Science.gov

Sample records for bag-1 overexpression attenuates

  1. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ.

    PubMed

    Papadakis, E S; Barker, C R; Syed, H; Reeves, T; Schwaiger, S; Stuppner, H; Troppmair, J; Blaydes, J P; Cutress, R I

    2016-01-01

    Mammary MCF-10A cells seeded on reconstituted basement membrane form spherical structures with a hollow central lumen, termed acini, which are a physiologically relevant model of mammary morphogenesis. Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional protein overexpressed in breast cancer and ductal carcinoma in situ. When present in the nucleus Bag-1 is predictive of clinical outcome in breast cancer. Bag-1 exists as three main isoforms, which are produced by alternative translation initiation from a single mRNA. The long isoform of Bag-1, Bag-1L, contains a nuclear localisation sequence not present in the other isoforms. When present in the nucleus Bag-1L, but not the other Bag-1 isoforms, can interact with and modulate the activities of estrogen-, androgen- and vitamin D-receptors. Overexpression of Bag-1 mRNA in MCF-10A is known to produce acini with luminal filling reminiscent of ductal carcinoma in situ. As this mRNA predominantly overexpresses the short isoform of Bag-1, Bag-1S, we set out to examine whether the nuclear Bag-1L isoform is sufficient to drive premalignant change by developing a Bag-1L-overexpressing MCF-10A model. Two clones differentially overexpressing Bag-1L were grown in two-dimensional (2D) and three-dimensional (3D) cultures and compared with an established model of HER2-driven transformation. In 2D cultures, Bag-1L overexpression reduced proliferation but did not affect growth factor responsiveness or clonogenicity. Acini formed by Bag-1L-overexpressing cells exhibited reduced luminal clearing when compared with controls. An abnormal branching morphology was also observed which correlated with the level of Bag-1L overexpression, suggesting further malignant change. Treatment with Thio-2, a small-molecule inhibitor of Bag-1, reduced the level of branching. In summary, 3D cultures of MCF-10A mammary epithelial cells overexpressing Bag-1L demonstrate a premalignant phenotype with features of ductal carcinoma in situ. Using this

  2. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ

    PubMed Central

    Papadakis, E S; Barker, C R; Syed, H; Reeves, T; Schwaiger, S; Stuppner, H; Troppmair, J; Blaydes, J P; Cutress, R I

    2016-01-01

    Mammary MCF-10A cells seeded on reconstituted basement membrane form spherical structures with a hollow central lumen, termed acini, which are a physiologically relevant model of mammary morphogenesis. Bcl-2-associated athanogene 1 (Bag-1) is a multifunctional protein overexpressed in breast cancer and ductal carcinoma in situ. When present in the nucleus Bag-1 is predictive of clinical outcome in breast cancer. Bag-1 exists as three main isoforms, which are produced by alternative translation initiation from a single mRNA. The long isoform of Bag-1, Bag-1L, contains a nuclear localisation sequence not present in the other isoforms. When present in the nucleus Bag-1L, but not the other Bag-1 isoforms, can interact with and modulate the activities of estrogen-, androgen- and vitamin D-receptors. Overexpression of Bag-1 mRNA in MCF-10A is known to produce acini with luminal filling reminiscent of ductal carcinoma in situ. As this mRNA predominantly overexpresses the short isoform of Bag-1, Bag-1S, we set out to examine whether the nuclear Bag-1L isoform is sufficient to drive premalignant change by developing a Bag-1L-overexpressing MCF-10A model. Two clones differentially overexpressing Bag-1L were grown in two-dimensional (2D) and three-dimensional (3D) cultures and compared with an established model of HER2-driven transformation. In 2D cultures, Bag-1L overexpression reduced proliferation but did not affect growth factor responsiveness or clonogenicity. Acini formed by Bag-1L-overexpressing cells exhibited reduced luminal clearing when compared with controls. An abnormal branching morphology was also observed which correlated with the level of Bag-1L overexpression, suggesting further malignant change. Treatment with Thio-2, a small-molecule inhibitor of Bag-1, reduced the level of branching. In summary, 3D cultures of MCF-10A mammary epithelial cells overexpressing Bag-1L demonstrate a premalignant phenotype with features of ductal carcinoma in situ. Using this

  3. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B

    SciTech Connect

    Maier, Jana V.; Volz, Yvonne; Berger, Caroline; Schneider, Sandra; Cato, Andrew C.B.

    2010-10-22

    Research highlights: {yields}Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-{kappa}B. {yields}Bag-1 depletion attenuates phosphorylation and degradation of I{kappa}B{alpha} and nuclear accumulation of NF-{kappa}B p65 and p50. {yields}Bag-1 interacts with I{kappa}B{alpha} and partially restores I{kappa}B{alpha} and NF-{kappa}B activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-{kappa}B. Furthermore phosphorylation and degradation of the inhibitor protein I{kappa}B{alpha} and nuclear accumulation of p65 and p50 NF-{kappa}B proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored I{kappa}B{alpha} and NF-{kappa}B activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  4. A combination of trastuzumab and BAG-1 inhibition synergistically targets HER2 positive breast cancer cells

    PubMed Central

    Papadakis, Emmanouil; Robson, Natalia; Yeomans, Alison; Bailey, Sarah; Laversin, Stephanie; Beers, Stephen; Sayan, A. Emre; Ashton-Key, Margaret; Schwaiger, Stefan; Stuppner, Hermann; Troppmair, Jakob; Packham, Graham; Cutress, Ramsey

    2016-01-01

    Treatment of HER2+ breast cancer with trastuzumab is effective and combination anti-HER2 therapies have demonstrated benefit over monotherapy in the neoadjuvant and metastatic settings. This study investigated the therapeutic potential of targeting the BAG-1 protein co-chaperone in trastuzumab-responsive or -resistant cells. In the METABRIC dataset, BAG-1 mRNA was significantly elevated in HER2+ breast tumors and predicted overall survival in a multivariate analysis (HR = 0.81; p = 0.022). In a breast cell line panel, BAG-1 protein was increased in HER2+ cells and was required for optimal growth as shown by siRNA knockdown. Overexpression of BAG-1S in HER2+ SKBR3 cells blocked growth inhibition by trastuzumab, whereas overexpression of a mutant BAG-1S protein (BAG-1S H3AB), defective in binding HSC70, potentiated the effect of trastuzumab. Injection of a Tet-On SKBR3 clone, induced to overexpress myc-BAG-1S into the mammary fat pads of immunocompromised mice, resulted in 2-fold larger tumors compared to uninduced controls. Induction of myc-BAG-1S expression in two Tet-On SKBR3 clones attenuated growth inhibition by trastuzumab in vitro. Targeting endogenous BAG-1 by siRNA enhanced growth inhibition of SKBR3 and BT474 cells by trastuzumab, while BAG-1 protein-protein interaction inhibitor (Thio-S or Thio-2) plus trastuzumab combination treatment synergistically attenuated growth. In BT474 cells this reduced protein synthesis, caused G1/S cell cycle arrest and targeted the ERK and AKT signaling pathways. In a SKBR3 subpopulation with acquired resistance to trastuzumab BAG-1 targeting remained effective and either Thio-2 or BAG-1 siRNA reduced growth more compared to trastuzumab-responsive parental cells. In summary, targeting BAG-1 function in combination with anti-HER2 therapy might prove beneficial. PMID:26958811

  5. Subcellular localisation of BAG-1 and its regulation of vitamin D receptor-mediated transactivation and involucrin expression in oral keratinocytes: Implications for oral carcinogenesis

    SciTech Connect

    Lee, San San; Crabb, Simon J.; Janghra, Nari; Carlberg, Carsten; Williams, Ann C.; Cutress, Ramsey I.; Packham, Graham; Hague, Angela

    2007-09-10

    In oral cancers, cytoplasmic BAG-1 overexpression is a marker of poor prognosis. BAG-1 regulates cellular growth, differentiation and survival through interactions with diverse proteins, including the vitamin D receptor (VDR), a key regulator of keratinocyte growth and differentiation. BAG-1 is expressed ubiquitously in human cells as three major isoforms of 50 kDa (BAG-1L), 46 kDa (BAG-1M) and 36 kDa (BAG-1S) from a single mRNA. In oral keratinocytes BAG-1L, but not BAG-1M and BAG-1S, enhanced VDR transactivation in response to 1{alpha},25-dihydroxyvitamin D{sub 3.} BAG-1L was nucleoplasmic and nucleolar, whereas BAG-1S and BAG-1M were cytoplasmic and nucleoplasmic in localisation. Having identified the nucleolar localisation sequence in BAG-1L, we showed that mutation of this sequence did not prevent BAG-1L from potentiating VDR activity. BAG-1L also potentiated transactivation of known vitamin-D-responsive gene promoters, osteocalcin and 24-hydroxylase, and enhanced VDR-dependent transcription and protein expression of the keratinocyte differentiation marker, involucrin. These results demonstrate endogenous gene regulation by BAG-1L by potentiating nuclear hormone receptor function and suggest a role for BAG-1L in 24-hydroxylase regulation of vitamin D metabolism and the cellular response of oral keratinocytes to 1{alpha},25-dihydroxyvitamin D{sub 3}. By contrast to the cytoplasmic BAG-1 isoforms, BAG-1L may act to suppress tumorigenesis.

  6. Alteration of the stability of Bag-1 protein in the control of olfactory neuronal apoptosis.

    PubMed

    Sourisseau, T; Desbois, C; Debure, L; Bowtell, D D; Cato, A C; Schneikert, J; Moyse, E; Michel, D

    2001-04-01

    Normal apoptosis occurs continuously in the olfactory neuroepithelium of adult vertebrates, making it a useful model for studying neuronal apoptosis. Here we demonstrate that overexpression of the anti-apoptotic Bag-1 gene in olfactory neuronal cells confers a strong resistance to apoptosis. Conversely decreased levels of Bag-1 were found to precede a massive wave of olfactory neuronal apoptosis triggered by synaptic target ablation. We show that the decrease is brought about by ubiquitination and subsequent degradation of the Bag-1 protein. The ring finger protein Siah-2 is a likely candidate for the ubiquitination reaction since Siah-2 mRNA accumulated in lesioned olfactory neuroepithelium and overexpression of Siah-2 stimulated Bag-1 ubiquitination and degradation in transient expression assays. These results together identify destabilization of Bag-1 as a necessary step in olfactory neuronal apoptosis. PMID:11257006

  7. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis

    PubMed Central

    Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J.; Austin, Paul F.; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  8. Tubular Overexpression of Angiopoietin-1 Attenuates Renal Fibrosis.

    PubMed

    Singh, Sudhir; Manson, Scott R; Lee, Heedoo; Kim, Yeawon; Liu, Tuoen; Guo, Qiusha; Geminiani, Julio J; Austin, Paul F; Chen, Ying Maggie

    2016-01-01

    Emerging evidence has highlighted the pivotal role of microvasculature injury in the development and progression of renal fibrosis. Angiopoietin-1 (Ang-1) is a secreted vascular growth factor that binds to the endothelial-specific Tie2 receptor. Ang-1/Tie2 signaling is critical for regulating blood vessel development and modulating vascular response after injury, but is dispensable in mature, quiescent vessels. Although dysregulation of vascular endothelial growth factor (VEGF) signaling has been well studied in renal pathologies, much less is known about the role of the Ang-1/Tie2 pathway in renal interstitial fibrosis. Previous studies have shown contradicting effects of overexpressing Ang-1 systemically on renal tubulointerstitial fibrosis when different engineered forms of Ang-1 are used. Here, we investigated the impact of site-directed expression of native Ang-1 on the renal fibrogenic process and peritubular capillary network by exploiting a conditional transgenic mouse system [Pax8-rtTA/(TetO)7 Ang-1] that allows increased tubular Ang-1 production in adult mice. Using a murine unilateral ureteral obstruction (UUO) fibrosis model, we demonstrate that targeted Ang-1 overexpression attenuates myofibroblast activation and interstitial collagen I accumulation, inhibits the upregulation of transforming growth factor β1 and subsequent phosphorylation of Smad 2/3, dampens renal inflammation, and stimulates the growth of peritubular capillaries in the obstructed kidney. Our results suggest that Ang-1 is a potential therapeutic agent for targeting microvasculature injury in renal fibrosis without compromising the physiologically normal vasculature in humans. PMID:27454431

  9. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    SciTech Connect

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  10. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy

    PubMed Central

    Li, Ran; Bai, Jian; Ding, Liang; Gu, Rong; Wang, Lian; Xu, Biao

    2016-01-01

    Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure. PMID:26914935

  11. Thioflavin S (NSC71948) interferes with Bcl-2-associated athanogene (BAG-1)-mediated protein-protein interactions.

    PubMed

    Sharp, Adam; Crabb, Simon J; Johnson, Peter W M; Hague, Angela; Cutress, Ramsey; Townsend, Paul A; Ganesan, A; Packham, Graham

    2009-11-01

    The C-terminal BAG domain is thought to play a key role in BAG-1-induced survival and proliferation by mediating protein-protein interactions, for example, with heat shock proteins HSC70 and HSP70, and with RAF-1 kinase. Here, we have identified thioflavin S (NSC71948) as a potential small-molecule chemical inhibitor of these interactions. NSC71948 inhibited the interaction of BAG-1 and HSC70 in vitro and decreased BAG-1:HSC70 and BAG-1:HSP70 binding in intact cells. NSC71948 also reduced binding between BAG-1 and RAF-1, but had no effect on the interaction between two unrelated proteins, BIM and MCL-1. NSC71948 functionally reversed the ability of BAG-1 to promote vitamin D3 receptor-mediated transactivation, an activity of BAG-1 that depends on HSC70/HSP70 binding, and reduced phosphorylation of p44/42 mitogen-activate protein kinase. NSC71948 can be used to stain amyloid fibrils; however, structurally related compounds, thioflavin T and BTA-1, had no effect on BAG-1:HSC70 binding, suggesting that structural features important for amyloid fibril binding and inhibition of BAG-1:HSC70 binding may be separable. We demonstrated that NSC71948 inhibited the growth of BAG-1 expressing human ZR-75-1 breast cancer cells and wild-type, but not BAG-1-deficient, mouse embryo fibroblasts. Taken together, these data suggest that NSC71948 may be a useful molecule to investigate the functional significance of BAG-1 C-terminal protein interactions. However, it is important to recognize that NSC71948 may exert additional "off-target" effects. Inhibition of BAG-1 function may be an attractive strategy to inhibit the growth of BAG-1-overexpressing cancers, and further screens of additional compound collections may be warranted. PMID:19690191

  12. Live Attenuated Shigella dysenteriae Type 1 Vaccine Strains Overexpressing Shiga Toxin B Subunit ▿

    PubMed Central

    Wu, Tao; Grassel, Christen; Levine, Myron M.; Barry, Eileen M.

    2011-01-01

    Shigella dysenteriae serotype 1 (S. dysenteriae 1) is unique among the Shigella species and serotypes in the expression of Shiga toxin which contributes to more severe disease sequelae and the ability to cause explosive outbreaks and pandemics. S. dysenteriae 1 shares characteristics with other Shigella species, including the capability of causing clinical illness with a very low inoculum (10 to 100 CFU) and resistance to multiple antibiotics, underscoring the need for efficacious vaccines and therapeutics. Following the demonstration of the successful attenuating capacity of deletion mutations in the guaBA operon in S. flexneri 2a vaccine strains in clinical studies, we developed a series of S. dysenteriae 1 vaccine candidates containing the fundamental attenuating mutation in guaBA. All strains are devoid of Shiga toxin activity by specific deletion of the gene encoding the StxA subunit, which encodes enzymatic activity. The StxB subunit was overexpressed in several derivatives by either plasmid-based constructs or chromosomal manipulation to include a strong promoter. All strains are attenuated for growth in vitro in the HeLa cell assay and for plaque formation and were safe in the Serény test and immunogenic in the guinea pigs. Each strain induced robust serum and mucosal anti-S. dysenteriae 1 lipopolysaccharide (LPS) responses and protected against wild-type challenge. Two strains engineered to overexpress StxB induced high titers of Shiga toxin neutralizing antibodies. These candidates demonstrate the potential for a live attenuated vaccine to protect against disease caused by S. dysenteriae 1 and potentially to protect against the toxic effects of other Shiga toxin 1-expressing pathogens. PMID:21969003

  13. Attenuation of Cigarette Smoke-Induced Emphysema in Mice by Apolipoprotein A-1 Overexpression.

    PubMed

    Kim, Chorong; Lee, Ji-Min; Park, Sung-Woo; Kim, Ki-Sun; Lee, Myoung Won; Paik, Sanghyun; Jang, An Soo; Kim, Do Jin; Uh, Sootaek; Kim, Yonghoon; Park, Choon-Sik

    2016-01-01

    Chronic inflammation, oxidative stress, and proteolysis participate primarily in the pathogenesis of chronic obstructive pulmonary disease (COPD)/emphysema. COPD is a highly prevalent smoking-related disease for which no effective therapy exists to improve the disease course. Although apolipoprotein A-1 (ApoA1) has antiinflammatory and antioxidant properties as well as cholesterol efflux potential, its role in cigarette smoke (CS)-induced emphysema has not been determined. Therefore, we investigated whether human ApoA1 transgenic (TG) mice, with conditionally induced alveolar epithelium to overexpress ApoA1, are protected against the CS-induced lung inflammatory response and development of emphysema. In this study, ApoA1 levels were significantly decreased in the lungs of patients with COPD and in the lungs of mice exposed to CS. ApoA1 TG mice did not develop emphysema when chronically exposed to CS. Compared with the control TG mice, ApoA1 overexpression attenuated lung inflammation, oxidative stress, metalloprotease activation, and apoptosis in CS-exposed mouse lungs. To explore a plausible mechanism of antiapoptotic activity of ApoA1, alveolar epithelial cells (A549) were treated with CS extract (CSE). ApoA1 prevented CSE-induced translocation of Fas and downstream death-inducing signaling complex into lipid rafts, thereby inhibiting Fas-mediated apoptosis. Taken together, the data showed that ApoA1 overexpression attenuated CS-induced lung inflammation and emphysema in mice. Augmentation of ApoA1 in the lung may have therapeutic potential in preventing smoking-related COPD/emphysema. PMID:26086425

  14. PGC-1α overexpression via local transfection attenuates mitophagy pathway in muscle disuse atrophy.

    PubMed

    Kang, Chounghun; Ji, Li Li

    2016-04-01

    Loss of mitochondrial structural and functional integrity plays a critical role in the pathogenesis of muscle disuse atrophy. Peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) has been suggested to modulate autophagy-lysosome pathway (mitophagy) during muscle atrophy, but clear evidence is still lacking. In the current study, we tested the hypothesis that overexpression of PGC-1α via in vivo transfection would ameliorate mitophagy in mouse tibialis anterior muscle subjected to two weeks of immobilization (IM), followed by remobilization (RM). While mitochondrial biogenesis and antioxidant enzymes are decreased, all autophagic and mitophagic protein markers such as Beclin-1, Bnip3, PINK1, parkin, Mul1 and the LC3II/LC3I ratio were increased in IM-RM muscle together with activation of FoxO pathway. Overexpression of PGC-1α significantly increased mitochondrial DNA proliferation and oxidative enzyme activity, whereas it mitigated oxidative stress and mitochondrial ubiquination in IM-RM muscle. Protein contents of PINK1, parkin and Mul1 in mitochondria decreased by approximately 50% with PGC-1α treatment. Furthermore, PGC-1α overexpression suppressed FoxO1 and FoxO3 activation along with a decreased LC3II/LC3I ratio. Importantly, PGC-1α attenuated IM-RM-induced ubiquination and degradation of mitofusion protein Mfn2. Muscle apoptotic tendency, measured by Bax/Bcl2 ratio and caspase-3 activity, were elevated with IM-RM, but unaffected by PGC-1α. We conclude that overexpression of PGC-1α by in vivo transfection can inhibit activation of mitophagy pathway in the atrophying muscle caused by immobilization. PMID:26746585

  15. Muscle-specific Drp1 overexpression impairs skeletal muscle growth via translational attenuation

    PubMed Central

    Touvier, T; De Palma, C; Rigamonti, E; Scagliola, A; Incerti, E; Mazelin, L; Thomas, J-L; D'Antonio, M; Politi, L; Schaeffer, L; Clementi, E; Brunelli, S

    2015-01-01

    Mitochondrial fission and fusion are essential processes in the maintenance of the skeletal muscle function. The contribution of these processes to muscle development has not been properly investigated in vivo because of the early lethality of the models generated so far. To define the role of mitochondrial fission in muscle development and repair, we have generated a transgenic mouse line that overexpresses the fission-inducing protein Drp1 specifically in skeletal muscle. These mice displayed a drastic impairment in postnatal muscle growth, with reorganisation of the mitochondrial network and reduction of mtDNA quantity, without the deficiency of mitochondrial bioenergetics. Importantly we found that Drp1 overexpression activates the stress-induced PKR/eIF2α/Fgf21 pathway thus leading to an attenuated protein synthesis and downregulation of the growth hormone pathway. These results reveal for the first time how mitochondrial network dynamics influence muscle growth and shed light on aspects of muscle physiology relevant in human muscle pathologies. PMID:25719247

  16. Overexpression of Dimethylarginine Dimethylaminohydrolase 1 Attenuates Airway Inflammation in a Mouse Model of Asthma

    PubMed Central

    Kinker, Kayla G.; Gibson, Aaron M.; Bass, Stacey A.; Day, Brandy P.; Deng, Jingyuan; Medvedovic, Mario; Figueroa, Julio A. Landero; Hershey, Gurjit K. Khurana; Chen, Weiguo

    2014-01-01

    Levels of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are increased in lung, sputum, exhaled breath condensate and plasma samples from asthma patients. ADMA is metabolized primarily by dimethylarginine dimethylaminohydrolase 1 (DDAH1) and DDAH2. We determined the effect of DDAH1 overexpression on development of allergic inflammation in a mouse model of asthma. The expression of DDAH1 and DDAH2 in mouse lungs was determined by RT-quantitative PCR (qPCR). ADMA levels in bronchoalveolar lavage fluid (BALF) and serum samples were determined by mass spectrometry. Wild type and DDAH1-transgenic mice were intratracheally challenged with PBS or house dust mite (HDM). Airway inflammation was assessed by bronchoalveolar lavage (BAL) total and differential cell counts. The levels of IgE and IgG1 in BALF and serum samples were determined by ELISA. Gene expression in lungs was determined by RNA-Seq and RT-qPCR. Our data showed that the expression of DDAH1 and DDAH2 was decreased in the lungs of mice following HDM exposure, which correlated with increased ADMA levels in BALF and serum. Transgenic overexpression of DDAH1 resulted in decreased BAL total cell and eosinophil numbers following HDM exposure. Total IgE levels in BALF and serum were decreased in HDM-exposed DDAH1-transgenic mice compared to HDM-exposed wild type mice. RNA-Seq results showed downregulation of genes in the inducible nitric oxide synthase (iNOS) signaling pathway in PBS-treated DDAH1-transgenic mice versus PBS-treated wild type mice and downregulation of genes in IL-13/FOXA2 signaling pathway in HDM-treated DDAH1-transgenic mice versus HDM-treated wild type mice. Our findings suggest that decreased expression of DDAH1 and DDAH2 in the lungs may contribute to allergic asthma and overexpression of DDAH1 attenuates allergen-induced airway inflammation through modulation of Th2 responses. PMID:24465497

  17. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction.

    PubMed

    Thapa, Dharendra; Nichols, Cody E; Lewis, Sara E; Shepherd, Danielle L; Jagannathan, Rajaganapathi; Croston, Tara L; Tveter, Kevin J; Holden, Anthony A; Baseler, Walter A; Hollander, John M

    2015-02-01

    Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complex I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore, measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of

  18. Overexpression of Heat Shock Protein 72 Attenuates NF-κB Activation Using a Combination of Regulatory Mechanisms in Microglia

    PubMed Central

    Khammash, Mustafa; Giffard, Rona G.

    2014-01-01

    Overexpression of the inducible heat shock protein 70, Hsp72, has broadly cytoprotective effects and improves outcome following stroke. A full understanding of how Hsp72 protects cells against injury is elusive, though several distinct mechanisms are implicated. One mechanism is its anti-inflammatory effects. We study the effects of Hsp72 overexpression on activation of the transcription factor NF-κB in microglia combining experimentation and mathematical modeling, using TNFα to stimulate a microglial cell line stably overexpressing Hsp72. We find that Hsp72 overexpression reduces the amount of NF-κB DNA binding activity, activity of the upstream kinase IKK, and amount of IκBα inhibitor phosphorylated following TNFα application. Simulations evaluating several proposed mechanisms suggest that inhibition of IKK activation is an essential component of its regulatory activities. Unexpectedly we find that Hsp72 overexpression reduces the initial amount of the RelA/p65 NF-κB subunit in cells, contributing to the attenuated response. Neither mechanism in isolation, however, is sufficient to attenuate the response, providing evidence that Hsp72 relies upon multiple mechanisms to attenuate NF-κB activation. An additional observation from our study is that the induced expression of IκBα is altered significantly in Hsp72 expressing cells. While the mechanism responsible for this observation is not known, it points to yet another means by which Hsp72 may alter the NF-κB response. This study illustrates the multi-faceted nature of Hsp72 regulation of NF-κB activation in microglia and offers further clues to a novel mechanism by which Hsp72 may protect cells against injury. PMID:24516376

  19. Cerebralcare Granule® attenuates cognitive impairment in rats continuously overexpressing microRNA-30e

    PubMed Central

    XU, YONG; LIU, ZHIFEN; SONG, XI; ZHANG, KERANG; LI, XINGRONG; LI, JIANHONG; YAN, XU; LI, YUAN; XIE, ZHONGCHEN; ZHANG, HUI

    2015-01-01

    Previous studies have demonstrated that dysregulation of micro (mi)RNAs is associated with the etiology of various neuropsychiatric disorders, including depression and schizophrenia. Cerebralcare Granule® (CG) is a Chinese herbal medicine, which has been reported to have an ameliorative effect on brain injury by attenuating blood-brain barrier disruption and improving hippocampal neural function. The present study aimed to evaluate the cognitive behavior of rats continuously overexpressing miRNA-30e (lenti-miRNA-30e), prior to and following the administration of CG. In addition, the mechanisms underlying the ameliorative effects of CG were investigated. The cognitive ability of the rats was assessed using an open-field test and a Morris water maze spatial reference/working memory test. A terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used to detect neuronal apoptosis in the dentate gyrus of the hippocampus. Immunohistochemical analysis and western blotting were conducted to detect the expression levels of B-cell lymphoma 2 (BCL-2) and ubiquitin-conjugating enzyme 9 (UBC9), in order to examine neuronal apoptosis. The lenti-miRNA-30e rats exhibited increased signs of anxiety, depression, hyperactivity and schizophrenia, which resulted in a severe impairment in cognitive ability. Furthermore, in the dentate gyrus of these rats, the expression levels of BCL-2 and UBC9 were reduced and apoptosis was increased. The administration of CG alleviated cognitive impairment, enhanced the expression levels of BCL-2 and UBC9, and reduced apoptosis in the dentate gyrus in the lenti-miRNA-30e rats. No significant differences were detected in behavioral indicators between the lenti-miRNA-30e rats treated with CG and the normal controls. These findings suggested that CG exerts a potent therapeutic effect, conferred by its ability to enhance the expression levels of BCL-2 and UBC9, which inhibits the apoptotic process in neuronal cells. Therefore, CG may be

  20. Overexpression of angiotensin-converting enzyme 2 attenuates tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats

    PubMed Central

    Wang, Yang-Kai; Shen, Du; Hao, Qiang; Yu, Qiang; Wu, Zhao-Tang; Deng, Yu; Chen, Yan-Fang; Yuan, Wen-Jun; Hu, Qi-Kuan; Su, Ding-Feng

    2014-01-01

    The rostral ventrolateral medulla (RVLM) plays a key role in cardiovascular regulation. It has been reported that tonically active glutamatergic input to the RVLM is increased in hypertensive rats, whereas angiotensin-converting enzyme 2 (ACE2) in the brain has been suggested to be beneficial to hypertension. This study was designed to determine the effect of ACE2 gene transfer into the RVLM on tonically active glutamatergic input in spontaneously hypertensive rats (SHRs). Lentiviral particles containing enhanced green fluorescent protein (lenti-GFP) or ACE2 (lenti-ACE2) were injected bilaterally into the RVLM. Both protein expression and activity of ACE2 in the RVLM were increased in SHRs after overexpression of ACE2. A significant reduction in blood pressure and heart rate in SHRs was observed 6 wk after lenti-ACE2 injected into the RVLM. The concentration of glutamate in microdialysis fluid from the RVLM was significantly reduced by an average of 61% in SHRs with lenti-ACE2 compared with lenti-GFP. ACE2 overexpression significantly attenuated the decrease in blood pressure and renal sympathetic nerve activity evoked by bilateral injection of the glutamate receptor antagonist kynurenic acid (2.7 nmol in 100 nl) into the RVLM in SHRs. Therefore, we suggest that ACE2 overexpression in the RVLM attenuates the enhanced tonically active glutamatergic input in SHRs, which may be an important mechanism underlying the beneficial effect of central ACE2 to hypertension. PMID:24838502

  1. Overexpression of ΔFosB Is Associated With Attenuated Cocaine-Induced Suppression of Saccharin Intake in Mice

    PubMed Central

    Freet, Christopher S.; Steffen, Cathy; Nestler, Eric J.; Grigson, Patricia S.

    2010-01-01

    Rodents suppress intake of saccharin when it is paired with a drug of abuse (Goudie, Dickins, & Thornton, 1978; Risinger & Boyce, 2002). By the authors’ account, this phenomenon, referred to as reward comparison, is thought to be mediated by anticipation of the rewarding properties of the drug (P. S. Grigson, 1997; P. S. Grigson & C. S. Freet, 2000). Although a great deal has yet to be discovered regarding the neural basis of reward and addiction, it is known that overexpression of ΔFosB is associated with an increase in drug sensitization and incentive. Given this, the authors reasoned that overexpression of ΔFosB should also support greater drug-induced devaluation of a natural reward. To test this hypothesis, NSE-tTA × TetOp-ΔFosB mice (Chen et al., 1998) with normal or overexpressed ΔFosB in the striatum were given access to a saccharin cue and then injected with saline, 10 mg/kg cocaine, or 20 mg/kg cocaine. Contrary to the original prediction, overexpression of ΔFosB was associated with attenuated cocaine-induced suppression of saccharin intake. It is hypothesized that elevation of ΔFosB not only increases the reward value of drug, but the reward value of the saccharin cue as well. PMID:19331462

  2. Transgenic overexpression of transient receptor potential vanilloid subtype 1 attenuates isoproterenol-induced myocardial fibrosis in mice.

    PubMed

    Wang, Qiang; Zhang, Yunrong; Li, De; Zhang, Yan; Tang, Bing; Li, Gang; Yang, Yongjian; Yang, Dachun

    2016-08-01

    Transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel with high permeability to Ca2+. Intracellular Ca2+ signaling is an essential regulator of endothelial nitric oxide (NO) synthase (eNOS) that plays a beneficial role in myocardial fibrosis. The aim of the present study was to determine the role of TRPV1 in isoproterenol-induced myocardial fibrosis. Transgenic mice overexpressing TRPV1 were generated on a C57BL/6J genetic background. An animal model of myocardial fibrosis was created by subcutaneously injecting the mice with isoproterenol. We found that the wild-type mice exhibited a significant increase in heart/body weight ratio, left ventricle/body weight ratio, left ventricular end-diastolic pressure (LVEDP), the cardiac fibrotic lesion area and collagen content, as well as a marked decrease in eNOS phosphorylation and NO/cyclic guanosine monophosphate (cGMP) levels at 2 weeks after the administration of isoproterenol (all p<0.01). However, these changes were significantly attenuated in the TRPV1 transgenic mice (p<0.05 or p<0.01). Moreover, the beneficial effects on myocardial fibrosis exerted by the overexpression of TRPV1 were attenuated by the administration of the eNOS inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (all p<0.05). Similar anti-fibrotic effects were observed in in vitro experiments with primary cultured cardiac fibroblasts. The findings of our study suggest that TRPV1 overexpression attenuates isoproterenol‑induced myocardial fibrosis. PMID:27314441

  3. Mic60/mitofilin overexpression alters mitochondrial dynamics and attenuates vulnerability of dopaminergic cells to dopamine and rotenone.

    PubMed

    Van Laar, Victor S; Berman, Sarah B; Hastings, Teresa G

    2016-07-01

    Mitochondrial dysfunction has been implicated in Parkinson's disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD

  4. Dimethylarginine dimethylaminohydrolase (DDAH) overexpression attenuates agricultural organic dust extract-induced inflammation

    PubMed Central

    Bailey, KL; Wyatt, TA; Wells, SM; Klein, EB; Robinson, JE; Romberger, DJ; Poole, JA

    2013-01-01

    Modern, industrialized farming practices have lead to working conditions that include high levels of airborne dust. Agricultural workers inhale these complex organic dusts on a daily basis, leading to airway inflammation and higher risk for developing chronic obstructive pulmonary disease. The mechanisms regulating the organic dust-induced airway inflammatory response are not well-defined. We investigated whether overexpression of dimethylarginine dimethylaminohydrolase (DDAH) would lead to diminished pulmonary inflammation in an animal model of organic dust extract exposure. We instilled wild-type (WT) and DDAH overexpressing mice with an aqueous organic dust extract (ODE) collected from a swine confinement building. We found that inflammatory indices such as neutrophil influx and inflammatory cytokine production was lower in the DDAH overexpressing mice compared to WT after organic dust extract (ODE) instillation. We went on to determine how DDAH was mediating the decrease in inflammation induced by ODE. PKCα and PKCε play an essential role in the ODE inflammatory response. In a model of lung slices from WT and DDAH overexpressing mice, we demonstrated an increase in PKCα and PKCε in the WT mice exposed to ODE. This increase was diminished in the DDAH overexpressing mice exposed to ODE. We also tested an important component of the ODE, peptidoglycan (PGN). We noted a similar decrease in neutrophils and inflammatory cytokines in the DDAH overexpressing animals instilled with PGN compared to WT. In conclusion, our studies found a role for DDAH in regulating the ODE-triggered activation of epithelial PKCα and PKCε, a previously unrecognized mechanism of action. This ultimately results in diminished pulmonary inflammation. PMID:25221746

  5. Transgenic overexpression of neuroglobin attenuates formation of smoke-inhalation-induced oxidative DNA damage, in vivo, in the mouse brain.

    PubMed

    Lee, Heung Man; Greeley, George H; Englander, Ella W

    2011-12-15

    Acute inhalation of combustion smoke causes neurological deficits in survivors. Inhaled smoke includes carbon monoxide, noxious gases, and a hypoxic environment, which disrupt oxygenation and generate free radicals. To replicate a smoke-inhalation scenario, we developed an experimental model of acute exposure to smoke for the awake mouse/rat and detected induction of biomarkers of oxidative stress. These include inhibition of mitochondrial respiratory complexes and formation of oxidative DNA damage in the brain. DNA damage is likely to contribute to neuronal dysfunction and progression of brain injury. In the search for strategies to attenuate the smoke-initiated brain injury, we produced a transgenic mouse overexpressing the neuronal globin protein neuroglobin. Neuroglobin was neuroprotective in diverse models of ischemic/hypoxic/toxic brain injuries. Here, we report lesser inhibition of respiratory complex I and reduced formation of smoke-induced DNA damage in neuroglobin transgenic compared to wild-type mouse brain. DNA damage was assessed using the standard comet assay, as well as a modified comet assay done in conjunction with an enzyme that excises oxidized guanines that form readily under conditions of oxidative stress. Both comet assays revealed that overexpressed neuroglobin attenuates the formation of oxidative DNA damage, in vivo, in the brain. These findings suggest that elevated neuroglobin exerts neuroprotection, in part, by decreasing the impact of acute smoke inhalation on the integrity of neuronal DNA. PMID:22001746

  6. Overexpression of Swedish mutant APP in aged astrocytes attenuates excitatory synaptic transmission.

    PubMed

    Katsurabayashi, Shutaro; Kawano, Hiroyuki; Ii, Miyuki; Nakano, Sachiko; Tatsumi, Chihiro; Kubota, Kaori; Takasaki, Kotaro; Mishima, Kenichi; Fujiwara, Michihiro; Iwasaki, Katsunori

    2016-01-01

    Amyloid precursor protein (APP), a type I transmembrane protein, has different aspects, namely, performs essential physiological functions and produces β-amyloid peptide (Aβ). Overexpression of neuronal APP is responsible for synaptic dysfunction. In the central nervous system, astrocytes - a major glial cell type - have an important role in the regulation of synaptic transmission. Although APP is expressed in astrocytes, it remains unclear whether astrocytic overexpression of mutant APP affects synaptic transmission. In this study, the effect of astrocytic overexpression of a mutant APP on the excitatory synaptic transmission was investigated using coculture system of the transgenic (Tg) cortical astrocytes that express the human APP695 polypeptide with the double mutation K670N + M671L found in a large Swedish family with early onset Alzheimer's disease, and wild-type hippocampal neuron. Significant secretion of Aβ 1-40 and 1-42 was observed in cultured cortical astrocytes from the Tg2576 transgenic mouse that genetically overexpresses Swedish mutant APP. Under the condition, Tg astrocytes did not affect excitatory synaptic transmission of cocultured wild-type neurons. However, aged Tg astrocytes cultured for 9 weeks elicited a significant decrease in excitatory synaptic transmission in cocultured neurons. Moreover, a reduction in the number of readily releasable synaptic vesicles accompanied a decrease in the number of excitatory synapses in neurons cocultured with aged Tg astrocytes. These observations indicate that astrocytic expression of the mutant APP is involved in the downregulation of synaptic transmission with age. PMID:26733247

  7. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion.

    PubMed

    Zhou, Yuan; Li, Rong-Ji; Li, Meng; Liu, Xuelian; Zhu, Hong-Yan; Ju, Zhong; Miao, Xiuhua; Xu, Guang-Yin

    2016-01-01

    G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway. PMID:27145805

  8. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion

    PubMed Central

    Zhou, Yuan; Li, Rong-Ji; Li, Meng; Liu, Xuelian; Zhu, Hong-Yan; Ju, Zhong; Miao, Xiuhua

    2016-01-01

    G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway. PMID:27145805

  9. Overexpression of VEGF-C attenuates chronic high salt intake-induced left ventricular maladaptive remodeling in spontaneously hypertensive rats.

    PubMed

    Yang, Guo-Hong; Zhou, Xin; Ji, Wen-Jie; Zeng, Shan; Dong, Yan; Tian, Lu; Bi, Ying; Guo, Zhao-Zeng; Gao, Fei; Chen, Hong; Jiang, Tie-Min; Li, Yu-Ming

    2014-02-15

    Recent studies have shown that the tonicity-responsive enhancer binding protein (TonEBP)/vascular endothelial growth factor-C (VEGF-C) signaling pathway-induced lymphangiogenesis provides a buffering mechanism for high salt (HS) intake-induced elevation of blood pressure (BP). Moreover, blocking of TonEBP/VEGF-C signaling by mononuclear phagocyte depletion can induce salt-sensitive hypertension in rats. We hypothesized that HS intake could have an impact on cardiac lymphangiogenesis, and regulation of VEGF-C bioactivity, which is largely through the main receptor for VEGFR-3, may modulate HS intake-induced left ventricular remodeling. We demonstrated upregulation of TonEBP, increased macrophage infiltration, and enhanced lymphangiogenesis in the left ventricles of spontaneously hypertensive rats (SHR) that were fed a HS diet (8.0% NaCl). Then, retrovirus vectors capable of overexpression (ΔNΔC/VEGF-C/Cys152Ser, used for overexpressing VEGF-C) and blocking (VEGFR-3-Rg, used for trapping of bioactive VEGF-C) of VEGF-C and control vector (pLPCX) were intravenously administered to SHR from week 9 of a 12-wk HS loading period. At the end of the HS challenge, overexpression of VEGF-C led to enhanced cardiac lymphangiogenesis, decreased myocardial fibrosis, and macrophage infiltration, preserved left ventricular functions, as well as decreased blood pressure level compared with the HS group and the control vector-treated HS group. In contrast, systemic blocking of VEGF-C was associated with elevation of blood pressure level and an exacerbation of hypertensive left ventricular remodeling, as indicated by increased fibrosis and macrophage infiltration, and diminished lymphangiogenesis. Hence, our findings highlight that VEGF-C/VEGFR-3 is a promising therapeutic target to attenuate hypertensive left ventricular remodeling induced by HS intake, presumably via blood pressure-dependent and -independent mechanisms. PMID:24337460

  10. Overexpression of Thioredoxin in Transgenic Mice Attenuates Focal Ischemic Brain Damage

    NASA Astrophysics Data System (ADS)

    Takagi, Yasushi; Mitsui, Akira; Nishiyama, Akira; Nozaki, Kazuhiko; Sono, Hiroshi; Gon, Yasuhiro; Hashimoto, Nobuo; Yodoi, Junji

    1999-03-01

    Thioredoxin (TRX) plays important biological roles both in intra- and extracellular compartments, including in regulation of various intracellular molecules via thiol redox control. We produced TRX overexpressing mice and confirmed that there were no anatomical and physiological differences between wild-type (WT) mice and TRX transgenic (Tg) mice. In the present study we subjected mice to focal brain ischemia to shed light on the role of TRX in brain ischemic injury. At 24 hr after middle cerebral artery occlusion, infarct areas and volume were significantly smaller in Tg mice than in WT mice. Moreover neurological deficit was ameliorated in Tg mice compared with WT mice. Protein carbonyl content, a marker of cellular protein oxidation, in Tg mice showed less increase than did that of WT mice after the ischemic insult. Furthermore, c-fos expression in Tg mice was stronger than in WT mice 1 hr after ischemia. Our results suggest that transgene expression of TRX decreased ischemic neuronal injury and that TRX and the redox state modified by TRX play a crucial role in brain damage during stroke.

  11. Over-expression of GTP-cyclohydrolase 1 feedback regulatory protein attenuates LPS and cytokine-stimulated nitric oxide production.

    PubMed

    Nandi, Manasi; Kelly, Peter; Vallance, Patrick; Leiper, James

    2008-02-01

    GTP-cyclohydrolase 1 (GTP-CH1) catalyses the first and rate-limiting step for the de novo production of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS). The GTP-CH1-BH(4) pathway is emerging as an important regulator in a number of pathologies associated with over-production of nitric oxide (NO) and hence a more detailed understanding of this pathway may lead to novel therapeutic targets for the treatment of certain vascular diseases. GTP-CH1 activity can be inhibited by BH(4) through its protein-protein interactions with GTP-CH1 regulatory protein (GFRP), and transcriptional and post-translational modification of both GTP-CH1 and GFRP have been reported in response to proinflammatory stimuli. However, the functional significance of GFRP/GTP-CH1 interactions on NO pathways has not yet been demonstrated. We aimed to investigate whether over-expression of GFRP could affect NO production in living cells. Over-expression of N-terminally Myc-tagged recombinant human GFRP in the murine endothelial cell line sEnd 1 resulted in no significant effect on basal BH(4) nor NO levels but significantly attenuated the rise in BH(4) and NO observed following lipopolysaccharide and cytokine stimulation of cells. This study demonstrates that GFRP can play a direct regulatory role in iNOS-mediated NO synthesis and suggests that the allosteric regulation of GTP-CH1 activity by GFRP may be an important mechanism regulating BH(4) and NO levels in vivo. PMID:18372436

  12. CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice

    PubMed Central

    Chen, Guangzhi; Xu, Renfan; Zhang, Shasha; Wang, Yinna; Wang, Peihua; Edin, Matthew L.; Zeldin, Darryl C.

    2014-01-01

    Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti-inflammatory, antiapoptotic, and antioxidatant effects, and cardiovascular protection. Liver has abundant epoxygenase expression and high levels of EET production; however, the roles of epoxygenases in liver diseases remain to be elucidated. In this study, we investigated the protection against high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice with endothelial-specific CYP2J2 overexpression (Tie2-CYP2J2-Tr). After 24 wk of high-fat diet, Tie2-CYP2J2-Tr mice displayed attenuated NAFLD compared with controls. Tie2-CYP2J2-Tr mice showed significantly decreased plasma triglyceride levels and liver lipid accumulation, improved liver function, reduced inflammatory responses, and less increase in hepatic oxidative stress than wild-type control mice. These effects were associated with inhibition of NF-κB/JNK signaling pathway activation and enhancement of the antioxidant defense system in Tie2-CYP2J2-Tr mice in vivo. We also demonstrated that 14,15-EET treatment protected HepG2 cells against palmitic acid-induced inflammation and oxidative stress. 14,15-EET attenuated palmitic acid-induced changes in NF-κB/JNK signaling pathways, malondialdehyde generation, glutathione levels, reactive oxygen species production, and NADPH oxidase and antioxidant enzyme expression in HepG2 cells in vitro. Together, these results highlight a new role for CYP epoxygenase-derived EETs in lipotoxicity-related inflammation and oxidative stress and reveal a new molecular mechanism underlying EETs-mediated anti-inflammatory and antioxidant effects that could aid in the design of new therapies for the prevention and treatment of NAFLD. PMID:25389366

  13. CYP2J2 overexpression attenuates nonalcoholic fatty liver disease induced by high-fat diet in mice.

    PubMed

    Chen, Guangzhi; Xu, Renfan; Zhang, Shasha; Wang, Yinna; Wang, Peihua; Edin, Matthew L; Zeldin, Darryl C; Wang, Dao Wen

    2015-01-15

    Cytochrome P-450 epoxygenase-derived epoxyeicosatrienoic acids (EETs) exert diverse biological activities, which include potent vasodilatory, anti-inflammatory, antiapoptotic, and antioxidatant effects, and cardiovascular protection. Liver has abundant epoxygenase expression and high levels of EET production; however, the roles of epoxygenases in liver diseases remain to be elucidated. In this study, we investigated the protection against high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) in mice with endothelial-specific CYP2J2 overexpression (Tie2-CYP2J2-Tr). After 24 wk of high-fat diet, Tie2-CYP2J2-Tr mice displayed attenuated NAFLD compared with controls. Tie2-CYP2J2-Tr mice showed significantly decreased plasma triglyceride levels and liver lipid accumulation, improved liver function, reduced inflammatory responses, and less increase in hepatic oxidative stress than wild-type control mice. These effects were associated with inhibition of NF-κB/JNK signaling pathway activation and enhancement of the antioxidant defense system in Tie2-CYP2J2-Tr mice in vivo. We also demonstrated that 14,15-EET treatment protected HepG2 cells against palmitic acid-induced inflammation and oxidative stress. 14,15-EET attenuated palmitic acid-induced changes in NF-κB/JNK signaling pathways, malondialdehyde generation, glutathione levels, reactive oxygen species production, and NADPH oxidase and antioxidant enzyme expression in HepG2 cells in vitro. Together, these results highlight a new role for CYP epoxygenase-derived EETs in lipotoxicity-related inflammation and oxidative stress and reveal a new molecular mechanism underlying EETs-mediated anti-inflammatory and antioxidant effects that could aid in the design of new therapies for the prevention and treatment of NAFLD. PMID:25389366

  14. The BAG-1 isoform BAG-1M regulates keratin-associated Hsp70 chaperoning of aPKC in intestinal cells during activation of inflammatory signaling

    PubMed Central

    Mashukova, Anastasia; Kozhekbaeva, Zhanna; Forteza, Radia; Dulam, Vipin; Figueroa, Yolanda; Warren, Robert; Salas, Pedro J.

    2014-01-01

    ABSTRACT Atypical PKC (ι/λ and ζ; hereafter referred to as aPKC) is a key player in the acquisition of epithelial polarity and participates in other signaling cascades including the control of NF-κB signaling. This kinase is post-translationally regulated through Hsp70-mediated refolding. Previous work has shown that such a chaperoning activity is specifically localized to keratin intermediate filaments. Our work was performed with the goal of identifying the molecule(s) that block Hsp70 activity on keratin filaments during inflammation. A transcriptional screen allowed us to focus on BAG-1, a multi-functional protein that assists Hsp70 in nucleotide exchange but also blocks its activity at higher concentrations. We found the BAG-1 isoform BAG-1M upregulated threefold in human Caco-2 cells following stimulation with tumor necrosis factor receptor α (TNFα) to induce a pro-inflammatory response, and up to sixfold in mouse enterocytes following treatment with dextran sodium sulfate (DSS) to induce colitis. BAG-1M, but no other isoform, was found to co-purify with intermediate filaments and block Hsp70 activity in the keratin fraction but not in the soluble fraction within the range of concentrations found in epithelial cells cultured under control and inflammation conditions. Constitutive expression of BAG-1M decreased levels of phosphorylated aPKC. By contrast, knockdown of BAG-1, blocked the TNFα-induced decrease of phosphorylated aPKC. We conclude that BAG-1M mediates Hsp70 inhibition downstream of NF-κB. PMID:24876225

  15. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression

    PubMed Central

    de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-01-01

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  16. The DNA methylation inhibitor induces telomere dysfunction and apoptosis of leukemia cells that is attenuated by telomerase over-expression.

    PubMed

    Zhang, Xiaolu; Li, Bingnan; de Jonge, Nick; Björkholm, Magnus; Xu, Dawei

    2015-03-10

    DNA methyltransferase inhibitors (DNMTIs) such as 5-azacytidine (5-AZA) have been used for treatment of acute myeloid leukemia (AML) and other malignancies. Although inhibiting global/gene-specific DNA methylation is widely accepted as a key mechanism behind DNMTI anti-tumor activity, other mechanisms are likely involved in DNMTI's action. Because telomerase reverse transcriptase (TERT) plays key roles in cancer through telomere elongation and telomere lengthening-independent activities, and TERT has been shown to confer chemo- or radio-resistance to cancer cells, we determine whether DNMTIs affect telomere function and whether TERT/telomerase interferes with their anti-cancer efficacy. We showed that 5-AZA induced DNA damage and telomere dysfunction in AML cell lines by demonstrating the presence of 53-BP1 foci and the co-localization of 53-BP1 foci with telomere signals, respectively. Telomere dysfunction was coupled with diminished TERT expression, shorter telomere and apoptosis in 5-AZA-treated cells. However, 5-AZA treatment did not lead to changes in the methylation status of subtelomere regions. Down-regulation of TERT expression similarly occurred in primary leukemic cells derived from AML patients exposed to 5-AZA. TERT over-expression significantly attenuated 5-AZA-mediated DNA damage, telomere dysfunction and apoptosis of AML cells. Collectively, 5-AZA mediates the down-regulation of TERT expression, and induces telomere dysfunction, which consequently exerts an anti-tumor activity. PMID:25682873

  17. Gene cloning and characterization of the protein encoded by the Neospora caninum bradyzoite-specific antigen gene BAG1.

    PubMed

    Kobayashi, T; Narabu, S; Yanai, Y; Hatano, Y; Ito, A; Imai, S; Ike, K

    2013-06-01

    Neospora caninum is an Apicomplexan parasite that causes repeated abortion and stillbirth in cattle. The aim of this study was to clone the gene encoding the N. caninum orthologue (NcBAG1) of the Toxoplasma gondii bradyzoite-specific protein TgBAG1 and characterize its expression pattern in the parasite. Isolation of the full-length 684-bp gene revealed that it shared 78.3% sequence similarity with TgBAG1. NcBAG1 encodes a predicted protein of 227 amino acids with 80.3% similarity to TgBAG1. A putative signal peptide sequence and an invariant GVL motif characteristic of small heat-shock proteins were identified in the predicted N. caninum amino acid sequence. We expressed the NcBAG1 gene as a recombinant glutathione S-transferase fusion protein (rNcBAG1) in Escherichia coli and used the purified 60 kDa protein to obtain a monoclonal antibody (Mab). rNcBAG1 reacted to Mabs specific for NcBAG1 and TgBAG1. No reaction between the NcBAG1 Mab and N. caninum tachyzoites was observed. Although the predicted molecular mass of NcBAG1 is 25 kDa, Western blot analysis of parasite lysates using the NcBAG1 Mab revealed a cross-reactive protein of approximately 30 kDa. Additionally, immunofluorescence assays using the tachyzoite-specific Mab for NcSAG1 and the bradyzoite-specific Mab for TgBAG1 or NcSAG4 revealed NcBAG1-specific expression in bradyzoites in cultures exposed to sodium nitroprusside, a reagent that increases the frequency of bradyzoites. Interestingly, the NcBAG1 protein was identified in the cytoplasm of the bradyzoite-stage parasites. This preliminary analysis of the NcBAG1 gene will assist investigations into the role of this protein in N. caninum . PMID:23245337

  18. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells

    SciTech Connect

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M.; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. - Highlights: • We performed adenoviral overexpression of Lhx2 in primary hepatic stellate cells. • Hepatic stellate cells expressed stem cell markers during cultivation. • Cell migration and contractility was slightly hampered upon Lhx2 overexpression. • Lhx2 overexpression did not affect stem cell character of hepatic stellate cells.

  19. Overexpression of hypoxia-inducible factor prolyl hydoxylase-2 attenuates hypoxia-induced vascular endothelial growth factor expression in luteal cells.

    PubMed

    Zhang, Zhenghong; Pang, Xunsheng; Tang, Zonghao; Yin, Dingzhong; Wang, Zhengchao

    2015-09-01

    Vascular endothelial growth factor (VEGF)-dependent angiogenesis has a crucial role in the corpus luteum formation and their functional maintenances in mammalian ovaries. A previous study by our group reported that activation of hypoxia‑inducible factor (HIF)‑1α signaling contributes to the regulation of VEGF expression in the luteal cells (LCs) in response to hypoxia and human chorionic gonadotropin. The present study was designed to test the hypothesis that HIF prolyl‑hydroxylases (PHDs) are expressed in LCs and overexpression of PHD2 attenuates the expression of VEGF induced by hypoxia in LCs. PHD2-overexpressing plasmid was transfected into LC2 cells, and successful plasmid transfection and expression was confirmed by reverse transcription quantitative polymerase chain reaction and western blot analysis. In addition, the present study investigated changes of HIF‑1α and VEGF expression after incubation under hypoxic conditions and PHD2 transfection. PHD2 expression was significantly higher expressed than the other two PHD isoforms, indicating its major role in LCs. Moreover, a significant increase of VEGF mRNA expression was identified after incubation under hypoxic conditions, which was, however, attenuated by PHD2 overexpression in LCs. Further analysis also indicated that this hypoxia‑induced increase in the mRNA expression of VEGF was consistent with increases in the protein levels of HIF‑1α, which is regulated by PHD-mediated degradation. In conclusion, the results of the present study indicated that PHD2 is the main PHD expressed in LCs and hypoxia‑induced VEGF expression can be attenuated by PHD2 overexpression through HIF‑1α‑mediated mechanisms in LCs. This PHD2-mediated transcriptional activation may be one of the mechanisms regulating VEGF expression in LCs during mammalian corpus luteum development. PMID:25975603

  20. Adenoviral overexpression of Lhx2 attenuates cell viability but does not preserve the stem cell like phenotype of hepatic stellate cells.

    PubMed

    Genz, Berit; Thomas, Maria; Pützer, Brigitte M; Siatkowski, Marcin; Fuellen, Georg; Vollmar, Brigitte; Abshagen, Kerstin

    2014-11-01

    Hepatic stellate cells (HSC) are well known initiators of hepatic fibrosis. After liver cell damage, HSC transdifferentiate into proliferative myofibroblasts, representing the major source of extracellular matrix in the fibrotic organ. Recent studies also demonstrate a role of HSC as progenitor or stem cell like cells in liver regeneration. Lhx2 is described as stem cell maintaining factor in different organs and as an inhibitory transcription factor in HSC activation. Here we examined whether a continuous expression of Lhx2 in HSC could attenuate their activation and whether Lhx2 could serve as a potential target for antifibrotic gene therapy. Therefore, we evaluated an adenoviral mediated overexpression of Lhx2 in primary HSC and investigated mRNA expression patterns by qRT-PCR as well as the activation status by different in vitro assays. HSC revealed a marked increase in activation markers like smooth muscle actin alpha (αSMA) and collagen 1α independent from adenoviral transduction. Lhx2 overexpression resulted in attenuated cell viability as shown by a slightly hampered migratory and contractile phenotype of HSC. Expression of stem cell factors or signaling components was also unaffected by Lhx2. Summarizing these results, we found no antifibrotic or stem cell maintaining effect of Lhx2 overexpression in primary HSC. PMID:24995995

  1. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells

    PubMed Central

    Zook, Erin C.; Krishack, Paulette A.; Zhang, Shubin; Zeleznik-Le, Nancy J.; Firulli, Anthony B.; Witte, Pamela L.

    2011-01-01

    The forkhead box n1 (Foxn1) transcription factor is essential for thymic organogenesis during embryonic development; however, a functional role of Foxn1 in the postnatal thymus is less well understood. We developed Foxn1 transgenic mice (Foxn1Tg), in which overexpression of Foxn1 is driven by the human keratin-14 promoter. Expression of the Foxn1 transgene increased the endogenous Foxn1 levels. In aged mice, overexpression of Foxn1 in the thymus attenuated the decline in thymocyte numbers, prevented the decline in frequency of early thymic progenitors, and generated a higher number of signal joint TCR excised circle. Histologic studies revealed that structural alterations associated with thymic involution were diminished in aged Foxn1 Tg. Total numbers of EpCAM+ MHC II+ and MHC IIhi thymic epithelial cells were higher in young and old Foxn1Tg and more EpCAM+ MHC IIhi TEC expressed Ki-67 in aged Foxn1Tg compared with WT. Furthermore, Foxn1Tg displayed a significant reduction in the expansion of splenic CD4+ memory compartments and attenuated the decline in CD4+ and CD8+ naive compartments. Our data indicate that manipulation of Foxn1 expression in the thymus ameliorates thymopoiesis in aged mice and offer a strategy to combat the age-associated decline in naive T-cell production and CD4 naive/memory ratios in the elderly. PMID:21908422

  2. Angiotensin II-Induced Hypertension Is Attenuated by Overexpressing Copper/Zinc Superoxide Dismutase in the Brain Organum Vasculosum of the Lamina Terminalis

    PubMed Central

    Collister, John P.; Taylor-Smith, Heather; Drebes, Donna; Nahey, David; Tian, Jun; Zimmerman, Matthew C.

    2016-01-01

    Angiotensin II (AngII) can access the brain via circumventricular organs (CVOs), including the subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT), to modulate blood pressure. Previous studies have demonstrated a role for both the SFO and OVLT in the hypertensive response to chronic AngII, yet it is unclear which intracellular signaling pathways are involved in this response. Overexpression of copper/zinc superoxide dismutase (CuZnSOD) in the SFO has been shown to attenuate the chronic hypertensive effects of AngII. Presently, we tested the hypothesis that elevated levels of superoxide (O2∙−) in the OVLT contribute to the hypertensive effects of AngII. To facilitate overexpression of superoxide dismutase, adenoviral vectors encoding human CuZnSOD or control adenovirus (AdEmpty) were injected directly into the OVLT of rats. Following 3 days of control saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Blood pressure increased 33 ± 8 mmHg in AdEmpty rats (n = 6), while rats overexpressing CuZnSOD (n = 8) in the OVLT demonstrated a blood pressure increase of only 18 ± 5 mmHg after 10 days of AngII infusion. These results support the hypothesis that overproduction of O2∙− in the OVLT plays an important role in the development of chronic AngII-dependent hypertension. PMID:26881025

  3. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose

    PubMed Central

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-01-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ-1 protein expression. The overexpression of DJ-1 by transfection with a DJ-1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ-1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  4. LEDGF/p75 Overexpression Attenuates Oxidative Stress-Induced Necrosis and Upregulates the Oxidoreductase ERP57/PDIA3/GRP58 in Prostate Cancer

    PubMed Central

    Basu, Anamika; Cajigas-Du Ross, Christina K.; Rios-Colon, Leslimar; Mediavilla-Varela, Melanie; Daniels-Wells, Tracy R.; Leoh, Lai Sum; Rojas, Heather; Banerjee, Hiya; Martinez, Shannalee R.; Acevedo-Martinez, Stephanny; Casiano, Carlos A.

    2016-01-01

    Prostate cancer (PCa) mortality is driven by highly aggressive tumors characterized by metastasis and resistance to therapy, and this aggressiveness is mediated by numerous factors, including activation of stress survival pathways in the pro-inflammatory tumor microenvironment. LEDGF/p75, also known as the DFS70 autoantigen, is a stress transcription co-activator implicated in cancer, HIV-AIDS, and autoimmunity. This protein is targeted by autoantibodies in certain subsets of patients with PCa and inflammatory conditions, as well as in some apparently healthy individuals. LEDGF/p75 is overexpressed in PCa and other cancers, and promotes resistance to chemotherapy-induced cell death via the transactivation of survival proteins. We report in this study that overexpression of LEDGF/p75 in PCa cells attenuates oxidative stress-induced necrosis but not staurosporine-induced apoptosis. This finding was consistent with the observation that while LEDGF/p75 was robustly cleaved in apoptotic cells into a p65 fragment that lacks stress survival activity, it remained relatively intact in necrotic cells. Overexpression of LEDGF/p75 in PCa cells led to the upregulation of transcript and protein levels of the thiol-oxidoreductase ERp57 (also known as GRP58 and PDIA3), whereas its depletion led to ERp57 transcript downregulation. Chromatin immunoprecipitation and transcription reporter assays showed LEDGF/p75 binding to and transactivating the ERp57 promoter, respectively. Immunohistochemical analysis revealed significantly elevated co-expression of these two proteins in clinical prostate tumor tissues. Our results suggest that LEDGF/p75 is not an inhibitor of apoptosis but rather an antagonist of oxidative stress-induced necrosis, and that its overexpression in PCa leads to ERp57 upregulation. These findings are of significance in clarifying the role of the LEDGF/p75 stress survival pathway in PCa. PMID:26771192

  5. GABA(A) receptor overexpression in the lateral hypothalamic area attenuates gastric ischemia‑reperfusion injury in rats.

    PubMed

    Gao, Lin; Zhu, Tao; Xie, Guilin; Lou, Xiangxin; Li, Shibao; Zhou, Yan; Deng, Zhenxu; Chu, Dechang; Lou, Jiyu; Du, Dongshu

    2015-02-01

    Excessive activation of the greater splanchnic nerve (GSN) has previously been determined to contribute to the progression of gastric ischemia‑reperfusion (GI‑R) injury. The present study was designed to estimate the protective effects of GABAA receptor (GABA(A)R) overexpression in the lateral hypothalamic area (LHA) against GI‑R injury. The GI‑R injury model was induced in rats by clamping the celiac artery for 30 min and then reperfusing for 1 h. Microinjection of recombinant adenoviral vectors overexpressing GABA(A)R (Ad‑GABA(A)R) or control adenoviral vectors (Ad‑Con) into the LHA was conducted in GI‑R and normal control rats. Significant protective effects were observed on day 2 after Ad‑GABA(A)R treatment in the GI‑R injury rats. Ad‑GABA(A)R treatment reduced plasma norepinephrine levels, plasma angiotensin II levels and peripheral GSN activity, but increased the gastric mucosal blood flow, as compared with Ad‑Con treatment. These results indicate that adenoviral vector‑induced GABA(A)R overexpression in the LHA blunts GSN activity and subsequently alleviates the effects of gastric injury in GI‑R rats. PMID:25354809

  6. Down-regulation of Bcl-2-interacting protein BAG-1 confers resistance to anti-cancer drugs.

    PubMed

    Takahashi, Noriko; Yanagihara, Miyako; Ogawa, Yuzi; Yamanoha, Banri; Andoh, Toshiwo

    2003-02-14

    BAG-1 was originally identified as a binding partner of anti-apoptotic factor Bcl-2 [Takayama et al., Cell 80 (1995) 279-284]. Exogenous expression of BAG-1 was reported to confer cells resistance to several stresses [Chen et al., Oncogene 21 (2002) 7050]. We have obtained human cervical cancer HeLa cells with down-regulated BAG-1 levels by using a highly specific and efficient RNA interference approach. Surprisingly, cells with down-regulated BAG-1 exhibited significantly lower sensitivity against several anti-cancer drugs than parental cells expressing normal levels of the protein. Furthermore, growth rate of the cells was reduced when BAG-1 was down-regulated. Activity of ERK pathway appeared to be decreased in BAG-1 down-regulated cells, as shown by the reduced phosphorylation of ERK1/2 proteins. Taken together resistance against anti-cancer drugs acquired by BAG-1 down-regulated cells may well be accounted for by the retardation of cell cycle progression, implicating the importance of BAG-1 in cell growth regulation. PMID:12565851

  7. IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells

    SciTech Connect

    Yoshino, Kei; Motoyama, Satoru; Koyota, Souichi; Shibuya, Kaori; Usami, Shuetsu; Maruyama, Kiyotomi; Saito, Hajime; Minamiya, Yoshihiro; Sugiyama, Toshihiro; Ogawa, Jun-ichi

    2011-01-28

    Research highlights: {yields} TE-12 cell had greater radiosensitivity and higher levels of caspase 3/7 activity for radiotherapy than TE-5 or TE-9 cells. {yields} The expression of IGFBP3 and BAG1 was five or more times higher in TE-12 cell in DNA microarrays analysis. {yields} Knocking down IGFBP3 and/or BAG1 expression using targeted siRNA diminished their susceptibility to radiation. -- Abstract: Identification of reliable markers of radiosensitivity and the key molecules that enhance the susceptibility of esophageal cancer cells to anticancer treatments would be highly desirable. To identify molecules that confer radiosensitivity to esophageal squamous carcinoma cells, we assessed the radiosensitivities of the TE-5, TE-9 and TE-12 cloneA1 cell lines. TE-12 cloneA1 cells showed significantly greater susceptibility to radiotherapy at 5 and 10 Gy than either TE-5 or TE-9 cells. Consistent with that finding, 24 h after irradiation (5 Gy), TE-12 cloneA1 cells showed higher levels of caspase 3/7 activity than TE-5 or TE-9 cells. When we used DNA microarrays to compare the gene expression profiles of TE-5 and TE-12 cloneA1 cells, we found that the mRNA and protein expression of insulin-like growth factor binding protein 3 (IGFBP3) and Bcl-2-associated athanogene 1 (BAG1) was five or more times higher in TE-12 cloneA1 cells than TE-5 cells. Conversely, knocking down expression of IGFBP3 and BAG1 mRNA in TE-12 cloneA1 cells using small interfering RNA (siRNA) significantly reduced radiosensitivity. These data suggest that IGFBP3 and BAG1 may be key markers of radiosensitivity that enhance the susceptibility of squamous cell esophageal cancer to radiotherapy. IGFBP3 and BAG1 may thus be useful targets for improved and more individualized treatments for patients with esophageal squamous cell carcinoma.

  8. PGC-1α overexpression by in vivo transfection attenuates mitochondrial deterioration of skeletal muscle caused by immobilization.

    PubMed

    Kang, Chounghun; Goodman, Craig A; Hornberger, Troy A; Ji, Li Li

    2015-10-01

    Prolonged immobilization (IM) causes skeletal muscle atrophy characterized by mitochondrial deterioration and proteolysis. Muscle remobilization (RM) increases reactive oxygen species generation, proinflammatory cytokine expression, and oxidative stress, preventing muscle from quick recovery. Thus, we hypothesized that overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) via in vivo transfection would promote mitochondrial biogenesis and antioxidant defense, thus ameliorating the aforementioned deteriorations in a mouse model with 14-d IM followed by 5-d RM. PGC-1α transfection in tibialis anterior muscle resulted in a 7.2- and 4-fold increase in PGC-1α content in cytosol and nucleus, respectively. Mitochondrial biogenic (cytochrome c, mitochondrial transcription factor A), morphologic (mitochondrial density, mDNA/nDNA ratio), and functional (cytochrome c oxidase activity, ATP synthesis rate) markers, as well as fiber cross-sectional area, significantly increased in IM-RM muscle by PGC-1α overexpression. These effects were accompanied by an 18% decrease in H2O2, 30% decrease in nuclear factor-κB-DNA binding, and 25% reduction of IL-1β and-6 production in IM-RM muscle. There was a 34% increase in superoxide dismutase-2 activity, along with a 3.5-fold increase in NAD-dependent deacetylase sirtuin-3 expression caused by enhanced PGC-1α-estrogen-related receptor α binding. Our findings highlighted the importance of PGC-1α in protecting muscle from metabolic and redox disturbances caused by IM. PMID:26178167

  9. Overexpression of DJ-1 reduces oxidative stress and attenuates hypoxia/reoxygenation injury in NRK-52E cells exposed to high glucose.

    PubMed

    Shen, Zi-Ying; Sun, Qian; Xia, Zhong-Yuan; Meng, Qing-Tao; Lei, Shao-Qing; Zhao, Bo; Tang, Ling-Hua; Xue, Rui; Chen, Rong

    2016-09-01

    Patients with diabetes are more vulnerable to renal ischemia/reperfusion (I/R) injury, which is implicated in hyperglycemia-induced oxidative stress. We previously reported that the hyperglycemia-induced inhibition of DJ-1, a novel oncogene that exhibits potent antioxidant activity, is implicated in the severity of myocardial I/R injury. In the present study, we aimed to explore the role of DJ-1 in hypoxia/reoxygenation (H/R) injury in renal cells exposed to high glucose (HG). For this purpose, NRK-52E cells were exposed to HG (30 mM) for 48 h and then exposed to hypoxia for 4 h and reoxygenation for 2 h, which significantly decreased cell viability and superoxide dismutase (SOD) activity, and increased the malondialdehyde (MDA) content, accompanied by a decrease in DJ‑1 protein expression. The overexpression of DJ‑1 by transfection with a DJ‑1 overexpression plasmid exerted protective effects against HG-induced H/R injury, as evidenced by increased CCK-8 levels and SOD activity, the decreased release of lactate dehydrogenase (LDH) and the decreased MDA content, and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO‑1) expression. Similar effects were observed following treatment with the antioxidant, N-acetylcysteine. These results suggest that the overexpression of DJ‑1 reduces oxidative stress and attenuates H/R injury in NRK-52E cells exposed to HG. PMID:27430285

  10. ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the glucocorticoid receptor

    SciTech Connect

    Hong, Wei; Chen, Linfeng; Liu, Yunde; Gao, Weizhen

    2009-12-04

    The 70-kDa heat shock protein (Hsp70) is involved in providing the appropriate conformation of various nuclear hormone receptors, including the glucocorticoid receptor (GR). The Bcl-2 associated athanogene 1M (Bag-1M) is known to downregulate the DNA binding by the GR. Also, Bag-1M interacts with the ATPase domain of Hsp70 to modulate the release of the substrate from Hsp70. In this study, we demonstrate that ATP hydrolysis enhances Bag-1M-mediated inhibition of the DNA binding by the GR. However, the inhibitory effect of Bag-1M was abolished when the intracellular ATP was depleted. In addition, a Bag-1M mutant lacking the interaction with Hsp70 did not influence the GR to bind DNA, suggesting the interaction of Bag-1M with Hsp70 in needed for its negative effect. These results indicate that ATP hydrolysis is essential for Bag-1M-mediated inhibition of the DNA binding by the GR and Hsp70 is a mediator for this process.

  11. Hsp70 Cochaperones HspBP1 and BAG-1M Differentially Regulate Steroid Hormone Receptor Function

    PubMed Central

    Knapp, Regina T.; Wong, Michael J. H.; Kollmannsberger, Lorenz K.; Gassen, Nils C.; Kretzschmar, Anja; Zschocke, Jürgen; Hafner, Kathrin; Young, Jason C.; Rein, Theo

    2014-01-01

    Hsp70 binding protein 1 (HspBP1) and Bcl2-associated athanogene 1 (BAG-1), the functional orthologous nucleotide exchange factors of the heat shock protein 70 kilodalton (Hsc70/Hsp70) chaperones, catalyze the release of ADP from Hsp70 while inducing different conformational changes of the ATPase domain of Hsp70. An appropriate exchange rate of ADP/ATP is crucial for chaperone-dependent protein folding processes. Among Hsp70 client proteins are steroid receptors such as the glucocorticoid receptor (GR), the mineralocorticoid receptor (MR), and the androgen receptor (AR). BAG-1 diversely affects steroid receptor activity, while to date the influence of HspBP1 on steroid receptor function is mostly unknown. Here, we compared the influence of HspBP1 and BAG-1M on Hsp70-mediated steroid receptor folding complexes and steroid receptor activity. Coimmunoprecipitation studies indicated preferential binding of Hsp40 and the steroid receptors to BAG-1M as compared to HspBP1. Furthermore, Hsp70 binding to the ligand-binding domain of GR was reduced in the presence of HspBP1 but not in the presence of BAG-1M as shown by pull-down assays. Reporter gene experiments revealed an inhibitory effect on GR, MR, and AR at a wide range of HspBP1 protein levels and at hormone concentrations at or approaching saturation. BAG-1M exhibited a transition from stimulatory effects at low BAG-1M levels to inhibitory effects at higher BAG-1M levels. Overall, BAG-1M and HspBP1 had differential impacts on the dynamic composition of steroid receptor folding complexes and on receptor function with important implications for steroid receptor physiology. PMID:24454860

  12. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation.

    PubMed

    André, Fanny; Corazao-Rozas, Paola; Idziorek, Thierry; Quesnel, Bruno; Kluza, Jérome; Marchetti, Philippe

    2016-09-16

    The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towards pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS. PMID:27416758

  13. AAV8-Mediated In Vivo Overexpression of miR-155 Enhances the Protective Capacity of Genetically Attenuated Malarial Parasites

    PubMed Central

    Hentzschel, Franziska; Hammerschmidt-Kamper, Christiane; Börner, Kathleen; Heiss, Kirsten; Knapp, Bettina; Sattler, Julia M; Kaderali, Lars; Castoldi, Mirco; Bindman, Julia G; Malato, Yann; Willenbring, Holger; Mueller, Ann-Kristin; Grimm, Dirk

    2014-01-01

    Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases. PMID:25189739

  14. Yi Qi Qing Re Gao Attenuates Podocyte Injury and Inhibits Vascular Endothelial Growth Factor Overexpression in Puromycin Aminonucleoside Rat Model

    PubMed Central

    Zhan, Yongli; Yang, Liping; Wen, Yumin; Liu, Huijie; Zhang, Haojun; Zhu, Bin; Han, Wenbing; Gu, Yanting; Sun, Xueyan; Dong, Xi; Zhao, Tingting; Ma, Huixia; Li, Ping

    2014-01-01

    Proteinuria is the hallmark of chronic kidney disease. Podocyte damage underlies the formation of proteinuria, and vascular endothelial growth factor (VEGF) functions as an autocrine/paracrine regulator. Yi Qi Qing Re Gao (YQQRG) has been used to treat proteinuria for more than two decades. The objective of this study was to investigate the protective effect and possible mechanisms of YQQRG on puromycin aminonucleoside (PAN) rat model. Eighty male Sprague-Dawley rats were randomized into sham group, PAN group, PAN + YQQRG group, and PAN + fosinopril group. Treatments were started 7 days before induction of nephrosis (a single intravenous injection of 40 mg/kg PAN) until day 15. 24 h urinary samples were collected on days 5, 9, and 14. The animals were sacrificed on days 3, 10, and 15, respectively. Blood samples and renal tissues were obtained for detection of biochemical and molecular biological parameters. YQQRG significantly reduced proteinuria, elevated serum albumin, and alleviated renal pathological lesions. YQQRG inhibited VEGF-A, nephrin, podocin, and CD2AP mRNA expression and elevated nephrin, podocin, and CD2AP protein levels starting on day 3. In conclusion, YQQRG attenuates podocyte injury in the rat PAN model through downregulation of VEGF-A and restoration of nephrin, podocin, and CD2AP protein expression. PMID:24963322

  15. Over-expression of copper/zinc superoxide dismutase in the median preoptic nucleus attenuates chronic angiotensin II-induced hypertension in the rat.

    PubMed

    Collister, John P; Bellrichard, Mitch; Drebes, Donna; Nahey, David; Tian, Jun; Zimmerman, Matthew C

    2014-01-01

    The brain senses circulating levels of angiotensin II (AngII) via circumventricular organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous system output accordingly via this neuro-hormonal communication. However, the cellular signaling mechanisms involved in these communications remain to be fully understood. Previous lesion studies of either the SFO, or the downstream median preoptic nucleus (MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without providing a clear explanation as to the intracellular signaling pathway(s) involved. Additional studies have reported that over-expressing copper/zinc superoxide dismutase (CuZnSOD), an intracellular superoxide (O2·-) scavenging enzyme, in the SFO attenuates chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction of O2·- in the MnPO is an underlying mechanism in the long-term hypertensive effects of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD) or control vector (AdEmpty) were injected directly into the MnPO of rats implanted with aortic telemetric transmitters for recording of arterial pressure. After a 3 day control period of saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days. Rats over-expressing CuZnSOD (n = 7) in the MnPO had a blood pressure increase of only 6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg in AdEmpty-infected rats (n = 9). These results support the hypothesis that production of O2·- in the MnPO contributes to the development of chronic AngII-dependent hypertension. PMID:25474089

  16. Overexpression of insulin-like growth factor-1 attenuates skeletal muscle damage and accelerates muscle regeneration and functional recovery after disuse.

    PubMed

    Ye, Fan; Mathur, Sunita; Liu, Min; Borst, Stephen E; Walter, Glenn A; Sweeney, H Lee; Vandenborne, Krista

    2013-05-01

    Skeletal muscle is a highly dynamic tissue that responds to endogenous and external stimuli, including alterations in mechanical loading and growth factors. In particular, the antigravity soleus muscle experiences significant muscle atrophy during disuse and extensive muscle damage upon reloading. Given that insulin-like growth factor-1 (IGF-1) has been implicated as a central regulator of muscle repair and modulation of muscle size, we examined the effect of virally mediated overexpression of IGF-1 on the soleus muscle following hindlimb cast immobilization and upon reloading. Recombinant IGF-1 cDNA virus was injected into one of the posterior hindlimbs of the mice, while the contralateral limb was injected with saline (control). At 20 weeks of age, both hindlimbs were immobilized for 2 weeks to induce muscle atrophy in the soleus and ankle plantarflexor muscle group. Subsequently, the mice were allowed to reambulate, and muscle damage and recovery were monitored over a period of 2-21 days. The primary finding of this study was that IGF-1 overexpression attenuated reloading-induced muscle damage in the soleus muscle, and accelerated muscle regeneration and force recovery. Muscle T2 assessed by magnetic resonance imaging, a non-specific marker of muscle damage, was significantly lower in IGF-1-injected compared with contralateral soleus muscles at 2 and 5 days reambulation (P<0.05). The reduced prevalence of muscle damage in IGF-1-injected soleus muscles was confirmed on histology, with a lower fractional area of abnormal muscle tissue in IGF-1-injected muscles at 2 days reambulation (33.2±3.3 versus 54.1±3.6%, P<0.05). Evidence of the effect of IGF-1 on muscle regeneration included timely increases in the number of central nuclei (21% at 5 days reambulation), paired-box transcription factor 7 (36% at 5 days), embryonic myosin (37% at 10 days) and elevated MyoD mRNA (7-fold at 2 days) in IGF-1-injected limbs (P<0.05). These findings demonstrate a potential role

  17. Bag-1 promotes cell survival through c-Myc-mediated ODC upregulation that is not preferred under apoptotic stimuli in MCF-7 cells.

    PubMed

    Ozfiliz, Pelin; Kizilboga, Tugba; Demir, Salih; Alkurt, Gizem; Palavan-Unsal, Narçin; Arisan, Elif Damla; Dinler-Doganay, Gizem

    2015-07-01

    Bag-1, Bcl-2 associated athanogene-1, is a multifunctional protein that can regulate a wide variety of cellular processes: proliferation, cell survival, transcription, apoptosis and motility. Bag-1 interacts with various targets in the modulation of these pathways; yet molecular details of Bag-1's involvement in each cellular event are still unclear. We first showed that forced Bag-1 expression promotes cell survival and prevents drug-induced apoptosis in MCF-7 breast cancer cells. Increased mRNA expressions of c-myc protooncogene and ornithine decarboxylase (ODC), biosynthetic enzyme of polyamines, were detected in Bag-1L+ cells, and western blots against the protein product of c-Myc and ODC confirmed these findings. Once ODC, a c-Myc target, gets activated, polyamine biosynthesis increases. We observed enhanced polyamine content in the Bag-1L+ cells. On the contrary, when polyamine catabolic mechanisms were investigated, Bag-1 silencing suppressed biosynthesis of polyamines because of the downregulation of ODC and upregulation of PAO. Exposure of cells to apoptotic inducers enhances the cell death mechanism by producing toxic products such as H2 O2 and aldehydes. Bag-1L+ cells prevented drug-induced PAO activation leading to a decrease in H2 O2 production following cisplatin or paclitaxel treatment. In this line, our results suggested that Bag-1 indirectly affects cell survival through c-Myc activated signalling that causes elevation of ODC levels, leading to an increase of the polyamine content. PMID:26178413

  18. Nuclear respiratory factor 1 overexpression attenuates anti-benzopyrene‑7,8-diol-9,10-epoxide-induced S-phase arrest of bronchial epithelial cells.

    PubMed

    Wu, Jing; Wang, Yaning; Wo, Da; Zhang, Lijuan; Li, Jue

    2016-05-01

    Nuclear respiratory factor 1 (NRF-1) has important roles in the regulation of several key metabolic genes required for cellular growth and respiration. A previous study by our group indicated that NRF‑1 is involved in mitochondrial dysfunction induced by the environmental pollutant benzo[a]pyrene in the 16HBE human bronchial epithelial cell line. In the present study, it was observed that its genotoxic metabolite, anti‑benzopyrene‑7,8‑diol‑9,10‑epoxide (BPDE), triggered cell cycle arrest in S‑phase in 16HBE cells by activating ataxia-telangiectasia (ATM)/checkpoint kinase (Chk)2 and ATM and Rad3 related (ATR)/Chk1 signaling pathways. NRF‑1 expression was suppressed by BPDE after treatment for 6 h. Flow cytometric analysis revealed that NRF‑1 overexpression attenuated cell cycle arrest in S‑phase induced by BPDE. In line with this result, DNA‑damage checkpoints were activated following NRF‑1 overexpression, as demonstrated by increased phosphorylation of ATM, Chk2 and γH2AX, but not ATR and Chk1, according to western blot analysis. It was therefore indicated that NRF‑1 overexpression attenuated BPDE‑induced S‑phase arrest via the ATM/Chk2 signaling pathway. PMID:27035420

  19. Overexpression of Shati/Nat8l, an N-acetyltransferase, in the nucleus accumbens attenuates the response to methamphetamine via activation of group II mGluRs in mice.

    PubMed

    Miyamoto, Yoshiaki; Ishikawa, Yudai; Iegaki, Noriyuki; Sumi, Kazuyuki; Fu, Kequan; Sato, Keiji; Furukawa-Hibi, Yoko; Muramatsu, Shin-Ichi; Nabeshima, Toshitaka; Uno, Kyosuke; Nitta, Atsumi

    2014-08-01

    A novel N-acetyltransferase, Shati/Nat8l, was identified in the nucleus accumbens (NAc) of mice with methamphetamine (METH) treatment. Previously we reported that suppression of Shati/Nat8l enhanced METH-induced behavioral alterations via dopaminergic neuronal regulation. However, the physiological mechanisms of Shati/Nat8l on the dopaminergic system in the brain are unclear. In this study, we injected adeno-associated virus (AAV) vector containing Shati/Nat8l into the NAc or dorsal striatum (dS) of mice, to increase Shati/Nat8l expression. Overexpression of Shati/Nat8l in the NAc, but not in the dS, attenuated METH-induced hyperlocomotion, locomotor sensitization, and conditioned place preference in mice. Moreover, the Shati/Nat8l overexpression in the NAc attenuated the elevation of extracellular dopamine levels induced by METH in in vivo microdialysis experiments. These behavioral and neurochemical alterations due to Shati/Nat8l overexpression in the NAc were inhibited by treatment with selective group II metabotropic glutamate receptor type 2 and 3 (mGluR2/3) antagonist LY341495. In the AAV vector-injected NAc, the tissue contents of both N-acetylaspartate and N-acetylaspartylglutamate (NAAG), endogenous mGluR3 agonist, were elevated. The injection of peptidase inhibitor of NAAG or the perfusion of NAAG itself reduced the basal levels of extracellular dopamine in the NAc of naive mice. These results indicate that Shati/Nat8l in the NAc, but not in the dS, plays an important suppressive role in the behavioral responses to METH by controlling the dopaminergic system via activation of group II mGluRs. PMID:24559655

  20. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes.

    PubMed

    Markandeya, Yogananda S; Phelan, Laura J; Woon, Marites T; Keefe, Alexis M; Reynolds, Courtney R; August, Benjamin K; Hacker, Timothy A; Roth, David M; Patel, Hemal H; Balijepalli, Ravi C

    2015-09-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca(2+) cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca(2+) signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca(2+) current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  1. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  2. Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro.

    PubMed

    Huang, Wenbai; Liu, Zhan'ao; Zhou, Guanzhou; Ling, Jianmin; Tian, Ailing; Sun, Nianfeng

    2016-08-01

    Apoptosis disorder is generally regarded as an important mechanism of carcinogenesis. Inducement of tumor cell apoptosis can be an effectual way to treat cancer. Bcl-2-associated athanogene 1 (Bag-1) is a positive regulator of Bcl-2 which is an anti-apoptotic gene. Bag-1 is highly expressed in colorectal cancer, which plays a critical role in promoting metastasis, poor prognosis, especially in anti-apoptotic function, and is perhaps a valuable gene target for colorectal cancer therapy. Recently, we applied a novel non-viral gene carrier, magnetic gold nanoparticle, and mediated plasmid pGPH1/GFP/Neo-Bag-1-homo-825 silencing Bag-1 gene for treating colorectal cancer in vivo and in vitro. By mediating with magnetic gold nanoparticle, siRNA plasmid was successfully transfected into cell. In 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, magnetic gold nanoparticle had no significant cytotoxicity and by which delivered RNA plasmid inhibited cell viability significantly (P < 0.05). Downregulation of Bag-1 promoted cell apoptosis (∼47.0 %) in vitro and significantly decreased tumor growth when the cells were injected into nude mice. Based on the studies in vivo, the relative expression of Bag-1 was 0.165 ± 0.072 at mRNA level and ∼60 % at protein level. In further study, C-myc and β-catenin, mainly molecules of Wnt/β-catenin pathway, were decreased notably when Bag-1 were silenced in nanoparticle plasmid complex-transfected Balb c/nude tumor xenograft. In conclusion, Bag-1 is confirmed an anti-apoptosis gene that functioned in colorectal cancer, and the mechanism of Bag-1 gene causing colorectal cancer may be related to Wnt/β-catenin signaling pathway abnormality and suggested that magnetic gold nanoparticle-delivered siRNA plasmid silencing Bag-1 is an effective gene therapy method for colorectal cancer. PMID:26846101

  3. Overexpression of activin-A and -B in malignant mesothelioma – Attenuated Smad3 signaling responses and ERK activation promote cell migration and invasive growth

    SciTech Connect

    Tamminen, Jenni A.; Yin, Miao; Rönty, Mikko; Sutinen, Eva; Pasternack, Arja; Ritvos, Olli; Myllärniemi, Marjukka; Koli, Katri

    2015-03-01

    Activin-A and activin-B, members of the TGF-β superfamily, are regulators of reproductive functions, inflammation and wound healing. These dimeric molecules regulate various cellular activities such as proliferation, migration and suvival. Malignant mesothelioma is an asbestos exposure related tumor affecting mainly pleura and it usually has a dismal prognosis. Here, we demonstrate that both activin-A and -B are abundantly expressed in mesothelioma tumor tissue as well as in cultured primary and established mesothelioma cells. Migratory and invasive mesothelioma cells were also found to have attenuated activation of the Smad2/3 pathway in response to activins. Migration and invasive growth of the cells in three-dimentional matrix was prevented by inhibition of activin activity using a soluble activin receptor 2B (sActR2B-Fc). This was associated with decreased ERK activity. Furthermore, migration and invasive growth was significantly inhibited by blocking ERK phosphorylation. Mesothelioma tumors are locally invasive and our results clearly suggest that acivins have a tumor-promoting function in mesothelioma through increasing expression and switching from canonical Smad3 pathway to non-canonical ERK pathway signaling. Blocking activin activity offers a new therapeutic approach for inhibition of mesothelioma invasive growth. - Highlights: • Activin-A and activin-B are highly expressed in mesothelioma. • Mesothelioma cell migration and invasive growth can be blocked with sActR2B. • Activin induced Smad3 activity is attenuated in invasive mesothelioma cells. • Activins induce ERK activity in mesothelioma cells.

  4. Association between polymorphisms of BAG-1 and XPD and chemotherapy sensitivity in advanced non-small-cell lung cancer patients treated with vinorelbine combined cisplatin regimen.

    PubMed

    Li, Ping; Wang, Ya-Di; Cheng, Jian; Chen, Jun-Chen; Ha, Min-Wen

    2015-12-01

    BCL-2 Associated athanogene 1 (BAG-1) and Xeroderma pigmentosum group D (XPD) are involved in the nucleotide excision repair pathway and DNA repair. We aimed to investigate whether polymorphisms in BAG-1 and XPD have effects on chemotherapy sensitivity and survival in patients with advanced non-small-cell lung cancer (NSCLC) treated with vinorelbine combined cisplatin (NP) regimen. A total of 142 patients with diagnosed advanced NSCLC were recruited in the current study. NP regimen was applied for all eligible patients. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was used for BAG-1 (codon 324) and XPD (codons 312 and 751) genotyping. The treatment response was evaluated according to the RECIST guidelines. Progression-free survival (PFS) and overall survival (OS) were record as median and end point, respectively. As for BAG-1 codon 324, the chemotherapy sensitivity in NSCLC patients with CT genotype was 0.383 times of those with CC genotype (P < 0.05). With respect to XPD codon 751, the chemotherapy sensitivity in NSCLC patients with Lys/Gln genotype was 0.400 times of those with Lys/Lys genotype (P < 0.05). In addition, NSCLC patients carrying combined C/C genotype at codon 324 in BAG-1, Asp/Asp of XPD codon 312, and Lys/Lys of XPD codon 751 produced a higher efficacy of NP chemotherapy compared to those carrying mutation genotypes (all P < 0.05). Further, there were significant differences in PFS between patients with combined C/C genotype of BAG-1 codon 324, Lys/Lys genotype of XPD codon 751, and Asp/Asp genotype of XPD codon 312 and patients carrying BAG-1 codon 324 C/T genotype, XPD codon751 Lys/Gln genotype, and XPD codon312 Asp/Asn genotype (P < 0.05). Multivariate Cox regression analysis indicated that the combined wild-type of codon 324 XPD, codon 751 XPD, and codon 312 BAG-1 is the protective factor for OS and PFS, and clinical stages is the risk factor for OS and PFS. In conclusion, our research

  5. Cardiac Overexpression of Metallothionein Rescues Cold Exposure-Induced Myocardial Contractile Dysfunction through Attenuation of Cardiac Fibrosis Despite Cardiomyocyte Mechanical Anomalies

    PubMed Central

    Zhang, Yingmei; Hu, Nan; Hua, Yinan; Richmond, Kacy L.; Dong, Feng; Ren, Jun

    2012-01-01

    Cold exposure is associated with an increased prevalence for cardiovascular disease although the mechanism is unknown. Metallothionein, a heavy metal scavenging antioxidant, protects against cardiac anomalies. This study was designed to examine the impact of metallothionein on cold exposure-induced myocardial dysfunction, intracellular Ca2+ derangement, fibrosis, ER stress and apoptosis. Echocardiographic, cardiomyocyte function and Masson trichrome staining were evaluated in friendly virus B (FVB) and cardiac-specific metallothionein transgenic mice following cold exposure (3 mo, 4°C). Cold exposure increased plasma levels of norepinephrine, endothelin-1 and TGF-β, reduced plasma NO levels and cardiac antioxidant capacity, enlarged ventricular end systolic diameter, compromised fractional shortening, promoted ROS production and apoptosis, and suppressed ER stress marker Bip, calregulin and phospho-eIF2α accompanied with cardiac fibrosis and elevated levels of matrix metalloproteinases and Smad-2/3 in FVB mice. Cold exposure-induced echocardiographic, histological, ER stress, ROS, apoptotic and fibrotic signaling changes (but not plasma markers) were greatly improved by metallothionein. In vitro metallothionein induction by zinc chloride ablated H2O2- but not TGF-β-induced cell proliferation in fibroblasts. In summary, our data suggested that metallothionein protects against cold exposure-induced cardiac anomalies possibly through attenuation of myocardial fibrosis. PMID:22565031

  6. Human mesenchymal stem cells overexpressing the IL-33 antagonist soluble IL-1 receptor-like-1 attenuate endotoxin-induced acute lung injury.

    PubMed

    Martínez-González, Itziar; Roca, Oriol; Masclans, Joan R; Moreno, Rafael; Salcedo, Maria T; Baekelandt, Veerle; Cruz, Maria J; Rello, Jordi; Aran, Josep M

    2013-10-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by pulmonary edema attributable to alveolar epithelial-interstitial-endothelial injury, associated with profound inflammation and respiratory dysfunction. The IL-33/IL-1 receptor-like-1 (ST2) axis plays a key role in the development of immune-inflammatory responses in the lung. Cell-based therapy has been recently proposed as an effective alternative for the treatment of ALI and ARDS. Here, we engineered human adipose tissue-derived mesenchymal stem cells (hASCs) overexpressing soluble IL-1 receptor-like-1 (sST2), a decoy receptor for IL-33, in order to enhance their immunoregulatory and anti-inflammatory properties when applied in a murine ALI model. We administered both hASCs and hASC-sST2 systemically at 6 hours after intranasal LPS instillation, when pathological changes had already occurred. Bioluminescence imaging, immunohistochemistry, and focused transcriptional profiling confirmed the increased presence of hASCs in the injured lungs and the activation of an immunoregulatory program (CXCR-4, tumor necrosis factor-stimulated gene 6 protein, and indoleamine 2,3-dioxygenase up-regulation) in these cells, 48 hours after endotoxin challenge. A comparative evaluation of hASCs and the actions of hASC-sST2 revealed that local sST2 overproduction by hASC-sST2 further prevented IL-33, Toll-like receptor-4, IL-1β, and IFN-γ induction, but increased IL-10 expression in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in protein content, differential neutrophil counts, and proinflammatory cytokine (TNF-α, IL-6, and macrophage inflammatory protein 2) concentrations in bronchoalveolar lavage fluid. In addition, hASC-sST2-treated ALI lungs showed preserved alveolar architecture, an absence of apoptosis, and minimal inflammatory cell infiltration. These results suggest that h

  7. Control of steroid receptor dynamics and function by genomic actions of the cochaperones p23 and Bag-1L

    PubMed Central

    Cato, Laura; Neeb, Antje; Brown, Myles

    2014-01-01

    Molecular chaperones encompass a group of unrelated proteins that facilitate the correct assembly and disassembly of other macromolecular structures, which they themselves do not remain a part of. They associate with a large and diverse set of coregulators termed cochaperones that regulate their function and specificity. Amongst others, chaperones and cochaperones regulate the activity of several signaling molecules including steroid receptors, which upon ligand binding interact with discrete nucleotide sequences within the nucleus to control the expression of diverse physiological and developmental genes. Molecular chaperones and cochaperones are typically known to provide the correct conformation for ligand binding by the steroid receptors. While this contribution is widely accepted, recent studies have reported that they further modulate steroid receptor action outside ligand binding. They are thought to contribute to receptor turnover, transport of the receptor to different subcellular localizations, recycling of the receptor on chromatin and even stabilization of the DNA-binding properties of the receptor. In addition to these combined effects with molecular chaperones, cochaperones are reported to have additional functions that are independent of molecular chaperones. Some of these functions also impact on steroid receptor action. Two well-studied examples are the cochaperones p23 and Bag-1L, which have been identified as modulators of steroid receptor activity in nuclei. Understanding details of their regulatory action will provide new therapeutic opportunities of controlling steroid receptor action independent of the widespread effects of molecular chaperones. PMID:25422595

  8. Brain Tissue Cysts in Infected Mice with RH-Strain of Toxoplasma gondii and Evaluation of BAG1 and SAG1 Genes Expression

    PubMed Central

    Selseleh, Monavar; Modarressi, MH; Shojaee, S; Mohebali, M; Eshraghian, MR; Selseleh, Mina; Keshavarz, H

    2013-01-01

    Background Toxoplasma gondii is an obligate intracellular parasite that infects humans at high prevalence rates. The virulent RH strain of T. gondii is generally considered to have lost its cyst forming capacity. This study performed to obtain tissue cysts in mice infected with tachyzoites of RH strain treated with sulfadiazine (SDZ). It provides the opportunity to analyze the conversion of tachyzoite to bradyzoite stage of the RH strain, followed by stage-specific gene-expression analyzing. Methods Two groups of Swiss-Webster and BALB/c mice were infected subcutaneously with 104 tachyzoites of T. gondii, RH strain and given SDZ (300 mg/l) with NaHCO3 (5 g-1) in drinking water from day1 to day 14 post infection (p.i). The infected mice were sacrificed on day 50 post infection. Their brains were removed and the numbers of tissue cysts were microscopically counted. Total RNA was extracted from brains and cDNA synthesis was carried out. Finally, RT-PCR (Reverse transcription PCR) was used to detect the expression of bradyzoite (BAG1) and tachyzoite (SAG1) specific genes during tachyzoite / bradyzoite stage conversion. Results Sixty five percent of all infected mice were survived. Cysts were detectable in mice brain (45%) on day 50 p.i. Also RT-PCR of the brain samples was positive for SAG1 and BAG1. Conclusion It seems that conversion of tachyzoites to bradyzoites in brain of mice undergoing SDZ was not completed until 50 days after inoculation. PMID:23682258

  9. BAG-1/SODD, HSP70, and HSP90 are potential prognostic markers of poor survival in node-negative breast carcinoma.

    PubMed

    Davidson, Ben; Valborg Reinertsen, Kristin; Trinh, Don; Reed, Wenche; Bøhler, Per Johannes

    2016-08-01

    The objective of this study was to analyze the expression and clinical role of 13 signaling molecules in a large cohort of breast carcinoma patients with long follow-up period. Breast carcinomas (n=410) were analyzed for protein expression of phosphorylated mitogen-activated protein kinases (p-ERK, p-JNK, p-p38) and phosphoinositide 3-kinase signaling pathway proteins (p-AKT, p-mTOR, p-p70S6K); the BAG family proteins BAG-1 and BAG-4/SODD; the antiapoptotic protein Bcl-2; the inhibitor of apoptosis family member Survivin; and the heat shock protein family members HSP27, HSP70, and HSP90. Protein expression was studied for association with clinicopathological parameters and survival. Significantly higher expression of p-AKT (P<.001), p-mTOR (P<.001), p-p70S6K (P<.001), Bcl-2 (P<.001), BAG-4/SODD (P<.001), HSP27 (P<.001), HSP70 (P=.012), HSP90 (P<.001), and Survivin (P=.004) was found in infiltrating ductal and lobular carcinomas compared to mucinous carcinomas. Bcl-2 expression was significantly higher in grades 1 and 2 compared to grade 3 carcinomas (P<.001). p-AKT expression was higher in tumors more than 2cm (P=.027), whereas p-mTOR expression was lowest in tumors more than 5cm (P=.019). Higher BAG-4/SODD, HSP70, and HSP90 expression was associated with poor overall survival (P=.016, P=.039, and P=.023, respectively) in univariate analysis, whereas the only independent prognosticator in Cox multivariate survival analysis was tumor diameter (P=.003). In conclusion, BAG-4/SODD, HSP70, and HSP90 are potential prognostic markers in node-negative breast carcinoma that merit further research. PMID:27038683

  10. Quantitative nature of overexpression experiments

    PubMed Central

    Moriya, Hisao

    2015-01-01

    Overexpression experiments are sometimes considered as qualitative experiments designed to identify novel proteins and study their function. However, in order to draw conclusions regarding protein overexpression through association analyses using large-scale biological data sets, we need to recognize the quantitative nature of overexpression experiments. Here I discuss the quantitative features of two different types of overexpression experiment: absolute and relative. I also introduce the four primary mechanisms involved in growth defects caused by protein overexpression: resource overload, stoichiometric imbalance, promiscuous interactions, and pathway modulation associated with the degree of overexpression. PMID:26543202

  11. Hand1 overexpression inhibits medulloblastoma metastasis.

    PubMed

    Asuthkar, Swapna; Guda, Maheedhara R; Martin, Sarah E; Antony, Reuben; Fernandez, Karen; Lin, Julian; Tsung, Andrew J; Velpula, Kiran K

    2016-08-19

    Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of β-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, β-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis. PMID:27297109

  12. Rotary antenna attenuator

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.; Hardy, J. C.

    1969-01-01

    Radio frequency attenuator, having negligible insertion loss at minimum attenuation, can be used for making precise antenna gain measurements. It is small in size compared to a rotary-vane attenuator.

  13. DC attenuation meter

    DOEpatents

    Hargrove, Douglas L.

    2004-09-14

    A portable, hand-held meter used to measure direct current (DC) attenuation in low impedance electrical signal cables and signal attenuators. A DC voltage is applied to the signal input of the cable and feedback to the control circuit through the signal cable and attenuators. The control circuit adjusts the applied voltage to the cable until the feedback voltage equals the reference voltage. The "units" of applied voltage required at the cable input is the system attenuation value of the cable and attenuators, which makes this meter unique. The meter may be used to calibrate data signal cables, attenuators, and cable-attenuator assemblies.

  14. Pressure surge attenuator

    DOEpatents

    Christie, Alan M.; Snyder, Kurt I.

    1985-01-01

    A pressure surge attenuation system for pipes having a fluted region opposite crushable metal foam. As adapted for nuclear reactor vessels and heads, crushable metal foam is disposed to attenuate pressure surges.

  15. Tracer attenuation in groundwater

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir

    2011-12-01

    The self-purifying capacity of aquifers strongly depends on the attenuation of waterborne contaminants, i.e., irreversible loss of contaminant mass on a given scale as a result of coupled transport and transformation processes. A general formulation of tracer attenuation in groundwater is presented. Basic sensitivities of attenuation to macrodispersion and retention are illustrated for a few typical retention mechanisms. Tracer recovery is suggested as an experimental proxy for attenuation. Unique experimental data of tracer recovery in crystalline rock compare favorably with the theoretical model that is based on diffusion-controlled retention. Non-Fickian hydrodynamic transport has potentially a large impact on field-scale attenuation of dissolved contaminants.

  16. Variable laser attenuator

    DOEpatents

    Foltyn, Stephen R.

    1988-01-01

    The disclosure relates to low loss, high power variable attenuators comprng one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength.

  17. Variable laser attenuator

    DOEpatents

    Foltyn, S.R.

    1987-05-29

    The disclosure relates to low loss, high power variable attenuators comprising one or more transmissive and/or reflective multilayer dielectric filters. The attenuator is particularly suitable to use with unpolarized lasers such as excimer lasers. Beam attenuation is a function of beam polarization and the angle of incidence between the beam and the filter and is controlled by adjusting the angle of incidence the beam makes to the filter or filters. Filters are selected in accordance with beam wavelength. 9 figs.

  18. The Effects of NDRG2 Overexpression on Cell Proliferation and Invasiveness of SW48 Colorectal Cancer Cell Line

    PubMed Central

    Golestan, Ali; Mojtahedi, Zahra; Ghalamfarsa, Ghasem; Hamidinia, Maryam; Takhshid, Mohammad Ali

    2015-01-01

    Background: Colorectal cancer (CRC) is one of the most common causes of cancer-related death in the world. The expression of N-myc downstream-regulated gene 2 (NDRG2) is down-regulated in CRC. The aim of this study was to investigate the effect of NDRG2 overexpression on cell proliferation and invasive potential of SW48 cells. Methods: SW48 cells were transfected with a plasmid overexpressing NDRG2. After stable transfection, the effect of NDRG2 overexpression on cell proliferation was evaluated by MTT assay. The effects of NDRG2 overexpression on cell migration, invasion and cell motility and matrix metalloproteinase 9 (MMP9) activities were also investigated using matrigel transwell assay, wound healing assay and gelatin zymography, respectively. Results: MTT assay showed that overexpression of NDRG2 caused attenuation of SW48 cell proliferation. Transwell and wound healing assay revealed that NDRG2 overexpression led to inhibition of migration, invasion, and motility of SW48 cells. The overexpression of NDRG2 also reduced the activity of secreted MMP-9. Conclusions: The results of this study suggest that NDRG2 overexpression inhibits proliferation and invasive potential of SW48 cells, which likely occurs via suppression of MMP-9 activity. PMID:26379350

  19. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models

    PubMed Central

    Mázala, Davi A. G.; Pratt, Stephen J. P.; Chen, Dapeng; Molkentin, Jeffery D.; Lovering, Richard M.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca2+ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr−/− mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr+/− mice to generate mdx/Utr−/−/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca2+ handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca2+-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr−/−/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr−/− vs. WT mice, but only 1.5-fold greater in mdx/Utr−/−/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr−/− vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca2+ control as a therapeutic approach for DMD. PMID:25652448

  20. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Kwan, Hwa-Wan (Inventor); Abeysinghe, Amal (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  1. RADIO FREQUENCY ATTENUATOR

    DOEpatents

    Giordano, S.

    1963-11-12

    A high peak power level r-f attenuator that is readily and easily insertable along a coaxial cable having an inner conductor and an outer annular conductor without breaking the ends thereof is presented. Spaced first and second flares in the outer conductor face each other with a slidable cylindrical outer conductor portion therebetween. Dielectric means, such as water, contact the cable between the flares to attenuate the radio-frequency energy received thereby. The cylindrical outer conductor portion is slidable to adjust the voltage standing wave ratio to a low level, and one of the flares is slidable to adjust the attenuation level. An integral dielectric container is also provided. (AFC)

  2. Attenuator And Conditioner

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Carson, Richard F.; Bryan, Robert P.; Duckett, III, Edwin B.; Kemme, Shanalyn Adair; McCormick, Frederick B.; Peterson, David W.

    2006-04-04

    An apparatus and method of attenuating and/or conditioning optical energy for an optical transmitter, receiver or transceiver module is disclosed. An apparatus for attenuating the optical output of an optoelectronic connector including: a mounting surface; an array of optoelectronic devices having at least a first end; an array of optical elements having at least a first end; the first end of the array of optical elements optically aligned with the first end of the array of optoelectronic devices; an optical path extending from the first end of the array of optoelectronic devices and ending at a second end of the array of optical elements; and an attenuator in the optical path for attenuating the optical energy emitted from the array of optoelectronic devices. Alternatively, a conditioner may be adapted in the optical path for conditioning the optical energy emitted from the array of optoelectronic devices.

  3. Fiber Optic Attenuators

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Mike Buzzetti designed a fiber optic attenuator while working at Jet Propulsion Laboratory, intended for use in NASA's Deep Space Network. Buzzetti subsequently patented and received an exclusive license to commercialize the device, and founded Nanometer Technologies to produce it. The attenuator functions without introducing measurable back-reflection or insertion loss, and is relatively insensitive to vibration and changes in temperature. Applications include cable television, telephone networks, other signal distribution networks, and laboratory instrumentation.

  4. Expression of Escherichia coli virulence usher protein attenuates wild-type Salmonella.

    PubMed

    Yang, Xinghong; Suo, Zhiyong; Thornburg, Theresa; Holderness, Kathryn; Cao, Ling; Lim, Timothy; Walters, Nancy; Kellerman, Laura; Loetterle, Linda; Avci, Recep; Pascual, David W

    2012-01-01

    Generation of a live attenuated vaccine for bacterial pathogens often requires prior knowledge of the pathogen's virulence factors. We hypothesized an alternative approach of heterologous gene expression would make a wild-type (wt) pathogen more susceptible to host cell killing, thus, resulting in immunization. As proof of concept, the heterologous expression of enterotoxigenic E. coli (ETEC) colonization factor antigen I (CFA/I) was tested to attenuate Salmonella. The overexpression of CFA/I resulted in significant attenuation of wt Salmonella. In-depth studies revealed the attenuation depended on the co-expression of chaperone (CfaA) and usher (CfaC) proteins. Remarkably, the CfaAC-attenuated Salmonella conferred protection against wt Salmonella challenge. Mechanistic study indicated CfaAC made Salmonella outer membranes permeable, causing Salmonella to be vulnerable to host destruction. Thus, enhancing bacterial permeability via CfaAC represents an alternative method to attenuate pathogens despite the presence of unknown virulence factors. PMID:22286706

  5. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-01-20

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  6. Radiofrequency attenuator and method

    DOEpatents

    Warner, Benjamin P.; McCleskey, T. Mark; Burrell, Anthony K.; Agrawal, Anoop; Hall, Simon B.

    2009-11-10

    Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.

  7. Seismic attenuation in Florida

    SciTech Connect

    Bellini, J.J.; Bartolini, T.J.; Lord, K.M.; Smith, D.L. . Dept. of Geology)

    1993-03-01

    Seismic signals recorded by the expanded distribution of earthquake seismograph stations throughout Florida and data from a comprehensive review of record archives from stations GAI contribute to an initial seismic attenuation model for the Florida Plateau. Based on calculations of surface particle velocity, a pattern of attenuation exists that appears to deviate from that established for the remainder of the southeastern US. Most values suggest greater seismic attenuation within the Florida Plateau. However, a separate pattern may exist for those signals arising from the Gulf of Mexico. These results have important implications for seismic hazard assessments in Florida and may be indicative of the unique lithospheric identity of the Florida basement as an exotic terrane.

  8. Overexpression of MMP-7 increases collagen 1A2 in the aging kidney

    PubMed Central

    Ślusarz, Anna; Nichols, LaNita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-01-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  9. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney.

    PubMed

    Oelusarz, Anna; Nichols, Lanita A; Grunz-Borgmann, Elizabeth A; Chen, Gang; Akintola, Adebayo D; Catania, Jeffery M; Burghardt, Robert C; Trzeciakowski, Jerome P; Parrish, Alan R

    2013-10-01

    The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis, that lead to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, and over a 500 fold up-regulation in 2 year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of PKA, src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 up-regulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD. PMID:24273653

  10. Short-form RON overexpression augments benzyl isothiocyanate-induced apoptosis in human breast cancer cells.

    PubMed

    Sehrawat, Anuradha; Singh, Shivendra V

    2016-05-01

    Chemoprevention of breast cancer is feasible with the use of non-toxic phytochemicals from edible and medicinal plants. Benzyl isothiocyanate (BITC) is one such plant compound that prevents mammary cancer development in a transgenic mouse model in association with tumor cell apoptosis. Prior studies from our laboratory have demonstrated a role for reactive oxygen species (ROS)-dependent Bax activation through the intermediary of c-Jun N-terminal kinases in BITC-induced apoptosis in human breast cancer cells. The present study demonstrates that truncated Recepteur d'Origine Nantais (sfRON) is a novel regulator of BITC-induced apoptosis in breast cancer cells. Overexpression of sfRON in MCF-7 and MDA-MB-361 cells resulted in augmentation of BITC-induced apoptosis when the apoptotic fraction was normalized against vehicle control for each cell type (untransfected and sfRON overexpressing cells). ROS generation and G2 /M phase cell cycle arrest resulting from BITC treatment were significantly attenuated in sfRON overexpressing cells after normalization with vehicle control for each cell type. Increased BITC-induced apoptosis by sfRON overexpression was independent of c-Jun N-terminal kinase or p38 mitogen-activated protein kinase hyperphosphorylation. On the other hand, activation of Bax and Bak following BITC exposure was markedly more pronounced in sfRON overexpressing cells than in controls. sfRON overexpression also augmented apoptosis induction by structurally diverse cancer chemopreventive phytochemicals including withaferin A, phenethyl isothiocyanate, and D,L-sulforaphane. In conclusion, the present study provides novel mechanistic insights into the role of sfRON in apoptosis regulation by BITC and other electrophilic phytochemicals. © 2015 Wiley Periodicals, Inc. PMID:25857724

  11. Tritium Attenuation by Distillation

    SciTech Connect

    Wittman, N.E.

    2001-07-31

    The objective of this study was to determine how a 100 Area distillation system could be used to reduce to a satisfactory low value the tritium content of the dilute moderator produced in the 100 Area stills, and whether such a tritium attenuator would have sufficient capacity to process all this material before it is sent to the 400 Area for reprocessing.

  12. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer.

    PubMed

    Li, Aihua; King, Jonathan; Moro, Aune; Sugi, Mark D; Dawson, David W; Kaplan, Jeffrey; Li, Gang; Lu, Xuyang; Strieter, Robert M; Burdick, Marie; Go, Vay Liang W; Reber, Howard A; Eibl, Guido; Hines, O Joe

    2011-03-01

    Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the CXC chemokine family, has been shown to be involved in angiogenesis, tumor growth, and metastasis. The objective of this study was to determine the relationship between CXCL5 expression and tumor progression in human pancreatic cancer and to elucidate the mechanism underlying CXCL5-mediated tumor angiogenesis and cancer growth. We report herein that CXCL5 is overexpressed in human pancreatic cancer compared with paired normal pancreas tissue. Overexpression of CXCL5 is significantly correlated with poorer tumor differentiation, advanced clinical stage, and shorter patient survival. Patients with pancreatic cancer and CXCL5 overexpression who underwent resection of cancer had a mean survival time 25.5 months shorter than that of patients who did not overexpress CXCL5. Blockade of CXCL5 or its receptor CXCR2 by small-interfering RNA knockdown or antibody neutralization attenuated human pancreatic cancer growth in a nude mouse model. Finally, we demonstrated that CXCL5 mediates pancreatic cancer-derived angiogenesis through activation of several signaling pathways, including protein kinase B (Akt), extracellular signal-regulated kinase (ERK), and signal transducer and activator of transcription (STAT) in human endothelial cells. These data suggest that CXCL5 is an important mediator of tumor-derived angiogenesis and that it may serve as a survival factor for pancreatic cancer. Blockade of either CXCL5 or CXCR2 may be a critical adjunct antiangiogenic therapy against pancreatic cancer. PMID:21356384

  13. Overexpression of CXCL5 Is Associated With Poor Survival in Patients With Pancreatic Cancer

    PubMed Central

    Li, Aihua; King, Jonathan; Moro, Aune; Sugi, Mark D.; Dawson, David W.; Kaplan, Jeffrey; Li, Gang; Lu, Xuyang; Strieter, Robert M.; Burdick, Marie; Go, Vay Liang W.; Reber, Howard A.; Eibl, Guido; Hines, O. Joe

    2011-01-01

    Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the CXC chemokine family, has been shown to be involved in angiogenesis, tumor growth, and metastasis. The objective of this study was to determine the relationship between CXCL5 expression and tumor progression in human pancreatic cancer and to elucidate the mechanism underlying CXCL5-mediated tumor angiogenesis and cancer growth. We report herein that CXCL5 is overexpressed in human pancreatic cancer compared with paired normal pancreas tissue. Overexpression of CXCL5 is significantly correlated with poorer tumor differentiation, advanced clinical stage, and shorter patient survival. Patients with pancreatic cancer and CXCL5 overexpression who underwent resection of cancer had a mean survival time 25.5 months shorter than that of patients who did not overexpress CXCL5. Blockade of CXCL5 or its receptor CXCR2 by small-interfering RNA knockdown or antibody neutralization attenuated human pancreatic cancer growth in a nude mouse model. Finally, we demonstrated that CXCL5 mediates pancreatic cancer–derived angiogenesis through activation of several signaling pathways, including protein kinase B (Akt), extracellular signal–regulated kinase (ERK), and signal transducer and activator of transcription (STAT) in human endothelial cells. These data suggest that CXCL5 is an important mediator of tumor-derived angiogenesis and that it may serve as a survival factor for pancreatic cancer. Blockade of either CXCL5 or CXCR2 may be a critical adjunct antiangiogenic therapy against pancreatic cancer. PMID:21356384

  14. Clusterin Attenuates the Development of Renal Fibrosis

    PubMed Central

    Jung, Gwon-Soo; Kim, Mi-Kyung; Jung, Yun-A; Kim, Hye-Soon; Park, In-Sun; Min, Bon-Hong; Lee, Ki-Up; Kim, Jung-Guk

    2012-01-01

    Upregulation of clusterin occurs in several renal diseases and models of nephrotoxicity, but whether this promotes injury or is a protective reaction to injury is unknown. Here, in the mouse unilateral ureteral obstruction model, obstruction markedly increased the expression of clusterin, plasminogen activator inhibitor-1 (PAI-1), type I collagen, and fibronectin. Compared with wild-type mice, clusterin-deficient mice exhibited higher levels of PAI-1, type I collagen, and fibronectin and accelerated renal fibrosis in response to obstruction. In cultured rat tubular epithelium-like cells, adenovirus-mediated overexpression of clusterin inhibited the expression of TGF-β–stimulated PAI-1, type I collagen, and fibronectin. Clusterin inhibited TGF-β–stimulated Smad3 activity via inhibition of Smad3 phosphorylation and its nuclear translocation. Moreover, intrarenal delivery of adenovirus-expressing clusterin upregulated expression of clusterin in tubular epithelium-like cells and attenuated obstruction-induced renal fibrosis. In conclusion, clusterin attenuates renal fibrosis in obstructive nephropathy. These results suggest that upregulation of clusterin during renal injury is a protective response against the development of renal fibrosis. PMID:22052058

  15. Model-Based Design of Growth-Attenuated Viruses

    PubMed Central

    Lim, Kwang-il; Lang, Tobias; Lam, Vy; Yin, John

    2006-01-01

    Live-virus vaccines activate both humoral and cell-mediated immunity, require only a single boosting, and generally provide longer immune protection than killed or subunit vaccines. However, growth of live-virus vaccines must be attenuated to minimize their potential pathogenic effects, and mechanisms of attenuation by conventional serial-transfer viral adaptation are not well-understood. New methods of attenuation based on rational engineering of viral genomes may offer a potentially greater control if one can link defined genetic modifications to changes in virus growth. To begin to establish such links between genotype and growth phenotype, we developed a computer model for the intracellular growth of vesicular stomatitis virus (VSV), a well-studied, nonsegmented, negative-stranded RNA virus. Our model incorporated established regulatory mechanisms of VSV while integrating key wild-type infection steps: hijacking of host resources, transcription, translation, and replication, followed by assembly and release of progeny VSV particles. Generalization of the wild-type model to allow for genome rearrangements matched the experimentally observed attenuation ranking for recombinant VSV strains that altered the genome position of their nucleocapsid gene. Finally, our simulations captured previously reported experimental results showing how altering the positions of other VSV genes has the potential to attenuate the VSV growth while overexpressing the immunogenic VSV surface glycoprotein. Such models will facilitate the engineering of new live-virus vaccines by linking genomic manipulations to controlled changes in virus gene-expression and growth. PMID:16948530

  16. A compact rotary vane attenuator

    NASA Technical Reports Server (NTRS)

    Nixon, D. L.; Otosh, T. Y.; Stelzried, C. T.

    1969-01-01

    Rotary vane attenuator, when used as a front end attenuator, introduces an insertion loss that is proportional to the angle of rotation. New technique allows the construction of a shortened compact unit suitable for most installations.

  17. Overexpression of Cytochrome c by a Recombinant Rabies Virus Attenuates Pathogenicity and Enhances Antiviral Immunity

    PubMed Central

    Pulmanausahakul, Rojjanaporn; Faber, Milosz; Morimoto, Kinjiro; Spitsin, Sergei; Weihe, Eberhard; Hooper, D. Craig; Schnell, Matthias J.; Dietzschold, Bernhard

    2001-01-01

    The pathogenicity of individual rabies virus strains appears to correlate inversely with the extent of apoptotic cell death they induce and with the expression of rabies virus glycoprotein, a major inducer of an antiviral immune response. To determine whether the induction of apoptosis by rabies virus contributes to a decreased pathogenicity by stimulating antiviral immunity, we have analyzed these parameters in tissue cultures and in mice infected with a recombinant rabies virus construct that expresses the proapoptotic protein cytochrome c. The extent of apoptosis was strongly increased in primary neuron cultures infected with the recombinant virus carrying the active cytochrome c gene [SPBN-Cyto c(+)], compared with cells infected with the recombinant virus containing the inactive cytochrome c gene [SPBN-Cyto c(−)]. Mortality in mice infected intranasally with SPBN-Cyto c(+) was substantially lower than in SPBN-Cyto c(−)-infected mice. Furthermore, virus-neutralizing antibody (VNA) titers were significantly higher in mice immunized with SPBN-Cyto c(+) at the same dose. The VNA titers induced by these recombinant viruses paralleled their protective activities against a lethal rabies virus challenge infection, with SPBN-Cyto c(+) revealing an effective dose 20 times lower than that of SPBN-Cyto c(−). The strong increase in immunogenicity, coupled with the marked reduction in pathogenicity, identifies the SPBN-Cyto c(+) construct as a candidate for a live rabies virus vaccine. PMID:11602721

  18. Genetic overexpression of Serpina3n attenuates muscular dystrophy in mice.

    PubMed

    Tjondrokoesoemo, Andoria; Schips, Tobias; Kanisicak, Onur; Sargent, Michelle A; Molkentin, Jeffery D

    2016-03-15

    Muscular dystrophy (MD) is associated with mutations in genes that stabilize the myofiber plasma membrane, such as through the dystrophin-glycoprotein complex (DGC). Instability of this complex or defects in membrane repair/integrity leads to calcium influx and myofiber necrosis leading to progressive dystrophic disease. MD pathogenesis is also associated with increased skeletal muscle protease levels and activity that could augment weakening of the sarcolemma through greater degradation of cellular attachment complexes. Here, we observed a compensatory increase in the serine protease inhibitor Serpina3n in mouse models of MD and after acute muscle tissue injury. Serpina3n muscle-specific transgenic mice were generated to model this increase in expression, which reduced the activity of select proteases in dystrophic skeletal muscle and protected muscle from both acute injury with cardiotoxin and from chronic muscle disease in the mdx or Sgcd(-/-) MD genetic backgrounds. The Serpina3n transgene mitigated muscle degeneration and fibrosis, reduced creatine kinase serum levels, restored running capacity on a treadmill and reduced muscle membrane leakiness in vivo that is characteristic of mdx and Sgcd(-/-) mice. Mechanistically, we show that increased Serpina3n promotes greater sarcolemma membrane integrity and stability in dystrophic mouse models in association with increased membrane residence of the integrins, the DGC/utrophin-glycoprotein complex of proteins and annexin A1. Hence, Serpina3n blocks endogenous increases in the activity of select skeletal muscle resident proteases during injury or dystrophic disease, which stabilizes the sarcolemma leading to less myofiber degeneration and increased regeneration. These results suggest the use of select protease inhibitors as a strategy for treating MD. PMID:26744329

  19. Kif14 overexpression accelerates murine retinoblastoma development.

    PubMed

    O'Hare, Michael; Shadmand, Mehdi; Sulaiman, Rania S; Sishtla, Kamakshi; Sakisaka, Toshiaki; Corson, Timothy W

    2016-10-15

    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo. PMID:27270502

  20. Fluid dynamic bowtie attenuators

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Fluence field modulated CT allows for improvements in image quality and dose reduction. To date, only 1-D modulators have been proposed, the extension to 2-D modulation is difficult with solid-metal attenuation-based modulators. This work proposes to use liquids and gas to attenuate the x-ray beam which can be arrayed allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Gaseous Xenon and liquid Iodine, Zinc Chloride, and Cerium Chloride were studied. Additionally, we performed some proof-of-concept experiments in which (1) a single cell of liquid was connected to a reservoir which allowed the liquid thickness to be modulated and (2) a 96 cell array was constructed in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with Zinc Chloride allowing for the smallest thickness; 1.8, 2.25, 3, and 3.6 cm compensated for 30 cm of soft tissue at 80, 100, 120, and 140 kV respectively. The 96 cell Iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter to primary ratio. Successful modulation of a single cell was performed at 0, 90, and 130 degrees using a simple piston/actuator. The thickness of liquids and the Xenon gas pressure seem logistically implementable within the constraints of CBCT and diagnostic CT systems.

  1. Downhole pressure attenuation apparatus

    SciTech Connect

    Ricles, T.D.; Barton, J.A.

    1992-02-18

    This patent describes a process for preventing damage to tool strings and other downhole equipment in a well caused by pressures produced during detonation of one or more downhole explosive devices. It comprises adding to a tool string at least one pressure attenuating apparatus for attenuating the peak pressure wave and quasi-static pressure pulse produced by the explosive devices, the pressure attenuating apparatus including an initially closed relief vent including tubing means supporting a plurality of charge port assemblies each including an explosive filled shaped charge and a prestressed disc, the shaped charges interconnected by a detonating cord, the amount of explosive in each shaped charge being sufficient to rupture its associated disc without damaging surrounding tubular bodies in the well, and a vent chamber defined by the tubing means and providing a liquid free volume, and opening the relief vent substantially contemporaneously with downhole explosive device detonation by detonating the shaped charges to rupture the discs of the charge port assemblies.

  2. Flexible graphene based microwave attenuators.

    PubMed

    Byun, Kisik; Ju Park, Yong; Ahn, Jong-Hyun; Min, Byung-Wook

    2015-02-01

    We demonstrate flexible 3 dB and 6 dB microwave attenuators using multilayer graphene grown by the chemical vapor deposition method. On the basis of the characterized results of multilayer graphene and graphene-Au ohmic contacts, the graphene attenuators are designed and measured. The flexible graphene-based attenuators have 3 dB and 6 dB attenuation with a return loss of less than -15 dB at higher than 5 GHz. The devices have shown durability in a bending cycling test of 100 times. The circuit model of the attenuator based on the characterized results matches the experimental results well. PMID:25590144

  3. Control algorithms for dynamic attenuators

    SciTech Connect

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-06-15

    Purpose: The authors describe algorithms to control dynamic attenuators in CT and compare their performance using simulated scans. Dynamic attenuators are prepatient beam shaping filters that modulate the distribution of x-ray fluence incident on the patient on a view-by-view basis. These attenuators can reduce dose while improving key image quality metrics such as peak or mean variance. In each view, the attenuator presents several degrees of freedom which may be individually adjusted. The total number of degrees of freedom across all views is very large, making many optimization techniques impractical. The authors develop a theory for optimally controlling these attenuators. Special attention is paid to a theoretically perfect attenuator which controls the fluence for each ray individually, but the authors also investigate and compare three other, practical attenuator designs which have been previously proposed: the piecewise-linear attenuator, the translating attenuator, and the double wedge attenuator. Methods: The authors pose and solve the optimization problems of minimizing the mean and peak variance subject to a fixed dose limit. For a perfect attenuator and mean variance minimization, this problem can be solved in simple, closed form. For other attenuator designs, the problem can be decomposed into separate problems for each view to greatly reduce the computational complexity. Peak variance minimization can be approximately solved using iterated, weighted mean variance (WMV) minimization. Also, the authors develop heuristics for the perfect and piecewise-linear attenuators which do not requirea priori knowledge of the patient anatomy. The authors compare these control algorithms on different types of dynamic attenuators using simulated raw data from forward projected DICOM files of a thorax and an abdomen. Results: The translating and double wedge attenuators reduce dose by an average of 30% relative to current techniques (bowtie filter with tube current

  4. Ultrasonic attenuation in pearlitic steel.

    PubMed

    Du, Hualong; Turner, Joseph A

    2014-03-01

    Expressions for the attenuation coefficients of longitudinal and transverse ultrasonic waves are developed for steel with pearlitic microstructure. This type of lamellar duplex microstructure influences attenuation because of the lamellar spacing. In addition, longitudinal attenuation measurements were conducted using an unfocused transducer with 10 MHz central frequency on the cross section of a quenched railroad wheel sample. The dependence of longitudinal attenuation on the pearlite microstructure is observed from the changes of longitudinal attenuation from the quenched tread surface to deeper locations. The results show that the attenuation value is lowest and relatively constant within the quench depth, then increases linearly. The experimental results demonstrate a reasonable agreement with results from the theoretical model. Ultrasonic attenuation provides an important non-destructive method to evaluate duplex microstructure within grains which can be implemented for quality control in conjunction with other manufacturing processes. PMID:24268679

  5. Overexpression of neurotrophin-3 in skeletal muscle alters normal and injury-induced limb control.

    PubMed

    Taylor, M D; Vancura, R; Williams, J M; Riekhof, J T; Taylor, B K; Wright, D E

    2001-01-01

    Transgenic overexpression of neurotrophin-3 (NT-3) in mice increases the number of surviving proprioceptive sensory components, including primary sensory neurons, gamma motoneurons and muscle spindles. The numbers of surviving alpha motoneurons are not affected by NT-3 overexpression (Wright et al., Neuron 19: 503-517, 1997). We have assessed the consequences NT-3-stimulated increase in the proprioceptive sensory system by measuring locomotive abilities of mice that overexpress NT-3 in all skeletal muscles (myo/NT-3 mice). In adulthood, one myo/NT-3 transgenic line continues to express NT-3 at high levels in muscle and maintains a hypertrophied proprioceptive system (high-OE myo/NT-3 mice). Compared to wildtypes, high-OE myo/NT-3 mice have nine times the amount of NT-3 protein in the medial gastrocnemius at six weeks of age. Although appearing normal during ordinary activity, high-OE myo/NT-3 mice display a distinct clasping phenotype when lifted by the tail. High-OE myo/NT-3 mice show severe locomotor deficits when performing beam walking and rotorod testing. These mice also demonstrate aberrant foot positioning during normal walking. However, following sciatic nerve crush, overexpression of NT-3 prevents further abnormalities in paw positioning, suggesting NT-3 may attenuate sensorimotor deficits that occur in response to sciatic nerve injury. Our results suggest that increases in proprioceptive sensory neurons, spindles and gamma motoneurons, along with continued postnatal NT-3 overexpression in muscle significantly disrupt normal locomotor control. Importantly, however, NT-3 may lessen initial deficits and thus improve functional recovery after peripheral nerve injury, suggesting these mice may serve as a good model to study NT-3's role in neuroprotection of proprioceptive afferents. PMID:11794730

  6. Suppression of ricinoleic acid toxicity by ptl2 overexpression in fission yeast Schizosaccharomyces pombe.

    PubMed

    Yazawa, Hisashi; Ogiso, Masayo; Kumagai, Hiromichi; Uemura, Hiroshi

    2014-11-01

    We previously succeeded to obtain a high content of ricinoleic acid (RA), a hydroxylated fatty acid with great values as a petrochemical replacement, in fission yeast Schizosaccharomyces pombe by introducing Claviceps purpurea oleate Δ12-hydroxylase gene (CpFAH12). Although the production was toxic to S. pombe cells, we identified plg7, encoding phospholipase A2, as a multicopy suppressor that restored the growth defect by removing RA from phospholipids and induced secretion of a part of the released free RA into culture media. In this study, we extended our analysis and examined the effect of triglyceride (TG) lipase overexpression on the tolerance to RA toxicity and RA productivity. S. pombe has three TG lipase genes, ptl1, ptl2, and ptl3, which have high protein sequence similarities to each other and to Saccharomyces cerevisiae counterparts TGL3, TGL4, and TGL5, but only ptl2 overexpression suppressed the growth defect induced by RA production, and the culture grown at 20 °C secreted free RA into media like plg7 overexpression. Suppression by ptl2 was independent of plg7, and a large amount of free RA was accumulated in the cells concomitant with the decrease in RA moieties in phospholipids. Furthermore, the suppression by ptl2 was attenuated by bromoenol lactone (BEL), a phospholipase A2 specific inhibitor, suggesting that Ptl2p may have phospholipase activity. Simultaneous overexpression of ptl2 and plg7 in the FAH12 integrant increased secretion and intracellular accumulation of RA 1.2- and 1.3-fold, respectively, compared to those with single overexpression of plg7 on day 10 at 20 °C. PMID:25109267

  7. Digitally Controlled Beam Attenuator

    NASA Astrophysics Data System (ADS)

    Peppler, W. W.; Kudva, B.; Dobbins, J. T.; Lee, C. S.; Van Lysel, M. S.; Hasegawa, B. H.; Mistretta, C. A.

    1982-12-01

    In digital fluorographic techniques the video camera must accommodate a wide dynamic range due to the large variation in the subject thickness within the field of view. Typically exposure factors and the optical aperture are selected such that the maximum video signal is obtained in the most transmissive region of the subject. Consequently, it has been shown that the signal-to-noise ratio is severely reduced in the dark regions. We have developed a prototype digital beam attenuator (DBA) which will alleviate this and some related problems in digital fluorography. The prototype DBA consists of a 6x6 array of pistons which are individually controlled. A membrane containing an attenuating solu-tion of (CeC13) in water and the piston matrix are placed between the x-ray tube and the subject. Under digital control the pistons are moved into the attenuating material in order to adjust the beam intensity over each of the 36 cells. The DBA control unit which digitizes the image during patient positioning will direct the pistons under hydraulic control to produce a uniform x-ray field exiting the subject. The pistons were designed to produce very little structural background in the image. In subtraction studies any structure would be cancelled. For non-subtraction studies such as cine-cardiology we are considering higher cell densities (eg. 64x64). Due to the narrow range of transmission provided by the DBA, in such studies ultra-high contrast films could be used to produce a high resolution quasi-subtraction display. Additional benefits of the DBA are: 1) reduced dose to the bright image areas when the dark areas are properly exposed. 2) improved scatter and glare to primary ratios, leading to improved contrast in the dark areas.

  8. Radiation Imaging and Attenuation

    NASA Astrophysics Data System (ADS)

    Davison, Candace; Yocum, Douglas

    2008-03-01

    X-ray and neutron images are used to demonstrate materials' different radiation attenuation properties. This leads to discussion of applications in medicine, industry and research. The Penn State Radiation Science and Engineering Center (RSEC) uses neutron radioscopy to image the inside of a working hydrogen fuel cell. This is one of the many educational activities that are conducted when students visit the RSEC. To encourage pre-college students to apply these principles and learn more about nuclear technology, we are sponsoring a design competition. For more information visit www.rsec.psu.edu

  9. Transition metals activate TFEB in overexpressing cells

    PubMed Central

    Peña, Karina A.; Kiselyov, Kirill

    2015-01-01

    Transition metal toxicity is an important factor in the pathogenesis of numerous human disorders, including neurodegenerative diseases. Lysosomes have emerged as important factors in transition metal toxicity because they handle transition metals via endocytosis, autophagy, absorption from the cytoplasm and exocytosis. Transcription factor EB (TFEB) regulates lysosomal biogenesis and the expression of lysosomal proteins in response to lysosomal and/or metabolic stresses. Since transition metals cause lysosomal dysfunction, we proposed that TFEB may be activated to drive gene expression in response to transition metal exposure and that such activation may influence transition metal toxicity. We found that transition metals copper (Cu) and iron (Fe) activate recombinant TFEB and stimulate the expression of TFEB-dependent genes in TFEB-overexpressing cells. In cells that show robust lysosomal exocytosis, TFEB was cytoprotective at moderate levels of Cu exposure, decreasing oxidative stress as reported by the expression of heme oxygenase-1 (HMOX1) gene. However, at high levels of Cu exposure, particularly in cells with low levels of lysosomal exocytosis, activation of overexpressed TFEB was toxic, increasing oxidative stress and mitochondrial damage. Based on these data, we conclude that TFEB-driven gene network is a component of the cellular response to transition metals. These data suggest limitations and disadvantages of TFEB overexpression as a therapeutic approach. PMID:26251447

  10. Chopping-Wheel Optical Attenuator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    1988-01-01

    Star-shaped rotating chopping wheel provides adjustable time-averaged attenuation of narrow beam of light without changing length of optical path or spectral distribution of light. Duty cycle or attenuation factor of chopped beam controlled by adjusting radius at which beam intersects wheel. Attenuation factor independent of wavelength. Useful in systems in which chopping frequency above frequency-response limits of photodetectors receiving chopped light. Used in systems using synchronous detection with lock-in amplifiers.

  11. Ultrasonic Attenuation in Zircaloy-4

    SciTech Connect

    Gomez, M.P.; Banchik, A.D.; Lopez Pumarega, M.I.; Ruzzante, J.E.

    2005-04-09

    In this work the relationship between Zircaloy-4 grain size and ultrasonic attenuation behavior was studied for longitudinal waves in the frequency range of 10-90 MHz. The attenuation was analyzed as a function of frequency for samples with different mechanical and heat treatments having recrystallized and Widmanstatten structures with different grain size. The attenuation behavior was analyzed by different scattering models, depending on grain size, wavelength and frequency.

  12. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  13. Overexpression of Specific CD44 Isoforms Is Associated with Aggressive Cell Features in Acquired Endocrine Resistance

    PubMed Central

    Bellerby, Rebecca; Smith, Chris; Kyme, Sue; Gee, Julia; Günthert, Ursula; Green, Andy; Rakha, Emad; Barrett-Lee, Peter; Hiscox, Stephen

    2016-01-01

    While endocrine therapy is the mainstay of ER+ breast cancer, the clinical effectiveness of these agents is limited by the phenomenon of acquired resistance that is associated with disease relapse and poor prognosis. Our previous studies revealed that acquired resistance is accompanied by a gain in cellular invasion and migration and also that CD44 family proteins are overexpressed in the resistant phenotype. Given the association of CD44 with tumor progression, we hypothesized that its overexpression may act to promote the aggressive behavior of endocrine-resistant breast cancers. Here, we have investigated further the role of two specific CD44 isoforms, CD44v3 and CD44v6, in the endocrine-resistant phenotype. Our data revealed that overexpression of CD44v6, but not CD44v3, in endocrine-sensitive MCF-7 cells resulted in a gain in EGFR signaling, enhanced their endogenous invasive capacity, and attenuated their response to endocrine treatment. Suppression of CD44v6 in endocrine-resistant cell models was associated with a reduction in their invasive capacity. Our data suggest that upregulation of CD44v6 in acquired resistant breast cancer may contribute to a gain in the aggressive phenotype of these cells and loss of endocrine response through transactivation of the EGFR pathway. Future therapeutic targeting of CD44v6 may prove to be an effective strategy alongside EGFR-targeted agents in delaying/preventing acquired resistance in breast cancer. PMID:27379207

  14. Calpastatin overexpression limits calpain-mediated proteolysis and behavioral deficits following traumatic brain injury

    PubMed Central

    Schoch, Kathleen M.; Evans, Heather N.; Brelsfoard, Jennifer M.; Madathil, Sindhu K.; Takano, Jiro; Saido, Takaomi C.; Saatman, Kathryn E.

    2012-01-01

    Traumatic brain injury (TBI) results in abrupt, initial cell damage leading to delayed neuronal death. The calcium-activated proteases, calpains, are known to contribute to this secondary neurodegenerative cascade. Although the specific inhibitor of calpains, calpastatin, is present within neurons, normal levels of calpastatin are unable to fully prevent the damaging proteolytic activity of calpains after injury. In this study, increased calpastatin expression was achieved using transgenic mice that overexpress the human calpastatin (hCAST) construct under control of a calcium-calmodulin dependent kinase II α promoter. Naïve hCAST transgenic mice exhibited enhanced neuronal calpastatin expression and significantly reduced protease activity. Acute calpain-mediated spectrin proteolysis in the cortex and hippocampus induced by controlled cortical impact brain injury was significantly attenuated in calpastatin overexpressing mice. Aspects of posttraumatic motor and cognitive behavioral deficits were also lessened in hCAST transgenic mice compared to their wildtype littermates. However, volumetric analyses of neocortical contusion revealed no histological neuroprotection at either acute or long-term time points. Partial hippocampal neuroprotection observed at a moderate injury severity was lost after severe TBI. This study underscores the effectiveness of calpastatin overexpression in reducing calpain-mediated proteolysis and behavioral impairment after TBI, supporting the therapeutic potential for calpain inhibition. In addition, the reduction in spectrin proteolysis without accompanied neocortical neuroprotection suggests the involvement of other factors that are critical for neuronal survival after contusion brain injury. PMID:22572592

  15. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases. PMID:26471299

  16. The Overexpression of Twinkle Helicase Ameliorates the Progression of Cardiac Fibrosis and Heart Failure in Pressure Overload Model in Mice

    PubMed Central

    Tanaka, Atsushi; Ide, Tomomi; Fujino, Takeo; Onitsuka, Ken; Ikeda, Masataka; Takehara, Takako; Hata, Yuko; Ylikallio, Emil; Tyynismaa, Henna; Suomalainen, Anu; Sunagawa, Kenji

    2013-01-01

    Myocardial mitochondrial DNA (mtDNA) copy number decreases in heart failure. In post-myocardial infarction mice, increasing mtDNA copy number by overexpressing mitochondrial transcription factor attenuates mtDNA deficiency and ameliorates pathological remodeling thereby markedly improving survival. However, the functional significance of increased mtDNA copy number in hypertensive heart disease remains unknown. We addressed this question using transgenic mice that overexpress Twinkle helicase (Twinkle; Tg), the mtDNA helicase, and examined whether Twinkle overexpression protects the heart from left ventricular (LV) remodeling and failure after pressure overload created by transverse aortic constriction (TAC). Twinkle overexpression increased mtDNA copy number by 2.2±0.1-fold. Heart weight, LV diastolic volume and wall thickness were comparable between Tg and wild type littermates (WT) at 28 days after TAC operation. LV end-diastolic pressure increased in WT after TAC (8.6±2.8 mmHg), and this increase was attenuated in Tg (4.6±2.6 mmHg). Impaired LV fractional shortening after TAC operation was also suppressed in Tg, as measured by echocardiography (WT: 16.2±7.2% vs Tg: 20.7±6.2%). These LV functional improvements were accompanied by a decrease in interstitial fibrosis (WT: 10.6±1.1% vs Tg: 3.0±0.6%). In in vitro studies, overexpressing Twinkle using an adenovirus vector in cultured cardiac fibroblasts significantly suppressed mRNA of collagen 1a, collagen 3a and connective tissue growth factor, and angiotensin II-induced transforming growth factor β1 expression. The findings suggest that Twinkle overexpression prevents LV function deterioration. In conclusion, Twinkle overexpression increases mtDNA copy number and ameliorates the progression of LV fibrosis and heart failure in a mouse pressure overload model. Increasing mtDNA copy number by Twinkle overexpression could be a novel therapeutic strategy for hypertensive heart disease. PMID:23840758

  17. An attenuated philosophical gentleman.

    PubMed

    Christie, John R R

    2014-06-20

    Dr. Joseph Black had at one time, a house near us to the west. He was a striking and beautiful person; tall, very thin, and cadaverously pale; his hair carefully powdered, though there was little of it except what was collected in a long thin queue; his eyes dark, clear and large, like deep pools of pure water. He wore black speckless clothes, silk stockings, silver buckles, and either a slim green umbrella, or a genteel brown cane. The general frame and air were feeble and slender. The wildest boy respected Black. No lad could be irreverent toward a man so pale, so gentle, so elegant and so illustrious. So he glided, like a spirit, through our rather mischievous sportiveness, unharmed. He died seated, with a bowl of milk upon his knee, of which his ceasing to be did not spill a drop; a departure which it seemed, after the event, might have been foretold of this attenuated philosophical gentleman. PMID:24921110

  18. Fiber optic attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F. (Inventor)

    1994-01-01

    A fiber optic attenuator of the invention is a mandrel structure through which a bundle of optical fibers is wrapped around in a complete circle. The mandrel structure includes a flexible cylindrical sheath through which the bundle passes. A set screw on the mandrel structure impacts one side of the sheath against two posts on the opposite side of the sheath. By rotating the screw, the sheath is deformed to extend partially between the two posts, bending the fiber optic bundle to a small radius controlled by rotating the set screw. Bending the fiber optic bundle to a small radius causes light in each optical fiber to be lost in the cladding, the amount depending upon the radius about which the bundle is bent.

  19. Range Restriction and Attenuation Corrections.

    ERIC Educational Resources Information Center

    Mumford, Michael D.; Mendoza, Jorge L.

    The present paper reviews the techniques commonly used to correct an observed correlation coefficient for the simultaneous influence of attenuation and range restriction effects. It is noted that the procedure which is currently in use may be somewhat biased because it treats range restriction and attenuation as independent restrictive influences.…

  20. Suicide Risk: Amplifiers and Attenuators.

    ERIC Educational Resources Information Center

    Plutchik, Robert; Van Praag, Herman M.

    1994-01-01

    Attempts to integrate findings on correlates of suicide and violent risk in terms of a theory called a two-stage model of countervailing forces, which assumes that the strength of aggressive impulses is modified by amplifiers and attenuators. The vectorial interaction of amplifiers and attenuators creates an unstable equilibrium making prediction…

  1. Adjustable Optical-Fiber Attenuator

    NASA Technical Reports Server (NTRS)

    Buzzetti, Mike F.

    1994-01-01

    Adjustable fiber-optic attenuator utilizes bending loss to reduce strength of light transmitted along it. Attenuator functions without introducing measurable back-reflection or insertion loss. Relatively insensitive to vibration and changes in temperature. Potential applications include cable television, telephone networks, other signal-distribution networks, and laboratory instrumentation.

  2. Early protective effect of mitofusion 2 overexpression in STZ-induced diabetic rat kidney.

    PubMed

    Tang, Wan Xin; Wu, Wei Hua; Zeng, Xiao Xi; Bo, Hong; Huang, Song Min

    2012-04-01

    Diabetic nephropathy (DN) is a serious complication of diabetes with a poorly defined etiology and limited treatment options. Early intervention is key to preventing the progression of DN. Mitofusin 2 (Mfn2) regulates mitochondrial morphology and signaling, and is involved in the pathogenesis of numerous diseases. Furthermore, Mfn2 is also closely associated with the development of diabetes, but its functional roles in the diabetic kidney remain unknown. This study investigated the effect of Mfn2 at an early stage of DN. Mfn2 was overexpressed by adenovirus-mediated gene transfer in streptozotocin-induced diabetic rats. Clinical parameters (proteinuria, albumin/creatinine ratio), pathological changes, ultra-microstructural changes in nephrons, expression of collagen IV and phosph-p38, ROS production, mitochondrial function, and apoptosis were evaluated and compared with diabetic rats expressing control levels of Mfn2. Endogenous Mfn2 expression decreased with time in DN. Compared to the blank transfection control group, overexpression of Mfn2 decreased kidney weight relative to body weight, reduced proteinuria and ACR, and improved pathological changes typical of the diabetic kidney, like enlargement of glomeruli, accumulation of ECM, and thickening of the basement membrane. In addition, Mfn2 overexpression inhibited activation of p38, and the accumulation of ROS; prevented mitochondrial dysfunction; and reduced the synthesis of collagen IV, but did not affect apoptosis of kidney cells. This study demonstrates that Mfn2 overexpression can attenuate pathological changes in the kidneys of diabetic rats. Further studies are needed to clarify the underlying mechanism of this protective function. Mfn2 might be a potential therapeutic target for the treatment of early stage DN. PMID:22095488

  3. Capsule depolymerase overexpression reduces Bacillus anthracis virulence.

    PubMed

    Scorpio, Angelo; Chabot, Donald J; Day, William A; Hoover, Timothy A; Friedlander, Arthur M

    2010-05-01

    Capsule depolymerase (CapD) is a gamma-glutamyl transpeptidase and a product of the Bacillus anthracis capsule biosynthesis operon. In this study, we examined the effect of modulating capD expression on B. anthracis capsule phenotype, interaction with phagocytic cells and virulence in guinea pigs. Transcriptional fusions of capD were made to the genes encoding heat-shock protein 60 (hsp60) and elongation factor Tu (EFTu), and to capA, a B. anthracis capsule biosynthesis gene. Translation signals were altered to improve expression of capD, including replacing the putative ribosome-binding site with a consensus sequence and the TTG start codon with ATG. CapD was not detected by immunoblotting in lysates from wild-type B. anthracis Ames but was detected in strains engineered with a consensus ribosome-binding site for capD. Strains overexpressing capD at amounts detected by immunoblotting were found to have less surface-associated capsule and released primarily lower-molecular-mass capsule into culture supernatants. Overexpression of capD increased susceptibility to neutrophil phagocytic killing and adherence to macrophages and resulted in reduced fitness in a guinea pig model of infection. These data suggest that B. anthracis may have evolved weak capD expression resulting in optimized capsule-mediated virulence. PMID:20110296

  4. Nucleophosmin is overexpressed in thyroid tumors

    SciTech Connect

    Pianta, Annalisa; Puppin, Cinzia; Franzoni, Alessandra; Fabbro, Dora; Di Loreto, Carla; Bulotta, Stefania; Deganuto, Marta; Paron, Igor; Tell, Gianluca; Puxeddu, Efisio; Filetti, Sebastiano; Russo, Diego; Damante, Giuseppe

    2010-07-02

    Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells. In this work, we analyzed both NPM mRNA and protein levels in a series of human thyroid tumor tissues and cell lines. By using immunohistochemistry, NPM overexpression was detected in papillary, follicular, undifferentiated thyroid cancer, and also in follicular benign adenomas, indicating it as an early event during thyroid tumorigenesis. In contrast, various levels of NPM mRNA levels as detected by quantitative RT-PCR were observed in tumor tissues, suggesting a dissociation between protein and transcript expression. The same behavior was observed in the normal thyroid FRTL5 cell lines. In these cells, a positive correlation between NPM protein levels, but not mRNA, and proliferation state was detected. By using thyroid tumor cell lines, we demonstrated that such a post-mRNA regulation may depend on NPM binding to p-Akt, whose levels were found to be increased in the tumor cells, in parallel with reduction of PTEN. In conclusion, our present data demonstrate for the first time that nucleophosmin is overexpressed in thyroid tumors, as an early event of thyroid tumorigenesis. It seems as a result of a dysregulation occurring at protein and not transcriptional level related to an increase of p-Akt levels of transformed thyrocytes.

  5. Attenuation of Vaccinia Virus.

    PubMed

    Yakubitskiy, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2015-01-01

    Since 1980, in the post-smallpox vaccination era the human population has become increasingly susceptible compared to a generation ago to not only the variola (smallpox) virus, but also other zoonotic orthopoxviruses. The need for safer vaccines against orthopoxviruses is even greater now. The Lister vaccine strain (LIVP) of vaccinia virus was used as a parental virus for generating a recombinant 1421ABJCN clone defective in five virulence genes encoding hemagglutinin (A56R), the IFN-γ-binding protein (B8R), thymidine kinase (J2R), the complement-binding protein (C3L), and the Bcl-2-like inhibitor of apoptosis (N1L). We found that disruption of these loci does not affect replication in mammalian cell cultures. The isogenic recombinant strain 1421ABJCN exhibits a reduced inflammatory response and attenuated neurovirulence relative to LIVP. Virus titers of 1421ABJCN were 3 lg lower versus the parent VACV LIVP when administered by the intracerebral route in new-born mice. In a subcutaneous mouse model, 1421ABJCN displayed levels of VACV-neutralizing antibodies comparable to those of LIVP and conferred protective immunity against lethal challenge by the ectromelia virus. The VACV mutant holds promise as a safe live vaccine strain for preventing smallpox and other orthopoxvirus infections. PMID:26798498

  6. Calorie Restriction Attenuates Monocrotaline-induced Pulmonary Arterial Hypertension in Rats

    PubMed Central

    Ding, Mingge; Lei, Jingyi; Qu, Yinxian; Zhang, Huan; Xin, Weichuan; Ma, Feng; Liu, Shuwen; Li, Zhichao; Jin, Faguang

    2015-01-01

    Abstract: Calorie restriction (CR) is one of the most effective nonpharmacological interventions protecting against cardiovascular disease, such as hypertension in the systemic circulation. However, whether CR could attenuate pulmonary arterial hypertension (PAH) is largely unknown. The PAH model was developed by subjecting the rats to a single subcutaneous injection of monocrotaline. CR lowered mean pulmonary arterial pressure (mPAP) and reduced vascular remodeling and right ventricular hypertrophy in PAH rats. Meanwhile, CR attenuated endothelial dysfunction as evidenced by increased relaxation in response to acetylcholine. The beneficial effects of CR were associated with restored sirtuin-1 (SIRT1) expression and endothelial nitric oxide synthase (eNOS) phosphorylation and reduced eNOS acetylation in pulmonary arteries of PAH rats. To further clarify the role of SIRT1 in the protective effects of CR, adenoviral vectors for overexpression of SIRT1 were administered intratracheally at 1 day before monocrotaline injection. Overexpression of SIRT1 exhibited similar beneficial effects on mPAP and endothelial function, and increased eNOS phosphorylation and reduced eNOS acetylation in the absence of CR. Moreover, SIRT1 overexpression attenuated the increase in mPAP in hypoxia-induced PAH animals. Overall, the present data demonstrate that CR may serve as an effective treatment of PAH, and targeting the SIRT1/eNOS pathway may improve treatment of PAH. PMID:25636073

  7. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-04-01

    Wave-induced variations of pore pressure in a partially-saturated reservoir result in oscillatory liquid flow. The viscous losses during this flow are responsible for wave attenuation. The same viscous effects determine the changes in the dynamic bulk modulus of the system versus frequency. These changes are necessarily linked to attenuation via the causality condition. We analytically quantify the frequency dependence of the bulk modulus of a partially saturated rock by assuming that saturation is patchy and then link these changes to the inverse quality factor. As a result, the P-wave attenuation is quantitatively linked to saturation and thus can serve as a saturation indicator.

  8. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) reduces age-related neuronal degeneration in the mouse cochlea.

    PubMed

    Ruan, Q; Zeng, S; Liu, A; Chen, Z; Yu, Z; Zhang, R; He, J; Bance, M; Robertson, G; Yin, S; Wang, J

    2014-11-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and whether the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons between 3 and 14 months of age in comparison with wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  9. Overexpression of Sirtuin 6 suppresses cellular senescence and NF-κB mediated inflammatory responses in osteoarthritis development

    PubMed Central

    Wu, Yaosen; Chen, Linwei; Wang, Ye; Li, Wanli; Lin, Yan; Yu, Dongsheng; Zhang, Liang; Li, Fangcai; Pan, Zhijun

    2015-01-01

    The aim of our study was to evaluate if Sirt6, a NAD + dependent histone deacetylase, plays a protective role in cartilage degeneration by suppressing cellular senescence and inflammatory responses. The expression level of sirt6 in normal and OA human knee articular cartilage was compared by immunofluorescence and western blotting. The effect of sirt6 overexpression on replicative senescence of chondrocytes and NF-κB target genes expression was evaluated. Histological assessment of OA mice knee joint was carried out to assess the in vivo effects of sirt6 overexpression on mice chondrocytes. We found sirt6 level was significantly decreased in the articular chondrocytes of OA patients compare to normal human. SA-β-gal staining revealed that overexpression of sirt6 suppressed replicative senescence of chondrocytes. Meanwhile, the expression of NF-κB dependent genes were significantly attenuated by sirt6 overxpression. Safranin-O staining and OARSI score of knee joint cartilage in OA mice revealed that Lenti-Sirt6 intraarticular injection could protect mice chondrocytes from degeneration. These data strongly suggest that overexpression of Sirt6 can prevent OA development by reducing both the inflammatory response and chondrocytes senescence. Therefore, the development of specific activators of Sirt6 may have therapeutic potential for the treatment of OA. PMID:26639398

  10. Overexpression of X-Linked Inhibitor of Apoptotic Protein (XIAP) Reduces Age-related Neuronal Degeneration in the Mouse Cochlea

    PubMed Central

    Ruan, Qingwei; Zeng, Shan; Liu, Aiguo; Chen, Zhengnong; Yu, Zhuowei; Zhang, Ruxin; He, jingchun; Bance, Manohar; Robertson, George; Yin, Shankai; Wang, Jian

    2016-01-01

    Previously, we showed that age-related hearing loss (AHL) was delayed in C57BL6 mice overexpressing X-Linked Inhibitor of Apoptotic Protein (XIAP), and the delayed AHL was associated with attenuated hair cell (HC) loss in XIAP-overexpressing mice. Similar to other reports, the HC loss in aged mice was restricted to the basal turn in this previous study, and occurred slightly at the apical end of the cochlea, showing considerably less spread than the frequency region of hearing loss. In the present study, we examined whether and how AHL is related to the degeneration of neuronal innervation of the cochlea and if the overexpression of XIAP exerts a protective effect against age-related degeneration in both afferent and efferent cochlear neurites. In contrast to HC loss, degeneration of both afferent and efferent neurites spread to the middle turns of the cochlea. Moreover, XIAP-overexpressing mice lost fewer HC afferent dendrites and efferent axons, as well as fewer spiral ganglion neurons (SGNs) between 3– 14 months of age in comparison to wild-type littermates. The results suggest that age-related degeneration of cochlear neurites may be independent of HC loss. Further, the inhibition of apoptosis by XIAP appears to reduce degeneration of both afferent and efferent cochlear neurites. PMID:25142138

  11. Overexpressed oncogenic tumor-self antigens

    PubMed Central

    Bright, Robert K; Bright, Jennifer D; Byrne, Jennifer A

    2014-01-01

    Overexpressed tumor-self antigens represent the largest group of candidate vaccine targets. Those exhibiting a role in oncogenesis may be some of the least studied but perhaps most promising. This review considers this subset of self antigens by highlighting vaccine efforts for some of the better known members and focusing on TPD52, a new promising vaccine target. We shed light on the importance of both preclinical and clinical vaccine studies demonstrating that tolerance and autoimmunity (presumed to preclude this class of antigens from vaccine development) can be overcome and do not present the obstacle that might have been expected. The potential of this class of antigens for broad application is considered, possibly in the context of low tumor burden or adjuvant therapy, as is the need to understand mechanisms of tolerance that are relatively understudied. PMID:25483660

  12. bcl-2 overexpression promotes myocyte proliferation

    PubMed Central

    Limana, Federica; Urbanek, Konrad; Chimenti, Stefano; Quaini, Federico; Leri, Annarosa; Kajstura, Jan; Nadal-Ginard, Bernardo; Izumo, Seigo; Anversa, Piero

    2002-01-01

    To determine the influence of Bcl-2 on the developmental biology of myocytes, we analyzed the population dynamics of this cell type in the heart of transgenic (TG) mice overexpressing Bcl-2 under the control of the α-myosin heavy chain promoter. TG mice and non-TG (wild type, WT) mice were studied at 24 days, 2 months, and 4 months after birth. Bcl-2 overexpression produced a significant increase in the percentage of cycling myocytes and their mitotic index. These effects were strictly connected to the expression of the transgene, as demonstrated in isolated myocytes. The formation of mitotic spindle and contractile ring was identified in replicating cells. These typical aspects of mitosis were complemented with the demonstration of karyokinesis and cytokinesis to provide structural evidence of cell division. Apoptosis was low at all ages and was not affected by Bcl-2. The higher cell replication rate in TG was conditioned by a decrease in the expression of the cell-cycle inhibitors, p21WAF1 and p16INK4a, and by an increase in Mdm2-p53 complexes. In comparison with WT, TG had 0.4 × 106, 0.74 × 106, and 1.2 × 106 more myocytes in the left ventricle at 24 days, 2 months, and 4 months, respectively. Binucleated myocytes were 12% and 25% larger in WT than in TG mice at 2 and 4 months of age. Taken together, these observations reveal a previously uncharacterized replication-enhancing function of Bcl-2 in myocytes in vivo in the absence of stressful conditions. PMID:11983915

  13. Overexpression of GTP cyclohydrolase 1 feedback regulatory protein is protective in a murine model of septic shock.

    PubMed

    Starr, Anna; Sand, Claire A; Heikal, Lamia; Kelly, Peter D; Spina, Domenico; Crabtree, Mark; Channon, Keith M; Leiper, James M; Nandi, Manasi

    2014-11-01

    Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis. Under inflammatory conditions, GCH1 activity and hence BH4 levels are increased, supporting pathological NOS activity. GCH1 activity can be controlled through allosteric interactions with GCH1 feedback regulatory protein (GFRP). We investigated whether overexpression of GFRP can regulate BH4 and NO production and attenuate cardiovascular dysfunction in sepsis. Sepsis was induced in mice conditionally overexpressing GFRP and wild-type littermates by cecal ligation and puncture. Blood pressure was monitored by radiotelemetry, and mesenteric blood flow was quantified by laser speckle contrast imaging. Blood biochemistry data were obtained using an iSTAT analyzer, and BH4 levels were measured in plasma and tissues by high-performance liquid chromatography. Increased BH4 and NO production and hypotension were observed in all mice, but the extents of these pathophysiological changes were attenuated in GFRP OE mice. Perturbations in blood biochemistry were similarly attenuated in GFRP OE compared with wild-type controls. These results suggest that GFRP overexpression regulates GCH1 activity during septic shock, which in turn limits BH4 bioavailability for iNOS. We conclude that the GCH1-GFRP axis is a critical regulator of BH4 and NO production and the cardiovascular derangements that occur in septic shock. PMID:25046538

  14. Overexpression of GTP Cyclohydrolase 1 Feedback Regulatory Protein Is Protective in a Murine Model of Septic Shock

    PubMed Central

    Starr, Anna; Sand, Claire A.; Heikal, Lamia; Kelly, Peter D.; Spina, Domenico; Crabtree, Mark; Channon, Keith M.; Leiper, James M.; Nandi, Manasi

    2014-01-01

    ABSTRACT Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis. Under inflammatory conditions, GCH1 activity and hence BH4 levels are increased, supporting pathological NOS activity. GCH1 activity can be controlled through allosteric interactions with GCH1 feedback regulatory protein (GFRP). We investigated whether overexpression of GFRP can regulate BH4 and NO production and attenuate cardiovascular dysfunction in sepsis. Sepsis was induced in mice conditionally overexpressing GFRP and wild-type littermates by cecal ligation and puncture. Blood pressure was monitored by radiotelemetry, and mesenteric blood flow was quantified by laser speckle contrast imaging. Blood biochemistry data were obtained using an iSTAT analyzer, and BH4 levels were measured in plasma and tissues by high-performance liquid chromatography. Increased BH4 and NO production and hypotension were observed in all mice, but the extents of these pathophysiological changes were attenuated in GFRP OE mice. Perturbations in blood biochemistry were similarly attenuated in GFRP OE compared with wild-type controls. These results suggest that GFRP overexpression regulates GCH1 activity during septic shock, which in turn limits BH4 bioavailability for iNOS. We conclude that the GCH1-GFRP axis is a critical regulator of BH4 and NO production and the cardiovascular derangements that occur in septic shock. PMID:25046538

  15. Low-Dose Bafilomycin Attenuates Neuronal Cell Death Associated with Autophagy-Lysosome Pathway Dysfunction

    PubMed Central

    Pivtoraiko, Violetta N.; Harrington, Adam J.; Mader, Burton J.; Luker, Austin M.; Caldwell, Guy A.; Caldwell, Kim A.; Roth, Kevin A.; Shacka, John J.

    2010-01-01

    We have shown previously that the plecomacrolide antibiotics bafilomycin A1 and B1 significantly attenuate cerebellar granule neuron death resulting from agents that disrupt lysosome function. To further characterize bafilomycin-mediated cytoprotection, we examined its ability to attenuate the death of naïve and differentiated neuronal SH-SY5Y human neuroblastoma cells from agents that induce lysosome dysfunction in vitro, and from in vivo dopaminergic neuron death in C. elegans. Low-dose bafilomycin significantly attenuated SH-SY5Y cell death resulting from treatment with chloroquine, hydroxychloroquine amodiaquine and staurosporine. Bafilomycin also attenuated the chloroquine-induced reduction in processing of cathepsin D, the principal lysosomal aspartic acid protease, to its mature “active” form. Chloroquine induced autophagic vacuole accumulation and inhibited autophagic flux, effects that were attenuated upon treatment with bafilomycin and were associated with a significant decrease in chloroquine-induced accumulation of detergent-insoluble α-synuclein oligomers. In addition, bafilomycin significantly and dose-dependently attenuated dopaminergic neuron death in C. elegans resulting from in vivo over-expression of human wild-type α-synuclein. Together, our findings suggest that low-dose bafilomycin is cytoprotective in part through its maintenance of the autophagy-lysosome pathway, and underscores its therapeutic potential for treating Parkinson Disease and other neurodegenerative diseases that exhibit disruption of protein degradation pathways and accumulation of toxic protein species. PMID:20534000

  16. Overexpression of Heme Oxygenase-1 Prevents Renal Interstitial Inflammation and Fibrosis Induced by Unilateral Ureter Obstruction

    PubMed Central

    Li, Jian-Si; Zhang, Qing-Fang; Wang, Yu-Xiao; Zhao, Shi-Lei; Yu, Jing; Wang, Chang; Qin, Ying; Wei, Qiu-Ju; Lv, Gui-Xiang; Li, Bing

    2016-01-01

    Renal fibrosis plays an important role in the onset and progression of chronic kidney diseases. Many studies have demonstrated that heme oxygenase-1 (HO-1) is involved in diverse biological processes as a cytoprotective molecule, including anti-inflammatory, anti-oxidant, anti-apoptotic, antiproliferative, and immunomodulatory effects. However, the mechanisms of HO-1 prevention in renal interstitial fibrosis remain unknown. In this study, HO-1 transgenic (TG) mice were employed to investigate the effect of HO-1 on renal fibrosis using a unilateral ureter obstruction (UUO) model and to explore the potential mechanisms. We found that HO-1 was adaptively upregulated in kidneys of both TG and wild type (WT) mice after UUO. The levels of HO-1 mRNA and protein were increased in TG mice compared with WT mice under normal conditions. HO-1 expression was further enhanced after UUO and remained high during the entire experimental process. Renal interstitial fibrosis in the TG group was significantly attenuated compared with that in the WT group after UUO. Moreover, overexpression of HO-1 inhibited the loss of peritubular capillaries. In addition, UUO-induced activation and proliferation of myofibroblasts were suppressed by HO-1 overexpression. Furthermore, HO-1 restrained tubulointerstitial infiltration of macrophages and regulated the secretion of inflammatory cytokines in UUO mice. We also found that high expression of HO-1 inhibited reactivation of Wnt/β-catenin signaling, which could play a crucial role in attenuating renal fibrosis. In conclusion, these data suggest that HO-1 prevents renal tubulointerstitial fibrosis possibly by regulating the inflammatory response and Wnt/β-catenin signaling. This study provides evidence that augmentation of HO-1 levels may be a therapeutic strategy against renal interstitial fibrosis. PMID:26765329

  17. ZIC1 Overexpression Is Oncogenic in Liposarcoma

    PubMed Central

    Brill, Elliott; Gobble, Ryan; Angeles, Christina; Lagos-Quintana, Mariana; Crago, Aimee; Laxa, Bernadette; DeCarolis, Penelope; Zhang, Lei; Antonescu, Cristina; Socci, Nicholas D.; Taylor, Barry S.; Sander, Chris; Koff, Andrew; Singer, Samuel

    2012-01-01

    Liposarcomas are aggressive mesenchymal cancers with poor outcomes that exhibit remarkable histologic diversity, with five recognized subtypes. Currently, the mainstay of therapy for liposarcoma is surgical excision since liposarcomas are often resistant to traditional chemotherapy. In light of the high mortality associated with liposarcoma and the lack of effective systemic therapy, we sought novel genomic alterations driving liposarcomagenesis that might serve as therapeutic targets. ZIC1, a critical transcription factor for neuronal development, is overexpressed in all five subtypes of liposarcoma compared with normal fat and in liposarcoma cell lines compared with adipose-derived stem cells (ASC). Here we show that ZIC1 contributes to the pathogenesis of liposarcoma. ZIC1 knockdown inhibits proliferation, reduces invasion, and induces apoptosis in dedifferentiated and myxoid/round cell liposarcoma cell lines, but not in either ASC or a lung cancer cell line with low ZIC1 expression. ZIC1 knockdown is associated with increased nuclear expression of p27 protein, and the down-regulation of pro-survival target genes: BCL2L13, JunD, Fam57A, and EIF3M. Our results demonstrate that ZIC1 expression is essential for liposarcomagenesis and that targeting ZIC1 or its downstream targets may lead to novel therapy for liposarcoma. PMID:20713527

  18. Overexpression of protein disulfide isomerase in Aspergillus.

    PubMed

    El-Adawi, H; Khanh, N Q; Gassen, H

    2000-10-01

    One of the major problems with the production of biotechnologically valuable proteins has been the purification of the product. For Escherichia coli and Saccharomyces cerevisiae, there are several techniques for the purification of intracellular proteins, but these are time consuming and often result in poor yields. Purification can be considerably facilitated, if the product is secreted from the host cell. In the work presented, we have constructed an expression vector (pSGNH2) for the secretion of protein disulfide isomerase (PDI; EC 5.3.4.1) from Aspergillus niger, in which the retention signal His-Asp-Glu-Leu (H-D-E-L) was modified to Ala-Leu-Glu-Gln (A-L-E-Q) via the polymerase chain reaction (PCR) method. The PDI gene was placed under the control of the A. oryzae alpha-amylase promoter. This expression vector was transformed into A. niger NRRL3, resulting in PDI secretion into the medium. The catalytic activity of overexpressed PDI from A. niger was indistinguishable from that of PDI isolated from bovine liver. With further strain improvement and optimization of culture conditions, it could be possible to raise the PDI production to the bioprocessing scale. PMID:10977899

  19. Frequent Nek1 overexpression in human gliomas.

    PubMed

    Zhu, Jun; Cai, Yu; Liu, Pin; Zhao, Weiguo

    2016-08-01

    Never in mitosis A (NIMA)-related kinase 1 (Nek1) regulates cell cycle progression to mitosis. Its expression and potential functions in human gliomas have not been studied. Here, our immunohistochemistry (IHC) assay and Western blot assay results showed that Nek1 expression was significantly upregulated in fresh and paraffin-embedded human glioma tissues. Its level in normal brain tissues was low. Nek1 overexpression in human gliomas was correlated with the proliferation marker (Ki-67), tumor grade, Karnofsky performance scale (KPS) and more importantly, patients' poor survival. Further studies showed that Nek1 expression level was also increased in multiple human glioma cell lines (U251-MG, U87-MG, U118, H4 and U373). Significantly, siRNA-mediated knockdown of Nek1 inhibited glioma cell (U87-MG/U251-MG) growth. Nek1 siRNA also sensitized U87-MG/U251-MG cells to temozolomide (TMZ), causing a profound apoptosis induction and growth inhibition. The current study indicates Nek1 might be a novel and valuable oncotarget of glioma, it is important for glioma cell growth and TMZ-resistance. PMID:27251576

  20. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury

    PubMed Central

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  1. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements.

    PubMed

    Santos, Joana; Mesquita, Diana; Barros-Silva, João D; Jerónimo, Carmen; Henrique, Rui; Morais, António; Paulo, Paula; Teixeira, Manuel R

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease. PMID:26097883

  2. Astrocyte-Specific Overexpression of Nrf2 Protects Striatal Neurons from Mitochondrial Complex II Inhibition

    PubMed Central

    Calkins, Marcus J.; Vargas, Marcelo R.; Johnson, Delinda A.; Johnson, Jeffrey A.

    2010-01-01

    Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that is known to regulate a variety of cytoprotective genes through the antioxidant response element (ARE). This endogenous response is one of the major pathways by which cells are protected from xenobiotic or innate oxidative insults. Furthermore, in neural systems, astrocyte-specific activation of Nrf2 is known to protect neurons. In previous work, our laboratory found that Nrf2 protects from intrastriatal injections of the mitochondrial complex II inhibitor malonate. Here, we extend these results to show that multiple methods of astrocyte-specific Nrf2 overexpression provide protection from neurotoxicity in vivo. GFAP-Nrf2 transgenic mice are significantly more resistant to malonate lesioning. This outcome is associated with an increased basal resistance, but more so, an enhanced Nrf2 response to lesioning that attenuated the ensuing neurotoxicity. Furthermore, striatal transplantation of neuroprogenitor cells overexpressing Nrf2 that differentiate into astrocytes after grafting also significantly reduced malonate toxicity. Overall, these data establish that enhanced astrocytic Nrf2 response and Nrf2 preconditioning are both sufficient to protect from acute lesions from mitochondrial complex II inhibition. PMID:20211941

  3. Brain injury-induced proteolysis is reduced in a novel calpastatin overexpressing transgenic mouse

    PubMed Central

    Schoch, Kathleen M.; von Reyn, Catherine R.; Bian, Jifeng; Telling, Glenn C.; Meaney, David F.; Saatman, Kathryn E.

    2013-01-01

    The calpain family of calcium-dependent proteases has been implicated in a variety of diseases and neurodegenerative pathologies. Prolonged activation of calpains results in proteolysis of numerous cellular substrates including cytoskeletal components and membrane receptors, contributing to cell demise despite coincident expression of calpastatin, the specific inhibitor of calpains. Pharmacological and gene knockout strategies have targeted calpains to determine their contribution to neurodegenerative pathology; however, limitations associated with treatment paradigms, drug specificity, and genetic disruptions have produced inconsistent results and complicated interpretation. Specific, targeted calpain inhibition achieved by enhancing endogenous calpastatin levels offers unique advantages in studying pathological calpain activation. We have characterized a novel calpastatin overexpressing transgenic mouse model, demonstrating a substantial increase in calpastatin expression within nervous system and peripheral tissues and associated reduction in protease activity. Experimental activation of calpains via traumatic brain injury resulted in cleavage of α-spectrin, collapsin response mediator protein-2, and voltage-gated sodium channel, critical proteins for the maintenance of neuronal structure and function. Calpastatin overexpression significantly attenuated calpain-mediated proteolysis of these selected substrates acutely following severe controlled cortical impact injury, but with no effect on acute hippocampal neurodegeneration. Augmenting calpastatin levels may be an effective method for calpain inhibition in TBI and neurodegenerative disorders. PMID:23305291

  4. Human Neural Stem Cells Overexpressing Choline Acetyltransferase Restore Unconditioned Fear in Rats with Amygdala Injury.

    PubMed

    Shin, Kyungha; Cha, Yeseul; Kim, Kwang Sei; Choi, Ehn-Kyoung; Choi, Youngjin; Guo, Haiyu; Ban, Young-Hwan; Kim, Jong-Choon; Park, Dongsun; Kim, Yun-Bae

    2016-01-01

    Amygdala is involved in the fear memory that recognizes certain environmental cues predicting threatening events. Manipulation of neurotransmission within the amygdala affects the expression of conditioned and unconditioned emotional memories such as fear freezing behaviour. We previously demonstrated that F3.ChAT human neural stem cells (NSCs) overexpressing choline acetyltransferase (ChAT) improve cognitive function of Alzheimer's disease model rats with hippocampal or cholinergic nerve injuries by increasing acetylcholine (ACh) level. In the present study, we examined the effect of F3.ChAT cells on the deficit of unconditioned fear freezing. Rats given N-methyl-d-aspartate (NMDA) in their amygdala 2 weeks prior to cat odor exposure displayed very short resting (freezing) time compared to normal animals. NMDA induced neuronal degeneration in the amygdala, leading to a decreased ACh concentration in cerebrospinal fluid. However, intracerebroventricular transplantation of F3.ChAT cells attenuated amygdala lesions 4 weeks after transplantation. The transplanted cells were found in the NMDA-injury sites and produced ChAT protein. In addition, F3.ChAT-receiving rats recuperated freezing time staying remote from the cat odor source, according to the recovery of brain ACh concentration. The results indicate that human NSCs overexpressing ChAT may facilitate retrieval of unconditioned fear memory by increasing ACh level. PMID:27087745

  5. Cooperation between Dmp1 Loss and Cyclin D1 Overexpression in Breast Cancer

    PubMed Central

    Zhu, Sinan; Mott, Ryan T.; Fry, Elizabeth A.; Taneja, Pankaj; Kulik, George; Sui, Guangchao; Inoue, Kazushi

    2014-01-01

    Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1–cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1–induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1+/+;MMTV-cyclin D1 and Dmp1+/+;MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer. PMID:23938323

  6. Skp2 is over-expressed in breast cancer and promotes breast cancer cell proliferation.

    PubMed

    Zhang, Wenwen; Cao, Lulu; Sun, Zijia; Xu, Jing; Tang, Lin; Chen, Weiwei; Luo, Jiayan; Yang, Fang; Wang, Yucai; Guan, Xiaoxiang

    2016-05-18

    The F box protein Skp2 is oncogenic. Skp2 and Skp2B, an isoform of Skp2 are overexpressed in breast cancer. However, little is known regarding the mechanism by which Skp2B promotes the occurrence and development of breast cancer. Here, we determined the expression and clinical outcomes of Skp2 in breast cancer samples and cell lines using breast cancer database, and investigated the role of Skp2 and Skp2B in breast cancer cell growth, apoptosis and cell cycle arrest. We obtained Skp2 is significantly overexpressed in breast cancer samples and cell lines, and high Skp2 expression positively correlated with poor prognosis of breast cancer. Both Skp2 and Skp2B could promote breast cancer cell proliferation, inhibit cell apoptosis, change the cell cycle distribution and induce the increased S phase cells and therefore induce cell proliferation in breast cancer cells. Moreover, the 2 isoforms could both suppress PIG3 expression via independent pathways in the breast cancer cells. Skp2 suppressed p53 and inhibited PIG3-induced apoptosis, while Skp2B attenuated the function of PIG3 by inhibiting PHB. Our results indicate that Skp2 and Skp2B induce breast cancer cell development and progression, making Skp2 and Skp2B potential molecular targets for breast cancer therapy. PMID:27111245

  7. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements

    PubMed Central

    Santos, Joana; Mesquita, Diana; Barros-Silva, João D.; Jerónimo, Carmen; Henrique, Rui; Morais, António; Paulo, Paula; Teixeira, Manuel R.

    2015-01-01

    Gastrin-releasing peptide receptor (GRPR) is known to be overexpressed in several human malignancies, including prostate cancer, and has been implicated in multiple important neoplastic signaling pathways. We recently have shown that GRPR is an ERG and ETV1 target gene in prostate cancer, using a genome-wide scale and exon-level expression microarray platform. Due to its cellular localization, the relevance of its function and the availability of blocking agents, GRPR seems to be a promising candidate as therapeutic target. Our present work shows that effective knockdown of GRPR in LNCaP and VCaP cells attenuates their malignant phenotype by decreasing proliferation, invasion and anchorage-independent growth, while increasing apoptosis. Using an antibody microarray we were able to validate known and identify new targets of GRPR pathway, namely AKT1, PKCε, TYK2 and MST1. Finally, we show that overexpression of these GRPR targets is restricted to prostate carcinomas harboring ERG and/or ETV1 rearrangements, establishing their potential as therapeutic targets for these particular molecular subsets of the disease. PMID:26097883

  8. PGC-1α overexpression protects against aldosterone-induced podocyte depletion: role of mitochondria

    PubMed Central

    Zhao, Min; Yuan, Yanggang; Bai, Mi; Ding, Guixia; Jia, Zhanjun; Huang, Songming; Zhang, Aihua

    2016-01-01

    Growing evidence has shown that podocyte number is a critical determinant for the development of glomerulosclerosis and progressive renal failure. We previously reported that mitochondrial dysfunction (MtD) is an early event in podocyte injury. Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is an important modulator of mitochondrial biogenesis. Here, we investigated the role of PGC-1α overexpression in podocyte depletion and the involvement of mitochondria in this process. Following chronic aldosterone (Aldo) infusion for 14 days, we observed a remarkable podocyte loss, podocyte phenotypic changes, and albuminuria in WT mice. However, all these abnormalities were significantly attenuated in PGC-1α transgenic mice. Next, we examined mitochondrial function in both genotypes with or without Aldo infusion. As expected, Aldo-induced MtD in glomeruli was markedly improved in PGC-1α transgenic mice. In vitro, Aldo induced podocyte detachment and phenotypic changes in line with MtD in dose- and time-dependent manners. Similarly, ethidium bromide, an inducer of MtD, mimicked Aldo effects on podocyte detachment and phenotypic alterations. Notably, overexpression of PGC-1α in podocytes entirely reversed Aldo-induced podocyte detachment, phenotypic changes, and MtD. Taken together, these findings demonstrate that PGC-1α protects against podocyte depletion and phenotypic changes possibly by maintaining normal mitochondrial function. PMID:26943584

  9. Overexpression of amyloid-β protein precursor induces mitochondrial oxidative stress and activates the intrinsic apoptotic cascade.

    PubMed

    Bartley, Matthew G; Marquardt, Kristin; Kirchhof, Danielle; Wilkins, Heather M; Patterson, David; Linseman, Daniel A

    2012-01-01

    Aberrant processing of amyloid-β protein precursor (AβPP) into amyloid-β (Aβ) fragments underlies the formation of senile plaques in Alzheimer's disease (AD). Moreover, Aβ fragments, particularly Aβ(42), exert direct toxic effects within neurons including the induction of mitochondrial oxidative stress (MOS). Interestingly, individuals with Down syndrome (DS) frequently develop early onset AD as a major co-morbid phenotype. One hypothesis for AD associated with DS involves the overexpression of wild type (WT) AβPP protein, due to its location on chromosome 21. However, the mechanism by which the overexpression of WT AβPP might trigger MOS and induce cell death is presently unclear. Here we show that transient overexpression of DsRed2-tagged AβPP (WT) in CHO cells induces caspase-3 activation and nuclear fragmentation indicative of apoptosis. AβPP localizes to the mitochondrial fraction of transfected CHO cells and induces glutathione-sensitive opening of the mitochondrial permeability transition pore (mPTP) and cytochrome c release. MOS and intrinsic apoptosis induced by AβPP are significantly inhibited by co-expression of Bcl-2 or treatment with either glutathione or a pan-caspase inhibitor. The mPTP inhibitor, cyclosporin A, also significantly attenuates AβPP-induced apoptosis. AβPP-induced apoptosis is unaffected by a β-secretase inhibitor and is independent of detectable Aβ(42); however, a γ-secretase inhibitor significantly protects against AβPP overexpression, suggesting a possible role of the AβPP intracellular domain in cell death. These data indicate that overexpression of WT AβPP is sufficient to induce MOS and intrinsic apoptosis, suggesting a novel pro-oxidant role for AβPP at mitochondria which may be relevant in AD and DS disease pathologies. PMID:22133762

  10. Kidney-specific Overexpression of Sirt1 Protects against Acute Kidney Injury by Retaining Peroxisome Function

    PubMed Central

    Hasegawa, Kazuhiro; Wakino, Shu; Yoshioka, Kyoko; Tatematsu, Satoru; Hara, Yoshikazu; Minakuchi, Hitoshi; Sueyasu, Keiko; Washida, Naoki; Tokuyama, Hirobumi; Tzukerman, Maty; Skorecki, Karl; Hayashi, Koichi; Itoh, Hiroshi

    2010-01-01

    Sirt1, a NAD-dependent protein deacetylase, is reported to regulate intracellular metabolism and attenuate reactive oxidative species (ROS)-induced apoptosis leading to longevity and acute stress resistance. We created transgenic (TG) mice with kidney-specific overexpression of Sirt1 using the promoter sodium-phosphate cotransporter IIa (Npt2) driven specifically in proximal tubules and investigated the kidney-specific role of Sirt1 in the protection against acute kidney injury (AKI). We also elucidated the role of number or function of peroxisome and mitochondria in mediating the mechanisms for renal protective effects of Sirt1 in AKI. Cisplatin-induced AKI decreased the number and function of peroxisomes as well as mitochondria and led to increased local levels of ROS production and renal tubular apoptotic cells. TG mice treated with cisplatin mitigated AKI, local ROS, and renal tubular apoptotic tubular cells. Consistent with these results, TG mice treated with cisplatin also exhibited recovery of peroxisome number and function, as well as rescued mitochondrial function; however, mitochondrial number was not recovered. Immunoelectron microscopic findings consistently demonstrated that the decrease in peroxisome number by cisplatin in wild type mice was restored in transgenic mice. In HK-2 cells, a cultured proximal tubule cell line, overexpression of Sirt1 rescued the cisplatin-induced cell apoptosis through the restoration of peroxisome number, although the mitochondria number was not restored. These results indicate that Sirt1 overexpression in proximal tubules rescues cisplatin-induced AKI by maintaining peroxisomes number and function, concomitant up-regulation of catalase, and elimination of renal ROS levels. Renal Sirt1 can be a potential therapeutic target for the treatment of AKI. PMID:20139070

  11. PGC-1α overexpression suppresses blood pressure elevation in DOCA-salt hypertensive mice

    PubMed Central

    Zhao, Qingbin; Zhang, Junfang; Wang, Huifang

    2015-01-01

    Increasing evidences have accumulated that endothelial dysfunction is involved in the pathogenesis of hypertension. Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) has been identified as an essential factor that protects against endothelial dysfunction in vascular pathologies. However, the functional role of PGC-1α in hypertension is not well understood. Using an adenovirus infection model, we tested the hypothesis that PGC-1α overexpression retards the progression of hypertension in deoxycorticosterone acetate (DOCA)-salt mice model through preservation of the function of endothelium. We first demonstrated that PGC-1α expression not only in conductance and resistance arteries but also in endothelial cells was decreased after DOCA-salt treatment. In PGC-1α adenovirus-infected mice, the elevation of blood pressure in DOCA-salt mice was attenuated, as determined using tail-cuff measurement. Furthermore, PGC-1α overexpression inhibited the decrease in nitric oxide (NO) generation and the increase in superoxide anion (O2−) production in DOCA-salt-treated mice, in parallel with improved endothelium-dependent relaxation. Rather than affecting endothelial NO synthase (eNOS) total expression and phosphorylation, PGC-1α significantly inhibited eNOS uncoupling, as evidenced by increased eNOS homodimerization, BH4 levels, GTP-cyclohydrolase 1 (GTPCH1) and dihydrofolate reductase (DHFR) expression and heat-shock protein (Hsp)90–eNOS interaction. Our findings demonstrate that PGC-1α overexpression preserves eNOS coupling, enhances NO generation, improves endothelium-dependent relaxation and thus lowers blood pressure, suggesting that up-regulation of PGC-1α may be a novel strategy to prevent and treat hypertension. PMID:26182379

  12. Ventilator-induced lung injury is reduced in transgenic mice that overexpress endothelial nitric oxide synthase.

    PubMed

    Takenaka, Kaori; Nishimura, Yoshihiro; Nishiuma, Teruaki; Sakashita, Akihiro; Yamashita, Tomoya; Kobayashi, Kazuyuki; Satouchi, Miyako; Ishida, Tatsuro; Kawashima, Seinosuke; Yokoyama, Mitsuhiro

    2006-06-01

    Although mechanical ventilation (MV) is an important supportive strategy for patients with acute respiratory distress syndrome, MV itself can cause a type of acute lung damage termed ventilator-induced lung injury (VILI). Because nitric oxide (NO) has been reported to play roles in the pathogenesis of acute lung injury, the present study explores the effects on VILI of NO derived from chronically overexpressed endothelial nitric oxide synthase (eNOS). Anesthetized eNOS-transgenic (Tg) and wild-type (WT) C57BL/6 mice were ventilated at high or low tidal volume (Vt; 20 or 7 ml/kg, respectively) for 4 h. After MV, lung damage, including neutrophil infiltration, water leakage, and cytokine concentration in bronchoalveolar lavage fluid (BALF) and plasma, was evaluated. Some mice were given N(omega)-nitro-L-arginine methyl ester (L-NAME), a potent NOS inhibitor, via drinking water (1 mg/ml) for 1 wk before MV. Histological analysis revealed that high Vt ventilation caused severe VILI, whereas low Vt ventilation caused minimal VILI. Under high Vt conditions, neutrophil infiltration and lung water content were significantly attenuated in eNOS-Tg mice compared with WT animals. The concentrations of macrophage inflammatory protein-2 in BALF and plasma, as well as plasma tumor necrosis factor-alpha and monocyte chemoattractant protein-1, also were decreased in eNOS-Tg mice. L-NAME abrogated the beneficial effect of eNOS overexpression. In conclusion, chronic eNOS overexpression may protect the lung from VILI by inhibiting the production of inflammatory chemokines and cytokines that are associated with neutrophil infiltration into the air space. PMID:16399791

  13. Over-expression of heme oxygenase-1 promotes oxidative mitochondrial damage in rat astroglia.

    PubMed

    Song, Wei; Su, Haixiang; Song, Sisi; Paudel, Hemant K; Schipper, Hyman M

    2006-03-01

    Glial heme oxygenase-1 is over-expressed in the CNS of subjects with Alzheimer disease (AD), Parkinson disease (PD) and multiple sclerosis (MS). Up-regulation of HO-1 in rat astroglia has been shown to facilitate iron sequestration by the mitochondrial compartment. To determine whether HO-1 induction promotes mitochondrial oxidative stress, assays for 8-epiPGF(2alpha) (ELISA), protein carbonyls (ELISA) and 8-OHdG (HPLC-EC) were used to quantify oxidative damage to lipids, proteins, and nucleic acids, respectively, in mitochondrial fractions and whole-cell compartments derived from cultured rat astroglia engineered to over-express human (h) HO-1 by transient transfection. Cell viability was assessed by trypan blue exclusion and the MTT assay, and cell proliferation was determined by [3H] thymidine incorporation and total cell counts. In rat astrocytes, hHO-1 over-expression (x 3 days) resulted in significant oxidative damage to mitochondrial lipids, proteins, and nucleic acids, partial growth arrest, and increased cell death. These effects were attenuated by incubation with 1 microM tin mesoporphyrin, a competitive HO inhibitor, or the iron chelator, deferoxamine. Up-regulation of HO-1 engenders oxidative mitochondrial injury in cultured rat astroglia. Heme-derived ferrous iron and carbon monoxide (CO) may mediate the oxidative modification of mitochondrial lipids, proteins and nucleic acids in these cells. Glial HO-1 hyperactivity may contribute to cellular oxidative stress, pathological iron deposition, and bioenergetic failure characteristic of degenerating and inflamed neural tissues and may constitute a rational target for therapeutic intervention in these conditions. PMID:16222706

  14. Sound attenuation in magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Rodríguez-López, J.; Elvira, L.; Resa, P.; Montero de Espinosa, F.

    2013-02-01

    In this work, the attenuation of ultrasonic elastic waves propagating through magnetorheological (MR) fluids is analysed as a function of the particle volume fraction and the magnetic field intensity. Non-commercial MR fluids made with iron ferromagnetic particles and two different solvents (an olive oil based solution and an Araldite-epoxy) were used. Particle volume fractions of up to 0.25 were analysed. It is shown that the attenuation of sound depends strongly on the solvent used and the volume fraction. The influence of a magnetic field up to 212 mT was studied and it was found that the sound attenuation increases with the magnetic intensity until saturation is reached. A hysteretic effect is evident once the magnetic field is removed.

  15. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show results of seismic and well log derived attenuation attributes from a deep water Gulf of Mexico data set. This data was contributed by Burlington Resources and Seitel Inc. The data consists of ten square kilometers of 3D seismic data and three well penetrations. We have computed anomalous seismic absorption attributes on the seismic data and have computed Q from the well log curves. The results show a good correlation between the anomalous absorption (attenuation) attributes and the presence of gas as indicated by well logs.

  16. NATURAL ATTENUATION OF CHLORINATED SOLVENTS

    EPA Science Inventory

    The protocol will simply describe in detail, with references and illustrations, the approach currently used by staff of the SPRD to evaluate natural attenuation of chlorinated solvents in ground water. Staff of SPRD, and staff of the Air Force Center for environmental excellence...

  17. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  18. Raf-kinase inhibitor protein attenuates microglia inflammation in an in vitro model of intracerebral hemorrhage.

    PubMed

    Wang, J; Du, J; Miao, C; Lian, H

    2016-01-01

    Microglia mediated neuroinflammation plays a crucial role in intracerebral hemorrhage (ICH). Raf kinase inhibitor protein (RKIP), a member of the phosphatidylethanolamine-binding protein (PEBP) family, is a negative regulator of inflammatory responses. However, the expression and anti-inflammatory effects of RKIP in microglia after ICH have not been reported. Therefore, in the current study, we investigated the effects of RKIP on inflammatory responses in erythrocyte lysate-treated BV2 microglia. Furthermore, we analyzed the detailed molecular mechanisms underlying the anti-inflammatory effects of RKIP in microglia. Our results showed that the expression level of RKIP was significantly decreased by erythrocyte lysate treatment in BV2 microglia. Overexpression of RKIP inhibited the production of pro-inflammatory molecules. In addition, overexpression of RKIP attenuated neuronal cell death induced by activated microglia. Moreover, RKIP suppressed the activation of NF-κB signaling pathway in erythrocyte lysis-treated BV2 cells. In conclusion, these data suggest that overexpression of RKIP attenuated microglia inflammation through inhibiting the NF-κB signaling pathway in erythrocyte lysis-treated BV2 cells. The present study provides evidence that RKIP may be used as an effective molecular target for the treatment of ICH. PMID:27262809

  19. Stormwater Attenuation by Green Roofs

    NASA Astrophysics Data System (ADS)

    Sims, A.; O'Carroll, D. M.; Robinson, C. E.; Smart, C. C.

    2014-12-01

    Innovative municipal stormwater management technologies are urgently required in urban centers. Inadequate stormwater management can lead to excessive flooding, channel erosion, decreased stream baseflows, and degraded water quality. A major source of urban stormwater is unused roof space. Green roofs can be used as a stormwater management tool to reduce roof generated stormwater and generally improve the quality of runoff. With recent legislation in some North American cities, including Toronto, requiring the installation of green roofs on large buildings, research on the effectiveness of green roofs for stormwater management is important. This study aims to assess the hydrologic response of an extensive sedum green roof in London, Ontario, with emphasis on the response to large precipitation events that stress municipal stormwater infrastructure. A green roof rapidly reaches field capacity during large storm events and can show significantly different behavior before and after field capacity. At field capacity a green roof has no capillary storage left for retention of stormwater, but may still be an effective tool to attenuate peak runoff rates by transport through the green roof substrate. The attenuation of green roofs after field capacity is linked to gravity storage, where gravity storage is the water that is temporarily stored and can drain freely over time after field capacity has been established. Stormwater attenuation of a modular experimental green roof is determined from water balance calculations at 1-minute intervals. Data is used to evaluate green roof attenuation and the impact of field capacity on peak flow rates and gravity storage. In addition, a numerical model is used to simulate event based stormwater attenuation. This model is based off of the Richards equation and supporting theory of multiphase flow through porous media.

  20. [Overexpression of FKS1 to improve yeast autolysis-stress].

    PubMed

    Li, Jia; Wang, Jinjing; Li, Qi

    2015-09-01

    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing. PMID:26955712

  1. Phenotypic effects of membrane protein overexpression in Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Melén, Karin; Blomberg, Anders; von Heijne, Gunnar

    2006-07-01

    Large-scale protein overexpression phenotype screens provide an important complement to the more common gene knockout screens. Here, we have targeted the so far poorly understood Saccharomyces cerevisiae membrane proteome and report growth phenotypes for a strain collection overexpressing 600 C-terminally tagged integral membrane proteins grown both under normal and three different stress conditions. Although overexpression of most membrane proteins reduce the growth rate in synthetic defined medium, we identify a large number of proteins that, when overexpressed, confer specific resistance to various stress conditions. Our data suggest that regulation of glycosylphosphatidylinositol anchor biosynthesis and the Na+/K+ homeostasis system constitute major downstream targets of the yeast PKA/RAS pathway and point to a possible connection between the early secretory pathway and the cells' response to oxidative stress. We also have quantified the expression levels for >550 membrane proteins, facilitating the choice of well expressing proteins for future functional and structural studies. caffeine | paraquat | salt tolerance | yeast

  2. Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

    PubMed Central

    Turner, Bradley J.; Alfazema, Neza; Sheean, Rebecca K.; Sleigh, James N.; Davies, Kay E.; Horne, Malcolm K.; Talbot, Kevin

    2014-01-01

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1G93A mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1G93A mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1G93A mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS. PMID:24210254

  3. Smooth Muscle-Targeted Overexpression of Peroxisome Proliferator Activated Receptor-γ Disrupts Vascular Wall Structure and Function

    PubMed Central

    Kleinhenz, Jennifer M.; Murphy, Tamara C.; Pokutta-Paskaleva, Anastassia P.; Gleason, Rudolph L.; Lyle, Alicia N.; Taylor, W. Robert; Blount, Mitsi A.; Cheng, Juan; Yang, Qinglin; Sutliff, Roy L.; Hart, C. Michael

    2015-01-01

    Activation of the nuclear hormone receptor, PPARγ, with pharmacological agonists promotes a contractile vascular smooth muscle cell phenotype and reduces oxidative stress and cell proliferation, particularly under pathological conditions including vascular injury, restenosis, and atherosclerosis. However, pharmacological agonists activate both PPARγ-dependent and -independent mechanisms in multiple cell types confounding efforts to clarify the precise role of PPARγ in smooth muscle cell structure and function in vivo. We, therefore, designed and characterized a mouse model with smooth muscle cell-targeted PPARγ overexpression (smPPARγOE). Our results demonstrate that smPPARγOE attenuated contractile responses in aortic rings, increased aortic compliance, caused aortic dilatation, and reduced mean arterial pressure. Molecular characterization revealed that compared to littermate control mice, aortas from smPPARγOE mice expressed lower levels of contractile proteins and increased levels of adipocyte-specific transcripts. Morphological analysis demonstrated increased lipid deposition in the vascular media and in smooth muscle of extravascular tissues. In vitro adenoviral-mediated PPARγ overexpression in human aortic smooth muscle cells similarly increased adipocyte markers and lipid uptake. The findings demonstrate that smooth muscle PPARγ overexpression disrupts vascular wall structure and function, emphasizing that balanced PPARγ activity is essential for vascular smooth muscle homeostasis. PMID:26451838

  4. Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability

    PubMed Central

    Wang, Y.; Buggia-Prévot, V.; Zavorka, M. E.; Bleackley, R. C.; MacDonald, R. G.; Thinakaran, G.

    2015-01-01

    Amyloid β (Aβ) peptides originating from amyloid precursor protein (APP) in the endosomal-lysosomal compartments play a critical role in the development of Alzheimer's disease (AD), the most common type of senile dementia affecting the elderly. Since insulin-like growth factor II (IGF-II) receptors facilitate the delivery of nascent lysosomal enzymes from the trans-Golgi network to endosomes, we evaluated their role in APP metabolism and cell viability using mouse fibroblast MS cells deficient in the murine IGF-II receptor and corresponding MS9II cells overexpressing the human IGF-II receptors. Our results show that IGF-II receptor overexpression increases the protein levels of APP. This is accompanied by an increase of β-site APP-cleaving enzyme 1 levels and an increase of β- and γ-secretase enzyme activities, leading to enhanced Aβ production. At the cellular level, IGF-II receptor overexpression causes localization of APP in perinuclear tubular structures, an increase of lipid raft components, and increased lipid raft partitioning of APP. Finally, MS9II cells are more susceptible to staurosporine-induced cytotoxicity, which can be attenuated by β-secretase inhibitor. Together, these results highlight the potential contribution of IGF-II receptor to AD pathology not only by regulating expression/processing of APP but also by its role in cellular vulnerability. PMID:25939386

  5. Drug target identification using a trypanosome overexpression library.

    PubMed

    Begolo, Daniela; Erben, Esteban; Clayton, Christine

    2014-10-01

    Elucidation of molecular targets is very important for lead optimization during the drug development process. We describe a direct method to find targets of antitrypanosomal compounds against Trypanosoma brucei using a trypanosome overexpression library. As proof of concept, we treated the library with difluoromethylornithine and DDD85646 and identified their respective targets, ornithine decarboxylase and N-myristoyltransferase. The overexpression library could be a useful tool to study the modes of action of novel antitrypanosomal drug candidates. PMID:25049244

  6. Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide

    PubMed Central

    Dabral, Neha; Jain-Gupta, Neeta; Seleem, Mohamed N.; Sriranganathan, Nammalwar; Vemulapalli, Ramesh

    2015-01-01

    Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in mammals. Brucella strains containing the O-polysaccharide in their cell wall structure exhibit a smooth phenotype whereas the strains devoid of the polysaccharide show rough phenotype. B. abortus strain RB51 is a stable rough attenuated mutant which is used as a licensed live vaccine for bovine brucellosis. Previous studies have shown that the wboA gene, which encodes a glycosyltransferase required for the synthesis of O-polysaccharide, is disrupted in B. abortus RB51 by an IS711 element. Although complementation of strain RB51 with a functional wboA gene results in O-polysaccharide synthesis in the cytoplasm, it does not result in smooth phenotype. The aim of this study was to determine if overexpression of Brucella WbkA or WbkE, two additional putative glycosyltransferases essential for O-polysaccharide synthesis, in strain RB51 would result in the O-polysaccharide synthesis and smooth phenotype. Our results demonstrate that overexpression of wbkA or wbkE gene in RB51 does not result in O-polysaccharide expression as shown by Western blotting with specific antibodies. However, wbkA, but not wbkE, overexpression leads to the development of a clumping phenotype and the production of exopolysaccharide(s) containing mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Moreover, we found that the clumping recombinant strain displays increased adhesion to polystyrene plates. The recombinant strain was similar to strain RB51 in its attenuation characteristic and in its ability to induce protective immunity against virulent B. abortus challenge in mice. PMID:26157707

  7. Ferrite attenuator modulation improves antenna performance

    NASA Technical Reports Server (NTRS)

    Hooks, J. C.; Larson, S. G.; Shorkley, F. H.; Williams, B. T.

    1970-01-01

    Ferrite attenuator inserted into appropriate waveguide reduces the gain of the antenna element which is causing interference. Modulating the ferrite attenuator to change the antenna gain at the receive frequency permits ground tracking until the antenna is no longer needed.

  8. ENHANCEMENTS TO NATURAL ATTENUATION: SELECTED CASE STUDIES

    SciTech Connect

    Vangelas, K; W. H. Albright, W; E. S. Becvar, E; C. H. Benson, C; T. O. Early, T; E. Hood, E; P. M. Jardine, P; M. Lorah, M; E. Majche, E; D. Major, D; W. J. Waugh, W; G. Wein, G; O. R. West, O

    2007-05-15

    In 2003 the US Department of Energy (DOE) embarked on a project to explore an innovative approach to remediation of subsurface contaminant plumes that focused on introducing mechanisms for augmenting natural attenuation to achieve site closure. Termed enhanced attenuation (EA), this approach has drawn its inspiration from the concept of monitored natural attenuation (MNA).

  9. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-01-01

    In Section 1 of this first report we will describe the work we are doing to collect and analyze rock physics data for the purpose of modeling seismic attenuation from other measurable quantities such as porosity, water saturation, clay content and net stress. This work and other empirical methods to be presented later, will form the basis for ''Q pseudo-well modeling'' that is a key part of this project. In Section 2 of this report, we will show the fundamentals of a new method to extract Q, dispersion, and attenuation from field seismic data. The method is called Gabor-Morlet time-frequency decomposition. This technique has a number of advantages including greater stability and better time resolution than spectral ratio methods.

  10. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method. PMID:26218450

  11. Natural and enhanced attenuation of metals

    SciTech Connect

    Rouse, J.V.; Pyrih, R.Z.

    1996-12-31

    The ability of natural earthen materials to attenuate the movement of contamination can be quantified in relatively simple geochemical experiments. In addition, the ability of subsurface material to attenuate potential contaminants can be enhanced through modifications to geochemical parameters such as pH or redox conditions. Such enhanced geochemical attenuation has been demonstrated at a number of sites to be a cost-effective alternative to conventional pump and treat operations. This paper describes the natural attenuation reactions which occur in the subsurface, and the way to quantify such attenuation. It also introduces the concept of enhanced geochemical attenuation, wherein naturally-occurring geochemical reactions can be used to achieve in situ fixation. The paper presents examples where such natural and enhanced attenuation have been implemented as a part of an overall remedy.

  12. Tagging Strategies Strongly Affect the Fate of Overexpressed Caveolin-1

    PubMed Central

    Han, Bing; Tiwari, Ajit; Kenworthy, Anne K

    2015-01-01

    Caveolin-1 (Cav1) is the primary scaffolding protein of caveolae, flask-shaped invaginations of the plasma membrane thought to function in endocytosis, mechanotransduction, signaling and lipid homeostasis. A significant amount of our current knowledge about caveolins and caveolae is derived from studies of transiently overexpressed, C-terminally tagged caveolin proteins. However, how different tags affect the behavior of ectopically expressed Cav1 is still largely unknown. To address this question, we performed a comparative analysis of the subcellular distribution, oligomerization state and detergent resistance of transiently overexpressed Cav1 labeled with three different C-terminal tags (EGFP, mCherry and myc). We show that addition of fluorescent protein tags enhances the aggregation and/or degradation of both wild-type Cav1 and an oligomerization defective P132L mutant. Strikingly, complexes formed by overexpressed Cav1 fusion proteins excluded endogenous Cav1 and Cav2, and the properties of native caveolins were largely preserved even when abnormal aggregates were present in cells. These findings suggest that differences in tagging strategies may be a source of variation in previously published studies of Cav1 and that overexpressed Cav1 may exert functional effects outside of caveolae. They also highlight the need for a critical re-evaluation of current knowledge based on transient overexpression of tagged Cav1. PMID:25639341

  13. Ubiquilin-1 Overexpression Increases the Lifespan and Delays Accumulation of Huntingtin Aggregates in the R6/2 Mouse Model of Huntington's Disease

    PubMed Central

    Chang, Lydia; Terrillion, Chantelle E.; Gould, Todd D.; Boehning, Darren F.; Monteiro, Mervyn J.

    2014-01-01

    Huntington's Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice. PMID:24475300

  14. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    PubMed

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  15. Lentivirus-mediated PGC-1α overexpression protects against traumatic spinal cord injury in rats.

    PubMed

    Hu, Jianzhong; Lang, Ye; Zhang, Tao; Ni, Shuangfei; Lu, Hongbin

    2016-07-22

    Peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1α) is a crucial neuronal regulator in the brain. However, its role in the spinal cord and the underlying regulating mechanisms remain poorly understood. Our previous study demonstrated that PGC-1α is significantly down-regulated following acute spinal cord injury (SCI) in rats. The current study aimed to explore the effects of PGC-1α overexpression on the injured spinal cord by establishing a contusive SCI model in adult Sprague-Dawley rats, followed by immediate intraspinal injection of lentiviral vectors at rostral and caudal sites 3mm from the lesion epicenter. Hindlimb motor function was monitored using the Basso-Beattie-Bresnahan Locomotor Rating Scale (BBB scores), and cords were collected. Transfection efficiency analysis showed that lentivirus successfully induced enhanced PGC-1α expression. This resulted in attenuated apoptotic changes and a greater number of surviving spinal neurons, as determined by transmission electron microscopy and Nissl staining, respectively. Western blot and immunofluorescence analyses revealed increased growth-associated protein 43 and 5-hydroxytryptamine expression, two key markers of axonal regeneration. Importantly, BBB scores showed improved hindlimb motor functional recovery. Moreover, quantitative real-time polymerase chain reaction analysis demonstrated significantly inhibited RhoA, ROCK1, and ROCK2 mRNA expression, revealing a potential mechanism of PGC-1α overexpression following traumatic SCI. Altogether, these results suggest that gene delivery of PGC-1α exerts a significant neuroprotective effect following traumatic SCI, which could serve as a promising treatment for repair of the injured cord, and RhoA-ROCK pathway inhibition may partially underlie this neuroprotection. PMID:27132229

  16. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    SciTech Connect

    Park, Choa; Lee, YoungJoo

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  17. Differences between normal and alpha-synuclein overexpressing SH-SY5Y neuroblastoma cells after Abeta(1-42) and NAC treatment.

    PubMed

    Hunya, Akos; Földi, István; Szegedi, Viktor; Soós, Katalin; Zarándi, Márta; Szabó, Antal; Zádori, Dénes; Penke, Botond; Datki, Zsolt L

    2008-03-28

    Alpha-synuclein (alphaSN) plays a major role in numerous neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. Intracellular inclusions containing aggregated alphaSN have been reported in Alzheimer's and Parkinson's affected brains. Moreover, a proteolytic fragment of alphaSN, the so-called non-amyloid component of Alzheimer's disease amyloid (NAC) was found to be an integral part of Alzheimer's dementia related plaques. Despite the extensive research on this topic, the exact toxic mechanism of alphaSN remains elusive. We have taken the advantage of an alphaSN overexpressing SH-SY5Y cell line and investigated the effects of classical apoptotic factors (e.g. H(2)O(2), amphotericin B and ruthenium red) and aggregated disease-related peptides on cell viability compared to wild type neuroblastoma cells. It was found that alphaSN overexpressing cells are more sensitive to aggregated peptides treatment than normal expressing counterparts. In contrast, cells containing elevated amount of alphaSN were less vulnerable to classical apoptotic stressors than wild type cells. In addition, alphaSN overexpression is accompanied by altered phenotype, attenuated proliferation kinetics, increased neurite arborisation and decreased cell motility. Based on these results, the alphaSN overexpressing cell lines may represent a good and effective in vitro model for Alzheimer's and Parkinson's disease. PMID:18355641

  18. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-04-01

    In this report we will show some new Q related seismic attributes on the Burlington-Seitel data set. One example will be called Energy Absorption Attribute (EAA) and is based on a spectral analysis. The EAA algorithm is designed to detect a sudden increase in the rate of exponential decay in the relatively higher frequency portion of the spectrum. In addition we will show results from a hybrid attribute that combines attenuation with relative acoustic impedance to give a better indication of commercial gas saturation.

  19. Imaging Rayleigh wave attenuation with USArray

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang

    2016-04-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface-wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave travel time and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the travel-time field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.

  20. Imaging Rayleigh wave attenuation with USArray

    NASA Astrophysics Data System (ADS)

    Bao, Xueyang; Dalton, Colleen A.; Jin, Ge; Gaherty, James B.; Shen, Yang

    2016-07-01

    The EarthScope USArray provides an opportunity to obtain detailed images of the continental upper mantle at an unprecedented scale. The majority of mantle models derived from USArray data to date contain spatial variations in seismic-wave speed; however, in many cases these data sets do not by themselves allow a non-unique interpretation. Joint interpretation of seismic attenuation and velocity models can improve upon the interpretations based only on velocity and provide important constraints on the temperature, composition, melt content, and volatile content of the mantle. The surface wave amplitudes that constrain upper-mantle attenuation are sensitive to factors in addition to attenuation, including the earthquake source excitation, focusing and defocusing by elastic structure, and local site amplification. Because of the difficulty of isolating attenuation from these other factors, little is known about the attenuation structure of the North American upper mantle. In this study, Rayleigh wave traveltime and amplitude in the period range 25-100 s are measured using an interstation cross-correlation technique, which takes advantage of waveform similarity at nearby stations. Several estimates of Rayleigh wave attenuation and site amplification are generated at each period, using different approaches to separate the effects of attenuation and local site amplification on amplitude. It is assumed that focusing and defocusing effects can be described by the Laplacian of the traveltime field. All approaches identify the same large-scale patterns in attenuation, including areas where the attenuation values are likely contaminated by unmodelled focusing and defocusing effects. Regionally averaged attenuation maps are constructed after removal of the contaminated attenuation values, and the variations in intrinsic shear attenuation that are suggested by these Rayleigh wave attenuation maps are explored.

  1. PPARα and PPARγ protect against HIV-1-induced MMP-9 overexpression via caveolae-associated ERK and Akt signaling

    PubMed Central

    Huang, Wen; András, Ibolya E.; Rha, Geun Bae; Hennig, Bernhard; Toborek, Michal

    2011-01-01

    Activation of matrix metalloproteinase-9 (MMP-9) is involved in HIV-1-induced disruption of the blood-brain barrier (BBB). In the present study, we hypothesize that peroxisome proliferator-activated receptor (PPAR)-α or PPARγ can protect against HIV-1-induced MMP-9 overexpression in brain endothelial cells (hCMEC cell line) by attenuating cellular oxidative stress and down-regulation of caveolae-associated redox signaling. Exposure to HIV-1-infected monocytes induced phosphorylation of ERK1/2 and Akt in hCMEC by 2.5- and 3.6-fold, respectively; however, these effects were attenuated by overexpression of PPARα or PPARγ and by silencing of caveolin-1 (cav-1). Coculture of hCMEC with HIV-1-infected monocytes significantly induced MMP-9 promoter and enzyme activity by 3- to 3.5-fold. Promoter mutation studies indicated that SP-1 (g1940t_g1941t) is an essential transcription factor involved in induction of MMP-9 promoter by HIV-1. In addition, HIV-1-stimulated activity of MMP-9 promoter was inhibited by mutation of AP-1 site 2 (c1918t_a1919g) and both (but not individual) NF-κB binding sites (g1389c and g1664c). PPAR overexpression, ERK1/2 or Akt inhibition, and silencing of cav-1 all effectively protected against HIV-1-induced MMP-9 promoter activity, indicating a close relationship among HIV-1-induced cerebrovascular toxicity, redox-regulated mechanisms, and functional caveolae. Such a link was further confirmed in MMP-9-deficient mice exposed to PPARα or PPARγ agonist and injected with the HIV-1-specific protein Tat into cerebral vasculature. Overall, our results indicate that ERK1/2, Akt, and cav-1 are involved in the regulatory mechanisms of PPAR-mediated protection against HIV-1-induced MMP-9 expression in brain endothelial cells.—Huang, W., András, I. E., Rha, G. B., Hennig, B., Toborek, M. PPARα and PPARγ protect against HIV-1-induced MMP-9 overexpression via caveolae-associated ERK and Akt signaling. PMID:21840940

  2. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    SciTech Connect

    Guo Yanhong; Chen Kuanghueih; Gao Wei; Li Qian; Chen Li; Wang Guisong Tang Jian

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% and 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.

  3. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  4. MicroRNA 26a inhibits HMGB1 expression and attenuates cardiac ischemia-reperfusion injury.

    PubMed

    Yao, Li; Lv, Xin; Wang, Xiaohua

    2016-05-01

    Ischemia reperfusion (IR) injury is a major issue in cardiac transplantation and inflammatory processes play a major role in myocardial IR injury. MicroRNA 26a (Mir-26a) plays important roles in cellular differentiation, cell growth, cell apoptosis and metastasis. Mir-26a has been demonstrated to modulate regulatory T cells expansion and attenuates renal IR injury. However, the role of Mir-26a in the cardiac IR injury has never been investigated. In our study, hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 hours and then transplanted into syngeneic recipients. The results demonstrate a crucial role for Mir-26a in inhibiting high mobility group box-1 (HMGB1) expression and attenuating cardiac IR injury. Mir-26a overexpression results in attenuated cardiac IR injury and inhibited HMGB1 expression. Mir-26a also inhibits inflammatory cells infiltration and cytokines expression. Furthermore, the attenuated cardiac IR injury induced by Mir-26a was abrogated by additional administration of recombinant HMGB1 (rHMGB1). In conclusion, Mir-26a plays a protective role in cardiomyocyte IR injury and this is associated with inhibited HMGB1 expression. PMID:26320674

  5. Over-Expression of CD200 Protects Mice from Dextran Sodium Sulfate Induced Colitis

    PubMed Central

    Chen, Zhiqi; Yu, Kai; Zhu, Fang; Gorczynski, Reginald

    2016-01-01

    Background and aim CD200:CD200 receptor (CD200R) interactions lead to potent immunosuppression and inhibition of autoimmune inflammation. We investigated the effect of "knockout"of CD200 or CD200R, or over-expression of CD200, on susceptibility to dextran sodium sulfate (DSS)—induced colitis, a mouse model of inflammatory bowel disease (IBD). Methods Acute or chronic colitis was induced by administration of dextran sodium sulfate (DSS) in four groups of age-matched C57BL/6 female mice: (1) CD200-transgenic mice (CD200tg); (2) wild-type (WT) mice; (3) CD200 receptor 1-deficient (CD200R1KO) mice; and (4) CD200-deficient (CD200KO) mice. The extent of colitis was determined using a histological scoring system. Colon tissues were collected for quantitative RT-PCR and Immunohistochemical staining. Supernatants from colonic explant cultures and mononuclear cells isolated from colonic tissue were used for ELISA. Results CD200KO and CD200R1KO mice showed greater sensitivity to acute colitis than WT mice, with accelerated loss of body weight, significantly higher histological scores, more severe infiltration of macrophages, neutrophils and CD3+ cells, and greater expression of macrophage-derived inflammatory cytokines, whose production was inhibited in vitro (in WT/CD200KO mouse cells) by CD200. In contrast, CD200tg mice showed less sensitivity to DSS compared with WT mice, with attenuation of all of the features seen in other groups. In a chronic colitis model, greater infiltration of Foxp3+ regulatory T (Treg) cells was seen in the colon of CD200tg mice compared to WT mice, and anti-CD25 mAb given to these mice attenuated protection. Conclusions The CD200:CD200R axis plays an immunoregulatory role in control of DSS induced colitis in mice. PMID:26841120

  6. Aldo-keto Reductase 1C3 (AKR1C3) is overexpressed in skin squamous cell carcinoma (SCC) and affects SCC growth via prostaglandin metabolism

    PubMed Central

    Mantel, Alon; Carpenter-Mendini, Amanda; VanBuskirk, JoAnne; Pentland, Alice P.

    2014-01-01

    Aldo-keto reductase 1C3 (AKR1C3) is an enzyme involved in metabolizing prostaglandins (PGs) and sex hormones. It metabolizes PGD2 to 9α11β-PGF2, diverting the spontaneous conversion of PGD2 to the PPARγ agonist, 15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2). AKR1C3 is overexpressed in various malignancies, suggesting a tumor promoting function. This work investigates AKR1C3 expression in human non-melanoma skin cancers, revealing overexpression in squamous cell carcinoma (SCC). Effects of AKR1C3 overexpression were then evaluated using 3 SCC cell lines. AKR1C3 was detected in all SCC cell lines and its expression was upregulated in response to its substrate, PGD2. Although attenuating AKR1C3 expression in SCC cells by siRNA did not affect growth, treatment with PGD2 and its dehydration metabolite, 15d-PGJ2, decreased SCC proliferation in a PPARγ-dependent manner. In addition, treatment with the PPARγ agonist pioglitazone profoundly inhibited SCC proliferation. Finally, we generated an SCC cell line that stably overexpressed AKR1C3 (SCC-AKR1C3). SCC-AKR1C3 metabolized PGD2 to 9α11β-PGF2 12 fold faster than the parent cell line and was protected from the anti-proliferative effect mediated by PGD2. This work suggests that PGD2 and its metabolite 15d-PGJ2 attenuate SCC proliferation in a PPARγ-dependent manner, therefore activation of PPARγ by agonists such as Pioglitazone may benefit those at high risk of SCC. PMID:24917395

  7. Global Attenuation Model of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2015-12-01

    We present a three-dimensional shear attenuation model based on a massive surface wave data-set (372,629 Rayleigh waveforms analysed in the period range 50-300s by Debayle and Ricard, 2012). For each seismogram, this approach yields depth-dependent path average models of shear velocity and quality factor, and a set of fundamental and higher-mode dispersion and attenuation curves. We combine these attenuation measurements in a tomographic inversion after a careful rejection of the noisy data. We first remove data likely to be biased by a poor knowledge of the source. Then we assume that waves corresponding to events having close epicenters and recorded at the same station sample the same elastic and anelastic structure, we cluster the corresponding rays and average the attenuation measurements. Logarithms of the attenuations are regionalized using the non-linear east square formalism of Tarantola and Valette (1982), resulting in attenuation tomographic maps between 50s and 300s. After a first inversion, outlyers are rejected and a second inversion yields a moderate variance reduction of about 20%. We correct the attenuation curves for focusing effect using the linearized ray theory of Woodhouse and Wong (1986). Accounting for focussing effects allows building tomographic maps with variance reductions reaching 40%. In the period range 120-200s, the root mean square of the model perturbations increases from about 5% to 20%. Our 3-D attenuation models present strong agreement with surface tectonics at period lower than 200s. Areas of low attenuation are located under continents and areas of high attenuation are associated with oceans. Surprisingly, although mid oceanic ridges are located in attenuating regions, their signature, even if enhanced by focusing corrections, remains weaker than in the shear velocity models. Synthetic tests suggests that regularisation contributes to damp the attenuation signature of ridges, which could therefore be underestimated.

  8. General relationships between ultrasonic attenuation and dispersion

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Jaynes, E. T.; Miller, J. G.

    1978-01-01

    General relationships between the ultrasonic attenuation and dispersion are presented. The validity of these nonlocal relationships hinges only on the properties of causality and linearity, and does not depend upon details of the mechanism responsible for the attenuation and dispersion. Approximate, nearly local relationships are presented and are demonstrated to predict accurately the ultrasonic dispersion in solutions of hemoglobin from the results of attenuation measurements.

  9. Calculation Of Pneumatic Attenuation In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Whitmore, Stephen A.

    1991-01-01

    Errors caused by attenuation of air-pressure waves in narrow tubes calculated by method based on fundamental equations of flow. Changes in ambient pressure transmitted along narrow tube to sensor. Attenuation of high-frequency components of pressure wave calculated from wave equation derived from Navier-Stokes equations of viscous flow in tube. Developed to understand and compensate for frictional attenuation in narrow tubes used to connect aircraft pressure sensors with pressure taps on affected surfaces.

  10. Overexpression of Dlx2 leads to postnatal condyle degradation

    PubMed Central

    Dai, Jiewen; Si, Jiawen; Zhu, Xiaofang; Zhang, Lei; Wu, Dandan; Lu, Jingting; Ouyang, Ningjuan; Wang, Xudong; Shen, Guofang

    2016-01-01

    Distal-less homeobox 2 (Dlx2), a member of the Dlx family of transcription factors, is important for the development of craniofacial tissues. Previous studies based on knock-out mutant mice revealed that Dlx2 primarily disturbed the development of tissues from maxillary arch. The present study used a transgenic mouse model to specifically overexpress Dlx2 in neural crest cells in order to investigate the role of Dlx2 overexpression in post-natal condyle in mice. The model was constructed and the phenotype observed using gross observation, micro-CT scan and histological examination. The model determined that overexpression of Dlx2 may lead to postnatal condyle malformation, subchondral bone degradation and irregular histological structure of the condylar cartilage. In addition, the expression of osteocalcin in the condyle region was markedly downregulated, whereas expression of msh homeobox 2 was upregulated. The results of the present study suggest that Dlx2 overexpression in cranial neural crest cells would disrupt the development of post-natal condyle, which demonstrates that the expression level and the spatiotemporal expression patterns of Dlx2 may be important in regulating the development of post-natal condyle in mice, and also offered a possible temporal-mandibular joint osteoarthritis model animal for future studies. PMID:27315306

  11. Laboratory and field studies of guayule modified to overexpress HMGR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the genetic modification of guayule to overexpress the isoprenoid pathway enzyme HMGR. The rubber content of two-month old in vitro transformed plantlets showed a 65% increase in rubber over the control for one line (HMGR6), and lower resin for another (HMGR2). In field evaluations HMGR6...

  12. Moesin overexpression is a unique biomarker of adenomyosis.

    PubMed

    Ohara, Rena; Michikami, Hiroo; Nakamura, Yuko; Sakata, Akiko; Sakashita, Shingo; Satomi, Kaishi; Shiba-Ishii, Aya; Kano, Junko; Yoshikawa, Hiroyuki; Noguchi, Masayuki

    2014-03-01

    Adenomyosis is characterized by extension of endometrial glands and stromal cells into the myometrium. Here we proved that 'moesin' is a unique biomarker of adenomyosis. We selected two cases of adenomyosis that had been surgically resected and fixed with formalin. Proteins were extracted from the infiltrating adenomyosis lesions and normal endometrium by tissue microdissection. The extracted proteins were examined using a LC-MS/MS system and the expression profiles of each region were compared. Two hundred and sixty proteins were detected, among which 73 were expressed more in adenomyosis than in normal endometrium. Among these proteins, we focused on overexpression of moesin in adenomyosis. Expression of moesin estimated semiquantitatively using an immunohistochemistry score was higher in adenomyosis than in normal endometrium. In particular, moesin was significanly overexpressed in stromal cells of adenomyosis than in those of normal endometrium. Relative to normal endometrium, moesin was also overexpressed at the RNA level in 9 of 14 cases of adenomyosis and at the protein level in all 14 cases. We also detected activated (phosphorylated) moesin in adenomyosis lesions. The present findings suggest that moesin is characteristically overexpressed and activated in adenomyosis, and that moesin activation may be related to extension of adenomyosis in the myometrium. PMID:24698421

  13. Brain Phenotype of Transgenic Mice Overexpressing Cystathionine β-Synthase

    PubMed Central

    Régnier, Vinciane; Billard, Jean-Marie; Gupta, Sapna; Potier, Brigitte; Woerner, Stéphanie; Paly, Evelyne; Ledru, Aurélie; David, Sabrina; Luilier, Sabrina; Bizot, Jean-Charles; Vacano, Guido; Kraus, Jan P.; Patterson, David; Kruger, Warren D.; Delabar, Jean M.; London, Jaqueline

    2012-01-01

    Background The cystathionine β-synthase (CBS) gene, located on human chromosome 21q22.3, is a good candidate for playing a role in the Down Syndrome (DS) cognitive profile: it is overexpressed in the brain of individuals with DS, and it encodes a key enzyme of sulfur-containing amino acid (SAA) metabolism, a pathway important for several brain physiological processes. Methodology/Principal Findings Here, we have studied the neural consequences of CBS overexpression in a transgenic mouse line (60.4P102D1) expressing the human CBS gene under the control of its endogenous regulatory regions. These mice displayed a ∼2-fold increase in total CBS proteins in different brain areas and a ∼1.3-fold increase in CBS activity in the cerebellum and the hippocampus. No major disturbance of SAA metabolism was observed, and the transgenic mice showed normal behavior in the rotarod and passive avoidance tests. However, we found that hippocampal synaptic plasticity is facilitated in the 60.4P102D1 line. Conclusion/Significance We demonstrate that CBS overexpression has functional consequences on hippocampal neuronal networks. These results shed new light on the function of the CBS gene, and raise the interesting possibility that CBS overexpression might have an advantageous effect on some cognitive functions in DS. PMID:22253703

  14. Overexpression, Purification, Characterization, and Pathogenicity of Vibrio harveyi Hemolysin VHH

    PubMed Central

    Zhong, Yingbin; Zhang, Xiao-Hua; Chen, Jixiang; Chi, Zhenghao; Sun, Boguang; Li, Yun; Austin, Brian

    2006-01-01

    Vibrio harveyi VHH hemolysin is a putative pathogenicity factor in fish. In this study, the hemolysin gene vhhA was overexpressed in Escherichia coli, and the purified VHH was characterized with regard to pH and temperature profiles, phospholipase activity, cytotoxicity, pathogenicity to flounder, and the signal peptide. PMID:16988279

  15. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy.

    PubMed

    Dong, Wen-Qian; Chao, Min; Lu, Qing-Hua; Chai, Wei-Li; Zhang, Wei; Chen, Xue-Ying; Liang, Er-Shun; Wang, Ling-Bo; Tian, Hong-Liang; Chen, Yu-Guo; Zhang, Ming-Xiang

    2016-01-01

    Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM. PMID:26623724

  16. Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy

    PubMed Central

    Dong, Wen-qian; Chao, Min; Lu, Qing-hua; Chai, Wei-li; Zhang, Wei; Chen, Xue-ying; Liang, Er-shun; Wang, Ling-bo; Tian, Hong-liang; Chen, Yu-guo; Zhang, Ming-xiang

    2016-01-01

    Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal–regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM. PMID:26623724

  17. Atmospheric attenuation calibrations of surface weather observations

    NASA Technical Reports Server (NTRS)

    Sanii, Babak

    2001-01-01

    A correlation between near-IR atmospheric attenuation measurements made by the Atmospheric Visibility Monitor (AVM) at the Table Mountain Facility and airport surface weather observations at Edwards Air Force Base has been performed. High correlations (over 0.93) exist between the simultaneous Edwards observed sky cover and the average AVM measured attenuations over the course of the 10 months analyzed. The statistical relationship between the data-sets allows the determination of coarse attenuation statistics from the surface observations, suggesting that such statistics may be extrapolated from any surface weather observation site, Furthermore, a superior technique for converting AVM images to attenuation values by way of MODTRAN predictions has been demonstrated.

  18. Differential dust attenuation in CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Cid Fernandes, R.; Amorim, A. L.; Lacerda, E. A. D.; Schlickmann, M.; Wild, V.; Kennicutt, R. C.

    2016-06-01

    Dust attenuation has long been treated as a simple parameter in SED fitting. Real galaxies are, however, much more complicated: The measured dust attenuation is not a simple function of the dust optical depth, but depends strongly on galaxy inclination and the relative distribution of stars and dust. We study the nebular and stellar dust attenuation in CALIFA galaxies, and propose some empirical recipes to make the dust treatment more realistic in spectral synthesis codes. By adding optical recombination emission lines, we find better constraints for differential attenuation. Those recipes can be applied to unresolved galaxy spectra, and lead to better recovered star formation rates.

  19. Underwing compression vortex attenuation device

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr. (Inventor)

    1993-01-01

    A vortex attenuation device is presented which dissipates a lift-induced vortex generated by a lifting aircraft wing. The device consists of a positive pressure gradient producing means in the form of a compression panel attached to the lower surface of the wing and facing perpendicular to the airflow across the wing. The panel is located between the midpoint of the local wing cord and the trailing edge in the chord-wise direction and at a point which is approximately 55 percent of the wing span as measured from the fuselage center line in the spanwise direction. When deployed in flight, this panel produces a positive pressure gradient aligned with the final roll-up of the total vortex system which interrupts the axial flow in the vortex core and causes the vortex to collapse.

  20. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2002-10-01

    RSI has access to two synthetic seismic programs: Osiris seismic modeling system provided by Odegaard (Osiris) and synthetic seismic program, developed by SRB, implementing the Kennett method for normal incidence. Achieving virtually identical synthetic seismic traces from these different programs serves as cross-validation for both. The subsequent experiments have been performed with the Kennett normal incidence code because: We have access to the source code, which allowed us to easily control computational parameters and integrate the synthetics computations with our graphical and I/O systems. This code allows to perform computations and displays on a PC in MatLab or Octave environment, which is faster and more convenient. The normal incidence model allows us to exclude from the synthetic traces some of the physical effects that take place in 3-D models (like inhomogeneous waves) but have no relevance to the topic of our investigation, which is attenuation effects on seismic reflection and transmission.

  1. Genetic Manipulation of Homologous Recombination In Vivo Attenuates Intestinal Tumorigenesis.

    PubMed

    McIlhatton, Michael A; Murnan, Kevin; Carson, Daniel; Boivin, Gregory P; Croce, Carlo M; Groden, Joanna

    2015-07-01

    Although disruption of DNA repair capacity is unquestionably associated with cancer susceptibility in humans and model organisms, it remains unclear if the inherent tumor phenotypes of DNA repair deficiency syndromes can be regulated by manipulating DNA repair pathways. Loss-of-function mutations in BLM, a member of the RecQ helicase family, cause Bloom's syndrome (BS), a rare, recessive genetic disorder that predisposes to many types of cancer. BLM functions in many aspects of DNA homeostasis, including the suppression of homologous recombination (HR) in somatic cells. We investigated whether BLM overexpression, in contrast with loss-of-function mutations, attenuated the intestinal tumor phenotypes of Apc(Min/+) and Apc(Min/+);Msh2(-/-) mice, animal models of familial adenomatous polyposis coli (FAP). We constructed a transgenic mouse line expressing human BLM (BLM-Tg) and crossed it onto both backgrounds. BLM-Tg decreased adenoma incidence in a dose-dependent manner in our Apc(Min/) (+) model of FAP, although levels of GIN were unaffected and concomitantly increased animal survival over 50%. It did not reduce intestinal tumorigenesis in Apc(Min/) (+);Msh2(-/-) mice. We used the pink-eyed unstable (p(un)) mouse model to demonstrate that increasing BLM dosage in vivo lowered endogenous levels of HR by 2-fold. Our data suggest that attenuation of the Min phenotype is achieved through a direct effect of BLM-Tg on the HR repair pathway. These findings demonstrate that HR can be manipulated in vivo to modulate tumor formation at the organismal level. Our data suggest that lowering HR frequencies may have positive therapeutic outcomes in the context of specific hereditary cancer predisposition syndromes, exemplified by FAP. PMID:25908507

  2. Endoglin overexpression mediates gastric cancer peritoneal dissemination by inducing mesothelial cell senescence.

    PubMed

    Miao, Zhi-Feng; Wu, Jian-Hua; Wang, Zhen-Ning; Zhao, Ting-Ting; Xu, Hui-Mian; Song, Yong-Xi; Xing, Ya-Nan; Huang, Jin-Yu; Zhang, Jun-Yan; Liu, Xing-Yu; Xu, Hao; Xu, Ying-Ying

    2016-05-01

    Peritoneal dissemination (PD), which is highly frequent in gastric cancer (GC) patients, is the main cause of death in advanced GC. Senescence of human peritoneal mesothelial cells (HPMC) may contribute to GC peritoneal dissemination (GCPD). In this study of 126 patients, we investigated the association between Endoglin expression in GC peritoneum and the clinicopathological features. The prognosis of patients was evaluated according to Endoglin and ID1 expression. In vitro, GC cell (GCC)-HPMC coculture was established. Endoglin and ID1 expression was evaluated by Western blot. Cell cycle and HPMC senescence were analyzed after harvesting HPMC from the coculture. GCC adhesion and invasion to HPMC were also assayed. Our results showed that positive staining of Endoglin (38%) was associated with a higher TNM stage and higher incidence of GCPD (both P < .05). Kaplan-Meier analysis showed that the patients who were Endoglin positive had a shorter survival time compared with Endoglin-negative patients (P = .02). Using the HPMC and GCC adherence and invasion assay, we demonstrated that transforming growth factor beta 1 (TGF-β)1-induced HPMC senescence was attenuated by silencing the Endoglin expression, which also prevented GCC attachment and invasion. Our study indicated a positive correlation between Endoglin overexpression and GCPD. Up-regulated Endoglin expression induced HPMC senescence via TGF-β1 pathway. The findings suggest that Endoglin-induced HPMC senescence may contribute to peritoneal dissemination of GCCs. PMID:27067789

  3. Overexpression of Ste20-related proline/alanine-rich kinase exacerbates experimental colitis in mice.

    PubMed

    Yan, Yutao; Laroui, Hamed; Ingersoll, Sarah A; Ayyadurai, Saravanan; Charania, Moiz; Yang, Stephen; Dalmasso, Guillaume; Obertone, Tracy S; Nguyen, Hang; Sitaraman, Shanthi V; Merlin, Didier

    2011-08-01

    Inflammatory bowel disease, mainly Crohn's disease and ulcerative colitis, are characterized by epithelial barrier disruption and altered immune regulation. Colonic Ste20-like proline/alanine-rich kinase (SPAK) plays a role in intestinal inflammation, but its underlying mechanisms need to be defined. Both SPAK-transfected Caco2-BBE cells and villin-SPAK transgenic (TG) FVB/6 mice exhibited loss of intestinal barrier function. Further studies demonstrated that SPAK significantly increased paracellular intestinal permeability to FITC-dextran. In vivo studies using the mouse models of colitis induced by dextran sulfate sodium (DSS) and trinitrobenzene sulfonic acid showed that TG FVB/6 mice were more susceptible to DSS and trinitrobenzene sulfonic acid treatment than wild-type FVB/6 mice, as demonstrated by clinical and histological characteristics and enzymatic activities. Consistent with this notion, we found that SPAK increased intestinal epithelial permeability, which likely facilitated the production of inflammatory cytokines in vitro and in vivo, aggravated bacterial translocation in TG mice under DSS treatment, and consequently established a context favorable for the triggering of intestinal inflammation cascades. In conclusion, overexpression of SPAK inhibits maintenance of intestinal mucosal innate immune homeostasis, which makes regulation of SPAK important to attenuate pathological responses in inflammatory bowel disease. PMID:21705622

  4. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes.

    PubMed

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  5. Adiponectin Suppresses UVB-Induced Premature Senescence and hBD2 Overexpression in Human Keratinocytes

    PubMed Central

    Kim, MinJeong; Park, Kui Young; Lee, Mi-Kyung; Jin, Taewon; Seo, Seong Jun

    2016-01-01

    Recent studies have revealed that adiponectin can suppress cellular inflammatory signaling pathways. This study aimed to elucidate the effect of adiponectin on the unregulated production of hBD2 in UVB-induced premature senescent keratinocytes. We constructed an in vitro model of premature senescent keratinocytes through repeated exposure to low energy UVB. After repeated low energy UVB exposure, there was significant generation of reactive oxygen species (ROS) and induction of senescence-associated markers, including senescence associated beta-galactosidase activity and expression of p16INK4a and histone H2AX. In addition, the present clinical study showed higher expression of hBD2 in sun-exposed skin of elderly group, and the overexpression of hBD2 was observed by c-Fos activation in vitro. Adiponectin has the ability to scavenge ROS and consequently inhibit MAPKs and SA-markers in UVB-exposed keratinocytes. An inhibitor study demonstrated that adiponectin downregulated hBD2 mRNA expression through suppression of the AP-1 transcription factor components c-Fos via inactivation of p38 MAPK. Collectively, the dysregulated production of hBD2 by the induction of oxidative stress was attenuated by adiponectin through the suppression of p38 and JNK/SAPK MAPK signaling in UVB-mediated premature senescent inducible conditions. These results suggest the feasibility of adiponectin as an anti-photoaging and anti-inflammatory agent in the skin. PMID:27526049

  6. Targeted overexpression of mitochondrial catalase protects against cancer chemotherapy-induced skeletal muscle dysfunction.

    PubMed

    Gilliam, Laura A A; Lark, Daniel S; Reese, Lauren R; Torres, Maria J; Ryan, Terence E; Lin, Chien-Te; Cathey, Brook L; Neufer, P Darrell

    2016-08-01

    The loss of strength in combination with constant fatigue is a burden on cancer patients undergoing chemotherapy. Doxorubicin, a standard chemotherapy drug used in the clinic, causes skeletal muscle dysfunction and increases mitochondrial H2O2 We hypothesized that the combined effect of cancer and chemotherapy in an immunocompetent breast cancer mouse model (E0771) would compromise skeletal muscle mitochondrial respiratory function, leading to an increase in H2O2-emitting potential and impaired muscle function. Here, we demonstrate that cancer chemotherapy decreases mitochondrial respiratory capacity supported with complex I (pyruvate/glutamate/malate) and complex II (succinate) substrates. Mitochondrial H2O2-emitting potential was altered in skeletal muscle, and global protein oxidation was elevated with cancer chemotherapy. Muscle contractile function was impaired following exposure to cancer chemotherapy. Genetically engineering the overexpression of catalase in mitochondria of muscle attenuated mitochondrial H2O2 emission and protein oxidation, preserving mitochondrial and whole muscle function despite cancer chemotherapy. These findings suggest mitochondrial oxidants as a mediator of cancer chemotherapy-induced skeletal muscle dysfunction. PMID:27329802

  7. Attenuation Relationship of Arias Intensity for Taiwan

    NASA Astrophysics Data System (ADS)

    Sung, C.; Hsieh, P.; Lin, P.; Lee, C.

    2008-12-01

    Arias intensity (AI) reflects the complete acceleration time history duration of ground vibrations. It correlates well with several commonly used demand measure of structural performance, liquefaction, and seismic slope stability. A good attenuation equation can reflect the characteristics of the ground-motion attenuation for a region, and can be used to predict the ground-motion value of a specific site for seismic resistance design. This study analyzed two local empirical attenuation relationships, one for the crustal earthquakes and the other for the subduction zone earthquakes, based on the strong ground-motion data from TSMIP and SMART1 array in Taiwan. Maximum likelihood method and mixed-effect model were used with non-linear regression analyses to determine coefficients. The result shows that adding terms of Vs30 and focal mechanism can effectively reduce the standard deviation in the attenuation models. To compare with other AI attenuation equations, the AI value predicted by our crustal earthquake attenuation equation is higher in the near field and is lower in the far field than the researches in other regions. The subduction zone earthquake attenuation equation predicts higher AI value than the crustal earthquake attenuation equation does.

  8. LONG TERM MONITORING FOR NATURAL ATTENUATION

    EPA Science Inventory

    We have good statistical methods to: (1) determine whether concentrations of a contaminant are attenuating over time, (2) determine the rate of attenuation and confidence interval on the rate, and (3) determine whether concentrations have met a particular clean up goal. We do no...

  9. Underwing Compression Vortex-Attenuation Device

    NASA Technical Reports Server (NTRS)

    Patterson, James C., Jr.

    1994-01-01

    Underwing compression vortex-attenuation device designed to provide method for attenuating lift-induced vortex generated by wings of airplane. Includes compression panel attached to lower surface of wing, facing perpendicular to streamwise airflow. Concept effective on all types of aircraft. Causes increase in wing lift rather than reduction when deployed. Device of interest to aircraft designers and enhances air safety in general.

  10. Docking-mechanism attenuator with electromechanical damper

    NASA Technical Reports Server (NTRS)

    Syromyatnikov, V. S.

    1971-01-01

    Theoretical and practical problems involved in the application of electromechanical damping for spacecraft docking-mechanism attenuation are discussed. Some drawbacks of hydraulic dampers used for the purpose are pointed out. The basic scheme of the attenuator with the electromechanical damper is given.

  11. Attenuation coefficients for water quality trading.

    PubMed

    Keller, Arturo A; Chen, Xiaoli; Fox, Jessica; Fulda, Matt; Dorsey, Rebecca; Seapy, Briana; Glenday, Julia; Bray, Erin

    2014-06-17

    Water quality trading has been proposed as a cost-effective approach for reducing nutrient loads through credit generation from agricultural or point source reductions sold to buyers facing costly options. We present a systematic approach to determine attenuation coefficients and their uncertainty. Using a process-based model, we determine attenuation with safety margins at many watersheds for total nitrogen (TN) and total phosphorus (TP) loads as they transport from point of load reduction to the credit buyer. TN and TP in-stream attenuation generally increases with decreasing mean river flow; smaller rivers in the modeled region of the Ohio River Basin had TN attenuation factors per km, including safety margins, of 0.19-1.6%, medium rivers of 0.14-1.2%, large rivers of 0.13-1.1%, and very large rivers of 0.04-0.42%. Attenuation in ditches transporting nutrients from farms to receiving rivers is 0.4%/km for TN, while for TP attenuation in ditches can be up to 2%/km. A 95 percentile safety margin of 30-40% for TN and 6-10% for TP, applied to the attenuation per km factors, was determined from the in-stream sensitivity of load reductions to watershed model parameters. For perspective, over 50 km a 1% per km factor would result in 50% attenuation = 2:1 trading ratio. PMID:24866482

  12. Relating P-wave attenuation to permeability

    SciTech Connect

    Akbar, N.; Dvorkin, J.; Nur, A. . Dept. of Geophysics)

    1993-01-01

    To relate P-wave attenuation to permeability, the authors examine a three-dimensional (3-D) theoretical model of a cylindrical pore filled with viscous fluid and embedded in an infinite isotropic elastic medium. They calculate both attenuation and permeability as functions of the direction of wave propagation. Attenuation estimates are based on the squirt flow mechanism; permeability is calculated using the Kozeny-Carmen relation. They find that in the case when a plane P-wave propagates parallel to this orientation (Q[sup [minus]1][delta] = 90[degree]), attenuation is always higher than when a wave propagates parallel to this orientation (Q[sup [minus]1][delta] = 0[degree]). The ratio of these two attenuation values Q[sup [minus]1][delta] = 90[degree]/Q[sup [minus]1] = 0[degree] increases with an increasing pore radius and decreasing frequency and saturation. By changing permeability, varying the radius of the pore, they find that the permeability-attenuation relation is characterized by a peak that shifts toward lower permeabilities as frequency decreases. Therefore, the attenuation of a low-frequency wave decreases with increasing permeability. They observe a similar trend on relations between attenuation and permeability experimentally obtained on sandstone samples.

  13. Seismic attenuation anisotropy in reservoir sedimentary rocks

    SciTech Connect

    Best, A.I.

    1994-12-31

    Seismic attenuation is a fundamental property of reservoir sedimentary rocks; it is strongly related to reservoir permeability. Knowledge of its variation with lithology, with burial depth, and with wave propagation direction is vital for understanding the attenuation mechanism. Given this information, realistic theoretical models may be constructed for predicting attenuation, and hence permeability, over a wide frequency range. Accurate ultrasonic attenuation measurements were made in the laboratory over a range of effective pressures on sandstone samples with different amounts of humic organic matter. The organic matter formed fine laminations along the bedding planes of the sandstones. The results show that the sandstones are highly attenuating at 5 MPa mainly because of the presence of grain contact microcracks giving rise to squirt flow; at 40 MPa, when most of the microcracks are closed, the clean sandstones are poorly attenuating, but the organic-rich sandstones remain highly attenuating. It is postulated that the compliant organic matter is responsible for causing squirt flow at high and at low pressures. The results also show that the maximum attenuation occurs when the particle motion of the propagating wave is perpendicular to the planes of the organic matter laminations. These results are consistent with the squirt flow theory of Akbar et al (1993) for compressional waves.

  14. Hepcidin induction by transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but does require hemojuvelin

    PubMed Central

    Andrews, Nancy C.; Fleming, Mark D.

    2010-01-01

    Mutations in HFE cause the most common form of hereditary hemochromatosis (HH). We previously showed that liver-specific, transgenic overexpression of murine Hfe stimulates production of the iron regulatory hormone hepcidin. Here, we developed several additional transgenic mouse strains to further interrogate the structural basis of HFE function in the pathophysiology of HH. We hypothesized that the small, cytoplasmic domain of HFE might be necessary for HFE-mediated induction of hepcidin. We demonstrate that, like the full-length protein, overexpression of Hfe proteins lacking the cytoplasmic domain leads to hepcidin induction, iron deficiency and a hypochromic, microcytic anemia. However, high-level expression of a liver-specific Hfe transgene carrying the mouse equivalent of the common HFE C282Y human disease-causing mutation (murine C294Y) did not cause iron deficiency. Furthermore, hepcidin induction by transgenes encoding both WT Hfe and Hfe lacking its cytoplasmic domain is greatly attenuated in the absence of hemojuvelin (Hjv). Our observations indicate that the extracellular and transmembrane domains of Hfe are sufficient, and Hjv is essential, for Hfe-mediated induction of hepcidin expression. PMID:20837779

  15. Modulation of the inflammatory response by increasing fetal wound size or interleukin-10 overexpression determines wound phenotype and scar formation.

    PubMed

    Morris, Michael W; Allukian, Myron; Herdrich, Benjamin J; Caskey, Robert C; Zgheib, Carlos; Xu, Junwang; Dorsett-Martin, Wanda; Mitchell, Marc E; Liechty, Kenneth W

    2014-01-01

    Wound size impacts the threshold between scarless regeneration and reparative healing in the fetus with increased inflammation showed in fetal scar formation. We hypothesized that increased fetal wound size increases pro-inflammatory and fibrotic genes with resultant inflammation and fibroplasia and that transition to scar formation could be reversed by overexpression of interleukin-10 (IL-10). To test this hypothesis, 2-mm and 8-mm dermal wounds were created in mid-gestation fetal sheep. A subset of 8-mm wounds were injected with a lentiviral vector containing the IL-10 transgene (n = 4) or vehicle (n = 4). Wounds were harvested at 3 or 30 days for histology, immunohistochemistry, analysis of gene expression by microarray, and validation with real-time polymerase chain reaction. In contrast to the scarless 2-mm wounds, 8-mm wounds showed scar formation with a differential gene expression profile, increased inflammatory cytokines, decreased CD45+ cells, and subsequent inflammation. Lentiviral-mediated overexpression of the IL-10 gene resulted in conversion to a regenerative phenotype with decreased inflammatory cytokines and regeneration of dermal architecture. In conclusion, increased fetal wounds size leads to a unique gene expression profile that promotes inflammation and leads to scar formation and furthermore, these results show the significance of attenuated inflammation and IL-10 in the transition from fibroplasia to fetal regenerative healing. PMID:24844340

  16. Arylsulfatase B Mediates the Sulfonation-Transport Interplay in Human Embryonic Kidney 293 Cells Overexpressing Sulfotransferase 1A3.

    PubMed

    Zhao, Mengjing; Wang, Shuai; Li, Feng; Dong, Dong; Wu, Baojian

    2016-09-01

    Elucidating the intricate relationships between metabolic and transport pathways contributes to improved predictions of in vivo drug disposition and drug-drug interactions. Here we reported that inhibited excretion of conjugative metabolites [i.e., hesperetin 3'-O-sulfate (H3'S) and hesperetin 7-O-sulfate (H7S)] by MK-571 led to reduced metabolism of hesperetin (a maximal 78% reduction) in human embryonic kidney 293 cells overexpressing sulfotransferase 1A3 (named SULT293 cells). The strong dependence of cellular sulfonation on the efflux transport of generated sulfated metabolites revealed an interplay of sulfonation metabolism with efflux transport (or sulfonation-transport interplay). Polymerase chain reaction (PCR) and Western blot analyses demonstrated that SULT293 cells expressed multiple sulfatases such as arylsulfatase A (ARSA), ARSB, and ARSC. Of these three desulfonation enzymes, only ARSB showed significant activities toward hesperetin sulfates. The intrinsic clearance values for the hydrolysis of H3'S and H7S were estimated at 0.6 and 0.5 μl/h/mg, respectively. Furthermore, knockdown of ARSB attenuated the regulatory effect of efflux transporter on cellular sulfonation, whereas overexpression of ABSB enhanced the transporter effect. Taken together, the results indicated that ARSB mediated the sulfonation-transport interplay in SULT293 cells. PMID:27325375

  17. Overexpression of KiSS-1 reduces colorectal cancer cell invasion by downregulating MMP-9 via blocking PI3K/Akt/NF-κB signal pathway.

    PubMed

    Chen, Shaoqin; Chen, Wei; Zhang, Xiang; Lin, Suyong; Chen, Zhihua

    2016-04-01

    Metastasis of colorectal cancer (CRC) depends critically on MMP-9. KiSS-1 is a human malignant melanoma metastasis-suppressor gene. Thus, the interaction between MMP-9 and KiSS-1 has drawn considerable attention in recent years. In the present study, it was hypothesized that KiSS-1 gene could repress the metastatic potential of colorectal cancer cells by inhibiting the expression of MMP-9. Stable transfection of KiSS-1 specific siRNA and KiSS-1 expression vector in human CRC cell line HCT-116 was achieved by lentivirus infection. Moreover, the cell proliferation, invasiveness, and apoptosis were evaluated by CCK-8 method, transwell experiment, and fluorescence activated cell sorter, respectively. We also investigated the expression of MMP-9, PI3K, Akt, pAKt, and NF-кB subunit p65 using western blotting. KiSS-1 overexpression significantly decreased the cell proliferation and invasiveness of HCT-119 cells, while apoptosis was enhanced. The result of western blotting showed that synthesis of MMP-9, PI3K, p65, and phosphorylation of Akt were significantly blocked by overexpression of KiSS-1. Concatenated treatment of KiSS-1 overexpression vector with PI3K and Akt agonists attenuated the effect of KiSS-1 on the biological activity of CRC cells and also released the expression of MMP-9, PI3K, p65, and phosphorylation of Akt from the influence of overexpression of KiSS-1. Overexpression of KiSS-1 suppressed the invasiveness of CRC cells, and the gene exerted its function by reducing the expression of MMP-9 via blocking of tge PI3K/Akt/NF-κB pathway. PMID:26847533

  18. Overexpression of protein kinase C ɛ improves retention and survival of transplanted mesenchymal stem cells in rat acute myocardial infarction

    PubMed Central

    He, H; Zhao, Z-H; Han, F-S; Liu, X-H; Wang, R; Zeng, Y-J

    2016-01-01

    We assessed the effects of protein kinase C ɛ (PKCɛ) for improving stem cell therapy for acute myocardial infarction (AMI). Primary mesenchymal stem cells (MSCs) were harvested from rat bone marrow. PKCɛ-overexpressed MSCs and control MSCs were transplanted into infarct border zones in a rat AMI model. MSCs and PKCɛ distribution and expression of principal proteins involved in PKCɛ signaling through the stromal cell-derived factor 1 (SDF-1)/CXC chemokine receptor type 4 (CXCR4) axis and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway were analyzed by immunofluorescence and western blot 1 day after transplantation. Echocardiographic measurements and histologic studies were performed at 4 weeks after transplantation, and MSC survival, expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), transforming growth factor β (TGFβ), cardiac troponin I (cTnI), von Willebrand factor (vWF), smooth muscle actin (SMA) and factor VIII and apoptosis in infarct border zones were assessed. Rat heart muscles retained more MSCs and SDF-1, CXCR4, PI3K and phosphorylated AKT increased with PKCɛ overexpression 1 day after transplantation. MSC survival and VEGF, bFGF, TGFβ, cTnI, vWF, SMA and factor VIII expression increased in animals with PKCɛ-overexpressed MSCs at 4 weeks after transplantation and cardiac dysfunction and remodeling improved. Infarct size and apoptosis decreased as well. Inhibitory actions of CXCR4 or PI3K partly attenuated the effects of PKCɛ. Activation of PKCɛ may improve retention, survival and differentiation of transplanted MSCs in myocardia. Augmentation of PKCɛ expression may enhance the therapeutic effects of stem cell therapy for AMI. PMID:26775707

  19. A20 Attenuates FFAs-induced Lipid Accumulation in Nonalcoholic Steatohepatitis

    PubMed Central

    Ai, Luoyan; Xu, Qingqing; Wu, Changwei; Wang, Xiaohan; Chen, Zhiwei; Su, Dazhi; Jiang, Xiaoke; Xu, Antao; Lin, Qing; Fan, Zhuping

    2015-01-01

    A20 is a ubiquitin-editing enzyme that attenuates the activity of proximal signaling complexes at pro-inflammatory receptors. It has been well documented that A20 protein plays an important role in response to liver injury and hepatocytes apoptosis in pro-inflammatory pathways. However, there was little evidence showing that A20 protein was involving in fatty-acid homeostasis except the up-regulation of two fatty acid metabolism regulatory genes at mRNA level (PPARa and CPT1a) by adenovirus-mediated A20 protein overexpression. In this study we found that: 1) the expression level of A20 protein was significantly higher in the steatotic liver from MCD-fed mice than the controls; 2) Overexpression of A20 protein suppressed FFAs-stimulated triglyceride deposition in HepG2 cells while under expression of A20 protein increased FFAs-stimulated triglyceride deposition; 3) Overexpression of A20 protein in HepG2 cells upregulated genes that promote β-oxidation and decreased the mRNA levels of key lipogenic genes such as fatty acid synthase (FAS), indicating A20 function as anti-steatotic factor by the activation of mitochondrial β-oxidation and attenuation of de novo lipogenesis; 4) Nonalcoholic steatohepatitis (NASH) patients showed significantly higher A20 expression level in liver compared with control individuals. Our results demonstrated that A20 protein plays an important role in fatty-acid homeostasis in human as well as animals. In addition, our data suggested that the pathological function of A20 protein in hepatocyte from lipotoxicity to NASH is by the alleviation of triglyceride accumulation in hepatocytes. Elevated expression of A20 protein could be a potential therapeutic strategy for preventing the progression of nonalcoholic steatohepatitis. PMID:26681923

  20. O-GlcNAc signaling attenuates ER stress-induced cardiomyocyte death.

    PubMed

    Ngoh, Gladys A; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P

    2009-11-01

    We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc signaling could attenuate ER stress-induced cell death per se. Before induction of ER stress (with tunicamycin or brefeldin A), we adenovirally overexpressed O-GlcNAc transferase (AdOGT) or pharmacologically inhibited O-GlcNAcase [via O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate] to augment O-GlcNAc levels or adenovirally overexpressed O-GlcNAcase to reduce O-GlcNAc levels. AdOGT significantly (P < 0.05) attenuated the activation of the maladaptive arm of the unfolded protein response [according to C/EBP homologous protein (CHOP) activation] and cardiomyocyte death (reflected by percent propidium iodide positivity). Moreover, pharmacological inhibition of O-GlcNAcase significantly (P < 0.05) mitigated ER stress-induced CHOP activation and cardiac myocyte death. Interestingly, overexpression of GCA did not alter ER stress markers but exacerbated brefeldin A-induced cardiomyocyte death. We conclude that enhanced O-GlcNAc signaling represents a partially proadaptive response to reduce ER stress-induced cell death. These results provide new insights into a possible interaction between O-GlcNAc signaling and ER stress and may partially explain a mechanism of O-GlcNAc-mediated cardioprotection. PMID:19734355

  1. Overexpression of kinesins mediates docetaxel resistance in breast cancer cells.

    PubMed

    De, Sarmishtha; Cipriano, Rocky; Jackson, Mark W; Stark, George R

    2009-10-15

    Resistance to chemotherapy remains a major barrier to the successful treatment of cancer. To understand mechanisms underlying docetaxel resistance in breast cancer, we used an insertional mutagenesis strategy to identify proteins whose overexpression confers resistance. A strong promoter was inserted approximately randomly into the genomes of tumor-derived breast cancer cells, using a novel lentiviral vector. We isolated a docetaxel-resistant clone in which the level of the kinesin KIFC3 was elevated. When KIFC3 or the additional kinesins KIFC1, KIF1A, or KIF5A were overexpressed in the breast cancer cell lines MDA-MB231 and MDA-MB 468, the cells became more resistant to docetaxel. The binding of kinesins to microtubules opposes the stabilizing effect of docetaxel that prevents cytokinesis and leads to apoptosis. Our finding that kinesins can mediate docetaxel resistance might lead to novel therapeutic approaches in which kinesin inhibitors are paired with taxanes. PMID:19789344

  2. Overexpression of esterase D in kidney from trisomy 13 fetuses

    SciTech Connect

    Loughna, S.; Moore, G. ); Gau, G.; Blunt, S. ); Nicolaides, K. )

    1993-10-01

    Human trisomy 13 (Patau syndrome) occurs in approximately 1 in 5,000 live births. It is compatible with life, but prolonged survival is rare. Anomalies often involve the urogenital, cardiac, craniofacial, and central nervous systems. It is possible that these abnormalities may be due to the overexpression of developmentally important genes on chromosome 13. The expression of esterase D (localized to chromosome 13q14.11) has been investigated in both muscle and kidney from trisomy 13 fetuses and has been compared with normal age- and sex-matched fetal tissues, by using northern analysis. More than a twofold increase in expression of esterase D was found in the kidney of two trisomy 13 fetuses, with normal levels in a third. Overexpression was not seen in the muscle tissues from these fetuses. 34 refs., 3 figs., 2 tabs.

  3. Calpain Inhibition Attenuates Angiotensin II-induced Abdominal Aortic Aneurysms and Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Subramanian, Venkateswaran; Uchida, Haruhito Adam; Ijaz, Talha; Moorleghen, Jessica J.; Howatt, Deborah A.; Balakrishnan, Anju

    2011-01-01

    Chronic infusion of angiotensin II (AngII) augments atherosclerosis and abdominal aortic aneurysm (AAAs) formation in hypercholesterolemic mice. AngII-induced AAAs are associated with medial macrophage accumulation and matrix metalloproteinase (MMP) activation. Inhibition of calpain, a calcium-activated neutral cysteine protease, by overexpression of its endogenous inhibitor, calpastatin, attenuates AngII-induced leukocyte infiltration, perivascular inflammation, and MMP activation in mice. The purpose of this study was to define whether pharmacological inhibition of calpain influences AngII-induced AAAs in hypercholesterolemic mice. Male LDL receptor −/− mice were fed a fat-enriched diet and administered with either vehicle or a calpain-specific inhibitor, BDA-410 (30 mg/kg/day) for 5 weeks. After 1 week of feeding, mice were infused with AngII (1,000 ng/kg/min) for 4 weeks. AngII-infusion profoundly increased aortic calpain protein and activity. BDA-410 administration had no effect on plasma cholesterol concentrations or AngII-increased systolic blood pressure. Calpain inhibition significantly attenuated AngII-induced AAA formation and atherosclerosis development. BDA-410 administration attenuated activation of MMP12, pro-inflammatory cytokines (IL-6, MCP-1) and macrophage infiltration into the aorta. BDA-410 administration significantly attenuated thioglycollate-elicited macrophage accumulation in the peritoneal cavity. We conclude that calpain inhibition using BDA-410 attenuated AngII-induced AAA formation and atherosclerosis development in LDL receptor −/− mice. PMID:21964156

  4. Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence.

    PubMed

    Takasaka, Naoki; Araya, Jun; Hara, Hiromichi; Ito, Saburo; Kobayashi, Kenji; Kurita, Yusuke; Wakui, Hiroshi; Yoshii, Yutaka; Yumino, Yoko; Fujii, Satoko; Minagawa, Shunsuke; Tsurushige, Chikako; Kojima, Jun; Numata, Takanori; Shimizu, Kenichiro; Kawaishi, Makoto; Kaneko, Yumi; Kamiya, Noriki; Hirano, Jun; Odaka, Makoto; Morikawa, Toshiaki; Nishimura, Stephen L; Nakayama, Katsutoshi; Kuwano, Kazuyoshi

    2014-02-01

    Cigarette smoke (CS)-induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated β-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling. PMID:24367027

  5. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation.

    PubMed

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype. PMID:26053873

  6. EphA2 overexpression promotes ovarian cancer growth

    PubMed Central

    Lu, Chunhua; Shahzad, Mian M.K.; Wang, Hua; Landen, Charles N.; Kim, Seung W.; Allen, Julie; Nick, Alpa M.; Jennings, Nicholas; Kinch, Michael S.; Bar-Eli, Menashe; Sood, Anil K.

    2009-01-01

    Background Silencing EphA2 has been shown to result in anti-tumor efficacy. However, it is not known whether increasing EphA2 expression specifically results in increased tumor growth and progression. We examined the effects of stable EphA2 transfection into poorly invasive ovarian cancer cells with regard to in vitro invasive and in vivo metastatic potential. Results In low cell density, EphA2-overexpressing A2780 cells (A2780-EphA2) displayed less cell-cell contact, increased cell-extracellular matrix (ECM) attachment and anchorage-independent cell growth compared to empty vector controls. There was no significant effect on anchorage-dependent cell proliferation, migration or invasion. Increased expression of EphA2 promoted tumor growth and enhanced the metastatic potential in A2780-EphA2 human ovarian cancer xenografts. The overexpression of EphA2 resulted in enhanced microvessel density (MVD), but had no effect on tumor cell proliferation. Methods EphA2 gene was introduced into A2780 cells by retroviral infection. The effects of increased EphA2 expression were examined on cellular morphology, and anchorage-dependent and independent cell growth. Furthermore, the effect of EphA2 overexpression on metastatic ability was determined using an orthotopic nude mouse model of ovarian carcinoma. Conclusions EphA2 promotes tumor growth by enhancing cell-ECM adhesion, increasing anchorage-independent growth and promoting angiogenesis. PMID:18443431

  7. Role of overexpressed CFA/I fimbriae in bacterial swimming

    NASA Astrophysics Data System (ADS)

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, SangMu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility.

  8. Overexpression of calreticulin sensitizes SERCA2a to oxidative stress.

    PubMed

    Ihara, Yoshito; Kageyama, Kan; Kondo, Takahito

    2005-04-22

    Calreticulin (CRT), a Ca(2+)-binding molecular chaperone in the endoplasmic reticulum, plays a vital role in cardiac physiology and pathology. Oxidative stress is a main cause of myocardiac disorder in the ischemic heart, but the function of CRT under oxidative stress is not fully understood. In this study, the effect of overexpression of CRT on sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA) 2a under oxidative stress was examined using myocardiac H9c2 cells transfected with the CRT gene. The in vitro activity of SERCA2a and uptake of (45)Ca(2+) into isolated microsomes were suppressed by H(2)O(2) in CRT-overexpressing cells compared with controls. Moreover, SERCA2a protein was degraded via a proteasome-dependent pathway following the formation of a complex with CRT under the stress with H(2)O(2). Thus, we conclude that overexpression of CRT enhances the inactivation and degradation of SERCA2a in the cells under oxidative stress, suggesting some pathophysiological functions of CRT in Ca(2+) homeostasis of myocardiac disease. PMID:15766574

  9. Role of overexpressed CFA/I fimbriae in bacterial swimming.

    PubMed

    Cao, Ling; Suo, Zhiyong; Lim, Timothy; Jun, Sangmu; Deliorman, Muhammedin; Riccardi, Carol; Kellerman, Laura; Avci, Recep; Yang, Xinghong

    2012-06-01

    Enterotoxigenic Escherichia coli CFA/I is a protective antigen and has been overexpressed in bacterial vectors, such as Salmonella Typhimurium H683, to generate vaccines. Effects that overexpressed CFA/I may engender on the bacterial host remain largely unexplored. To investigate, we constructed a high CFA/I expression strain, H683-pC2, and compared it to a low CFA/I expression strain, H683-pC, and to a non-CFA/I expression strain, H683-pY. The results showed that H683-pC2 was less able to migrate into semisolid agar (0.35%) than either H683-pC or H683-pY. Bacteria that migrated showed motility halo sizes of H683-pC2 < H683-pC < H683-pY. In the liquid culture media, H683-pC2 cells precipitated to the bottom of the tube, while those of H683-pY did not. In situ imaging revealed that H683-pC2 bacilli tended to auto-agglutinate within the semisolid agar, while H683-pY bacilli did not. When the cfaBE fimbrial fiber encoding genes were deleted from pC2, the new plasmid, pC2(-), significantly recovered bacterial swimming capability. Our study highlights the negative impact of overexpressed CFA/I fimbriae on bacterial swimming motility. PMID:22562964

  10. IDS transfer from overexpressing cells to IDS-deficient cells.

    PubMed

    Millat, G; Froissart, R; Maire, I; Bozon, D

    1997-02-01

    Iduronate sulfatase (IDS) is responsible for mucopolysaccharidosis type II, a rare recessive X-linked lysosomal storage disease. The aim of this work was to test the ability of overexpressing cells to transfer IDS to deficient cells. In the first part of our work, IDS processing steps were compared in fibroblasts, COS cells, and lymphoblastoid cell lines and shown to be identical: the two precursor forms (76 and 90 kDa) were processed by a series of intermediate forms to the 55- and 45-kDa mature polypeptides. Then IDS transfer to IDS-deficient cells was tested either by incubation with cell-free medium of overexpressing cells or by coculture. Endocytosis and coculture experiments between transfected L beta and deleted fibroblasts showed that IDS transfer occurred preferentially by cell-to-cell contact as IDS precursors are poorly secreted by transfected L beta. The 76- and 62-kDa IDS polypeptides transferred to deleted fibroblasts were correctly processed to the mature 55- and 45-kDa forms. L beta were not able to internalize the 90-kDa phosphorylated precursor forms excreted in large amounts in the medium of overexpressing fibroblasts. Enzyme transfer occurred only by cell-to-cell contact, but the precursor forms transferred in L beta after cell-to-cell contact were not processed. This absence of maturation was probably due to a mistargeting of IDS precursors in these cells. PMID:9024795

  11. Overexpression of the riboflavin biosynthetic pathway in Pichia pastoris

    PubMed Central

    Marx, Hans; Mattanovich, Diethard; Sauer, Michael

    2008-01-01

    Background High cell density cultures of Pichia pastoris grown on methanol tend to develop yellow colored supernatants, attributed to the release of free flavins. The potential of P. pastoris for flavin overproduction is therefore given, but not pronounced when the yeast is grown on glucose. The aim of this study is to characterize the relative regulatory impact of each riboflavin synthesis gene. Deeper insight into pathway control and the potential of deregulation is established by overexpression of the single genes as well as a combined deregulation of up to all six riboflavin synthesis genes. Results Overexpression of the first gene of the riboflavin biosynthetic pathway (RIB1) is already sufficient to obtain yellow colonies and the accumulation of riboflavin in the supernatant of shake flask cultures growing on glucose. Sequential deregulation of all the genes, by exchange of their native promoter with the strong and constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP) increases the riboflavin accumulation significantly. Conclusion The regulation of the pathway is distributed over more than one gene. High cell density cultivations of a P. pastoris strain overexpressing all six RIB genes allow the accumulation of 175 mg/L riboflavin in the supernatant. The basis for rational engineering of riboflavin production in P. pastoris has thus been established. PMID:18664246

  12. Skeletal overexpression of gremlin impairs bone formation and causes osteopenia.

    PubMed

    Gazzerro, Elisabetta; Pereira, Renata C; Jorgetti, Vanda; Olson, Sarah; Economides, Aris N; Canalis, Ernesto

    2005-02-01

    Skeletal cells synthesize bone morphogenetic proteins (BMPs) and BMP antagonists. Gremlin, a BMP antagonist, is expressed in osteoblasts and opposes BMP effects on osteoblastic differentiation and function in vitro. However, its effects in vivo are not known. To investigate the actions of gremlin on bone remodeling in vivo, we generated transgenic mice overexpressing gremlin under the control of the osteocalcin promoter. Gremlin transgenics exhibited bone fractures and reduced bone mineral density by 20-30%, compared with controls. Static and dynamic histomorphometry of femurs revealed that gremlin overexpression caused reduced trabecular bone volume and the appearance of woven bone. Polarized light microscopy revealed disorganized collagen bundles at the endosteal cortical surface. Gremlin transgenic mice displayed a 70% decrease in the number of osteoblasts/trabecular area and reduced mineral apposition and bone formation rates. In vivo bromodeoxyuridine labeling and marrow stromal cell cultures demonstrated an inhibitory effect of gremlin on osteoblastic cell replication, but no change on apoptosis was detected. Marrow stromal cells from gremlin transgenics displayed a reduced response to BMP on phosphorylated mothers against decapentaplegic 1/5/8 phosphorylation and reduced free cytosolic beta-catenin levels. In conclusion, transgenic mice overexpressing gremlin in the bone microenvironment have decreased osteoblast number and function leading to osteopenia and spontaneous fractures. PMID:15539560

  13. Overexpression of Lamin B Receptor Results in Impaired Skin Differentiation

    PubMed Central

    Sola Carvajal, Agustín; McKenna, Tomás; Wallén Arzt, Emelie; Eriksson, Maria

    2015-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental progeroid disorder commonly caused by a point mutation in the LMNA gene that results in the increased activation of an intra-exonic splice site and the production of a truncated lamin A protein, named progerin. In our previous work, induced murine epidermal expression of this specific HGPS LMNA mutation showed impaired keratinocyte differentiation and upregulated lamin B receptor (LBR) expression in suprabasal keratinocytes. Here, we have developed a novel transgenic animal model with induced overexpression of LBR in the interfollicular epidermis. LBR overexpression resulted in epidermal hypoplasia, along with the downregulation and mislocalization of keratin 10, suggesting impaired keratinocyte differentiation. Increased LBR expression in basal and suprabasal cells did not coincide with increased proliferation. Similar to our previous report of HGPS mice, analyses of γH2AX, a marker of DNA double-strand breaks, revealed an increased number of keratinocytes with multiple foci in LBR-overexpressing mice compared with wild-type mice. In addition, suprabasal LBR-positive cells showed densely condensed and peripherally localized chromatin. Our results show a moderate skin differentiation phenotype, which indicates that upregulation of LBR is not the sole contributor to the HGPS phenotype. PMID:26053873

  14. Overexpression of follistatin in trout stimulates increased muscling.

    PubMed

    Medeiros, Erika F; Phelps, Michael P; Fuentes, Fernando D; Bradley, Terence M

    2009-07-01

    Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth. P(1) transgenics overexpressing follistatin in muscle tissue exhibited increased epaxial and hypaxial muscling similar to that observed in double-muscled cattle and myostatin null mice. The hypaxial muscling generated a phenotype reminiscent of well-developed rectus abdominus and intercostal muscles in humans and was dubbed "six pack." Body conformation of the transgenic animals was markedly altered, as measured by condition factor, and total muscle surface area increased. The increased muscling was due almost exclusively to hyperplasia as evidenced by a higher number of fibers per unit area and increases in the percentage of smaller fibers and the number of total fibers. In several individuals, asymmetrical muscling was observed, but no changes in mobility or behavior of follistatin fish were observed. The findings indicate that overexpression of follistatin in trout, a species with indeterminate growth rate, enhances muscle growth. It remains to be determined whether the double muscling in trout is due to inhibition of myostatin, other growth factors, or both. PMID:19474387

  15. Overexpression of Mafb in Podocytes Protects against Diabetic Nephropathy

    PubMed Central

    Yoh, Keigyou; Ojima, Masami; Okamura, Midori; Nakamura, Megumi; Hamada, Michito; Shimohata, Homare; Moriguchi, Takashi; Yamagata, Kunihiro; Takahashi, Satoru

    2014-01-01

    We previously showed that the transcription factor Mafb is essential for podocyte differentiation and foot process formation. Podocytes are susceptible to injury in diabetes, and this injury leads to progression of diabetic nephropathy. In this study, we generated transgenic mice that overexpress Mafb in podocytes using the nephrin promoter/enhancer. To examine a potential pathogenetic role for Mafb in diabetic nephropathy, Mafb transgenic mice were treated with either streptozotocin or saline solution. Diabetic nephropathy was assessed by renal histology and biochemical analyses of urine and serum. Podocyte-specific overexpression of Mafb had no effect on body weight or blood glucose levels in either diabetic or control mice. Notably, albuminuria and changes in BUN levels and renal histology observed in diabetic wild-type animals were ameliorated in diabetic Mafb transgenic mice. Moreover, hyperglycemia-induced downregulation of Nephrin was mitigated in diabetic Mafb transgenic mice, and reporter assay results suggested that Mafb regulates Nephrin directly. Mafb transgenic glomeruli also overexpressed glutathione peroxidase, an antioxidative stress enzyme, and levels of the oxidative stress marker 8-hydroxydeoxyguanosine decreased in the urine of diabetic Mafb transgenic mice. Finally, Notch2 expression increased in diabetic glomeruli, and this effect was enhanced in diabetic Mafb transgenic glomeruli. These data indicate Mafb has a protective role in diabetic nephropathy through regulation of slit diaphragm proteins, antioxidative enzymes, and Notch pathways in podocytes and suggest that Mafb could be a therapeutic target. PMID:24722438

  16. CYR61 (CCN1) overexpression induces lung injury in mice.

    PubMed

    Grazioli, Serge; Gil, Sucheol; An, Dowon; Kajikawa, Osamu; Farnand, Alex W; Hanson, Josiah F; Birkland, Timothy; Chen, Peter; Duffield, Jeremy; Schnapp, Lynn M; Altemeier, William A; Matute-Bello, Gustavo

    2015-04-15

    Cysteine-rich protein-61 (CYR61), also known as connective tissue growth factor, CYR61, and nephroblastoma overexpressed gene 1 (CCN1), is a heparin-binding protein member of the CCN family of matricellular proteins. Gene expression profiles showed that Cyr61 is upregulated in human acute lung injury (ALI), but its functional role is unclear. We hypothesized that CYR61 contributes to ALI in mice. First, we demonstrated that CYR61 expression increases after bleomycin-induced lung injury. We then used adenovirus-mediated gene transfer to determine whether CYR61 overexpression in the lungs was sufficient to cause ALI. Mice instilled with CYR61 adenovirus showed greater weight loss, increased bronchoalveolar lavage total neutrophil counts, increased protein concentrations, and increased mortality compared with mice instilled with empty-vector adenovirus. Immunohistochemical studies in lungs from humans with idiopathic pulmonary fibrosis revealed CYR61 expression on the luminal membrane of alveolar epithelial cells in areas of injury. We conclude that CYR61 is upregulated in ALI and that CYR61 overexpression exacerbates ALI in mice. PMID:25713320

  17. CYR61 (CCN1) overexpression induces lung injury in mice

    PubMed Central

    Grazioli, Serge; Gil, Sucheol; An, Dowon; Kajikawa, Osamu; Farnand, Alex W.; Hanson, Josiah F.; Birkland, Timothy; Chen, Peter; Duffield, Jeremy; Schnapp, Lynn M.; Altemeier, William A.

    2015-01-01

    Cysteine-rich protein-61 (CYR61), also known as connective tissue growth factor, CYR61, and nephroblastoma overexpressed gene 1 (CCN1), is a heparin-binding protein member of the CCN family of matricellular proteins. Gene expression profiles showed that Cyr61 is upregulated in human acute lung injury (ALI), but its functional role is unclear. We hypothesized that CYR61 contributes to ALI in mice. First, we demonstrated that CYR61 expression increases after bleomycin-induced lung injury. We then used adenovirus-mediated gene transfer to determine whether CYR61 overexpression in the lungs was sufficient to cause ALI. Mice instilled with CYR61 adenovirus showed greater weight loss, increased bronchoalveolar lavage total neutrophil counts, increased protein concentrations, and increased mortality compared with mice instilled with empty-vector adenovirus. Immunohistochemical studies in lungs from humans with idiopathic pulmonary fibrosis revealed CYR61 expression on the luminal membrane of alveolar epithelial cells in areas of injury. We conclude that CYR61 is upregulated in ALI and that CYR61 overexpression exacerbates ALI in mice. PMID:25713320

  18. Identification of transcripts overexpressed during airway epithelium differentiation.

    PubMed

    Chhin, B; Pham, J T; El Zein, L; Kaiser, K; Merrot, O; Bouvagnet, P

    2008-07-01

    Human airway epithelium, the defence at the forefront of protecting the respiratory tract, evacuates inhaled particles by a permanent beating of epithelial cell cilia. When deficient, this organelle causes primary ciliary dyskinesia, and, despite numerous studies, data regarding ciliated cell gene expression remain incomplete. The aim of the present study was to identify genes specifically expressed in human ciliated respiratory cells via transcriptional analysis. The transcriptome of dedifferentiated epithelial cells was subtracted from that of fully redifferentiated cells using complementary DNA representational difference analysis. In order to validate the results, gene overexpression in ciliated cells was confirmed by real-time PCR, and by comparing the present list of genes overexpressed in ciliated cells to lists obtained in previous studies. A total of 53 known and 12 unknown genes overexpressed in ciliated cells were identified. The majority (66%) of known genes had never previously been reported as being involved in ciliogenesis, and the unknown genes represent hypothetical novel transcript isoforms or new genes not yet reported in databases. Finally, several genes identified here were located in genomic regions involved in primary ciliary dyskinesia by linkage analysis. In conclusion, the present study revealed sequences of new cilia-related genes, new transcript isoforms and novel genes which should be further characterised to aid understanding of their function(s) and their probable disorder-related involvement. PMID:18321927

  19. Hypermutation induced by APOBEC-1 overexpression can be eliminated

    PubMed Central

    Chen, Zhigang; Eggerman, Thomas L.; Bocharov, Alexander V.; Baranova, Irina N.; Vishnyakova, Tatyana G.; Csako, Gyorgy; Patterson, Amy P.

    2010-01-01

    APOBEC-1 overexpression in liver has been shown to effectively reduce apoB-100 levels. However, nonspecific hypermutation and liver tumor formation potentially related to hypermutation in transgenic animals compromise its potential use for gene therapy. In studying apoB mRNA editing regulation, we found that the core editing auxiliary factor ACF dose-dependently increases APOBEC-1 nonspecific hypermutation and specific editing with variable site sensitivity. Overexpression of APOBEC-1 together with ACF in human hepatic HepG2 cells hypermutated apoB mRNAs 20%–65% at sites 6639, 6648, 6655, 6762, 6802, and 6845, in addition to the normal 90% editing at 6666. The hypermutation activity of APOBEC-1 was decreased to background levels by a single point APOBEC-1 mutation of P29F or E181Q, while 50% of wild-type control editing at the normal site was retained. The hypermutations on both apoB and novel APOBEC-1 target 1 (NAT1) mRNA were also decreased to background levels with P29F and E181Q mutants in rat liver primary culture cells. The loss of hypermutation with the mutants was associated with significantly decreased APOBEC-1/ACF interaction. These data suggest that nonspecific hypermutation induced by overexpressing APOBEC-1 can be virtually eliminated by site-specific mutation, while maintaining specific editing activity at the normal site, reopening the potential use of APOBEC-1 gene therapy for hyperlipidemia. PMID:20348446

  20. Plasmodium falciparum: attenuation by irradiation

    SciTech Connect

    Waki, S.; Yonome, I.; Suzuki, M.

    1983-12-01

    The effect of irradiation on the in vitro growth of Plasmodium falciparum was investigated. The cultured malarial parasites at selected stages of development were exposed to gamma rays and the sensitivity of each stage was determined. The stages most sensitive to irradiation were the ring forms and the early trophozoites; late trophozoites were relatively insensitive. The greatest resistance was shown when parasites were irradiated at a time of transition from the late trophozoite and schizont stages to young ring forms. The characteristics of radiosensitive variation in the parasite cycle resembled that of mammalian cells. Growth curves of parasites exposed to doses of irradiation upto 150 gray had the same slope as nonirradiated controls but parasites which were exposed to 200 gray exhibited a growth curve which was less steep than that for parasites in other groups. Less than 10 organisms survived from the 10(6) parasites exposed to this high dose of irradiation; the possibility exists of obtaining radiation-attenuated P. falciparum.

  1. Attenuation Tomography of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Adenis, A.; Debayle, E.; Ricard, Y. R.

    2014-12-01

    We present a 3-D model of surface wave attenuation in the upper mantle. The model is constrained by a large data set of fundamental and higher Rayleigh mode observations. This data set consists of about 1,800,000 attenuation curves measured in the period range 50-300s by Debayle and Ricard (2012). A careful selection allows us to reject data for which measurements are likely biased by the poor knowledge of the scalar seismic moment or by a ray propagation too close to a node of the source radiation pattern. For each epicenter-station path, elastic focusing effects due to seismic heterogeneities are corrected using DR2012 and the data are turned into log(1/Q). The selected data are then combined in a tomographic inversion using the non-linear least square formalism of Tarantola and Valette (1982). The obtained attenuation maps are in agreement with the surface tectonic for periods and modes sensitive to the top 200km of the upper mantle. Low attenuation regions correlate with continental shields while high attenuation regions are located beneath young oceanic regions. The attenuation pattern becomes more homogeneous at depths greater than 200 km and the maps are dominated by a high quality factor signature beneath slabs. We will discuss the similarities and differences between the tomographies of seismic velocities and of attenuations.

  2. MicroRNA overexpression increases cortical neuronal vulnerability to injury

    PubMed Central

    Truettner, Jessie S.; Motti, Dario; Dietrich, W. Dalton

    2013-01-01

    Previously we reported that several microRNAs (miRNA) are upregulated following experimentally induced traumatic brain injury (TBI) using both in vivo and in vitro approaches. Specific miRNAs were found to be sensitive to therapeutic hypothermia and may therefore be important targets for neuroprotective strategies. In this study we developed plasmid constructs that overexpress temperature sensitive miRNAs: miR-34a, miR-451, and miR-874. These constructs were transfected into cultured cortical neurons that were subjected to stretch injury using a cell injury controller device. Levels of expression of genes associated with stress, inflammation, apoptosis and transcriptional regulation were measured by qRT-PCR. mRNA levels of cytokines interleukin 1-β (IL1-β) and tumor necrosis factor alpha (TNF-α) as well as heat shock protein 70 (HSP70) and Caspase 11 were found to be increased up to 24 fold higher than controls in cells overexpressing these miRNAs. After moderate stretch injury, the expression of IL1-β, TNF-α, HSP70 and Caspase 11 all increased over control levels found in uninjured cells suggesting that overexpression of these miRNAs increases cellular vulnerability. miR-34a directly inhibits Bcl2 and XIAP, both anti-apoptotic proteins. The observed increase in Caspase 11 with over-expression of miR-34a indicates that miR-34a may be inducing apoptosis by reducing the levels of antiapoptotic proteins. miR-34a is predicted to inhibit Jun, which was seen to decrease in cells overexpressing this miRNA along with Fos. Over expression of several miRNAs found to be induced by TBI in vivo (miR-34a, miR-451 and miR-874) leads to increased vulnerability in transfected neurons. Therapeutic hypothermia blunts the expression of these miRNAs in vivo and antisense silencing could be a potential therapeutic approach to targeting the consequences of TBI. PMID:23948100

  3. Neuroprotective potential of pleiotrophin overexpression in the striatonigral pathway compared with overexpression in both the striatonigral and nigrostriatal pathways

    PubMed Central

    Gombash, SE; Manfredsson, FP; Mandel, RJ; Collier, TJ; Fischer, DL; Kemp, CJ; Kuhn, NM; Wohlgenant, SL; Fleming, SM; Sortwell, CE

    2015-01-01

    Intrastriatal injection of recombinant adeno-associated viral vector serotype 2/1 (rAAV2/1) to overexpress the neurotrophic factor pleiotrophin (PTN) provides neuroprotection for tyrosine hydroxylase immunoreactive (THir) neurons in the substantia nigra pars compacta (SNpc), increases THir neurite density in the striatum (ST) and reverses functional deficits in forepaw use following 6-hydroxydopamine (6-OHDA) toxic insult. Glial cell line-derived neurotrophic factor (GDNF) gene transfer studies suggest that optimal neuroprotection is dependent on the site of nigrostriatal overexpression. The present study was conducted to determine whether enhanced neuroprotection could be accomplished via simultaneous rAAV2/1 PTN injections into the ST and SN compared with ST injections alone. Rats were unilaterally injected in the ST alone or injected in both the ST and SN with rAAV2/1 expressing either PTN or control vector. Four weeks later, all rats received intrastriatal injections of 6-OHDA. Rats were euthanized 6 or 16 weeks relative to 6-OHDA injection. A novel selective total enumeration method to estimate nigral THir neuron survival was validated to maintain the accuracy of stereological assessment. Long-term nigrostriatal neuroprotection and functional benefits were only observed in rats in which rAAV2/1 PTN was injected into the ST alone. Results suggest that superior preservation of the nigrostriatal system is provided by PTN overexpression delivered to the ST and restricted to the ST and SN pars reticulata and is not improved with overexpression of PTN within SNpc neurons. PMID:24807806

  4. Natural attenuation general data guide. Final report

    SciTech Connect

    Kram, M.L.; Goetz, F.

    1999-02-01

    This guide is a decision-making tool to help remedial project managers (RPMs) determine whether natural attenuation can be used as a remedial option at contaminant release sites. Data requirements and methodology to evaluate the potential for using natural attenuation are presented. For sites where the natural attenuation remedial option is implemented, tables of commonly measured parameters, general data collection rationale, and interpretation guidance are included. This format allows the RPM to recognize data gaps, interpret data, construct a conceptual site model, and develop a sampling and analysis plan for evaluation and monitoring purposes.

  5. Spectral attenuation length of scintillating fibers

    NASA Astrophysics Data System (ADS)

    Drexlin, Guido; Eberhard, Veit; Hunkel, Dirk; Zeitnitz, B.

    1995-02-01

    A double spectrometer allows the precise measurement of the spectral attenuation length of scintillating fibers. Exciting the fibers with a N 2-laser at different points and measuring the wavelength dependent light intensity on both ends of the fiber simultaneously, enables a measurement of the attenuation length which is practically independent of systematic uncertainties. The experimental setup can additionally be used for the measurement of the relative light output. Six types of scintillating fibers from four manufactures (Bicron, Kuraray, Pol.Hi.Tech, and Plastifo) were tested. For different fibers the wavelength dependent attenuation lengths were measured from 0.3 m up to 20 m with an accuracy as good as 1%.

  6. Myocardial injection of apelin-overexpressing bone marrow cells improves cardiac repair via upregulation of Sirt3 after myocardial infarction.

    PubMed

    Li, Lanfang; Zeng, Heng; Hou, Xuwei; He, Xiaochen; Chen, Jian-Xiong

    2013-01-01

    Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ⁺/c-kit⁺/Sca1⁺ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective

  7. Myocardial Injection of Apelin-Overexpressing Bone Marrow Cells Improves Cardiac Repair via Upregulation of Sirt3 after Myocardial Infarction

    PubMed Central

    Hou, Xuwei; He, Xiaochen; Chen, Jian-Xiong

    2013-01-01

    Our previous study shows that treatment with apelin increases bone marrow cells (BMCs) recruitment and promotes cardiac repair after myocardial infarction (MI). The objective of this study was to investigate whether overexpression of apelin in BMCs improved cell therapy and accelerated cardiac repair and functional recovery in post-MI mice. Mouse myocardial infarction was achieved by coronary artery ligation and BMCs overexpressing apelin (apelin-BMCs) or GFP (GFP-BMCs) were injected into ischemic area immediately after surgery. In vitro, exposure of cultured BMCs to apelin led to a gradual increase in SDF-1á and CXCR4 expression. Intramyocardial delivery of apelin-BMCs in post-MI mice resulted in a significant increase number of APJ+/c-kit+/Sca1+ cells in the injected area compared to GFP-BMCs treated post-MI mice. Treatment with apelin-BMCs increased expression of VEGF, Ang-1 and Tie-2 in post-MI mice. Apelin-BMCs treatment also significantly increased angiogenesis and attenuated cardiac fibrosis formation in post-MI mice. Most importantly, treatment with apelin-BMCs significantly improved left ventricular (LV) systolic function in post-MI mice. Mechanistically, Apelin-BMCs treatment led to a significant increase in Sirtuin3 (Sirt3) expression and reduction of reactive oxygen species (ROS) formation. Treatment of cultured BMCs with apelin also increased Notch3 expression and Akt phosphorylation. Apelin treatment further attenuated stress-induced apoptosis whereas knockout of Sirt3 abolished anti-apoptotic effect of apelin in cultured BMCs. Moreover, knockout of Sirt3 significantly attenuated apelin-BMCs-induced VEGF expression and angiogenesis in post-MI mice. Knockout of Sirt3 further blunted apelin-BMCs-mediated improvement of cardiac repair and systolic functional recovery in post-MI mice. These data suggest that apelin improves BMCs therapy on cardiac repair and systolic function in post-MI mice. Upregulation of Sirt3 may contribute to the protective effect

  8. Prolactin receptor attenuation induces zinc pool redistribution through ZnT2 and decreases invasion in MDA-MB-453 breast cancer cells

    SciTech Connect

    Bostanci, Zeynep; Alam, Samina; Soybel, David I.; Kelleher, Shannon L.

    2014-02-15

    Prolactin receptor (PRL-R) activation regulates cell differentiation, proliferation, cell survival and motility of breast cells. Prolactin (PRL) and PRL-R over-expression are strongly implicated in breast cancer, particularly contributing to tumor growth and invasion in the more aggressive estrogen-receptor negative (ER−) disease. PRL-R antagonists have been suggested as potential therapeutic agents; however, mechanisms through which PRL-R antagonists exert their actions are not well-understood. Zinc (Zn) is a regulatory factor for over 10% of the proteome, regulating critical cell processes such as proliferation, cell signaling, transcription, apoptosis and autophagy. PRL-R signaling regulates Zn metabolism in breast cells. Herein we determined effects of PRL-R attenuation on cellular Zn metabolism and cell function in a model of ER-, PRL-R over-expressing breast cancer cells (MDA-MB-453). PRL-R attenuation post-transcriptionally increased ZnT2 abundance and redistributed intracellular Zn pools into lysosomes and mitochondria. ZnT2-mediated lysosomal Zn sequestration was associated with reduced matrix metalloproteinase 2 (MMP-2) activity and decreased invasion. ZnT2-mediated Zn accumulation in mitochondria was associated with increased mitochondrial oxidation. Our results suggest that PRL-R antagonism in PRL-R over-expressing breast cancer cells may reduce invasion through the redistribution of intracellular Zn pools critical for cellular function. - Highlights: • PRL-R attenuation increased ZnT2 expression. • PRL-R attenuation increased lysosomal and mitochondrial Zn accumulation. • PRL-R attenuation decreased MMP-2 and invasion. • PRL-R antagonists may modulate lysosomal and mitochondrial Zn pools.

  9. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium

    PubMed Central

    Akki, Ashwin; Su, Jason; Yano, Toshiyuki; Gupta, Ashish; Wang, Yibin; Leppo, Michelle K.; Chacko, Vadappuram P.; Steenbergen, Charles

    2012-01-01

    Reduced myofibrillar ATP availability during prolonged myocardial ischemia may limit post-ischemic mechanical function. Because creatine kinase (CK) is the prime energy reserve reaction of the heart and because it has been difficult to augment ATP synthesis during and after ischemia, we used mice that overexpress the myofibrillar isoform of creatine kinase (CKM) in cardiac-specific, conditional fashion to test the hypothesis that CKM overexpression increases ATP delivery in ischemic-reperfused hearts and improves functional recovery. Isolated, retrograde-perfused hearts from control and CKM mice were subjected to 25 min of global, no-flow ischemia and 40 min of reperfusion while cardiac function [rate pressure product (RPP)] was monitored. A combination of 31P-nuclear magnetic resonance experiments at 11.7T and biochemical assays was used to measure the myocardial rate of ATP synthesis via CK (CK flux) and intracellular pH (pHi). Baseline CK flux was severalfold higher in CKM hearts (8.1 ± 1.0 vs. 32.9 ± 3.8, mM/s, control vs. CKM; P < 0.001) with no differences in phosphocreatine concentration [PCr] and RPP. End-ischemic pHi was higher in CKM hearts than in control hearts (6.04 ± 0.12 vs. 6.37 ± 0.04, control vs. CKM; P < 0.05) with no differences in [PCr] and [ATP] between the two groups. Post-ischemic PCr (66.2 ± 1.3 vs. 99.1 ± 8.0, %preischemic levels; P < 0.01), CK flux (3.2 ± 0.4 vs. 14.0 ± 1.2 mM/s; P < 0.001) and functional recovery (13.7 ± 3.4 vs. 64.9 ± 13.2%preischemic RPP; P < 0.01) were significantly higher and lactate dehydrogenase release was lower in CKM than in control hearts. Thus augmenting cardiac CKM expression attenuates ischemic acidosis, reduces injury, and improves not only high-energy phosphate content and the rate of CK ATP synthesis in postischemic myocardium but also recovery of contractile function. PMID:22886411

  10. Overexpression of angiotensin II type 1 receptor in breast cancer cells induces epithelial-mesenchymal transition and promotes tumor growth and angiogenesis.

    PubMed

    Oh, Eunhye; Kim, Ji Young; Cho, Youngkwan; An, Hyunsook; Lee, Nahyun; Jo, Hunho; Ban, Changill; Seo, Jae Hong

    2016-06-01

    The angiotensin II type I receptor (AGTR1) has been implicated in diverse aspects of human disease, from the regulation of blood pressure and cardiovascular homeostasis to cancer progression. We sought to investigate the role of AGTR1 in cell proliferation, epithelial-mesenchymal transition (EMT), migration, invasion, angiogenesis and tumor growth in the breast cancer cell line MCF7. Stable overexpression of AGTR1 was associated with accelerated cell proliferation, concomitant with increased expression of survival factors including poly(ADP-ribose) polymerase (PARP) and X-linked inhibitor of apoptosis (XIAP), as well as extracellular signal-regulated kinase (ERK) activation. AGTR1-overexpressing MCF7 cells were more aggressive than their parent line, with significantly increased activity in migration and invasion assays. These observations were associated with changes in EMT markers, including reduced E-cadherin expression and increased p-Smad3, Smad4 and Snail levels. Treatment with the AGTR1 antagonist losartan attenuated these effects. AGTR1 overexpression also accelerated tumor growth and increased Ki-67 expression in a xenograft model. This was associated with increased tumor angiogenesis, as evidenced by a significant increase in microvessels in the intratumoral and peritumoral areas, and enhanced tumor invasion, with the latter response associated with increased EMT marker expression and matrix metallopeptidase 9 (MMP-9) upregulation. In vivo administration of losartan significantly reduced both tumor growth and angiogenesis. Our findings suggest that AGTR1 plays a significant role in tumor aggressiveness, and its inhibition may have therapeutic implications. PMID:26975580

  11. A gain-of-function phenotype conferred by over-expression of functional subunits of the COP9 signalosome in Arabidopsis.

    PubMed

    Kang, D; Wang, X; Cao, K; Sun, C; Deng, X W; Wei, N

    2000-09-01

    The COP9 signalosome is a conserved cellular regulator present in diverse organisms. To understand the structural and functional relationship of the COP9 signalosome with its subunits, we expressed in wild-type and mutant Arabidopsis backgrounds two orthologues of subunit 1, rice FUS6 (rFUS6) and human GPS1, and Arabidopsis subunit 8 (COP9). In Arabidopsis, rFUS6 can functionally replace Arabidopsis endogenous FUS6 to form the COP9 signalosome complex and rescue the null fus6-1 mutant phenotype. Moreover, light-grown rFUS6 over-expression seedlings displayed longer hypocotyls and reduced anthocyanin accumulation in comparison to wild-type seedlings, which is opposite to the fus6/cop11 mutant phenotype. The long-hypocotyl phenotype was also observed in transgenic seedlings over-expressing Arabidopsis COP9. This finding indicates that over-expression of a functional subunit 1 or subunit 8 of the COP9 signalosome confers a gain-of-function phenotype relative to the complex. Human GPS1, when expressed in the fus6-1 null mutant of Arabidopsis, can assemble into a chimeric COP9 signalosome at low efficiency, demonstrating the structural conservation of the complexes between human and Arabidopsis. This low-abundancy chimeric complex is insufficient to fully rescue the mutant but is able to attenuate the mutant severity. PMID:10972886

  12. FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway.

    PubMed

    Song, Qing; Gou, Wen-Li; Zhang, Rong

    2016-03-01

    Endoplasmic reticulum (ER) stress is linked to several neurological disorders, and neuronal injury cascades initiated by excessive ER stress are mediated, in part, via mitochondrial dysfunction. In the present study, we identified FAM3A as an important regulator of ER stress-induced cell death in neuronal HT22 cells. The ER stress inductor tunicamycin (TM) significantly decreased the expression of FAM3A at both mRNA and protein levels, which was shown to be dependent on the induction of reactive oxygen species (ROS). Overexpression of FAM3A attenuated TM-induced apoptosis and activation of ER stress factors, but had no effect on ER calcium metabolism in HT22 cells. We also found decreased mitochondrial ROS generation, inhibited cytochrome c release and preserved mitochondrial membrane potential (MMP) in FAM3A overexpressed cells. In addition, the experiments using isolated mitochondria showed that overexpression of FAM3A attenuated mitochondrial swelling and loss of mitochondrial Ca(2+) buffering capacity after TM exposure. By using specific targeted small interfering RNA (siRNA) to knockdown the expression of the C/EBP homologous protein (CHOP), we found that FAM3A-induced protection and inhibition of ER stress was mediated by inverting TM-induced decrease of Wnt through the CHOP pathway. Our study demonstrates a pivotal role of FAM3A in protecting against TM-induced cytotoxicity via regulating CHOP-Wnt pathway, and suggests the therapeutic values of FAM3A overexpression against ER stress-associated neuronal injury. PMID:26939760

  13. Electrically tunable hot-silicon terahertz attenuator

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-01

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 103. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ˜550 K, with the corresponding free-carrier density adjusted between ˜1011 cm-3 and ˜1017 cm-3. This "hot-silicon"-based terahertz attenuator works most effectively at 450-550 K (corresponding to a DC voltage variation of only ˜7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1-2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  14. UHF Radio Wave Attenuation Factor Database

    NASA Astrophysics Data System (ADS)

    Khomenko, S. I.; Kostina, V. L.; Mytsenko, I. M.; Roenko, A. N.

    2007-07-01

    As is known each sea-going vessel is equipped with navigation, communication and other radio engineering facilities that serve to secure the safety of navigation and are chiefly operated at UHF-wave band. In developing these systems and calculating the energy potential for a necessary coverage range one should be well aware of the radio signal attenuation processes on a propagation path. The key parameter of this path is the (radio) wave attenuation factor V and its distance dependence V(R). A diversity of factors influencing the radio signal attenuation over the oceanic expanses, especially well pronounced and quite stable tropospheric ducts, and the lack of experimental data were the compelling reasons why the researchers of the Institute for Radiophysics and Electronics, NASU, had spent many years on comprehensive radiophysical investigations carried out in different regions of the Atlantic, Indian, Arctic and Pacific Oceans. The experimental data obtained allow creating the database of radio wave attenuation factor V.

  15. Evolution of Natural Attenuation Evaluation Protocols

    EPA Science Inventory

    Traditionally the evaluation of the efficacy of natural attenuation was based on changes in contaminant concentrations and mass reduction. Statistical tools and models such as Bioscreen provided evaluation protocols which now are being approached via other vehicles including m...

  16. Attenuation of human influenza a viruses

    PubMed Central

    Beare, A. S.; Bynoe, M. L.

    1969-01-01

    The attenuation of two human influenza A viruses has been carried out, using the selection of inhibitor-resistant strains and multiple passages at low temperatures. A virus related to A2/Tokyo/3/67 was obtained in an inhibitor-resistant form. When this was compared with the inhibitor-sensitive strain in a volunteer trial it was relatively non-pathogenic. The second virus, A2/Hongkong/1/68, was subjected to much longer treatment, but nevertheless remained slightly sensitive to serum inhibitor. When given to volunteers it was less pathogenic than before but attenuation was incomplete. A2/Hongkong/1/68 was also modified by passage at low temperatures. Many of these passages are apparently necessary for full attenuation. All attenuated viruses were infective and antigenic. PMID:4900146

  17. Attenuation of external Bremsstrahlung in metallic absorbers

    SciTech Connect

    Dhaliwal, A.S.; Powar, M.S.; Singh, M. )

    1990-12-01

    In this paper attenuation of bremsstrahlung from {sup 147}Pm and {sup 170}Tm beta emitters has been studied in aluminum, copper, tin, and lead metallic absorbers. Bremsstrahlung spectra and mass attenuation coefficients for monoenergetic gamma rays are used to calculate theoretical attenuation curves. Magnetic deflection and beta stopping techniques are used to measure the integral bremsstrahlung intensities above 30 keV in different target thicknesses. Comparison of measured and calculated attenuation curves shows a good agreement for various absorbers, thus providing a test of this technique, which may be useful in understanding bremsstrahlung intensity buildup and in the design of optimum shielding for bremsstrahlung sources. It is found that the absorption of bremsstrahlung in metallic absorbers does not obey an exponential law and that absorbers act as energy filters.

  18. Attenuation layer for magnetostatic wave (MSW) absorbers

    NASA Astrophysics Data System (ADS)

    Glass, H. L.; Adkins, L. R.; Stearns, F. S.

    1984-09-01

    A new technique has been developed for the suppression of MSW end reflections which give rise to passband ripple. The basic idea is to provide a thin film of highly attenuating epitaxial material at the ends of a MSW delay line while preserving high quality YIG in the active region of the device. The GGG wafer preparation is a three step process which involves: (1) the growth of the attenuation layer, (2) the removal of this layer from the central region of the wafer and (3) the growth of high quality YIG on the remaining structure. Delay lines using the attenuation layer for end terminations have been evaluated experimentally and compared to devices utilizing other termination methods. The results indicate that the attenuation layer method produces ripple suppression characteristics which are the equal of those obtained with other termination techniques. The advantage of this new method lies in its suitability for large quantity fabrication requirements.

  19. Electron Effective-Attenuation-Length Database

    National Institute of Standards and Technology Data Gateway

    SRD 82 NIST Electron Effective-Attenuation-Length Database (PC database, no charge)   This database provides values of electron effective attenuation lengths (EALs) in solid elements and compounds at selected electron energies between 50 eV and 2,000 eV. The database was designed mainly to provide EALs (to account for effects of elastic-eletron scattering) for applications in surface analysis by Auger-electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS).

  20. Attenuation of noise by motorcycle safety helmets.

    PubMed

    Młyński, Rafał; Kozłowski, Emil; Zera, Jan

    2009-01-01

    For workers such as police motorcyclists or couriers, traffic and engine noise reaching the ears is an important factor contributing to the overall condition of their work. This noise can be reduced with motorcycle helmets. In this study, insertion loss of motorcycle helmets was measured with the microphone-in-real-ear technique and sound attenuation with the real-ear-at-threshold method. Results for 3 Nolan helmets show essentially no protection against external noise in the frequency range <250 Hz. In the frequency range >500 Hz, attenuation increases linearly at a rate of 8-9 dB per octave, to ~30 dB at 8 kHz. Lack of attenuation in the low-frequency range may cause annoying effects. In addition, high attenuation in the high-frequency range may decrease intelligibility of speech signals for a rider in a helmet. Attenuation measured in this study does not take into account noise generated by turbulent wind around the helmet. Thus, the measured values of attenuation represent a motorcycle rider's best conditions of hearing. PMID:19744370

  1. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    SciTech Connect

    Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  2. MicroRNA and HER2-overexpressing Cancer

    PubMed Central

    Wang, Shizhen Emily; Lin, Ren-Jang

    2013-01-01

    The discovery of microRNAs (miRNAs) has opened up new avenues for studying cancer at the molecular level, featuring a post-genomic era of biomedical research. These non-coding regulatory RNA molecules of ~22 nucleotides have emerged as important cancer biomarkers, effectors, and targets. In this review, we focus on the dysregulated biogenesis and function of miRNAs in cancers with an overexpression of the proto-oncogene HER2. Many of the studies reviewed here were carried out in breast cancer, where HER2 overexpression has been extensively studied and HER2-targeted therapy practiced for more than a decade. MiRNA signatures that can be used to classify tumors with different HER2 status have been reported but little consensus can be established among various studies, emphasizing the needs for additional well-controlled profiling approaches and meta-analyses in large and well-balanced patient cohorts. We further discuss three aspects of microRNA dysregulation in or contribution to HER2-associated malignancies or therapies: (a) miRNAs that are up- or down-regulated by HER2 and mediate the downstream signaling of HER2; (b) miRNAs that suppress the expression of HER2 or a factor in HER2 receptor complexes, such as HER3; and (c) miRNAs that affect responses to anti-HER2 therapies. The regulatory mechanisms are elaborated using mainly examples of miR-205, miR-125, and miR-21. Understanding the regulation and function of miRNAs in HER2-overexpressing tumors shall shed new light on the pathogenic mechanisms of microRNAs and the HER2 proto-oncogene in cancer, as well as on individualized or combinatorial anti-HER2 therapies. PMID:25070783

  3. Overexpression of Protochlorophyllide Oxidoreductase C Regulates Oxidative Stress in Arabidopsis

    PubMed Central

    Pattanayak, Gopal K.; Tripathy, Baishnab C.

    2011-01-01

    Light absorbed by colored intermediates of chlorophyll biosynthesis is not utilized in photosynthesis; instead, it is transferred to molecular oxygen, generating singlet oxygen (1O2). As there is no enzymatic detoxification mechanism available in plants to destroy 1O2, its generation should be minimized. We manipulated the concentration of a major chlorophyll biosynthetic intermediate i.e., protochlorophyllide in Arabidopsis by overexpressing the light-inducible protochlorophyllide oxidoreductase C (PORC) that effectively phototransforms endogenous protochlorophyllide to chlorophyllide leading to minimal accumulation of the photosensitizer protochlorophyllide in light-grown plants. In PORC overexpressing (PORCx) plants exposed to high-light, the 1O2 generation and consequent malonedialdehyde production was minimal and the maximum quantum efficiency of photosystem II remained unaffected demonstrating that their photosynthetic apparatus and cellular organization were intact. Further, PORCx plants treated with 5-aminolevulinicacid when exposed to light, photo-converted over-accumulated protochlorophyllide to chlorophyllide, reduced the generation of 1O2 and malonedialdehyde production and reduced plasma membrane damage. So PORCx plants survived and bolted whereas, the 5-aminolevulinicacid-treated wild-type plants perished. Thus, overexpression of PORC could be biotechnologically exploited in crop plants for tolerance to 1O2-induced oxidative stress, paving the use of 5-aminolevulinicacid as a selective commercial light-activated biodegradable herbicide. Reduced protochlorophyllide content in PORCx plants released the protochlorophyllide-mediated feed-back inhibition of 5-aminolevulinicacid biosynthesis that resulted in higher 5-aminolevulinicacid production. Increase of 5-aminolevulinicacid synthesis upregulated the gene and protein expression of several downstream chlorophyll biosynthetic enzymes elucidating a regulatory net work of expression of genes involved in 5

  4. Overexpression and purification of halophilic proteins in Haloferax volcanii.

    PubMed

    Allers, Thorsten

    2010-01-01

    Halophilic enzymes function optimally at high salt concentrations and are active at low water availability. Such conditions are encountered at elevated concentrations of solutes such as salts and sugars, and at high concentrations of organic solvents. However, expression in heterologous hosts such as Escherichia coli can cause problems, since halophilic proteins typically misfold and aggregate in conditions of low ionic strength. We have harnessed the sophisticated genetic tools available for the haloarchaeon Haloferax volcanii, to develop a system for the overexpression and purification of halophilic proteins under native conditions. PMID:21327063

  5. Overexpression of KCNN3 results in sudden cardiac death

    PubMed Central

    Mahida, Saagar; Mills, Robert W.; Tucker, Nathan R.; Simonson, Bridget; Macri, Vincenzo; Lemoine, Marc D.; Das, Saumya; Milan, David J.; Ellinor, Patrick T.

    2014-01-01

    Background A recent genome-wide association study identified a susceptibility locus for atrial fibrillation at the KCNN3 gene. Since the KCNN3 gene encodes for a small conductance calcium-activated potassium channel, we hypothesized that overexpression of the SK3 channel increases susceptibility to cardiac arrhythmias. Methods and results We characterized the cardiac electrophysiological phenotype of a mouse line with overexpression of the SK3 channel. We generated homozygote (SK3T/T) and heterozygote (SK3+/T) mice with overexpression of the channel and compared them with wild-type (WT) controls. We observed a high incidence of sudden death among SK3T/T mice (7 of 19 SK3T/T mice). Ambulatory monitoring demonstrated that sudden death was due to heart block and bradyarrhythmias. SK3T/T mice displayed normal body weight, temperature, and cardiac function on echocardiography; however, histological analysis demonstrated that these mice have abnormal atrioventricular node morphology. Optical mapping demonstrated that SK3T/T mice have slower ventricular conduction compared with WT controls (SK3T/T vs. WT; 0.45 ± 0.04 vs. 0.60 ± 0.09 mm/ms, P = 0.001). Programmed stimulation in 1-month-old SK3T/T mice demonstrated inducible atrial arrhythmias (50% of SK3T/T vs. 0% of WT mice) and also a shorter atrioventricular nodal refractory period (SK3T/T vs. WT; 43 ± 6 vs. 52 ± 9 ms, P = 0.02). Three-month-old SK3T/T mice on the other hand displayed a trend towards a more prolonged atrioventricular nodal refractory period (SK3T/T vs. WT; 61 ± 1 vs. 52 ± 6 ms, P = 0.06). Conclusion Overexpression of the SK3 channel causes an increased risk of sudden death associated with bradyarrhythmias and heart block, possibly due to atrioventricular nodal dysfunction. PMID:24296650

  6. Hepatic steatosis in transgenic mice overexpressing human histone deacetylase 1

    SciTech Connect

    Wang, Ai-Guo; Seo, Sang-Beom; Moon, Hyung-Bae; Shin, Hye-Jun; Kim, Dong Hoon; Kim, Jin-Man; Lee, Tae-Hoon; Kwon, Ho Jeong; Yu, Dae-Yeul . E-mail: dyyu10@kribb.re.kr; Lee, Dong-Seok . E-mail: lee10@kribb.re.kr

    2005-05-06

    It is generally thought that histone deacetylases (HDACs) play important roles in the transcriptional regulation of genes. However, little information is available concerning the specific functions of individual HDACs in disease states. In this study, two transgenic mice lines were established which harbored the human HDAC1 gene. Overexpressed HDAC1 was detected in the nuclei of transgenic liver cells, and HDAC1 enzymatic activity was significantly higher in the transgenic mice than in control littermates. The HDAC1 transgenic mice exhibited a high incidence of hepatic steatosis and nuclear pleomorphism. Molecular studies showed that HDAC1 may contribute to nuclear pleomorphism through the p53/p21 signaling pathway.

  7. Astroglia overexpressing heme oxygenase-1 predispose co-cultured PC12 cells to oxidative injury.

    PubMed

    Song, Linyang; Song, Wei; Schipper, Hyman M

    2007-08-01

    The mechanisms responsible for the progressive degeneration of dopaminergic neurons and pathologic iron deposition in the substantia nigra pars compacta of patients with Parkinson's disease (PD) remain unclear. Heme oxygenase-1 (HO-1), the rate-limiting enzyme in the oxidative degradation of heme to ferrous iron, carbon monoxide, and biliverdin, is upregulated in affected PD astroglia and may contribute to abnormal mitochondrial iron sequestration in these cells. To determine whether glial HO-1 hyper-expression is toxic to neuronal compartments, we co-cultured dopaminergic PC12 cells atop monolayers of human (h) HO-1 transfected, sham-transfected, or non-transfected primary rat astroglia. We observed that PC12 cells grown atop hHO-1 transfected astrocytes, but not the astroglia themselves, were significantly more susceptible to dopamine (1 microM) + H(2)O(2) (1 microM)-induced death (assessed by nuclear ethidium monoazide bromide staining and anti-tyrosine hydroxylase immunofluorescence microscopy) relative to control preparations. In the experimental group, PC12 cell death was attenuated significantly by the administration of the HO inhibitor, SnMP (1.5 microM), the antioxidant, ascorbate (200 microM), or the iron chelators, deferoxamine (400 microM), and phenanthroline (100 microM). Exposure to conditioned media derived from HO-1 transfected astrocytes also augmented PC12 cell killing in response to dopamine (1 microM) + H(2)O(2) (1 microM) relative to control media. In PD brain, overexpression of HO-1 in nigral astroglia and accompanying iron liberation may facilitate the bioactivation of dopamine to neurotoxic free radical intermediates and predispose nearby neuronal constituents to oxidative damage. PMID:17526019

  8. Overexpression of the scaffold WD40 protein WRAP53β enhances the repair of and cell survival from DNA double-strand breaks.

    PubMed

    Rassoolzadeh, H; Böhm, S; Hedström, E; Gad, H; Helleday, T; Henriksson, S; Farnebo, M

    2016-01-01

    Altered expression of the multifunctional protein WRAP53β (WD40 encoding RNA Antisense to p53), which targets repair factors to DNA double-strand breaks and factors involved in telomere elongation to Cajal bodies, is linked to carcinogenesis. While loss of WRAP53β function has been shown to disrupt processes regulated by this protein, the consequences of its overexpression remain unclear. Here we demonstrate that overexpression of WRAP53β disrupts the formation of and impairs the localization of coilin to Cajal bodies. At the same time, the function of this protein in the repair of DNA double-strand breaks is enhanced. Following irradiation, cells overexpressing WRAP53β exhibit more rapid clearance of phospho-histone H2AX (γH2AX), and more efficient homologous recombination and non-homologous end-joining, in association with fewer DNA breaks. Moreover, in these cells the ubiquitylation of damaged chromatin, which is known to facilitate the recruitment of repair factors and subsequent repair, is elevated. Knockdown of the ubiquitin ligase involved, ring-finger protein 8 (RNF8), which is recruited to DNA breaks by WRAP53β, attenuated this effect, suggesting that overexpression of WRAP53β leads to more rapid repair, as well as improved cell survival, by enhancing RNF8-mediated ubiquitylation at DNA breaks. Our present findings indicate that WRAP53β and RNF8 are rate-limiting factors in the repair of DNA double-strand breaks and raise the possibility that upregulation of WRAP53β may contribute to genomic stability in and survival of cancer cells. PMID:27310875

  9. Overexpression of HO-1 Protects against TNF-α-Mediated Airway Inflammation by Down-Regulation of TNFR1-Dependent Oxidative Stress

    PubMed Central

    Lee, I-Ta; Luo, Shue-Fen; Lee, Chiang-Wen; Wang, Shyi-Wu; Lin, Chih-Chung; Chang, Chia-Chi; Chen, Yuh-Lien; Chau, Lee-Young; Yang, Chuen-Mao

    2009-01-01

    Oxidative stresses are believed to play an important role in the induction of both cell adhesion molecules and pro-inflammatory cytokines, a key event in a variety of inflammatory processes. The enzyme heme oxygenase-1 (HO-1) functions as an antioxidant and serves to protect against tissue injury. In this study, we report that HO-1 was induced in cultured human tracheal smooth muscle cells after either treatment with a potent inducer of HO-1 activity, cobalt protoporphyrin IX, or infection with a recombinant adenovirus that carries the human HO-1 gene. Overexpression of HO-1 protected against tumor necrosis factor (TNF)-α-mediated airway inflammation via the down-regulation of oxidative stress, adhesion molecules, and interleukin-6 in both cultured human tracheal smooth muscle cells and the airways of mice. In addition, HO-1 overexpression inhibited TNF-α-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression, adherence of THP-1 cells, generation of interleukin-6, p47phox translocation, and nuclear factor-κB activation. HO-1 overexpression also attenuated TNF-α-induced oxidative stress, which was abrogated in the presence of both the HO-1 inhibitor, zinc protoporphyrin IX, as well as a carbon monoxide scavenger. In addition, HO-1 overexpression reduced the formation of a TNFR1/c-Src/p47phox complex. These results suggest that HO-1 functions as a suppressor of TNF-α signaling, not only by inhibiting the expression of adhesion molecules and generation of interleukin-6, but also by diminishing intracellular reactive oxygen species production and nuclear factor-κB activation in both cultured human tracheal smooth muscle cells and the airways of mice. PMID:19608869

  10. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  11. Azotobacter vinelandii NADPH:ferredoxin reductase cloning, sequencing, and overexpression.

    PubMed

    Isas, J M; Yannone, S M; Burgess, B K

    1995-09-01

    Azotobacter vinelandii ferredoxin I (AvFdI) controls the expression of another protein that was originally designated Protein X. Recently we reported that Protein X is a NADPH-specific flavoprotein that binds specifically to FdI (Isas, J.M., and Burgess, B.K. (1994) J. Biol. Chem. 269, 19404-19409). The gene encoding this protein has now been cloned and sequenced. Protein X is 33% identical and has an overall 53% similarity with the fpr gene product from Escherichia coli that encodes NADPH:ferredoxin reductase. On the basis of this similarity and the similarity of the physical properties of the two proteins, we now designate Protein X as A. vinelandii NADPH:ferredoxin reductase and its gene as the fpr gene. The protein has been overexpressed in its native background in A. vinelandii by using the broad host range multicopy plasmid, pKT230. In addition to being regulated by FdI, the fpr gene product is overexpressed when A. vinelandii is grown under N2-fixing conditions even though the fpr gene is not preceded by a nif specific promoter. By analogy to what is known about fpr expression in E. coli, we propose that FdI may exert its regulatory effect on fpr by interacting with the SoxRS regulon. PMID:7673160

  12. Overexpression of type VI collagen in neoplastic lung tissues

    PubMed Central

    VOILES, LARRY; LEWIS, DAVID E.; HAN, LING; LUPOV, IVAN P.; LIN, TSANG-LONG; ROBERTSON, MICHAEL J.; PETRACHE, IRINA; CHANG, HUA-CHEN

    2014-01-01

    Type VI collagen (COL6), an extracellular matrix protein, is important in maintaining the integrity of lung tissue. An increase in COL6 mRNA and protein deposition was found in the lungs of patients with pulmonary fibrosis, a chronic inflammatory condition with a strong association with lung cancer. In the present study, we demonstrated overexpression of COL6 in the lungs of non-small cell lung cancers. We hypothesized that excessive COL6 in the lung interstitium may exert stimulatory effects on the adjacent cells. In vitro stimulation of monocytes with COL6 resulted in the production of IL-23, which may promote tumor development in an environment of IL-23-mediated lung inflammation, where tissue modeling occurs concurrently with excessive COL6 production. In addition, COL6 was capable of stimulating signaling pathways that activate focal adhesion kinase and extracellular signal-regulated kinase 1/2 in lung epithelial cells, which may also facilitate the development of lung neoplasms. Taken together, our data suggest the potential role of COL6 in promoting lung neoplasia in diseased lungs where COL6 is overexpressed. PMID:25176343

  13. Overexpression of calpastatin inhibits L8 myoblast fusion

    SciTech Connect

    Barnoy, Sivia; E-mail: sivia@post.tau.ac.il; Maki, Masatoshi; Kosower, Nechama S.

    2005-07-08

    The formation of skeletal muscle fibers involves cessation of myoblast division, myoblast alignment, and fusion to multinucleated myofibers. Calpain is one of the factors shown to be involved in myoblast fusion. Using L8 rat myoblasts, we found that calpain levels did not change significantly during myoblast differentiation, whereas calpastatin diminished prior to myoblast fusion and reappeared after fusion. The transient diminution in calpastatin allows the Ca{sup 2+}-promoted activation of calpain and calpain-induced membrane proteolysis, which is required for myoblast fusion. Here we show that calpastatin overexpression in L8 myoblasts does not inhibit cell proliferation and alignment, but prevents myoblast fusion and fusion-associated protein degradation. In addition, calpastatin appears to modulate myogenic gene expression, as indicated by the lack of myogenin (a transcription factor expressed in differentiating myoblasts) in myoblasts overexpressing calpastatin. These results suggest that, in addition to the role in membrane disorganization in the fusing myoblasts, the calpain-calpastatin system may also modulate the levels of factors required for myoblast differentiation.

  14. Overexpression of neurofilament H disrupts normal cell structure and function

    NASA Technical Reports Server (NTRS)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  15. Overexpression of Catalase Diminishes Oxidative Cysteine Modifications of Cardiac Proteins

    PubMed Central

    Yao, Chunxiang; Behring, Jessica B.; Shao, Di; Sverdlov, Aaron L.; Whelan, Stephen A.; Elezaby, Aly; Yin, Xiaoyan; Siwik, Deborah A.; Seta, Francesca; Costello, Catherine E.; Cohen, Richard A.; Matsui, Reiko; Colucci, Wilson S.; McComb, Mark E.; Bachschmid, Markus M.

    2015-01-01

    Reactive protein cysteine thiolates are instrumental in redox regulation. Oxidants, such as hydrogen peroxide (H2O2), react with thiolates to form oxidative post-translational modifications, enabling physiological redox signaling. Cardiac disease and aging are associated with oxidative stress which can impair redox signaling by altering essential cysteine thiolates. We previously found that cardiac-specific overexpression of catalase (Cat), an enzyme that detoxifies excess H2O2, protected from oxidative stress and delayed cardiac aging in mice. Using redox proteomics and systems biology, we sought to identify the cysteines that could play a key role in cardiac disease and aging. With a ‘Tandem Mass Tag’ (TMT) labeling strategy and mass spectrometry, we investigated differential reversible cysteine oxidation in the cardiac proteome of wild type and Cat transgenic (Tg) mice. Reversible cysteine oxidation was measured as thiol occupancy, the ratio of total available versus reversibly oxidized cysteine thiols. Catalase overexpression globally decreased thiol occupancy by ≥1.3 fold in 82 proteins, including numerous mitochondrial and contractile proteins. Systems biology analysis assigned the majority of proteins with differentially modified thiols in Cat Tg mice to pathways of aging and cardiac disease, including cellular stress response, proteostasis, and apoptosis. In addition, Cat Tg mice exhibited diminished protein glutathione adducts and decreased H2O2 production from mitochondrial complex I and II, suggesting improved function of cardiac mitochondria. In conclusion, our data suggest that catalase may alleviate cardiac disease and aging by moderating global protein cysteine thiol oxidation. PMID:26642319

  16. Overexpression of host plant urease in transgenic silkworms.

    PubMed

    Jiang, Liang; Huang, Chunlin; Sun, Qiang; Guo, Huizhen; Peng, Zhengwen; Dang, Yinghui; Liu, Weiqiang; Xing, Dongxu; Xu, Guowen; Zhao, Ping; Xia, Qingyou

    2015-06-01

    Bombyx mori and mulberry constitute a model of insect-host plant interactions. Urease hydrolyzes urea to ammonia and is important for the nitrogen metabolism of silkworms because ammonia is assimilated into silk protein. Silkworms do not synthesize urease and acquire it from mulberry leaves. We synthesized the artificial DNA sequence ureas using the codon bias of B. mori to encode the signal peptide and mulberry urease protein. A transgenic vector that overexpresses ure-as under control of the silkworm midgut-specific P2 promoter was constructed. Transgenic silkworms were created via embryo microinjection. RT-PCR results showed that urease was expressed during the larval stage and qPCR revealed the expression only in the midgut of transgenic lines. Urea concentration in the midgut and hemolymph of transgenic silkworms was significantly lower than in a nontransgenic line when silkworms were fed an artificial diet. Analysis of the daily body weight and food conversion efficiency of the fourth and fifth instar larvae and economic characteristics indicated no differences between transgenic silkworms and the nontransgenic line. These results suggested that overexpression of host plant urease promoted nitrogen metabolism in silkworms. PMID:25549597

  17. SNEV overexpression extends the life span of human endothelial cells

    SciTech Connect

    Voglauer, Regina; Chang, Martina Wei-Fen; Dampier, Brigitta; Wieser, Matthias; Baumann, Kristin; Sterovsky, Thomas; Schreiber, Martin; Katinger, Hermann; Grillari, Johannes . E-mail: j.grillari@iam.boku.ac.at

    2006-04-01

    In a recent screening for genes downregulated in replicatively senescent human umbilical vein endothelial cells (HUVECs), we have isolated the novel protein SNEV. Since then SNEV has proven as a multifaceted protein playing a role in pre-mRNA splicing, DNA repair, and the ubiquitin/proteosome system. Here, we report that SNEV mRNA decreases in various cell types during replicative senescence, and that it is increased in various immortalized cell lines, as well as in breast tumors, where SNEV transcript levels also correlate with the survival of breast cancer patients. Since these mRNA profiles suggested a role of SNEV in the regulation of cell proliferation, the effect of its overexpression was tested. Thereby, a significant extension of the cellular life span was observed, which was not caused by altered telomerase activity or telomere dynamics but rather by enhanced stress resistance. When SNEV overexpressing cells were treated with bleomycin or bleomycin combined with BSO, inducing DNA damage as well as reactive oxygen species, a significantly lower fraction of apoptotic cells was found in comparison to vector control cells. These data suggest that high levels of SNEV might extend the cellular life span by increasing the resistance to stress or by improving the DNA repair capacity of the cells.

  18. Traffic Noise Ground Attenuation Algorithm Evaluation

    NASA Astrophysics Data System (ADS)

    Herman, Lloyd Allen

    The Federal Highway Administration traffic noise prediction program, STAMINA 2.0, was evaluated for its accuracy. In addition, the ground attenuation algorithm used in the Ontario ORNAMENT method was evaluated to determine its potential to improve these predictions. Field measurements of sound levels were made at 41 sites on I-440 in Nashville, Tennessee in order to both study noise barrier effectiveness and to evaluate STAMINA 2.0 and the performance of the ORNAMENT ground attenuation algorithm. The measurement sites, which contain large variations in terrain, included several cross sections. Further, all sites contain some type of barrier, natural or constructed, which could more fully expose the strength and weaknesses of the ground attenuation algorithms. The noise barrier evaluation was accomplished in accordance with American National Standard Methods for Determination of Insertion Loss of Outdoor Noise Barriers which resulted in an evaluation of this standard. The entire 7.2 mile length of I-440 was modeled using STAMINA 2.0. A multiple run procedure was developed to emulate the results that would be obtained if the ORNAMENT algorithm was incorporated into STAMINA 2.0. Finally, the predicted noise levels based on STAMINA 2.0 and STAMINA with the ORNAMENT ground attenuation algorithm were compared with each other and with the field measurements. It was found that STAMINA 2.0 overpredicted noise levels by an average of over 2 dB for the receivers on I-440, whereas, the STAMINA with ORNAMENT ground attenuation algorithm overpredicted noise levels by an average of less than 0.5 dB. The mean errors for the two predictions were found to be statistically different from each other, and the mean error for the prediction with the ORNAMENT ground attenuation algorithm was not found to be statistically different from zero. The STAMINA 2.0 program predicts little, if any, ground attenuation for receivers at typical first-row distances from highways where noise barriers

  19. Yellowstone Attenuation Tomography from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Seats, K.; Lawrence, J. F.

    2013-12-01

    The goal of this study is to create a tomographic attenuation image for the Yellowstone region by analyzing ambient seismic noise. An attenuation image generated from ambient noise should provide more information about the structure and properties beneath Yellowstone, especially the caldera, which is known to be active. I applied the method of Lawrence & Prieto [2011] to examine lateral variations in the attenuation structure of Yellowstone. Ambient noise data were collected from broadband seismic stations located around Yellowstone National Park from 1999-2013. Noise correlation functions derived from cross correlations of the ambient noise at two stations were used to calculate a distance dependent decay (an attenuation coefficient) at each period and distance. An inversion was then performed to isolate and localize the spatial attenuation coefficients within the study area. I observe high amplitude decay of the ambient noise at the Yellowstone caldera, most likely due to elevated temperature and crustal melts caused by volcanism, geothermal heat flow, and hydrothermal activity such as geysers.

  20. Enabling photon counting detectors with dynamic attenuators

    NASA Astrophysics Data System (ADS)

    Hsieh, Scott S.; Pelc, Norbert J.

    2014-03-01

    Photon-counting x-ray detectors (PCXDs) are being investigated as a replacement for conventional x-ray detectors because they promise several advantages, including better dose efficiency, higher resolution and spectral imaging. However, many of these advantages disappear when the x-ray flux incident on the detector is too high. We recently proposed a dynamic, piecewise-linear attenuator (or beam shaping filter) that can control the flux incident on the detector. This can restrict the operating range of the PCXD to keep the incident count rate below a given limit. We simulated a system with the piecewise-linear attenuator and a PCXD using raw data generated from forward projected DICOM files. We investigated the classic paralyzable and nonparalyzable PCXD as well as a weighted average of the two, with the weights chosen to mimic an existing PCXD (Taguchi et al, Med Phys 2011). The dynamic attenuator has small synergistic benefits with the nonparalyzable detector and large synergistic benefits with the paralyzable detector. Real PCXDs operate somewhere between these models, and the weighted average model still shows large benefits from the dynamic attenuator. We conclude that dynamic attenuators can reduce the count rate performance necessary for adopting PCXDs.

  1. Inhibition of Histone H3K9 Acetylation by Anacardic Acid Can Correct the Over-Expression of Gata4 in the Hearts of Fetal Mice Exposed to Alcohol during Pregnancy

    PubMed Central

    Peng, Chang; Zhu, Jing; Sun, Hui-Chao; Huang, Xu-Pei; Zhao, Wei-An; Zheng, Min; Liu, Ling-Juan; Tian, Jie

    2014-01-01

    Background Cardiovascular malformations can be caused by abnormalities in Gata4 expression during fetal development. In a previous study, we demonstrated that ethanol exposure could lead to histone hyperacetylation and Gata4 over-expression in fetal mouse hearts. However, the potential mechanisms of histone hyperacetylation and Gata4 over-expression induced by ethanol remain unclear. Methods and Results Pregnant mice were gavaged with ethanol or saline. Fetal mouse hearts were collected for analysis. The results of ethanol fed groups showed that global HAT activity was unusually high in the hearts of fetal mice while global HDAC activity remained unchanged. Binding of P300, CBP, PCAF, SRC1, but not GCN5, were increased on the Gata4 promoter relative to the saline treated group. Increased acetylation of H3K9 and increased mRNA expression of Gata4, α-MHC, cTnT were observed in these hearts. Treatment with the pan-histone acetylase inhibitor, anacardic acid, reduced the binding of P300, PCAF to the Gata4 promoter and reversed H3K9 hyperacetylation in the presence of ethanol. Interestingly, anacardic acid attenuated over-expression of Gata4, α-MHC and cTnT in fetal mouse hearts exposed to ethanol. Conclusions Our results suggest that P300 and PCAF may be critical regulatory factors that mediate Gata4 over-expression induced by ethanol exposure. Alternatively, P300, PCAF and Gata4 may coordinate over-expression of cardiac downstream genes in mouse hearts exposed to ethanol. Anacardic acid may thus protect against ethanol-induced Gata4, α-MHC, cTnT over-expression by inhibiting the binding of P300 and PCAF to the promoter region of these genes. PMID:25101666

  2. Cannabinoid Receptor Interacting Protein (CRIP1a) attenuates CB1R signaling in neuronal cells

    PubMed Central

    Bass, Caroline E.; Selley, Dana E.; Howlett, Allyn C.

    2014-01-01

    CB1 cannabinoid receptors (CB1R) are one of the most abundantly expressed G protein coupled receptors (GPCR) in the CNS and regulate diverse neuronal functions. The identification of GPCR interacting proteins has provided additional insight into the fine-tuning and regulation of numerous GPCRs. The Cannabinoid Receptor Interacting Protein 1a (CRIP1a) binds to the distal carboxy terminus of CB1R, and has been shown to alter CB1R-mediated neuronal function [1]. The mechanisms by which CRIP1a regulates CB1R activity have not yet been identified; therefore the focus of this investigation is to examine the cellular effects of CRIP1a on CB1R signaling using neuronal N18TG2 cells stably transfected with CRIP1a over-expressing and CRIP1a knockdown constructs. Modulation of endogenous CRIP1a expression did not alter total levels of CB1R, ERK, or forskolin-activated adenylyl cyclase activity. When compared to WT cells, CRIP1a over-expression reduced basal phosphoERK levels, whereas depletion of CRIP1a augmented basal phosphoERK levels. Stimulation of phosphoERK by the CB1R agonists WIN55212-2, CP55940 or methanandamide was unaltered in CRIP1a over-expressing clones compared with WT. However, CRIP1a knockdown clones exhibited enhanced ERK phosphorylation efficacy in response to CP55940. In addition, CRIP1a knockdown clones displayed a leftward shift in CP55940-mediated inhibition of forskolin-stimulated cAMP accumulation. CB1R-mediated Gi3 and Go activation by CP99540 was attenuated by CRIP1a over-expression, but robustly enhanced in cells depleted of CRIP1a. Conversely, CP55940-mediated Gi1 and Gi2 activation was significant enhanced in cells over-expressing CRIP1a, but not in cells deficient of CRIP1a. These studies suggest a mechanism by which endogenous levels of CRIP1a modulate CB1R-mediated signal transduction by facilitating a Gi/o-protein subtype preference for Gi1 and Gi2, accompanied by an overall suppression of G-protein-mediated signaling in neuronal cells. PMID

  3. Live attenuated vaccines for invasive Salmonella infections.

    PubMed

    Tennant, Sharon M; Levine, Myron M

    2015-06-19

    Salmonella enterica serovar Typhi produces significant morbidity and mortality worldwide despite the fact that there are licensed Salmonella Typhi vaccines available. This is primarily due to the fact that these vaccines are not used in the countries that most need them. There is growing recognition that an effective invasive Salmonella vaccine formulation must also prevent infection due to other Salmonella serovars. We anticipate that a multivalent vaccine that targets the following serovars will be needed to control invasive Salmonella infections worldwide: Salmonella Typhi, Salmonella Paratyphi A, Salmonella Paratyphi B (currently uncommon but may become dominant again), Salmonella Typhimurium, Salmonella Enteritidis and Salmonella Choleraesuis (as well as other Group C Salmonella). Live attenuated vaccines are an attractive vaccine formulation for use in developing as well as developed countries. Here, we describe the methods of attenuation that have been used to date to create live attenuated Salmonella vaccines and provide an update on the progress that has been made on these vaccines. PMID:25902362

  4. Compressional head waves in attenuative formations

    SciTech Connect

    Liu, Q.H.; Chang, C.

    1994-12-31

    The attenuation of compressional head waves in a fluid-filled borehole is studied with the branch-cut integration method. The borehole fluid and solid formation are both assumed lossy with quality factors Q{sub f}({omega}) for the fluid, and Q{sub c}({omega}) and Q{sub s}({omega}) for the compressional and shear waves in the solid, respectively. The branch-cut integration method used in this work is an extension of that for a lossless medium. With this branch-cut integration method, the authors can isolate the groups of individual arrivals such as the compressional head waves and shear head waves, and study the attenuation of those particular wavefields in lossy media. This study, coupled with experimental work to be performed, may result in an effective way of measuring compressional head wave attenuation in the field.

  5. Extensible chip of optofluidic variable optical attenuator.

    PubMed

    Wan, J; Xue, F L; Wu, L X; Fu, Y J; Hu, J; Zhang, W; Hu, F R

    2016-05-01

    A core chip of optofluidic variable optical attenuator (VOA) is reported. The chip, with a simple structure, utilizes microfluid and compressed air to regulate the optical attenuation, and it can be expanded to form a number of VOAs by using different microfluidic driving technologies. Three VOAs based on this chip and different driving technologies are introduced. The theoretical and experimental results show that the proposed chip possesses the advantages of large optical attenuation range (> 50dB) and low insertion loss (0.55 dB). Moreover it is a broadband optical device which can be operated in visible and near infrared wavelengths. The proposed chip provides a new method for seeking miniaturized VOAs with good performances, and it is promising to develop a number of different VOAs. PMID:27137582

  6. Graphene-Based Waveguide Terahertz Wave Attenuator

    NASA Astrophysics Data System (ADS)

    Jian-rong, Hu; Jiu-sheng, Li; Guo-hua, Qiu

    2016-07-01

    We design an electrically controllable terahertz wave attenuator by using graphene. We show that terahertz wave can be confined and propagate on S-shaped graphene waveguide with little radiation losses, and the confined terahertz wave is further manipulated and controlled via external applied voltage bias. The simulated results show that, when chemical potential changes from 0.03 into 0.05 eV, the extinction ratio of the terahertz wave attenuator can be tuned from 1.28 to 39.42 dB. Besides the simplicity, this novel terahertz wave attenuator has advantages of small size (24 × 30 μm2), a low insertion loss, and good controllability. It has a potential application for forthcoming planar terahertz wave integrated circuit fields.

  7. Finite Element Analysis of Honeycomb Impact Attenuator

    NASA Astrophysics Data System (ADS)

    Yang, Seung-Yong; Choi, Seung-Kyu; Kim, Nohyu

    To participate in Student Formula Society of Automotive Engineers (SAE) competitions, it is necessary to build an impact attenuator that would give an average deceleration not to exceed 20g when it runs into a rigid wall. Students can use numerical simulations or experimental test data to show that their car satisfies this safety requirement. A student group to study formula cars at the Korea University of Technology and Education has designed a vehicle to take part in a SAE competition, and a honeycomb structure was adopted as the impact attenuator. In this paper, finite element calculations were carried out to investigate the dynamic behavior of the honeycomb attenuator. Deceleration and deformation behaviors were studied. Effect of the yield strength was checked by comparing the numerical results. ABAQUS/Explicit finite element code was used.

  8. Overexpression of IGF-I in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy

    NASA Technical Reports Server (NTRS)

    Criswell, D. S.; Booth, F. W.; DeMayo, F.; Schwartz, R. J.; Gordon, S. E.; Fiorotto, M. L.

    1998-01-01

    This study examined the association between local insulin-like growth factor I (IGF-I) overexpression and atrophy in skeletal muscle. We hypothesized that endogenous skeletal muscle IGF-I mRNA expression would decrease with hindlimb unloading (HU) in mice, and that transgenic mice overexpressing human IGF-I (hIGF-I) specifically in skeletal muscle would exhibit less atrophy after HU. Male transgenic mice and nontransgenic mice from the parent strain (FVB) were divided into four groups (n = 10/group): 1) transgenic, weight-bearing (IGF-I/WB); 2) transgenic, hindlimb unloaded (IGF-I/HU); 3) nontransgenic, weight-bearing (FVB/WB); and 4) nontransgenic, hindlimb unloaded (FVB/HU). HU groups were hindlimb unloaded for 14 days. Body mass was reduced (P < 0.05) after HU in both IGF-I (-9%) and FVB mice (-13%). Contrary to our hypothesis, we found that the relative abundance of mRNA for the endogenous rodent IGF-I (rIGF-I) was unaltered by HU in the gastrocnemius (GAST) muscle of wild-type FVB mice. High-level expression of hIGF-I peptide and mRNA was confirmed in the GAST and tibialis anterior (TA) muscles of the transgenic mice. Nevertheless, masses of the GAST and TA muscles were reduced (P < 0.05) in both FVB/HU and IGF-I/HU groups compared with FVB/WB and IGF-I/WB groups, respectively, and the percent atrophy in mass of these muscles did not differ between FVB and IGF-I mice. Therefore, skeletal muscle atrophy may not be associated with a reduction of endogenous rIGF-I mRNA level in 14-day HU mice. We conclude that high local expression of hIGF-I mRNA and peptide in skeletal muscle alone cannot attenuate unloading-induced atrophy of fast-twitch muscle in mice.

  9. Induced Resistance to Methionyl-tRNA Synthetase Inhibitors in Trypanosoma brucei Is Due to Overexpression of the Target

    PubMed Central

    Ranade, Ranae M.; Gillespie, J. Robert; Shibata, Sayaka; Verlinde, Christophe L. M. J.; Fan, Erkang; Hol, Wim G. J.

    2013-01-01

    New classes of antiparasitic drugs active against Trypanosoma brucei are needed to combat human African trypanosomiasis. Inhibitors of methionyl-tRNA synthetase (MetRS) have excellent potential to be developed for this purpose (S. Shibata, J. R. Gillespie, A. M. Kelley, A. J. Napuli, Z. Zhang, K. V. Kovzun, R. M. Pefley, J. Lam, F. H. Zucker, W. C. Van Voorhis, E. A. Merritt, W. G. Hol, C. L. Verlinde, E. Fan, and F. S. Buckner, Antimicrob. Agents Chemother. 55:1982–1989, 2011). In order to assess the potential for resistance to develop against this new class of inhibitors, T. brucei cultures were grown in the presence of MetRS inhibitors or comparison drugs. Resistance up to ∼50 times the baseline 50% inhibitory concentration (IC50) was induced against a MetRS inhibitor after ∼120 days. A similar level of resistance to the clinical drug eflornithine was induced after ∼50 days and for pentamidine after ∼80 days. Thus, resistance was induced more slowly against MetRS inhibitors than against clinically used drugs. The parasites resistant to the MetRS inhibitor were shown to overexpress MetRS mRNA by a factor of 35 over the parental strain. Southern analysis indicated that the MetRS gene was amplified in the genome by nearly 8-fold. When injected into mice, the MetRS inhibitor-resistant parasites caused a reduced level of infection, indicating that the changes associated with resistance attenuated their virulence. This finding and the fact that resistance to MetRS inhibitors developed relatively slowly are encouraging for further development of this class of compounds. Published studies on other antitrypanosomal drugs have primarily shown that alterations in membrane transporters were the mechanisms responsible for resistance. This is the first published report of induced drug resistance in the African trypanosome due to overexpression of the target enzyme. PMID:23587950

  10. Overexpression of the β Subunit of Human Chorionic Gonadotropin Promotes the Transformation of Human Ovarian Epithelial Cells and Ovarian Tumorigenesis

    PubMed Central

    Guo, Xiaoqing; Liu, Guangzhi; Schauer, Isaiah G.; Yang, Gong; Mercado-Uribe, Imelda; Yang, Fan; Zhang, Shiwu; He, Yuanli; Liu, Jinsong

    2011-01-01

    Ovarian carcinoma is the most lethal gynecologic malignancy, however underlying molecular events remain elusive. Expression of human chorionic gonadotropin β subunit (β-hCG) is clinically significant for both trophoblastic and nontrophoblastic cancers; however, whether β-hCG facilitates ovarian epithelial cell tumorigenic potential remains uncharacterized. Immortalized nontumorigenic ovarian epithelial T29 and T80 cells stably overexpressing β-hCG were examined for alterations in cell cycle and apoptotic status by flow cytometry, expression of proteins regulating cell cycle and apoptosis by Western blot, proliferation status by MTT assay, anchorage-independent colony formation, and mouse tumor formation. Immunoreactivity for β-hCG was evaluated using mouse xenografts and on human normal ovarian, fallopian tube, endometrium, and ovarian carcinoma tissues. T29 and T80 cells overexpressing β-hCG demonstrated significantly increased proliferation, anchorage-independent colony formation, prosurvival Bcl-XL protein expression, G2-checkpoint progression, elevated cyclins E/D1 and Cdk 2/4/6, and decreased apoptosis. Collectively, these transformational alterations in phenotype facilitated increased xenograft tumorigenesis (P < 0.05). Furthermore, β-hCG immunoreactivity was elevated in malignant ovarian tumors, compared with normal epithelial expression in ovaries, fallopian tube, and endometrium (P < 0.001). Our data indicate that elevated β-hCG transforms ovarian surface epithelial cells, facilitating proliferation, cell cycle progression, and attenuated apoptosis to promote tumorigenesis. Our results further decipher the functional role and molecular mechanism of β-hCG in ovarian carcinoma. β-hCG may contribute to ovarian cancer etiology, which introduces a new therapeutic intervention target for ovarian cancer. PMID:21763678

  11. Is there seismic attenuation in the mantle?

    NASA Astrophysics Data System (ADS)

    Ricard, Y.; Durand, S.; Montagner, J.-P.; Chambat, F.

    2014-02-01

    The small scale heterogeneity of the mantle is mostly due to the mixing of petrological heterogeneities by a smooth but chaotic convection and should consist in a laminated structure (marble cake) with a power spectrum S(k) varying as 1/k, where k is the wavenumber of the anomalies. This distribution of heterogeneities during convective stirring with negligible diffusion, called Batchelor regime is documented by fluid dynamic experiments and corresponds to what can be inferred from geochemistry and seismic tomography. This laminated structure imposes density, seismic velocity and potentially, anisotropic heterogeneities with similar 1/k spectra. A seismic wave of wavenumber k0 crossing such a medium is partly reflected by the heterogeneities and we show that the scattered energy is proportional to k0S(2k0). The reduction of energy for the propagating wave appears therefore equivalent to a quality factor 1/Q∝k0S(2k0). With the specific 1/k spectrum of the mantle, the resulting apparent attenuation should therefore be frequency independent. We show that the total contribution of 6-9% RMS density, velocity and anisotropy would explain the observed S and P attenuation of the mantle. Although these values are large, they are not unreasonable and we discuss how they depend on the range of frequencies over which the attenuation is explained. If such a level of heterogeneity were present, most of the attenuation of the Earth would be due to small scale scattering by laminations, not by intrinsic dissipation. Intrinsic dissipation must certainly exist but might correspond to a larger, yet unobserved Q. This provocative result would explain the very weak frequency dependence of the attenuation, and the fact that bulk attenuation seems negligible, two observations that have been difficult to explain for 50 years.

  12. Prediction of aircraft sideline noise attenuation

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1978-01-01

    A computational study is made using the recommended ground effect theory by Pao, Wenzel, and Oncley. It is shown that this theory adequately predicts the measured ground attenuation data by Parkin and Scholes, which is the only available large data set. It is also shown, however, that the ground effect theory does not predict the measured lateral attenuations from actual aircraft flyovers. There remain one or more important lateral effects on aircraft noise, such as sideline shielding of sources, which must be incorporated in the prediction methods. Experiments at low elevation angles (0 deg to 10 deg) and low-to-intermediate frequencies are recommended to further validate the ground effect theory.

  13. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction

    SciTech Connect

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. - Highlights: • Resveratrol decreased methylglyoxal-induced apoptosis. • Resveratrol attenuated GSH depletion and ROS production promoted by methylglyoxal. • Resveratrol restored the mitochondrial function by Sestrin2 induction. • Induction of Sestrin2

  14. FOXL2-induced follistatin attenuates activin A-stimulated cell proliferation in human granulosa cell tumors

    SciTech Connect

    Cheng, Jung-Chien; Chang, Hsun-Ming; Qiu, Xin; Fang, Lanlan; Leung, Peter C.K.

    2014-01-10

    Highlights: •Activin A stimulates cell proliferation in KGN human granulosa cell tumor-derived cell line. •Cyclin D2 mediates activin A-induced KGN cell proliferation. •FOXL2 induces follistatin expression in KGN cells. •FOXL2-induced follistatin attenuates activin A-stimulated KGN cell proliferation. -- Abstract: Human granulosa cell tumors (GCTs) are rare, and their etiology remains largely unknown. Recently, the FOXL2 402C > G (C134W) mutation was found to be specifically expressed in human adult-type GCTs; however, its function in the development of human GCTs is not fully understood. Activins are members of the transforming growth factor-beta superfamily, which has been shown to stimulate normal granulosa cell proliferation; however, little is known regarding the function of activins in human GCTs. In this study, we examined the effect of activin A on cell proliferation in the human GCT-derived cell line KGN. We show that activin A treatment stimulates KGN cell proliferation. Treatment with the activin type I receptor inhibitor SB431542 blocks activin A-stimulated cell proliferation. In addition, our results show that cyclin D2 is induced by treatment with activin A and is involved in activin A-stimulated cell proliferation. Moreover, the activation of Smad signaling is required for activin A-induced cyclin D2 expression. Finally, we show that the overexpression of the wild-type FOXL2 but not the C134W mutant FOXL2 induced follistatin production. Treatment with exogenous follistatin blocks activin A-stimulated cell proliferation, and the overexpression of wild-type FOXL2 attenuates activin A-stimulated cell proliferation. These results suggest that FOXL2 may act as a tumor suppressor in human adult-type GCTs by inducing follistatin expression, which subsequently inhibits activin-stimulated cell proliferation.

  15. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  16. Mammary gland tumor formation in transgenic mice overexpressing stromelysin-1

    SciTech Connect

    Sympson, Carolyn J; Bissell, Mina J; Werb, Zena

    1995-06-01

    An intact basement membrane (BM) is essential for the proper function, differentiation and morphology of many epithelial cells. The disruption or loss of this BM occurs during normal development as well as in the disease state. To examine the importance of BM during mammary gland development in vivo, we generated transgenic mice that inappropriately express autoactivating isoforms of the matrix metalloproteinase stromelysin-1. The mammary glands from these mice are both functionally and morphologically altered throughout development. We have now documented a dramatic incidence of breast tumors in several independent lines of these mice. These data suggest that overexpression of stromelysin-1 and disruption of the BM may be a key step in the multi-step process of breast cancer.

  17. Overexpressed Arabidopsis Annexin4 accumulates in inclusion bodylike structures

    PubMed Central

    Khachatoorian, Careen; Ramirez, Rigoberto A.; Hernandez, Fernando; Serna, Raphael; Kwok, Ernest Y.

    2015-01-01

    Large protein complexes form in the cytosol of prokaryotes and eukaryotes as assemblies of functional enzymes or aggregates of misfolded proteins. Their roles in the cell range from critical components of metabolism to disease-causing agents. We have observed a novel structure in the cells of transgenic Arabidopsis thaliana that appears to be a form of inclusion body. These long, spindle-shaped structures form when Arabidopsis are transformed to express high levels of the protein Annexin4 fused to a fluorescent protein. These structures, previously named darts, are visible in all cells of the plant throughout development. Darts take on a variety of morphologies including rings and figure-eights. These structures are not associated with the endomembrane system and are not membrane bounded. Darts appear to be insoluble aggregates of protein analogous to bacterial inclusion bodies and eukaryotic aggresomes. Similar structures have not been observed in untransformed plants, suggesting darts are artifacts of transgenic overexpression. PMID:25818562

  18. Statins Reduce Melanoma Development and Metastasis through MICA Overexpression.

    PubMed

    Pich, Christine; Teiti, Iotefa; Rochaix, Philippe; Mariamé, Bernard; Couderc, Bettina; Favre, Gilles; Tilkin-Mariamé, Anne-Françoise

    2013-01-01

    Survival of melanoma patients after metastases detection remains short. Several clinical trials have shown moderate efficiency in improving patient survival, and the search for pharmacological agents to enhance the immune response and reduce melanoma metastases is still necessary. Statins block the mevalonate pathway, which leads to decreases in GTPase isoprenylation and activity, particularly those of the Ras superfamily. They are widely used as hypocholesterolemic agents in cardiovascular diseases and several studies have shown that they also have protective effects against cancers. Furthermore, we have previously demonstrated that treatment of melanoma cells with inhibitors of the mevalonate pathway, such as statins, favor the development of specific adaptive immune responses against these tumors. In the present study, we tested statin impact on the innate immune response against human metastatic melanoma cells. Our data shows that treatment of two human melanoma cell lines with statins induced a weak but significant increase of MHC class I Chain-related protein A (MICA) membrane expression. Peroxisome Proliferator-Activated Receptor gamma is involved in this statin-induced MICA overexpression, which is independent of Ras and Rho GTPase signaling pathways. Interestingly, this MICA overexpression makes melanoma cells more sensitive to in vitro lysis by NK cells. The impact of statin treatment on in vivo development of melanoma tumors and metastases was investigated in nude mice, because murine NK cells, which express NKG2D receptors, are able to recognize and kill human tumor cells expressing MICA. The results demonstrated that both local tumor growth and pulmonary metastases were strongly inhibited in nude mice injected with statin-treated melanoma cells. These results suggest that statins could be effective in melanoma immunotherapy treatments. PMID:23493799

  19. Paraoxonase-1 overexpression prevents experimental abdominal aortic aneurysm progression.

    PubMed

    Burillo, Elena; Tarin, Carlos; Torres-Fonseca, Monica-Maria; Fernandez-García, Carlos-Ernesto; Martinez-Pinna, Roxana; Martinez-Lopez, Diego; Llamas-Granda, Patricia; Camafeita, Emilio; Lopez, Juan Antonio; Vega de Ceniga, Melina; Aviram, Michael; Egido, Jesus; Blanco-Colio, Luis-Miguel; Martín-Ventura, Jose-Luis

    2016-06-01

    Abdominal aortic aneurysm (AAA) is a permanent dilation of the aorta due to excessive proteolytic, oxidative and inflammatory injury of the aortic wall. We aimed to identify novel mediators involved in AAA pathophysiology, which could lead to novel therapeutic approaches. For that purpose, plasma from four AAA patients and four controls were analysed by a label-free proteomic approach. Among identified proteins, paraoxonase-1 (PON1) was decreased in plasma of AAA patients compared with controls, which was further validated in a bigger cohort of samples by ELISA. The phenylesterase enzymatic activity of PON1 was also decreased in serum of AAA patients compared with controls. To address the potential role of PON1 as a mediator of AAA, experimental AAA was induced by aortic elastase perfusion in wild-type (WT) mice and human transgenic PON1 (HuTgPON1) mice. Similar to humans, PON1 activity was also decreased in serum of elastase-induced AAA mice compared with healthy mice. Interestingly, overexpression of PON1 was accompanied by smaller aortic dilation and higher elastin and vascular smooth muscle cell (VSMC) content in the AAA of HuTgPON1 compared with WT mice. Moreover, HuTgPON1 mice display decreased oxidative stress and apoptosis, as well as macrophage infiltration and monocyte chemoattractant protein-1 (MCP1) expression, in elastase-induced AAA. In conclusion, decreased circulating PON1 activity is associated with human and experimental AAA. PON1 overexpression in mice protects against AAA progression by reducing oxidative stress, apoptosis and inflammation, suggesting that strategies aimed at increasing PON1 activity could prevent AAA. PMID:26993251

  20. Tubular Overexpression of Gremlin Induces Renal Damage Susceptibility in Mice

    PubMed Central

    Droguett, Alejandra; Krall, Paola; Burgos, M. Eugenia; Valderrama, Graciela; Carpio, Daniel; Ardiles, Leopoldo; Rodriguez-Diez, Raquel; Kerr, Bredford; Walz, Katherina; Ruiz-Ortega, Marta; Egido, Jesus; Mezzano, Sergio

    2014-01-01

    A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1) specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage progression. This

  1. Overexpression of agouti protein and stress responsiveness in mice.

    PubMed

    Harris, R B; Zhou, J; Shi, M; Redmann, S; Mynatt, R L; Ryan, D H

    2001-07-01

    Ectopic overexpression of agouti protein, an endogenous antagonist of melanocortin receptors' linked to the beta-actin promoter (BAPa) in mice, produces a phenotype of yellow coat color, Type II diabetes, obesity and increased somatic growth. Spontaneous overexpression of agouti increases stress-induced weight loss. In these experiments, other aspects of stress responsiveness were tested in 12-week-old male wild-type mice and BAPa mice. Two hours of restraint on three consecutive days produced greater increases in corticosterone and post-stress weight loss in BAPa than wild-type mice. In Experiment 2, anxiety-type behavior was measured immediately after 12 min of restraint. This mild stress did not produce many changes indicative of anxiety, but BAPa mice spent more time in the dark side of a light-dark box and less time in the open arms of an elevated plus maze than restrained wild-type mice. In a defensive withdrawal test, grooming was increased by restraint in all mice, but the duration of each event was substantially shorter in BAPa mice, possibly due to direct antagonism of the MC4-R by agouti protein. Thus, BAPa mice showed exaggerated endocrine and energetic responses to restraint stress with small differences in anxiety-type behavior compared with wild-type mice. These results are consistent with observations in other transgenic mice in which the melanocortin system is disrupted, but contrast with reports that acute blockade of central melanocortin receptors inhibits stress-induced hypophagia. Thus, the increased stress responsiveness in BAPa mice may be a developmental compensation for chronic inhibition of melanocortin receptors. PMID:11495665

  2. Sarcolipin overexpression improves muscle energetics and reduces fatigue.

    PubMed

    Sopariwala, Danesh H; Pant, Meghna; Shaikh, Sana A; Goonasekera, Sanjeewa A; Molkentin, Jeffery D; Weisleder, Noah; Ma, Jianjie; Pan, Zui; Periasamy, Muthu

    2015-04-15

    Sarcolipin (SLN) is a regulator of sarcoendoplasmic reticulum calcium ATPase in skeletal muscle. Recent studies using SLN-null mice have identified SLN as a key player in muscle thermogenesis and metabolism. In this study, we exploited a SLN overexpression (Sln(OE)) mouse model to determine whether increased SLN level affected muscle contractile properties, exercise capacity/fatigue, and metabolic rate in whole animals and isolated muscle. We found that Sln(OE) mice are more resistant to fatigue and can run significantly longer distances than wild-type (WT). Studies with isolated extensor digitorum longus (EDL) muscles showed that Sln(OE) EDL produced higher twitch force than WT. The force-frequency curves were not different between WT and Sln(OE) EDLs, but at lower frequencies the pyruvate-induced potentiation of force was significantly higher in Sln(OE) EDL. SLN overexpression did not alter the twitch and force-frequency curve in isolated soleus muscle. However, during a 10-min fatigue protocol, both EDL and soleus from Sln(OE) mice fatigued significantly less than WT muscles. Interestingly, Sln(OE) muscles showed higher carnitine palmitoyl transferase-1 protein expression, which could enhance fatty acid metabolism. In addition, lactate dehydrogenase expression was higher in Sln(OE) EDL, suggesting increased glycolytic capacity. We also found an increase in store-operated calcium entry (SOCE) in isolated flexor digitorum brevis fibers of Sln(OE) compared with WT mice. These data allow us to conclude that increased SLN expression improves skeletal muscle performance during prolonged muscle activity by increasing SOCE and muscle energetics. PMID:25701006

  3. Electrophysiology and metabolism of caveolin-3-overexpressing mice.

    PubMed

    Schilling, Jan M; Horikawa, Yousuke T; Zemljic-Harpf, Alice E; Vincent, Kevin P; Tyan, Leonid; Yu, Judith K; McCulloch, Andrew D; Balijepalli, Ravi C; Patel, Hemal H; Roth, David M

    2016-05-01

    Caveolin-3 (Cav-3) plays a critical role in organizing signaling molecules and ion channels involved in cardiac conduction and metabolism. Mutations in Cav-3 are implicated in cardiac conduction abnormalities and myopathies. Additionally, cardiac-specific overexpression of Cav-3 (Cav-3 OE) is protective against ischemic and hypertensive injury, suggesting a potential role for Cav-3 in basal cardiac electrophysiology and metabolism involved in stress adaptation. We hypothesized that overexpression of Cav-3 may alter baseline cardiac conduction and metabolism. We examined: (1) ECG telemetry recordings at baseline and during pharmacological interventions, (2) ion channels involved in cardiac conduction with immunoblotting and computational modeling, and (3) baseline metabolism in Cav-3 OE and transgene-negative littermate control mice. Cav-3 OE mice had decreased heart rates, prolonged PR intervals, and shortened QTc intervals with no difference in activity compared to control mice. Dobutamine or propranolol did not cause significant changes between experimental groups in maximal (dobutamine) or minimal (propranolol) heart rate. Cav-3 OE mice had an overall lower chronotropic response to atropine. The expression of Kv1.4 and Kv4.3 channels, Nav1.5 channels, and connexin 43 were increased in Cav-3 OE mice. A computational model integrating the immunoblotting results indicated shortened action potential duration in Cav-3 OE mice linking the change in channel expression to the observed electrophysiology phenotype. Metabolic profiling showed no gross differences in VO2, VCO2, respiratory exchange ratio, heat generation, and feeding or drinking. In conclusion, Cav-3 OE mice have changes in ECG intervals, heart rates, and cardiac ion channel expression. These findings give novel mechanistic insights into previously reported Cav-3 dependent cardioprotection. PMID:27023865

  4. Focal adhesion kinase overexpression and its impact on human osteosarcoma

    PubMed Central

    Chen, Yong; Yang, Aizhen; Chen, Hui; Zhang, Jian; Wu, Sujia; Shi, Xin; Wang, Chen; Sun, Xiaoliang

    2015-01-01

    Focal adhesion kinase (FAK) has been implicated in tumorigenesis in various malignancies. We sought to examine the expression patterns of FAK and the activated form, phosphorylated FAK (pFAK), in human osteosarcoma and to investigate the correlation of FAK expression with clinicopathologic parameters and prognosis. In addition, the functional consequence of manipulating the FAK protein level was investigated in human osteosarcoma cell lines. Immunohistochemical staining was used to detect FAK and pFAK in pathologic archived materials from 113 patients with primary osteosarcoma. Kaplan-Meier survival and Cox regression analyses were performed to evaluate the prognoses. The role of FAK in the cytological behavior of MG63 and 143B human osteosarcoma cell lines was studied via FAK protein knock down with siRNA. Cell proliferation, migration, invasiveness and apoptosis were assessed using the CCK8, Transwell and Annexin V/PI staining methods. Both FAK and pFAK were overexpressed in osteosarcoma. There were significant differences in overall survival between the FAK-/pFAK- and FAK+/pFAK- groups (P = 0.016), the FAK+/pFAK- and FAK+/pFAK+ groups (P = 0.012) and the FAK-/pFAK- and FAK+/pFAK+ groups (P < 0.001). There were similar differences in metastasis-free survival between groups. The Cox proportional hazards analysis showed that the FAK expression profile was an independent indicator of both overall and metastasis-free survival. siRNA-based knockdown of FAK not only dramatically reduced the migration and invasion of MG63 and 143B cells, but also had a distinct effect on osteosarcoma cell proliferation and apoptosis. These results collectively suggest that FAK overexpression and phosphorylation might predict more aggressive biologic behavior in osteosarcoma and may be an independent predictor of poor prognosis. PMID:26393679

  5. Repeated exposure to far infrared ray attenuates acute restraint stress in mice via inhibition of JAK2/STAT3 signaling pathway by induction of glutathione peroxidase-1.

    PubMed

    Tran, Thai-Ha Nguyen; Mai, Huynh Nhu; Shin, Eun-Joo; Nam, Yunsung; Nguyen, Bao Trong; Lee, Yu Jeung; Jeong, Ji Hoon; Tran, Hoang-Yen Phi; Cho, Eun-Hee; Nah, Seung-Yeol; Lei, Xin Gen; Nabeshima, Toshitaka; Kim, Nam Hun; Kim, Hyoung-Chun

    2016-03-01

    Exposure to far-infrared ray (FIR) has been shown to exert beneficial effects on cardiovascular and emotional disorders. However, the precise underlying mechanism mediated by FIR remains undetermined. Since restraint stress induces cardiovascular and emotional disorders, the present study investigated whether exposure to FIR affects acute restraint stress (ARS) in mice. c-Fos-immunoreactivity (IR) was significantly increased in the paraventricular hypothalamic nucleus (PVN) and dorsomedial hypothalamic nucleus (DMH) in response to ARS. The increase in c-Fos-IR parallels that in oxidative burdens in the hypothalamus against ARS. Exposure to FIR significantly attenuated increases in the c-Fos-IR, oxidative burdens and corticosterone level. ARS elicited decreases in GSH/GSSG ratio, cytosolic Cu/Zn-superoxide dismutase (SOD-1), glutathione peroxidase (GPx), and glutathione reductase (GR) activities. FIR-mediated attenuation was particularly observed in ARS-induced decrease in GPx, but not in SOD-1 or GR activity. Consistently, ARS-induced decreases in GPx-1-immunoreactivity in PVN and DMH, and decreases in GPx-1 expression in the hypothalamus were significantly attenuated by FIR. ARS-induced significant increases in phosphorylation of JAK2/STAT3, and nuclear translocation and DNA-binding activity of NFκB were observed in the hypothalamus. Exposure to FIR selectively attenuated phosphorylation of JAK2/STAT3, but did not diminish nuclear translocation and DNA-binding activity of NFκB, suggesting that JAK2/STAT3 constitutes a critical target for FIR-mediated pharmacological potential. ARS-induced increase in c-Fos-IR in the PVN and DMH of non-transgenic mice was significantly attenuated by FIR exposure or JAK2/STAT3 inhibitor AG490. GPx-1 overexpressing transgenic mice significantly protected increases in the c-Fos-IR and corticosterone level induced by ARS. However, neither FIR exposure nor AG490 significantly affected attenuations by genetic overexpression of GPx-1

  6. Ultrasound transmission attenuation tomography using energy-scaled amplitude ratios

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Shin, Junseob; Huang, Lianjie

    2016-04-01

    Ultrasound attenuation of breast tumors is related to their types and pathological states, and can be used to detect and characterize breast cancer. Particularly, ultrasound scattering attenuation can infer the margin properties of breast tumors. Ultrasound attenuation tomography quantitatively reconstructs the attenuation properties of the breast. Our synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays records both ultrasound reflection and transmission signals. We develop an ultrasound attenuation tomography method using ultrasound energy-scaled amplitude decays of ultrasound transmission signals and conduct ultrasound attenuation tomography using a known sound-speed model. We apply our ultrasound transmission attenuation tomography method to a breast phantom dataset, and compare the ultrasound attenuation tomography results with conventional beamforming ultrasound images obtained using reflection signals. We show that ultrasound transmission attenuation tomography complements beamforming images in identifying breast lesions.

  7. Resveratrol attenuates methylglyoxal-induced mitochondrial dysfunction and apoptosis by Sestrin2 induction.

    PubMed

    Seo, Kyuhwa; Seo, Suho; Han, Jae Yun; Ki, Sung Hwan; Shin, Sang Mi

    2014-10-15

    Methylglyoxal is found in high levels in the blood and other tissues of diabetic patients and exerts deleterious effects on cells and tissues. Previously, we reported that resveratrol, a polyphenol in grapes, induced the expression of Sestrin2 (SESN2), a novel antioxidant protein, and inhibited hepatic lipogenesis. This study investigated whether resveratrol protects cells from the methylglyoxal-induced toxicity via SESN2 induction. Methylglyoxal significantly induced cell death in HepG2 cells. However, cells pretreated with resveratrol were rescued from methylglyoxal-induced apoptosis. Resveratrol attenuated glutathione (GSH) depletion and ROS production promoted by methylglyoxal. Moreover, mitochondrial damage was observed by methylglyoxal treatment, but resveratrol restored mitochondrial function, as evidenced by the observed lack of mitochondrial permeability transition and increased ADP/ATP ratio. Resveratrol treatment inhibited SESN2 depletion elicited by methylglyoxal. SESN2 overexpression repressed methylglyoxal-induced mitochondrial dysfunction and apoptosis. Likewise, rotenone-induced cytotoxicity was not observed in SESN2 overexpressed cells. Furthermore, siRNA knockdown of SESN2 reduced the ability of resveratrol to prevent methylglyoxal-induced mitochondrial permeability transition. In addition, when mice were exposed to methylglyoxal after infection of Ad-SESN2, the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and GSH depletion by methylglyoxal in liver was reduced in Ad-SESN2 infected mice. Our results demonstrated that resveratrol is capable of protecting cells from methylglyoxal-induced mitochondrial dysfunction and oxidative stress via SESN2 induction. PMID:25151220

  8. BET protein inhibitor JQ1 attenuates Myc-amplified MCC tumor growth in vivo.

    PubMed

    Shao, Qiang; Kannan, Aarthi; Lin, Zhenyu; Stack, Brendan C; Suen, James Y; Gao, Ling

    2014-12-01

    Merkel cell carcinoma (MCC) is an aggressive neuroendocrine tumor of the skin currently with no cure. In this study, we have first demonstrated that c-Myc overexpression is common in MCC. By targeting c-Myc, bromodomain inhibitors have demonstrated antitumor efficacy in several preclinical human cancer models. Thus, we interrogated the role of c-Myc inhibition in MCC with c-Myc amplification by using the BET inhibitor JQ1. We have uncovered that c-Myc can be regulated by JQ1 in MCC cells with pathologic c-Myc activation. Moreover, JQ1 potently abrogates c-Myc expression in MCC cells and causes marked G1 cell-cycle arrest. Mechanistically, JQ1-induced cell-cycle arrest coincides with downregulation of cyclin D1 and upregulation of p21, p27, and p57, whereas JQ1 exerts no effect on apoptosis in MCC cells. Further knockdown of p21, p27, or p57 by shRNA partially protects cells from JQ1-induced cell-cycle arrest. In addition, c-Myc knockdown by shRNA generates significant cell-cycle arrest, suggesting that c-Myc overexpression plays a role in MCC pathogenesis. Most importantly, JQ1 significantly attenuates tumor growth in xenograft MCC mouse models. Our results provide initial evidence, indicating the potential clinical utility of BET protein inhibitors in the treatment of MCC with pathologic activation of c-Myc. PMID:25277525

  9. Procaine Attenuates Pain Behaviors of Neuropathic Pain Model Rats Possibly via Inhibiting JAK2/STAT3

    PubMed Central

    Li, Donghua; Yan, Yurong; Yu, Lingzhi; Duan, Yong

    2016-01-01

    Neuropathic pain (NPP) is the main culprit among chronic pains affecting the normal life of patients. Procaine is a frequently-used local anesthesia with multiple efficacies in various diseases. However, its role in modulating NPP has not been reported yet. This study aims at uncovering the role of procaine in NPP. Rats were pretreated with procaine by intrathecal injection. Then NPP rat model was induced by sciatic nerve chronic compression injury (CCI) and behavior tests were performed to analyze the pain behaviors upon mechanical, thermal and cold stimulations. Spinal expression of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) was detected by qRT-PCR and western blot. JAK2 was also overexpressed in procaine treated model rats for behavior tests. Results showed that procaine pretreatment improved the pain behaviors of model rats upon mechanical, thermal and cold stimulations, with the best effect occurring on the 15th day post model construction (p<0.05). Procaine also inhibited JAK2 and STAT3 expression in both mRNA (p<0.05) and protein levels. Overexpression of JAK2 increased STAT3 level and reversed the improvement effects of procaine in pain behaviors (p<0.01). These findings indicate that procaine is capable of attenuating NPP, suggesting procaine is a potential therapeutic strategy for treating NPP. Its role may be associated with the inhibition on JAK2/STAT3 signaling. PMID:27530113

  10. Cardiac myocyte follistatin-like 1 functions to attenuate hypertrophy following pressure overload.

    PubMed

    Shimano, Masayuki; Ouchi, Noriyuki; Nakamura, Kazuto; van Wijk, Bram; Ohashi, Koji; Asaumi, Yasuhide; Higuchi, Akiko; Pimentel, David R; Sam, Flora; Murohara, Toyoaki; van den Hoff, Maurice J B; Walsh, Kenneth

    2011-10-25

    Factors secreted by the heart, referred to as "cardiokines," have diverse actions in the maintenance of cardiac homeostasis and remodeling. Follistatin-like 1 (Fstl1) is a secreted glycoprotein expressed in the adult heart and is induced in response to injurious conditions that promote myocardial hypertrophy and heart failure. The aim of this study was to investigate the role of cardiac Fstl1 in the remodeling response to pressure overload. Cardiac myocyte-specific Fstl1-KO mice were constructed and subjected to pressure overload induced by transverse aortic constriction (TAC). Although Fstl1-KO mice displayed no detectable baseline phenotype, TAC led to enhanced cardiac hypertrophic growth and a pronounced loss in ventricular performance by 4 wk compared with control mice. Conversely, mice that acutely or chronically overexpressed Fstl1 were resistant to pressure overload-induced hypertrophy and cardiac failure. Fstl1-deficient mice displayed a reduction in TAC-induced AMP-activated protein kinase (AMPK) activation in heart, whereas Fstl1 overexpression led to increased myocardial AMPK activation under these conditions. In cultured neonatal cardiomyocytes, administration of Fstl1 promoted AMPK activation and antagonized phenylephrine-induced hypertrophy. Inhibition of AMPK attenuated the antihypertrophic effect of Fstl1 treatment. These results document that cardiac Fstl1 functions as an autocrine/paracrine regulatory factor that antagonizes myocyte hypertrophic growth and the loss of ventricular performance in response to pressure overload, possibly through a mechanism involving the activation of the AMPK signaling axis. PMID:21987816

  11. Suppression of Parkin enhances nigrostriatal and motor neuron lesion in mice over-expressing human-mutated tau protein.

    PubMed

    Menéndez, J; Rodríguez-Navarro, J A; Solano, R M; Casarejos, M J; Rodal, I; Guerrero, R; Sánchez, M P; Avila, J; Mena, M A; de Yébenes, J G

    2006-07-01

    Abnormal deposition of protein tau takes place in the brain of patients with several neurodegenerative diseases. Few of these patients present frontotemporal dementia with parkinsonism and amyotrophy (FTDPA-17), an autosomal dominant tauopathy related to mutations of the gene that codes for protein tau, localized in chromosome 17. The great majority of patients with tauopathies such as Alzheimer's disease, sporadic frontotemporal dementia or progressive supranuclear palsy do not show a Mendelian pattern of inheritance. We have occasionally seen tauopathies in patients with parkin mutations and, therefore, hypothesized that the protein tau interacts with parkin. We have tested that hypothesis in mice with combined genetic modifications of tau (over-expression of human tau with three mutations known to produce FTDPA-17) and parkin (deleted) proteins. Homozygote parkin null or over-expressing mutated-human tau mice have subtle behavioral and molecular abnormalities but do not express a clinical phenotype of neurodegenerative disease. Mice with combined homozygous mutations of these two genes show progressively abnormal walking already noticeable at 3 months of age, loss of dopamine and dopamine markers in striatum, nuclear tau immunoreactive deposits in motor neurons of the spinal cord, abnormal expression of glial markers and enhanced levels of pro-apoptotic proteins; findings that were absent or less pronounced in homozygote animals with deletions of parkin or over-expression of tau. The double transgenic mice do not express normal mechanisms of adaptation to stress such as increased levels of GSH and Hsp-70. In addition, they have reduced levels of CHIP-Hsc70, a complex known to attenuate aggregation of tau and to enhance ubiquitination of phosphorylated tau. We have found high levels of phosphorylated tau in parkin-/-+tau(VLW) mice and a relative decrease of the inactivated pSer9 to total GSK-3 levels. Our data reveal that there are interactions between tau and

  12. Ginger extract diminishes chronic fructose consumption-induced kidney injury through suppression of renal overexpression of proinflammatory cytokines in rats

    PubMed Central

    2014-01-01

    Background The metabolic syndrome is associated with an increased risk of development and progression of chronic kidney disease. Renal inflammation is well known to play an important role in the initiation and progression of tubulointerstitial injury of the kidneys. Ginger, one of the most commonly used spices and medicinal plants, has been demonstrated to improve diet-induced metabolic abnormalities. However, the efficacy of ginger on the metabolic syndrome-associated kidney injury remains unknown. This study aimed to investigate the impact of ginger on fructose consumption-induced adverse effects in the kidneys. Methods The fructose control rats were treated with 10% fructose in drinking water over 5 weeks. The fructose consumption in ginger-treated rats was adjusted to match that of fructose control group. The ethanolic extract of ginger was co-administered (once daily by oral gavage). The indexes of lipid and glucose homeostasis were determined enzymatically, by ELISA and/or histologically. Gene expression was analyzed by Real-Time PCR. Results In addition to improve hyperinsulinemia and hypertriglyceridemia, supplement with ginger extract (50 mg/kg) attenuated liquid fructose-induced kidney injury as characterized by focal cast formation, slough and dilation of tubular epithelial cells in the cortex of the kidneys in rats. Furthermore, ginger also diminished excessive renal interstitial collagen deposit. By Real-Time PCR, renal gene expression profiles revealed that ginger suppressed fructose-stimulated monocyte chemoattractant protein-1 and its receptor chemokine (C-C motif) receptor-2. In accord, overexpression of two important macrophage accumulation markers CD68 and F4/80 was downregulated. Moreover, overexpressed tumor necrosis factor-alpha, interleukin-6, transforming growth factor-beta1 and plasminogen activator inhibitor (PAI)-1 were downregulated. Ginger treatment also restored the downregulated ratio of urokinase-type plasminogen activator to PAI-1

  13. GPR measurements of attenuation in concrete

    SciTech Connect

    Eisenmann, David Margetan, Frank J. Pavel, Brittney

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  14. Electrically Tunable Hot-Silicon Terahertz Attenuator

    NASA Astrophysics Data System (ADS)

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel; Kono, Junichiro

    2015-03-01

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 103. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and 550 K, with the corresponding free-carrier density adjusted between 1011 cm-3 and 1017 cm-3. This `hot-silicon'-based terahertz attenuator works most effectively at 450-550 K (corresponding to a DC voltage variation of only 7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1-2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator, but they exhibited slightly different behaviors before a dramatic transmission drop at 450-550 K: intrinsic silicon wafers showed a monotonic transmission decrease with temperature while doped wafers showed a slight increase in transmission before the drop. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers. This work was supported by the National Science Foundation through Grant No. OISE-0968405.

  15. Electrically tunable hot-silicon terahertz attenuator

    SciTech Connect

    Wang, Minjie; Vajtai, Robert; Ajayan, Pulickel M.; Kono, Junichiro

    2014-10-06

    We have developed a continuously tunable, broadband terahertz attenuator with a transmission tuning range greater than 10{sup 3}. Attenuation tuning is achieved electrically, by simply changing the DC voltage applied to a heating wire attached to a bulk silicon wafer, which controls its temperature between room temperature and ∼550 K, with the corresponding free-carrier density adjusted between ∼10{sup 11 }cm{sup −3} and ∼10{sup 17 }cm{sup −3}. This “hot-silicon”-based terahertz attenuator works most effectively at 450–550 K (corresponding to a DC voltage variation of only ∼7 V) and completely shields terahertz radiation above 550 K in a frequency range of 0.1–2.5 THz. Both intrinsic and doped silicon wafers were tested and demonstrated to work well as a continuously tunable attenuator. All behaviors can be understood quantitatively via the free-carrier Drude model taking into account thermally activated intrinsic carriers.

  16. ALPHA ATTENUATION DUE TO DUST LOADING

    SciTech Connect

    Dailey, A; Dennis Hadlock, D

    2007-08-09

    Previous studies had been done in order to show the attenuation of alpha particles in filter media. These studies provided an accurate correction for this attenuation, but there had not yet been a study with sufficient results to properly correct for attenuation due to dust loading on the filters. At the Savannah River Site, filter samples are corrected for attenuation due to dust loading at 20%. Depending on the facility the filter comes from and the duration of the sampling period, the proper correction factor may vary. The objective of this study was to determine self-absorption curves for each of three counting instruments. Prior work indicated significant decreases in alpha count rate (as much as 38%) due to dust loading, especially on filters from facilities where sampling takes place over long intervals. The alpha count rate decreased because of a decrease in the energy of the alpha. The study performed resulted in a set of alpha absorption curves for each of three detectors. This study also took into account the affects of the geometry differences in the different counting equipment used.

  17. Monitored Natural Attenuation Case Study Evaluations

    EPA Science Inventory

    Monitored natural attenuation (MNA) has been selected as a component of groundwater remedies at several sites with metals and/or radionuclide contamination. An overview of the site characterization effort and remedy performance will be provided for several sites where MNA was se...

  18. Contaminant Attenuation Processes at Mining Sites

    EPA Science Inventory

    Monitored natural attenuation is sometimes used in combination with active treatment technologies to achieve site-specific remediation objectives. The global imprint of acid drainage problems at mining sites, however, is a clear reminder that in most cases natural processes are ...

  19. Mycoplasma gallisepticum: Control by live attenuated vaccines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercially available attenuated strains of Mycoplasma gallisepticum (MG) are commonly used within the layer industry to control MG-induced mycoplasmosis. Among these are two live MG vaccines derived from the moderately pathogenic MG “chick F” strain. In the present study, the commercially availa...

  20. Monitored Natural Attenuation of Chlorinated Solvent Plumes

    EPA Science Inventory

    The chapter provides a synopsis of current applications of monitored natural attenuation (MNA) as a remedy at hazardous waste sites, and reviews the expectations of the U.S. Environmental Protection Agency for MNA as a remedy. It provides a detailed case study of the application...

  1. Touch Attenuates Infants' Physiological Reactivity to Stress

    ERIC Educational Resources Information Center

    Feldman, Ruth; Singer, Magi; Zagoory, Orna

    2010-01-01

    Animal studies demonstrate that maternal touch and contact regulate infant stress, and handling during periods of maternal deprivation attenuates the stress response. To measure the effects of touch on infant stress reactivity during simulated maternal deprivation, 53 dyads were tested in two paradigms: still-face (SF) and still-face with maternal…

  2. Copper deficiency attenuates endothelial nitric oxide release

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The attenuation of endothelium-dependent nitric oxide (NO)-mediated vasodilation is a consistent finding in both conduit and resistance vessels during dietary copper deficiency. While the effect is well established, evidence for the mechanism is still circumstantial. This study was designed to deter...

  3. NATURAL ATTENUATION OF EXPLOSIVES IN GROUNDWATER

    EPA Science Inventory

    Monitored natural attenuation (MNA) is a remedial alternative for explosives contaminated groundwater at sites where a decline in contaminant mass can be demonstrated to occur at a rate sufficient to ensure the protection of potential receptors. MNA is not a no action alternative...

  4. Brucellosis: The Case for Live, Attenuated Vaccines

    PubMed Central

    Ficht, Thomas A.; Kahl-McDonagh, Melissa M.; Arenas-Gamboa, Angela M.; Rice-Ficht, Allison C.

    2009-01-01

    The successful control of animal brucellosis and associated reduction in human exposure has limited the development of human brucellosis vaccines. However, the potential use of Brucella in bioterrorism or biowarfare suggests that direct intervention strategies are warranted. Although the dominant approach has explored the use of live attenuated vaccines, side-effects associated with their use has prevented widespread use in humans. Development of live, attenuated Brucella vaccines that are safe for use in humans has focused on the deletion of important genes required for survival. However, the enhanced safety of deletion mutants is most often associated with reduced efficacy. For this reason recent efforts have sought to combine the optimal features of a attenuated live vaccine that is safe, free of side effects and efficacious in humans with enhanced immune stimulation through microencapsulation. The competitive advantages and innovations of this approach are: (1) use of a highly attenuated, safe, gene knockout, live Brucella mutants; (2) manufacturing with unique disposable closed system technologies, and (3) oral/intranasal delivery in a novel microencapsulation-mediated controlled release formula to optimally provide the long term mucosal immunostimulation required for protective immunity. Based upon preliminary data, it is postulated that such vaccine delivery systems can be storage stable, administered orally or intranasally, and generally applicable to a number of agents. PMID:19837284

  5. Attenuation of sound waves in drill strings

    SciTech Connect

    Drumheller, D.S. )

    1993-10-01

    During drilling of deep wells, digital data are often transmitted from sensors located near the drill bit to the surface. Development of a new communication system with increased data capacity is of paramount importance to the drilling industry. Since steel drill strings are used, transmission of these data by elastic carrier waves traveling within the drill pipe is possible, but the potential communication range is uncertain. The problem is complicated by the presence of heavy-threaded tool joints every 10 m, which form a periodic structure and produce classical patterns of passbands and stop bands in the wave spectra. In this article, field measurements of the attenuation characteristics of a drill string in the Long Valley Scientific Well in Mammoth Lakes, California are presented. Wave propagation distances approach 2 km. A theoretical model is discussed which predicts the location, width, and attenuation of the passbands. Mode conversion between extensional and bending waves, and spurious reflections due to deviations in the periodic spacings of the tool joints are believed to be the sources of this attenuation. It is estimated that attenuation levels can be dramatically reduced by rearranging the individual pipes in the drill string according to length. 7 refs., 20 figs., 4 tabs.

  6. Attenuation of PRRSV by chimera construction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two genetically distinct infectious recombinant virus clones (pMLV, constructed from Ingelvac® PRRS MLV and pMN184, constructed from virulent strain MN184) were developed to study attenuation of contemporary PRRSV. Two reciprocal chimeric clones (pMLVORF1/MN184 and pMN184ORF1/MLV) were then constru...

  7. Sn Attenuation in the Middle-East

    NASA Astrophysics Data System (ADS)

    Ku, W.; Kaviani, A.; Bao, X.; Sandvol, E. A.

    2015-12-01

    The Turkish-Iranian Plateau and Zagros Mountains, a dominant tectonic feature in the Middle-East, were formed as a result of the continental collision (between Arabian plate and Eurasia plates). In order to better understand the nature of the lithosphere mantle and origin of the measure seismic velocity anomalies we have made detailed measurements of the uppermost mantle attenuation using the high frequency regional phase Sn. In order to measure Sn attenuation. We have collected a large data set consisting of 18 years (1995-2012) of waveforms recorded by 305 permanent and temporary stations. We used a bandpass filter (0.1-0.5Hz) to identify efficient longer period Sn phases. In order to determine Sn Q we applied a Two Station Method (TSM) and Reverse Two Station Method (RTM) to eliminate the source effects. We have used the LSQR algorithm to tomographically map Sn attenuation tomography across the Middle-East. We also determined the Sn propagation efficiencies visually and tomographically map qualitatively assigned Sn propagation efficiencies across the Middle-East. The Sn Attenuation Tomography show moderately low Q values beneath the Turkish-Iranian Plateau (~250) and high Q values beneath the south Caspian sea (~400) and Arabian shield (~400). We also observe high Q values beneath the Zagros mountains (~450) that is consistent with the Arabian plate underthrusting beneath the Eurasia plate. The Sn Efficiency Tomography shows high attenuation within the Turkish-Iranian Plateau and low attenuation in the Arabian Plate and across the Caspian Sea. This is consistent with prior studies that suggest a hot and thin lithosphere beneath the Turkish-Iranian Plateau and it also suggests that intrinsic attenuation is the dominant component in Sn Q across the Turkish-Iranian Plateau. Due to the signal-to-noise criterion to select amplitudes and the efficiency criterion to select two-station and reverse-two-station paths for the inversion, the data are left-censored and the

  8. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    PubMed Central

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well as registration accuracy between SPECT and CT can be influenced by several factors. Here we investigate how such inaccuracies influence micro-SPECT quantification. Methods Effects of (1) misalignments between micro-SPECT and micro-CT through shifts and rotation, (2) globally altered attenuation coefficients and (3) combinations of these were evaluated. Tests were performed with a NEMA NU 4–2008 phantom and with rat cadavers containing sources with known activity. Results Changes in measured activities within volumes of interest in phantom images ranged from <1.5% (125I) and <0.6% (201Tl, 99mTc and 111In) for 1-mm shifts to <4.5% (125I) and <1.7% (201Tl, 99mTc and 111In) with large misregistration (3 mm). Changes induced by 15° rotation were smaller than those by 3-mm shifts. By significantly altering attenuation coefficients (±10%), activity changes of <5.2% for 125I and <2.7% for 201Tl, 99mTc and 111In were induced. Similar trends were seen in rat studies. Conclusions While getting sufficient accuracy of attenuation maps in clinical imaging is highly challenging, our results indicate that micro-SPECT quantification is quite robust to various imperfections of attenuation maps. PMID:23369630

  9. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions.

    PubMed

    Wang, Xiaoxia; Shen, E; Wang, Yanzhe; Li, Junhui; Cheng, Dongsheng; Chen, Yuqiang; Gui, Dingkun; Wang, Niansong

    2016-01-01

    Glomerular mesangial cells (MCs) hypertrophy is one of the earliest pathological abnormalities in diabetic nephropathy (DN), which correlates with eventual glomerulosclerosis. This study aimed to investigate the therapeutic role of miRNA in diabetic glomerular MCs hypertrophy and synthesis of extracellular matrix (ECM). Microarray analysis revealed a significant up-regulation of miR-214 in the renal cortex of diabetic db/db mice, which was confirmed by real-time PCR of isolated glomeruli and primary cultured human MCs. In vitro studies showed that inhibition of miR-214 significantly reduced expression of α-SMA, SM22 and collagen IV, and partially restored phosphatase and tensin homolog (PTEN) protein level in high glucose-stimulated human MCs. Furthermore, we identified PTEN as the target of miR-214 by a luciferase assay in HEK293 cells. Moreover, overexpression of PTEN ameliorated miR-214-mediated diabetic MC hypertrophy while knockdown of PTEN mimicked the MC hypertrophy. In vivo study further confirmed that inhibition of miR-214 significantly decreased the expression of SM22, α-SMA and collagen IV, partially restored PTEN level, and attenuated albuminuria and mesangial expansion in db/db mice. In conclusion, cross talk between miR-214 and PTEN attenuated glomerular hypertrophy under diabetic conditions in vivo and in vitro. Therefore, miR-214 may represent a novel therapeutic target for DN. PMID:27549568

  10. Calpain Genetic Disruption and HSP90 Inhibition Combine To Attenuate Mammary Tumorigenesis.

    PubMed

    Grieve, Stacy; Gao, Yan; Hall, Christine; Hu, Jing; Greer, Peter A

    2016-08-01

    Calpain is an intracellular Ca(2+)-regulated protease system whose substrates include proteins involved in proliferation, survival, migration, invasion, and sensitivity to therapeutic drugs. Genetic disruption of calpain attenuated the tumorigenic potential of breast cancer cells and hypersensitized cells to 17AAG, an inhibitor of the molecular chaperone HSP90. Calpain-1 or -2 overexpression rendered cells resistant to 17AAG, whereas downregulation or inhibition of calpain-1/2 led to increased cell death in multiple breast cancer cell lines, including models of HER2(+) (SKBR3) and triple-negative basal-cell-like (MDA-MB-231) breast cancer. In an MDA-MB-231 orthotopic xenograft model, calpain knockdown or 17AAG treatment independently attenuated tumor growth and metastasis, while the combination was most effective. Calpain knockdown was associated with increased 17AAG-induced degradation of the HSP90 clients cyclin D1 and AKT and multidrug resistance protein 2, which correlated with increased expression of antimitogenic p27(KIP1) and proapoptotic BIM proteins. Like other therapeutics, 17AAG can be effluxed by specific ABC transporters. Calpain expression positively correlated with the expression of P glycoprotein in mouse embryonic fibroblasts. Importantly, we show that calpain affects ABC transporter function and efflux of clinically relevant doxorubicin. These observations provide a compelling rationale for exploring the combination of calpain inhibition with new or existing cancer therapeutics. PMID:27215381

  11. Herbal compound Naoshuantong capsule attenuates retinal injury in ischemia/reperfusion rat model by inhibiting apoptosis

    PubMed Central

    Huang, Chuangxin; Gao, Yang; Yu, Qiang; Feng, Liangqi

    2015-01-01

    Objectives: Ischemic ophthalmopathy threatens people’s lives and health. The herbal compound medication, Naoshuantong capsule, plays a critical role in the treatment of cardiac-cerebral vascular diseases; however, the roles and mechanisms of action of Naoshuantong capsule in ischemic ophthalmopathy is unknown. The objective of the present study was to determine the effect and mechanism of action of Naoshuantong capsule on ischemic ophthalmopathy in rats. Methods: In this study a rat model of ischemic ophthalmopathy was constructed using a high intra-ocular pressure-induced ischemia/reperfusion model. The effects of Naoshuantong capsule on ischemic ophthalmopathy were detected using electroretinography, and changes in retinal ultrastructure were examined by HE staining and electron microscopy. The mechanism of action of Naoshuantong capsule on ischemic ophthalmopathy was explored by immunofluorescence and real-time PCR. Results: Rat models of ischemic ophthalmopathy were successfully constructed by intra-ocular hypertension, which presented decreased amplitudes of the electroretinogram (ERG-b) wave and total retinal thickness, intracellular damage, increased expression of Bax and caspase 3, and decreased expression of Bcl-2. Treatment with Naoshuantong capsule attenuated the changes and damage to the ischemic retina in the rat model, inhibited the over-expression of Bax and caspase 3, and increased the expression of Bcl-2. Conclusion: Our study indicated that Naoshuantong capsule attenuates retinal damage in rat models of ischemic ophthalmopathy, possibly by inhibiting apoptosis. PMID:26550135

  12. MTMR4 attenuates transforming growth factor beta (TGFbeta) signaling by dephosphorylating R-Smads in endosomes.

    PubMed

    Yu, Junjing; Pan, Lei; Qin, Xincheng; Chen, Hua; Xu, Youli; Chen, Yeguang; Tang, Hong

    2010-03-12

    Homeostasis of Smad phosphorylation at its C-terminal SXS motif is essential for transforming growth factor beta (TGFbeta) signaling. Whereas it is known that TGFbeta signaling can be terminated by phosphatases, which dephosphorylate R-Smads in the nucleus, it is unclear whether there are any cytoplasmic phosphatase(s) that can attenuate R-Smad phosphorylation and nuclear translocation. Here we demonstrate that myotubularin-related protein 4 (MTMR4), a FYVE domain-containing dual-specificity protein phosphatase (DSP), attenuates TGFbeta signaling by reducing the phosphorylation level of R-Smads in early endosomes. Co-immunoprecipitation experiments showed that endogenous MTMR4 interacts with phosphorylated R-Smads, and that this interaction is correlated with dephosphorylation of R-Smads. Further analysis showed that overexpression of MTMR4 resulted in the sequestration of activated Smad3 in the early endosomes, thus reducing its nuclear translocation. However, both point mutations at the conserved catalytic site of the phosphatase (MTMR4-C407S) and small interference RNA of endogenous Mtmr4 expression led to sustained Smad3 activation. This work therefore suggests that MTMR4 plays an important role in preventing the overactivation of TGFbeta signaling by dephosphorylating activated R-Smads that have been trafficked to early endosomes. PMID:20061380

  13. Cross talk between miR-214 and PTEN attenuates glomerular hypertrophy under diabetic conditions

    PubMed Central

    Wang, Xiaoxia; Shen, E.; Wang, Yanzhe; Li, Junhui; Cheng, Dongsheng; Chen, Yuqiang; Gui, Dingkun; Wang, Niansong

    2016-01-01

    Glomerular mesangial cells (MCs) hypertrophy is one of the earliest pathological abnormalities in diabetic nephropathy (DN), which correlates with eventual glomerulosclerosis. This study aimed to investigate the therapeutic role of miRNA in diabetic glomerular MCs hypertrophy and synthesis of extracellular matrix (ECM). Microarray analysis revealed a significant up-regulation of miR-214 in the renal cortex of diabetic db/db mice, which was confirmed by real-time PCR of isolated glomeruli and primary cultured human MCs. In vitro studies showed that inhibition of miR-214 significantly reduced expression of α-SMA, SM22 and collagen IV, and partially restored phosphatase and tensin homolog (PTEN) protein level in high glucose-stimulated human MCs. Furthermore, we identified PTEN as the target of miR-214 by a luciferase assay in HEK293 cells. Moreover, overexpression of PTEN ameliorated miR-214-mediated diabetic MC hypertrophy while knockdown of PTEN mimicked the MC hypertrophy. In vivo study further confirmed that inhibition of miR-214 significantly decreased the expression of SM22, α-SMA and collagen IV, partially restored PTEN level, and attenuated albuminuria and mesangial expansion in db/db mice. In conclusion, cross talk between miR-214 and PTEN attenuated glomerular hypertrophy under diabetic conditions in vivo and in vitro. Therefore, miR-214 may represent a novel therapeutic target for DN. PMID:27549568

  14. Over-expression of Multi-heme C-type Cytochromes

    SciTech Connect

    Shi, Liang; Lin, Chiann Tso; Markillie, Lye Meng; Squier, Thomas C.; Hooker, Brian S.

    2005-02-01

    ABSTRACT-Because they contain covalently attached hemes, c-type cytochromes, especially those with multi-heme, are difficult to over-express. The gram negative bacterium Shewanella oneidensis MR-1 has been successfully used for over-expression of multi-heme c-type cytochromes...

  15. NF-E2 Overexpression Delays Erythroid Maturation and Increases Erythrocyte Production

    PubMed Central

    Mutschler, Manuel; Magin, Angela S.; Buerge, Martina; Roelz, Roland; Schanne, Daniel H.; Will, Britta; Pilz, Ingo H.; Migliaccio, Anna Rita; Pahl, Heike L.

    2009-01-01

    Summary The transcription factor Nuclear Factor-Erythroid 2 (NF-E2) is overexpressed in the vast majority of patients with polycythaemia vera (PV). In murine models, NF-E2 overexpression increases proliferation and promotes cellular viability in the absence of erythropoietin (EPO). EPO-independent growth is a hallmark of PV. We therefore hypothesized that NF-E2 overexpression contributes to erythrocytosis, the pathognomonic feature of PV. Consequently, we investigated the effect of NF-E2 overexpression in healthy CD34+ cells. NF-E2 overexpression led to a delay in erythroid maturation, manifested by a belated appearance of glycophorin A-positive erythroid precursors. Maturation delay was similarly observed in primary PV patient erythroid cultures compared to healthy controls. Protracted maturation led to a significant increase in the accumulated number of erythroid cells both in PV cultures and in CD34+ cells overexpressing NF-E2. Similarly, NF-E2 overexpression altered erythroid colony formation, leading to an increase in BFU-E formation. These data indicate that NF-E2 overexpression delays the early phase of erythroid maturation, resulting in an expansion of erythroid progenitors, thereby increasing the number of erythrocytes derived from one CD34+ cell. These data propose a role for NF-E2 in mediating the erythrocytosis of PV. PMID:19466964

  16. Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice

    PubMed Central

    Chartoumpekis, Dionysios V.; Palliyaguru, Dushani L.; Wakabayashi, Nobunao; Khoo, Nicholas K.H.; Schoiswohl, Gabriele; O'Doherty, Robert M.; Kensler, Thomas W.

    2015-01-01

    Objective The Notch family of intermembrane receptors is highly conserved across species and is involved in cell fate and lineage control. Previous in vitro studies have shown that Notch may inhibit adipogenesis. Here we describe the role of Notch in adipose tissue by employing an in vivo murine model which overexpresses Notch in adipose tissue. Methods Albino C57BL/6J RosaNICD/NICD::Adipoq-Cre (Ad-NICD) male mice were generated to overexpress the Notch intracellular domain (NICD) specifically in adipocytes. Male RosaNICD/NICD mice were used as controls. Mice were evaluated metabolically at the ages of 1 and 3 months by assessing body weights, serum metabolites, body composition (EchoMRI), glucose tolerance and insulin tolerance. Histological sections of adipose tissue depots as well as of liver were examined. The mRNA expression profile of genes involved in adipogenesis was analyzed by quantitative real-time PCR. Results The Ad-NICD mice were heavier with significantly lower body fat mass compared to the controls. Small amounts of white adipose tissue could be seen in the 1-month old Ad-NICD mice, but was almost absent in the 3-months old mice. The Ad-NICD mice also had higher serum levels of glucose, insulin, triglyceride and non-esterified fatty acids. These differences were more prominent in the older (3-months) than in the younger (1-month) mice. The Ad-NICD mice also showed severe insulin resistance along with a steatotic liver. Gene expression analysis in the adipose tissue depots showed a significant repression of lipogenic (Fasn, Acacb) and adipogenic pathways (C/ebpα, C/ebpβ, Pparγ2, Srebf1). Conclusions Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for

  17. METHODS AND ANALYSES FOR IMPLEMENTING NATURAL ATTENUATION PROTOCOLS

    EPA Science Inventory

    Technical protocols for evaluating natural attenuation at petroleum hydrocarbon and chlorinated solvent contaminated sites specify the analysis of electron acceptors and metabolic by-products for identifying and quantifying natural attenuation processes. However, these protocols ...

  18. INDIRECT MEASUREMENT OF BIOLOGICAL ACTIVITY TO MONITOR NATURAL ATTENUATION

    EPA Science Inventory

    The remediation of ground water contamination by natural attenuation, specifically biodegradation, requires continual monitoring. This research is aimed at improving methods for evaluating the long-term performance of Monitored Natural Attenuation (MNA), specifically changes in ...

  19. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  20. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model.

    PubMed

    Zhu, Ya-Juan; Peng, Ke; Meng, Xiao-Wen; Ji, Fu-Hai

    2016-08-01

    Sustained neuroinflammation contributes to the pathogenesis of postoperative cognitive dysfunction. Dexmedetomidine, a selective α-2 adrenergic receptor agonist, exhibits a protective role in the brain. This study investigated whether dexmedetomidine pretreatment attenuates neuroinflammation induced by tibial fracture in rats, as well as the mechanism by which dexmedetomidine provides its neuroprotection. In our study, we observed that tibial fracture significantly increased the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) and the expression of nuclear factor-kappa B (NF-κB) in the hippocampus. Overexpression of microglial (CD11b) and astrocytic (GFAP) responses to injury were observed in the hippocampus. Dexmedetomidine pretreatment significantly suppressed the inflammatory responses, as evidenced by lower TNF-α and IL-1β levels, significantly inhibited NF-κB activity, and alleviated overexpression of microglia and astrocytes in the hippocampus. However, pretreatment with dexmedetomidine failed to attenuate cytokine responses and activity of NF-κB, CD11b and GFAP after vagotomy or treatment with methyllycaconitine, an α-7 nicotinic acetylcholine receptor (α7nAChR) antagonist. These results suggest that pretreatment with dexmedetomidine may attenuate neuroinflammation caused by tibial fracture in rats through vagal-dependent and α7nAChR-dependent mechanisms. PMID:27163720

  1. Protection of normal human reconstructed epidermis from UV by catalase overexpression.

    PubMed

    Rezvani, H R; Cario-André, M; Pain, C; Ged, C; deVerneuil, H; Taïeb, A

    2007-02-01

    Reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation are counterbalanced by endogenous antioxidant systems. To test the hypothesis of a novel photoprotective approach, we irradiated epidermis reconstructed with normal human keratinocytes overexpressing sustainably lentivirus-mediated catalase (CAT), copper/zinc superoxide dismutase (CuZnSOD) or manganese superoxide dismutase (MnSOD) enzymes. We found that following UVB irradiation there was a marked decrease in sunburn cell formation, caspase-3 activation and p53 accumulation in human reconstructed epidermis overexpressing CAT. Moreover, UVA-induced hypertrophy and DNA oxidation (8-oxodeoxyguanosine) were decreased by CAT overexpression. These effects were not achieved by overexpression of CuZnSOD or MnSOD. In conclusion, vector-mediated CAT overexpression could be a promising photoprotective tool against deleterious effects of UV irradiation such skin cancer especially in monogenic/polygenic photosensitive disorders characterized by ROS accumulation. PMID:17053817

  2. Reg3g overexpression promotes β cell regeneration and induces immune tolerance in nonobese-diabetic mouse model.

    PubMed

    Xia, Fei; Cao, Hui; Du, Jiao; Liu, Xiulan; Liu, Yang; Xiang, Ming

    2016-06-01

    The regenerating islet-derived gene was first isolated in regenerated pancreas tissues, greatly contributing to β cell regeneration. It is an anti-inflammatory in response to cellular stress. This encouraged us to investigate the exact role of a novel member of Reg family, regenerating islet-derived gene γ, in type 1 diabetes of nonobese-diabetic mice. For this, Reg3g gene was overexpressed in pancreatic islets, and conferred beneficial effects on β cell regeneration through activating the Janus kinase 2/signal transducer and activator of transcription 3/nuclear factor κB signaling pathway. Lentiviral vector-encoding regenerating islet-derived gene γ treatment also decreased lymphocyte infiltrates of the intra-islet and peri-islet by inducing both differentiation of regulatory T cell and immature dendritic cells of tolerogenic properties, which attenuated autoimmunity. This treatment further contributed to rebalanced levels of type 1/2 helper T cell cytokines and elevated α1-antitrypsin levels in the serum. These results were not observed in phosphate-buffered saline-treated mice or in lentivirus-control mice. We have shown, for the first time, to our knowledge, that regenerating islet-derived gene γ promotes β cell regeneration and preserves β cells from autoimmunity damage by increasing regulatory T cell differentiation and inducing tolerated dendritic cells. This regenerating islet-derived gene γ infusion could probably be developed into an optimal gene therapy for the prevention and reversal of type 1 diabetes. PMID:26667474

  3. Adenovirus-mediated over-expression of Septin4 ameliorates hepatic fibrosis in mouse livers infected with Schistosoma japonicum.

    PubMed

    He, Xue; Bao, Jing; Chen, Jinling; Sun, Xiaolei; Wang, Jianxin; Zhu, Dandan; Song, Ke; Peng, Wenxia; Xu, Tianhua; Duan, Yinong

    2015-12-01

    Septin4 (Sept4) belongs to Septin family and may be involved in apoptosis, vesicle trafficking and other cell processes. In this study, we attempted to investigate the effect of Sept4 in hepatic fibrosis induced by Schistosoma japonicum. ICR mice infected with S. japonicum for 12weeks were treated with PBS, Ad-ctr and Ad-Sept4, respectively. All mice were killed at 2weeks after injection, and the changes in the fibrotic livers were detected via H&E staining, Sirius red staining, qRT-PCR, western blot and TUNEL analysis. In addition, pcDNA3.1-Sept4 plasmid was transfected into LX-2 cells to observe the effect of Sept4 on apoptosis of HSCs in vitro. Ad-Sept4 could ameliorate liver fibrosis, as detected by H&E staining and Sirius red staining. The number of TUNEL-positive cells was increased in the Ad-Sept4 treated group. The expression of Sept4 and cleaved-caspase-3 were all augmented, while the expression of α-SMA, Col1α1 and IL-13 were reduced in the Ad-Sept4 treated group, compared with that expressed in the Ad-ctr group. Over-expression of Sept4 in LX-2 cells could promote apoptosis of LX-2 cells in vitro. In conclusion, Ad-Sept4 can attenuate the development of liver fibrosis induced by S. japonicum through apoptosis. PMID:26190030

  4. Finite change analysis of glycolytic intermediates in tuber tissue of lines of transgenic potato (Solanum tuberosum) overexpressing phosphofructokinase.

    PubMed Central

    Thomas, S; Mooney, P J; Burrell, M M; Fell, D A

    1997-01-01

    Genetically engineered organisms overexpressing phosphofructokinase (PFK), a supposed 'regulatory' step of glycolysis, often show little or no measurable change in glycolytic or respiratory flux, although the concentrations of glycolytic intermediates may change. We have used the finite change theory of Metabolic Control Analysis (MCA) to analyse the concentrations of glycolytic metabolites in aged disks of tuber tissue from four lines of transgenic potatoes expressing different amounts of PFK that, under aerobic conditions, showed statistically indistinguishable rates of respiration. The constancy of the metabolites' concentration deviation indices for different increases in PFK expression indicated that the metabolite changes from a graded series, excluding the possibility of anomalous behaviour that might be observed in a single transgenic line. Consequently we were able to use the finite change method to validate the results of an MCA model of tuber glycolysis [Thomas, Mooney, Burrell and Fell (1997) Biochem. J. 322, 119-127]. Furthermore the metabolite changes with PFK activity are evidence that near-equilibrium steps do not transmit increased substrate concentrations down the pathway without attenuation. Our results support the view that flux increase by activation of a single enzyme early in the pathway will, contrary to expectations, be of limited effectiveness in achieving flux increases. PMID:9078250

  5. Overexpression of Eg5 correlates with high grade astrocytic neoplasm.

    PubMed

    Liu, Liqiong; Liu, Xichun; Mare, Marcus; Dumont, Aaron S; Zhang, Haitao; Yan, Dong; Xiong, Zhenggang

    2016-01-01

    To investigate the relationship between Eg5 and histopathological grade of astrocytoma, Eg5 expression was evaluated by immunohistochemical examination on 88 specimens including 25 cases of glioblastoma (WHO grade IV), 22 cases of anaplastic astrocytoma (WHO grade III), 20 cases of diffuse astrocytoma (WHO grade II), and 21 cases of pilocytic astrocytoma (WHO grade I). The histopathological characteristics and Eg5 expression level of each tumor were assessed and statistically analyzed. Astrocytic tumors exhibited significant correlation of expression of Eg5 with higher WHO histopathological grades (p < 0.001). Eg5 is expressed in 51-98% (mean 76.88%) of neoplastic cells in glioblastoma, 34-57% (mean 43.59%) of neoplastic cells in anaplastic astrocytoma, 6-36% (mean 18.60%) of neoplastic cells in diffuse astrocytoma, and 2-28% (mean 13.48%) of neoplastic cells in pilocytic astrocytoma. In conclusion, overexpression of Eg5 associates with high-grade astrocytic neoplasm, and it may represent an independent diagnostic and prognostic factor in grading astrocytic tumors and predicting prognosis of astrocytic tumor patients. PMID:26456023

  6. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  7. Overexpression and topology of bacterial oligosaccharyltransferase PglB

    SciTech Connect

    Li, Lei; Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, OH 43210 ; Woodward, Robert; Ding, Yan; Liu, Xian-wei; Yi, Wen; Bhatt, Veer S.; Chen, Min; Zhang, Lian-wen; Wang, Peng George

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N{sub cyt}-C{sub peri} topology with 11 transmembrane segments for the STT3 family proteins.

  8. Overexpression and topology of bacterial oligosaccharyltransferase PglB.

    PubMed

    Li, Lei; Woodward, Robert; Ding, Yan; Liu, Xian-wei; Yi, Wen; Bhatt, Veer S; Chen, Min; Zhang, Lian-wen; Wang, Peng George

    2010-04-16

    Campylobacter jejuni contains a post-translational N-glycosylation system in which a STT3 homologue, PglB, functions as the oligosaccharyltransferase. Herein, we established a method for obtaining relatively large quantities of homogenous PglB proteins. PglB was overexpressed in Escherichia coli C43(DE3) at a level of 1 mg/L cell cultures. The activity of purified PglB was verified using a chemically synthesized sugar donor: N-acetylgalactosamine-diphospho-undecaprenyl (GalNAc-PP-Und) and a synthesized peptide acceptor. The result confirms that PglB is solely responsible for the oligosaccharyltransferase activity and complements the finding that PglB exhibits relaxed sugar substrate specificity. In addition, we performed the topology mapping of PglB using the PhoA/LacZ fusion method. The topological model shows that PglB possesses 11 transmembrane segments and two relatively large periplasmic regions other than the C-terminal domain, which is consistent with the proposal of the common N(cyt)-C(peri) topology with 11 transmembrane segments for the STT3 family proteins. PMID:20331969

  9. Impaired Baroreflex Function in Mice Overexpressing Alpha-Synuclein

    PubMed Central

    Fleming, Sheila M.; Jordan, Maria C.; Mulligan, Caitlin K.; Masliah, Eliezer; Holden, John G.; Millard, Ronald W.; Chesselet, Marie-Françoise; Roos, Kenneth P.

    2013-01-01

    Cardiovascular autonomic dysfunction, such as orthostatic hypotension consequent to baroreflex failure and cardiac sympathetic denervation, is frequently observed in the synucleinopathy Parkinson’s disease (PD). In the present study, the baroreceptor reflex was assessed in mice overexpressing human wildtype alpha-synuclein (Thy1-aSyn), a genetic mouse model of synucleinopathy. The beat-to-beat change in heart rate (HR), computed from R–R interval, in relation to blood pressure was measured in anesthetized and conscious mice equipped with arterial blood pressure telemetry transducers during transient bouts of hypertension and hypotension. Compared to wildtype, tachycardia following nitroprusside-induced hypotension was significantly reduced in Thy1-aSyn mice. Thy1-aSyn mice also showed an abnormal cardiovascular response (i.e., diminished tachycardia) to muscarinic blockade with atropine. We conclude that Thy1-aSyn mice have impaired basal and dynamic range of sympathetic and parasympathetic-mediated changes in HR and will be a useful model for long-term study of cardiovascular autonomic dysfunction associated with PD. PMID:23888153

  10. Nectin 4 Overexpression in Ovarian Cancer Tissues and Serum

    PubMed Central

    DeRycke, Melissa S.; Pambuccian, Stefan E.; Gilks, C. Blake; Kalloger, Steve E.; Ghidouche, Abderrezak; Lopez, Marc; Bliss, Robin L.; Geller, Melissa A.; Argenta, Peter A.; Harrington, Katherine M.; Skubitz, Amy P.N.

    2011-01-01

    Early detection of ovarian cancer is difficult owing to the lack of specific and sensitive tests available. Previously, we found expression of nectin 4 to be increased in ovarian cancer compared with normal ovaries. Reverse transcriptase–polymerase chain reaction (RT-PCR) and quantitative RT-PCR validated the overexpression of nectin 4 messenger RNA in ovarian cancer compared with normal ovarian cell lines and tissues. Protein levels of nectin 4 were elevated in ovarian cancer cell lines and tissue compared with normal ovarian cell lines as demonstrated by Western immunoblotting, flow cytometry, and immunohistochemical staining of tissue microarray slides. Cleaved nectin 4 was detectable in a number of patient serum samples by enzyme-linked immunosorbent assay. In patients with benign gynecologic diseases with high serum CA125 levels, nectin 4 was not detected in the majority of cases, suggesting that nectin 4 may serve as a potential biomarker that helps discriminate benign gynecologic diseases from ovarian cancer in a panel with CA125. PMID:20959669

  11. RCAN1 Overexpression Exacerbates Calcium Overloading-Induced Neuronal Apoptosis

    PubMed Central

    Herculano, Bruno; Song, Weihong

    2014-01-01

    Down Syndrome (DS) patients develop characteristic Alzheimer's Disease (AD) neuropathology after their middle age. Prominent neuronal loss has been observed in the cortical regions of AD brains. However, the underlying mechanism leading to this neuronal loss in both DS and AD remains to be elucidated. Calcium overloading and oxidative stress have been implicated in AD pathogenesis. Two major isoforms of regulator of calcineurin 1 (RCAN1), RCAN1.1 and RCAN1.4, are detected in human brains. In this report we defined the transcriptional regulation of RCAN1.1 and RCAN1.4 by two alternative promoters. Calcium overloading upregulated RCAN1.4 expression by activating RCAN1.4 promoter through calcineurin-NFAT signaling pathway, thus forming a negative feedback loop in isoform 4 regulation. Furthermore, RCAN1.4 overexpression exacerbated calcium overloading-induced neuronal apoptosis, which was mediated by caspase-3 apoptotic pathway. Our results suggest that downregulating RCAN1.4 expression in neurons could be beneficial to AD patients. PMID:24751678

  12. Changes in gene expression associated with FTO overexpression in mice.

    PubMed

    Merkestein, Myrte; McTaggart, James S; Lee, Sheena; Kramer, Holger B; McMurray, Fiona; Lafond, Mathilde; Boutens, Lily; Cox, Roger; Ashcroft, Frances M

    2014-01-01

    Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. PMID:24842286

  13. Overexpression of DNA polymerase beta: a genomic instability enhancer process.

    PubMed

    Canitrot, Y; Frechet, M; Servant, L; Cazaux, C; Hoffmann, J S

    1999-06-01

    DNA polymerase beta (Pol beta) is the most inaccurate of the six DNA polymerases found in mammalian cells. In a normal situation, it is expressed at a constant low level and its role is believed to be restricted to repair synthesis in the base excision repair pathway participating to the genome stability. However, excess of Pol beta, found in some human tumors, could confer an increase in spontaneous mutagenesis and result in a highly mutagenic tolerance phenotype toward bifunctional DNA cross-linking anticancer drugs. Here, we present a hypothesis on the mechanisms used by Pol beta to be a genetic instability enhancer through its overexpression. We hypothesize that an excess of Pol beta perturbs the well-defined specific functions of DNA polymerases developed by the cell and propose Pol beta-mediated gap fillings during DNA transactions like repair, replication, or recombination pathways as key processes to introduce illegitimate deoxyribonucleotides or mutagenic base analogs like those produced by intracellular oxidative processes. These mechanisms may predominate during cellular nonproliferative phases in the absence of DNA replication. PMID:10336894

  14. Over-Expression of Meteorin Drives Gliogenesis Following Striatal Injury

    PubMed Central

    Wright, Jordan L.; Ermine, Charlotte M.; Jørgensen, Jesper R.; Parish, Clare L.; Thompson, Lachlan H.

    2016-01-01

    A number of studies have shown that damage to brain structures adjacent to neurogenic regions can result in migration of new neurons from neurogenic zones into the damaged tissue. The number of differentiated neurons that survive is low, however, and this has led to the idea that the introduction of extrinsic signaling factors, particularly neurotrophic proteins, may augment the neurogenic response to a level that would be therapeutically relevant. Here we report on the impact of the relatively newly described neurotrophic factor, Meteorin, when over-expressed in the striatum following excitotoxic injury. Birth-dating studies using bromo-deoxy-uridine (BrdU) showed that Meteorin did not enhance injury-induced striatal neurogenesis but significantly increased the proportion of new cells with astroglial and oligodendroglial features. As a basis for comparison we found under the same conditions, glial derived neurotrophic factor significantly enhanced neurogenesis but did not effect gliogenesis. The results highlight the specificity of action of different neurotrophic factors in modulating the proliferative response to injury. Meteorin may be an interesting candidate in pathological settings involving damage to white matter, for example after stroke or neonatal brain injury. PMID:27458346

  15. Dysferlin overexpression in skeletal muscle produces a progressive myopathy

    PubMed Central

    Glover, Louise E.; Newton, Kimberly; Krishnan, Gomathi; Bronson, Roderick; Boyle, Alexandra; Krivickas, Lisa S.; Brown, Robert H.

    2013-01-01

    Objective The dose-response effects of dysferlin transgenesis were analyzed to determine if the dysferlin-deficient myopathies are good candidates for gene replacement therapy. Methods We have generated three lines of transgenic mice, expressing low, mid and high levels of full-length human dysferlin from a muscle-specific promoter. Transgenic skeletal muscle was analyzed and scored for morphological and functional deficits. Results Overexpression of dysferlin in mice resulted in a striking phenotype of kyphosis, irregular gait and reduced muscle mass and strength. Moreover, protein dosage correlated with phenotype severity. In contrast to dysferlin-null skeletal muscle, no evidence of sarcolemmal impairment was revealed. Rather, increased levels of Ca2+-regulated, dysferlin-binding proteins and ER stress chaperone proteins were observed in muscle lysates from transgenic mice as compared to controls. Interpretation Expression levels of dysferlin are important for appropriate function without deleterious or cytotoxic effects. As a corollary, we propose that future endeavors in gene replacement for correction of dysferlinopathy should be tailored to take account of this. PMID:20373350

  16. Lymphopoiesis in transgenic mice over-expressing Artemis.

    PubMed

    Rivera-Munoz, P; Abramowski, V; Jacquot, S; André, P; Charrier, S; Lipson-Ruffert, K; Fischer, A; Galy, A; Cavazzana, M; de Villartay, J-P

    2016-02-01

    Artemis is a factor of the non-homologous end joining pathway involved in DNA double-strand break repair that has a critical role in V(D)J recombination. Mutations in DCLRE1C/ARTEMIS gene result in radiosensitive severe combined immunodeficiency in humans owing to a lack of mature T and B cells. Given the known drawbacks of allogeneic hematopoietic stem cell transplantation (HSCT), gene therapy appears as a promising alternative for these patients. However, the safety of an unregulated expression of Artemis has to be established. We developed a transgenic mouse model expressing human Artemis under the control of the strong CMV early enhancer/chicken beta actin promoter through knock-in at the ROSA26 locus to analyze this issue. Transgenic mice present a normal development, maturation and function of T and B cells with no signs of lymphopoietic malignancies for up to 15 months. These results suggest that the over-expression of Artemis in mice (up to 40 times) has no deleterious effects in early and mature lymphoid cells and support the safety of gene therapy as a possible curative treatment for Artemis-deficient patients. PMID:26361272

  17. Changes in Gene Expression Associated with FTO Overexpression in Mice

    PubMed Central

    Kramer, Holger B.; McMurray, Fiona; Lafond, Mathilde; Boutens, Lily; Cox, Roger; Ashcroft, Frances M.

    2014-01-01

    Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected. PMID:24842286

  18. [Overexpression of Aspergillus candidus lactase and analysis of enzymatic properties].

    PubMed

    Zhang, Wei; Fan, Yun-liu; Yao, Bin

    2005-04-01

    The lactase gene lacb' from Aspergillus candidus was fused behind alpha-factor signal sequence in the Pichia pastoris expression vector pPIC9, then integrated into the genome of P. pastoris by recombination events. The P. pastoris recombinants for lactase overexpression were screened by enzyme activity analysis and SDS-PAGE. The lactase expressed in P. pastoris was glycosylated protein with an apparent molecular weight of 130 kD, while the deglycosylated lactase treated with Endo H had an apparent molecular weight of about 110 kD. The expression level of secreted lactase protein in recombinant P. pastoris was 6 mg/mL with enzymatic activity of 3600 U/mL in the 5 L fermenter, which was the highest among that of all kinds of recombinant strains reported now. The optimal pH and optimal temperature of the lactase are 5.2 and 60 degrees C. The Vmax, Km, and specific activity of the lactase are 3.3 micromol/min, 1.7 mmol/L and 706.5 +/- 2.6 U/mg, respectively. Compare to the lactase from Aspergillus oryzae ATCC 20423, the expressed lactase from A. candidus have better enzymatic properties including the high thermostability, high specific activity and wide pH range for enzyme reaction. PMID:15989270

  19. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice

    PubMed Central

    Han, Xinbing; Kitamoto, Shiro; Wang, Hongwei; Boisvert, William A.

    2010-01-01

    In atherogenesis, macrophage foam cell formation is modulated by pathways involving both the uptake and efflux of cholesterol. We recently showed that interleukin-10 (IL-10) modulates lipid metabolism by enhancing both uptake and efflux of cholesterol in macrophages. However, the mechanistic details of these properties in vivo have been unclear. Thus, the purpose of this study was to determine whether expression of IL-10 in macrophages would alter susceptibility to atherosclerosis and whether IL-10 exerts its antiatherosclerotic properties by modulating lipid metabolism in macrophages. We utilized a macrophage-specific retroviral vector that allows long-term in vivo expression of IL-10 in macrophages through transplantation of retrovirally transduced bone marrow cells (BMCs). IL-10 expressed by macrophages derived from transduced BMCs inhibited atherosclerosis in LDLR−/− mice by reducing cholesteryl ester accumulation in atherosclerotic sites. Experiments with primary macrophages indicated that macrophage source of IL-10 stimulated both the uptake (by up-regulating scavenger receptors) and efflux of cholesterol (by activating the PPARγ-LXR-ABCA1/ABCG1 pathway), thereby reducing inflammation and apoptosis in atherosclerosis. These findings indicate that BMC-transduced macrophage IL-10 production can act as a strong antiatherogenic agent, and they highlight a novel antiatherosclerotic therapy using a simple, yet effective, stem cell transduction system that facilitates long-term expression of IL-10 in macrophages.—Han, X., Kitamoto, S., Wang, H., Boisvert, W. A. Interleukin-10 overexpression in macrophages suppresses atherosclerosis in hyperlipidemic mice. PMID:20354139

  20. Caveolin-1 overexpression in benign and malignant salivary gland tumors.

    PubMed

    Jaafari-Ashkavandi, Zohreh; Ashraf, Mohammad Javad; Nazhvani, Ali Dehghani; Azizi, Zahra

    2016-02-01

    Caveolin-1, a tyrosine-phosphorylated protein, is supposed to have different regulatory roles as promoter or suppressor in many human cancers. However, no published study concerned its expression in benign and malignant salivary gland tumors. The aim of this study was to evaluate and compare the expression of Cav-1 in the most common benign and malignant salivary gland tumors and evaluate its correlation with proliferation activity. In this cross-sectional retrospective study, immunohistochemical expression of caveolin-1 and Ki67 were evaluated in 49 samples, including 11 normal salivary glands, 15 cases of pleomorphic adenoma (PA), 13 adenoid cystic carcinomas (AdCC), and 10 mucoepidermoid carcinomas (MEC). The expression of Cav-1 was seen in 18 % of normal salivary glands and 85 % of tumors. The immunoreaction in the tumors was significantly higher than normal tissues (P = 0.001), but the difference between benign and malignant tumors was not significant (P = 0.07). Expression of Cav-1 was correlated with Ki67 labeling index in PAs, but not in malignant tumors. Cav-1 expression was not in association with tumor size and stage. Overexpression of Cav-1 was found in salivary gland tumors in comparison with normal tissues, but no significant difference was observed between benign and malignant tumors. Cav-1 was inversely correlated with proliferation in PA. Therefore, this marker may participate in tumorigenesis of salivary gland tumors and may be a potential biomarker for cancer treatments. PMID:26323261

  1. Reduced Antimony Accumulation in ARM58-Overexpressing Leishmania infantum

    PubMed Central

    Schäfer, Carola; Tejera Nevado, Paloma; Zander, Dorothea

    2014-01-01

    Antimony-based drugs are still the mainstay of chemotherapy against Leishmania infections in many countries where the parasites are endemic. The efficacy of antimonials has been compromised by increasing numbers of resistant infections, the basis of which is not fully understood and likely involves multiple factors. By using a functional cloning strategy, we recently identified a novel antimony resistance marker, ARM58, from the parasite Leishmania braziliensis that protects the parasites against antimony-based antileishmanial compounds. Here we show that the Leishmania infantum homologue also confers resistance against antimony but not against other antileishmanial drugs and that its function depends critically on one of four conserved domains of unknown function. This critical domain requires at least two hydrophobic amino acids and is predicted to form a transmembrane structure. Overexpression of ARM58 in antimony-exposed parasites reduces the intracellular Sb accumulation by over 70%, indicating a role for ARM58 in Sb extrusion pathways, but without involvement of energy-dependent transporter proteins. PMID:24366738

  2. MMSET is overexpressed in cancers: Link with tumor aggressiveness

    SciTech Connect

    Kassambara, Alboukadel; Klein, Bernard Moreaux, Jerome

    2009-02-20

    MMSET is expressed ubiquitously in early development and its deletion is associated with the malformation syndrome called Wolf-Hirschhorn syndrome. It is involved in the t(4; 14) (p16; q32) chromosomal translocation, which is the second most common translocation in multiple myeloma (MM) and is associated with the worst prognosis. MMSET expression has been shown to promote cellular adhesion, clonogenic growth and tumorigenicity in multiple myeloma. MMSET expression has been recently shown to increase with ascending tumor proliferation activity in glioblastoma multiforme. These data demonstrate that MMSET could be implicated in tumor emergence and/or progression. Therefore, we compared the expression of MMSET in 40 human tumor types - brain, epithelial, lymphoid - to that of their normal tissue counterparts using publicly available gene expression data, including the Oncomine Cancer Microarray database. We found significant overexpression of MMSET in 15 cancers compared to their normal counterparts. Furthermore MMSET is associated with tumor aggressiveness or prognosis in many types of these aforementioned cancers. Taken together, these data suggest that MMSET potentially acts as a pathogenic agent in many cancers. The identification of the targets of MMSET and their role in cell growth and survival will be key to understand how MMSET is associated with tumor development.

  3. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM

    PubMed Central

    Yao, Hongwei; Arunachalam, Gnanapragasam; Hwang, Jae-woong; Chung, Sangwoon; Sundar, Isaac K.; Kinnula, Vuokko L.; Crapo, James D.; Rahman, Irfan

    2010-01-01

    Extracellular superoxide dismutase (ECSOD or SOD3) is highly expressed in lungs and functions as a scavenger of O2• ─. ECM fragmentation, which can be triggered by oxidative stress, participates in the pathogenesis of chronic obstructive pulmonary disease (COPD) through attracting inflammatory cells into the lungs. The level of SOD3 is significantly decreased in lungs of patients with COPD. However, the role of endogenous SOD3 in the development/progression of emphysema is unknown. We hypothesized that SOD3 protects against emphysema by attenuating oxidative fragmentation of ECM in mice. To test this hypothesis, SOD3-deficient, SOD3-transgenic, and WT C57BL/6J mice were exposed to cigarette smoke (CS) for 3 d (300 mg total particulate matter/m3) to 6 mo (100 mg/m3 total particulate matter) or by intratracheal elastase injection. Airspace enlargement, lung inflammation, lung mechanical properties, and exercise tolerance were determined at different time points during CS exposure or after elastase administration. CS exposure and elastase administration caused airspace enlargement as well as impaired lung function and exercise capacity in SOD3-null mice, which were improved in mice overexpressing SOD3 and by pharmacological SOD mimetic. These phenomena were associated with SOD3-mediated protection against oxidative fragmentation of ECM, such as heparin sulfate and elastin, thereby attenuating lung inflammatory response. In conclusion, SOD3 attenuates emphysema and reduces oxidative fragmentation of ECM in mouse lung. Thus, pharmacological augmentation of SOD3 in the lung may have a therapeutic potential in the intervention of COPD/emphysema. PMID:20713693

  4. Brain tumor specifies intermediate progenitor cell identity by attenuating β-catenin/Armadillo activity

    PubMed Central

    Komori, Hideyuki; Xiao, Qi; McCartney, Brooke M.; Lee, Cheng-Yu

    2014-01-01

    During asymmetric stem cell division, both the daughter stem cell and the presumptive intermediate progenitor cell inherit cytoplasm from their parental stem cell. Thus, proper specification of intermediate progenitor cell identity requires an efficient mechanism to rapidly extinguish the activity of self-renewal factors, but the mechanisms remain unknown in most stem cell lineages. During asymmetric division of a type II neural stem cell (neuroblast) in the Drosophila larval brain, the Brain tumor (Brat) protein segregates unequally into the immature intermediate neural progenitor (INP), where it specifies INP identity by attenuating the function of the self-renewal factor Klumpfuss (Klu), but the mechanisms are not understood. Here, we report that Brat specifies INP identity through its N-terminal B-boxes via a novel mechanism that is independent of asymmetric protein segregation. Brat-mediated specification of INP identity is critically dependent on the function of the Wnt destruction complex, which attenuates the activity of β-catenin/Armadillo (Arm) in immature INPs. Aberrantly increasing Arm activity in immature INPs further exacerbates the defects in the specification of INP identity and enhances the supernumerary neuroblast mutant phenotype in brat mutant brains. By contrast, reducing Arm activity in immature INPs suppresses supernumerary neuroblast formation in brat mutant brains. Finally, reducing Arm activity also strongly suppresses supernumerary neuroblasts induced by overexpression of klu. Thus, the Brat-dependent mechanism extinguishes the function of the self-renewal factor Klu in the presumptive intermediate progenitor cell by attenuating Arm activity, balancing stem cell maintenance and progenitor cell specification. PMID:24257623

  5. Comparative Proteomic Profiling of Ehrlichia ruminantium Pathogenic Strain and Its High-Passaged Attenuated Strain Reveals Virulence and Attenuation-Associated Proteins

    PubMed Central

    Marcelino, Isabel; Ventosa, Miguel; Pires, Elisabete; Müller, Markus; Lisacek, Frédérique; Lefrançois, Thierry; Vachiery, Nathalie; Coelho, Ana Varela

    2015-01-01

    The obligate intracellular bacterium Ehrlichia ruminantium (ER) causes heartwater, a fatal tick-borne disease in livestock. In the field, ER strains present different levels of virulence, limiting vaccine efficacy, for which the molecular basis remains unknown. Moreover, there are no genetic tools currently available for ER manipulation, thus limiting the knowledge of the genes/proteins that are essential for ER pathogenesis and biology. As such, to identify proteins and/or mechanisms involved in ER virulence, we performed the first exhaustive comparative proteomic analysis between a virulent strain (ERGvir) and its high-passaged attenuated strain (ERGatt). Despite their different behaviors in vivo and in vitro, our results from 1DE-nanoLC-MS/MS showed that ERGvir and ERGatt share 80% of their proteins; this core proteome includes chaperones, proteins involved in metabolism, protein-DNA-RNA biosynthesis and processing, and bacterial effectors. Conventional 2DE revealed that 85% of the identified proteins are proteoforms, suggesting that post-translational modifications (namely glycosylation) are important in ER biology. Strain-specific proteins were also identified: while ERGatt has an increased number and overexpression of proteins involved in cell division, metabolism, transport and protein processing, ERGvir shows an overexpression of proteins and proteoforms (DIGE experiments) involved in pathogenesis such as Lpd, AnkA, VirB9 and B10, providing molecular evidence for its increased virulence in vivo and in vitro. Overall, our work reveals that ERGvir and ERGatt proteomes are streamlined to fulfill their biological function (maximum virulence for ERGvir and replicative capacity for ERGatt), and we provide both pioneering data and novel insights into the pathogenesis of this obligate intracellular bacterium. PMID:26691135

  6. On the excess attenuation of sound in the atmosphere

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1975-01-01

    The attenuation suffered by an acoustic plane wave propagating from an elevated source to the ground, in excess of absorption losses, was studied. Reported discrepancies between attenuation measurements made in the field and theories which only account for absorption losses are discussed. It was concluded that the scattering of sound by turbulence results in a nonnegligible contribution to the total attenuation.

  7. Overexpression of Forebrain CRH During Early Life Increases Trauma Susceptibility in Adulthood.

    PubMed

    Toth, Mate; Flandreau, Elizabeth I; Deslauriers, Jessica; Geyer, Mark A; Mansuy, Isabelle M; Merlo Pich, Emilio; Risbrough, Victoria B

    2016-05-01

    Although early-life stress is a significant risk factor for developing anxiety disorders, including posttraumatic stress disorder (PTSD), the underlying mechanisms are unclear. Corticotropin releasing hormone (CRH) is disrupted in individuals with PTSD and early-life stress and hence may mediate the effects of early-life stress on PTSD risk. We hypothesized that CRH hyper-signaling in the forebrain during early development is sufficient to increase response to trauma in adulthood. To test this hypothesis, we induced transient, forebrain-specific, CRH overexpression during early-life (pre-puberty, CRHOEdev) in double-mutant mice (Camk2a-rtta2 × tetO-Crh) and tested their behavioral and gene expression responses to the predator stress model of PTSD in adulthood. In one cohort of CRHOEdev exposed and unexposed mice, avoidance and arousal behaviors were examined 7-15 days after exposure to predator stress. In another cohort, gene expression changes in Crhr1, Crhr2, and Fkbp51 in forebrain of CRHOEdev exposed and unexposed mice were examined 7 days after predator stress. CRHOEdev induced robust increases in startle reactivity and reductions in startle inhibition independently of predator stress in both male and female mice. Avoidance behaviors after predator stress were highly dependent on sex and CRHOEdev exposure. Whereas stressed females exhibited robust avoidance responses that were not altered by CRHOEdev, males developed significant avoidance only when exposed to both CRHOEdev and stress. Quantitative real-time-PCR analysis indicated that CRHOEdev unexposed males exhibit significant changes in Crhr2 expression in the amygdala and bed nucleus stria terminalis in response to stress, whereas males exposed to CRHOEdev did not. Similar to CRHOEdev males, females exhibited no significant Crhr2 gene expression changes in response to stress. Cortical Fkbp51 expression was also significantly reduced by stress and CRHOEdev exposure in males, but not in females. These

  8. IRON PRECIPITATION AND ARSENIC ATTENUATION - ASSESSMENT OF ARSENIC NATURAL ATTENUATION OF THE SUBSURFACE USING A GEOCHEMICAL MODEL (PHREEQC): ABSTRACT

    EPA Science Inventory

    NRMRL-ADA-01310 Chen, J., Lin, Z, and Azadpour-Keeley**, A. "Iron Precipitation and Arsenic Attenuation - Assessment of Arsenic Natural Attenuation of the Subsurface Using a Geochemical Model (PHRE...

  9. Highly immunogenic variant of attenuated vaccinia virus.

    PubMed

    Yakubitskyi, S N; Kolosova, I V; Maksyutov, R A; Shchelkunov, S N

    2016-01-01

    The LIVPΔ6 strain of vaccinia virus (VACV) was created by genetic engineering on the basis of previously obtained attenuated 1421ABJCN strain by target deletion of the A35R gene encoding an inhibitor of antigen presentation by the major histocompatibility complex class II. 1421ABJCN is the LIVP strain of VACV with five inactivated virulence genes encoding hemagglutinin (A56R), γ-interferon-binding protein (B8R), thymidine kinase (J2R), complement-binding protein (C3L), and Bcl2-like inhibitor of apoptosis (N1L). The highly immunogenic LIVPΔ6 strain could be an efficient fourth-generation attenuated vaccine against smallpox and other orthopoxvirus infections. PMID:27025484

  10. Tricolor attenuation model for shadow detection.

    PubMed

    Tian, Jiandong; Sun, Jing; Tang, Yandong

    2009-10-01

    Shadows, the common phenomena in most outdoor scenes, bring many problems in image processing and computer vision. In this paper, we present a novel method focusing on extracting shadows from a single outdoor image. The proposed tricolor attenuation model (TAM) that describe the attenuation relationship between shadow and its nonshadow background is derived based on image formation theory. The parameters of the TAM are fixed by using the spectral power distribution (SPD) of daylight and skylight, which are estimated according to Planck's blackbody irradiance law. Based on the TAM, a multistep shadow detection algorithm is proposed to extract shadows. Compared with previous methods, the algorithm can be applied to process single images gotten in real complex scenes without prior knowledge. The experimental results validate the performance of the model. PMID:19586816

  11. Mars Pathfinder Airbag Impact Attenuation System

    NASA Technical Reports Server (NTRS)

    Waye, Donald; Cole, J. Kenneth; Rivellini, Tommaso P.

    1995-01-01

    The Mars Pathfinder spacecraft, scheduled for launch in December 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia's High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  12. Tree attenuation at 20 GHz: Foliage effects

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-08-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  13. Tree attenuation at 20 GHz: Foliage effects

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1993-01-01

    Static tree attenuation measurements at 20 GHz (K-Band) on a 30 deg slant path through a mature Pecan tree with and without leaves showed median fades exceeding approximately 23 dB and 7 dB, respectively. The corresponding 1% probability fades were 43 dB and 25 dB. Previous 1.6 GHz (L-Band) measurements for the bare tree case showed fades larger than those at K-Band by 3.4 dB for the median and smaller by approximately 7 dB at the 1% probability. While the presence of foliage had only a small effect on fading at L-Band (approximately 1 dB additional for the median to 1% probability range), the attenuation increase was significant at K-Band, where it increased by about 17 dB over the same probability range.

  14. Mars Pathfinder airbag impact attenuation system

    SciTech Connect

    Waye, D.E.; Cole, J.K.; Rivellini, T.P.

    1995-04-01

    The Mars Pathfinder spacecraft, scheduled for launch in November 1996, is designed to validate a low cost Entry, Descent, and Landing system and to perform scientific surface operations. The Jet Propulsion Laboratory and Sandia National Laboratories teamed to design, fabricate, test and validate a prototype 0.38 scale model of an airbag impact attenuation system. A computer code was developed to predict the performance of the airbag system. A test program in Sandia`s High Altitude Chamber was performed to validate the code and demonstrate the feasibility of the airbag concept and design. In addition, freefall tests were performed at representative velocities to demonstrate the structural integrity of the airbag system design. The feasibility program demonstrated that the airbag impact attenuation design will protect the lander upon impact with the Martian surface.

  15. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana.

    PubMed

    Yan, Yan; Jia, Haihong; Wang, Fang; Wang, Chen; Liu, Shuchang; Guo, Xingqi

    2015-01-01

    WRKY proteins constitute transcriptional regulators involved in various biological processes, especially in coping with diverse biotic and abiotic stresses. However, in contrast to other well-characterized WRKY groups, the functions of group III WRKY transcription factors are poorly understood in the economically important crop cotton (Gossypium hirsutum). In this study, a group III WRKY gene from cotton, GhWRKY27a, was isolated and characterized. Our data indicated that GhWRKY27a localized to the nucleus and that GhWRKY27a expression could be strongly induced by abiotic stresses, pathogen infection, and multiple defense-related signaling molecules. Virus-induced gene silencing (VIGS) of GhWRKY27a enhanced tolerance to drought stress in cotton. In contrast, GhWRKY27a overexpression in Nicotiana benthamiana markedly reduced plant tolerance to drought stress, as determined through physiological analyses of leaf water loss, survival rates, and the stomatal aperture. This susceptibility was coupled with reduced stomatal closure in response to abscisic acid and decreased expression of stress-related genes. In addition, GhWRKY27a-overexpressing plants exhibited reduced resistance to Rhizoctonia solani infection, mainly demonstrated by the transgenic lines exhibiting more severe disease symptoms, accompanied by attenuated expression of defense-related genes in N. benthamiana. Taken together, these findings indicated that GhWRKY27a functions in negative responses to drought tolerance and in resistance to R. solani infection. PMID:26483697

  16. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    NASA Technical Reports Server (NTRS)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; Appel, S. H.

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  17. Overexpression of angiopoietin-1 increases CD133+/c-kit+ cells and reduces myocardial apoptosis in db/db mouse infarcted hearts.

    PubMed

    Zeng, Heng; Li, Lanfang; Chen, Jian-Xiong

    2012-01-01

    Hematopoietic progenitor CD133(+)/c-kit(+) cells have been shown to be involved in myocardial healing following myocardial infarction (MI). Previously we demonstrated that angiopoietin-1(Ang-1) is beneficial in the repair of diabetic infarcted hearts. We now investigate whether Ang-1 affects CD133(+)/c-kit(+) cell recruitment to the infarcted myocardium thereby mediating cardiac repair in type II (db/db) diabetic mice. db/db mice were administered either adenovirus Ang-1 (Ad-Ang-1) or Ad-β-gal systemically immediately after ligation of the left anterior descending coronary artery (LAD). Overexpression of Ang-1 resulted in a significant increase in CXCR-4/SDF-1α expression and promoted CD133(+)/c-kit(+), CD133(+)/CXCR-4(+) and CD133(+)/SDF-1α(+) cell recruitment into ischemic hearts. Overexpression of Ang-1 led to significant increases in number of CD31(+) and smooth muscle-like cells and VEGF expression in bone marrow (BM). This was accompanied by significant decreases in cardiac apoptosis and fibrosis and an increase in myocardial capillary density. Ang-1 also upregulated Jagged-1, Notch3 and apelin expression followed by increases in arteriole formation in the infarcted myocardium. Furthermore, overexpression of Ang-1 resulted in a significant improvement of cardiac functional recovery after 14 days of ischemia. Our data strongly suggest that Ang-1 attenuates cardiac apoptosis and promotes cardiac repair by a mechanism involving in promoting CD133(+)/c-kit(+) cells and angiogenesis in diabetic db/db mouse infarcted hearts. PMID:22558265

  18. Bubbles attenuate elastic waves at seismic frequencies

    NASA Astrophysics Data System (ADS)

    Tisato, Nicola; Quintal, Beatriz; Chapman, Samuel; Podladchikov, Yury; Burg, Jean-Pierre

    2016-04-01

    The vertical migration of multiphase fluids in the crust can cause hazardous events such as eruptions, explosions, pollution and earthquakes. Although seismic tomography could potentially provide a detailed image of such fluid-saturated regions, the interpretation of the tomographic signals is often controversial and fails in providing a conclusive map of the subsurface saturation. Seismic tomography should be improved considering seismic wave attenuation (1/Q) and the dispersive elastic moduli which allow accounting for the energy lost by the propagating elastic wave. In particular, in saturated media a significant portion of the energy carried by the propagating wave is dissipated by the wave-induced-fluid-flow and the wave-induced-gas-exsolution-dissolution (WIGED) mechanisms. The WIGED mechanism describes how a propagating wave modifies the thermodynamic equillibrium between different fluid phases causing the exsolution and the dissolution of the gas in the liquid, which in turn causes a significant frequency dependent 1/Q and moduli dispersion. The WIGED theory was initially postulated for bubbly magmas but only recently was extended to bubbly water and experimentally demonstrated. Here we report these theory and laboratory experiments. Specifically, we present i) attenuation measurements performed by means of the Broad Band Attenuation Vessel on porous media saturated with water and different gases, and ii) numerical experiments validating the laboratory observations. Finally, we will extend the theory to fluids and to pressure-temperature conditions which are typical of phreatomagmatic and hydrocarbon domains and we will compare the propagation of seismic waves in bubble-free and bubble-bearing subsurface domains. With the present contribution we extend the knowledge about attenuation in rocks which are saturated with multiphase fluid demonstrating that the WIGED mechanism could be extremely important to image subsurface gas plumes.

  19. Narrow terahertz attenuation signatures in Bacillus thuringiensis.

    PubMed

    Zhang, Weidong; Brown, Elliott R; Viveros, Leamon; Burris, Kellie P; Stewart, C Neal

    2014-10-01

    Terahertz absorption signatures from culture-cultivated Bacillus thuringiensis were measured with a THz photomixing spectrometer operating from 400 to 1200 GHz. We observe two distinct signatures centered at ∼955 and 1015 GHz, and attribute them to the optically coupled particle vibrational resonance (surface phonon-polariton) of Bacillus spores. This demonstrates the potential of the THz attenuation signatures as "fingerprints" for label-free biomolecular detection. PMID:23821459

  20. Two-dimensional dynamic fluid bowtie attenuators.

    PubMed

    Hermus, James R; Szczykutowicz, Timothy P

    2016-01-01

    Fluence field modulated (FFM) CT allows for improvements in image quality and dose reduction. To date, only one-dimensional modulators have been proposed, as the extension to two-dimensional (2-D) modulation is difficult with solid-metal attenuation-based fluence field modulated designs. This work proposes to use liquid and gas to attenuate the x-ray beam, as unlike solids, these materials can be arranged allowing for 2-D fluence modulation. The thickness of liquid and the pressure for a given path length of gas were determined that provided the same attenuation as 30 cm of soft tissue at 80, 100, 120, and 140 kV. Liquid iodine, zinc chloride, cerium chloride, erbium oxide, iron oxide, and gadolinium chloride were studied. Gaseous xenon, uranium hexafluoride, tungsten hexafluoride, and nickel tetracarbonyl were also studied. Additionally, we performed a proof-of-concept experiment using a 96 cell array in which the liquid thickness in each cell was adjusted manually. Liquid thickness varied as a function of kV and chemical composition, with erbium oxide allowing for the smallest thickness. For the gases, tungsten hexaflouride required the smallest pressure to compensate for 30 cm of soft tissue. The 96 cell iodine attenuator allowed for a reduction in both dynamic range to the detector and scatter-to-primary ratio. For both liquids and gases, when k-edges were located within the diagnostic energy range used for imaging, the mean beam energy exhibited the smallest change with compensation amount. The thickness of liquids and the gas pressure seem logistically implementable within the space constraints of C-arm-based cone beam CT (CBCT) and diagnostic CT systems. The gas pressures also seem logistically implementable within the space and tube loading constraints of CBCT and diagnostic CT systems. PMID:26835499

  1. Lg Attenuation of the Western United States

    NASA Astrophysics Data System (ADS)

    Gallegos, A. C.; Ranasinghe, N. R.; Ni, J.; Sandvol, E. A.

    2014-12-01

    Lg waveforms recorded by EarthScope's Transportable Array (TA) are used to estimate Lg Q in the Western United States (WUS). Attenuation is calculated based on Lg spectral amplitudes filtered at a narrow band from 0.5 to 1.5 Hz with a central frequency of 1 Hz. The two-station and reverse two-station techniques were used to calculate Qo values. 398 events occurring from 2005 to 2009 and ranging from magnitude 3 to magnitude 6 were used in this study. The geometric spreading term can be determined by using a three-dimensional linear fit of the amplitude ratios versus epicentral distances to two stations. The slope of this line provides the geometric spreading term we use to calculate Lg Qo values of WUS. The results show high Q regions (low attenuation) corresponding to the Colorado Plateau (CP), the Rocky Mountains (RM), the Columbia Plateau (COP), and the Sierra Nevada Mountains (SNM). Regions of low Q (high attenuation) are seen along the Snake River Plain (SRP), the Rio Grande Rift (RGR), the Cascade Mountains (CM), and in east and west of the Basin and Range (BR) where tectonic activity is more active than the central part of the BR. A positive correlation between high heat flow, recent tectonic activity and Q was observed. Areas with low heat flow, thin sediment cover, and no recent tectonic activity were observed to have consistently high Q. These new models use two-station and reversed two-station methods and provide a comparison with previous studies and better constrain regions with high attenuation. This increase in detail can improve high frequency ground motion predictions of future large earthquakes for more accurate hazard assessment and improve overall understanding of the structure and assemblage of the WUS.

  2. Waves in fragmented geomaterials with impact attenuation

    NASA Astrophysics Data System (ADS)

    Dyskin, Arcady; Pasternak, Elena

    2016-04-01

    Attenuation of waves in geomaterials, such as seismic waves is usually attributed to energy dissipation due to the presence of viscous fluid and/or viscous cement between the constituents. In fragmented geomaterials such as blocky rock mass there is another possible source of energy dissipation - impacting between the fragments. This can be characterised by the coefficient of restitution, which is the ratio between the rotational velocities after and before the impact. In particular, this manifests itself in the process of mutual rotations of the fragments/blocks, whereby in the process of oscillation different ends of the contacting faces of the fragments are impacting. During the rotational oscillations the energy dissipation is concentrated in the neutral position that is the one in which the relative rotation between two fragments is zero. We show that in a simple system of two fragments this dissipation is equivalent, in a long run, to the presence of viscous damper between the fragments (the Voigt model of visco-elasticity). Generalisation of this concept to the material consisting of many fragments leads to a Voigt model of wave propagation where the attenuation coefficient is proportional to the logarithm of restitution coefficient. The waves in such a medium show slight dispersion caused by damping and strong dependence of the attenuation on the wave frequency.

  3. Scattering attenuation microscopy of oral epithelial dysplasia

    NASA Astrophysics Data System (ADS)

    Tomlins, Pete H.; Adegun, Oluyori; Hagi-Pavli, Eleni; Piper, Kim; Bader, Dan; Fortune, Farida

    2010-11-01

    We present a new method for quantitative visualization of premalignant oral epithelium called scattering attenuation microscopy (SAM). Using low-coherence interferometry, SAM projects measurements of epithelial optical attenuation onto an image of the tissue surface as a color map. The measured attenuation is dominated by optical scattering that provides a metric of the severity of oral epithelial dysplasia (OED). Scattering is sensitive to the changes in size and distribution of nuclear material that are characteristic of OED, a condition recognized by the occurrence of basal-cell-like features throughout the epithelial depth. SAM measures the axial intensity change of light backscattered from epithelial tissue. Scattering measurements are obtained from sequential axial scans of a 3-D tissue volume and displayed as a 2-D SAM image. A novel segmentation method is used to confine scattering measurement to epithelial tissue. This is applied to oral biopsy samples obtained from 19 patients. Our results show that imaging of tissue scattering can be used to discriminate between different dysplastic severities and furthermore presents a powerful tool for identifying the most representative tissue site for biopsy.

  4. Natural attenuation of perchlorate in denitrified groundwater.

    PubMed

    Robertson, William D; Roy, James W; Brown, Susan J; Van Stempvoort, Dale R; Bickerton, Greg

    2014-01-01

    Monitoring of a well-defined septic system groundwater plume and groundwater discharging to two urban streams located in southern Ontario, Canada, provided evidence of natural attenuation of background low level (ng/L) perchlorate (ClO4⁻) under denitrifying conditions in the field. The septic system site at Long Point contains ClO4⁻ from a mix of waste water, atmospheric deposition, and periodic use of fireworks, while the nitrate plume indicates active denitrification. Plume nitrate (NO3⁻ -N) concentrations of up to 103 mg/L declined with depth and downgradient of the tile bed due to denitrification and anammox activity, and the plume was almost completely denitrified beyond 35 m from the tile bed. The ClO4⁻ natural attenuation occurs at the site only when NO3⁻ -N concentrations are <0.3 mg/L, after which ClO4⁻ concentrations decline abruptly from 187 ± 202 to 11 ± 15 ng/L. A similar pattern between NO3⁻ -N and ClO4⁻ was found in groundwater discharging to the two urban streams. These findings suggest that natural attenuation (i.e., biodegradation) of ClO4⁻ may be commonplace in denitrified aquifers with appropriate electron donors present, and thus, should be considered as a remediation option for ClO4⁻ contaminated groundwater. PMID:23448242

  5. Impact of Trauma on Attenuated Psychotic Symptoms

    PubMed Central

    Falukozi, Erin; Addington, Jean

    2012-01-01

    Evidence that trauma may play a role in the development of a psychotic illness has lead researchers to investigate the relationship between trauma and the content of attenuated psychotic symptoms. Participants in this study were considered to be at clinical high risk for developing psychosis by meeting criteria for attenuated positive symptom syndrome based on the Structured Interview for Prodromal Syndromes. Trained raters used a specifically designed codebook to identify content in the vignettes of 45 participants. Various types of trauma that had occurred before age 16 were assessed, where participants who endorsed more types of trauma were considered to have experienced a greater amount of trauma. Spearman rank correlations revealed significant positive relationships between increased trauma and feeling watched or followed (rho=0.38, p<0.05) and false beliefs of status or power (rho=0.31, p<0.04). Significant negative relationships were observed between increased trauma and hearing nonnegative voices (rho=−0.39, p<0.01) as well as having unusual negative thoughts surrounding the self (rho=−0.31, p<0.05). Although this was a small sample, these findings support the possibility of a meaningful relationship between experiences of trauma and the content of attenuated positive symptoms. PMID:23155365

  6. Crustal attenuation characteristics in western Turkey

    NASA Astrophysics Data System (ADS)

    Kurtulmuş, Tevfik Özgür; Akyol, Nihal

    2013-11-01

    We analysed 1764 records produced by 322 micro- and moderate-size local earthquakes in western Turkey to estimate crustal attenuation characteristics in the frequency range of 1.0 ≤ f ≤ 10 Hz. In the first step, we obtained non-parametric attenuation functions and they show that seismic recordings of transverse and radial S waves exhibit different characteristics at short and long hypocentral distances. Applying a two-step inversion, we parametrized Q( f ) and geometrical spreading exponent b( f ) for the entire distance range between 10 and 200 km and then we estimated separately Q and b values for short (10-70 km) and large (120-200 km) distance ranges. We could not observe significant frequency dependencies of b for short distance range, whereas the significant frequency dependence of b was observed for large distances. Low Q0 values (˜60) with strong frequency dependence of Q (˜1.4) for short distances suggest that scattering might be an important factor contributing to the attenuation of body waves in the region, which could be associated to a high degree of fracturing, fluid filled cracks, young volcanism and geothermal activity in the crust. Weak Q frequency dependence and higher Q0 values for large distances manifest more homogenous medium because of increasing pressure and enhanced healing of cracks with increasing temperature and depth. Q anisotropy was also observed for large hypocentral distance ranges.

  7. The Violent Content in Attenuated Psychotic Symptoms.

    PubMed

    Marshall, Catherine; Deighton, Stephanie; Cadenhead, Kristin S; Cannon, Tyrone D; Cornblatt, Barbara A; McGlashan, Thomas H; Perkins, Diana O; Seidman, Larry J; Tsuang, Ming T; Walker, Elaine F; Woods, Scott W; Bearden, Carrie E; Mathalon, Daniel; Addington, Jean

    2016-08-30

    The relationship between psychosis and violence has typically focused on factors likely to predict who will commit violent acts. One unexplored area is violence in the content of subthreshold positive symptoms. The current aim was to conduct an exploratory analysis of violent content in the attenuated psychotic symptoms (APS) of those at clinical high risk of psychosis (CHR) who met criteria for attenuated psychotic symptom syndrome (APSS). The APS of 442 CHR individuals, determined by the Structured Interview for Prodromal Syndromes, were described in comprehensive vignettes. The content of these symptoms were coded using the Content of Attenuated Positive Symptoms Codebook. Other measures included clinical symptoms, functioning, beliefs and trauma. Individuals with violent content had significantly higher APS, greater negative beliefs about the self and others, and increased bullying. The same findings and higher ratings on anxiety symptoms were present when participants with self-directed violence were compared to participants with no violent content. Individuals reporting violent content differ in their clinical presentation compared to those who do not experience violent content. Adverse life events, like bullying, may impact the presence of violent content in APS symptoms. Future studies should explore violent content in relation to actual behavior. PMID:27259137

  8. Sound attenuation of fiberglass lined ventilation ducts

    NASA Astrophysics Data System (ADS)

    Albright, Jacob

    Sound attenuation is a crucial part of designing any HVAC system. Most ventilation systems are designed to be in areas occupied by one or more persons. If these systems do not adequately attenuate the sound of the supply fan, compressor, or any other source of sound, the affected area could be subject to an array of problems ranging from an annoying hum to a deafening howl. The goals of this project are to quantify the sound attenuation properties of fiberglass duct liner and to perform a regression analysis to develop equations to predict insertion loss values for both rectangular and round duct liners. The first goal was accomplished via insertion loss testing. The tests performed conformed to the ASTM E477 standard. Using the insertion loss test data, regression equations were developed to predict insertion loss values for rectangular ducts ranging in size from 12-in x 18-in to 48-in x 48-in in lengths ranging from 3ft to 30ft. Regression equations were also developed to predict insertion loss values for round ducts ranging in diameters from 12-in to 48-in in lengths ranging from 3ft to 30ft.

  9. Overexpression of Superoxide Dismutase Protects Plants from Oxidative Stress (Induction of Ascorbate Peroxidase in Superoxide Dismutase-Overexpressing Plants).

    PubMed Central

    Gupta, A. S.; Webb, R. P.; Holaday, A. S.; Allen, R. D.

    1993-01-01

    Photosynthesis of leaf discs from transgenic tobacco plants (Nicotiana tabacum) that express a chimeric gene that encodes chloroplast-localized Cu/Zn superoxide dismutase (SOD+) was protected from oxidative stress caused by exposure to high light intensity and low temperature. Under the same conditions, leaf discs of plants that did not express the pea SOD isoform (SOD-) had substantially lower photosynthetic rates. Young plants of both genotypes were more sensitive to oxidative stress than mature plants, but SOD+ plants retained higher photosynthetic rates than SOD- plants at all developmental stages tested. Not surprisingly, SOD+ plants had approximately 3-fold higher SOD specific activity than SOD- plants. However, SOD+ plants also exhibited a 3- to 4-fold increase in ascorbate peroxidase (APX) specific activity and had a corresponding increase in levels of APX mRNA. Dehydroascorbate reductase and glutathione reductase specific activities were the same in both SOD+ and SOD- plants. These results indicate that transgenic tobacco plants that overexpress pea Cu/Zn SOD II can compensate for the increased levels of SOD with increased expression of the H2O2-scavenging enzyme APX. Therefore, the enhancement of the active oxygen-scavenging system that leads to increased oxidative stress protection in SOD+ plants could result not only from increased SOD levels but from the combined increases in SOD and APX activity. PMID:12232001

  10. Pitavastatin attenuates the PDGF-induced LR11/uPA receptor-mediated migration of smooth muscle cells

    SciTech Connect

    Jiang, Meizi; Bujo, Hideaki . E-mail: hbujo@faculty.chiba-u.jp; Zhu, Yanjuan; Yamazaki, Hiroyuki; Hirayama, Satoshi; Kanaki, Tatsuro; Shibasaki, Manabu; Takahashi, Kazuo; Schneider, Wolfgang J.; Saito, Yasushi

    2006-10-06

    Statins, inhibitors of HMG-CoA reductase, elicit various actions on vascular cells including the modulation of proliferation and migration of smooth muscle cells (SMCs). Here, we have elucidated the mechanism by which statins, in particular pitavastatin, attenuate the migration activity of SMCs. The expression of LR11, a member of the LDL receptor family and an enhancer of cell surface localization of urokinase-type plasminogen activator receptor (uPAR), is increased in cultured SMCs by treatment with PDGF-BB. Pitavastatin attenuates the PDGF-BB -induced surface expression of LR11 and uPAR. The increased migration of SMCs observed both upon overexpression of LR11 and via stimulation of secretion of soluble LR11 is not reversed by pitavastatin. In vivo studies showed that the SMCs expressing LR11 in plaques are almost congruent with intimal cells expressing nonmuscle myosin heavy chain (SMemb). Pitavastatin reduced the expression of LR11 and SMemb, and the levels of LR11, uPAR, and SMemb in cultured intimal SMCs were reduced to those seen in medial SMCs. We propose that this statin reduces PDGF-induced migration through the attenuation of the LR11/uPAR system in SMCs. Modulation of the LR11/uPAR system with statins suggests a novel treatment strategy for atherogenesis based on suppression of intimal SMC migration.

  11. Rain attenuation prediction during rain events in different climatic regions

    NASA Astrophysics Data System (ADS)

    Das, Dalia; Maitra, Animesh

    2015-06-01

    A rain attenuation prediction method has been applied to different climatic regions to test the validity of the model. The significant difference in rain rate and attenuation statistics for the tropical and temperate region needs to be considered in developing channel model to predict time series of rain attenuation for earth space communication links. Model parameters obtained for a tropical location has been successfully applied to predict time series of rain attenuation at other tropical locations. Separate model parameters are derived from the experimental data obtained at a temperate location and these are used to predict rain attenuation during rain events for other temperate locations showing the effectiveness of the technique.

  12. Seismic Attenuation Inversion with t* Using tstarTomog.

    SciTech Connect

    Preston, Leiph

    2014-09-01

    Seismic attenuation is defined as the loss of the seismic wave amplitude as the wave propagates excluding losses strictly due to geometric spreading. Information gleaned from seismic waves can be utilized to solve for the attenuation properties of the earth. One method of solving for earth attenuation properties is called t*. This report will start by introducing the basic theory behind t* and delve into inverse theory as it pertains to how the algorithm called tstarTomog inverts for attenuation properties using t* observations. This report also describes how to use the tstarTomog package to go from observed data to a 3-D model of attenuation structure in the earth.

  13. Lapatinib for the treatment of HER2-overexpressing breast cancer.

    PubMed

    Jones, J; Takeda, A; Picot, J; von Keyserlingk, C; Clegg, A

    2009-10-01

    This paper presents a summary of the evidence review group (ERG) report into the clinical effectiveness and cost-effectiveness of lapatinib for the treatment of advanced or metastatic HER2-overexpressing breast cancer based upon a review of the manufacturer's submission to the National Institute for Health and Clinical Excellence (NICE) as part of the single technology appraisal (STA) process. The scope included women with advanced, metastatic or recurrent HER2-overexpressing breast cancer who have had previous therapy that includes trastuzumab. Outcomes were time to progression, progression-free survival, response rates, overall survival, health-related quality of life and adverse effects. The submission's evidence came from one randomised controlled trial (RCT) of reasonable methodological quality, although it was not powered to detect a statistically significant difference in mean overall survival. Median time to progression was longer in the lapatinib plus capecitabine arm than in the capecitabine monotherapy arm {27.1 [95% confidence interval (CI) 17.4 to 49.4] versus 18.6 [95% CI 9.1 to 36.9] weeks; hazard ratio 0.57 [95% CI 0.43 to 0.77; p = 0.00013]}. Median overall survival was very similar between the groups [67.7 (95% CI 58.9 to 91.6) versus 66.6 (95% CI 49.1 to 75.0) weeks; hazard ratio 0.78 (95% CI 0.55 to 1.12; p = 0.177)]. Median progression-free survival was statistically significantly longer in the lapatinib plus capecitabine group than in the capecitabine monotherapy group [27.1 (95% CI 24.1 to 36.9) versus 17.6 (95% CI 13.3 to 20.1) weeks; hazard ratio 0.55 (95% CI 0.41 to 0.74); p = 0.000033]. The manufacturer's economic model to estimate progression-free and overall survival for patients with HER2-positive advanced/metastatic breast cancer who had relapsed following treatment with an anthracycline, a taxane and trastuzumab was appropriate for the disease area. The base-case incremental cost-effectiveness ratios (ICERs) for lapatinib plus

  14. Response of transgenic poplar overexpressing cytosolic glutamine synthetase to phosphinothricin.

    PubMed

    Pascual, María Belén; Jing, Zhong Ping; Kirby, Edward G; Cánovas, Francisco M; Gallardo, Fernando

    2008-01-01

    Glutamine synthetase (GS) is the main enzyme involved in ammonia assimilation in plants and is the target of phosphinothricin (PPT), an herbicide commonly used for weed control in agriculture. As a result of the inhibition of GS, PPT also blocks photorespiration, resulting in the depletion of leaf amino acid pools leading to the plant death. Hybrid transgenic poplar (Populus tremula x P. alba INRA clone 7171-B4) overexpressing cytosolic GS is characterized by enhanced vegetative growth [Gallardo, F., Fu, J., Cantón, F.R., García-Gutiérrez, A., Cánovas, F.M., Kirby, E.G., 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210, 19-26; Fu, J., Sampalo, R., Gallardo, F., Cánovas, F.M., Kirby, E.G., 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26, 411-418; Jing, Z.P., Gallardo, F., Pascual, M.B., Sampalo, R., Romero, J., Torres de Navarra, A., Cánovas, F.M., 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164, 137-145], increased photosynthetic and photorespiratory capacities [El-Khatib, R.T., Hamerlynck, E.P., Gallardo, F., Kirby, E.G., 2004. Transgenic poplar characterized by ectopic expression of a pine cytosolic glutamine synthetase gene exhibits enhanced tolerance to water stress. Tree Physiol. 24, 729-736], enhanced tolerance to water stress (El-Khatib et al., 2004), and enhanced nitrogen use efficiency [Man, H.-M., Boriel, R., El-Khatib, R.T., Kirby, E.G., 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167, 31-39]. In vitro plantlets of GS transgenic poplar exhibited enhanced resistance to PPT when compared with non-transgenic controls. After 30 days exposure to PPT at an equivalent dose of 275 g ha(-1), growth

  15. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes.

    PubMed

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  16. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes

    PubMed Central

    Shaposhnikov, Mikhail; Proshkina, Ekaterina; Shilova, Lyubov; Zhavoronkov, Alex; Moskalev, Alexey

    2015-01-01

    DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster. PMID:26477511

  17. Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

    PubMed Central

    Shchedrina, Valentina A.; Vorbrüggen, Gerd; Cheon Lee, Byung; Kim, Hwa-Young; Kabil, Hadise; Harshman, Lawrence G.; Gladyshev, Vadim N.

    2009-01-01

    Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in any animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on both corn meal and sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with identical function in antioxidant protein repair, have different effects on aging in fruit flies. PMID:19409408

  18. CA9 overexpression is an independent favorable prognostic marker in intrahepatic cholangiocarcinoma

    PubMed Central

    Gu, Mijin

    2015-01-01

    The aim of this study is to evaluate the expression of carbonic anhydrase IX (CA9) and to identify its prognostic significance in intrahepatic cholangiocarcinoma (IHCC). We performed immunohistochemistry (IHC) for CA9 in a total of 85 IHCCs. CA9 overexpression was observed in 38 of 85 (44.7%) IHCCs. CA9 overexpression was related to tumors with intraductal growth than mass forming or periductal infiltrative type. CA9 overexpression was more observed in tumors with well/moderate differentiation than poor differentiation and without lymph node metastasis. No significant correlation was observed in CA9 overexpression with tumor size, pT, stage and lymphovascular invasion. Intrahepatic cholangiocarcinomas with CA9 overexpression showed better overall survival than that without expression (P = 0.001). In multivariate analysis, lymph node metastasis (95% CI: 2.103 (1.167-3.791), P = 0.013) was an independent poor prognostic factor. IHCC with CA9 overexpression showed a 0.5-fold (95% confidence interval, 0.328-0.944) lower risk of death compared with those of no or weak expression. CA9 overexpression was related to histologic differentiation and an independent good prognostic factor. PMID:25755787

  19. Recurrent CDK1 overexpression in laryngeal squamous cell carcinoma.

    PubMed

    Bednarek, K; Kiwerska, K; Szaumkessel, M; Bodnar, M; Kostrzewska-Poczekaj, M; Marszalek, A; Janiszewska, J; Bartochowska, A; Jackowska, J; Wierzbicka, M; Grenman, R; Szyfter, K; Giefing, M; Jarmuz-Szymczak, M

    2016-08-01

    In this study, we analyzed the expression profile of four genes (CCNA2, CCNB1, CCNB2, and CDK1) in laryngeal squamous cell carcinoma (LSCC) cell lines and tumor samples. With the application of microarray platform, we have shown the overexpression of these genes in all analyzed LSCC samples in comparison to non-cancer controls from head and neck region. We have selected CDK1 for further analysis, due to its leading role in cell cycle regulation. It is a member of the Ser/Thr protein kinase family of proven oncogenic properties. The results obtained for CDK1 were further confirmed with the application of reverse transcription quantitative polymerase chain reaction (RT-qPCR) technique, Western blot, and immunohistochemistry (IHC). The observed upregulation of CDK1 in laryngeal squamous cell carcinoma has encouraged us to analyze for genetic mechanisms that can be responsible this phenomenon. Therefore, with the application of array-CGH, sequencing analysis and two methods for epigenetic regulation analysis (DNA methylation and miRNA expression), we tried to identify such potential mechanisms. Our attempts to identify the molecular mechanisms responsible for observed changes failed as we did not observe significant alterations neither in the DNA sequence nor in the gene copy number that could underline CDK1 upregulation. Similarly, the pyrosequencing and miRNA expression analyses did not reveal any differences in methylation level and miRNA expression, respectively; thus, these mechanisms probably do not contribute to elevation of CDK1 expression in LSCC. However, our results suggest that alteration of CDK1 expression on both mRNA and protein level probably appears on the very early step of carcinogenesis. PMID:26912061

  20. miR-221 overexpression contributes to liver tumorigenesis.

    PubMed

    Pineau, Pascal; Volinia, Stefano; McJunkin, Katherine; Marchio, Agnès; Battiston, Carlo; Terris, Benoît; Mazzaferro, Vincenzo; Lowe, Scott W; Croce, Carlo M; Dejean, Anne

    2010-01-01

    MicroRNA (miRNAs) are negative regulators of gene expression and can function as tumor suppressors or oncogenes. Expression patterns of miRNAs and their role in the pathogenesis of hepatocellular carcinoma (HCC) are still poorly understood. We profiled miRNA expression in tissue samples (104 HCC, 90 adjacent cirrhotic livers, 21 normal livers) as well as in 35 HCC cell lines. A set of 12 miRNAs (including miR-21, miR-221/222, miR-34a, miR-519a, miR-93, miR-96, and let-7c) was linked to disease progression from normal liver through cirrhosis to full-blown HCC. miR-221/222, the most up-regulated miRNAs in tumor samples, are shown to target the CDK inhibitor p27 and to enhance cell growth in vitro. Conversely, these activities can be efficiently inhibited by an antagomiR specific for miR-221. In addition, we show, using a mouse model of liver cancer, that miR-221 overexpression stimulates growth of tumorigenic murine hepatic progenitor cells. Finally, we identified DNA damage-inducible transcript 4 (DDIT4), a modulator of mTOR pathway, as a bona fide target of miR-221. Taken together, these data reveal an important contribution for miR-221 in hepatocarcinogenesis and suggest a role for DDIT4 dysregulation in this process. Thus, the use of synthetic inhibitors of miR-221 may prove to be a promising approach to liver cancer treatment. PMID:20018759

  1. miR-221 overexpression contributes to liver tumorigenesis

    PubMed Central

    Pineau, Pascal; Volinia, Stefano; McJunkin, Katherine; Marchio, Agnès; Battiston, Carlo; Terris, Benoît; Mazzaferro, Vincenzo; Lowe, Scott W.; Croce, Carlo M.; Dejean, Anne

    2009-01-01

    MicroRNA (miRNAs) are negative regulators of gene expression and can function as tumor suppressors or oncogenes. Expression patterns of miRNAs and their role in the pathogenesis of hepatocellular carcinoma (HCC) are still poorly understood. We profiled miRNA expression in tissue samples (104 HCC, 90 adjacent cirrhotic livers, 21 normal livers) as well as in 35 HCC cell lines. A set of 12 miRNAs (including miR-21, miR-221/222, miR-34a, miR-519a, miR-93, miR-96, and let-7c) was linked to disease progression from normal liver through cirrhosis to full-blown HCC. miR-221/222, the most up-regulated miRNAs in tumor samples, are shown to target the CDK inhibitor p27 and to enhance cell growth in vitro. Conversely, these activities can be efficiently inhibited by an antagomiR specific for miR-221. In addition, we show, using a mouse model of liver cancer, that miR-221 overexpression stimulates growth of tumorigenic murine hepatic progenitor cells. Finally, we identified DNA damage-inducible transcript 4 (DDIT4), a modulator of mTOR pathway, as a bona fide target of miR-221. Taken together, these data reveal an important contribution for miR-221 in hepatocarcinogenesis and suggest a role for DDIT4 dysregulation in this process. Thus, the use of synthetic inhibitors of miR-221 may prove to be a promising approach to liver cancer treatment. PMID:20018759

  2. [Overexpression of Penicillium expansum lipase gene in Pichia pastoris].

    PubMed

    Yuan, Cai; Lin, Lin; Shi, Qiao-Qin; Wu, Song-Gang

    2003-03-01

    The alkaline lipase gene of Penicillium expansum (PEL) was coloned into the yeast integrative plasmid pPIC3.5K, which was then transformed into His4 mutant yeast GS115. Recombinant Pichia strains were obtained by minimal olive oil-methanol plates screening and confirmed by PCR. The expression producus of PEL gene was analysis by SDS-PAGE and olive oil plate, the result indicated that PEL gene was functionally overexpressed in Pichia pastoris and up to 95% of the secreted protein. Recombinant lipase had a molecular mass of 28kD, showing a range similar to that of PEL, could hydrolyze olive oil and formed clear halos in the olive oil plates. Four different strategies (different media, pH, glycerol and methanol concentration) were applied to optimize the cultivation conditions, the activity of lipase was up to 260 u/mL under the optimal cultivation conditions. It is pointed out that the absence of the expensive biotin and yeast nitrogen base in the medium increased the lipase production. The possible reason of this result is absence of yeast nitrogen base increased the medium pH during cultivation, and PEL shows a higher stability at this condition. The lipase activity of the supernatant from the culture grown at pH 7 was higher than the one from the culture in the same medium at pH 6.0 is due to the pH stability of PEL too. The results also showed that the methanol and glycerol concentration had a marked effect on the production of lipase. PMID:15966328

  3. NFκB induces overexpression of bovine FcRn

    PubMed Central

    Cervenak, Judit; Doleschall, Márton; Bender, Balázs; Mayer, Balázs; Schneider, Zita; Doleschall, Zoltán; Zhao, Yaofeng; Bősze, Zsuzsanna; Hammarström, Lennart; Oster, Wolfgang; Kacskovics, Imre

    2013-01-01

    Among the many functions of the neonatal Fc receptor (FcRn) for IgG, it binds to IgG-opsonized antigen complexes and propagates their traffic into lysosomes where antigen processing occurs. We previously reported that transgenic (Tg) mice and rabbits that carry multiple copies and overexpress FcRn have augmented humoral immune responses. Nuclear factor-kappa B (NFκB) is a critical molecule in the signaling cascade in the immune response. NFκB induces human FcRn expression and our previous in silico analysis suggested NFκB binding sites in the promoter region of the bovine (b) FcRn α-chain gene (FCGRT). Here, we report the identification of three NFκB transcription binding sites in the promoter region of this gene using luciferase reporter gene technology, electromobility shift assay and supershift analysis. Stimulation of primary bovine endothelial cells with the Toll-like receptor-4 ligand lipopolysaccharide (LPS), which mediates its effect via NFκB, resulted in rapid upregulation of the bFcRn expression and a control gene, bovine E-selectin. This rapid bFcRn gene induction was also observed in the spleen of bFcRn Tg mice treated with intraperitoneally injected LPS, analyzed by northern blot analysis. Finally, NFκB-mediated bFcRn upregulation was confirmed at the protein level in macrophages isolated from the bFcRn Tg mice using flow cytometry with a newly developed FcRn specific monoclonal antibody that does not cross-react with the mouse FcRn. We conclude that NFκB regulates bFcRn expression and thus optimizes its functions, e.g., in the professional antigen presenting cells, and contributes to the much augmented humoral immune response in the bFcRn Tg mice. PMID:24492342

  4. Intensity attenuation in the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Győri, Erzsébet; Gráczer, Zoltán; Szanyi, Gyöngyvér

    2015-04-01

    Ground motion prediction equations play a key role in seismic hazard assessment. Earthquake hazard has to be expressed in macroseismic intensities in case of seismic risk estimations where a direct relation to the damage associated with ground shaking is needed. It can be also necessary for shake map generation where the map is used for prompt notification to the public, disaster management officers and insurance companies. Although only few instrumental strong motion data are recorded in the Pannonian Basin, there are numerous historical reports of past earthquakes since the 1763 Komárom earthquake. Knowing the intensity attenuation and comparing them with relations of other areas - where instrumental strong motion data also exist - can help us to choose from the existing instrumental ground motion prediction equations. The aim of this work is to determine an intensity attenuation formula for the inner part of the Pannonian Basin, which can be further used to find an adaptable ground motion prediction equation for the area. The crust below the Pannonian Basin is thin and warm and it is overlain by thick sediments. Thus the attenuation of seismic waves here is different from the attenuation in the Alp-Carpathian mountain belt. Therefore we have collected intensity data only from the inner part of the Pannonian Basin and defined the boundaries of the studied area by the crust thickness of 30 km (Windhoffer et al., 2005). 90 earthquakes from 1763 until 2014 have sufficient number of macroseismic data. Magnitude of the events varies from 3.0 to 6.6. We have used individual intensity points to eliminate the subjectivity of drawing isoseismals, the number of available intensity data is more than 3000. Careful quality control has been made on the dataset. The different types of magnitudes of the used earthquake catalogue have been converted to local and momentum magnitudes using relations determined for the Pannonian Basin. We applied the attenuation formula by Sorensen

  5. Overexpressed let-7a-3 is associated with poor outcome in acute myeloid leukemia.

    PubMed

    Li, Yun; Lin, Jiang; Yang, Jing; Qian, Jun; Qian, Wei; Yao, Dong-Ming; Deng, Zhao-Qun; Liu, Qing; Chen, Xing-Xing; Xie, Dong; An, Cui; Tang, Chun-Yan

    2013-12-01

    Dysregulation of microRNA let-7a-3 has been identified in several solid tumors and is associated with prognosis of patients. However, the pattern of let-7a-3 expression and the impact on prognosis has not yet been studied in acute myeloid leukemia (AML). The purpose of this study is to investigate the expression status of let-7a-3 and its clinical significance in AML patients using real-time quantitative PCR. Overexpression of let-7a-3 was identified in 25 of 102 (25%) de novo AML. There was no significant difference in age, blood parameters, FAB/WHO subtypes, karyotype risks and nine gene mutations (FLT3-ITD, NPM1, C-KIT, IDH1/IDH2, DNMT3A, C/EBPA and N/K-RAS) between patients with and without let-7a-3 overexpression (P>0.05). The patients with let-7a-3 overexpression had similar rates of complete remission (CR) as those without let-7a-3 overexpression (50% vs. 56%, P=0.693). Although the overall survival (OS) of AML patients with let-7a-3 overexpression (median 12 months,) was shorter than those without overexpression (median 25 months), the difference was not statistically significant (P=0.228). However, among those 51 obtained CR, patients with let-7a-3 overexpression had significantly shorter OS than those without let-7a-3 overexpression (P=0.029). The difference in relapse-free survival (RFS) was also significant between two groups (P=0.005). These findings suggest that let-7a-3 overexpression is a common event and is associated with poor clinical outcome in AML. PMID:24138945

  6. Clonal relatedness is a predictor of spontaneous multidrug efflux pump gene overexpression in Staphylococcus aureus.

    PubMed

    Schindler, Bryan D; Jacinto, Pauline L; Buensalido, Joseph Adrian L; Seo, Susan M; Kaatz, Glenn W

    2015-05-01

    Increased expression of genes encoding multidrug resistance efflux pumps (MDR-EPs) contributes to antimicrobial agent and biocide resistance in Staphylococcus aureus. Previously identified associations between norA overexpression and spa type t002 meticillin-resistant S. aureus (MRSA), and a similar yet weaker association between mepA overexpression and type t008 meticillin-susceptible S. aureus (MSSA), in clinical isolates are suggestive of clonal dissemination. It is also possible that related strains are prone to mutations resulting in overexpression of specific MDR-EP genes. Exposure of non-MDR-EP-overexpressing clinical isolates to biocides and dyes can select for MDR-EP-overexpressing mutants. spa types t002 and t008 isolates are predominated by multilocus sequencing typing sequence types (STs) 5 and 8, respectively. In this study, non-MDR-EP gene-overexpressing clinical isolates (MRSA and MSSA) representing ST5 and ST8 were subjected to single exposures of ethidium bromide (EtBr) to select for EtBr-resistant mutants. Measurements of active EtBr transport among mutants were used to demonstrate an efflux-proficient phenotype. Using quantitative reverse-transcription PCR, it was found that EtBr-resistant mutants of ST5 and ST8 parental strains predominantly overexpressed mepA (100%) and mdeA (83%), respectively, regardless of meticillin sensitivity. Associations between clonal lineage and MDR-EP gene overexpression differed from those previously observed and suggest the latter is due to clonal spread of efflux-proficient strains. The predilection of in vitro-selected mutants of related strains to overexpress the same MDR-EP gene indicates the presence of a consistent mutational process. PMID:25548027

  7. Overexpression of Arabidopsis Ceramide Synthases Differentially Affects Growth, Sphingolipid Metabolism, Programmed Cell Death, and Mycotoxin Resistance.

    PubMed

    Luttgeharm, Kyle D; Chen, Ming; Mehra, Amit; Cahoon, Rebecca E; Markham, Jonathan E; Cahoon, Edgar B

    2015-10-01

    Ceramide synthases catalyze an N-acyltransferase reaction using fatty acyl-coenzyme A (CoA) and long-chain base (LCB) substrates to form the sphingolipid ceramide backbone and are targets for inhibition by the mycotoxin fumonisin B1 (FB1). Arabidopsis (Arabidopsis thaliana) contains three genes encoding ceramide synthases with distinct substrate specificities: LONGEVITY ASSURANCE GENE ONE HOMOLOG1 (LOH1; At3g25540)- and LOH3 (At1g19260)-encoded ceramide synthases use very-long-chain fatty acyl-CoA and trihydroxy LCB substrates, and LOH2 (At3g19260)-encoded ceramide synthase uses palmitoyl-CoA and dihydroxy LCB substrates. In this study, complementary DNAs for each gene were overexpressed to determine the role of individual isoforms in physiology and sphingolipid metabolism. Differences were observed in growth resulting from LOH1 and LOH3 overexpression compared with LOH2 overexpression. LOH1- and LOH3-overexpressing plants had enhanced biomass relative to wild-type plants, due in part to increased cell division, suggesting that enhanced synthesis of very-long-chain fatty acid/trihydroxy LCB ceramides promotes cell division and growth. Conversely, LOH2 overexpression resulted in dwarfing. LOH2 overexpression also resulted in the accumulation of sphingolipids with C16 fatty acid/dihydroxy LCB ceramides, constitutive induction of programmed cell death, and accumulation of salicylic acid, closely mimicking phenotypes observed previously in LCB C-4 hydroxylase mutants defective in trihydroxy LCB synthesis. In addition, LOH2- and LOH3-overexpressing plants acquired increased resistance to FB1, whereas LOH1-overexpressing plants showed no increase in FB1 resistance, compared with wild-type plants, indicating that LOH1 ceramide synthase is most strongly inhibited by FB1. Overall, the findings described here demonstrate that overexpression of Arabidopsis ceramide synthases results in strongly divergent physiological and metabolic phenotypes, some of which have significance

  8. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration

    PubMed Central

    2013-01-01

    Introduction The Rho GTPase Cdc42 is overexpressed and hyperactivated in breast tumors compared to normal breast tissue. Cdc42 regulates key processes that are critical for mammary gland morphogenesis and become disrupted during the development, progression, and metastasis of breast cancer. However, the contribution of Cdc42 to normal and neoplastic mammary gland development in vivo remains poorly understood. We were therefore interested in investigating the effects of Cdc42 overexpression on mammary gland morphogenesis as a first step toward understanding how its overexpression may contribute to mammary tumorigenesis. Methods We developed a tetracycline-regulatable Cdc42 overexpression mouse model in which Cdc42 can be inducibly overexpressed in the developing mammary gland. The effects of Cdc42 overexpression during postnatal mammary gland development were investigated using in vivo and in vitro approaches, including morphometric analysis of wholemounted mammary glands, quantification of histological markers, and primary mammary epithelial cell (MEC) functional and biochemical assays. Results Analysis of Cdc42-overexpressing mammary glands revealed abnormal terminal end bud (TEB) morphologies, characterized by hyperbudding and trifurcation, and increased side branching within the ductal tree. Quantification of markers of proliferation and apoptosis suggested that these phenotypes were not due to increased cell proliferation or survival. Rather, Cdc42 overexpressing MECs were more migratory and contractile and formed dysmorphic, invasive acini in three-dimensional cultures. Cdc42 and RhoA activities, phosphorylated myosin light chain, and MAPK signaling, which contribute to migration and invasion, were markedly elevated in Cdc42 overexpressing MECs. Interestingly, Cdc42 overexpressing mammary glands displayed several features associated with altered epithelial-stromal interactions, which are known to regulate branching morphogenesis. These included increased

  9. Overexpression of pim-3 and protective role in lipopolysaccharide-stimulated hepatic stellate cells

    PubMed Central

    Liu, Lin-Hua; Lai, Qi-Nan; Chen, Jian-Yong; Zhang, Ji-Xiang; Cheng, Bin

    2015-01-01

    .051 vs 0.5267 ± 0.030, P < 0.01; at 48 h 0.4634 ± 0.056 or 0.5433 ± 0.031 vs 0.8435 ± 0.028, P < 0.01; si-pim3 group vs si-pim3 plus LPS, P < 0.01 at 24 h and P < 0.05 at 48 h), and overexpression of pim-3 in the LPS group increased cell proliferation (OD: LPS vs control, at 24 h, 0.7435 ± 0.028 vs 0.5267 ± 0.030, P < 0.01; at 48 h, 1.2136 ± 0.048 vs 0.8435 ± 0.028, P < 0.01). Ablation of pim3 with si-pim3 in HSC-T6 cells aggravated apoptosis (si-pim3 or si-pim3 plus LPS vs control, 42.3% ±1.1% or 40.6% ± 1.3% vs 16.8% ± 3.3%, P < 0.01; si-pim3 vs si-pim3 plus LPS, P > 0.05), and overexpression of pim-3 in the LPS group attenuated apoptosis (LPS vs control, 7.32% ± 2.1% vs 16.8% ± 3.3%, P < 0.05). These results were confirmed by caspase-3 activity assay. CONCLUSION: Overexpression of pim-3 plays a protective role in LPS-stimulated HSC-T6 cells. PMID:26269675

  10. Nonsilicon micro-machined variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-lin; Dai, Xu-han; Ding, Gui-fu; Zhao, Xiaolin

    2011-08-01

    Optical power equalization between wavelength-path slots in wavelength division multiplexing (WDM) networks is an increasingly concerning issue in all-optical networks, and this made variable optical attenuators (VOAs) play an increasingly important role in fiber optic transmission systems. Various types of optical attenuators have been realized, but conventional available mechanical VOAs are bulky, costly, and slow. MOEMS technology provides new approaches to improve the characteristic mentioned above. Previous attempts to realize MEMS variable optical attenuators include the use of a micro-driven shutter, a mechanical antireflection switch (MARS) modulator, a micro-machined tilted mirror, and a micro-machined membrane-type waveguide. In this paper, we report the design and fabrication of two types of electromagnetically actuated variable optical attenuator (VOA). They are both driven by a similar construction containing of a plane coil and a FeNi armature. The first one adjusts the attenuation by moving a shutter between the two fibers, the second one by moving one of the fibers directly. The first one is fabricated by nonsilicon surface micromachining technology. In which a copper layer was used as the sacrificial layer, and the electroplated FeNi as the structure layer. This scheme provides another way to fabricate the optical microstructure. According to the experiment results, it has insertion loss less than 3 dB at 1550-nm wavelength, dynamic range greater than 40 dB, 0.2-dB repeatability, and return loss better than 40 dB, driving voltage less than 20 V. For the second one, it included the silicon platform for adjustment of optical coupling between two optical fibers. The main fabrication process of the silicon platform is was the KOH antistrophic wet chemical etching of <100> silicon wafers. The silicon wafer is further selectively etched from the bottom side to subtract the thickness of the silicon elastic platform. In addition, two V grooves were

  11. Aging attenuates the vestibulosympathetic reflex in humans

    NASA Technical Reports Server (NTRS)

    Ray, Chester A.; Monahan, Kevin D.

    2002-01-01

    BACKGROUND: The vestibular system contributes to sympathetic activation by engagement of the otolith organs. However, there is a significant loss of vestibular function with aging. Therefore, the purpose of the present study was to determine if young and older individuals differ in their cardiovascular and sympathetic responses to otolithic stimulation (ie, head-down rotation, HDR). We hypothesized that responses to otolithic stimulation would be attenuated in older adults because of morphological and physiological alterations that occur in the vestibular system with aging. METHODS AND RESULTS: Arterial blood pressure, heart rate, muscle sympathetic nerve activity (MSNA), and head rotation were measured during HDR in 11 young (26 +/- 1 years) and 11 older (64 +/- 1 years) subjects in the prone posture. Five older subjects performed head rotation (chin to chest) in the lateral decubitus position, which simulates HDR but does not alter afferent inputs from the vestibular system. MSNA responses to HDR were significantly attenuated in older as compared with young subjects (P<0.01). MSNA increased in the older subjects by only 12 +/- 5% as compared with 85 +/- 16% in the young. Furthermore, HDR elicited significant reductions in mean arterial blood pressure in older (Delta-6 +/- 1 mm Hg; P<0.01) but not young subjects (Delta1 +/- 1 mm Hg). In contrast to HDR, head rotation performed in the lateral decubitus position did not elicit hypotension. MSNA responses to baroreceptor unloading and the cold pressor test were not different between the age groups. CONCLUSIONS: These data indicate that aging attenuates the vestibulosympathetic reflex in humans and may contribute to the increased prevalence of orthostatic hypotension with age.

  12. Chemical attenuation reactions of selenium; Final report

    SciTech Connect

    Zachara, J.M.; Rai, D.; Moore, D.A.; Turner, G.D.; Felmy, A.R.

    1994-02-01

    This report summarizes research on the geochemical behavior of Se present in utility coal-combustion wastes. Laboratory experiments quantified select geochemical reactions that control the concentrations of selenite (SeO{sub 3}{sup 2{minus}}) and selenate (SeO{sub 4}{sup 2{minus}}) in soil solutions and groundwater and determined the magnitude and mechanisms of chemical attenuation of these species in soils and subsurface materials. Thermodynamic data, equilibrium constants, and modeling procedures were developed that to utilities to make improved predictions of the mobility of Se species from ponded and dry landfill sites. An adsorption-constant database for selenite and selenate on common soil minerals was developed. The database, which can be used to estimate the extent of Se attenuation by adsorption in utility soils, was used to determine the specific mineral phases control the adsorption of selenite (Fe oxides) and selenate (Al oxides). Solubility studies were performed with two Se solid phases that may form in the environment [BaSeO{sub 4}(c) and Fe{sub 2}(SeO{sub 3}){sub 3}{lg_bullet}6H{sub 2}0(c)] to establish upper limits on Se concentrations. New thermodynamic data were developed to allow prediction of aqueous Se concentrations where these phases may exist. Eleven soil and subsurface materials, collected nationally and representative of properties frequently encountered at waste sites, were used in experiments involving adsorption of selenite and selenate to assess their potential for Se chemical attenuation and to determine chemical and mineralogic factors that control Se adsorption. Selenite was far more strongly adsorbed by the geologic materials than the selenate. The adsorption of both Se species depended on the type of natural materials and showed positive correlation with Fe and Al oxides associated with particle surfaces. Procedures were developed to predict Se adsorption from comprehensive chemical and mineralogic characterization data.

  13. Overexpression of Peanut Diacylglycerol Acyltransferase 2 in Escherichia coli

    PubMed Central

    Yang, Lianqun; Zhang, Bin; Chen, Gao; Bi, Yuping

    2013-01-01

    Diacylglycerol acyltransferase (DGAT) is the rate-limiting enzyme in triacylglycerol biosynthesis in eukaryotic organisms. Triacylglycerols are important energy-storage oils in plants such as peanuts, soybeans and rape. In this study, Arachis hypogaea type 2 DGAT (AhDGAT2) genes were cloned from the peanut cultivar ‘Luhua 14’ using a homologous gene sequence method and rapid amplification of cDNA ends. To understand the role of AhDGAT2 in triacylglycerol biosynthesis, two AhDGAT2 nucleotide sequences that differed by three amino acids were expressed as glutathione S-transferase (GST) fusion proteins in Escherichia coli Rosetta (DE3). Following IPTG induction, the isozymes (AhDGAT2a and AhDGAT2b) were expressed as 64.5 kDa GST fusion proteins. Both AhDGAT2a and AhDGAT2b occurred in the host cell cytoplasm and inclusion bodies, with larger amounts in the inclusion bodies. Overexpression of AhDGATs depressed the host cell growth rates relative to non-transformed cells, but cells harboring empty-vector, AhDGAT2a–GST, or AhDGAT2b–GST exhibited no obvious growth rate differences. Interestingly, induction of AhDGAT2a–GST and AhDGAT2b–GST proteins increased the sizes of the host cells by 2.4–2.5 times that of the controls (post-IPTG induction). The total fatty acid (FA) levels of the AhDGAT2a–GST and AhDGAT2a–GST transformants, as well as levels of C12:0, C14:0, C16:0, C16:1, C18:1n9c and C18:3n3 FAs, increased markedly, whereas C15:0 and C21:0 levels were lower than in non-transformed cells or those containing empty-vectors. In addition, the levels of some FAs differed between the two transformant strains, indicating that the two isozymes might have different functions in peanuts. This is the first time that a full-length recombinant peanut DGAT2 has been produced in a bacterial expression system and the first analysis of its effects on the content and composition of fatty acids in E. coli. Our results indicate that AhDGAT2 is a strong candidate gene for

  14. p53 mutations and overexpression in locally advanced breast cancers.

    PubMed Central

    Faille, A.; De Cremoux, P.; Extra, J. M.; Linares, G.; Espie, M.; Bourstyn, E.; De Rocquancourt, A.; Giacchetti, S.; Marty, M.; Calvo, F.

    1994-01-01

    Alterations in the p53 gene were analysed in 39 patients with locally advanced breast cancers (LABCs) (stage III-IV) with inflammatory signs in most cases (UICC stage T4d = 32 patients) by molecular and immunohistochemical (IHC) approaches. All patients were included in the same therapy protocol. Using polymerase chain reaction (PCR) and a single-strand conformational polymorphism migration technique (SSCP), the presence of mutations in exons 2-11, covering the entire coding sequence of the p53 gene, was evaluated. Using the mouse specific anti-human p53 monoclonal antibody (PAb 1801), we also looked for overexpression of the p53 protein in tissue sections. In 16 cases shifted bands were reproducibly identified by PCR-SSCP, and all but one (localised to exon 10) were in exons 5-8, the usual mutational hotspots. Fifteen of these 16 samples were sequenced and 14 of the suspected mutations (36%) were confirmed. Most of them (12) were single nucleotide substitutions, and transitions were more frequent (eight cases) than transversions (four cases). Fourteen of the tumour samples were positively stained with the monoclonal antibody PAb 1801, 11 with nuclear staining only, two with mixed cytoplasmic and nuclear staining and one with cytoplasmic staining only. Staining patterns were very heterogeneous in terms of the percentage of positive cells (10-75%) and their distribution in the tissue section (isolated foci or dispersed cells). In 11 of the 14 mutated cases a positive immunostaining was observed. The presence of a p53 mutation was significantly associated with larger tumour diameter (chi 2 = 7.490, P = 0.0062) and the presence of clinical metastases (stage IV) (chi 2 = 10.113, P = 0.0015). A non-statistically significant trend of association was observed between p53 mutation, negative oestrogen receptors and lower response rate to therapy. Our results in this group of patients and the heterogeneity of the staining of tumour cells in tissue sections suggest that p53

  15. Turbulence attenuation by large neutrally buoyant particles

    NASA Astrophysics Data System (ADS)

    Cisse, M.; Saw, E.-W.; Gibert, M.; Bodenschatz, E.; Bec, J.

    2015-06-01

    Turbulence modulation by inertial-range-size, neutrally buoyant particles is investigated experimentally in a von Kármán flow. Increasing the particle volume fraction Φv, maintaining constant impellers Reynolds number attenuates the fluid turbulence. The inertial-range energy transfer rate decreases as ∝ Φv 2 / 3 , suggesting that only particles located on a surface affect the flow. Small-scale turbulent properties, such as structure functions or acceleration distribution, are unchanged. Finally, measurements hint at the existence of a transition between two different regimes occurring when the average distance between large particles is of the order of the thickness of their boundary layers.

  16. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  17. Tick Passage Results in Enhanced Attenuation of Babesia bovis

    PubMed Central

    McElwain, Terry F.; Ueti, Massaro W.; Scoles, Glen A.; Reif, Kathryn E.; Lau, Audrey O. T.

    2014-01-01

    Serial blood passage of virulent Babesia bovis in splenectomized cattle results in attenuated derivatives that do not cause neurologic disease. Tick transmissibility can be lost with attenuation, but when retained, attenuated B. bovis can revert to virulence following tick passage. This study provides data showing that tick passage of the partially attenuated B. bovis T2Bo derivative strain further decreased virulence compared with intravenous inoculation of the same strain in infected animals. Ticks that acquired virulent or attenuated parasites by feeding on infected cattle were transmission fed on naive, splenectomized animals. While there was no significant difference between groups in the number of parasites in the midgut, hemolymph, or eggs of replete female ticks after acquisition feeding, animals infected with the attenuated parasites after tick transmission showed no clinical signs of babesiosis, unlike those receiving intravenous challenge with the same attenuated strain prior to tick passage. Additionally, there were significantly fewer parasites in blood and tissues of animals infected with tick-passaged attenuated parasites. Sequencing analysis of select B. bovis genes before and after tick passage showed significant differences in parasite genotypes in both peripheral blood and cerebral samples. These results provide evidence that not only is tick transmissibility retained by the attenuated T2Bo strain, but also it results in enhanced attenuation and is accompanied by expansion of parasite subpopulations during tick passage that may be associated with the change in disease phenotype. PMID:25114111

  18. Behavioral Characterization of a Mouse Model Overexpressing DSCR1/ RCAN1

    PubMed Central

    Dierssen, Mara; Arqué, Gloria; McDonald, Jerome; Andreu, Nuria; Martínez-Cué, Carmen; Flórez, Jesús; Fillat, Cristina

    2011-01-01

    DSCR1/ RCAN1 is a chromosome 21 gene found to be overexpressed in the brains of Down syndrome (DS) and postulated as a good candidate to contribute to mental disability. However, even though Rcan1 knockout mice have pronounced spatial learning and memory deficits, the possible deleterious effects of its overexpression in DS are not well understood. We have generated a transgenic mouse model overexpressing DSCR1/RCAN1 in the brain and analyzed the effect of RCAN1 overexpression on cognitive function. TgRCAN1 mice present a marked disruption of the learning process in a visuo-spatial learning task. However, no significant differences were observed in the performance of the memory phase of the test (removal session) nor in a step-down passive avoidance task, thus suggesting that once learning has been established, the animals are able to consolidate the information in the longer term. PMID:21364922

  19. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice.

    PubMed

    Kanatsou, Sofia; Ter Horst, Judith P; Harris, Anjanette P; Seckl, Jonathan R; Krugers, Harmen J; Joëls, Marian

    2015-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  20. IMPROVED TOLERANCE TO ENVIRONMENTALLY INDUCED OXIDATIVE STRESSES IN TRANSGENIC TOMATO OVEREXPRESSING ASCORBATE PEROXIDASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We studied the effect on oxidative stress resistance of overexpressing, in transgenic tomato (Lycopersicon esculentum) plants, a cytosolic ascorbate peroxidase (APX) gene derived from pea (Pisum sativum). Transformants were selected using Kanamycin resistance and confirmed by PCR, Southern and Nort...

  1. The effect of aquaporin 5 overexpression on the Ras signaling pathway

    SciTech Connect

    Woo, Janghee; Lee, Juna; Kim, Myoung Sook; Jang, Se Jin; Sidransky, David; Moon, Chulso

    2008-03-07

    Human aquaporin 5 (AQP5) has been shown to be overexpressed in multiple cancers, such as pancreatic cancer and colon cancer. Furthermore, it has been reported that ectopic expression of AQP5 leads to many phenotypic changes characteristic of transformation. However, the biochemical mechanism leading to transformation in AQP5-overexpressing cells has not been clearly elucidated. In this report, the overexpression of AQP5 in NIH3T3 cells demonstrated a significant effect on Ras activity and, thus, cell proliferation. Furthermore, this influence was shown to be mediated by phosphorylation of the PKA consensus site of AQP5. This is the first evidence demonstrating an association between AQP5 and a signaling pathway, namely the Ras signal transduction pathway, which may be the basis of the oncogenic properties seen in AQP-overexpressing cells.

  2. Effects of Mineralocorticoid Receptor Overexpression on Anxiety and Memory after Early Life Stress in Female Mice

    PubMed Central

    Kanatsou, Sofia; Ter Horst, Judith P.; Harris, Anjanette P.; Seckl, Jonathan R.; Krugers, Harmen J.; Joëls, Marian

    2016-01-01

    Early-life stress (ELS) is a risk factor for the development of psychopathology, particularly in women. Human studies have shown that certain haplotypes of NR3C2, encoding the mineralocorticoid receptor (MR), that result in gain of function, may protect against the consequences of stress exposure, including childhood trauma. Here, we tested the hypothesis that forebrain-specific overexpression of MR in female mice would ameliorate the effects of ELS on anxiety and memory in adulthood. We found that ELS increased anxiety, did not alter spatial discrimination and reduced contextual fear memory in adult female mice. Transgenic overexpression of MR did not alter anxiety but affected spatial memory performance and enhanced contextual fear memory formation. The effects of ELS on anxiety and contextual fear were not affected by transgenic overexpression of MR. Thus, MR overexpression in the forebrain does not represent a major resilience factor to early life adversity in female mice. PMID:26858618

  3. Overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer

    PubMed Central

    Lin, Huayue; Liu, Wenjuan; Fang, Zanxi; Liang, Xianming; Li, Juan; Bai, Yongying; Lin, Lingqing; You, Hanyu; Pei, Yihua; Wang, Fen; Zhang, Zhong-Ying

    2015-01-01

    Our previous work demonstrates that DHX32 is upregulated in colorectal cancer (CRC) compared to its adjacent normal tissues. However, how overexpressed DHX32 contributes to CRC remains largely unknown. In this study, we reported that DHX32 was overexpressed in human colon cancer cells. Overexpressed DHX32 promoted SW480 cancer cells proliferation, migration, and invasion, as well as decreased the susceptibility to chemotherapy agent 5-Fluorouracil. Furthermore, PCR array analyses revealed that depleting DHX32 in SW480 colon cancer cells suppressed expression of WISP1, MMP7 and VEGFA in the Wnt pathway, and anti-apoptotic gene BCL2 and CA9, however, elevated expression of pro-apoptotic gene ACSL5. The findings suggested that overexpressed DHX32 played an important role in CRC progression and metastasis and that DHX32 has the potential to serve as a biomarker and a novel therapeutic target for CRC. PMID:25782664

  4. Overexpression of Ref-1 Inhibits Lead-induced Endothelial Cell Death via the Upregulation of Catalase

    PubMed Central

    Lee, Kwon Ho; Lee, Sang Ki; Kim, Hyo Shin; Cho, Eun Jung; Joo, Hee Kyoung; Lee, Eun Ji; Lee, Ji Young; Park, Myoung Soo; Chang, Seok Jong; Cho, Chung-Hyun; Park, Jin Bong

    2009-01-01

    The role of apurinic/apyrimidinic endonuclease1/redox factor-1 (Ref-1) on the lead (Pb)-induced cellular response was investigated in the cultured endothelial cells. Pb caused progressive cellular death in endothelial cells, which occurred in a concentration- and time-dependent manner. However, Ref-1 overexpression with AdRef-1 significantly inhibited Pb-induced cell death in the endothelial cells. Also the overexpression of Ref-1 significantly suppressed Pb-induced superoxide and hydrogen peroxide elevation in the endothelial cells. Pb exposure induced the downregulation of catalase, it was inhibited by the Ref-1 overexpression in the endothelial cells. Taken together, our data suggests that the overexpression of Ref-1 inhibited Pb-induced cell death via the upregulation of catalase in the cultured endothelial cells. PMID:20054488

  5. Overexpression of DHX32 contributes to the growth and metastasis of colorectal cancer.

    PubMed

    Lin, Huayue; Liu, Wenjuan; Fang, Zanxi; Liang, Xianming; Li, Juan; Bai, Yongying; Lin, Lingqing; You, Hanyu; Pei, Yihua; Wang, Fen; Zhang, Zhong-Ying

    2015-01-01

    Our previous work demonstrates that DHX32 is upregulated in colorectal cancer (CRC) compared to its adjacent normal tissues. However, how overexpressed DHX32 contributes to CRC remains largely unknown. In this study, we reported that DHX32 was overexpressed in human colon cancer cells. Overexpressed DHX32 promoted SW480 cancer cells proliferation, migration, and invasion, as well as decreased the susceptibility to chemotherapy agent 5-Fluorouracil. Furthermore, PCR array analyses revealed that depleting DHX32 in SW480 colon cancer cells suppressed expression of WISP1, MMP7 and VEGFA in the Wnt pathway, and anti-apoptotic gene BCL2 and CA9, however, elevated expression of pro-apoptotic gene ACSL5. The findings suggested that overexpressed DHX32 played an important role in CRC progression and metastasis and that DHX32 has the potential to serve as a biomarker and a novel therapeutic target for CRC. PMID:25782664

  6. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    SciTech Connect

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  7. Overexpression screens identify conserved dosage chromosome instability genes in yeast and human cancer.

    PubMed

    Duffy, Supipi; Fam, Hok Khim; Wang, Yi Kan; Styles, Erin B; Kim, Jung-Hyun; Ang, J Sidney; Singh, Tejomayee; Larionov, Vladimir; Shah, Sohrab P; Andrews, Brenda; Boerkoel, Cornelius F; Hieter, Philip

    2016-09-01

    Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors. We show that two genes, TDP1, a tyrosyl-DNA-phosphdiesterase, and TAF12, an RNA polymerase II TATA-box binding factor, cause CIN when overexpressed in human cells. Rhabdomyosarcoma lines with elevated human Tdp1 levels also exhibit CIN that can be partially rescued by siRNA-mediated knockdown of TDP1 Overexpression of dCIN genes represents a genetic vulnerability that could be leveraged for selective killing of cancer cells through targeting of an unlinked synthetic dosage lethal (SDL) partner. Using SDL screens in yeast, we identified a set of genes that when deleted specifically kill cells with high levels of Tdp1. One gene was the histone deacetylase RPD3, for which there are known inhibitors. Both HT1080 cells overexpressing hTDP1 and rhabdomyosarcoma cells with elevated levels of hTdp1 were more sensitive to histone deacetylase inhibitors valproic acid (VPA) and trichostatin A (TSA), recapitulating the SDL interaction in human cells and suggesting VPA and TSA as potential therapeutic agents for tumors with elevated levels of hTdp1. The catalog of dCIN genes presented here provides a candidate list to identify genes that cause CIN when overexpressed in cancer, which can then be leveraged through SDL to selectively target tumors. PMID:27551064

  8. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain.

    PubMed

    Palmieri, Diane; Bronder, Julie L; Herring, Jeanne M; Yoneda, Toshiyuki; Weil, Robert J; Stark, Andreas M; Kurek, Raffael; Vega-Valle, Eleazar; Feigenbaum, Lionel; Halverson, Douglas; Vortmeyer, Alexander O; Steinberg, Seth M; Aldape, Kenneth; Steeg, Patricia S

    2007-05-01

    Retrospective studies of breast cancer patients suggest that primary tumor Her-2 overexpression or trastuzumab therapy is associated with a devastating complication: the development of central nervous system (brain) metastases. Herein, we present Her-2 expression trends from resected human brain metastases and data from an experimental brain metastasis assay, both indicative of a functional contribution of Her-2 to brain metastatic colonization. Of 124 archival resected brain metastases from breast cancer patients, 36.2% overexpressed Her-2, indicating an enrichment in the frequency of tumor Her-2 overexpression at this metastatic site. Using quantitative real-time PCR of laser capture microdissected epithelial cells, Her-2 and epidermal growth factor receptor (EGFR) mRNA levels in a cohort of 12 frozen brain metastases were increased up to 5- and 9-fold, respectively, over those of Her-2-amplified primary tumors. Co-overexpression of Her-2 and EGFR was also observed in a subset of brain metastases. We then tested the hypothesis that overexpression of Her-2 increases the colonization of breast cancer cells in the brain in vivo. A subclone of MDA-MB-231 human breast carcinoma cells that selectively metastasizes to brain (231-BR) overexpressed EGFR; 231-BR cells were transfected with low (4- to 8-fold) or high (22- to 28-fold) levels of Her-2. In vivo, in a model of brain metastasis, low or high Her-2-overexpressing 231-BR clones produced comparable numbers of micrometastases in the brain as control transfectants; however, the Her-2 transfectants yielded 3-fold greater large metastases (>50 microm(2); P < 0.001). Our data indicate that Her-2 overexpression increases the outgrowth of metastatic tumor cells in the brain in this model system. PMID:17483330

  9. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system and proinflammatory cytokines in hypertension

    SciTech Connect

    Su, Qing; Qin, Da-Nian; Wang, Fu-Xin; Ren, Jun; Li, Hong-Bao; Zhang, Meng; Yang, Qing; Miao, Yu-Wang; Yu, Xiao-Jing; Qi, Jie; Zhu, Zhiming; Zhu, Guo-Qing; Kang, Yu-Ming

    2014-04-15

    Aims: To explore whether reactive oxygen species (ROS) scavenger (tempol) in the hypothalamic paraventricular nucleus (PVN) attenuates renin–angiotensin system (RAS) and proinflammatory cytokines (PICs), and decreases the blood pressure and sympathetic activity in angiotensin II (ANG II)-induced hypertension. Methods and results: Male Sprague–Dawley rats were infused intravenously with ANG II (10 ng/kg per min) or normal saline (NS) for 4 weeks. These rats were treated with bilateral PVN infusion of oxygen free radical scavenger tempol (TEMP, 20 μg/h) or vehicle (artificial cerebrospinal fluid, aCSF) for 4 weeks. ANG II infusion resulted in increased mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA). These ANG II-infused rats also had higher levels of gp91{sup phox} (a subunit of NAD(P)H oxidase), angiotensin-converting enzyme (ACE), and interleukin-1beta (IL-1β) in the PVN than the control animals. Treatment with PVN infusion of TEMP attenuated the overexpression of gp91{sup phox}, ACE and IL-1β within the PVN, and decreased sympathetic activity and MAP in ANG II-infused rats. Conclusion: These findings suggest that ANG II infusion induces elevated PICs and oxidative stress in the PVN, which contribute to the sympathoexcitation in hypertension. Inhibition of reactive oxygen species in hypothalamic paraventricular nucleus attenuates the renin–angiotensin system, proinflammatory cytokines and oxidative stress in ANG II-induced hypertension. - Highlights: • The effect of chronic inhibiting PVN superoxide on hypertension was investigated. • ANG II infusion induced increased proinflammatory cytokines and superoxide in PVN. • ANG II infusion resulted in oxidative stress, sympathoexcitation and hypertension. • Chronic inhibiting PVN superoxide attenuates RAS and cytokines in hypertension.

  10. Mechanisms of Cell Cycle Control Revealed by a Systematic and Quantitative Overexpression Screen in S. cerevisiae

    PubMed Central

    Niu, Wei; Li, Zhihua; Zhan, Wenjing; Iyer, Vishwanath R.; Marcotte, Edward M.

    2008-01-01

    Regulation of cell cycle progression is fundamental to cell health and reproduction, and failures in this process are associated with many human diseases. Much of our knowledge of cell cycle regulators derives from loss-of-function studies. To reveal new cell cycle regulatory genes that are difficult to identify in loss-of-function studies, we performed a near-genome-wide flow cytometry assay of yeast gene overexpression-induced cell cycle delay phenotypes. We identified 108 genes whose overexpression significantly delayed the progression of the yeast cell cycle at a specific stage. Many of the genes are newly implicated in cell cycle progression, for example SKO1, RFA1, and YPR015C. The overexpression of RFA1 or YPR015C delayed the cell cycle at G2/M phases by disrupting spindle attachment to chromosomes and activating the DNA damage checkpoint, respectively. In contrast, overexpression of the transcription factor SKO1 arrests cells at G1 phase by activating the pheromone response pathway, revealing new cross-talk between osmotic sensing and mating. More generally, 92%–94% of the genes exhibit distinct phenotypes when overexpressed as compared to their corresponding deletion mutants, supporting the notion that many genes may gain functions upon overexpression. This work thus implicates new genes in cell cycle progression, complements previous screens, and lays the foundation for future experiments to define more precisely roles for these genes in cell cycle progression. PMID:18617996

  11. Overexpression of Bmi1 in Lymphocytes Stimulates Skeletogenesis by Improving the Osteogenic Microenvironment.

    PubMed

    Zhou, Xichao; Dai, Xiuliang; Wu, Xuan; Ji, Ji; Karaplis, Andrew; Goltzman, David; Yang, Xiangjiao; Miao, Dengshun

    2016-01-01

    To investigate whether overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by improving the osteogenic microenvironment, we examined the skeletal phenotype of EμBmi1 transgenic mice with overexpression of Bmi1 in lymphocytes. The size of the skeleton, trabecular bone volume and osteoblast number, indices of proliferation and differentiation of bone marrow mesenchymal stem cells (BM-MSCs) were increased significantly, ROS levels were reduced and antioxidative capacity was enhanced in EμBmi1 mice compared to WT mice. In PTHrP1-84 knockin (Pthrp(KI/KI)) mice, the expression levels of Bmi1 are reduced and potentially can mediate the premature osteoporosis observed. We therefore generated a Pthrp(KI/KI) mice overexpressing Bmi1 in lymphocytes and compared them with Pthrp(KI/KI) and WT littermates. Overexpression of Bmi1 in Pthrp(KI/KI) mice resulted in a longer lifespan, increased body weight and improvement in skeletal growth and parameters of osteoblastic bone formation with reduced ROS levels and DNA damage response parameters. Our results demonstrate that overexpression of Bmi1 in lymphocytes can stimulate osteogenesis in vivo and partially rescue defects in skeletal growth and osteogenesis in Pthrp(KI/KI) mice. These studies therefore indicate that overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by inhibiting oxidative stress and improving the osteogenic microenvironment. PMID:27373231

  12. Overexpression of RORγt Enhances Pulmonary Inflammation after Infection with Mycobacterium Avium.

    PubMed

    Matsuyama, Masashi; Ishii, Yukio; Sakurai, Hirofumi; Ano, Satoshi; Morishima, Yuko; Yoh, Keigyou; Takahashi, Satoru; Ogawa, Kenji; Hizawa, Nobuyuki

    2016-01-01

    Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial disease in humans. The role of Th17 immunity in the pathogenesis of intracellular bacteria, such as MAC, is not currently understood. Transcription factor RAR-related orphan receptor gamma t (RORγt) is known as the master regulator for Th17 cell development. Here, we investigated the role of RORγt in host responses against MAC infection. Wild-type (WT) mice and RORγt-overexpressing mice were infected with MAC via intratracheal inoculation. Systemic MAC growth was not different between WT mice and RORγt-overexpressing mice. However, neutrophilic pulmonary inflammation following MAC infection was enhanced in RORγt-overexpressing mice compared with that in WT mice. The cytokine expression shifted toward a Th17 phenotype in the lungs of RORγt-overexpressing mice following MAC infection; the levels of IL-6 and IL-17 were significantly higher in the lung of these mice than in WT mice. In addition to the increase in IL-17 single-positive T cells, T cells producing both IL-17 and interferon-γ were elevated in the lung of RORγt-overexpressing mice following MAC infection. These findings suggest that RORγt overexpression-mediated Th17 bias contributes to local inflammation rather than systemic responses, by regulating neutrophil recruitment into the sites of infection during MAC infection. PMID:26784959

  13. Inhibition of laminin-5 production in breast epithelial cells by overexpression of p300.

    PubMed

    Miller, K A; Chung, J; Lo, D; Jones, J C; Thimmapaya, B; Weitzman, S A

    2000-03-17

    The transcriptional coactivator p300 is essential for normal embryonic development and cellular differentiation. We have been studying the role of p300 in the transcription of a variety of genes, and we became interested in the role of this coactivator in the transcription of genes important in breast epithelial cell biology. From MCF-10A cells (spontaneously immortalized, nontransformed human breast epithelial cells), we developed cell lines that stably overexpress p300. These p300-overexpressing cells displayed reduced adhesion to culture dishes and were found to secrete an extracellular matrix deficient in laminin-5. Laminin-5 is the major extracellular matrix component produced by breast epithelium. Immunofluorescence studies, as well as experiments using normal matrix, confirmed that the decreased adhesion of p300-overexpressing cells is due to laminin-5-deficient extracellular matrix and not due to loss of laminin-5 receptors. Northern blots revealed markedly decreased levels of expression of two of the genes (designated LAMA3 and LAMC2) encoding the alpha3 and gamma2 chains of the laminin-5 heterotrimer in the cells that overexpress p300, whereas LAMB3 mRNA, encoding the third or beta3 chain of laminin-5, was not markedly reduced. Transient transfection experiments with a vector containing a murine LAMA3 promoter demonstrate that overexpressing p300 down-regulates the LAMA3 promoter. In summary, overexpression of p300 leads to down-regulation of laminin-5 production in breast epithelial cells, resulting in decreased adhesion. PMID:10713141

  14. Overexpression of Bmi1 in Lymphocytes Stimulates Skeletogenesis by Improving the Osteogenic Microenvironment

    PubMed Central

    Zhou, Xichao; Dai, Xiuliang; Wu, Xuan; Ji, Ji; Karaplis, Andrew; Goltzman, David; Yang, Xiangjiao; Miao, Dengshun

    2016-01-01

    To investigate whether overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by improving the osteogenic microenvironment, we examined the skeletal phenotype of EμBmi1 transgenic mice with overexpression of Bmi1 in lymphocytes. The size of the skeleton, trabecular bone volume and osteoblast number, indices of proliferation and differentiation of bone marrow mesenchymal stem cells (BM-MSCs) were increased significantly, ROS levels were reduced and antioxidative capacity was enhanced in EμBmi1 mice compared to WT mice. In PTHrP1–84 knockin (PthrpKI/KI) mice, the expression levels of Bmi1 are reduced and potentially can mediate the premature osteoporosis observed. We therefore generated a PthrpKI/KI mice overexpressing Bmi1 in lymphocytes and compared them with PthrpKI/KI and WT littermates. Overexpression of Bmi1 in PthrpKI/KI mice resulted in a longer lifespan, increased body weight and improvement in skeletal growth and parameters of osteoblastic bone formation with reduced ROS levels and DNA damage response parameters. Our results demonstrate that overexpression of Bmi1 in lymphocytes can stimulate osteogenesis in vivo and partially rescue defects in skeletal growth and osteogenesis in PthrpKI/KI mice. These studies therefore indicate that overexpression of Bmi1 in lymphocytes can stimulate skeletogenesis by inhibiting oxidative stress and improving the osteogenic microenvironment. PMID:27373231

  15. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas.

    PubMed

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  16. Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma

    PubMed Central

    Faria, Claudia; Picard, Daniel; Shih, David; Raynaud, Denis; Leadly, Michael; MacKenzie, Danielle; Bryant, Melissa; Bebenek, Matthew; Smith, Christian A.; Taylor, Michael D.; Huang, Annie; Rutka, James T.

    2015-01-01

    Medulloblastoma comprises four molecular subgroups of which Group 3 medulloblastoma is characterized by MYC amplification and MYC overexpression. Lymphoma cells expressing high levels of MYC are susceptible to apoptosis following treatment with inhibitors of mitosis. One of the key regulatory kinases involved in multiple stages of mitosis is Aurora kinase B. We hypothesized that medulloblastoma cells that overexpress MYC would be uniquely sensitized to the apoptotic effects of Aurora B inhibition. The specific inhibition of Aurora kinase B was achieved in MYC-overexpressing medulloblastoma cells with AZD1152-HQPA. MYC overexpression sensitized medulloblastoma cells to cell death upon Aurora B inhibition. This process was found to be independent of endoreplication. Using both flank and intracranial cerebellar xenografts we demonstrate that tumors formed from MYC-overexpressing medulloblastoma cells show a response to Aurora B inhibition including growth impairment and apoptosis induction. Lastly, we show the distribution of AZD1152-HQPA within the mouse brain and the ability to inhibit intracranial tumor growth and prolong survival in mice bearing tumors formed from MYC-overexpressing medulloblastoma cells. Our results suggest the potential for therapeutic application of Aurora kinase B inhibitors in the treatment of Group 3 medulloblastoma. PMID:25739120

  17. Overexpression of Porcine Beta-Defensin 2 Enhances Resistance to Actinobacillus pleuropneumoniae Infection in Pigs

    PubMed Central

    Yang, Xi; Cheng, Yu-Ting; Tan, Mei-Fang; Zhang, Hua-Wei; Liu, Wan-Quan; Zou, Geng; Zhang, Liang-Sheng; Zhang, Chun-Yan; Deng, Si-Min; Yu, Lei; Hu, Xue-Ying; Li, Lu

    2015-01-01

    To reduce the need for antibiotics in animal production, alternative approaches are needed to control infection. We hypothesized that overexpression of native defensin genes will provide food animals with enhanced resistance to bacterial infections. In this study, recombinant porcine beta-defensin 2 (PBD-2) was overexpressed in stably transfected PK-15 porcine kidney cells. PBD-2 antibacterial activities against Actinobacillus pleuropneumoniae, an important respiratory pathogen causing porcine contagious pleuropneumonia, were evaluated on agar plates. Transgenic pigs constitutively overexpressing PBD-2 were produced by a somatic cell cloning method, and their resistance to bacterial infection was evaluated by direct or cohabitation infection with A. pleuropneumoniae. Recombinant PBD-2 peptide that was overexpressed in the PK-15 cells showed antibacterial activity against A. pleuropneumoniae. PBD-2 was overexpressed in the heart, liver, spleen, lungs, kidneys, and jejunum of the transgenic pigs, which showed significantly lower bacterial loads in the lungs and reduced lung lesions after direct or cohabitation infection with A. pleuropneumoniae. The results demonstrate that transgenic overexpression of PBD-2 in pigs confers enhanced resistance against A. pleuropneumoniae infection. PMID:25916992

  18. Extending the Impact of RAC1b Overexpression to Follicular Thyroid Carcinomas

    PubMed Central

    Faria, Márcia; Capinha, Liliana; Simões-Pereira, Joana; Bugalho, Maria João; Silva, Ana Luísa

    2016-01-01

    RAC1b is a hyperactive variant of the small GTPase RAC1 known to be a relevant molecular player in different cancers. Previous studies from our group lead to the evidence that its overexpression in papillary thyroid carcinoma (PTC) is associated with an unfavorable prognosis. In the present study, we intended to extend the analysis of RAC1b expression to thyroid follicular neoplasms and to seek for clinical correlations. RAC1b expression levels were determined by RT-qPCR in thyroid follicular tumor samples comprising 23 follicular thyroid carcinomas (FTCs) and 33 follicular thyroid adenomas (FTAs). RAC1b was found to be overexpressed in 33% of carcinomas while no RAC1b overexpression was documented among follicular adenomas. Patients with a diagnosis of FTC were divided into two groups based on longitudinal evolution and final outcome. RAC1b overexpression was significantly associated with both the presence of distant metastases (P = 0.01) and poorer clinical outcome (P = 0.01) suggesting that, similarly to that previously found in PTCs, RAC1b overexpression in FTCs is also associated with worse outcomes. Furthermore, the absence of RAC1b overexpression in follicular adenomas hints its potential as a molecular marker likely to contribute, in conjunction with other putative markers, to the preoperative differential diagnosis of thyroid follicular lesions. PMID:27127508

  19. Prediction of recombinant protein overexpression in Escherichia coli using a machine learning based model (RPOLP).

    PubMed

    Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip

    2015-11-01

    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. PMID:26476414

  20. CSF1 over-expression has pleiotropic effects on microglia in vivo

    PubMed Central

    De, Ishani; Nikodemova, Maria; Steffen, Megan D.; Sokn, Emily; Maklakova, Vilena I.; Watters, Jyoti J.; Collier, Lara S.

    2014-01-01

    Macrophage colony stimulating factor (CSF1) is a cytokine that is upregulated in several diseases of the central nervous system (CNS). To examine the effects of CSF1 over-expression on microglia, transgenic mice that over-express CSF1 in the glial fibrillary acidic protein (GFAP) compartment were generated. CSF1 over-expressing mice have increased microglial proliferation and increased microglial numbers compared to controls. Treatment with PLX3397, a small molecule inhibitor of the CSF1 receptor CSF1R and related kinases, decreases microglial numbers by promoting microglial apoptosis in both CSF1 over-expressing and control mice. Microglia in CSF1 over-expressing mice exhibit gene expression profiles indicating that they are not basally M1 or M2 polarized, but they do have defects in inducing expression of certain genes in response to the inflammatory stimulus lipopolysaccharide (LPS). These results indicate that the CSF1 over-expression observed in CNS pathologies likely has pleiotropic influences on microglia. Furthermore, small molecule inhibition of CSF1R has the potential to reverse CSF1-driven microglial accumulation that is frequently observed in CNS pathologies, but can also promote apoptosis of normal microglia. PMID:25042473

  1. Overexpression of diacylglycerol acyltransferase in Yarrowia lipolytica affects lipid body size, number and distribution.

    PubMed

    Gajdoš, Peter; Ledesma-Amaro, Rodrigo; Nicaud, Jean-Marc; Čertík, Milan; Rossignol, Tristan

    2016-09-01

    In the oleaginous yeast Yarrowia lipolytica, the diacylglycerol acyltransferases (DGATs) are major factors for triacylglycerol (TAG) synthesis. The Q4 strain, in which the four acyltransferases have been deleted, is unable to accumulate lipids and to form lipid bodies (LBs). However, the expression of a single acyltransferase in this strain restores TAG accumulation and LB formation. Using this system, it becomes possible to characterize the activity and specificity of an individual DGAT. Here, we examined the effects of DGAT overexpression on lipid accumulation and LB formation in Y. lipolytica Specifically, we evaluated the consequences of introducing one or two copies of the Y. lipolytica DGAT genes YlDGA1 and YlDGA2 Overall, multi-copy DGAT overexpression increased the lipid content of yeast cells. However, the size and distribution of LBs depended on the specific DGAT overexpressed. YlDGA2 overexpression caused the formation of large LBs, while YlDGA1 overexpression generated smaller but more numerous LBs. This phenotype was accentuated through the addition of a second copy of the overexpressed gene and might be linked to the distinct subcellular localization of each DGAT, i.e. YlDga1 being localized in LBs, while YlDga2 being localized in a structure strongly resembling the endoplasmic reticulum. PMID:27506614

  2. Demographic correlates of attenuated positive psychotic symptoms

    PubMed Central

    Waford, Rachel N.; MacDonald, Allison; Goines, Katrina; Novacek, Derek M.; Trotman, Hanan D.; Walker, Elaine F.; Addington, Jean; Bearden, Carrie E.; Cadenhead, Kristin S.; Cannon, Tyrone D.; Cornblatt, Barbara A.; Heinssen, Robert; Mathalon, Daniel H.; Tsuang, Ming T.; Perkins, Diana O.; Seidman, Larry J.; Woods, Scott W.; McGlashan, Thomas H.

    2015-01-01

    It is now well established that the utilization of standardized clinical criteria can enhance prediction of psychosis. These criteria are primarily concerned with the presence and severity of attenuated positive symptoms. Because these symptom criteria are used to derive algorithms for designating clinical high risk (CHR) status and for maximizing prediction of psychosis risk, it is important to know whether the symptom ratings vary as a function of demographic factors that have previously been linked with symptoms in diagnosed psychotic patients. Using a sample of 356 CHR individuals from the NAPLS-II multi-site study, we examined the relation of three sex, age, and educational level, with the severity of attenuated positive symptom scores from the Scale of Prodromal Symptoms (SOPS). Demographic factors accounted for little of the variance in symptom ratings (5–6%). Older CHR individuals manifested more severe suspiciousness, and female CHR participants reported more unusual perceptual experiences than male participants. Contrary to prediction, higher educational level was associated with more severe ratings of unusual thought content, but less severe perceptual abnormalities. Overall, sex, age and education were modestly related to unusual thought content and perceptual abnormalities, only, suggesting minimal implication for designating CHR status and predicting psychosis-risk. PMID:25999040

  3. Towards a Global Upper Mantle Attenuation Model

    NASA Astrophysics Data System (ADS)

    Karaoglu, Haydar; Romanowicz, Barbara

    2015-04-01

    Global anelastic tomography is crucial for addressing the nature of heterogeneity in the Earth's interior. The intrinsic attenuation manifests itself through dispersion and amplitude decay. These are contaminated by elastic effects such as (de)focusing and scattering. Therefore, mapping anelasticity accurately requires separation of elastic effects from the anelastic ones. To achieve this, a possible approach is to try and first predict elastic effects through the computation of seismic waveforms in a high resolution 3D elastic model, which can now be achieved accurately using numerical wavefield computations. Building upon the recent construction of such a whole mantle elastic and radially anisotropic shear velocity model (SEMUCB_WM1, French and Romanowicz, 2014), which will be used as starting model, our goal is to develop a higher resolution 3D attenuation model of the upper mantle based on full waveform inversion. As in the development of SEMUCB_WM1, forward modeling will be performed using the spectral element method, while the inverse problem will be treated approximately, using normal mode asymptotics. Both fundamental and overtone time domain long period waveforms (T>60s) will be used from a dataset of over 200 events observed at several hundred stations globally. Here we present preliminary results of synthetic tests, exploring different iterative inversion strategies.

  4. [ATTENUATED PSYCHOSIS SYNDROME: A LITERATURE REVIEW].

    PubMed

    Szmulewicz, Alejandro; Smith, José M; Valerio, Marina P

    2015-01-01

    Despite recent findings on the treatment of schizophrenia, it is an illness still associated with high morbidity and incapacity in social and work domains. There is a growing interest in examining the phases prior to the development of the illness so as to make early interventions that would potentially change its devastating course. The attenuated psychosis syndrome was included in the section III of the last version of the Diagnostic and Statistical Manual of Mental Disorders as a condition in which a patient exhibits mild psychotic symptoms, an intact reality testing and certain degree of social or occupational impairment. The present work is a review of the available literature on this subject. The main findings were: the risk of conversion to a psychotic disorder is relatively low and there are some variables (social withdrawal, negative symptoms, neurocognitive impairment, poor global functioning and certain neuroimaging findings) that increase this risk. Those people diagnosed with attenuated psychosis syndrome had one or more other current psychiatric comorbid conditions and these are the main reason to warrant medical attention. Regarding to the treatment of this condition, there are available evidence on atypical antipsychotics, cognitive-behavioral therapy and omega 3 fatty acid. PMID:26650554

  5. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    SciTech Connect

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.

  6. Natural attenuation processes during in situ capping.

    PubMed

    Himmelheber, David W; Pennell, Kurt D; Hughes, Joseph B

    2007-08-01

    Chlorinated solvents are common groundwater contaminants that threaten surface water quality and benthic health when present in groundwater seeps. Aquatic sediments can act as natural biobarriers to detoxify chlorinated solvent plumes via reductive dechlorination. In situ sediment capping, a remedial technique in which clean material is placed at the sediment-water interface, may alter sedimentary natural attenuation processes. This research explores the potential of Anacostia River sediment to naturally attenuate chlorinated solvents under simulated capping conditions. Results of microcosm studies demonstrated that intrinsic dechlorination of dissolved-phase PCE to ethene was possible, with electron donor availability controlling microbial activity. A diverse microbial community was present in the sediment, including multiple Dehalococcoides strains indicated by the amplification of the reductive dehalogenases tceA, vcrA, and bvcA. An upflow column simulating a capped sediment bed subject to PCE-contaminated groundwater seepage lost dechlorination activity with time and only achieved complete dechlorination when microorganisms present in the sediment were provided electron donor. Increases in effluent chloroethene concentrations during the period of biostimulation were attributed to biologically enhanced desorption and the formation of less sorptive dechlorination products. These findings suggest that in situ caps should be designed to account for reductions in natural biobarrier reactivity and for the potential breakthrough of groundwater contaminants. PMID:17822095

  7. Exercise Training During Bed Rest Attenuates Deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)

    1995-01-01

    A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.

  8. AOSC multichannel electronic variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Vonsovici, Adrian P.; Day, Ian E.; House, Andrew A.; Asghari, Mehdi

    2001-05-01

    Optical networks are becoming a reality as the physical layer of high-performance telecommunication networks. The deployment of wavelength-division multiplexing (WDM) technology allows the extended exploitation of installed fibers now facing an increasing traffic capacity demand. Performances of such systems can be degraded by wide variations of the optical channel power following propagation in the network. Therefore a tilt control of optical amplifiers in WDM networks and dynamic channel power regulation and equalisation in cross-connected nodes is necessary. An important tool for the system designer is the variable optical attenuator (VOA). We present the design and the realization of newly developed VOAs using the ASOC technology. This technology refers to the fabrication of integrated optics components in silicon-on-insulator (SOI) material. The device is based on the light absorption by the free-carriers that are injected in the core of a rib waveguide from a p-i-n diode. The devices incorporate horizontally and vertically tapered waveguides for minimum fiber coupling loss. The p-i-n diode for carrier injection into the active region of the rib waveguide was optimised in order to enhance the attenuation. One major advantage of the ASOC technology is the possibility of monolithic integration of many integrated optics devices on one chip. In the light of this the paper illustrates the result of characterisation of multichannel VOAs.

  9. Electron attenuation in free, neutral ethane clusters.

    PubMed

    Winkler, M; Myrseth, V; Harnes, J; Børve, K J

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ(2)(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100-600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth. PMID:25362297

  10. Electron attenuation in free, neutral ethane clusters

    SciTech Connect

    Winkler, M.; Harnes, J.; Børve, K. J.; Myrseth, V.

    2014-10-28

    The electron effective attenuation length (EAL) in free, neutral ethane clusters has been determined at 40 eV kinetic energy by combining carbon 1s x-ray photoelectron spectroscopy and theoretical lineshape modeling. More specifically, theory is employed to form model spectra on a grid in cluster size (N) and EAL (λ), allowing N and λ to be determined by optimizing the goodness-of-fit χ{sup 2}(N, λ) between model and observed spectra. Experimentally, the clusters were produced in an adiabatic-expansion setup using helium as the driving gas, spanning a range of 100–600 molecules in mean cluster size. The effective attenuation length was determined to be 8.4 ± 1.9 Å, in good agreement with an independent estimate of 10 Å formed on the basis of molecular electron-scattering data and Monte Carlo simulations. The aggregation state of the clusters as well as the cluster temperature and its importance to the derived EAL value are discussed in some depth.

  11. Approximate inverse and Sobolev estimates for the attenuated Radon transform

    NASA Astrophysics Data System (ADS)

    Rigaud, G.; Lakhal, A.

    2015-10-01

    The ill-posedness of the attenuated Radon transform is a challenging issue in practice due to the Poisson noise and the high level of attenuation. The investigation of the smoothing properties of the underlying operator is essential for developing a stable inversion. In this paper, we consider the framework of Sobolev spaces and derive analytically a reconstruction algorithm based on the method of the approximate inverse. The derived method inherits the efficiency and stability of the approximate inverse and supplies a method of extraction of contours. These algorithms appear to be efficient for an attenuation of human body type. However, for higher attenuations the ill-posedness increases exponentially what deteriorates accordingly the quality of reconstructions. Nevertheless, a high attenuation map affects less the contour extraction of a high contrast function and so can be neglected. This leads to simplifying the proposed method and circumvents in this case the artifacts due to the attenuation as attested by simulation results.

  12. Fuselage panel noise attenuation by piezoelectric switching control

    NASA Astrophysics Data System (ADS)

    Makihara, Kanjuro; Miyakawa, Takeya; Onoda, Junjiro; Minesugi, Kenji

    2010-08-01

    This paper describes a problem that we encountered in our noise attenuation project and our solution for it. We intend to attenuate low-frequency noise that transmits through aircraft fuselage panels. Our method of noise attenuation is implemented with a piezoelectric semi-active system having a selective switch instead of an active energy-supply system. The semi-active controller is based on the predicted sound pressure distribution obtained from acoustic emission analysis. Experiments and numerical simulations demonstrate that the semi-active method attenuates acoustic levels of not only the simple monochromatic noise but also of broadband noise. We reveal that tuning the electrical parameters in the circuit is the key to effective noise attenuation, to overcome the acoustic excitation problem due to sharp switching actions, as well as to control chattering problems. The results obtained from this investigation provide meaningful insights into designing noise attenuation systems for comfortable aircraft cabin environments.

  13. Applying Echoes Mean Frequency Shift for Attenuation Imaging in Tissue

    NASA Astrophysics Data System (ADS)

    Litniewski, J.; Klimonda, Z.; Nowicki, A.

    The purpose of this study was to develop the attenuation parametric imaging technique and to apply it for in vivo characterization of tissue. Local attenuation coefficient was determined by evaluating the frequency downshift that encounters the amplitude spectrum of the interrogating ultrasonic pulse during propagation in the absorbing tissue. Operation and accuracy of the processing methods were verified by assessing the size-independent region of interest (ROI) for attenuation determination and calculating the attenuation coefficient distribution for experimentally recorded tissue-phantom scattered waveforms. The Siemens Antares scanner equipped with Ultrasound Research Interface unit allowing for direct radiofrequency (RF) signals recording was used for B-scan imaging of the tissue- mimicking phantom in vitro and liver in vivo. RF data were processed to determine attenuation coefficient along the B-scan lines. Also, the preliminary studies of backscattered signals from skin recorded using a skin scanner were performed to calculate parametric-attenuation images.

  14. GLT1 overexpression reverses established neuropathic pain-related behavior and attenuates chronic dorsal horn neuron activation following cervical spinal cord injury.

    PubMed

    Falnikar, Aditi; Hala, Tamara J; Poulsen, David J; Lepore, Angelo C

    2016-03-01

    Development of neuropathic pain occurs in a major portion of traumatic spinal cord injury (SCI) patients, resulting in debilitating and often long-term physical and psychological burdens. Following SCI, chronic dysregulation of extracellular glutamate homeostasis has been shown to play a key role in persistent central hyperexcitability of superficial dorsal horn neurons that mediate pain neurotransmission, leading to various forms of neuropathic pain. Astrocytes express the major CNS glutamate transporter, GLT1, which is responsible for the vast majority of functional glutamate uptake, particularly in the spinal cord. In our unilateral cervical contusion model of mouse SCI that is associated with ipsilateral forepaw heat hypersensitivity (a form of chronic at-level neuropathic pain-related behavior), we previously reported significant and long-lasting reductions in GLT1 expression and functional GLT1-mediated glutamate uptake in cervical spinal cord dorsal horn. To therapeutically address GLT1 dysfunction following cervical contusion SCI, we injected an adeno-associated virus type 8 (AAV8)-Gfa2 vector into the superficial dorsal horn to increase GLT1 expression selectively in astrocytes. Compared to both contusion-only animals and injured mice that received AAV8-eGFP control injection, AAV8-GLT1 delivery increased GLT1 protein expression in astrocytes of the injured cervical spinal cord dorsal horn, resulting in a significant and persistent reversal of already-established heat hypersensitivity. Furthermore, AAV8-GLT1 injection significantly reduced expression of the transcription factor and marker of persistently increased neuronal activation, ΔFosB, in superficial dorsal horn neurons. These results demonstrate that focal restoration of GLT1 expression in the superficial dorsal horn is a promising target for treating chronic neuropathic pain following SCI. PMID:26496514

  15. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  16. Examination of the Lateral Attenuation of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Plotkin, Kenneth J.; Hobbs, Christopher M.; Bradley, Kevin A.; Shepherd, Kevin P. (Technical Monitor)

    2000-01-01

    Measurements of the lateral attenuation of noise from aircraft operations at Denver International Airport were made at distances up to 2000 feet and elevation angles up to 27 degrees. Attenuation Calculated from modem ground impedance theory agrees well with average measured attenuation. The large variability between measured and predicted levels observed at small elevation angles is demonstrated to be due to refraction by wind and temperature gradients.

  17. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  18. Overexpression of mouse follistatin causes reproductive defects in transgenic mice.

    PubMed

    Guo, Q; Kumar, T R; Woodruff, T; Hadsell, L A; DeMayo, F J; Matzuk, M M

    1998-01-01

    Follistatin is an activin-binding protein that can act as an activin antagonist in vitro. Follistatin also binds heparin sulfate proteoglycans and may function as a reservoir for activins in vivo. In the mouse, follistatin mRNA is first detected in the deciduum on embryonic day 5.5 and later in the developing hindbrain, somites, vibrissae, teeth, epidermis, and muscle. We have previously shown that follistatin-deficient mice have numerous embryonic defects including shiny, taut skin, growth retardation, and cleft palate leading to death within hours of birth. To further define the roles of follistatin during mammalian reproduction and development, we created gain-of-function mutant mice in which mouse follistatin is overexpressed. The mouse metallothionein (MT)-I promoter was placed upstream of the six-exon mouse follistatin (FS) gene. To distinguish wild-type and transgenic follistatin mRNA, the 3'-untranslated region of the mouse follistatin gene was replaced with the SV40 untranslated and polyA sequences. Three male and two female founder transgenic mice were produced, were fertile, and transmitted the transgene to offspring. Northern blot analysis demonstrated that the transgene mRNA was expressed at varying levels in the livers of offspring from four of five of the transgenic lines and was expressed in the testes in all five lines. In MT-FS line 4, which had the highest expression of the transgene mRNA in the liver, the transgene transcripts were also present in multiple other tissues. Phenotypically, the MT-FS transgenic lines had defects in the testis, ovary, and hair. Mice from MT-FS lines 7 and 10 had slightly decreased testis size, whereas mice from lines 4, 5, and 9 had much smaller testes and shiny, somewhat irregular, fur. Histological analysis of the adult testes from line 5 and 9 males showed variable degrees of Leydig cell hyperplasia, an arrest of spermatogenesis, and seminiferous tubular degeneration leading to infertility. Female transgenic mice

  19. A Novel Small-molecule Tumor Necrosis Factor α Inhibitor Attenuates Inflammation in a Hepatitis Mouse Model*

    PubMed Central

    Ma, Li; Gong, Haiyan; Zhu, Haiyan; Ji, Qing; Su, Pei; Liu, Peng; Cao, Shannan; Yao, Jianfeng; Jiang, Linlin; Han, Mingzhe; Ma, Xiaotong; Xiong, Dongsheng; Luo, Hongbo R.; Wang, Fei; Zhou, Jiaxi; Xu, Yuanfu

    2014-01-01

    Overexpression of tumor necrosis factor α (TNFα) is a hallmark of many inflammatory diseases, including rheumatoid arthritis, inflammatory bowel disease, and septic shock and hepatitis, making it a potential therapeutic target for clinical interventions. To explore chemical inhibitors against TNFα activity, we applied computer-aided drug design combined with in vitro and cell-based assays and identified a lead chemical compound, (E)-4-(2-(4-chloro-3-nitrophenyl) (named as C87 thereafter), which directly binds to TNFα, potently inhibits TNFα-induced cytotoxicity (IC50 = 8.73 μm) and effectively blocks TNFα-triggered signaling activities. Furthermore, by using a murine acute hepatitis model, we showed that C87 attenuates TNFα-induced inflammation, thereby markedly reducing injuries to the liver and improving animal survival. Thus, our results lead to a novel and highly specific small-molecule TNFα inhibitor, which can be potentially used to treat TNFα-mediated inflammatory diseases. PMID:24634219

  20. Measurements of spectral attenuation coefficients in the lower Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.

    1983-01-01

    The spectral transmission was measured for water samples taken in the lower Chesapeake Bay to allow characterization of several optical properties. The coefficients of total attenuation, particle attenuation, and absorption by dissolved organic matter were determined over a wavelength range from 3500 A to 8000 A. The data were taken over a 3 year period and at a number of sites so that an indication of spatial and temporal variations could be obtained. The attenuations determined in this work are, on the average, 10 times greater than those obtained by Hulburt in 1944, which are commonly accepted in the literature for Chesapeake Bay attenuation.

  1. Time domain attenuation estimation method from ultrasonic backscattered signals

    PubMed Central

    Ghoshal, Goutam; Oelze, Michael L.

    2012-01-01

    Ultrasonic attenuation is important not only as a parameter for characterizing tissue but also for compensating other parameters that are used to classify tissues. Several techniques have been explored for estimating ultrasonic attenuation from backscattered signals. In the present study, a technique is developed to estimate the local ultrasonic attenuation coefficient by analyzing the time domain backscattered signal. The proposed method incorporates an objective function that combines the diffraction pattern of the source/receiver with the attenuation slope in an integral equation. The technique was assessed through simulations and validated through experiments with a tissue mimicking phantom and fresh rabbit liver samples. The attenuation values estimated using the proposed technique were compared with the attenuation estimated using insertion loss measurements. For a data block size of 15 pulse lengths axially and 15 beamwidths laterally, the mean attenuation estimates from the tissue mimicking phantoms were within 10% of the estimates using insertion loss measurements. With a data block size of 20 pulse lengths axially and 20 beamwidths laterally, the error in the attenuation values estimated from the liver samples were within 10% of the attenuation values estimated from the insertion loss measurements. PMID:22779499

  2. Damping factor estimation using spin wave attenuation in permalloy film

    SciTech Connect

    Manago, Takashi; Yamanoi, Kazuto; Kasai, Shinya; Mitani, Seiji

    2015-05-07

    Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.

  3. Effect of attenuation models on communication system design

    NASA Technical Reports Server (NTRS)

    Shimabukuro, Fred I.

    1995-01-01

    The atmosphere has a significant impact on the design of a global communication system operating at 20 GHz. The system under consideration has a total atmospheric link attenuation budget that is less than 6 dB. For this relatively small link margin, rain, cloud, and molecular attenuation have to be taken into account. For an assessment of system performance on a global basis, attenuation models are utilized. There is concern whether current models can adequately describe the atmospheric effects such that a system planner can properly allocate his resources for superior overall system performance. The atmospheric attenuation as predicted by models will be examined.

  4. Attenuation of Seismic Waves by Grain Boundary Relaxation

    PubMed Central

    Jackson, David D.

    1971-01-01

    Experimental observations of the attenuation of elastic waves in polycrystalline ceramics and rocks reveal an attenuation mechanism, called grain boundary relaxation, which is likely to be predominant cause of seismic attenuation in the earth's mantle. For this mechanism, the internal friction (the reciprocal of the “intrinsic Q” of the material) depends strongly upon frequency and is in good agreement with Walsh's theory of attenuation (J. Geophys. Res., 74, 4333, 1969) in partially melted rock. When Walsh's theory is extended to provide a model of the anelasticity of the earth, using the experimental values of physical parameters reported here, the results are in excellent agreement with seismic observations. PMID:16591937

  5. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    SciTech Connect

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  6. RanBPM Protein Acts as a Negative Regulator of BLT2 Receptor to Attenuate BLT2-mediated Cell Motility*

    PubMed Central

    Wei, Jun-Dong; Kim, Joo-Young; Kim, Ae-Kyoung; Jang, Sung Key; Kim, Jae-Hong

    2013-01-01

    BLT2, a low affinity receptor for leukotriene B4 (LTB4), is a member of the G protein-coupled receptor family and is involved in many signal transduction pathways associated with various cellular phenotypes, including chemotactic motility. However, the regulatory mechanism for BLT2 has not yet been demonstrated. To understand the regulatory mechanism of BLT2, we screened and identified the proteins that bind to BLT2. Using a yeast two-hybrid assay with the BLT2 C-terminal domain as bait, we found that RanBPM, a previously proposed scaffold protein, interacts with BLT2. We demonstrated the specific interaction between BLT2 and RanBPM by GST pulldown assay and co-immunoprecipitation assay. To elucidate the biological function of the RanBPM-BLT2 interaction, we evaluated the effects of RanBPM overexpression or knockdown. We found that BLT2-mediated motility was severely attenuated by RanBPM overexpression and that knockdown of endogenous RanBPM by shRNA strongly promoted BLT2-mediated motility, suggesting a negative regulatory function of RanBPM toward BLT2. Furthermore, we observed that the addition of BLT2 ligands caused the dissociation of BLT2 and RanBPM, thus releasing the negative regulatory effect of RanBPM. Finally, we propose that Akt-induced BLT2 phosphorylation at residue Thr355, which occurs after the addition of BLT2 ligands, is a potential mechanism by which BLT2 dissociates from RanBPM, resulting in stimulation of BLT2 signaling. Taken together, our results suggest that RanBPM acts as a negative regulator of BLT2 signaling to attenuate BLT2-mediated cell motility. PMID:23928309

  7. Propylthiouracil Attenuates Experimental Pulmonary Hypertension via Suppression of Pen-2, a Key Component of Gamma-Secretase.

    PubMed

    Lai, Ying-Ju; Chang, Gwo-Jyh; Yeh, Yung-Hsin; Pang, Jong-Hwei S; Huang, Chung-Chi; Chen, Wei-Jan

    2015-01-01

    Gamma-secretase-mediated Notch3 signaling is involved in smooth muscle cell (SMC) hyper-activity and proliferation leading to pulmonary arterial hypertension (PAH). In addition, Propylthiouracil (PTU), beyond its anti-thyroid action, has suppressive effects on atherosclerosis and PAH. Here, we investigated the possible involvement of gamma-secretase-mediated Notch3 signaling in PTU-inhibited PAH. In rats with monocrotaline-induced PAH, PTU therapy improved pulmonary arterial hypertrophy and hemodynamics. In vitro, treatment of PASMCs from monocrotaline-treated rats with PTU inhibited their proliferation and migration. Immunocyto, histochemistry, and western blot showed that PTU treatment attenuated the activation of Notch3 signaling in PASMCs from monocrotaline-treated rats, which was mediated via inhibition of gamma-secretase expression especially its presenilin enhancer 2 (Pen-2) subunit. Furthermore, over-expression of Pen-2 in PASMCs from control rats increased the capacity of migration, whereas knockdown of Pen-2 with its respective siRNA in PASMCs from monocrotaline-treated rats had an opposite effect. Transfection of PASMCs from monocrotaline-treated rats with Pen-2 siRNA blocked the inhibitory effect of PTU on PASMC proliferation and migration, reflecting the crucial role of Pen-2 in PTU effect. We present a novel cell-signaling paradigm in which overexpression of Pen-2 is essential for experimental pulmonary arterial hypertension to promote motility and growth of smooth muscle cells. Propylthiouracil attenuates experimental PAH via suppression of the gamma-secretase-mediated Notch3 signaling especially its presenilin enhancer 2 (Pen-2) subunit. These findings provide a deep insight into the pathogenesis of PAH and a novel therapeutic strategy. PMID:26367462

  8. Overexpression of phytochrome A and its hyperactive mutant improves shade tolerance and turf quality in creeping bentgrass and zoysiagrass.

    PubMed

    Ganesan, Markkandan; Han, Yun-Jeong; Bae, Tae-Woong; Hwang, Ok-Jin; Chandrasekhar, Thummala; Chandrasekkhar, Thummala; Shin, Ah-Young; Goh, Chang-Hyo; Nishiguchi, Satoshi; Song, In-Ja; Lee, Hyo-Yeon; Kim, Jeong-Il; Song, Pill-Soon

    2012-10-01

    Phytochrome A (phyA) in higher plants is known to function as a far-red/shade light-sensing photoreceptor in suppressing shade avoidance responses (SARs) to shade stress. In this paper, the Avena PHYA gene was introduced into creeping bentgrass (Agrostis stolonifera L.) and zoysiagrass (Zoysia japonica Steud.) to improve turf quality by suppressing the SARs. In addition to wild-type PHYA, a hyperactive mutant gene (S599A-PHYA), in which a phosphorylation site involved in light-signal attenuation was removed, was also transformed into the turfgrasses. Phenotypic traits of the transgenic plants were compared to assess the suppression of SARs under a simulated shade condition and outdoor field conditions after three growth seasons. Under the shade condition, the S599A-PhyA transgenic creeping bentgrass plants showed shade avoidance-suppressing phenotypes with a 45 % shorter leaf lengths, 24 % shorter internode lengths, and twofold increases in chlorophyll concentrations when compared with control plants. Transgenic zoysiagrass plants overexpressing S599A-PHYA also showed shade-tolerant phenotypes under the shade condition with reductions in leaf length (15 %), internode length (30 %), leaf length/width ratio (19 %) and leaf area (22 %), as well as increases in chlorophyll contents (19 %) and runner lengths (30 %) compared to control plants. The phenotypes of transgenic zoysiagrass were also investigated in dense field habitats, and the transgenic turfgrass exhibited shade-tolerant phenotypes similar to those observed under laboratory shade conditions. Therefore, the present study suggests that the hyperactive phyA is effective for the development of shade-tolerant plants, and that the shade tolerance nature is sustained under field conditions. PMID:22644765

  9. PAI-1 over-expression decreases experimental post-thrombotic vein wall fibrosis by a non-vitronectin dependent mechanism

    PubMed Central

    Obi, Andrea T.; Diaz, Jose A.; Ballard-Lipka, Nicole L.; Roelofs, Karen J.; Farris, Diana M.; Lawrence, Daniel A.; Wakefield, Thomas W.; Henke, Peter K.

    2014-01-01

    SUMMARY Background Factors associated with post-thrombotic syndrome are known clinically, but the underlying cellular processes at the vein wall are not well-delineated. Prior work suggests that vein wall damage does not correlate with thrombus resolution, but rather with plasminogen activator-1 (PAI-1) and matrix metalloproteinase (MMP) activity. Objective We hypothesized that PAI-1 would confer post venous thrombosis (VT) vein wall protection via a Vitronectin (Vn) dependent mechanism. Methods A stasis model of VT was used with harvest over 2 weeks, in wild type (WT), Vn−/−, and PAI-1 overexpressing mice (PAI-1 Tg). Results PAI-1 Tg mice had larger VT at 6 and 14 days, compared to controls, but Vn−/−mice had no alteration of VT resolution. Gene deletion of Vn resulted in increased, rather than expected decrease in circulating PAI-1 activity. While both Vn−/− and PAI-1 Tg had attenuated intimal fibrosis, PAI-1 Tg had significantly less vein wall collagen and a compensatory increase in collagen III gene expression. Both Vn−/− and PAI-1 Tg vein wall had less monocyte chemotactic factor-1, and fewer macrophages (F4/80), with significantly less MMP-2 activity and decreased TIMP-1 antigen. Ex vivo assessment of TGFβ mediated fibrotic response showed that PAI-1 Tg vein walls had increased profibrotic gene expression (collagen I, III, MMP-2 and α-SMA) as compared with controls, opposite of the in vivo response. Conclusions The absence of Vn increases circulating PAI-1, which positively modulates vein wall fibrosis in a dose-dependent manner. Translationally, PAI-1 elevation may decrease vein wall damage after DVT, perhaps by decreasing macrophage-mediated activities. PMID:24943740

  10. Nanovesicle-mediated systemic delivery of microRNA-34a for CD44 overexpressing gastric cancer stem cell therapy.

    PubMed

    Jang, Eunji; Kim, Eunjung; Son, Hye-Young; Lim, Eun-Kyung; Lee, Hwunjae; Choi, Yuna; Park, Kwangyeol; Han, Seungmin; Suh, Jin-Suck; Huh, Yong-Min; Haam, Seungjoo

    2016-10-01

    The cancer stem cell (CSC) hypothesis postulates that cancer cells overexpressing CD44 are marked as CSCs that cause tumorigenesis and recurrence. This hypothesis suggests that CD44 is a potential therapeutic target that can interfere with CSCs qualities. MicroRNA-34a (miR-34a) is a promising candidate for CD44 repression-based cancer therapy as it has been reported to inhibit proliferation, metastasis, and survival of CD44-positive CSCs. Here, we used nanovesicles containing PLI/miR complexes (NVs/miR) to systemically deliver miR-34a and induce miR-34a-triggered CD44 suppression in orthotopically and subcutaneously implanted tumors in nude mice. Poly(l-lysine-graft-imidazole) (PLI) condenses miRs and is functionally modified to deliver miRs to the site of action by buffering effect of imidazole residues under endosomal pH. Indeed, NVs/miR consisting of PEGylated lipids enveloping PLI/miR complexes greatly reduced inevitable toxicity of polycations by compensating their surface charge and markedly improved their in vivo stability and accumulation to tumor tissue compared to PLI/miR polyplexes. Our NVs-mediated miR-34a delivery system specifically increased endogenous target miR levels, thereby attenuating proliferation and migration of gastric cancer cells by repressing the expression of CD44 with decreased levels of Bcl-2, Oct 3/4 and Nanog genes. Our strategy led to a greater therapeutic outcome than PLI-based delivery with highly selective tumor cell death and significantly delayed tumor growth in CD44-positive tumor-bearing mouse models, thus providing a fundamental therapeutic window for CSCs. PMID:27497057

  11. Rab23 is overexpressed in human bladder cancer and promotes cancer cell proliferation and invasion.

    PubMed

    Jiang, Yuanjun; Han, Yushuang; Sun, Chaonan; Han, Chuyang; Han, Ning; Zhi, Weiwei; Qiao, Qiao

    2016-06-01

    Rab23 overexpression has been implicated in several human cancers. However, its expression pattern and biological roles in human bladder cancer have not been elucidated. In this study, we examined Rab23 expression in 93 bladder cancer specimens and analyzed its correlation with clinicopathological parameters. We found that Rab23 was overexpressed in 45 of 93 (48.3 %) cancer specimens. Significant association was found between Rab23 overexpression and tumor invasion depth (p = 0.0027). Rab23 overexpression also negatively correlated with FGFR3 protein expression (p = 0.021). We found that Rab23 expression was lower in normal bladder transitional cell line SV-HUC-1 than in bladder cancer cell lines BIU-87, 5637, and T24. We knocked down Rab23 expression in T24 cancer cells and transfected a Rab23 plasmid in the BIU-87 cell line. Rab23 depletion inhibited cell growth rate and invasion, while its overexpression resulted in increased cell growth and invasion. In addition, we demonstrated that Rab23 depletion decreased and its transfection upregulated expression of cyclin E, c-myc, and MMP-9. Furthermore, we showed that Rab23 knockdown inhibited NF-κB signaling and its overexpression upregulated NF-κB signaling. BAY 11-7082 (NF-κB inhibitor) partly inhibited the effect of Rab23 on cyclin E and MMP-9 expression. In conclusion, the present study demonstrated that Rab23 overexpression facilitates malignant cell growth and invasion in bladder cancer through the NF-κB pathway. PMID:26715272

  12. CrBPF1 overexpression alters transcript levels of terpenoid indole alkaloid biosynthetic and regulatory genes.

    PubMed

    Li, Chun Yao; Leopold, Alex L; Sander, Guy W; Shanks, Jacqueline V; Zhao, Le; Gibson, Susan I

    2015-01-01

    Terpenoid indole alkaloid (TIA) biosynthesis in Catharanthus roseus is a complex and highly regulated process. Understanding the biochemistry and regulation of the TIA pathway is of particular interest as it may allow the engineering of plants to accumulate higher levels of pharmaceutically important alkaloids. Toward this end, we generated a transgenic C. roseus hairy root line that overexpresses the CrBPF1 transcriptional activator under the control of a β-estradiol inducible promoter. CrBPF1 is a MYB-like protein that was previously postulated to help regulate the expression of the TIA biosynthetic gene STR. However, the role of CrBPF1 in regulation of the TIA and related pathways had not been previously characterized. In this study, transcriptional profiling revealed that overexpression of CrBPF1 results in increased transcript levels for genes from both the indole and terpenoid biosynthetic pathways that provide precursors for TIA biosynthesis, as well as for genes in the TIA biosynthetic pathway. In addition, overexpression of CrBPF1 causes increases in the transcript levels for 11 out of 13 genes postulated to act as transcriptional regulators of genes from the TIA and TIA feeder pathways. Interestingly, overexpression of CrBPF1 causes increased transcript levels for both TIA transcriptional activators and repressors. Despite the fact that CrBPF1 overexpression affects transcript levels of a large percentage of TIA biosynthetic and regulatory genes, CrBPF1 overexpression has only very modest effects on the levels of the TIA metabolites analyzed. This finding may be due, at least in part, to the up-regulation of both transcriptional activators and repressors in response to CrBPF1 overexpression, suggesting that CrBPF1 may serve as a "fine-tune" regulator for TIA biosynthesis, acting to help regulate the timing and amplitude of TIA gene expression. PMID:26483828

  13. Twinkle overexpression prevents cardiac rupture after myocardial infarction by alleviating impaired mitochondrial biogenesis.

    PubMed

    Inoue, Takahiro; Ikeda, Masataka; Ide, Tomomi; Fujino, Takeo; Matsuo, Yuka; Arai, Shinobu; Saku, Keita; Sunagawa, Kenji

    2016-09-01

    Cardiac rupture is a fatal complication after myocardial infarction (MI). However, the detailed mechanism underlying cardiac rupture after MI remains to be fully elucidated. In this study, we investigated the role of mitochondrial DNA (mtDNA) and mitochondria in the pathophysiology of cardiac rupture by analyzing Twinkle helicase overexpression mice (TW mice). Twinkle overexpression increased mtDNA copy number approximately twofold and ameliorated ischemic cardiomyopathy at day 28 after MI. Notably, Twinkle overexpression markedly prevented cardiac rupture and improved post-MI survival, accompanied by the suppression of MMP-2 and MMP-9 in the MI border area at day 5 after MI when cardiac rupture frequently occurs. Additionally, these cardioprotective effects of Twinkle overexpression were abolished in transgenic mice overexpressing mutant Twinkle with an in-frame duplication of amino acids 353-365, which resulted in no increases in mtDNA copy number. Furthermore, although apoptosis and oxidative stress were induced and mitochondria were damaged in the border area, these injuries were improved in TW mice. Further analysis revealed that mitochondrial biogenesis, including mtDNA copy number, transcription, and translation, was severely impaired in the border area at day 5 In contrast, Twinkle overexpression maintained mtDNA copy number and restored the impaired transcription and translation of mtDNA in the border area. These results demonstrated that Twinkle overexpression alleviated impaired mitochondrial biogenesis in the border area through maintained mtDNA copy number and thereby prevented cardiac rupture accompanied by the reduction of apoptosis and oxidative stress, and suppression of MMP activity. PMID:27342873

  14. Bdnf Overexpression in Hippocampal Neurons Prevents Dendritic Atrophy Caused by Rett-Associated MECP2 Mutations

    PubMed Central

    Larimore, Jennifer L.; Chapleau, Christopher A.; Kudo, Shinichi; Theibert, Anne; Percy, Alan K.; Pozzo-Miller, Lucas

    2008-01-01

    The expression of the methylated DNA-binding protein MeCP2 increases during neuronal development, which suggests that this epigenetic factor is crucial for neuronal terminal differentiation. We evaluated dendritic and axonal development in embryonic day-18 hippocampal neurons in culture by measuring total length and counting branch point numbers at 4 days in vitro, well before synapse formation. Pyramidal neurons transfected with a plasmid encoding a small hairpin RNA (shRNA) to knockdown endogenous Mecp2 had shorter dendrites than control untransfected neurons, without detectable changes in axonal morphology. On the other hand, overexpression of wildtype (wt) human MECP2 increased dendritic branching, in addition to axonal branching and length. Consistent with reduced neuronal growth and complexity in Rett syndrome (RTT) brains, overexpression of human MECP2 carrying missense mutations common in RTT individuals (R106W or T158M) reduced dendritic and axonal length. One of the targets of MeCP2 transcriptional control is the Bdnf gene. Indeed, endogenous Mecp2 knockdown increased the intracellular levels of BDNF protein compared to untransfected neurons, suggesting that MeCP2 represses Bdnf transcription. Surprisingly, overexpression of wt MECP2 also increased BDNF levels, while overexpression of RTT-associated MECP2 mutants failed to affect BDNF levels. The extracellular BDNF scavenger TrkB-Fc prevented dendritic overgrowth in wt MECP2-overexpressing neurons, while overexpression of the Bdnf gene reverted the dendritic atrophy caused by Mecp2-knockdown. However, this effect was only partial, since Bdnf increased dendritic length only to control levels in mutant MECP2-overexpressing neurons, but not as much as in Bdnf-transfected cells. Our results demonstrate that MeCP2 plays varied roles in dendritic and axonal development during neuronal terminal differentiation, and that some of these effects are mediated by autocrine actions of BDNF. PMID:19217433

  15. Ameliorating replicative senescence of human bone marrow stromal cells by PSMB5 overexpression

    SciTech Connect

    Lu, Li; Song, Hui-Fang; Wei, Jiao-Long; Liu, Xue-Qin; Song, Wen-Hui; Yan, Ba-Yi; Yang, Gui-Jiao; Li, Ang; Yang, Wu-Lin

    2014-01-24

    Highlights: • PSMB5 overexpression restores the differentiation potential of aged hBMSCs. • PSMB5 overexpression enhances the proteasomal activity of late-stage hBMSCs. • PSMB5 overexpression inhibits replicative senescence and improved cell viability. • PSMB5 overexpression promotes cell growth by upregulating the Cyclin D1/CDK4 complex. - Abstract: Multipotent human bone marrow stromal cells (hBMSCs) potentially serve as a source for cell-based therapy in regenerative medicine. However, in vitro expansion was inescapably accompanied with cell senescence, characterized by inhibited proliferation and compromised pluripotency. We have previously demonstrated that this aging process is closely associated with reduced 20S proteasomal activity, with down-regulation of rate-limiting catalytic β-subunits particularly evident. In the present study, we confirmed that proteasomal activity directly contributes to senescence of hBMSCs, which could be reversed by overexpression of the β5-subunit (PSMB5). Knocking down PSMB5 led to decreased proteasomal activity concurrent with reduced cell proliferation in early-stage hBMSCs, which is similar to the senescent phenotype observed in late-stage cells. In contrast, overexpressing PSMB5 in late-stage cells efficiently restored the normal activity of 20S proteasomes and promoted cell growth, possibly via upregulating the Cyclin D1/CDK4 complex. Additionally, PSMB5 could enhance cell resistance to oxidative stress, as evidenced by the increased cell survival upon exposing senescent hBMSCs to hydrogen peroxide. Furthermore, PSMB5 overexpression retained the pluripotency of late-stage hBMSCs by facilitating their neural differentiation both in vitro and in vivo. Collectively, our work reveals a critical role of PSMB5 in 20S proteasome-mediated protection against replicative senescence, pointing to a possible strategy for maintaining the integrity of culture-expanded hBMSCs by manipulating the expression of PSMB5.

  16. Gas sensor with attenuated drift characteristic

    DOEpatents

    Chen, Ing-Shin [Danbury, CT; Chen, Philip S. H. [Bethel, CT; Neuner, Jeffrey W [Bethel, CT; Welch, James [Fairfield, CT; Hendrix, Bryan [Danbury, CT; Dimeo, Jr., Frank [Danbury, CT

    2008-05-13

    A sensor with an attenuated drift characteristic, including a layer structure in which a sensing layer has a layer of diffusional barrier material on at least one of its faces. The sensor may for example be constituted as a hydrogen gas sensor including a palladium/yttrium layer structure formed on a micro-hotplate base, with a chromium barrier layer between the yttrium layer and the micro-hotplate, and with a tantalum barrier layer between the yttrium layer and an overlying palladium protective layer. The gas sensor is useful for detection of a target gas in environments susceptible to generation or incursion of such gas, and achieves substantial (e.g., >90%) reduction of signal drift from the gas sensor in extended operation, relative to a corresponding gas sensor lacking the diffusional barrier structure of the invention

  17. A Compton scatter attenuation gamma ray spectrometer

    NASA Technical Reports Server (NTRS)

    Austin, W. E.

    1972-01-01

    A Compton scatter attenuation gamma ray spectrometer conceptual design is discussed for performing gamma spectral measurements in monodirectional gamma fields from 100 R per hour to 1,000,000 R per hour. Selectable Compton targets are used to scatter gamma photons onto an otherwise heavily shielded detector with changeable scattering efficiencies such that the count rate is maintained between 500 and 10,000 per second. Use of two sum-Compton coincident detectors, one for energies up to 1.5 MeV and the other for 600 keV to 10 MeV, will allow good peak to tail pulse height ratios to be obtained over the entire spectrum and reduces the neutron recoil background rate.

  18. Attenuation of Shocks through Porous Media

    NASA Astrophysics Data System (ADS)

    Lind, Charles A.; Cybyk, Bohdan Z.; Boris, Jay P.

    1998-11-01

    Structures designed to mitigate the effects of blast and shock waves are important for both accidental and controlled explosions. The net effect of these mitigating structures is to reduce the strength of the transmitted shock thereby reducing the dynamic pressure loading on nearby objects. In the present study, the attenuation of planar blast and shock waves by passage through structured media is numerically studied with the FAST3D model. The FAST3D model is a state-of-the-art, portable, three-dimensional computational fluid dynamics model based on Flux-Corrected Transport and uses the Virtual Cell Embedding algorithm for simulating complex geometries. The effects of media placement, spacing, orientation, and area blockage are parametrically studied to enhance the understanding of the complex processes involved and to determine ways to minimize the adverse effects of these blast waves.

  19. Attenuation of species abundance distributions by sampling.

    PubMed

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  20. Attenuation of species abundance distributions by sampling

    PubMed Central

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626