes significantly induced MMP-9 promoter and enzyme activity by 3- to 3.5-fold. Promoter mutation studies indicated that SP-1 (g1940t_g1941t) is an essential transcription factor involved in induction of MMP-9 promoter by HIV-1. In addition, HIV-1-stimulated activity of MMP-9 promoter was inhibited by mutation of AP-1 site 2 (c1918t_a1919g) and both (but not individual) NF-κB binding sites (g1389c and g1664c). PPAR overexpression, ERK1/2 or Akt inhibition, and silencing of cav-1 all effectively protected against HIV-1-induced MMP-9 promoter activity, indicating a close relationship among HIV-1-induced cerebrovascular toxicity, redox-regulated mechanisms, and functional caveolae. Such a link was further confirmed in MMP-9-deficient mice exposed to PPARα or PPARγ agonist and injected with the HIV-1-specific protein Tat into cerebral vasculature. Overall, our results indicate that ERK1/2, Akt, and cav-1 are involved in the regulatory mechanisms of PPAR-mediated protection against HIV-1-induced MMP-9 expression in brain endothelial cells.—Huang, W., András, I. E., Rha, G. B., Hennig, B., Toborek, M. PPARα and PPARγ protect against HIV-1-induced MMP-9 overexpression via caveolae-associated ERK and Akt signaling. PMID:21840940

  2. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    SciTech Connect

    Guo Yanhong; Chen Kuanghueih; Gao Wei; Li Qian; Chen Li; Wang Guisong Tang Jian

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% and 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.

  3. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  4. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury.

    PubMed

    Yao, Li; Lv, Xin; Wang, Xiaohua

    2016-05-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. MicroRNA 26a (Mir-26a) plays important roles in cellular differentiation, cell growth, cell apoptosis and metastasis. Mir-26a has been demonstrated to modulate regulatory T cells expansion and attenuates renal IR injury. However, the role of Mir-26a in the cardiac IR injury has never been investigated. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 hours and then transplanted into syngeneic recipients. The results demonstrate a crucial role for Mir-26a in inhibiting high mobility group box-1 (HMGB1) expression and attenuating cardiac IR injury. Mir-26a overexpression results in attenuated cardiac IR injury and inhibited HMGB1 expression. Mir-26a also inhibits inflammatory cells infiltration and cytokines expression. Furthermore, the attenuated cardiac IR injury induced by Mir-26a was abrogated by additional administration of recombinant HMGB1 (rHMGB1). In conclusion, Mir-26a plays a protective role in cardiomyocyte IR injury and this is associated with inhibited HMGB1 expression. PMID:26320674

  5. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis

    PubMed Central

    Chen, Zhiqi; Yu, Kai; Zhu, Fang; Gorczynski, Reginald

    2016-01-01

    Background and aim CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD). Methods Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA. Results CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection. Conclusions The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice. PMID:26841120

  6. Aldo-keto Reductase 1C3 (AKR1C3) is overexpressed in skin squamous cell carcinoma (SCC) and affects SCC growth via prostaglandin metabolism

    PubMed Central

    Mantel, Alon; Carpenter-Mendini, Amanda; VanBuskirk, JoAnne; Pentland, Alice P.

    2014-01-01

    Aldo-keto reductase 1C3 (AKR1C3) is an enzyme involved in metabolizing prostaglandins (PGs) and sex hormones. It metabolizes PGD2 to 9α11β-PGF2, diverting the spontaneous conversion of PGD2 to the PPARγ agonist, 15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2). AKR1C3 is overexpressed in various malignancies, suggesting a tumor promoting function. This work investigates AKR1C3 expression in human non-melanoma skin cancers, revealing overexpression in squamous cell carcinoma (SCC). Effects of AKR1C3 overexpression were then evaluated using 3 SCC cell lines. AKR1C3 was detected in all SCC cell lines and its expression was upregulated in response to its substrate, PGD2. Although attenuating AKR1C3 expression in SCC cells by siRNA did not affect growth, treatment with PGD2 and its dehydration metabolite, 15d-PGJ2, decreased SCC proliferation in a PPARγ-dependent manner. In addition, treatment with the PPARγ agonist pioglitazone profoundly inhibited SCC proliferation. Finally, we generated an SCC cell line that stably overexpressed AKR1C3 (SCC-AKR1C3). SCC-AKR1C3 metabolized PGD2 to 9α11β-PGF2 12 fold faster than the parent cell line and was protected from the anti-proliferative effect mediated by PGD2. This work suggests that PGD2 and its metabolite 15d-PGJ2 attenuate SCC proliferation in a PPARγ-dependent manner, therefore activation of PPARγ by agonists such as Pioglitazone may benefit those at high risk of SCC. PMID:24917395

  7. Calculation Of Pneumatic Attenuation In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  8. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  9. Global Attenuation Model of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2015-12-01

    We present a three-dimensional shear attenuation model based on a massive surface wave data-set (372,629 Rayleigh waveforms analysed in the period range 50-300s by Debayle and Ricard, 2012). For each seismogram, this approach yields depth-dependent path average models of shear velocity and quality factor, and a set of fundamental and higher-mode dispersion and attenuation curves. We combine these attenuation measurements in a tomographic inversion after a careful rejection of the noisy data. We first remove data likely to be biased by a poor knowledge of the source. Then we assume that waves corresponding to events having close epicenters and recorded at the same station sample the same elastic and anelastic structure, we cluster the corresponding rays and average the attenuation measurements. Logarithms of the attenuations are regionalized using the non-linear east square formalism of Tarantola and Valette (1982), resulting in attenuation tomographic maps between 50s and 300s. After a first inversion, outlyers are rejected and a second inversion yields a moderate variance reduction of about 20%. We correct the attenuation curves for focusing effect using the linearized ray theory of Woodhouse and Wong (1986). Accounting for focussing effects allows building tomographic maps with variance reductions reaching 40%. In the period range 120-200s, the root mean square of the model perturbations increases from about 5% to 20%. Our 3-D attenuation models present strong agreement with surface tectonics at period lower than 200s. Areas of low attenuation are located under continents and areas of high attenuation are associated with oceans. Surprisingly, although mid oceanic ridges are located in attenuating regions, their signature, even if enhanced by focusing corrections, remains weaker than in the shear velocity models. Synthetic tests suggests that regularisation contributes to damp the attenuation signature of ridges, which could therefore be underestimated.

  10. Brain Phenotype of Transgenic Mice Overexpressing Cystathionine β-Synthase

    PubMed Central

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P.; Patterson, David; Kruger, Warren D.; Delabar, Jean M.; London, Jaqueline

    2012-01-01

    Background The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Methodology/Principal Findings Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. Conclusion/Significance We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS. PMID:22253703

  11. Overexpression, Purification, Characterization, and Pathogenicity of Vibrio harveyi Hemolysin VHH

    PubMed Central

    Zhong, Yingbin; Zhang, Xiao-Hua; Chen, Jixiang; Chi, Zhenghao; Sun, Boguang; Li, Yun; Austin, Brian

    2006-01-01

    Vibrio harveyi VHH hemolysin is a putative pathogenicity factor in fish. In this study, the hemolysin gene vhhA was overexpressed in Escherichia coli, and the purified VHH was characterized with regard to pH and temperature profiles, phospholipase activity, cytotoxicity, pathogenicity to flounder, and the signal peptide. PMID:16988279

  12. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy.

    PubMed

    Dong, Wen-Qian; Chao, Min; Lu, Qing-Hua; Chai, Wei-Li; Zhang, Wei; Chen, Xue-Ying; Liang, Er-Shun; Wang, Ling-Bo; Tian, Hong-Liang; Chen, Yu-Guo; Zhang, Ming-Xiang

    2016-01-01

    Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM. PMID:26623724

  13. Overexpression of Dlx2 leads to postnatal condyle degradation

    PubMed Central

    Dai, Jiewen; Si, Jiawen; Zhu, Xiaofang; Zhang, Lei; Wu, Dandan; Lu, Jingting; Ouyang, Ningjuan; Wang, Xudong; Shen, Guofang

    2016-01-01

    Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies. PMID:27315306

  14. Laboratory and field studies of guayule modified to overexpress HMGR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the genetic modification of guayule to overexpress the isoprenoid pathway enzyme HMGR. The rubber content of two-month old in vitro transformed plantlets showed a 65% increase in rubber over the control for one line (HMGR6), and lower resin for another (HMGR2). In field evaluations HMGR6...

  15. Moesin overexpression is a unique biomarker of adenomyosis.

    PubMed

    Ohara, Rena; Michikami, Hiroo; Nakamura, Yuko; Sakata, Akiko; Sakashita, Shingo; Satomi, Kaishi; Shiba-Ishii, Aya; Kano, Junko; Yoshikawa, Hiroyuki; Noguchi, Masayuki

    2014-03-01

    Adenomyosis is characterized by extension of endometrial glands and stromal cells into the myometrium. Here we proved that 'moesin' is a unique biomarker of adenomyosis. We selected two cases of adenomyosis that had been surgically resected and fixed with formalin. Proteins were extracted from the infiltrating adenomyosis lesions and normal endometrium by tissue microdissection. The extracted proteins were examined using a LC-MS/MS system and the expression profiles of each region were compared. Two hundred and sixty proteins were detected, among which 73 were expressed more in adenomyosis than in normal endometrium. Among these proteins, we focused on overexpression of moesin in adenomyosis. Expression of moesin estimated semiquantitatively using an immunohistochemistry score was higher in adenomyosis than in normal endometrium. In particular, moesin was significanly overexpressed in stromal cells of adenomyosis than in those of normal endometrium. Relative to normal endometrium, moesin was also overexpressed at the RNA level in 9 of 14 cases of adenomyosis and at the protein level in all 14 cases. We also detected activated (phosphorylated) moesin in adenomyosis lesions. The present findings suggest that moesin is characteristically overexpressed and activated in adenomyosis, and that moesin activation may be related to extension of adenomyosis in the myometrium. PMID:24698421

  16. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy

    PubMed Central

    Dong, Wen-qian; Chao, Min; Lu, Qing-hua; Chai, Wei-li; Zhang, Wei; Chen, Xue-ying; Liang, Er-shun; Wang, Ling-bo; Tian, Hong-liang; Chen, Yu-guo; Zhang, Ming-xiang

    2016-01-01

    Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal–regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM. PMID:26623724

  17. Differential dust attenuation in CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Cid Fernandes, R.; Amorim, A. L.; Lacerda, E. A. D.; Schlickmann, M.; Wild, V.; Kennicutt, R. C.

    2016-06-01

    Dust attenuation has long been treated as a simple parameter in SED fitting. Real galaxies are, however, much more complicated: The measured dust attenuation is not a simple function of the dust optical depth, but depends strongly on galaxy inclination and the relative distribution of stars and dust. We study the nebular and stellar dust attenuation in CALIFA galaxies, and propose some empirical recipes to make the dust treatment more realistic in spectral synthesis codes. By adding optical recombination emission lines, we find better constraints for differential attenuation. Those recipes can be applied to unresolved galaxy spectra, and lead to better recovered star formation rates.

  18. Atmospheric attenuation calibrations of surface weather observations

    NASA Technical Reports Server (NTRS)

    Sanii, Babak

    2001-01-01

    A correlation between near-IR atmospheric attenuation measurements made by the Atmospheric Visibility Monitor (AVM) at the Table Mountain Facility and airport surface weather observations at Edwards Air Force Base has been performed. High correlations (over 0.93) exist between the simultaneous Edwards observed sky cover and the average AVM measured attenuations over the course of the 10 months analyzed. The statistical relationship between the data-sets allows the determination of coarse attenuation statistics from the surface observations, suggesting that such statistics may be extrapolated from any surface weather observation site, Furthermore, a superior technique for converting AVM images to attenuation values by way of MODTRAN predictions has been demonstrated.

  19. Underwing compression vortex attenuation device

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1993-01-01

    A vortex attenuation device is presented which dissipates a lift-induced vortex generated by a lifting aircraft wing. The device consists of a positive pressure gradient producing means in the form of a compression panel attached to the lower surface of the wing and facing perpendicular to the airflow across the wing. The panel is located between the midpoint of the local wing cord and the trailing edge in the chord-wise direction and at a point which is approximately 55 percent of the wing span as measured from the fuselage center line in the spanwise direction. When deployed in flight, this panel produces a positive pressure gradient aligned with the final roll-up of the total vortex system which interrupts the axial flow in the vortex core and causes the vortex to collapse.

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  1. Genetic Manipulation of Homologous Recombination In Vivo Attenuates Intestinal Tumorigenesis.

    PubMed

    McIlhatton, Michael A; Murnan, Kevin; Carson, Daniel; Boivin, Gregory P; Croce, Carlo M; Groden, Joanna

    2015-07-01

    Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of Apc(Min/+) and Apc(Min/+);Msh2(-/-) mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our Apc(Min/) (+) model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in Apc(Min/) (+);Msh2(-/-) mice. We used the pink-eyed unstable (p(un)) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP. PMID:25908507

  2. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    PubMed

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. PMID:27329802

  3. Endoglin overexpression mediates gastric cancer peritoneal dissemination by inducing mesothelial cell senescence.

    PubMed

    Miao, Zhi-Feng; Wu, Jian-Hua; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Hui-Mian; Song, Yong-Xi; Xing, Ya-Nan; Huang, Jin-Yu; Zhang, Jun-Yan; Liu, Xing-Yu; Xu, Hao; Xu, Ying-Ying

    2016-05-01

    Peritoneal dissemination (PD), which is highly frequent in gastric cancer (GC) patients, is the main cause of death in advanced GC. Senescence of human peritoneal mesothelial cells (HPMC) may contribute to GC peritoneal dissemination (GCPD). In this study of 126 patients, we investigated the association between Endoglin expression in GC peritoneum and the clinicopathological features. The prognosis of patients was evaluated according to Endoglin and ID1 expression. In vitro, GC cell (GCC)-HPMC coculture was established. Endoglin and ID1 expression was evaluated by Western blot. Cell cycle and HPMC senescence were analyzed after harvesting HPMC from the coculture. GCC adhesion and invasion to HPMC were also assayed. Our results showed that positive staining of Endoglin (38%) was associated with a higher TNM stage and higher incidence of GCPD (both P < .05). Kaplan-Meier analysis showed that the patients who were Endoglin positive had a shorter survival time compared with Endoglin-negative patients (P = .02). Using the HPMC and GCC adherence and invasion assay, we demonstrated that transforming growth factor beta 1 (TGF-β)1-induced HPMC senescence was attenuated by silencing the Endoglin expression, which also prevented GCC attachment and invasion. Our study indicated a positive correlation between Endoglin overexpression and GCPD. Up-regulated Endoglin expression induced HPMC senescence via TGF-β1 pathway. The findings suggest that Endoglin-induced HPMC senescence may contribute to peritoneal dissemination of GCCs. PMID:27067789

  4. Overexpression of Ste20-related proline/alanine-rich kinase exacerbates experimental colitis in mice.

    PubMed

    Yan, Yutao; Laroui, Hamed; Ingersoll, Sarah A; Ayyadurai, Saravanan; Charania, Moiz; Yang, Stephen; Dalmasso, Guillaume; Obertone, Tracy S; Nguyen, Hang; Sitaraman, Shanthi V; Merlin, Didier

    2011-08-01

    Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease. PMID:21705622

  5. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  6. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes.

    PubMed

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  7. Docking-mechanism attenuator with electromechanical damper

    NASA Technical Reports Server (NTRS)

    Syromyatnikov, V. S.

    1971-01-01

    Theoretical and practical problems involved in the application of electromechanical damping for spacecraft docking-mechanism attenuation are discussed. Some drawbacks of hydraulic dampers used for the purpose are pointed out. The basic scheme of the attenuator with the electromechanical damper is given.

  8. Relating P-wave attenuation to permeability

    SciTech Connect

    Akbar, N.; Dvorkin, J.; Nur, A. . Dept. of Geophysics)

    1993-01-01

    To relate P-wave attenuation to permeability, the authors examine a three-dimensional (3-D) theoretical model of a cylindrical pore filled with viscous fluid and embedded in an infinite isotropic elastic medium. They calculate both attenuation and permeability as functions of the direction of wave propagation. Attenuation estimates are based on the squirt flow mechanism; permeability is calculated using the Kozeny-Carmen relation. They find that in the case when a plane P-wave propagates parallel to this orientation (Q[sup [minus]1][delta] = 90[degree]), attenuation is always higher than when a wave propagates parallel to this orientation (Q[sup [minus]1][delta] = 0[degree]). The ratio of these two attenuation values Q[sup [minus]1][delta] = 90[degree]/Q[sup [minus]1] = 0[degree] increases with an increasing pore radius and decreasing frequency and saturation. By changing permeability, varying the radius of the pore, they find that the permeability-attenuation relation is characterized by a peak that shifts toward lower permeabilities as frequency decreases. Therefore, the attenuation of a low-frequency wave decreases with increasing permeability. They observe a similar trend on relations between attenuation and permeability experimentally obtained on sandstone samples.

  9. Seismic attenuation anisotropy in reservoir sedimentary rocks

    SciTech Connect

    Best, A.I.

    1994-12-31

    Seismic attenuation is a fundamental property of reservoir sedimentary rocks; it is strongly related to reservoir permeability. Knowledge of its variation with lithology, with burial depth, and with wave propagation direction is vital for understanding the attenuation mechanism. Given this information, realistic theoretical models may be constructed for predicting attenuation, and hence permeability, over a wide frequency range. Accurate ultrasonic attenuation measurements were made in the laboratory over a range of effective pressures on sandstone samples with different amounts of humic organic matter. The organic matter formed fine laminations along the bedding planes of the sandstones. The results show that the sandstones are highly attenuating at 5 MPa mainly because of the presence of grain contact microcracks giving rise to squirt flow; at 40 MPa, when most of the microcracks are closed, the clean sandstones are poorly attenuating, but the organic-rich sandstones remain highly attenuating. It is postulated that the compliant organic matter is responsible for causing squirt flow at high and at low pressures. The results also show that the maximum attenuation occurs when the particle motion of the propagating wave is perpendicular to the planes of the organic matter laminations. These results are consistent with the squirt flow theory of Akbar et al (1993) for compressional waves.

  10. Attenuation Relationship of Arias Intensity for Taiwan

    NASA Astrophysics Data System (ADS)

    Sung, C.; Hsieh, P.; Lin, P.; Lee, C.

    2008-12-01

    Arias intensity (AI) reflects the complete acceleration time history duration of ground vibrations. It correlates well with several commonly used demand measure of structural performance, liquefaction, and seismic slope stability. A good attenuation equation can reflect the characteristics of the ground-motion attenuation for a region, and can be used to predict the ground-motion value of a specific site for seismic resistance design. This study analyzed two local empirical attenuation relationships, one for the crustal earthquakes and the other for the subduction zone earthquakes, based on the strong ground-motion data from TSMIP and SMART1 array in Taiwan. Maximum likelihood method and mixed-effect model were used with non-linear regression analyses to determine coefficients. The result shows that adding terms of Vs30 and focal mechanism can effectively reduce the standard deviation in the attenuation models. To compare with other AI attenuation equations, the AI value predicted by our crustal earthquake attenuation equation is higher in the near field and is lower in the far field than the researches in other regions. The subduction zone earthquake attenuation equation predicts higher AI value than the crustal earthquake attenuation equation does.

  11. LONG TERM MONITORING FOR NATURAL ATTENUATION

    EPA Science Inventory

    We have good statistical methods to: (1) determine whether concentrations of a contaminant are attenuating over time, (2) determine the rate of attenuation and confidence interval on the rate, and (3) determine whether concentrations have met a particular clean up goal. We do no...

  12. Underwing Compression Vortex-Attenuation Device

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.

    1994-01-01

    Underwing compression vortex-attenuation device designed to provide method for attenuating lift-induced vortex generated by wings of airplane. Includes compression panel attached to lower surface of wing, facing perpendicular to streamwise airflow. Concept effective on all types of aircraft. Causes increase in wing lift rather than reduction when deployed. Device of interest to aircraft designers and enhances air safety in general.

  13. Attenuation coefficients for water quality trading.

    PubMed

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio. PMID:24866482

  14. Hepcidin induction by transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but does require hemojuvelin

    PubMed Central

    Andrews, Nancy C.; Fleming, Mark D.

    2010-01-01

    Mutations in HFE cause the most common form of hereditary hemochromatosis (HH). We previously showed that liver-specific, transgenic overexpression of murine Hfe stimulates production of the iron regulatory hormone hepcidin. Here, we developed several additional transgenic mouse strains to further interrogate the structural basis of HFE function in the pathophysiology of HH. We hypothesized that the small, cytoplasmic domain of HFE might be necessary for HFE-mediated induction of hepcidin. We demonstrate that, like the full-length protein, overexpression of Hfe proteins lacking the cytoplasmic domain leads to hepcidin induction, iron deficiency and a hypochromic, microcytic anemia. However, high-level expression of a liver-specific Hfe transgene carrying the mouse equivalent of the common HFE C282Y human disease-causing mutation (murine C294Y) did not cause iron deficiency. Furthermore, hepcidin induction by transgenes encoding both WT Hfe and Hfe lacking its cytoplasmic domain is greatly attenuated in the absence of hemojuvelin (Hjv). Our observations indicate that the extracellular and transmembrane domains of Hfe are sufficient, and Hjv is essential, for Hfe-mediated induction of hepcidin expression. PMID:20837779

  15. Arylsulfatase B Mediates the Sulfonation-Transport Interplay in Human Embryonic Kidney 293 Cells Overexpressing Sulfotransferase 1A3.

    PubMed

    Zhao, Mengjing; Wang, Shuai; Li, Feng; Dong, Dong; Wu, Baojian

    2016-09-01

    Elucidating the intricate relationships between metabolic and transport pathways contributes to improved predictions of in vivo drug disposition and drug-drug interactions. Here we reported that inhibited excretion of conjugative metabolites [i.e., hesperetin 3'-O-sulfate (H3'S) and hesperetin 7-O-sulfate (H7S)] by MK-571 led to reduced metabolism of hesperetin (a maximal 78% reduction) in human embryonic kidney 293 cells overexpressing sulfotransferase 1A3 (named SULT293 cells). The strong dependence of cellular sulfonation on the efflux transport of generated sulfated metabolites revealed an interplay of sulfonation metabolism with efflux transport (or sulfonation-transport interplay). Polymerase chain reaction (PCR) and Western blot analyses demonstrated that SULT293 cells expressed multiple sulfatases such as arylsulfatase A (ARSA), ARSB, and ARSC. Of these three desulfonation enzymes, only ARSB showed significant activities toward hesperetin sulfates. The intrinsic clearance values for the hydrolysis of H3'S and H7S were estimated at 0.6 and 0.5 μl/h/mg, respectively. Furthermore, knockdown of ARSB attenuated the regulatory effect of efflux transporter on cellular sulfonation, whereas overexpression of ABSB enhanced the transporter effect. Taken together, the results indicated that ARSB mediated the sulfonation-transport interplay in SULT293 cells. PMID:27325375

  16. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation.

    PubMed

    Morris, Michael W; Allukian, Myron; Herdrich, Benjamin J; Caskey, Robert C; Zgheib, Carlos; Xu, Junwang; Dorsett-Martin, Wanda; Mitchell, Marc E; Liechty, Kenneth W

    2014-01-01

    Wound size impacts the threshold between scarless regeneration and reparative healing in the fetus with increased inflammation showed in fetal scar formation. We hypothesized that increased fetal wound size increases pro-inflammatory and fibrotic genes with resultant inflammation and fibroplasia and that transition to scar formation could be reversed by overexpression of interleukin-10 (IL-10). To test this hypothesis, 2-mm and 8-mm dermal wounds were created in mid-gestation fetal sheep. A subset of 8-mm wounds were injected with a lentiviral vector containing the IL-10 transgene (n = 4) or vehicle (n = 4). Wounds were harvested at 3 or 30 days for histology, immunohistochemistry, analysis of gene expression by microarray, and validation with real-time polymerase chain reaction. In contrast to the scarless 2-mm wounds, 8-mm wounds showed scar formation with a differential gene expression profile, increased inflammatory cytokines, decreased CD45+ cells, and subsequent inflammation. Lentiviral-mediated overexpression of the IL-10 gene resulted in conversion to a regenerative phenotype with decreased inflammatory cytokines and regeneration of dermal architecture. In conclusion, increased fetal wounds size leads to a unique gene expression profile that promotes inflammation and leads to scar formation and furthermore, these results show the significance of attenuated inflammation and IL-10 in the transition from fibroplasia to fetal regenerative healing. PMID:24844340

  17. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway.

    PubMed

    Chen, Shaoqin; Chen, Wei; Zhang, Xiang; Lin, Suyong; Chen, Zhihua

    2016-04-01

    Metastasis of colorectal cancer (CRC) depends critically on MMP-9. KiSS-1 is a human malignant melanoma metastasis-suppressor gene. Thus, the interaction between MMP-9 and KiSS-1 has drawn considerable attention in recent years. In the present study, it was hypothesized that KiSS-1 gene could repress the metastatic potential of colorectal cancer cells by inhibiting the expression of MMP-9. Stable transfection of KiSS-1 specific siRNA and KiSS-1 expression vector in human CRC cell line HCT-116 was achieved by lentivirus infection. Moreover, the cell proliferation, invasiveness, and apoptosis were evaluated by CCK-8 method, transwell experiment, and fluorescence activated cell sorter, respectively. We also investigated the expression of MMP-9, PI3K, Akt, pAKt, and NF-кB subunit p65 using western blotting. KiSS-1 overexpression significantly decreased the cell proliferation and invasiveness of HCT-119 cells, while apoptosis was enhanced. The result of western blotting showed that synthesis of MMP-9, PI3K, p65, and phosphorylation of Akt were significantly blocked by overexpression of KiSS-1. Concatenated treatment of KiSS-1 overexpression vector with PI3K and Akt agonists attenuated the effect of KiSS-1 on the biological activity of CRC cells and also released the expression of MMP-9, PI3K, p65, and phosphorylation of Akt from the influence of overexpression of KiSS-1. Overexpression of KiSS-1 suppressed the invasiveness of CRC cells, and the gene exerted its function by reducing the expression of MMP-9 via blocking of tge PI3K/Akt/NF-κB pathway. PMID:26847533

  18. Overexpression of protein kinase C ɛ improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction

    PubMed Central

    He, H; Zhao, Z-H; Han, F-S; Liu, X-H; Wang, R; Zeng, Y-J

    2016-01-01

    We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI. PMID:26775707

  19. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death.

    PubMed

    Ngoh, Gladys A; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P

    2009-11-01

    We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc signaling could attenuate ER stress-induced cell death per se. Before induction of ER stress (with tunicamycin or brefeldin A), we adenovirally overexpressed O-GlcNAc transferase (AdOGT) or pharmacologically inhibited O-GlcNAcase [via O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate] to augment O-GlcNAc levels or adenovirally overexpressed O-GlcNAcase to reduce O-GlcNAc levels. AdOGT significantly (P < 0.05) attenuated the activation of the maladaptive arm of the unfolded protein response [according to C/EBP homologous protein (CHOP) activation] and cardiomyocyte death (reflected by percent propidium iodide positivity). Moreover, pharmacological inhibition of O-GlcNAcase significantly (P < 0.05) mitigated ER stress-induced CHOP activation and cardiac myocyte death. Interestingly, overexpression of GCA did not alter ER stress markers but exacerbated brefeldin A-induced cardiomyocyte death. We conclude that enhanced O-GlcNAc signaling represents a partially proadaptive response to reduce ER stress-induced cell death. These results provide new insights into a possible interaction between O-GlcNAc signaling and ER stress and may partially explain a mechanism of O-GlcNAc-mediated cardioprotection. PMID:19734355

  20. A20 Attenuates FFAs-induced Lipid Accumulation in Nonalcoholic Steatohepatitis

    PubMed Central

    Ai, Luoyan; Xu, Qingqing; Wu, Changwei; Wang, Xiaohan; Chen, Zhiwei; Su, Dazhi; Jiang, Xiaoke; Xu, Antao; Lin, Qing; Fan, Zhuping

    2015-01-01

    A20 is a ubiquitin-editing enzyme that attenuates the activity of proximal signaling complexes at pro-inflammatory receptors. It has been well documented that A20 protein plays an important role in response to liver injury and hepatocytes apoptosis in pro-inflammatory pathways. However, there was little evidence showing that A20 protein was involving in fatty-acid homeostasis except the up-regulation of two fatty acid metabolism regulatory genes at mRNA level (PPARa and CPT1a) by adenovirus-mediated A20 protein overexpression. In this study we found that: 1) the expression level of A20 protein was significantly higher in the steatotic liver from MCD-fed mice than the controls; 2) Overexpression of A20 protein suppressed FFAs-stimulated triglyceride deposition in HepG2 cells while under expression of A20 protein increased FFAs-stimulated triglyceride deposition; 3) Overexpression of A20 protein in HepG2 cells upregulated genes that promote β-oxidation and decreased the mRNA levels of key lipogenic genes such as fatty acid synthase (FAS), indicating A20 function as anti-steatotic factor by the activation of mitochondrial β-oxidation and attenuation of de novo lipogenesis; 4) Nonalcoholic steatohepatitis (NASH) patients showed significantly higher A20 expression level in liver compared with control individuals. Our results demonstrated that A20 protein plays an important role in fatty-acid homeostasis in human as well as animals. In addition, our data suggested that the pathological function of A20 protein in hepatocyte from lipotoxicity to NASH is by the alleviation of triglyceride accumulation in hepatocytes. Elevated expression of A20 protein could be a potential therapeutic strategy for preventing the progression of nonalcoholic steatohepatitis. PMID:26681923

  1. Overexpression of esterase D in kidney from trisomy 13 fetuses

    SciTech Connect

    Loughna, S.; Moore, G. ); Gau, G.; Blunt, S. ); Nicolaides, K. )

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  2. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells.

    PubMed

    De, Sarmishtha; Cipriano, Rocky; Jackson, Mark W; Stark, George R

    2009-10-15

    Resistance to chemotherapy remains a major barrier to the successful treatment of cancer. To understand mechanisms underlying docetaxel resistance in breast cancer, we used an insertional mutagenesis strategy to identify proteins whose overexpression confers resistance. A strong promoter was inserted approximately randomly into the genomes of tumor-derived breast cancer cells, using a novel lentiviral vector. We isolated a docetaxel-resistant clone in which the level of the kinesin KIFC3 was elevated. When KIFC3 or the additional kinesins KIFC1, KIF1A, or KIF5A were overexpressed in the breast cancer cell lines MDA-MB231 and MDA-MB 468, the cells became more resistant to docetaxel. The binding of kinesins to microtubules opposes the stabilizing effect of docetaxel that prevents cytokinesis and leads to apoptosis. Our finding that kinesins can mediate docetaxel resistance might lead to novel therapeutic approaches in which kinesin inhibitors are paired with taxanes. PMID:19789344

  3. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  4. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence.

    PubMed

    Takasaka, Naoki; Araya, Jun; Hara, Hiromichi; Ito, Saburo; Kobayashi, Kenji; Kurita, Yusuke; Wakui, Hiroshi; Yoshii, Yutaka; Yumino, Yoko; Fujii, Satoko; Minagawa, Shunsuke; Tsurushige, Chikako; Kojima, Jun; Numata, Takanori; Shimizu, Kenichiro; Kawaishi, Makoto; Kaneko, Yumi; Kamiya, Noriki; Hirano, Jun; Odaka, Makoto; Morikawa, Toshiaki; Nishimura, Stephen L; Nakayama, Katsutoshi; Kuwano, Kazuyoshi

    2014-02-01

    Cigarette smoke (CS)-induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated β-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling. PMID:24367027

  5. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  6. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease. PMID:15766574

  7. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    PubMed

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility. PMID:22562964

  8. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation.

    PubMed

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype. PMID:26053873

  9. EphA2 overexpression promotes ovarian cancer growth

    PubMed Central

    Lu, Chunhua; Shahzad, Mian M.K.; Wang, Hua; Landen, Charles N.; Kim, Seung W.; Allen, Julie; Nick, Alpa M.; Jennings, Nicholas; Kinch, Michael S.; Bar-Eli, Menashe; Sood, Anil K.

    2009-01-01

    Background Silencing EphA2 has been shown to result in anti-tumor efficacy. However, it is not known whether increasing EphA2 expression specifically results in increased tumor growth and progression. We examined the effects of stable EphA2 transfection into poorly invasive ovarian cancer cells with regard to in vitro invasive and in vivo metastatic potential. Results In low cell density, EphA2-overexpressing A2780 cells (A2780-EphA2) displayed less cell-cell contact, increased cell-extracellular matrix (ECM) attachment and anchorage-independent cell growth compared to empty vector controls. There was no significant effect on anchorage-dependent cell proliferation, migration or invasion. Increased expression of EphA2 promoted tumor growth and enhanced the metastatic potential in A2780-EphA2 human ovarian cancer xenografts. The overexpression of EphA2 resulted in enhanced microvessel density (MVD), but had no effect on tumor cell proliferation. Methods EphA2 gene was introduced into A2780 cells by retroviral infection. The effects of increased EphA2 expression were examined on cellular morphology, and anchorage-dependent and independent cell growth. Furthermore, the effect of EphA2 overexpression on metastatic ability was determined using an orthotopic nude mouse model of ovarian carcinoma. Conclusions EphA2 promotes tumor growth by enhancing cell-ECM adhesion, increasing anchorage-independent growth and promoting angiogenesis. PMID:18443431

  10. CYR61 (CCN1) overexpression induces lung injury in mice.

    PubMed

    Grazioli, Serge; Gil, Sucheol; An, Dowon; Kajikawa, Osamu; Farnand, Alex W; Hanson, Josiah F; Birkland, Timothy; Chen, Peter; Duffield, Jeremy; Schnapp, Lynn M; Altemeier, William A; Matute-Bello, Gustavo

    2015-04-15

    Cysteine-rich protein-61 (CYR61), also known as connective tissue growth factor, CYR61, and nephroblastoma overexpressed gene 1 (CCN1), is a heparin-binding protein member of the CCN family of matricellular proteins. Gene expression profiles showed that Cyr61 is upregulated in human acute lung injury (ALI), but its functional role is unclear. We hypothesized that CYR61 contributes to ALI in mice. First, we demonstrated that CYR61 expression increases after bleomycin-induced lung injury. We then used adenovirus-mediated gene transfer to determine whether CYR61 overexpression in the lungs was sufficient to cause ALI. Mice instilled with CYR61 adenovirus showed greater weight loss, increased bronchoalveolar lavage total neutrophil counts, increased protein concentrations, and increased mortality compared with mice instilled with empty-vector adenovirus. Immunohistochemical studies in lungs from humans with idiopathic pulmonary fibrosis revealed CYR61 expression on the luminal membrane of alveolar epithelial cells in areas of injury. We conclude that CYR61 is upregulated in ALI and that CYR61 overexpression exacerbates ALI in mice. PMID:25713320

  11. CYR61 (CCN1) overexpression induces lung injury in mice

    PubMed Central

    Grazioli, Serge; Gil, Sucheol; An, Dowon; Kajikawa, Osamu; Farnand, Alex W.; Hanson, Josiah F.; Birkland, Timothy; Chen, Peter; Duffield, Jeremy; Schnapp, Lynn M.; Altemeier, William A.

    2015-01-01

    Cysteine-rich protein-61 (CYR61), also known as connective tissue growth factor, CYR61, and nephroblastoma overexpressed gene 1 (CCN1), is a heparin-binding protein member of the CCN family of matricellular proteins. Gene expression profiles showed that Cyr61 is upregulated in human acute lung injury (ALI), but its functional role is unclear. We hypothesized that CYR61 contributes to ALI in mice. First, we demonstrated that CYR61 expression increases after bleomycin-induced lung injury. We then used adenovirus-mediated gene transfer to determine whether CYR61 overexpression in the lungs was sufficient to cause ALI. Mice instilled with CYR61 adenovirus showed greater weight loss, increased bronchoalveolar lavage total neutrophil counts, increased protein concentrations, and increased mortality compared with mice instilled with empty-vector adenovirus. Immunohistochemical studies in lungs from humans with idiopathic pulmonary fibrosis revealed CYR61 expression on the luminal membrane of alveolar epithelial cells in areas of injury. We conclude that CYR61 is upregulated in ALI and that CYR61 overexpression exacerbates ALI in mice. PMID:25713320

  12. Hypermutation induced by APOBEC-1 overexpression can be eliminated

    PubMed Central

    Chen, Zhigang; Eggerman, Thomas L.; Bocharov, Alexander V.; Baranova, Irina N.; Vishnyakova, Tatyana G.; Csako, Gyorgy; Patterson, Amy P.

    2010-01-01

    APOBEC-1 overexpression in liver has been shown to effectively reduce apoB-100 levels. However, nonspecific hypermutation and liver tumor formation potentially related to hypermutation in transgenic animals compromise its potential use for gene therapy. In studying apoB mRNA editing regulation, we found that the core editing auxiliary factor ACF dose-dependently increases APOBEC-1 nonspecific hypermutation and specific editing with variable site sensitivity. Overexpression of APOBEC-1 together with ACF in human hepatic HepG2 cells hypermutated apoB mRNAs 20%–65% at sites 6639, 6648, 6655, 6762, 6802, and 6845, in addition to the normal 90% editing at 6666. The hypermutation activity of APOBEC-1 was decreased to background levels by a single point APOBEC-1 mutation of P29F or E181Q, while 50% of wild-type control editing at the normal site was retained. The hypermutations on both apoB and novel APOBEC-1 target 1 (NAT1) mRNA were also decreased to background levels with P29F and E181Q mutants in rat liver primary culture cells. The loss of hypermutation with the mutants was associated with significantly decreased APOBEC-1/ACF interaction. These data suggest that nonspecific hypermutation induced by overexpressing APOBEC-1 can be virtually eliminated by site-specific mutation, while maintaining specific editing activity at the normal site, reopening the potential use of APOBEC-1 gene therapy for hyperlipidemia. PMID:20348446

  13. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation

    PubMed Central

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype. PMID:26053873

  14. Overexpression of follistatin in trout stimulates increased muscling.

    PubMed

    Medeiros, Erika F; Phelps, Michael P; Fuentes, Fernando D; Bradley, Terence M

    2009-07-01

    Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth. P(1) transgenics overexpressing follistatin in muscle tissue exhibited increased epaxial and hypaxial muscling similar to that observed in double-muscled cattle and myostatin null mice. The hypaxial muscling generated a phenotype reminiscent of well-developed rectus abdominus and intercostal muscles in humans and was dubbed "six pack." Body conformation of the transgenic animals was markedly altered, as measured by condition factor, and total muscle surface area increased. The increased muscling was due almost exclusively to hyperplasia as evidenced by a higher number of fibers per unit area and increases in the percentage of smaller fibers and the number of total fibers. In several individuals, asymmetrical muscling was observed, but no changes in mobility or behavior of follistatin fish were observed. The findings indicate that overexpression of follistatin in trout, a species with indeterminate growth rate, enhances muscle growth. It remains to be determined whether the double muscling in trout is due to inhibition of myostatin, other growth factors, or both. PMID:19474387

  15. Overexpression of Mafb in Podocytes Protects against Diabetic Nephropathy

    PubMed Central

    Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-01-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. PMID:24722438

  16. Identification of transcripts overexpressed during airway epithelium differentiation.

    PubMed

    Chhin, B; Pham, J T; El Zein, L; Kaiser, K; Merrot, O; Bouvagnet, P

    2008-07-01

    Human airway epithelium, the defence at the forefront of protecting the respiratory tract, evacuates inhaled particles by a permanent beating of epithelial cell cilia. When deficient, this organelle causes primary ciliary dyskinesia, and, despite numerous studies, data regarding ciliated cell gene expression remain incomplete. The aim of the present study was to identify genes specifically expressed in human ciliated respiratory cells via transcriptional analysis. The transcriptome of dedifferentiated epithelial cells was subtracted from that of fully redifferentiated cells using complementary DNA representational difference analysis. In order to validate the results, gene overexpression in ciliated cells was confirmed by real-time PCR, and by comparing the present list of genes overexpressed in ciliated cells to lists obtained in previous studies. A total of 53 known and 12 unknown genes overexpressed in ciliated cells were identified. The majority (66%) of known genes had never previously been reported as being involved in ciliogenesis, and the unknown genes represent hypothetical novel transcript isoforms or new genes not yet reported in databases. Finally, several genes identified here were located in genomic regions involved in primary ciliary dyskinesia by linkage analysis. In conclusion, the present study revealed sequences of new cilia-related genes, new transcript isoforms and novel genes which should be further characterised to aid understanding of their function(s) and their probable disorder-related involvement. PMID:18321927

  17. IDS transfer from overexpressing cells to IDS-deficient cells.

    PubMed

    Millat, G; Froissart, R; Maire, I; Bozon, D

    1997-02-01

    Iduronate sulfatase (IDS) is responsible for mucopolysaccharidosis type II, a rare recessive X-linked lysosomal storage disease. The aim of this work was to test the ability of overexpressing cells to transfer IDS to deficient cells. In the first part of our work, IDS processing steps were compared in fibroblasts, COS cells, and lymphoblastoid cell lines and shown to be identical: the two precursor forms (76 and 90 kDa) were processed by a series of intermediate forms to the 55- and 45-kDa mature polypeptides. Then IDS transfer to IDS-deficient cells was tested either by incubation with cell-free medium of overexpressing cells or by coculture. Endocytosis and coculture experiments between transfected L beta and deleted fibroblasts showed that IDS transfer occurred preferentially by cell-to-cell contact as IDS precursors are poorly secreted by transfected L beta. The 76- and 62-kDa IDS polypeptides transferred to deleted fibroblasts were correctly processed to the mature 55- and 45-kDa forms. L beta were not able to internalize the 90-kDa phosphorylated precursor forms excreted in large amounts in the medium of overexpressing fibroblasts. Enzyme transfer occurred only by cell-to-cell contact, but the precursor forms transferred in L beta after cell-to-cell contact were not processed. This absence of maturation was probably due to a mistargeting of IDS precursors in these cells. PMID:9024795

  18. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    PubMed Central

    Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2008-01-01

    Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP) increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established. PMID:18664246

  19. Skeletal overexpression of gremlin impairs bone formation and causes osteopenia.

    PubMed

    Gazzerro, Elisabetta; Pereira, Renata C; Jorgetti, Vanda; Olson, Sarah; Economides, Aris N; Canalis, Ernesto

    2005-02-01

    Skeletal cells synthesize bone morphogenetic proteins (BMPs) and BMP antagonists. Gremlin, a BMP antagonist, is expressed in osteoblasts and opposes BMP effects on osteoblastic differentiation and function in vitro. However, its effects in vivo are not known. To investigate the actions of gremlin on bone remodeling in vivo, we generated transgenic mice overexpressing gremlin under the control of the osteocalcin promoter. Gremlin transgenics exhibited bone fractures and reduced bone mineral density by 20-30%, compared with controls. Static and dynamic histomorphometry of femurs revealed that gremlin overexpression caused reduced trabecular bone volume and the appearance of woven bone. Polarized light microscopy revealed disorganized collagen bundles at the endosteal cortical surface. Gremlin transgenic mice displayed a 70% decrease in the number of osteoblasts/trabecular area and reduced mineral apposition and bone formation rates. In vivo bromodeoxyuridine labeling and marrow stromal cell cultures demonstrated an inhibitory effect of gremlin on osteoblastic cell replication, but no change on apoptosis was detected. Marrow stromal cells from gremlin transgenics displayed a reduced response to BMP on phosphorylated mothers against decapentaplegic 1/5/8 phosphorylation and reduced free cytosolic beta-catenin levels. In conclusion, transgenic mice overexpressing gremlin in the bone microenvironment have decreased osteoblast number and function leading to osteopenia and spontaneous fractures. PMID:15539560

  20. Plasmodium falciparum: attenuation by irradiation

    SciTech Connect

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-12-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.

  1. Attenuation Tomography of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2014-12-01

    We present a 3-D model of surface wave attenuation in the upper mantle. The model is constrained by a large data set of fundamental and higher Rayleigh mode observations. This data set consists of about 1,800,000 attenuation curves measured in the period range 50-300s by Debayle and Ricard (2012). A careful selection allows us to reject data for which measurements are likely biased by the poor knowledge of the scalar seismic moment or by a ray propagation too close to a node of the source radiation pattern. For each epicenter-station path, elastic focusing effects due to seismic heterogeneities are corrected using DR2012 and the data are turned into log(1/Q). The selected data are then combined in a tomographic inversion using the non-linear least square formalism of Tarantola and Valette (1982). The obtained attenuation maps are in agreement with the surface tectonic for periods and modes sensitive to the top 200km of the upper mantle. Low attenuation regions correlate with continental shields while high attenuation regions are located beneath young oceanic regions. The attenuation pattern becomes more homogeneous at depths greater than 200 km and the maps are dominated by a high quality factor signature beneath slabs. We will discuss the similarities and differences between the tomographies of seismic velocities and of attenuations.

  2. MicroRNA overexpression increases cortical neuronal vulnerability to injury

    PubMed Central

    Truettner, Jessie S.; Motti, Dario; Dietrich, W. Dalton

    2013-01-01

    Previously we reported that several microRNAs (miRNA) are upregulated following experimentally induced traumatic brain injury (TBI) using both in vivo and in vitro approaches. Specific miRNAs were found to be sensitive to therapeutic hypothermia and may therefore be important targets for neuroprotective strategies. In this study we developed plasmid constructs that overexpress temperature sensitive miRNAs: miR-34a, miR-451, and miR-874. These constructs were transfected into cultured cortical neurons that were subjected to stretch injury using a cell injury controller device. Levels of expression of genes associated with stress, inflammation, apoptosis and transcriptional regulation were measured by qRT-PCR. mRNA levels of cytokines interleukin 1-β (IL1-β) and tumor necrosis factor alpha (TNF-α) as well as heat shock protein 70 (HSP70) and Caspase 11 were found to be increased up to 24 fold higher than controls in cells overexpressing these miRNAs. After moderate stretch injury, the expression of IL1-β, TNF-α, HSP70 and Caspase 11 all increased over control levels found in uninjured cells suggesting that overexpression of these miRNAs increases cellular vulnerability. miR-34a directly inhibits Bcl2 and XIAP, both anti-apoptotic proteins. The observed increase in Caspase 11 with over-expression of miR-34a indicates that miR-34a may be inducing apoptosis by reducing the levels of antiapoptotic proteins. miR-34a is predicted to inhibit Jun, which was seen to decrease in cells overexpressing this miRNA along with Fos. Over expression of several miRNAs found to be induced by TBI in vivo (miR-34a, miR-451 and miR-874) leads to increased vulnerability in transfected neurons. Therapeutic hypothermia blunts the expression of these miRNAs in vivo and antisense silencing could be a potential therapeutic approach to targeting the consequences of TBI. PMID:23948100

  3. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways

    PubMed Central

    Gombash, SE; Manfredsson, FP; Mandel, RJ; Collier, TJ; Fischer, DL; Kemp, CJ; Kuhn, NM; Wohlgenant, SL; Fleming, SM; Sortwell, CE

    2015-01-01

    Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons. PMID:24807806

  4. Natural attenuation general data guide. Final report

    SciTech Connect

    Kram, M.L.; Goetz, F.

    1999-02-01

    This guide is a decision-making tool to help remedial project managers (RPMs) determine whether natural attenuation can be used as a remedial option at contaminant release sites. Data requirements and methodology to evaluate the potential for using natural attenuation are presented. For sites where the natural attenuation remedial option is implemented, tables of commonly measured parameters, general data collection rationale, and interpretation guidance are included. This format allows the RPM to recognize data gaps, interpret data, construct a conceptual site model, and develop a sampling and analysis plan for evaluation and monitoring purposes.

  5. Spectral attenuation length of scintillating fibers

    NASA Astrophysics Data System (ADS)

    Drexlin, Guido; Eberhard, Veit; Hunkel, Dirk; Zeitnitz, B.

    1995-02-01

    A double spectrometer allows the precise measurement of the spectral attenuation length of scintillating fibers. Exciting the fibers with a N 2-laser at different points and measuring the wavelength dependent light intensity on both ends of the fiber simultaneously, enables a measurement of the attenuation length which is practically independent of systematic uncertainties. The experimental setup can additionally be used for the measurement of the relative light output. Six types of scintillating fibers from four manufactures (Bicron, Kuraray, Pol.Hi.Tech, and Plastifo) were tested. For different fibers the wavelength dependent attenuation lengths were measured from 0.3 m up to 20 m with an accuracy as good as 1%.

  6. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    PubMed

    Li, Lanfang; Zeng, Heng; Hou, Xuwei; He, Xiaochen; Chen, Jian-Xiong

    2013-01-01

    Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective

  7. Myocardial Injection of Apelin-Overexpressing Bone Marrow Cells Improves Cardiac Repair via Upregulation of Sirt3 after Myocardial Infarction

    PubMed Central

    Hou, Xuwei; He, Xiaochen; Chen, Jian-Xiong

    2013-01-01

    Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ+/c-kit+/Sca1+ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective effect

  8. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    SciTech Connect

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  9. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium

    PubMed Central

    Akki, Ashwin; Su, Jason; Yano, Toshiyuki; Gupta, Ashish; Wang, Yibin; Leppo, Michelle K.; Chacko, Vadappuram P.; Steenbergen, Charles

    2012-01-01

    Reduced myofibrillar ATP availability during prolonged myocardial ischemia may limit post-ischemic mechanical function. Because creatine kinase (CK) is the prime energy reserve reaction of the heart and because it has been difficult to augment ATP synthesis during and after ischemia, we used mice that overexpress the myofibrillar isoform of creatine kinase (CKM) in cardiac-specific, conditional fashion to test the hypothesis that CKM overexpression increases ATP delivery in ischemic-reperfused hearts and improves functional recovery. Isolated, retrograde-perfused hearts from control and CKM mice were subjected to 25 min of global, no-flow ischemia and 40 min of reperfusion while cardiac function [rate pressure product (RPP)] was monitored. A combination of 31P-nuclear magnetic resonance experiments at 11.7T and biochemical assays was used to measure the myocardial rate of ATP synthesis via CK (CK flux) and intracellular pH (pHi). Baseline CK flux was severalfold higher in CKM hearts (8.1 ± 1.0 vs. 32.9 ± 3.8, mM/s, control vs. CKM; P < 0.001) with no differences in phosphocreatine concentration [PCr] and RPP. End-ischemic pHi was higher in CKM hearts than in control hearts (6.04 ± 0.12 vs. 6.37 ± 0.04, control vs. CKM; P < 0.05) with no differences in [PCr] and [ATP] between the two groups. Post-ischemic PCr (66.2 ± 1.3 vs. 99.1 ± 8.0, %preischemic levels; P < 0.01), CK flux (3.2 ± 0.4 vs. 14.0 ± 1.2 mM/s; P < 0.001) and functional recovery (13.7 ± 3.4 vs. 64.9 ± 13.2%preischemic RPP; P < 0.01) were significantly higher and lactate dehydrogenase release was lower in CKM than in control hearts. Thus augmenting cardiac CKM expression attenuates ischemic acidosis, reduces injury, and improves not only high-energy phosphate content and the rate of CK ATP synthesis in postischemic myocardium but also recovery of contractile function. PMID:22886411

  10. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis.

    PubMed

    Oh, Eunhye; Kim, Ji Young; Cho, Youngkwan; An, Hyunsook; Lee, Nahyun; Jo, Hunho; Ban, Changill; Seo, Jae Hong

    2016-06-01

    The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications. PMID:26975580