Science.gov

Sample records for banana ripening implications

  1. Differential gene expression in ripening banana fruit.

    PubMed

    Clendennen, S K; May, G D

    1997-10-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  2. Characterization of ethylene biosynthesis associated with ripening in banana fruit.

    PubMed

    Liu, X; Shiomi, S; Nakatsuka, A; Kubo, Y; Nakamura, R; Inaba, A

    1999-12-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  3. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  4. Studies on optimization of ripening techniques for banana.

    PubMed

    Mahajan, B V C; Kaur, Tajender; Gill, M I S; Dhaliwal, H S; Ghuman, B S; Chahil, B S

    2010-06-01

    Fruits of banana (Musa spp) cultivar 'Grand Naine' were harvested at physiological green mature stage. The first lot of fruit was exposed to ethylene gas (100 ppm) for 24 h in ripening chamber. The second lot was treated with different concentrations of aqueous solution of ethephon (250, 500, 750, 1000 ppm) each for 5 min. The fruits were packed in plastic crates and stored in ripening chamber maintained at 16-18°C and 90-95% RH. Treatment with ethylene gas (100 ppm) or ethephon (500 ppm) resulted in adequate ripening of fruits after 4 days with uniform colour, pleasant flavour, desirable firmness and acceptable quality and better shelf-life. The untreated control fruits were hard textured and poor in colour and quality. The ripening with ethylene gas or ethephon treatment seems to hold promise in reducing postharvest losses and boosting the economy of banana growers and traders. PMID:23572644

  5. Relationships between respiration, ethylene, and aroma production in ripening banana.

    PubMed

    Golding, J B; Shearer, D; McGlasson, W B; Wyllie, S G

    1999-04-01

    Mature green bananas were treated with the ethylene antagonist 1-methylcyclopropene (1-MCP) at intervals during the 24 h period after initiation of ripening with propylene. Following 1-MCP treatment, the fruits were ripened in either air or propylene while ethylene, carbon dioxide, and volatile production and composition were monitored at regular intervals. The application of 1-MCP significantly delayed and suppressed the onset and magnitude of fruit respiration and volatile production. The 1-MCP treatments also caused a quantitative change in the composition of the aroma volatiles, resulting in a substantial increase in the concentration of alcohols and a decrease in their related esters. The results showed that ethylene has a continuing role in integrating many of the biochemical processes that take place during the ripening of bananas. PMID:10564032

  6. Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2 %, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening period...

  7. Chlorophyll breakdown as seen in bananas: sign of aging and ripening--a mini-review.

    PubMed

    Müller, Thomas; Kräutler, Bernhard

    2011-01-01

    The ripening of bananas is seen by a characteristic change of their color from deep green to bright yellow. Likewise, their over-ripening and eventual rotting are accompanied by the appearance of an unappetizing brown. Chlorophyll breakdown is a major contributor to the visual signs of these processes in bananas. Outlined here are the basic structures of chlorophyll catabolites in higher plants, with particular reference to ripening and aging bananas. In these fruits, unique fluorescent chlorophyll catabolites accumulate and give rise to their fascinating blue luminescence. PMID:21160159

  8. Fructan distribution in banana cultivars and effect of ripening and processing on Nendran banana.

    PubMed

    Shalini, R; Antony, Usha

    2015-12-01

    Many plants store fructan as reserve carbohydrate. Fructans naturally present in almost all plant foods, are also used as functional ingredients by the food industry to modify the texture and taste due to their properties as gelling agents, fat substitutes, soluble dietary fibers and low calorie sweeteners. Seven banana cultivars were analysed for fructans and Nendran banana was selected for the next set of experiments as it had the highest fructan content (1433.3 mg/100 g) among the cultivars studied. Low temperature ripening (16 °C) of Nendran banana resulted in higher fructan accumulation of these carbohydrates in cold conditions. Pectinase pre-treatment significantly increased yield of total fructans from 1.4/100 g to 6.5 g/100 g i.e., 370 %. Fructan composition was affected by processing, namely steaming and puree preparation in Nendran. The fructan composition data documented in this study will enable including banana, naturally high in fructans in the diet and will facilitate storage and processing for nutritional formulation for higher fructan consumption. PMID:26604400

  9. Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety 'Robusta'.

    PubMed

    Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N

    2011-12-01

    Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality. PMID:23572812

  10. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  11. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value. PMID:24876653

  12. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene. PMID:18820933

  13. Bananas--physiology and biochemistry of storage and ripening for optimum quality.

    PubMed

    Marriott, J

    1980-01-01

    Bananas (Musa spp.) are a major food crop of the humid tropics, and although edible cultivars are diverse and numerous, most of our knowledge of the physiology and biochemistry of these fruits relates to a few dessert cultivars of the AAA type, mainly of the Cavendish subgroup, which dominate the export trade between tropical and temperate zones. The preclimacteric period of banana fruits after harvest determines their transportability, and its duration is very sensitive to changes in fruit maturity, storage temperature, ethylene concentration, and other factors; progress in measurement and resolution of each of these effects is described. Changes in composition of the ripening fruits, especially in the development of flavor volatiles, are reviewed. Progress in understanding the integration of the biochemical changes controlling ripening in banana fruits is discussed. Recent work on storage, ripening, and factors relating to sensory assessment of fruit quality is discussed for cultivars of Musa types not used in major export trades. PMID:6996924

  14. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening

    PubMed Central

    Fan, Zhong-qi; Kuang, Jian-fei; Fu, Chang-chun; Shan, Wei; Han, Yan-chao; Xiao, Yun-yi; Ye, Yu-jie; Lu, Wang-jin; Lakshmanan, Prakash; Duan, Xue-wu; Chen, Jian-ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  15. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening.

    PubMed

    Fan, Zhong-Qi; Kuang, Jian-Fei; Fu, Chang-Chun; Shan, Wei; Han, Yan-Chao; Xiao, Yun-Yi; Ye, Yu-Jie; Lu, Wang-Jin; Lakshmanan, Prakash; Duan, Xue-Wu; Chen, Jian-Ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  16. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  17. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit.

    PubMed

    Asif, Mehar H; Nath, Pravendra

    2005-02-01

    The activity of polygalacturonase (PG, E.C 3.2.1.15) during ripening in climacteric fruits has been positively correlated with softening of the fruit tissue and differential expression of its gene is suspected to be regulated by the plant hormone ethylene. We have cloned four partial cDNAs, MAPG1 (acc. no. AF311881), MAPG2 (acc. no. AF311882), MAPG3 (acc. no. AF542382) and MAPG4 (acc. no. AY603341) for PG genes and studied their differential expression during ripening in banana. MAPG3 and MAPG4 are believed to be ripening related and regulated by ethylene whereas MAPG2 is associated more with senescence. MAPG1 shows constitutive expression and is not significantly expressed in fruit tissue. The genomic clone MAGPG (acc. No. AY603340) includes the complete MAPG3 gene, which consists of four exons and three introns. The structure of the gene has more similarity to tomato abscission PG rather than tomato fruit PG. It is concluded that softening during ripening in banana fruit results from the concerted action of at least four PG genes, which are differentially expressed during ripening. PMID:15820666

  18. Expression profiles of a MhCTR1 gene in relation to banana fruit ripening.

    PubMed

    Hu, Huei-Lin; Do, Yi-Yin; Huang, Pung-Ling

    2012-07-01

    The banana (Musa spp.) is a typical climacteric fruit of high economic importance. The development of bananas from maturing to ripening is characterized by increased ethylene production accompanied by a respiration burst. To elucidate the signal transduction pathway involved in the ethylene regulation of banana ripening, a gene homologous to Arabidopsis CTR1 (constitutive triple response 1) was isolated from Musa spp. (Hsien Jin Chiao, AAA group) and designated as MhCTR1. MhCTR1 spans 11.5 kilobases and consists of 15 exons and 14 introns with consensus GT-AG nucleotides situated at their boundaries. MhCTR1 encodes a polypeptide of 805 amino acid residues with a calculated molecular weight of 88.6 kDa. The deduced amino acid sequence of MhCTR1 demonstrates 55%, 56% and 55% homology to AtCTR1, RhCTR1, and LeCTR1, respectively. MhCTR1 is expressed mostly in the mature green pulp and root organs. During fruit development MhCTR1 expression increases just before ethylene production rises. Moreover, MhCTR1 expression was detected mainly in the pulps at ripening stage 3, and correlated with the onset of peel yellowing, while MhCTR1 was constitutively expressed in the peels. MhCTR1 expression could be induced by ethylene treatment (0.01 μL L(-1)), and MhCTR1 expression decreased in both peel and pulp 24 h after treatment. Overall, changes observed in MhCTR1 expression in the pulp closely related to the regulation of the banana ripening process. PMID:22584359

  19. The cold storage of green bananas affects the starch degradation during ripening at higher temperature.

    PubMed

    Peroni-Okita, Fernanda H G; Cardoso, Mateus B; Agopian, Roberta G D; Louro, Ricardo P; Nascimento, João R O; Purgatto, Eduardo; Tavares, Maria I B; Lajolo, Franco M; Cordenunsi, Beatriz R

    2013-07-01

    The aim of this work was to investigate the starch degradation of bananas stored at low temperature (13°C, cold-stored group) and bananas stored at 19°C (control group) during ripening. The starch granules were isolated during different stages of banana ripening, and their structure was investigated using different techniques. The activities of α-amylase and β-amylase associated to the starch granules were determined, and their presence was confirmed using immunolocalization assays. The increased molecular mobility likely facilitated the intake and action of α-amylase on the granule surface, where it was the prevalent enzyme in bananas stored at low temperature. The 10 days of storage at low temperature also influenced the sizes and shapes of the granules, with a predominance of rounded granules and pits on the surface along with superior amylose content, the higher amounts of amylopectin A-chains and the subtle increase in the A-type allomorph content. PMID:23688463

  20. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre. PMID:20725857

  1. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).

    PubMed

    Mbéguié-A-Mbéguié, Didier; Hubert, Olivier; Fils-Lycaon, Bernard; Chillet, Marc; Baurens, Franc-Christophe

    2008-06-01

    Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening. PMID:18346078

  2. Effects of ripening stage and steaming time on quality attributes of fat free banana snack obtained from drying process including fluidized bed puffing.

    PubMed

    Prachayawarakorn, Somkiat; Raikham, Chonlada; Soponronnarit, Somchart

    2016-02-01

    Healthy snacks have increasingly been interested in consumers. Puffing technique is an alternative to produce healthy snacks. Effects of ripening stage of banana and steaming time on quality of banana slices obtained from drying process including fluidized bed puffing were investigated. Bananas at the ripening stages 1 and 3 were steamed at 100 °C for 30 s up to 2 min and dried at 90 °C to moisture content of 25 % dry basis (d.b.). The samples were then puffed by fluidized bed dryer at 160 °C for 2 min and dried at the same temperature as the first stage drying. The experimental results showed that shrinkage, drying time, color, glycemic index and textural properties were affected by steaming time and ripening stage. Steaming provided more uniformity of banana color. Steaming positively or negatively affected the degree shrinkage of banana depending on the ripening stage. The banana texture in particular crispiness could be improved by the steaming for the ripening stage 1 banana whilst it did not improve for the ripening stage 3. During steaming, the C-type crystalline structure of banana starch disappeared and thus the value of glycemic index was increased. The ripening stage 1 banana was recommended for producing healthy snack in order to control glycemic response. PMID:27162374

  3. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security.

    PubMed

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J; Friedman, Haya

    2016-05-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  4. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security1[OPEN

    PubMed Central

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J.

    2016-01-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  5. Characterization of Musa sp. fruits and plantain banana ripening stages according to their physicochemical attributes.

    PubMed

    Valérie Passo Tsamo, Claudine; Andre, Christelle M; Ritter, Christian; Tomekpe, Kodjo; Ngoh Newilah, Gérard; Rogez, Hervé; Larondelle, Yvan

    2014-08-27

    This study aimed at understanding the contribution of the fruit physicochemical parameters to Musa sp. diversity and plantain ripening stages. A discriminant analysis was first performed on a collection of 35 Musa sp. cultivars, organized in six groups based on the consumption mode (dessert or cooking banana) and the genomic constitution. A principal component analysis reinforced by a logistic regression on plantain cultivars was proposed as an analytical approach to describe the plantain ripening stages. The results of the discriminant analysis showed that edible fraction, peel pH, pulp water content, and pulp total phenolics were among the most contributing attributes for the discrimination of the cultivar groups. With mean values ranging from 65.4 to 247.3 mg of gallic acid equivalents/100 g of fresh weight, the pulp total phenolics strongly differed between interspecific and monospecific cultivars within dessert and nonplantain cooking bananas. The results of the logistic regression revealed that the best models according to fitting parameters involved more than one physicochemical attribute. Interestingly, pulp and peel total phenolic contents contributed in the building up of these models. PMID:25101926

  6. Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening.

    PubMed

    Cheng, Guiping; Yang, En; Lu, Wangjin; Jia, Yongxia; Jiang, Yueming; Duan, Xuewu

    2009-07-01

    The effects of nitric oxide (NO) on ethylene synthesis and softening of ripening-initiated banana slice were investigated. Fruit firmness, color, and contents of starch and acid-soluble pectin (ASP) were measured. In addition, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, expression and activities of ACC synthase (ACS) and ACC oxidase (ACO), and activities of cell-wall-modifying enzymes, polygalacturonase (PG), pectin methylesterase (PME), and endo-beta-1,4-glucanase, were analyzed. Application of NO reduced ethylene production, inhibited degreening of the peel and delayed softening of the pulp. The decrease of ethylene production was associated with the reduction in the activity of ACO and the expression of the MA-ACO1 gene. Moreover, the NO-treated fruit showed a lower expression of the MA-ACS1 gene but higher ACS activity and ACC content. In addition, NO treatment decreased the activities of PG, PME, and endo-beta-1,4-glucanase and maintained higher contents of ASP and starch, which may account for the delay of softening. We proposed that the inhibition of ACO activity and transcription of gene MA-ACO1 by NO resulted in decreased ethylene synthesis and the delay of ripening of banana slice. PMID:19534461

  7. Increases in 1,5-anhydroglucitol levels in germinating amaranth seeds and in ripening banana.

    PubMed

    Konishi, Y; Hashima, K; Kishida, K

    2000-11-01

    To examine whether 1,5-anhydroglucitol (AG) is derived from starch degradation in plant tissues, we colorimetrically measured AG contents of germinating amaranth seeds and ripening banana pulp. In both cases, as starch degradation proceeded, AG levels were significantly increased, but were 1,700-5,000 times lower than those of total soluble carbohydrates. alpha-1,4-Glucan lyase activity, which is measured by the 1,5-anhydrofructose (AF) liberated from non-reducing glucose residues of starch or glycogen, was too low to be detected in amaranth or banana by the 3,5-dinitrosalicylic acid method. On the other hand, AF reductase, which reduces AF to AG, was detected in germinating amaranth seeds and banana pulp. Thus, the increases in AG levels are conceived to be derived from starch breakdown, although further investigation is needed to answer whether the starch degradation pathway via alpha-1,4-glucan lyase/AF reductase exists in plant tissues. PMID:11193417

  8. Postharvest quality and ripening of Dwarf Brazilian bananas (Musa sp.)after x-ray irradiation quarantine treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fruit quality and ripening response of Dwarf Brazilian bananas (Musa sp., group AAB) were determined following x-ray irradiation for surface disinfestation of quarantine pests. The proximal and distal hands from winter- and summer-harvested bunches were treated with 0, 200, 400, 600, or 800 Gy d...

  9. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  10. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening.

    PubMed

    Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar

    2011-08-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel. PMID:21369778

  11. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. PMID:20435371

  12. Changes in the lipid composition of ripening banana fruits and evidence for an associated increase in cell membrane permeability.

    PubMed

    Wade, N L; Bishop, D G

    1978-06-23

    The content of total lipid in banana fruit pulp tissue remained constant during the climacteric rise induced by applied ethylene. The relative proportions of neutral lipid, glycolipid and phospholipid did not change. However, the fatty acid composition of the lipid did change during ripening. This change was confined largely to the phospholipid fraction, in which there was an increase in the proportion of linolenic acid and a decrease in the proportion of linoleic acid. The net result was an increase in total unsaturation of the fatty acids in the phospholipid fraction. Measurements of spin label motion in liposomes prepared from banana phospholipids showed that the motion and fluidity of bilayer lipids increased during ripening of the fruit from which the liposomes were prepared, probably as a result of increased lipid unsaturation during ripening. Since increases in membrane fluidity are accompanied by increases in the passive permeability to small molecules in a number of membrane systems, it is suggested that the increased leakage which has been previously demonstrated in ripening banana fruit tissue is due to increases in the permeability of at least some cell membranes. PMID:667087

  13. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-08-27

    The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  14. Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-01-01

    Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  15. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    PubMed

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene. PMID:17452798

  16. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    PubMed Central

    Mbéguié-A-Mbéguié, D.; Hubert, O.; Baurens, F. C.; Matsumoto, T.; Chillet, M.; Fils-Lycaon, B.; Sidibé-Bocs, S.

    2009-01-01

    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates. PMID:19357434

  17. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    PubMed

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  18. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    PubMed Central

    Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  19. Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening.

    PubMed

    Liu, Juhua; Zhang, Jing; Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  20. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening. PMID:22009053

  1. Effect of gamma radiation on the ripening and levels of bioactive amines in bananas cv. Prata

    NASA Astrophysics Data System (ADS)

    Gloria, Maria Beatriz A.; Adão, Regina C.

    2013-06-01

    Green Prata bananas at the full three-quarter stage were exposed to gamma radiation at doses of 0.0 (control), 1.0, 1.5 and 2.0 kGy and stored at 16±1 °C and 85% relative humidity. Samples were collected periodically and analyzed for peel color, pulp-to-peel ratio and levels of starch, soluble sugars and bioactive amines. Degradation of starch and formation of fructose and glucose followed first- and zero-order kinetics, respectively. Higher irradiation doses caused increased inhibitory effect on starch degradation and glucose formation. However, doses of 1.5 and 2.0 kGy caused browning of the peel, making the fruit unacceptable. Irradiation at 1.0 kGy was the most promising dose: it did not affect peel color, the pulp-to-peel ratio or the levels of the amines spermidine, serotonin and putrescine. However, it slowed down starch degradation and the formation and accumulation of fructose and glucose, delaying the ripening of the fruit for 7 days.

  2. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. PMID:25980771

  3. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    PubMed

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components. PMID:22888129

  4. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening. PMID:22419220

  5. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening. PMID:18830708

  6. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes.

    PubMed

    Feng, Bi-Hong; Han, Yan-Chao; Xiao, Yun-Yi; Kuang, Jian-Fei; Fan, Zhong-Qi; Chen, Jian-Ye; Lu, Wang-Jin

    2016-04-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25MaDofgenes from banana fruit (Musa acuminata), designated asMaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed thatMaDofs were differentially expressed during different stages of ripening.MaDof10,23,24, and25were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, includingMaEXP1/2/3/5,MaXET7,MaPG1,MaPME3,MaPL2,MaCAT, andMaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. PMID:26889012

  7. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes

    PubMed Central

    Feng, Bi-hong; Han, Yan-chao; Xiao, Yun-yi; Kuang, Jian-fei; Fan, Zhong-qi; Chen, Jian-ye; Lu, Wang-jin

    2016-01-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1–MaDof25. Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. PMID:26889012

  8. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties.

    PubMed

    Happi Emaga, Thomas; Robert, Christelle; Ronkart, Sébastien N; Wathelet, Bernard; Paquot, Michel

    2008-07-01

    The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins. PMID:17931857

  9. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  10. Benzothiadiazole-Mediated Induced Resistance to Colletotrichum musae and Delayed Ripening of Harvested Banana Fruit.

    PubMed

    Zhu, Xiaoyang; Lin, Huanzhang; Si, Zhenwei; Xia, Yihua; Chen, Weixin; Li, Xueping

    2016-02-24

    Benzothiadiazole (BTH) works as a plant activator. The effects of different BTH treatments and fungicides SPORGON on fruit ripening and disease incidence were investigated. The results showed that BTH treatment significantly delayed fruit ripening, maintained fruit firmness, color, and good fruit quality, and dramatically reduced the incidence of disease. BTH effectively inhibited the invasion and development of pathogenic bacteria and controlled the occurrence of disease. BTH treatment enhanced the activities of defense-related enzymes, including chitinase, phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase, increased the content of hydrogen peroxide and total antioxidant capacity, and reduced malondialdehyde content. Cellular structure analysis after inoculation confirmed that BTH treatment effectively maintained the cell structural integrity. SPORGON did not provide benefits for delaying fruit ripening or for the resistance system, while it can control the disease only during the earlier stage and not at later stages. PMID:26871966

  11. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins.

    PubMed

    Peumans, Willy J; Proost, Paul; Swennen, Rony L; Van Damme, Els J M

    2002-10-01

    Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a beta-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669

  12. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration). PMID:21409422

  13. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  14. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  15. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  16. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana.

    PubMed

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  17. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-10-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  18. Effects of ethylene and 1-methylcyclopropene (1-MCP) on gene expression and activity profile of alpha-1,4-glucan-phosphorylase during banana ripening.

    PubMed

    Mainardi, Janaina Aparecida; Purgatto, Eduardo; Vieira, Adair; Bastos, Walter Arato; Cordenunsi, Beatriz Rosana; Oliveira do Nascimento, João Roberto; Lajolo, Franco Maria

    2006-09-20

    Starch phosphorylases are enzymes that can use starch as substrate, and they are supposed to act in both in starch synthesis and degradation. This paper reports the effects of ethylene and 1-methylcyclopropene (1-MCP) on the degradation of starch and phosphorylase activity and gene expression. The results indicate that phosphorylase activity is induced during ripening and that it is associated with the onset of starch degradation. The regulation of banana phosphorylase activity is mainly dependent on gene expression, and the absence of ethylene perception by 1-MCP had a positive effect. However, this effect can be precluded by increased levels of ethylene, both autocatalytic and exogenous. PMID:16968096

  19. Characterization of cultivar differences in beta-1,3 glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Sengupta, Dibyendu N

    2009-11-01

    beta-1,3 glucanase (E.C.3.2.1.39) is the key enzyme involved in the hydrolytic cleavage of 1,3 beta-D glucosidic linkages in beta-1,3 glucans. This work describes a comparative analysis of expression patterns of beta-1,3 glucanase gene in relation to changes in fruit pulp softening rates in three banana cultivars, Rasthali (AAB), Kanthali (AB), and Monthan (ABB). Analysis of transcript and protein levels of beta-1,3 glucanase gene during ripening revealed differential timing in expression of the gene which correlated well with the variation in enzymatic activity of glucanase and fruit pulp softening rates in the three cultivars. Exogenously applied ethylene strongly induced beta-1,3 glucanase expression during the early ripening days in Rasthali, while the expression of the gene was marginally stimulated following ethylene treatment in preclimacteric Kanthali fruit. Conversely, in Monthan, beta-1,3 glucanase expression was very low throughout the ripening stages, and ethylene treatment did not induce the expression of the gene in this cultivar. Analysis of glucanase activity using protein extracts from unripe and ripe fruit of Monthan with crude cell wall polysaccharide fractions (used as substrate) indicated that the natural substrate for glucanase remained almost unutilized in this cultivar due to low in vivo glucanase activity. Furthermore, the recombinant beta-1,3 glucanase protein, overexpressed in E. coli, showed requirement for substrates with contiguous beta-1,3 linkages for optimal activity. Overall, our results provide new information on the expression profile of beta-1,3 glucanase gene in connection with the pattern of changes in fruit firmness at the physiological and molecular levels during ripening in three banana cultivars. PMID:19697038

  20. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein. PMID:18449546

  1. Effect of 1-Methylcyclopropene coupled with controlled atmosphere storage on the ripening and quality of ‘Cavendish’ bananas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh-fruit banana is well known to have a short-life after harvest. A short pre-pilot study was carried out to test the effect of atmospheric condition exposure to 1-MCP on the quality, limited to cosmetic and peel appearance, and shelf life of fresh-fruit bananas. Low level of O2 (3 kPa) and high ...

  2. Understanding the molecular mechanism of transcriptional regulation of banana Sucrose phosphate synthase (SPS) gene during fruit ripening: an insight into the functions of various cis-acting regulatory elements.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2010-05-01

    Recently, we have reported the characterization of promoter region of Sucrose phosphate synthase (SPS) gene in banana and investigated the role of some cis-elements/motifs, present in the promoter of SPS, in the transcriptional regulation of the gene. DNA-protein interaction studies have demonstrated the presence of specific trans-acting factors which showed specific interactions with ethylene, auxin, low temperature and light responsive elements in regulating SPS transcription. Transient expression analyses have demonstrated the functional significance of the various cis-acting regulatory elements present in banana SPS promoter in regulating SPS expression during ripening. (1) Here, we have further discussed the possible role of these regulatory sequences in the regulation of transcriptional network and comment on their function in relation to sucrose metabolism during banana fruit ripening. PMID:20139735

  3. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening.

    PubMed

    Asif, Mehar Hasan; Lakhwani, Deepika; Pathak, Sumya; Bhambhani, Sweta; Bag, Sumit K; Trivedi, Prabodh Kumar

    2014-03-01

    Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database. PMID:24275941

  4. Molecular characterization and differential expression of beta-1,3-glucanase during ripening in banana fruit in response to ethylene, auxin, ABA, wounding, cold and light-dark cycles.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2010-08-01

    beta-1,3-Glucanases (E.C. 3.2.1.39) are widely distributed enzyme among bacteria, fungi, and higher plants. Analyses of accumulation levels of beta-1,3-glucanase protein in various tissues in banana have clearly indicated abundance of beta-1,3-glucanase protein accumulation in ripe pulp tissue. After cloning of beta-1,3-glucanase from banana pulp (cultivar Cavendish), we have carried out an in silico analysis to investigate the sequential, structural, and phylogenetic characteristics of the putative banana beta-1,3-glucanase protein. As like other ripening specific genes, beta-1,3-glucanase is regulated in response to a wide variety of factors. Therefore, we have analyzed the transcript accumulation pattern and protein levels of beta-1,3-glucanase in response to ethylene, auxin, ABA, wounding and, low temperature in preclimacteric banana fruit. Expression profile analyses have indicated that whereas exogenous application of ethylene strongly stimulated beta-1,3-glucanase transcript accumulation, ABA partially induced the expression of the gene. On the other hand, wound treatment did not induce beta-1,3-glucanase expression. Conversely, auxin and cold treatment negatively regulated beta-1,3-glucanase gene expression and thus inhibited glucanase activity. In addition, beta-1,3-glucanase transcript level was markedly decreased by constant exposure to white light. Protein level and enzymatic activity of beta-1,3-glucanase were substantially increased with considerable decrease in fruit firmness by ethylene treatment and reduced exposure to white light conditions as compared with other treatments. Together, the overall study of beta-1,3-glucanase expression pattern, glucanase activity, and changes in fruit firmness during ripening in various conditions suggest the possible physiological function of beta-1,3-glucanase in fruit pulp softening. PMID:20467747

  5. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2008-12-01

    The ripening-specific genes MA-ACS1 (Musa acuminata ACC synthase1) and MA-ACO1 (M. acuminata ACC oxidase 1) are regulated in response to a wide variety of factors. Here, we have studied the differential transcript accumulation pattern and protein levels of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding and low temperature in preclimacteric banana fruit. We have shown that exogenous application of ethylene and auxin induced the expression of MA-ACS1, while MA-ACO1 showed marginal expression following ethylene treatment in preclimacteric stage. Auxin did not induce MA-ACO1 expression. Thus, auxin-treated banana fruits showed lower ethylene production rate as compared to ethylene-treated fruits. Conversely, wounding and cold treatment down-regulated the expression of both the genes and thus inhibited ethylene production. Furthermore, we have detected a GCC-box putative ethylene-responsive element (ERE)- and an auxin-responsive element (ARE)-specific DNA-binding activity in the banana pulp and studied the ethylene and auxin responsive characteristics of the GCC-box and ARE (TGTCTC) containing synthetic promoter fragments. In addition, we have detected an enhanced ethylene production rate and expression level of MA-ACS1 and MA-ACO1 genes along with a strong GCC-box-specific DNA-binding activity following exposure to constant dark period for 8d at the preclimacteric stage. Together, our study provides interesting information about the regulation of expression of MA-ACS1 and MA-ACO1 genes in response to various factors during ripening in banana fruit, which may have physiological relevance concerning ethylene biosynthesis during post-harvest conditions. PMID:18554749

  6. Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening1[OPEN

    PubMed Central

    Han, Yan-Chao; Kuang, Jian-Fei; Xiao, Yun-Yi; Fu, Chang-Chun; Wang, Jun-Ning

    2016-01-01

    Phytohormone ethylene controls diverse developmental and physiological processes such as fruit ripening via modulation of ethylene signaling pathway. Our previous study identified that ETHYLENE RESPONSE FACTOR11 (MaERF11), a transcription factor in the ethylene signaling pathway, negatively regulates the ripening of banana, but the mechanism for the MaERF11-mediated transcriptional regulation remains largely unknown. Here we showed that MaERF11 has intrinsic transcriptional repression activity in planta. Electrophoretic mobility shift assay and chromatin immunoprecipitation analyses demonstrated that MaERF11 binds to promoters of three ripening-related Expansin genes, MaEXP2, MaEXP7 and MaEXP8, as well as an ethylene biosynthetic gene MaACO1, via the GCC-box motif. Furthermore, expression patterns of MaACO1, MaEXP2, MaEXP7, and MaEXP8 genes are correlated with the changes of histone H3 and H4 acetylation level during fruit ripening. Moreover, we found that MaERF11 physically interacts with a histone deacetylase, MaHDA1, which has histone deacetylase activity, and the interaction significantly strengthens the MaERF11-mediated transcriptional repression of MaACO1 and Expansins. Taken together, these findings suggest that MaERF11 may recruit MaHDA1 to its target genes and repress their expression via histone deacetylation. PMID:27208241

  7. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest.

    PubMed

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  8. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  9. Postharvest quality of specialty bananas after irradiation for quarantine security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit quality and ripening of 'Dwarf Brazilian' ("apple") bananas were determined following x-ray irradiation for disinfestation of quarantine pests. The USDA-approved minimum absorbed dosage for banana exports from Hawaii is either 400 Gy with inspection for the presence of banana moth, or 150 Gy ...

  10. Spatial and temporal variation in nematocide leaching, management implications for a Costa Rican banana plantation

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.; Kooistra, L.; Bouma, J.

    Leaching of excess applications of agro-chemicals is common in both western and tropical agricultural. Although the pollution originates from non-point sources, point models are frequently used to assess areal pollution. Average "representative soil profiles" and average climatic data in terms of rainfall, temperature etc. are often used in modeling studies. However, variability both in space and time is known to occur. As a result, modeled soil behavior, like leaching of agro-chemicals, may be similarly variable and concentrated on specific niches. Linear aggregation of point results is extremely dangerous and may lead to serious over- or under-estimations of environmental effects. A risk assessment in space and time has been carried out for nematocide use in a Costa Rican banana plantation. A detailed soil survey was made and pesticide behavior in the soil was measured in terms of half-life times and fixation coefficients. Nematocide leaching was modeled using the LEACHP model for representative soil profiles as well as individual augerings. Results show that simulated pesticide leaching is restricted to small areas in the plantation and only in particular periods of the year. This spatial variation in nematocide leaching is not captured using representative profiles. Better timing of the applications and taking into account soil variation can significantly reduce nematocide leaching. Threshold values for nematocide leaching are not available. Therefore, questions about the restrictions on nematocide leaching at farm level or point level are evaluated in terms of potential implications for farm management.

  11. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  12. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  13. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening

    PubMed Central

    Zhu, Benzhong; Yang, Yongfang; Li, Ran; Fu, Daqi; Wen, Liwei; Luo, Yunbo; Zhu, Hongliang

    2015-01-01

    Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening. PMID:25948705

  14. Remote quality monitoring in the banana chain

    PubMed Central

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-01-01

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  15. Remote quality monitoring in the banana chain.

    PubMed

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  16. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana.

    PubMed

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  17. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    PubMed Central

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  18. Characterization and expression analysis of a banana gene encoding 1-aminocyclopropane-1-carboxylate oxidase.

    PubMed

    Huang, P L; Do, Y Y; Huang, F C; Thay, T S; Chang, T W

    1997-04-01

    A cDNA encoding the banana 1-aminocyclopropane-1-carboxylate (ACC) oxidase has previously been isolated from a cDNA library that was constructed by extracting poly(A)+ RNA from peels of ripening banana. This cDNA, designated as pMAO2, has 1,199 bp and contains an open reading frame of 318 amino acids. In order to identify ripening-related promoters of the banana ACC oxidase gene, pMAO2 was used as a probe to screen a banana genomic library constructed in the lambda EMBL3 vector. The banana ACC oxidase MAO2 gene has four exons and three introns, with all of the boundaries between these introns and exons sharing a consensus dinucleotide sequence of GT-AG. The expression of MAO2 gene in banana begins after the onset of ripening (stage 2) and continuous into later stages of the ripening process. The accumulation of MAO2 mRNA can be induced by 1 microliter/l exogenous ethylene, and it reached steady state level when 100 microliters/l exogenous ethylene was present. PMID:9137825

  19. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    PubMed

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes. PMID:17185740

  20. Let's Go Bananas.

    ERIC Educational Resources Information Center

    Brown, Helen; And Others

    1995-01-01

    Presents a hands-on primary science unit of activities designed to teach students concepts about bananas. Real bananas are used as students investigate and use the process skills of observation, measurement, and communication. Using bananas as a theme, science, mathematics, social studies, music, and writing are integrated into the curriculum of…

  1. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit.

    PubMed

    Liu, Ju-Hua; Zhang, Jing; Jia, Cai-Hong; Zhang, Jian-Bin; Wang, Jia-Shui; Yang, Zi-Xian; Xu, Bi-Yu; Jin, Zhi-Qiang

    2013-01-01

    KEY MESSAGE : The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening. The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening. PMID:23007689

  2. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programs of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and...

  3. Generalized banana-drift transport

    SciTech Connect

    Mynick, H.E.

    1985-10-01

    The theory of tokamak ripple transport in the banana-drift and ripple-plateau regimes is extended in a number of directions. The theory is valid for small values of the toroidal periodicity number n of the perturbation, as well as for the moderate values (n approx. 10 to 20) previously assumed. It is shown that low-n perturbations can produce much greater transport than the larger-n perturbations usually studied. In addition, the ripple perturbation is allowed arbitrary values of poloidal mode number m and frequency ..omega.., making it applicable to the transport induced by MHD modes. Bounce averaging is avoided, so the theory includes the contributions to transport from all harmonics of the bounce frequency, providing a continuous description of the transition from the banana drift to the ripple-plateau regime. The implications of the theory for toroidal rotation in tokamaks are considered.

  4. Anaphylaxis caused by banana.

    PubMed

    Savonius, B; Kanerva, L

    1993-04-01

    An anaphylactic reaction following ingestion of banana occurred in a 32-year-old female cook. The sensitization to banana occurred simultaneously with the development of occupational asthma caused by grain flour. The patient was sensitized to a wide range of airborne and ingestible proteins but not to rubber latex. PMID:8506993

  5. Sugarcane ripener update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical sugarcane ripeners glyphosate and trinexapac-ethyl play an important role in the Louisiana sugarcane industry. Their use allows for earlier starts to the sugarcane harvest season, increase recoverable sucrose (TRS) at the mill, and increases harvest efficiency. Response to ripeners oft...

  6. Regulation of fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit ripening is a process unique to plants in which floral seed bearing organs mature into fleshy structures attractive and nutritious to seed dispersing organisms. While the specific characteristics of ripening fruit vary among species, a number of general themes are exhibited in many fleshy rip...

  7. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    PubMed

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption. PMID:27250565

  8. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    NASA Astrophysics Data System (ADS)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  9. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  10. Natural Radioactivity in Bananas

    SciTech Connect

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-07

    The content of {sup 40}K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, Sao Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  11. Natural Radioactivity in Bananas

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-01

    The content of 40K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, São Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  12. Preinduction cervical ripening.

    PubMed

    Thiery, M

    1983-01-01

    This work reviews the evolution of cervical ripening procedures and discusses the most effective current techniques. Current knowledge of the process of spontaneous ripening of the cervix is briefly assessed, but the review concentrates on methodological aspects and the clinical results of preinduction cervical ripening. The historical development of mechanical and pharmacologic ripening procedures is examined, including enzymes, oxytocin, relaxin, corticosteriods, estrogens administered parenterally or locally, and prostaglandins (PGs) administered intravenously, orally, locally, and intravaginally. 3 effective procedures for preinduction cervical ripening are identified and described in greater detail: the catheter technique and local and vaginal administration of PGs. The extraamniotic catheter technique is simple, effective, and safe and is recommended for patients with not totally unripe cervixes and for whom PGs are unavailable or contraindicated. Single-dose extraamniotic instillation of PGE2 in Tylose gel was found to be highly effective for priming the unfavorable cervix before conventional labor induction. In some patients the procedure induces labor. The technique is easy to use, well accepted by the woman, and safe when applied appropriately to carefully selected patients. PGF2alpha gel has been less thoroughly studied. Electronic monitoring at the ripening stage is recommended for patients at risk, and even in low-risk cases much larger series will require study before conclusions can be reached about safety. Injection of PG gel into the cervical canal is less invasive than extraamniotic instillation, but no definite conclusions about its safety are possible due to small series and dissimilar clinical protocols. Pericervical administration of PGE2 and PGF2 alpha and intracervical and intraamniotic tablets of PGE2 are briefly assessed. Adoption of the intravaginal route has been a major step in the development of ripening techniques. 3 types of media

  13. Going Bananas over The Rainforest

    ERIC Educational Resources Information Center

    Curriculum Review, 2005

    2005-01-01

    With a market of nearly $5 billion a year, the banana is the world's most popular fruit, and the most important food crop after rice, wheat, and maize. Banana businesses are economic pillars in many tropical countries, providing millions of jobs for rural residents. But, for much of its history, the banana industry was notorious for destructive…

  14. Fruit ripening mutants yield insight into ripening control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit ripening is a developmental process exclusive to plants whereby mature seed-bearing organs undergo physiological and metabolic changes promoting seed dispersal. Molecular investigations into ripening control mechanisms have been aided by the recent cloning of tomato ripening genes known previ...

  15. Glycolysis at the climacteric of bananas.

    PubMed

    Ball, K L; Green, J H; ap Rees, T

    1991-04-10

    This work was carried out to investigate the relative roles of phosphofructokinase and pyrophosphate-fructose-6-phosphate 1-phosphotransferase during the increased glycolysis at the climacteric in ripening bananas (Musa cavendishii Lamb ex Paxton). Fruit were ripened in the dark in a continuous stream of air in the absence of ethylene. CO2 production, the contents of glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and PPi; and the maximum catalytic activities of pyrophosphate-fructose-6-phosphate 1-phosphotransferase, 6-phosphofructokinase, pyruvate kinase and phosphoenolpyruvate carboxylase were measured over a 12-day period that included the climacteric. Cytosolic fructose-1,6- bisphosphatase could not be detected in extracts of climacteric fruit. The peak of CO2 production was preceded by a threefold rise in phosphofructokinase, and accompanied by falls in fructose 6-phosphate and glucose 6-phosphate, and a rise in fructose 1,6-bisphosphate. No change in pyrophosphate-fructose-6-phosphate 1-phosphotransferase or pyrophosphate was found. It is argued that phosphofructokinase is primarily responsible for the increased entry of fructose 6-phosphate into glycolysis at the climacteric. PMID:1849821

  16. Biochemical and In-silico Studies on Pectin Methylesterase from G9 Variety of Musa acuminata for Delayed Ripening.

    PubMed

    Verma, Charu; R K, Singh; Singh, Ram B; Mishra, Sanjay

    2015-01-01

    Ripening of fruit is a very important process but in some fruits early ripening leads to a great damage during long distance transportation. There are various biochemical changes taking place during the phase of ripening of fruit such as changes in respiration, aroma, flavor, ethylene production and activity of cell wall degrading enzymes. Some important cell wall degrading enzymes are Polygalacturonase (PG), Pectin methylesterase (PME), Pectin lyase, RGase. PME is known to act as a cell wall hydrolyzing enzyme, responsible for demethyl esterification of cell wall polygalacturonan. The present study includes the biochemical and molecular characterization of PME from Grand naine variety of Musa acuminata (banana). This study also deals with the in-silico study reflecting inhibition of PME activity in context to delayed ripening in banana. It mainly deals with the identification of a PME1 gene from Grand naine variety of banana. The expression of this gene is related with the process of ripening. The expression of PME1 gene was observed to be peaked on 3(rd) day in ethylene treated samples of banana but the activity in untreated samples called control was rather slow and then there was a sudden decrease in their activity in both treated as well as untreated samples. With the help of in-silico study, we observed that banana has maximum homology with carrot by using cross species analysis.The designed model has been reported to be of good quality on the basis of its verification and validation. The designed model was observed to be appropriate for docking. The information of binding sites of ligand provides new insights into the predictable functioning of relevant protein. PMID:25926894

  17. Biochemical and In-silico Studies on Pectin Methylesterase from G9 Variety of Musa acuminata for Delayed Ripening

    PubMed Central

    Verma, Charu; R.K, Singh; Singh, Ram B; Mishra, Sanjay

    2015-01-01

    Ripening of fruit is a very important process but in some fruits early ripening leads to a great damage during long distance transportation. There are various biochemical changes taking place during the phase of ripening of fruit such as changes in respiration, aroma, flavor, ethylene production and activity of cell wall degrading enzymes. Some important cell wall degrading enzymes are Polygalacturonase (PG), Pectin methylesterase (PME), Pectin lyase, RGase. PME is known to act as a cell wall hydrolyzing enzyme, responsible for demethyl esterification of cell wall polygalacturonan. The present study includes the biochemical and molecular characterization of PME from Grand naine variety of Musa acuminata (banana). This study also deals with the in-silico study reflecting inhibition of PME activity in context to delayed ripening in banana. It mainly deals with the identification of a PME1 gene from Grand naine variety of banana. The expression of this gene is related with the process of ripening. The expression of PME1 gene was observed to be peaked on 3rd day in ethylene treated samples of banana but the activity in untreated samples called control was rather slow and then there was a sudden decrease in their activity in both treated as well as untreated samples. With the help of in-silico study, we observed that banana has maximum homology with carrot by using cross species analysis.The designed model has been reported to be of good quality on the basis of its verification and validation. The designed model was observed to be appropriate for docking. The information of binding sites of ligand provides new insights into the predictable functioning of relevant protein. PMID:25926894

  18. Purification and characterization of cytosolic pyruvate kinase from banana fruit.

    PubMed Central

    Turner, W L; Plaxton, W C

    2000-01-01

    Cytosolic pyruvate kinase (PK(c)) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7 micromol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240 kDa homotetramer composed of subunits of 57 kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of V(max)/K(m) for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH 6.9 and 7.5. PK(c) activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg(2+) and K(+) respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg(2+) and K(+) (K(m) values of 0.098, 0.12, 0.27 and 0.91 mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PK(c) by L-glutamate. The allosteric features of banana PK(c) are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807-816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas. PMID:11104698

  19. Genetic networks influencing fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato is a model for ripening control and the basis of many characterized genes underlying this process. Cloning of the CNR, RIN and NOR genes defined the first ripening-specific transcription factors and provided insight into a ripening control system upstream of ethylene. RIN is a central player ...

  20. Microbiology of Ripening Honey

    PubMed Central

    Ruiz-Argueso, T.; Rodriguez-Navarro, A.

    1975-01-01

    Two main groups of bacteria, classified as Gluconobacter and Lactobacillus, are present in ripening honey. A third bacterial group, classified as Zymomonas, and several types of yeast are occasionally isolated. Both in natural honey and in synthetic syrup the bacterial population decreases in the course of the ripening process. Lactobacillus and Gluconobacter disappear after minimum moisture (about 18%) is reached, but the former does so sooner than the latter. The presence of these bacteria in different parts of the bee has been also investigated. PMID:16350044

  1. Ethylene and Fruit Ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments designed to down-regulate specific tomato ethylene receptor isoforms using antisense suppression have been reported for LeETR1, NR and LeETR4. Down-regulation of LeETR1 expression in transgenic plants did not alter fruit ripening but resulted in plants with shorter internodes and reduce...

  2. Ripening and postharvest deterioration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    True ripening of sugarcane will result in sucrose mass increases and not only increases in sucrose content. Nitrogen, crop age, temperature and water stress have been described in the literature as the main factors that influence the direct or indirect production of sucrose. The roles of these facto...

  3. How Do Fruits Ripen?

    ERIC Educational Resources Information Center

    Sargent, Steven A.

    2005-01-01

    A fruit is alive, and for it to ripen normally, many biochemical reactions must occur in a proper order. After pollination, proper nutrition, growing conditions, and certain plant hormones cause the fruit to develop and grow to proper size. During this time, fruits store energy in the form of starch and sugars, called photosynthates because they…

  4. Prototheca associated with banana.

    PubMed

    Pore, R S

    1985-06-01

    Prototheca stagnora was found to be a habitant of older harvested banana (Musa sapientum) and plantain (M. paradisiaca) stumps while P. wickerhamii colonized fresh Musa sp. stumps and flower bract water of Heliconia sp. While Prototheca sp. were known to habituate woody plants, this is the first evidence that herbaceous plants also serve as habitats. PMID:4033739

  5. Total soluble solids from banana: evaluation and optimization of extraction parameters.

    PubMed

    Carvalho, Giovani B M; Silva, Daniel P; Santos, Júlio C; Izário Filho, Hélcio J; Vicente, António A; Teixeira, José A; Felipe, Maria das Graças A; Almeida e Silva, João B

    2009-05-01

    Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min. PMID:19082923

  6. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments

    PubMed Central

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L−1 of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox–oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  7. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    PubMed

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  8. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots. PMID:23692371

  9. Environment effect on fruit ripening related gene to develop a new post harvest technology

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny; Esyanti, Rizkita Rahmi; Robertlee, Jekson; Paramaputra, Indra Chandra; Permatadewi, Rinda Kania; Tambun, Dina Hermawaty; Handayani, Resnanti Utami; Pratiwi, Aksarani'Sa; Zaskia, Herafi

    2014-03-01

    Ripening process of fruits is a very complex process, which involves ethylene production, causing alteration on molecular and physiology level. Environmental stress caused by biotic and abiotic stress conditions (such as pathogen, mechanical stress, physical and physiology stress) can stimulate ethylene production. High levels of ethylene in turn can also inhibit growth, cause premature ripening and induce the onset of senescence, which then potentially reduce plant productivity. The ACC Synthase (ACS) and ACC Oxidase (ACO) genes are genes that have role in the ethylene production. By regulating those genes, especially ethylene biosynthesis genes, we might improve the quality of fruit at post harvest condition. Therefore, in this research we studied fruit ripening related genes expression on banana such as MaACS family at different environment condition. The result of study can give contributions in developing of new plants with desired traits or new post harvest technologies.

  10. Fructose 2,6-bisphosphate and the climacteric in bananas.

    PubMed

    Ball, K L; ap Rees, T

    1988-11-15

    This work was done to test the view that there is a marked rise in the content of fructose 2,6-bisphosphate during the climacteric of the fruit of banana (Musa cavendishii Lamb ex. Paxton). Bananas were ripened in the dark in a continuous stream of air in the absence of exogenous ethylene. CO2 production and the contents of fructose 2,6-bisphosphate and sucrose were monitored over a 15-day period. A range of extraction procedures for fructose 2,6-bisphosphate were compared. Recovery of fructose 2,6-bisphosphate added to samples of unripe fruit varied from poor to unmeasurable. Recoveries from samples of ripe fruit were high. It is argued that this differential recovery of fructose 2,6-bisphosphate undermines claims that the amount of this compound increases at the climacteric. When recoveries are taken into account, our data suggest that there is no major change in fructose 2,6-bisphosphate content during the onset of the climacteric in bananas. PMID:3143570

  11. Banana Gold: Problem or Solution?

    ERIC Educational Resources Information Center

    Joseph, Garnet

    1992-01-01

    Since 1955, the British banana industry has dominated the lives of the Caribs and other peoples in Dominica. Banana growing supplants other economic activities, including local food production; toxic chemicals and fertilizers pollute the land; community is dwindling; suicide is common; and child labor diminishes school attendance. (SV)

  12. Banana Dehydration Utilizing Infrared Radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme of polyphenol oxidase (PPO) has been found to be the main cause of browning in bananas. Infrared radiation (IR) drying could be used to minimize biochemical degradation hence eliminating the need for pre-treatments. This study was to investigate quality characteristics of bananas dried ...

  13. Ostwald ripening theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.

    1986-01-01

    The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.

  14. Molecular regulation of fruit ripening

    PubMed Central

    Osorio, Sonia; Scossa, Federico; Fernie, Alisdair R.

    2013-01-01

    Fruit ripening is a highly coordinated developmental process that coincides with seed maturation. The ripening process is regulated by thousands of genes that control progressive softening and/or lignification of pericarp layers, accumulation of sugars, acids, pigments, and release of volatiles. Key to crop improvement is a deeper understanding of the processes underlying fruit ripening. In tomato, mutations blocking the transition to ripe fruits have provided insights into the role of ethylene and its associated molecular networks involved in the control of ripening. However, the role of other plant hormones is still poorly understood. In this review, we describe how plant hormones, transcription factors, and epigenetic changes are intimately related to provide a tight control of the ripening process. Recent findings from comparative genomics and system biology approaches are discussed. PMID:23785378

  15. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. PMID:24716518

  16. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets. PMID:23096010

  17. Histological aspects of cervical ripening.

    PubMed

    Ichijo, M; Shimizu, T; Sasai, Y

    1976-02-01

    There is a close relationship between the rate of the uterine cervix opening during parturition and the presence or absence of a completely ripened cervix. In order to learn the basic pattern of the ripening of cervix, histological and histochemical studies were performed on the human uterine cervix during pregnancy. It was noted that the collagen bundles disintegrated into fine fibers and also underwent quantitative changes during the ripening process of the cervix. During pregnancy, the number of connective tissue cells was increased, but that of mast cells was decreased. Acid mucopolysaccharides in the cervical ground substance were found to increase in late pregnancy. PMID:136067

  18. [The effect of ethylene biosynthesis regulators on metabolic processes in the banana fruits in various physiological states].

    PubMed

    Bulantseva, E A; Thang, Nguyen Tien; Ruzhitskiĭ, A O; Protsenko, M A; Korableva, N P

    2009-01-01

    The effects of ethylene-evolving preparations-2-chloroethylphosphonic acid (2-CEPA), the new generation binary preparation ethacide, and the specific inhibitor of ethylene biosynthesis aminooxyacetic acid (AOA)--on the ethylene evolution by banana (Musa sp.) fruits at various ripening stages and the content of protein inhibitor of polygalacturonase (PIPG), associated with prevention of fruit tissue softening, were studied. It was demonstrated that the ripening stage was of significant importance for the results of treatment with the mentioned preparations. Their effects were most pronounced in the fruits of medium ripeness. 2-CEPA and ethacide increased the ethylene evolution in banana fruits on the average by 25-30%. AOA treatment decreased the ethylene evolution in these fruits by 30%. The PIPG content in fruit pulp was insignificant; 2-CEPA almost did not change its content in banana skin, while ethacide and AOA somewhat decreased it. Consequently, the regulators of ethylene biosynthesis have a potential for optimizing the state of banana fruits during storage and sale. PMID:19235517

  19. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    PubMed

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas. PMID:21591784

  20. The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group Musa Cultivar.

    PubMed

    Buah, Stephen; Mlalazi, Bulukani; Khanna, Harjeet; Dale, James L; Mortimer, Cara L

    2016-04-27

    The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana. PMID:27041343

  1. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  2. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae.

    PubMed

    Zhu, Xiangfei; Wang, Aiping; Zhu, Shijiang; Zhang, Lubin

    2011-09-15

    The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO1expression in the ethephon-treated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MaERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition of JA biosynthesis by application of IBU down-regulated the expression of MaERF and significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon. PMID:21511361

  3. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere. PMID:26057187

  4. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    PubMed

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. PMID:26852108

  5. Radiation preservation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas

    SciTech Connect

    Thomas, P.

    1986-01-01

    The current status of research on the use of ionizing radiation for shelf life improvement and disinfestation of fresh tropical fruits like bananas, mangoes, and papayas are reviewed. The aspects covered are influence of maturity and physiological state of the fruits on delayed ripening and tolerance to radiation; varietal responses; changes in chemical constituents, volatiles, respiration, and ethylene evolution; biochemical mechanisms of delayed ripening and browning of irradiated fruits; and organoleptic quality. The efficacy of the combination of hot water dip and radiation treatments for control of postharvest fungal diseases are considered. The immediate potential of radiation as a quarantine treatment, in place of the currently used chemical fumigants, for disinfestation of fruit flies and mango seed weevil are discussed. Future prospects for irradiation of tropical fruits are discussed in the light of experience gained from studies conducted in different countries.146 references.

  6. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue.

    PubMed

    Seymour, Graham B; Ryder, Carol D; Cevik, Volkan; Hammond, John P; Popovich, Alexandra; King, Graham J; Vrebalov, Julia; Giovannoni, James J; Manning, Kenneth

    2011-01-01

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available. PMID:21115665

  7. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    PubMed

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. PMID:24767119

  8. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit.

    PubMed

    Chen, Jiao; Chen, Jian-Ye; Wang, Jun-Ning; Kuang, Jian-Fei; Shan, Wei; Lu, Wang-Jin

    2012-04-01

    CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses. PMID:22285923

  9. Antioxidant activity of banana flavonoids.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals. PMID:18329185

  10. Herbicides as ripeners for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical ripening of sugarcane is an important component to profitable sugar production in the U.S. as well as other sugarcane industries throughout the world. Harvesting of sugarcane often begins before the sugarcane reaches a desirable level of maturity. This is especially true in the Louisiana ...

  11. Ripening events in seeded watermelons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeded watermelons generally start color development in the locule (seed cavity), with color progressing to the center of the fruit during the ripening process. Soluble solids content (SSR) is thought to be highest at the blossom end. In large-fruited watermelon where only a portion of the fruit is...

  12. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv ‘Embul’

    PubMed Central

    Abayasekara, C. L.; Adikaram, N. K. B.; Wanigasekara, U. W. N. P.; Bandara, B. M. R.

    2013-01-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar ‘Embul’ (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. 1H and 13C NMR spectral data of one purified phytoalexin compared closely with 4′-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana. PMID:25288931

  13. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv 'Embul'.

    PubMed

    Abayasekara, C L; Adikaram, N K B; Wanigasekara, U W N P; Bandara, B M R

    2013-03-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar 'Embul' (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. (1)H and (13)C NMR spectral data of one purified phytoalexin compared closely with 4'-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana. PMID:25288931

  14. Fruit ripening mutants reveal cell metabolism and redox state during ripening.

    PubMed

    Kumar, Vinay; Irfan, Mohammad; Ghosh, Sumit; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-03-01

    Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality. PMID:26008650

  15. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening. PMID:9232883

  16. Production of ethyl alcohol from bananas

    SciTech Connect

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  17. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  18. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit.

    PubMed Central

    Law, R D; Plaxton, W C

    1995-01-01

    Phosphoenolpyruvate carboxylase (PEPC) from ripened banana (Musa cavendishii L.) fruits has been purified 127-fold to apparent homogeneity and a final specific activity of 32 mumol of oxaloacetate produced/min per mg of protein. Non-denaturing PAGE of the final preparation resolved a single protein-staining band that co-migrated with PEPC activity. Polypeptides of 103 (alpha-subunit) and 100 (beta-subunit) kDa, which stain for protein with equal intensity and cross-react strongly with anti-(maize leaf PEPC) immune serum, were observed following SDS/PAGE of the final preparation. CNBr cleavage patterns of the two subunits were similar, but not identical, suggesting that these polypeptides are related, but distinct, proteins. The enzyme's native molecular mass was estimated to be about 425 kDa. These data indicate that in contrast to the homotetrameric PEPC from most other sources, the banana fruit enzyme exists as an alpha 2 beta 2 heterotetramer. Monospecific rabbit anti-(banana PEPC) immune serum effectively immunoprecipitated the activity of the purified enzyme. Immunoblotting studies established that the 100 kDa subunit did not arise via proteolysis of the 103 kDa subunit after tissue extraction, and that the subunit composition of banana PEPC remains uniform throughout the ripening process. PEPC displayed a typical pH activity profile with an alkaline optimum and activity rapidly decreasing below pH 7.0. Enzymic activity was absolutely dependent on the presence of a bivalent metal cation, with Mg2+ or Mn2+ fulfilling this requirement. The response of the PEPC activity to PEP concentration and to various effectors was greatly influenced by pH and glycerol addition to the assay. The enzyme was activated by hexose-monophosphates and potently inhibited by malate, succinate, aspartate and glutamate at pH 7.0, whereas the effect of these metabolites was considerably diminished or completely abolished at pH 8.0. The significance of metabolite regulation of PEPC is

  19. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-01-01

    Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system. PMID:23161558

  20. Effect of phytohormones on pectate lyase activity in ripening Musa acuminata.

    PubMed

    Payasi, Anurag; Misra, P C; Sanwal, G G

    2004-12-01

    A differential activity peak of pectate lyase (PEL) was observed during ripening of banana fruits (Musa acuminata Harichhal) receiving different hormone treatments. Exposure of fruits to 25 ppm ethylene for 24 h, as well as dipping of M. acuminata fruits in 1 mM 2,4-dichlorophenoxy acetic acid (2,4-D) for 4 h, hastened fruit ripening. Both PEL activity peak and climacteric peak were observed on the 4th and 10th days of treatment with ethylene and 2,4-D, respectively, compared to the 16th day in control fruits. Gibberellic acid (GA) treatment retarded fruit ripening and both PEL activity and climacteric peaks were observed on the 19th day. Treatment of fruits with ethylene or 2,4-D also advanced the appearance of a polygalacturonase (PG) peak and GA delayed its appearance, but the activity peaks always appeared in post-climacteric fruits, in contrast to PEL activity peaks coinciding with the respiratory peaks. PMID:15694279

  1. Suppression of tomato SlNAC1 transcription factor delays fruit ripening.

    PubMed

    Meng, Chen; Yang, Dongyue; Ma, Xiaocui; Zhao, Weiyang; Liang, Xiaoqing; Ma, Nana; Meng, Qingwei

    2016-04-01

    Fruit ripening is a complex process involving many physiological and biochemical changes, including those for ethylene, carotenoid, and cell wall metabolism. Tomato (Solanum lycopersicum) serves as a research model for fruit development and ripening because it possesses numerous favorable genetic features. In this study, SlNAC1 was cloned. An antisense (AS) vector was constructed and transferred to tomato to further explore the function of SlNAC1. The results showed that AS fruits exhibited delayed ripening and a deeper red appearance when these fruits were fully ripened. Fully ripened AS fruits also produced higher total carotenoid and lycopene contents than those of the wild-type (WT) line. Ethylene production of AS fruits was delayed but occurred to a higher extent than that of WT fruits. The softening of AS fruits was slower than that of WT fruits. Endogenous abscisic acid (ABA) level in AS-4 fruits was lower than that in WT fruits. Exogenous ABA accelerated the softening of AS fruits. Furthermore, AS fruits demonstrated up-regulated expression of genes related to lycopene and ethylene biosynthesis but down-regulated expression of genes related to cell wall metabolism and ABA synthesis. Therefore, SlNAC1 is likely implicated in fruit ripening. PMID:26962710

  2. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1982-01-01

    Ripple transport in tokamaks is discussed for the ''banana drift'' collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and consequently the resulting transport coefficients can differ by several orders of magnitude.

  3. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1981-04-01

    Ripple transport in tokamaks is discussed for the banana drift collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and the resulting transport coefficients can consequently differ by several orders of magnitude.

  4. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  5. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  6. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  7. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  8. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  9. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated

  10. Extension of Ostwald Ripening Theory

    NASA Technical Reports Server (NTRS)

    Baird, J.; Naumann, R.

    1985-01-01

    The objective is to develop models based on the mean field approximation of Ostwald ripening to describe the growth of second phase droplets or crystallites. The models will include time variations in nucleation rate, control of saturation through addition of solute, precipitating agents, changes in temperature, and various surface kinetic effects. Numerical integration schemes have been developed and tested against the asymptotic solution of Liftshitz, Slyozov and Wagner (LSW). A second attractor (in addition to the LSW distribution) has been found and, contrary to the LSW theory, the final distribution is dependent on the initial distribution. A series of microgravity experiments is being planned to test this and other results from this work.

  11. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

    PubMed Central

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  12. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    PubMed

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  13. Negative differential resistance: Another banana?

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, H.-F.; Shao, G.-Q.; Wu, B.-L.; Ouyang, S.-X.

    2014-10-01

    Just like the artefact found in ferroelectric hysteresis loops, the nearly identical NDR effect shown in Sr3Co2Fe24O41, TiO2, Al2O3, glass and even banana skins is confirmed to be a kind of water behavior. The combination of water-induced tunneling effect, water decomposition and absorption plays a crucial role in the NDR effect. The results and mechanism demonstrated here illustrate that much attention should be paid to the chemical environment when studying electrical properties of materials/devices.

  14. Multidisciplinary perspectives on banana (Musa spp.) domestication.

    PubMed

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-07-12

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145

  15. Multidisciplinary perspectives on banana (Musa spp.) domestication

    PubMed Central

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-01-01

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145

  16. Statistical differentiation of bananas according to their mineral composition.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Martín, Jacinto Darias; Díaz Romero, Carlos

    2002-10-01

    The concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn were determined in banana cultivars Gran enana and Pequeña enana cultivated in Tenerife and in cv. Gran enana bananas from Ecuador. The mineral concentrations in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the mineral concentrations except in the case of Fe. Variations according to cultivation method (greenhouse and outdoors) and farming style (conventional and organic) in the mineral concentrations in the bananas from Tenerife were observed. The mineral concentrations in the internal part of the banana were higher than those in the middle and external parts. Representation of double log correlations K-Mg and Zn-Mn tended to separate the banana samples according to origin. Applying factor and cluster analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife, and therefore, these are useful tools for differentiating the origin of bananas. PMID:12358491

  17. Banana cultivars, cultivation practices, and physicochemical properties.

    PubMed

    Arvanitoyannis, I S; Mavromatis, A

    2009-02-01

    The physicochemical (pH, texture, Vitamin C, ash, fat, minerals) and sensory properties of banana were correlated with the genotype and growing conditions. Minerals in particular were shown to discriminate banana cultivars of different geographical origin quite accurately. Another issue relates to the beneficial properties of bananas both in terms of the high dietary fiber and antioxidant compounds, the latter being abundant in the peel. Therefore, banana can be further exploited for extracting several important components such as starch, and antioxidant compounds which can find industrial and pharmaceutical applications. Finally, the various storage methodologies were presented with an emphasis on Modified Atmosphere Packaging which appears to be one of the most promising of technologies. PMID:18989831

  18. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  19. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa

    PubMed Central

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Background Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. Objective To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. Data Sources The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. Analysis We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. Results On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. Conclusion The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries. PMID:26414379

  20. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  1. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  2. Polyamines and regulation of ripening and senescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyamines (PAs) are small polycationic, biogenic amines that influence many biochemical and physiological processes such as cell division, cell elongation, flowering, fruit set and development, fruit ripening and senescence. Significant information about PA action has emerged from indirect studies ...

  3. Structure function calculations for Ostwald Ripening processes

    NASA Technical Reports Server (NTRS)

    Hassan, Razi A.

    1990-01-01

    A program for computing the structure function for configurations involved in Ostwald Ripening was written. The basic algorithms are derived from a mathematical analysis of a two-dimensional model system developed by Bortz, et. al. (1974). While it is expected that the values form the computer simulations will reflect Ostwald Ripening, at this point the program is still being tested. Some preliminary runs seem to justify the expectations.

  4. Cell Wall Metabolism in Ripening Fruit

    PubMed Central

    Ahmed, Ahmed Elrayah; Labavitch, John M.

    1980-01-01

    Mature `Bartlett' pear (Pyrus communis) fruits were ripened at 20 C. Fruits at different stages of ripeness were homogenized, and extracts of the low speed pellet (crude cell wall) were prepared. These extracts contained polygalacturonase, pectin esterase, and activity against seven p-nitrophenyl glycoside substrates. Polygalacturonase, α-galactosidase, and α-mannosidase increased in activity as the fruit ripened. Cellulase and activities against pear wall xylan and arabinan were absent from the extracts. PMID:16661276

  5. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  6. I Have a Banana Tree in My Classroom

    ERIC Educational Resources Information Center

    Williams, Patricia A.

    2007-01-01

    When the banana is growing, the broadest part of the banana is located at the bottom, while the tapered end points upward. It appears upside down, however, from the banana tree's perspective, it is growing right side up. The author observes that the students in her classroom labeled by society as "at risk," are also, in a sense, "upside down."…

  7. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    PubMed

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey. PMID:16222791

  8. Complex Interplay of Hormonal Signals during Grape Berry Ripening.

    PubMed

    Fortes, Ana Margarida; Teixeira, Rita Teresa; Agudelo-Romero, Patricia

    2015-01-01

    Grape and wine production and quality is extremely dependent on the fruit ripening process. Sensory and nutritional characteristics are important aspects for consumers and their development during fruit ripening involves complex hormonal control. In this review, we explored data already published on grape ripening and compared it with the hormonal regulation of ripening of other climacteric and non-climacteric fruits. The roles of abscisic acid, ethylene, and brassinosteroids as promoters of ripening are discussed, as well as the role of auxins, cytokinins, gibberellins, jasmonates, and polyamines as inhibitors of ripening. In particular, the recently described role of polyamine catabolism in grape ripening is discussed, together with its putative interaction with other hormones. Furthermore, other recent examples of cross-talk among the different hormones are presented, revealing a complex interplay of signals during grape development and ripening. PMID:26007186

  9. DEBDOM: Database Exploring Banana Diversity of Manipur

    PubMed Central

    Singh, Warepam Amuchou; Gopalrao, Somkuwar Bharat; Gourshyam, Thingnam; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2013-01-01

    Being poor man's apple, banana has a wide popularity worldwide. It's one of the important horticultural crops used irrespective of rich and poor alike. Manipur along with the other states of Northeast India harboured with plenty of wild and cultivated species of banana that are not fully explored. A data base named DEBDOM has been developed here describing the diversity of banana resources of Manipur and it comprises twenty eight genotypes of Musaceae. The database DEBDOM provides a sophisticated web base access to the details of the taxonomy, morphological characteristics, utility as well as sites of collection of Musa genotypes, and it would have contribute as a potential gene pool sources for the conservation, sustainability as well as for crop improvement in the future breeding programmes. Availability http://ibsd.gov.in/debdom/ PMID:23516335

  10. Dissipation and residue of azoxystrobin in banana under field condition.

    PubMed

    Wang, Siwei; Sun, Haibin; Liu, Yanping

    2013-09-01

    A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases. PMID:23443637

  11. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  12. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples. PMID:25393892

  13. A possible scenario for the evolution of Banana streak virus in banana.

    PubMed

    Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Duroy, Pierre-Olivier; Muller, Emmanuelle

    2014-06-24

    Outbreaks of Banana streak virus (BSV) have been recorded worldwide where Musa spp. is grown during the last 20 years with no convincing evidence of epidemics. Epidemics were previously reported in Uganda where BSV is currently endemic. BSV is a plant pararetrovirus of the family Caulimoviridae, genus Badnavirus it causes chlorosis leaf streak disease. The information currently available on banana streak disease makes it possible to identify a complex of distinct BSV species each causing the same disease. BSV exists in two states: one as an episomal form, infecting plant cells; the other as viral DNA integrated within the B genome of banana (endogenous BSV-eBSV) forming a viral genome for de novo viral particles. Both forms can be infectious in banana plants. The BSV phylogeny is polyphyletic with BSV distributed in two clades. Clade 1 clusters BSV species that occur worldwide and may have an eBSV counterpart, whereas Clade 3 only comprises BSV species from Uganda. Clearly, two distinct origins explain such BSV diversity. However, the epidemiology/outbreaks of BSV remains unclear and the role of eBSV needs to be clarified. In this review, the biodiversity of BSV is explained and discussed in the light of field and molecular epidemiology data. A scheme is proposed for the co-evolution of BSV and banana based on old or recent infection hypotheses related to African domestication sites and banana dissemination to explain the disease context. PMID:24457073

  14. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    PubMed

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils. PMID:27571112

  15. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios.

    PubMed

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios. PMID:25799506

  16. Ecuadorian Banana Farms Should Consider Organic Banana with Low Price Risks in Their Land-Use Portfolios

    PubMed Central

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios. PMID:25799506

  17. Love Is Like a Squished Banana

    ERIC Educational Resources Information Center

    Brown, Stephen

    1976-01-01

    An unemployed poet obtained a CETA public service job as a teacher's aide in Marin County, California, where he has guided elementary children's imaginative projects. His experiences are described. He has published a volume of the children's verse under the title "Love Is Like a Squished Banana." (AJ)

  18. Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1.

    PubMed

    Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2014-09-01

    Our previous studies have indicated that the banana ripening-induced MaNAC1, a NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) gene, is regulated by ethylene during fruit ripening, and propylene, a functional ethylene analogue, induces cold tolerance of banana fruits. However, the involvement of MaNAC1 in propylene-induced cold tolerance of banana fruits is not understood. In the present work, the possible involvement of MaNAC1 in cold tolerance of banana fruits was investigated. MaNAC1 was noticeably induced by cold stress or following propylene treatment during cold storage. Transient protoplast assays showed that MaNAC1 promoter was activated by cold stress and ethylene treatment. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and transient expression assays demonstrated MaNAC1 as a novel direct target of MaICE1, and that the ability of MaICE1 binding to MaNAC1 promoter might be enhanced by MaICE1 phosphorylation and cold stress. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses revealed physical interaction between MaNAC1 and MaCBF1, a downstream component of inducer of C-repeat binding factor (CBF) expression 1 (ICE1) in cold signalling. Taken together, these results suggest that the cold-responsive MaNAC1 may be involved in cold tolerance of banana fruits through its interaction with ICE1-CBF cold signalling pathway, providing new insights into the regulatory activity of NAC TF. PMID:24548087

  19. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  20. Fruit ripening: physiology, signalling and genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit development and ripening represent the terminal phase of plant development. It is during this phase that fleshy fruits are enriched with sensory and nutritional quality attributes. Fruits are a dietary source of vitamins, minerals and fibre but, due to their short postharvest life, a large por...

  1. Herbicides as stimulators regulators and ripeners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of low doses of herbicide as plant growth regulators to increase sugar concentrations (ripen) in sugarcane prior to harvest plays an important role in the profitable and sustainable production of sugarcane in the U.S. as well as in other sugarcane industries around the world. Several studies...

  2. Growth of Organic Crystals by Ostwald Ripening

    NASA Technical Reports Server (NTRS)

    Egbert, W.; Podsiadly, C.; Naumann, R.

    1985-01-01

    The objective of this investigation is to evaluate the growth of various organic crystals by chemical precipitation and Ostwald ripening. Six precipitation reactors were flown on STS-51A. Five of the reactors contained proprietary materials. The sixth contained urea dissolved in ethanol with toluene as the precipitating agent. The size distribution will be analyzed and compared with a similar model being developed.

  3. Temperature and relative humidity influence the ripening descriptors of Camembert-type cheeses throughout ripening.

    PubMed

    Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G

    2015-02-01

    Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. PMID:25497800

  4. Emulsion ripening through molecular exchange at droplet contacts.

    PubMed

    Roger, Kevin; Olsson, Ulf; Schweins, Ralf; Cabane, Bernard

    2015-01-26

    Two coarsening mechanisms of emulsions are well established: droplet coalescence (fusion of two droplets) and Ostwald ripening (molecular exchange through the continuous phase). Here a third mechanism is identified, contact ripening, which operates through molecular exchange upon droplets collisions. A contrast manipulated small-angle neutron scattering experiment was performed to isolate contact ripening from coalescence and Ostwald ripening. A kinetic study was conducted, using dynamic light scattering and monodisperse nanoemulsions, to obtain the exchange key parameters. Decreasing the concentration or adding ionic repulsions between droplets hinders contact ripening by decreasing the collision frequency. Using long surfactant chains and well-hydrated heads inhibits contact ripening by hindering fluctuations in the film. Contact ripening can be controlled by these parameters, which is essential for both emulsion formulation and delivery of hydrophobic ingredients. PMID:25504340

  5. Breakdown of Chlorophyll in Higher Plants—Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death

    PubMed Central

    2016-01-01

    Abstract Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572

  6. Breakdown of Chlorophyll in Higher Plants-Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death.

    PubMed

    Kräutler, Bernhard

    2016-04-11

    Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin-type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical-biological efforts have led to the elucidation of the key Chl-breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572

  7. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses

    PubMed Central

    Guenther, Susanne

    2011-01-01

    Soft-ripened cheeses belong to the type of food most often contaminated with Listeria monocytogenes, and they have been implicated in several outbreaks of listeriosis. Bacteriophages represent an attractive way to combat foodborne pathogens without affecting other properties of the food. We used the broad host range, virulent Listeria phage A511 for control of L. monocytogenes during the production and ripening phases of both types of soft-ripened cheeses, white mold (Camembert-type) cheese, as well as washed-rind cheese with a red-smear surface (Limburger-type). The surfaces of young, unripened cheese were inoculated with 101–103 cfu/cm2 L. monocytogenes strains Scott A (serovar 4b) or CNL 103/2005 (serovar 1/2a). Phage was applied at defined time points thereafter, in single or repeated treatments, at 3 × 108 or 1 × 109 pfu/cm2. With Scott A (103 cfu/cm2) and a single dose of A511 (3 × 108 pfu/cm2) on camembert-type cheese, viable counts dropped 2.5 logs at the end of the 21 day ripening period. Repeated phage application did not further inhibit the bacteria, whereas a single higher dose (1 × 109 pfu/cm2) was found to be more effective. On red-smear cheese ripened for 22 days, Listeria counts were down by more than 3 logs. Repeated application of A511 further delayed re-growth of Listeria, but did not affect bacterial counts after 22 days. With lower initial Listeria contamination (101–102 cfu/cm2), viable counts dropped below the limit of detection, corresponding to more than 6 logs reduction compared to the control. Our data clearly demonstrate the potential of bacteriophage for biocontrol of L. monocytogenes in soft cheese. PMID:22334865

  8. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses.

    PubMed

    Guenther, Susanne; Loessner, Martin J

    2011-03-01

    Soft-ripened cheeses belong to the type of food most often contaminated with Listeria monocytogenes, and they have been implicated in several outbreaks of listeriosis. Bacteriophages represent an attractive way to combat foodborne pathogens without affecting other properties of the food. We used the broad host range, virulent Listeria phage A511 for control of L. monocytogenes during the production and ripening phases of both types of soft-ripened cheeses, white mold (Camembert-type) cheese, as well as washed-rind cheese with a red-smear surface (Limburger-type). The surfaces of young, unripened cheese were inoculated with 10(1)-10(3) cfu/cm(2)L. monocytogenes strains Scott A (serovar 4b) or CNL 10(3)/2005 (serovar 1/2a). Phage was applied at defined time points thereafter, in single or repeated treatments, at 3 × 10(8) or 1 × 10(9) pfu/cm(2). With Scott A (10(3) cfu/cm(2)) and a single dose of A511 (3 × 10(8) pfu/cm(2)) on camembert-type cheese, viable counts dropped 2.5 logs at the end of the 21 day ripening period. Repeated phage application did not further inhibit the bacteria, whereas a single higher dose (1 × 10(9) pfu/cm(2)) was found to be more effective. On red-smear cheese ripened for 22 days, Listeria counts were down by more than 3 logs. Repeated application of A511 further delayed re-growth of Listeria, but did not affect bacterial counts after 22 days. With lower initial Listeria contamination (10(1)-10(2) cfu/cm(2)), viable counts dropped below the limit of detection, corresponding to more than 6 logs reduction compared to the control. Our data clearly demonstrate the potential of bacteriophage for biocontrol of L. monocytogenes in soft cheese. PMID:22334865

  9. Effect of Acupressure on Cervical Ripening

    PubMed Central

    Torkzahrani, Shahnaz; Ghobadi, Khadighe; Heshmat, Reza; Shakeri, Nezhat; Jalali Aria, Katayoun

    2015-01-01

    Background: Cervical ripening is one of the main stages of initiation labor. Acupressure in Chinese medicine is considered as an invasive technique, which through reliving oxytocin ripens the cervix. Acupoint Sanyinjiao (SP6) was selected in this study because it is the acupoint selected in gynecology and it is easy for women to locate and apply pressure without medical assistance. Objectives: The aim of this study was to determine the effect of acupressure on cervical ripening. Patients and Methods: In this randomized clinical trial, 150 primigravida with term pregnancy who had referred to Deziani hospital in Gorgan were chosen and divided to three groups: in the first group acupressure was done by the researcher while in the second groups this was performed by the mother her self, and the third group served as a control and only received routine care. For both intervention groups the pressure was applied on Sp6 for about 20 minutes during one to five days. Elements were checked from cervical ripening at 48 and 96 hours after intervention and at the time of hospitalization. The tools for gathering information included demographic characteristics and midwifery history questionnaire, daily records and follow up forms. Content validity was used for validity of tools. Reliability of the observation check-list and physical examination was confirmed by inter-rater scores (inter observer), and daily records by test-re-test. Data was analyzed by analysis of variance (ANOVA), Kruskal-Wallis and Chi-squared tests (P ≤ 0.05). Results: There was a significant difference between mothers’ educations in the three groups. Most of the mothers (59.5%) in the researcher-performed acupressure group had secondary education. Cervical ripening was significantly different between the three groups after 48 hours (P ≤ 0.05), yet there was no significant difference after 96 hours and at the time of admission. Mean Bishop score was enhanced after 48 hours in the researcher

  10. Cloning and expression of resistance gene analogs (RGAs) from wild banana resistant to banana Fusarium wilt.

    PubMed

    Chen, Ya-Ping; Chen, Yun-Feng; Zhao, Jie-Tang; Huang, Xia; Huang, Xue-Lin

    2007-12-01

    Wild banana species are essential natural gene pools for banana improvement. In this study, six RGAs about 500 bp were obtained from leaves of Musa acuminata, a wild banana shown to be resistant to banana Fusarium wilt race 4, by PCR amplification with degenerate primers designed according to the conserved NBS motif and serine/threonine kinase domain of plant resistance (R) genes. Among these RGAs, the deduced amino acids of WNB1 and WNB2 contain NB-ARC domain and WNB1 can be translated into polypeptide uninterrupted by stop codons. The deduced amino acids of other four RGAs (WST1, WST2, WST3 and WST4) all contain the serine/threonine kinase domain and WST3 encodes a polypeptide homologous to that of bacterial blight resistance gene Xa21 of rice. At different time after inoculation with Fusarium oxysporum f. sp. cubense (FOC) race 4, the transcript patterns of WNB1 and WST3 was enhanced, which implied that the expression of WNB1 and WST3 may be related to the resistance of banana to Fusarium wilt. PMID:18349511

  11. Pasta with unripe banana flour: physical, texture, and preference study.

    PubMed

    Agama-Acevedo, Edith; Islas-Hernandez, José J; Osorio-Díaz, Perla; Rendón-Villalobos, Rodolfo; Utrilla-Coello, Rubí G; Angulo, Ofelia; Bello-Pérez, Luis A

    2009-08-01

    Banana is a starchy food that contains a high proportion of undigestible compounds such as resistant starch and nonstarch polysaccharides. Products with low glycemic response such as pasta are considered favorable to health. The objective of this study was to use unripe banana flour to make spaghetti with low-carbohydrates digestibility and evaluate its physical and texture characteristics, as well as consumer preference. Formulations with 100% durum wheat semolina (control) and formulations with 3 semolina: banana flour ratios (85: 15, 70: 30, and 55: 45) were prepared for spaghetti processing. The use of banana flour decreased the lightness and diameter of cooked spaghetti, and increased the water absorption of the product. Hardness and elasticity of spaghetti were not affected by banana flour, but adhesiveness and chewiness increased as the banana flour level in the blend rose. Spaghettis prepared in the laboratory (control and those with banana flour) did not show differences in preference by consumers. In general, the preference of spaghettis with different banana flour level was similar. The addition of a source of undigestible carbohydrates (banana flour) to spaghetti is possible without affecting the consumer preference. PMID:19723232

  12. Domestication, Genomics and the Future for Banana

    PubMed Central

    Heslop-Harrison, J. S.; Schwarzacher, Trude

    2007-01-01

    Background Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. Scope There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. Conclusions There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future. PMID:17766312

  13. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  14. Pervaporation of ethanol produced from banana waste.

    PubMed

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied. PMID:24834817

  15. Peroxidase gene expression during tomato fruit ripening

    SciTech Connect

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-04-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A)/sup +/ RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L-/sup 35/S-methionine. The /sup 35/S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues.

  16. Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness.

    PubMed

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T; Correa, Alessandra A; Alves, William F; Leite, Fábio L; Herrmann, Paulo S P

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  17. Low-Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness

    PubMed Central

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T.; Correa, Alessandra A.; Alves, William F.; Leite, Fábio L.; Herrmann, Paulo S. P.

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  18. [Banana tree pests attacking Heliconia latispatha Benth. (Heliconiaceae)].

    PubMed

    Watanabe, Maria A

    2007-01-01

    In mid-May 2005, the caterpillars Antichloris eriphia (Fabr.) (Lepidoptera: Arctiidae) and Calligo illioneus (Cramer) (Lepidoptera: Nymphalidae) which are banana tree pests, were found attacking six-month old stalks of Heliconia latispatha Benth., planted near a banana tree plantation in Jaguariuna, SP, Brazil. The attack by C. illioneus is observed by the first time in Brazil. PMID:17607468

  19. Drying characteristics and quality of bananas under infrared radiation heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot air (HA) drying of banana has low drying efficiency and results in undesirable product quality. The objectives of this research were to investigate the feasibility of infrared (IR) heating to improve banana drying rate, evaluate quality of the dried product, and establish models for predicting d...

  20. Agronomic performance of five banana cultivars under protected cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  1. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fruit flies; (2) No bananas from bunches containing prematurely ripe fingers (i.e., individual yellow... process); and (4) To safeguard from fruit fly infestation, the bananas must be covered with insect-proof... part 305 of this chapter for the Mediterranean fruit fly (Ceratitis capitata), the melon fruit...

  2. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  3. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  4. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  5. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  6. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  7. Bananas, pesticides and health in southwestern Ecuador: A scalar narrative approach to targeting public health responses.

    PubMed

    Brisbois, Benjamin

    2016-02-01

    Public health responses to agricultural pesticide exposure are often informed by ethnographic or other qualitative studies of pesticide risk perception. In addition to highlighting the importance of structural determinants of exposure, such studies can identify the specific scales at which pesticide-exposed individuals locate responsibility for their health issues, with implications for study and intervention design. In this study, an ethnographic approach was employed to map scalar features within explanatory narratives of pesticides and health in Ecuador's banana-producing El Oro province. Unstructured observation, 14 key informant interviews and 15 in-depth semi-structured interviews were carried out during 8 months of fieldwork in 2011-2013. Analysis of interview data was informed by human geographic literature on the social construction of scale. Individual-focused narratives of some participants highlighted characteristics such as carelessness and ignorance, leading to suggestions for educational interventions. More structural explanations invoked farm-scale processes, such as uncontrolled aerial fumigations on plantations owned by elites. Organization into cooperatives helped to protect small-scale farmers from 'deadly' banana markets, which in turn were linked to the Ecuadorian nation-state and actors in the banana-consuming world. These scalar elements interacted in complex ways that appear linked to social class, as more well-off individuals frequently attributed the health problems of other (poorer) people to individual behaviours, while providing more structural explanations of their own difficulties. Such individualizing narratives may help to stabilize inequitable social structures. Research implications of this study include the possibility of using scale-focused qualitative research to generate theory and candidate levels for multi-level models. Equity implications include a need for public health researchers planning interventions to engage with

  8. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry

    NASA Astrophysics Data System (ADS)

    Lambrecht, Glenn; Diamond, Larryn William

    2014-09-01

    not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

  9. Transcriptomic analysis of apple fruit ripening and texture attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. The ripening behavior and texture attributes of two apple cultivars, ‘Pink Lady’ and ‘Honey...

  10. A DEMETER-like DNA demethylase governs tomato fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work shows that active DNA demethylation governs ripening, an important plant developmental process. Our work defines a molecular mechanism, which has until now been missing, to explain the correlation between genomic DNA demethylation and fruit ripening. It demonstrates a direct cause-and-effe...

  11. Preinduction cervical ripening: basis and methods of current practice.

    PubMed

    Rayburn, William F

    2002-10-01

    The rate of women undergoing labor induction is increasing, primarily because of patient-physician preferences. The widespread availability of preinduction cervical ripening agents has contributed to this rising trend. Approximately half of all women undergoing an induction of labor will have an unfavorable cervix that will require some ripening agent. Pharmacologic and mechanical dilator techniques have been proven to ripen the unfavorable cervix. A topically applied prostaglandin product, containing either dinoprostone or misoprostol, is the most popular means to soften and dilate the cervix. Any uterine hyperstimulation may be reversed by administering a tocolytic drug and, if possible, by removal of the ripening agent. A minimum trial of adequate labor is necessary before considering the induction to be a failure. Cesarean delivery rates may be higher and the length of hospital stay more prolonged. Careful consideration about the need for labor induction is recommended until prospective clinical trials can better validate marginal reasons for cervical ripening. PMID:12368596

  12. The control properties of phosphofructokinase in relation to the respiratory climacteric in banana fruit.

    PubMed

    Salminen, S O; Young, R E

    1975-01-01

    Glucose 6-phosphate, fructose 6-phosphate, fructose 1, 6-diphosphate, and triose phosphates, and the enzymes phosphofructokinase, aldolase, and glucose 6-phosphate dehydrogenase were extracted from banana fruit (Musa cavendishii, Lambert var. Valery) at the (a) preclimacteric, (b) climacteric rise, (c) climacteric peak, and (d) postclimacteric stages of ripening. The level of fructose 1, 6-diphosphate increased 20-fold whereas the concentration of other intermediates changed no more than 2.5-fold between stages a and c. For these same extracts, phosphofructokinase activity increased 2.5-fold whereas the activity of glucose 6-phosphate dehydrogenase and aldolase changed only fractionally. Substrate saturation studies (fructose 6-phosphate) of phosphofructokinase activity showed a decrease in the [S](0.5) from 5.6 to 1.7 mM betwen stages a and c. The enzyme from both sources seems to be regulated by a negative cooperative effect with the control being more stringent in the enzyme from stage a. The difference in enzyme activity is consistent with the increase in respiratory activity between the two stages. PMID:16659026

  13. Changes in the content and biosynthesis of phytoalexins in banana fruit.

    PubMed

    Kamo, T; Hirai, N; Tsuda, M; Fujioka, D; Ohigashi, H

    2000-10-01

    Changes in the phytoalexin content in unripe fruit of banana, Musa acuminata, were analyzed after various treatments. The results show that level of hydroxyanigorufone started to increase 1-2 day after either wounding or inoculation with conidia of Colletotrichum musae. Inoculation followed by wounding induced the formation of many other phenylphenalenones. The accumulation of hydroxyanigorufone decreased, after its transient maximum, on ripening by exposure of the wounded fruit to ethylene. The level of production of hydroxyanigorufone in ripe fruit treated by wounding and/or by inoculation was much lower than that in unripe fruit. 2-Aminooxyacetic acid, an inhibitor of phenylalanine ammonia-lyase (PAL), inhibited the accumulation of hydroxyanigorufone in wounded fruit, and the PAL activity increased after wounding and ethylene treatment, respectively. Feeding experiments with [1-(13)C] and [2-(13)C]cinnamic acids, and [2-(13)C]malonate show that two molecules of cinnamic acid and one of malonate were incorporated into each molecule of hydroxyanigorufone. The phytoalexins isolated from fruit to which deuterated hydroxyanigorufone and irenolone had been administered revealed that 2-(4'-hydroxyphenyl)-1,8-naphthalic anhydride was biosynthesized from hydroxyanigorufone rather than from irenolone. PMID:11129580

  14. Suppression of Ostwald ripening in active emulsions.

    PubMed

    Zwicker, David; Hyman, Anthony A; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties. PMID:26274171

  15. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  16. Influence of atmospheric oxygen and ozone on ripening indices of normal (Rin) and ripening inhibited (rin) tomato cultivars

    SciTech Connect

    Maguire, Y.P.; Solberg, M.; Haard, N.F.

    1980-01-01

    Ethylene (10 ppm) dependent mediation of normal and mutant (rin) tomato fruit ripening was promoted by 100% oxygen, 3.7 pphm ozone, or their combination. All ripening indices studied (respiration, chlorophyll degradation, carotenoid accumulation, softening, and aroma development) were promoted by oxygen and/or ozone. Ozone also acted independent of ethylene in promoting chlorophyll degradation and aroma development in normal fruit, but did not appreciably affect these quality attributes in mutant fruit. Lycopene accumulation in normal and mutant fruit and aroma formation in normal fruit were promoted to a greater extent by ozone than were other ripening indices. Mutant (rin) fruit contained 27% of the lycopene that was present in normal (Rin) fruit after ripening in O/sub 2/ containing 10ppm ethylene and 3.7 pphm ozone, whereas they contained only 3% of the lycopene in normal fruit after ripening in air containing 10ppm ethylene.

  17. An improved choice of oscillator basis for banana shaped nuclides

    SciTech Connect

    Chasman, R.R.

    1994-03-01

    The question of the appropriate choice of oscillator basis functions for studying exotic nuclear shapes is raised. Difficulties with the conventional choice of oscillator basis states are noted for shapes having a large banana component. A prescription for an improved oscillator basis to study these shapes is given. It can be applied in a more general context. New calculations with this improved basis are presented for the banana deformation mode. The change of basis gives results that improve the prospects of finding states in the banana minimum for many isotopes of Tl, Pb and Bi.

  18. Effects of Ripening Duration and Rosemary Powder Addition on Salchichon Modified Sausage Quality

    PubMed Central

    Jung, Jong-Hyun; Shim, Kwan-Seob; Shin, Daekeun

    2015-01-01

    The ripening durations and ingredients for the Salchichon sausages were modified to increase pork rear leg consumption by Korean consumers. The salchichon, a ripened pork sausage, was produced to evaluate the efficacy of two different ripening durations with and without rosemary powder on salchichon sausage quality, and the treatments were: i) 45 days of ripening without rosemary, ii) 60 days of ripening without rosemary, iii) 45 days of ripening with 0.05% rosemary, and iv) 60 days of ripening with 0.05% rosemary. Significant differences were observed in both moisture and fat content for ripening durations, with the highest moisture and least fat content observed in salchichon modified sausage (SMS) ripened for 45 days. Ripening duration and rosemary addition appeared to influence water activity (aw) of salchichon sausages. The aw of SMS ripened for 45 days was 0.80, whereas the other had aw values <0.80. Lactic acid bacteria were predominant, as Korean traditional fermented red pepper paste was added to sausages; however, the Bacillus cereus population was significantly affected by rosemary powder addition. Chewiness and gumminess decreased significantly due to the addition of rosemary powder compared to SMS without rosemary powder, and both 45 days of ripening and rosemary powder addition influenced the hardness of SMS. In conclusion, ripening duration of SMS for 45 days in the presence of rosemary powder provided superior SMS quality with an economical ripening duration compared to that of ripening with rosemary powder or ripening for 60 days. PMID:25924959

  19. Isolation of banana lectin-a practical scale procedure from ripe banana fruit.

    PubMed

    Wearne, Kimberly; Winter, Harry C; Goldstein, Irwin J

    2013-01-01

    Banana lectin (BanLec) was isolated from slightly overripe bananas (PCI 6-7) by homogenation in NaCl solution, followed by extraction in the presence of glucose, ammonium sulfate precipitation, and affinity chromatography. Yields were approximately 10-fold greater that those of previously published methods using acidic extraction from very overripe fruit (Peel Color Index [PCI] 7+). By dilution of added isotopically labeled recombinant lectin, the content of total exchangeable BalLec was shown to be constant or to slightly decrease with increasing stage of ripeness, even though extractable BanLec increased, followed by rapid decrease in overripened fruit. In the course of this study we observed that recombinant BanLec expressed in Escherichia coli, although chemically and functionally identical to native BanLec, differed slightly in its apparent molecular size on gel filtration, probably due to differences in its native folding. PMID:23379275

  20. Iron absorption in raw and cooked bananas: a field study using stable isotopes in women

    PubMed Central

    García, Olga P.; Martínez, Mara; Romano, Diana; Camacho, Mariela; de Moura, Fabiana F.; Abrams, Steve A.; Khanna, Harjeet K.; Dale, James L.; Rosado, Jorge L.

    2015-01-01

    Background Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. Objective The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Design Thirty women (34.9±6.6 years) from rural Mexico were randomly assigned to one of two groups each consuming: 1) 480 g/day of raw banana for 6 days, or 2) 500 g/day of cooked banana for 4 days. Iron absorption was measured after extrinsically labeling with 2 mg of 58Fe and a reference dose of 6 mg 57Fe; analysis was done using ICP-MS. Results Iron content in cooked bananas was significantly higher than raw bananas (0.53 mg/100 g bananas vs. 0.33 mg/100 mg bananas, respectively) (p<0.001). Percent iron absorption was significantly higher in raw bananas (49.3±21.3%) compared with cooked banana (33.9±16.2%) (p=0.035). Total amount of iron absorbed from raw and cooked bananas was similar (0.77±0.33 mg vs. 0.86±0.41 mg, respectively). Conclusion Total amount of absorbed iron is similar between cooked and raw bananas. The banana matrix does not affect iron absorption and is therefore a potential effective target for genetic modification for iron biofortification. PMID:25660254

  1. Hormonal changes during non-climacteric ripening in strawberry

    PubMed Central

    Reid, J.B.

    2012-01-01

    In contrast to climacteric fruits, where ethylene is known to be pivotal, the regulation of ripening in non-climacteric fruits is not well understood. In the non-climacteric strawberry (Fragaria anannassa), auxin and abscisic acid (ABA) are thought to be important, but the roles of other hormones suggested to be involved in fruit development and ripening are not clear. Here changes in the levels of indole-3-acetic acid (IAA), ABA, GA1, and castasterone from anthesis to fully ripened fruit are reported. The levels of IAA and GA1 rise early in fruit development before dropping to low levels prior to colour accumulation. Castasterone levels are highest at anthesis and drop to very low levels well before ripening commences, suggesting that brassinosteroids do not play an important role in ripening in strawberry. ABA levels are low at anthesis and gradually rise through development and ripening. The synthetic auxin, 1-naphthaleneacetic acid (NAA), can delay ripening, but the application of GA3, the gibberellin biosythesis inhibitor paclobutrazol, and ABA had no significant effect. IAA and ABA levels are higher in the developing achenes than in the receptacle tissue and may be important for receptacle enlargement and ripening, and seed maturation, respectively. Contrary to a recent report, the biologically active GA4 was not detected. The pattern of changes in the levels of the hormones are different from those reported in another well studied non-climateric fruit, grape, suggesting that a single consistent pattern of hormone changes does not occur in this group of fruit during ripening. PMID:22791823

  2. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato1[OPEN

    PubMed Central

    Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher

    2016-01-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  3. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato.

    PubMed

    Liu, Mingchun; Gomes, Bruna Lima; Mila, Isabelle; Purgatto, Eduardo; Peres, Lázaro E P; Frasse, Pierre; Maza, Elie; Zouine, Mohamed; Roustan, Jean-Paul; Bouzayen, Mondher; Pirrello, Julien

    2016-03-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  4. Adatom emission from nanoparticles: Implications for Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Johns, Tyne Richele

    To achieve clean air in our cities, all modern means of ground transportation make use of catalytic converters. Precious metal-based catalysts such as Pt and Pd are currently used in catalytic converters. To achieve higher fuel efficiency, combustion can be carried out in excess air resulting in a reduction of greenhouse gas (GHG) emissions. Reduction of these emissions has emerged as a major challenge. Most of the pollutants are emitted within the first 30 seconds after starting an engine because the catalyst is cold. The development of catalysts which achieve high activity at low temperatures will improve fuel efficiency and therefore reduce the nation's dependence on foreign fossil fuels. The supplies of precious metals are limited worldwide, but there is increasing demand for clean energy. Therefore, there is a need to develop more active catalysts that provide long-term stable performance at elevated temperatures with minimal use of precious metals such as platinum. A major problem is that catalysts lose activity during use. Pt particles sinter, leading to poor stability. There is universal agreement that addition of Pd improves the catalytic performance as well as the durability of the Pt catalysts; however, the mechanisms by which Pd improves the performance of Pt are less clear. Conventional supported catalysts (Pt, Pd, and Pt-Pd) have been used to explore the microstructure of diesel oxidation catalysts (DOCs) in their working state (i.e. under oxidizing conditions). Model catalysts have been used to study the evolution of platinum and palladium nanoparticles. Both a statistical and a microscopic approach have been used to understand the ways in which Pd affects Pt. The catalytic activity and kinetics of various monometallic as well as bimetallic powder catalysts aged under different conditions has also been studied. NO oxidation in the presence of NO, O2, and NO2 was the probe reaction used to distinguish between the differing activities of Pt/Al2O3 and Pt-Pd/Al2O 3. The work described here focuses on important problems in the field of catalysis. A fundamental understanding of the role of palladium on both the catalytic activity and long-term performance of platinum catalysts has been gained.

  5. Ostwald ripening in multiple-bubble nuclei

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-01

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

  6. Banana orbits in elliptic tokamaks with hole currents

    NASA Astrophysics Data System (ADS)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  7. Regulation of hyaluronan expression during cervical ripening.

    PubMed

    Straach, Kelly J; Shelton, John M; Richardson, James A; Hascall, Vincent C; Mahendroo, Mala S

    2005-01-01

    In preparation for birth, the uterine cervix undergoes a remarkable transformation from a closed, rigid structure to a distensible, remodeled configuration that stretches to allow passage of a fetus. Cervical ripening requires changes in the composition and structure of the extracellular matrix. These include an increase in the glycosaminoglycan hyaluronan (HA) prior to parturition. We show that the increase in cervical HA with advancing gestation correlates with the temporal increase in transcription of hyaluronan synthase 2 (HAS2) in the mouse. On gestation day 18, 1 day prior to birth, HAS2 transcripts are most abundant and begin to decline after birth. The steroid 5alpha-reductase type 1 deficient mouse, which fails to undergo cervical remodeling, has decreased expression of HAS2 mRNA and decreased tissue HA. HAS2 transcripts are expressed by cervical epithelium, and HA is localized to the matrix surrounding the stroma and to a lesser extent around the epithelium. HAS2 expression is suppressed in mice treated with progesterone. The mRNA expression levels of HA metabolizing enzymes hyaluronidase 1 and 2 were unchanged during pregnancy but increased after birth. Thus the net increase in HA content at term correlates with increased transcription of HAS2. Regulation of HA content is conserved in women because HAS2 transcripts are up-regulated in cervices of women in labor as compared to pregnant women not in labor. These results provide insights into the regulation of HA biosynthesis during cervical ripening and underscore the physiological role of HA in this essential process. PMID:15317739

  8. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development

    PubMed Central

    Dong, Chen; Hu, Huigang; Hu, Yulin; Xie, Jianghui

    2016-01-01

    Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. ‘Xiangfen 1,’ a novel flavonoid-rich banana germplasm, was studied with ‘Brazil’ serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with ‘Brazil,’ ‘Xiangfen 1’ fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and ‘Xiangfen 1’ banana can be a rich source of natural antioxidants in human diets. PMID:27625665

  9. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development.

    PubMed

    Dong, Chen; Hu, Huigang; Hu, Yulin; Xie, Jianghui

    2016-01-01

    Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. 'Xiangfen 1,' a novel flavonoid-rich banana germplasm, was studied with 'Brazil' serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with 'Brazil,' 'Xiangfen 1' fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and 'Xiangfen 1' banana can be a rich source of natural antioxidants in human diets. PMID:27625665

  10. Banana peel: an effective biosorbent for aflatoxins.

    PubMed

    Shar, Zahid Hussain; Fletcher, Mary T; Sumbal, Gul Amer; Sherazi, Syed Tufail Hussain; Giles, Cindy; Bhanger, Muhammad Iqbal; Nizamani, Shafi Muhammad

    2016-05-01

    This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins' adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6-8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg(-1) for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets. PMID:27052947

  11. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the

  12. Kinetics of a Multilamellar Lipid Vesicle Ripening: Simulation and Theory.

    PubMed

    Xu, Rui; He, Xuehao

    2016-03-10

    Lipid vesicle ripening via unimolecular diffusion and exchange greatly influences the evolution of complex vesicle structure. However, this behavior is difficult to capture using conventional experimental technology and molecular simulation. In the present work, the ripening of a multilamellar lipid vesicle (MLV) is effectively explored using a mesoscale coarse-grained molecular model. The simulation reveals that a small MLV evolves into a unilamellar vesicle over a very long time period. In this process, only the outermost bilayer inflates, and the inner bilayers shrink. With increasing MLV size, the ripening process becomes complex and depends on competition between a series of adjacent bilayers in the MLV. To understand the diffusion behavior of the unimolecule, the potentials of mean force (PMFs) of a single lipid molecule across unilamellar vesicles with different sizes are calculated. It is found that the PMF of lipid dissociation from the inner layer is different than that of the outer layer, and the dissociation energy barrier sensitively depends on the curvature of the bilayer. A kinetics theoretical model of MLV ripening that considers the lipid dissociation energy for curved bilayers is proposed. The model successfully interprets the MLV ripening process with various numbers of bilayers and shows potential to predict the ripening kinetics of complex lipid vesicles. PMID:26882997

  13. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method

    PubMed Central

    Fry, Stephen C.

    2016-01-01

    Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (•OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ •OH-attacked polysaccharides. Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during •OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (•OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by •OH. The evidence shows that •OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen

  14. Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene

    PubMed Central

    Irfan, Mohammad; Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-01-01

    α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression. PMID:26834776

  15. Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene.

    PubMed

    Irfan, Mohammad; Ghosh, Sumit; Meli, Vijaykumar S; Kumar, Anil; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-01-01

    α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression. PMID:26834776

  16. Effect of ethylene treatment on the concentration of fructose-2,6-bisphosphate and on the activity of phosphofructokinase 2/fructose-2,6-bisphosphatase in banana.

    PubMed

    Mertens, E; Marcellin, P; Van Schaftingen, E; Hers, H G

    1987-09-15

    Preclimacteric bananas fruits were treated for 12 h with ethylene to induce the climacteric rise in respiration. One day after the end of the hormonal treatment, the two activities of the bifunctional enzyme, phosphofructokinase 2/fructose-2,6-bisphosphatase started to increase to reach fourfold their initial value 6 days later. By contrast, the activities of the pyrophosphate-dependent and of the ATP-dependent 6-phosphofructo-1-kinases remained constant during the whole experimental period, the first one being fourfold greater than the second. The concentrations of fructose 2,6-bisphosphate and of fructose 1,6-bisphosphate increased in parallel during 4 days and then slowly decreased, the second one being always about 100-fold greater than the first. The change in fructose 2,6-bisphosphate concentration can be partly explained by the rise of the bifunctional enzyme, but also by an early increase in the concentration of fructose 6-phosphate, the substrate of all phosphofructokinases, and also by the decrease in the concentration of glycerate 3-phosphate, a potent inhibitor of phosphofructokinase 2. The burst in fructose 2,6-bisphosphate and the activity of the pyrophosphate-dependent phosphofructokinase, which is in banana the only enzyme known to be sensitive to fructose 2,6-bisphosphate, can explain the well-known increase in fructose 1,6-bisphosphate which occurs during ripening. PMID:2820731

  17. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine.

    PubMed

    Choudhury, Swarup Roy; Singh, Sanjay Kumar; Roy, Sujit; Sengupta, Dibyendu N

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP. PMID:20689184

  18. Iron absorption in raw and cooked bananas: A field study using stable isotopes in women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Thirty women (34.9 +/- 6.6 years...

  19. Evaluation of Information and Communication Technology Utilization by Small Holder Banana Farmers in Gatanga District, Kenya

    ERIC Educational Resources Information Center

    Mwombe, Simon O. L.; Mugivane, Fred I.; Adolwa, Ivan S.; Nderitu, John H.

    2014-01-01

    Purpose: The study was carried out to identify information communication technologies (ICTs) used in production and marketing of bananas, to determine factors influencing intensity of use of ICT tools and to assess whether use of ICT has a significant influence on adoption of tissue culture bananas by small-scale banana farmers in Gatanga…

  20. Study of Banana Dehydration Using Sequential Infrared Radiation and Freeze-Drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The drying and quality characteristics of banana slices processed with a sequential infrared radiation and freeze-drying (SIRFD) method were investigated. To study the drying characteristics of bananas during the infrared (IR) and hot air predehydration, Cavendish bananas slices with 5 mm thickness...

  1. Subpopulation level variation of banana streak viruses in India and common evolution of banana and sugarcane badnaviruses.

    PubMed

    Sharma, Susheel Kumar; Vignesh Kumar, P; Geetanjali, A Swapna; Pun, Khem Bahadur; Baranwal, Virendra Kumar

    2015-06-01

    Genome sequences of three episomal Banana streak MY virus (BSMYV) isolates sampled from triploid banana hybrids (Chini Champa: AAB; Malbhog: AAB and Monthan: ABB), grown in North-East and South India are reported in this study by sequence-independent improved rolling circle amplification (RCA). RCA coupled with restriction fragment length polymorphism revealed diverse restriction profiles of five BSMYV isolates. Nucleotide substitution rates of BSMYV subpopulation and Banana streak OL virus subpopulation was 7.13 × 10(-3) to 1.59 × 10(-2) and 2.65 × 10(-3) to 5.49 × 10(-3), respectively, for the different coding regions. Analysis of the genetic diversity of banana and sugarcane badnaviruses revealed a total of 32 unique recombination events among banana and sugarcane badnaviruses (inter BSV-SCBV), in addition to the extensive recombination with in banana streak viruses and sugarcane bacilliform viruses (intra-BSV and intra-SCBV). Many unique fragments were shown to contain similar ruminant sequence fragments which indicated the possibility that the two groups of badnaviruses or their ancestors to colonise same host before making the host shift. The distribution of recombination events, hot-spots (intergenic region and C-terminal of ORF3) as well as cold-spots (distributed in ORF3) displayed the mirroring of recombination traces in both group of badnaviruses. These results support the hypothesis of relatedness of banana and sugarcane badnaviruses and the host and geographical shifts that followed the fixation of the species complex appear to be a recent event. PMID:25672291

  2. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    PubMed

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  3. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    PubMed Central

    Arhondakis, Stilianos; Bita, Craita E.; Perrakis, Andreas; Manioudaki, Maria E.; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  4. Production of bioethanol using agricultural waste: Banana pseudo stem

    PubMed Central

    Ingale, Snehal; Joshi, Sanket J.; Gupte, Akshaya

    2014-01-01

    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production. PMID:25477922

  5. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    PubMed

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  6. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening

    PubMed Central

    Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-01-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  7. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries

    PubMed Central

    Gouthu, Satyanarayana; O’Neil, Shawn T.; Di, Yanming; Ansarolia, Mitra; Megraw, Molly; Deluc, Laurent G.

    2014-01-01

    Transcriptional studies in relation to fruit ripening generally aim to identify the transcriptional states associated with physiological ripening stages and the transcriptional changes between stages within the ripening programme. In non-climacteric fruits such as grape, all ripening-related genes involved in this programme have not been identified, mainly due to the lack of mutants for comparative transcriptomic studies. A feature in grape cluster ripening (Vitis vinifera cv. Pinot noir), where all berries do not initiate the ripening at the same time, was exploited to study their shifted ripening programmes in parallel. Berries that showed marked ripening state differences in a véraison-stage cluster (ripening onset) ultimately reached similar ripeness states toward maturity, indicating the flexibility of the ripening programme. The expression variance between these véraison-stage berry classes, where 11% of the genes were found to be differentially expressed, was reduced significantly toward maturity, resulting in the synchronization of their transcriptional states. Defined quantitative expression changes (transcriptional distances) not only existed between the véraison transitional stages, but also between the véraison to maturity stages, regardless of the berry class. It was observed that lagging berries complete their transcriptional programme in a shorter time through altered gene expressions and ripening-related hormone dynamics, and enhance the rate of physiological ripening progression. Finally, the reduction in expression variance of genes can identify new genes directly associated with ripening and also assess the relevance of gene activity to the phase of the ripening programme. PMID:25135520

  8. Surface Microflora of Four Smear-Ripened Cheeses

    PubMed Central

    Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.

    2005-01-01

    The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673

  9. Methods for cervical ripening and induction of labor.

    PubMed

    Tenore, Josie L

    2003-05-15

    Induction of labor is common in obstetric practice. According to the most current studies, the rate varies from 9.5 to 33.7 percent of all pregnancies annually. In the absence of a ripe or favorable cervix, a successful vaginal birth is less likely. Therefore, cervical ripening or preparedness for induction should be assessed before a regimen is selected. Assessment is accomplished by calculating a Bishop score. When the Bishop score is less than 6, it is recommended that a cervical ripening agent be used before labor induction. Nonpharmacologic approaches to cervical ripening and labor induction have included herbal compounds, castor oil, hot baths, enemas, sexual intercourse, breast stimulation, acupuncture, acupressure, transcutaneous nerve stimulation, and mechanical and surgical modalities. Of these nonpharmacologic methods, only the mechanical and surgical methods have proven efficacy for cervical ripening or induction of labor. Pharmacologic agents available for cervical ripening and labor induction include prostaglandins, misoprostol, mifepristone, and relaxin. When the Bishop score is favorable, the preferred pharmacologic agent is oxytocin. PMID:12776961

  10. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    PubMed

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. PMID:25703385