Science.gov

Sample records for banana ripening implications

  1. Differential gene expression in ripening banana fruit.

    PubMed

    Clendennen, S K; May, G D

    1997-10-01

    During banana (Musa acuminata L.) fruit ripening ethylene production triggers a developmental cascade that is accompanied by a massive conversion of starch to sugars, an associated burst of respiratory activity, and an increase in protein synthesis. Differential screening of cDNA libraries representing banana pulp at ripening stages 1 and 3 has led to the isolation of 11 nonredundant groups of differentially expressed mRNAs. Identification of these transcripts by partial sequence analysis indicates that two of the mRNAs encode proteins involved in carbohydrate metabolism, whereas others encode proteins thought to be associated with pathogenesis, senescence, or stress responses in plants. Their relative abundance in the pulp and tissue-specific distribution in greenhouse-grown banana plants were determined by northern-blot analyses. The relative abundance of transcripts encoding starch synthase, granule-bound starch synthase, chitinase, lectin, and a type-2 metallothionein decreased in pulp during ripening. Transcripts encoding endochitinase, beta-1,3-glucanase, a thaumatin-like protein, ascorbate peroxidase, metallothionein, and a putative senescence-related protein increased early in ripening. The elucidation of the molecular events associated with banana ripening will facilitate a better understanding and control of these processes, and will allow us to attain our long-term goal of producing candidate oral vaccines in transgenic banana plants. PMID:9342866

  2. Characterization of ethylene biosynthesis associated with ripening in banana fruit.

    PubMed

    Liu, X; Shiomi, S; Nakatsuka, A; Kubo, Y; Nakamura, R; Inaba, A

    1999-12-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  3. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  4. Studies on optimization of ripening techniques for banana.

    PubMed

    Mahajan, B V C; Kaur, Tajender; Gill, M I S; Dhaliwal, H S; Ghuman, B S; Chahil, B S

    2010-06-01

    Fruits of banana (Musa spp) cultivar 'Grand Naine' were harvested at physiological green mature stage. The first lot of fruit was exposed to ethylene gas (100 ppm) for 24 h in ripening chamber. The second lot was treated with different concentrations of aqueous solution of ethephon (250, 500, 750, 1000 ppm) each for 5 min. The fruits were packed in plastic crates and stored in ripening chamber maintained at 16-18°C and 90-95% RH. Treatment with ethylene gas (100 ppm) or ethephon (500 ppm) resulted in adequate ripening of fruits after 4 days with uniform colour, pleasant flavour, desirable firmness and acceptable quality and better shelf-life. The untreated control fruits were hard textured and poor in colour and quality. The ripening with ethylene gas or ethephon treatment seems to hold promise in reducing postharvest losses and boosting the economy of banana growers and traders. PMID:23572644

  5. Relationships between respiration, ethylene, and aroma production in ripening banana.

    PubMed

    Golding, J B; Shearer, D; McGlasson, W B; Wyllie, S G

    1999-04-01

    Mature green bananas were treated with the ethylene antagonist 1-methylcyclopropene (1-MCP) at intervals during the 24 h period after initiation of ripening with propylene. Following 1-MCP treatment, the fruits were ripened in either air or propylene while ethylene, carbon dioxide, and volatile production and composition were monitored at regular intervals. The application of 1-MCP significantly delayed and suppressed the onset and magnitude of fruit respiration and volatile production. The 1-MCP treatments also caused a quantitative change in the composition of the aroma volatiles, resulting in a substantial increase in the concentration of alcohols and a decrease in their related esters. The results showed that ethylene has a continuing role in integrating many of the biochemical processes that take place during the ripening of bananas. PMID:10564032

  6. Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mature green banana (Musa sapientum L. cv. Cavendish) fruit were stored in 0.5%, 2 %, or 21% O2 for 7 days at 20 °C before ripening was initiated by ethylene. Residual effects of low O2 storage in mature green fruit on ripening and ester biosynthesis in fruit were investigated during ripening period...

  7. Chlorophyll breakdown as seen in bananas: sign of aging and ripening--a mini-review.

    PubMed

    Müller, Thomas; Kräutler, Bernhard

    2011-01-01

    The ripening of bananas is seen by a characteristic change of their color from deep green to bright yellow. Likewise, their over-ripening and eventual rotting are accompanied by the appearance of an unappetizing brown. Chlorophyll breakdown is a major contributor to the visual signs of these processes in bananas. Outlined here are the basic structures of chlorophyll catabolites in higher plants, with particular reference to ripening and aging bananas. In these fruits, unique fluorescent chlorophyll catabolites accumulate and give rise to their fascinating blue luminescence. PMID:21160159

  8. Fructan distribution in banana cultivars and effect of ripening and processing on Nendran banana.

    PubMed

    Shalini, R; Antony, Usha

    2015-12-01

    Many plants store fructan as reserve carbohydrate. Fructans naturally present in almost all plant foods, are also used as functional ingredients by the food industry to modify the texture and taste due to their properties as gelling agents, fat substitutes, soluble dietary fibers and low calorie sweeteners. Seven banana cultivars were analysed for fructans and Nendran banana was selected for the next set of experiments as it had the highest fructan content (1433.3 mg/100 g) among the cultivars studied. Low temperature ripening (16 °C) of Nendran banana resulted in higher fructan accumulation of these carbohydrates in cold conditions. Pectinase pre-treatment significantly increased yield of total fructans from 1.4/100 g to 6.5 g/100 g i.e., 370 %. Fructan composition was affected by processing, namely steaming and puree preparation in Nendran. The fructan composition data documented in this study will enable including banana, naturally high in fructans in the diet and will facilitate storage and processing for nutritional formulation for higher fructan consumption. PMID:26604400

  9. Studies on physico-chemical changes during artificial ripening of banana (Musa sp) variety 'Robusta'.

    PubMed

    Kulkarni, Shyamrao Gururao; Kudachikar, V B; Keshava Prakash, M N

    2011-12-01

    Banana (Musa sp var 'Robusta') fruits harvested at 75-80% maturity were dip treated with different concentrations of ethrel (250-1,000 ppm) solution for 5 min. Ethrel at 500 ppm induced uniform ripening without impairing taste and flavour of banana. Untreated control banana fruits remained shriveled, green and failed to ripen evenly even after 8 days of storage. Fruits treated with 500 ppm of ethrel ripened well in 6 days at 20 ± 1 °C. Changes in total soluble solids, acidity, total sugars and total carotenoids showed increasing trends up to 6 days during ripening whereas fruit shear force values, pulp pH and total chlorophyll in peel showed decreasing trends. Sensory quality of ethrel treated banana fruits (fully ripe) were excellent with respect to external colour, taste, flavour and overall quality. PMID:23572812

  10. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  11. Prediction of textural attributes using color values of banana (Musa sapientum) during ripening.

    PubMed

    Jaiswal, Pranita; Jha, Shyam Narayan; Kaur, Poonam Preet; Bhardwaj, Rishi; Singh, Ashish Kumar; Wadhawan, Vishakha

    2014-06-01

    Banana is an important sub-tropical fruit in international trade. It undergoes significant textural and color transformations during ripening process, which in turn influence the eating quality of the fruit. In present study, color ('L', 'a' and 'b' value) and textural attributes of bananas (peel, fruit and pulp firmness; pulp toughness; stickiness) were studied simultaneously using Hunter Color Lab and Texture Analyser, respectively, during ripening period of 10 days at ambient atmosphere. There was significant effect of ripening period on all the considered textural characteristics and color properties of bananas except color value 'b'. In general, textural descriptors (peel, fruit and pulp firmness; and pulp toughness) decreased during ripening except stickiness, while color values viz 'a' and 'b' increased with ripening barring 'L' value. Among various textural attributes, peel toughness and pulp firmness showed highest correlation (r) with 'a' value of banana peel. In order to predict textural properties using color values of banana, five types of equations (linear/polynomial/exponential/logarithmic/power) were fitted. Among them, polynomial equation was found to be the best fit (highest coefficient of determination, R(2)) for prediction of texture using color properties for bananas. The pulp firmness, peel toughness and pulp toughness showed R(2) above 0.84 with indicating its potentiality of the fitted equations for prediction of textural profile of bananas non-destructively using 'a' value. PMID:24876653

  12. Involvement of a banana MADS-box transcription factor gene in ethylene-induced fruit ripening.

    PubMed

    Liu, Juhua; Xu, Biyu; Hu, Lifang; Li, Meiying; Su, Wei; Wu, Jing; Yang, Jinghao; Jin, Zhiqiang

    2009-01-01

    To investigate the regulation of MADS-box genes in banana (Musa acuminata L. AAA group cv. Brazilian) fruit development and postharvest ripening, we isolated from banana fruit a MADS-box gene designated MuMADS1. Amino acid alignment indicated MuMADS1 belongs to the AGAMOUS subfamily, and phylogenetic analysis indicates that this gene is most similar to class D MADS-box genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that MuMADS1 is expressed in the stamen and pistil of male and female flowers and in the rhizome, the vegetative reproductive organ of the banana plant. In preharvest banana fruit, MuMADS1 is likely expressed throughout banana fruit development. In postharvest banana ripening, MuMADS1 is associated with ethylene biosynthesis. Expression patterns of MuMADS1 during postharvest ripening as determined by real-time RT-PCR suggest that differential expression of MuMADS1 may not only be induced by ethylene biosynthesis associated with postharvest banana ripening, but also may be induced by exogenous ethylene. PMID:18820933

  13. Bananas--physiology and biochemistry of storage and ripening for optimum quality.

    PubMed

    Marriott, J

    1980-01-01

    Bananas (Musa spp.) are a major food crop of the humid tropics, and although edible cultivars are diverse and numerous, most of our knowledge of the physiology and biochemistry of these fruits relates to a few dessert cultivars of the AAA type, mainly of the Cavendish subgroup, which dominate the export trade between tropical and temperate zones. The preclimacteric period of banana fruits after harvest determines their transportability, and its duration is very sensitive to changes in fruit maturity, storage temperature, ethylene concentration, and other factors; progress in measurement and resolution of each of these effects is described. Changes in composition of the ripening fruits, especially in the development of flavor volatiles, are reviewed. Progress in understanding the integration of the biochemical changes controlling ripening in banana fruits is discussed. Recent work on storage, ripening, and factors relating to sensory assessment of fruit quality is discussed for cultivars of Musa types not used in major export trades. PMID:6996924

  14. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening.

    PubMed

    Fan, Zhong-Qi; Kuang, Jian-Fei; Fu, Chang-Chun; Shan, Wei; Han, Yan-Chao; Xiao, Yun-Yi; Ye, Yu-Jie; Lu, Wang-Jin; Lakshmanan, Prakash; Duan, Xue-Wu; Chen, Jian-Ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  15. The Banana Transcriptional Repressor MaDEAR1 Negatively Regulates Cell Wall-Modifying Genes Involved in Fruit Ripening

    PubMed Central

    Fan, Zhong-qi; Kuang, Jian-fei; Fu, Chang-chun; Shan, Wei; Han, Yan-chao; Xiao, Yun-yi; Ye, Yu-jie; Lu, Wang-jin; Lakshmanan, Prakash; Duan, Xue-wu; Chen, Jian-ye

    2016-01-01

    Ethylene plays an essential role in many biological processes including fruit ripening via modulation of ethylene signaling pathway. Ethylene Response Factors (ERFs) are key transcription factors (TFs) involved in ethylene perception and are divided into AP2, RAV, ERF, and DREB sub-families. Although a number of studies have implicated the involvement of DREB sub-family genes in stress responses, little is known about their roles in fruit ripening. In this study, we identified a DREB TF with a EAR motif, designated as MaDEAR1, which is a nucleus-localized transcriptional repressor. Expression analysis indicated that MaDEAR1 expression was repressed by ethylene, with reduced levels of histone H3 and H4 acetylation at its regulatory regions during fruit ripening. In addition, MaDEAR1 promoter activity was also suppressed in response to ethylene treatment. More importantly, MaDEAR1 directly binds to the DRE/CRT motifs in promoters of several cell wall-modifying genes including MaEXP1/3, MaPG1, MaXTH10, MaPL3, and MaPME3 associated with fruit softening during ripening and represses their activities. These data suggest that MaDEAR1 acts as a transcriptional repressor of cell wall-modifying genes, and may be negatively involved in ethylene-mediated ripening of banana fruit. Our findings provide new insights into the involvement of DREB TFs in the regulation of fruit ripening. PMID:27462342

  16. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes.

    PubMed

    Xiao, Yun-yi; Chen, Jian-ye; Kuang, Jiang-fei; Shan, Wei; Xie, Hui; Jiang, Yue-ming; Lu, Wang-jin

    2013-05-01

    The involvement of ethylene response factor (ERF) transcription factor (TF) in the transcriptional regulation of ethylene biosynthesis genes during fruit ripening remains largely unclear. In this study, 15 ERF genes, designated as MaERF1-MaERF15, were isolated and characterized from banana fruit. These MaERFs were classified into seven of the 12 known ERF families. Subcellular localization showed that MaERF proteins of five different subfamilies preferentially localized to the nucleus. The 15 MaERF genes displayed differential expression patterns and levels in peel and pulp of banana fruit, in association with four different ripening treatments caused by natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and combined 1-MCP and ethylene treatments. MaERF9 was upregulated while MaERF11 was downregulated in peel and pulp of banana fruit during ripening or after treatment with ethylene. Furthermore, yeast-one hybrid (Y1H) and transient expression assays showed that the potential repressor MaERF11 bound to MaACS1 and MaACO1 promoters to suppress their activities and that MaERF9 activated MaACO1 promoter activity. Interestingly, protein-protein interaction analysis revealed that MaERF9 and -11 physically interacted with MaACO1. Taken together, these results suggest that MaERFs are involved in banana fruit ripening via transcriptional regulation of or interaction with ethylene biosynthesis genes. PMID:23599278

  17. Expression of multiple forms of polygalacturonase gene during ripening in banana fruit.

    PubMed

    Asif, Mehar H; Nath, Pravendra

    2005-02-01

    The activity of polygalacturonase (PG, E.C 3.2.1.15) during ripening in climacteric fruits has been positively correlated with softening of the fruit tissue and differential expression of its gene is suspected to be regulated by the plant hormone ethylene. We have cloned four partial cDNAs, MAPG1 (acc. no. AF311881), MAPG2 (acc. no. AF311882), MAPG3 (acc. no. AF542382) and MAPG4 (acc. no. AY603341) for PG genes and studied their differential expression during ripening in banana. MAPG3 and MAPG4 are believed to be ripening related and regulated by ethylene whereas MAPG2 is associated more with senescence. MAPG1 shows constitutive expression and is not significantly expressed in fruit tissue. The genomic clone MAGPG (acc. No. AY603340) includes the complete MAPG3 gene, which consists of four exons and three introns. The structure of the gene has more similarity to tomato abscission PG rather than tomato fruit PG. It is concluded that softening during ripening in banana fruit results from the concerted action of at least four PG genes, which are differentially expressed during ripening. PMID:15820666

  18. Expression profiles of a MhCTR1 gene in relation to banana fruit ripening.

    PubMed

    Hu, Huei-Lin; Do, Yi-Yin; Huang, Pung-Ling

    2012-07-01

    The banana (Musa spp.) is a typical climacteric fruit of high economic importance. The development of bananas from maturing to ripening is characterized by increased ethylene production accompanied by a respiration burst. To elucidate the signal transduction pathway involved in the ethylene regulation of banana ripening, a gene homologous to Arabidopsis CTR1 (constitutive triple response 1) was isolated from Musa spp. (Hsien Jin Chiao, AAA group) and designated as MhCTR1. MhCTR1 spans 11.5 kilobases and consists of 15 exons and 14 introns with consensus GT-AG nucleotides situated at their boundaries. MhCTR1 encodes a polypeptide of 805 amino acid residues with a calculated molecular weight of 88.6 kDa. The deduced amino acid sequence of MhCTR1 demonstrates 55%, 56% and 55% homology to AtCTR1, RhCTR1, and LeCTR1, respectively. MhCTR1 is expressed mostly in the mature green pulp and root organs. During fruit development MhCTR1 expression increases just before ethylene production rises. Moreover, MhCTR1 expression was detected mainly in the pulps at ripening stage 3, and correlated with the onset of peel yellowing, while MhCTR1 was constitutively expressed in the peels. MhCTR1 expression could be induced by ethylene treatment (0.01 μL L(-1)), and MhCTR1 expression decreased in both peel and pulp 24 h after treatment. Overall, changes observed in MhCTR1 expression in the pulp closely related to the regulation of the banana ripening process. PMID:22584359

  19. The cold storage of green bananas affects the starch degradation during ripening at higher temperature.

    PubMed

    Peroni-Okita, Fernanda H G; Cardoso, Mateus B; Agopian, Roberta G D; Louro, Ricardo P; Nascimento, João R O; Purgatto, Eduardo; Tavares, Maria I B; Lajolo, Franco M; Cordenunsi, Beatriz R

    2013-07-01

    The aim of this work was to investigate the starch degradation of bananas stored at low temperature (13°C, cold-stored group) and bananas stored at 19°C (control group) during ripening. The starch granules were isolated during different stages of banana ripening, and their structure was investigated using different techniques. The activities of α-amylase and β-amylase associated to the starch granules were determined, and their presence was confirmed using immunolocalization assays. The increased molecular mobility likely facilitated the intake and action of α-amylase on the granule surface, where it was the prevalent enzyme in bananas stored at low temperature. The 10 days of storage at low temperature also influenced the sizes and shapes of the granules, with a predominance of rounded granules and pits on the surface along with superior amylose content, the higher amounts of amylopectin A-chains and the subtle increase in the A-type allomorph content. PMID:23688463

  20. Ripening influences banana and plantain peels composition and energy content.

    PubMed

    Emaga, Thomas Happi; Bindelle, Jérôme; Agneesens, Richard; Buldgen, André; Wathelet, Bernard; Paquot, Michel

    2011-01-01

    Musa sp. peels are widely used by smallholders as complementary feeds for cattle in the tropics. A study of the influence of the variety and the maturation stage of the fruit on fermentability and metabolisable energy (ME) content of the peels was performed using banana (Yangambi Km5) and plantain (Big Ebanga) peels at three stages of maturation in an in vitro model of the rumen. Peel samples were analysed for starch, free sugars and fibre composition. Samples were incubated in the presence of rumen fluid. Kinetics of gas production were modelled, ME content was calculated using prediction equation and short-chain fatty acids production and molar ratio were measured after 72 h of fermentation. Final gas production was higher in plantain (269-339 ml g(-1)) compared to banana (237-328 ml g(-1)) and plantain exhibited higher ME contents (8.9-9.7 MJ/kg of dry matter, DM) compared to banana (7.7-8.8 MJ/kg of DM). Butyrate molar ratio decreased with maturity of the peels. The main influence of the variety and the stage of maturation on all fermentation parameters as well as ME contents of the peels was correlated to changes in the carbohydrate fraction of the peels, including starch and fibre. PMID:20725857

  1. EIN3-like gene expression during fruit ripening of Cavendish banana (Musa acuminata cv. Grande naine).

    PubMed

    Mbéguié-A-Mbéguié, Didier; Hubert, Olivier; Fils-Lycaon, Bernard; Chillet, Marc; Baurens, Franc-Christophe

    2008-06-01

    Ethylene signal transduction initiates with ethylene binding at receptor proteins and terminates in a transcription cascade involving the EIN3/EIL transcription factors. Here, we have isolated four cDNAs homologs of the Arabidopsis EIN3/EIN3-like gene, MA-EILs (Musa acuminata ethylene insensitive 3-like) from banana fruit. Sequence comparison with other banana EIL gene already registered in the database led us to conclude that, at this day, at least five different genes namely MA-EIL1, MA-EIL2/AB266318, MA-EIL3/AB266319, MA-EIL4/AB266320 and AB266321 exist in banana. Phylogenetic analyses included all banana EIL genes within a same cluster consisting of rice OsEILs, a monocotyledonous plant as banana. However, MA-EIL1, MA-EIL2/AB266318, MA-EIL4/AB266320 and AB266321 on one side, and MA-EIL3/AB266319 on the other side, belong to two distant subclusters. MA-EIL mRNAs were detected in all examined banana tissues but at lower level in peel than in pulp. According to tissues, MA-EIL genes were differentially regulated by ripening and ethylene in mature green fruit and wounding in old and young leaves. MA-EIL2/AB266318 was the unique ripening- and ethylene-induced gene; MA-EIL1, MA-EIL4/Ab266320 and AB266321 genes were downregulated, while MA-EIL3/AB266319 presented an unusual pattern of expression. Interestingly, a marked change was observed mainly in MA-EIL1 and MA-EIL3/Ab266319 mRNA accumulation concomitantly with changes in ethylene responsiveness of fruit. Upon wounding, the main effect was observed in MA-EIL4/AB266320 and AB266321 mRNA levels, which presented a markedly increase in both young and old leaves, respectively. Data presented in this study suggest the importance of a transcriptionally step control in the regulation of EIL genes during banana fruit ripening. PMID:18346078

  2. Effects of ripening stage and steaming time on quality attributes of fat free banana snack obtained from drying process including fluidized bed puffing.

    PubMed

    Prachayawarakorn, Somkiat; Raikham, Chonlada; Soponronnarit, Somchart

    2016-02-01

    Healthy snacks have increasingly been interested in consumers. Puffing technique is an alternative to produce healthy snacks. Effects of ripening stage of banana and steaming time on quality of banana slices obtained from drying process including fluidized bed puffing were investigated. Bananas at the ripening stages 1 and 3 were steamed at 100 °C for 30 s up to 2 min and dried at 90 °C to moisture content of 25 % dry basis (d.b.). The samples were then puffed by fluidized bed dryer at 160 °C for 2 min and dried at the same temperature as the first stage drying. The experimental results showed that shrinkage, drying time, color, glycemic index and textural properties were affected by steaming time and ripening stage. Steaming provided more uniformity of banana color. Steaming positively or negatively affected the degree shrinkage of banana depending on the ripening stage. The banana texture in particular crispiness could be improved by the steaming for the ripening stage 1 banana whilst it did not improve for the ripening stage 3. During steaming, the C-type crystalline structure of banana starch disappeared and thus the value of glycemic index was increased. The ripening stage 1 banana was recommended for producing healthy snack in order to control glycemic response. PMID:27162374

  3. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security.

    PubMed

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J; Friedman, Haya

    2016-05-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  4. Banana MaMADS Transcription Factors Are Necessary for Fruit Ripening and Molecular Tools to Promote Shelf-Life and Food Security1[OPEN

    PubMed Central

    Elitzur, Tomer; Yakir, Esther; Quansah, Lydia; Zhangjun, Fei; Vrebalov, Julia; Khayat, Eli; Giovannoni, James J.

    2016-01-01

    Genetic solutions to postharvest crop loss can reduce cost and energy inputs while increasing food security, especially for banana (Musa acuminata), which is a significant component of worldwide food commerce. We have functionally characterized two banana E class (SEPALLATA3 [SEP3]) MADS box genes, MaMADS1 and MaMADS2, homologous to the tomato (Solanum lycopersicum) RIN-MADS ripening gene. Transgenic banana plants repressing either gene (via antisense or RNA interference [RNAi]) were created and exhibited specific ripening delay and extended shelf-life phenotypes, including delayed color development and softening. The delay in fruit ripening is associated with a delay in climacteric respiration and reduced synthesis of the ripening hormone ethylene; in the most severe repressed lines, no ethylene was produced and ripening was most delayed. Unlike tomato rin mutants, banana fruits of all transgenic repression lines responded to exogenous ethylene by ripening normally, likely due to incomplete transgene repression and/or compensation by other MADS box genes. Our results show that, although MADS box ripening gene necessity is conserved across diverse taxa (monocots to dicots), unlike tomato, banana ripening requires at least two necessary members of the SEPALLATA MADS box gene group, and either can serve as a target for ripening control. The utility of such genes as tools for ripening control is especially relevant in important parthenocarpic crops such as the vegetatively propagated and widely consumed Cavendish banana, where breeding options for trait improvement are severely limited. PMID:26956665

  5. Effect of nitric oxide on ethylene synthesis and softening of banana fruit slice during ripening.

    PubMed

    Cheng, Guiping; Yang, En; Lu, Wangjin; Jia, Yongxia; Jiang, Yueming; Duan, Xuewu

    2009-07-01

    The effects of nitric oxide (NO) on ethylene synthesis and softening of ripening-initiated banana slice were investigated. Fruit firmness, color, and contents of starch and acid-soluble pectin (ASP) were measured. In addition, ethylene production, 1-aminocyclopropane-1-carboxylic acid (ACC) content, expression and activities of ACC synthase (ACS) and ACC oxidase (ACO), and activities of cell-wall-modifying enzymes, polygalacturonase (PG), pectin methylesterase (PME), and endo-beta-1,4-glucanase, were analyzed. Application of NO reduced ethylene production, inhibited degreening of the peel and delayed softening of the pulp. The decrease of ethylene production was associated with the reduction in the activity of ACO and the expression of the MA-ACO1 gene. Moreover, the NO-treated fruit showed a lower expression of the MA-ACS1 gene but higher ACS activity and ACC content. In addition, NO treatment decreased the activities of PG, PME, and endo-beta-1,4-glucanase and maintained higher contents of ASP and starch, which may account for the delay of softening. We proposed that the inhibition of ACO activity and transcription of gene MA-ACO1 by NO resulted in decreased ethylene synthesis and the delay of ripening of banana slice. PMID:19534461

  6. Characterization of Musa sp. fruits and plantain banana ripening stages according to their physicochemical attributes.

    PubMed

    Valérie Passo Tsamo, Claudine; Andre, Christelle M; Ritter, Christian; Tomekpe, Kodjo; Ngoh Newilah, Gérard; Rogez, Hervé; Larondelle, Yvan

    2014-08-27

    This study aimed at understanding the contribution of the fruit physicochemical parameters to Musa sp. diversity and plantain ripening stages. A discriminant analysis was first performed on a collection of 35 Musa sp. cultivars, organized in six groups based on the consumption mode (dessert or cooking banana) and the genomic constitution. A principal component analysis reinforced by a logistic regression on plantain cultivars was proposed as an analytical approach to describe the plantain ripening stages. The results of the discriminant analysis showed that edible fraction, peel pH, pulp water content, and pulp total phenolics were among the most contributing attributes for the discrimination of the cultivar groups. With mean values ranging from 65.4 to 247.3 mg of gallic acid equivalents/100 g of fresh weight, the pulp total phenolics strongly differed between interspecific and monospecific cultivars within dessert and nonplantain cooking bananas. The results of the logistic regression revealed that the best models according to fitting parameters involved more than one physicochemical attribute. Interestingly, pulp and peel total phenolic contents contributed in the building up of these models. PMID:25101926

  7. Increases in 1,5-anhydroglucitol levels in germinating amaranth seeds and in ripening banana.

    PubMed

    Konishi, Y; Hashima, K; Kishida, K

    2000-11-01

    To examine whether 1,5-anhydroglucitol (AG) is derived from starch degradation in plant tissues, we colorimetrically measured AG contents of germinating amaranth seeds and ripening banana pulp. In both cases, as starch degradation proceeded, AG levels were significantly increased, but were 1,700-5,000 times lower than those of total soluble carbohydrates. alpha-1,4-Glucan lyase activity, which is measured by the 1,5-anhydrofructose (AF) liberated from non-reducing glucose residues of starch or glycogen, was too low to be detected in amaranth or banana by the 3,5-dinitrosalicylic acid method. On the other hand, AF reductase, which reduces AF to AG, was detected in germinating amaranth seeds and banana pulp. Thus, the increases in AG levels are conceived to be derived from starch breakdown, although further investigation is needed to answer whether the starch degradation pathway via alpha-1,4-glucan lyase/AF reductase exists in plant tissues. PMID:11193417

  8. The regulation of MADS-box gene expression during ripening of banana and their regulatory interation with ethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MADS-box genes (MaMADS1-6), potential components of the developmental control of ripening have been cloned from Grand Nain banana cultivar. Similarity of these genes to tomato LeRIN is very low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns...

  9. Postharvest quality and ripening of Dwarf Brazilian bananas (Musa sp.)after x-ray irradiation quarantine treatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fruit quality and ripening response of Dwarf Brazilian bananas (Musa sp., group AAB) were determined following x-ray irradiation for surface disinfestation of quarantine pests. The proximal and distal hands from winter- and summer-harvested bunches were treated with 0, 200, 400, 600, or 800 Gy d...

  10. Antioxidant activity and protective effect of banana peel against oxidative hemolysis of human erythrocyte at different stages of ripening.

    PubMed

    Sundaram, Shanthy; Anjum, Shadma; Dwivedi, Priyanka; Rai, Gyanendra Kumar

    2011-08-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic, and cytoprotective activities and their therapeutic properties. Banana peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids, and others. In the present study, effect of ripening, solvent polarity on the content of bioactive compounds of crude banana peel and the protective effect of peel extracts of unripe, ripe, and leaky ripe banana fruit on hydrogen peroxide-induced hemolysis and their antioxidant capacity were investigated. Banana (Musa paradisica) peel at different stages of ripening (unripe, ripe, leaky ripe) were treated with 70% acetone, which were partitioned in order of polarity with water, ethyl acetate, chloroform (CHCl₃), and hexane sequentially. The antioxidant activity of the samples was evaluated by the red cell hemolysis assay, free radical scavenging (1,1-diphenyl-2-picrylhydrazyl free radical elimination) and superoxide dismutase activities. The Folin-Ciocalteu's reagent assay was used to estimate the phenolic content of extracts. The findings of this investigation suggest that the unripe banana peel sample had higher antioxidant potency than ripe and leaky ripe. Further on fractionation, ethyl acetate and water soluble fractions of unripe peel displayed high antioxidant activity than CHCl₃ and hexane fraction, respectively. A positive correlation between free radical scavenging capacity and the content of phenolic compound were found in unripe, ripe, and leaky ripe stages of banana peel. PMID:21369778

  11. Cloning of an ADP-ribosylation factor gene from banana (Musa acuminata) and its expression patterns in postharvest ripening fruit.

    PubMed

    Wang, Yuan; Wu, Jing; Xu, Bi-Yu; Liu, Ju-Hua; Zhang, Jian-Bin; Jia, Cai-Hong; Jin, Zhi-Qiang

    2010-08-15

    A full-length cDNA encoding an ADP-ribosylation factor (ARF) from banana (Musa acuminata) fruit was cloned and named MaArf. It contains an open reading frame encoding a 181-amino-acid polypeptide. Sequence analysis showed that MaArf shared high similarity with ARF of other plant species. The genomic sequence of MaArf was also obtained using polymerase chain reaction (PCR). Sequence analysis showed that MaArf was a split gene containing five exons and four introns in genomic DNA. Reverse-transcriptase PCR was used to analyze the spatial expression of MaArf. The results showed that MaArf was expressed in all the organs examined: root, rhizome, leaf, flower and fruit. Real-time quantitative PCR was used to explore expression patterns of MaArf in postharvest banana. There was differential expression of MaArf associated with ethylene biosynthesis. In naturally ripened banana, expression of MaArf was in accordance with ethylene biosynthesis. However, in 1-methylcyclopropene-treated banana, the expression of MaArf was inhibited and changed little. When treated with ethylene, MaArf expression in banana fruit significantly increased in accordance with ethylene biosynthesis; the peak of MaArf was 3 d after harvest, 11 d earlier than for naturally ripened banana fruits. These results suggest that MaArf is induced by ethylene in regulating postharvest banana ripening. Finally, subcellular localization assays showed the MaArf protein in the cytoplasm. PMID:20435371

  12. Changes in the lipid composition of ripening banana fruits and evidence for an associated increase in cell membrane permeability.

    PubMed

    Wade, N L; Bishop, D G

    1978-06-23

    The content of total lipid in banana fruit pulp tissue remained constant during the climacteric rise induced by applied ethylene. The relative proportions of neutral lipid, glycolipid and phospholipid did not change. However, the fatty acid composition of the lipid did change during ripening. This change was confined largely to the phospholipid fraction, in which there was an increase in the proportion of linolenic acid and a decrease in the proportion of linoleic acid. The net result was an increase in total unsaturation of the fatty acids in the phospholipid fraction. Measurements of spin label motion in liposomes prepared from banana phospholipids showed that the motion and fluidity of bilayer lipids increased during ripening of the fruit from which the liposomes were prepared, probably as a result of increased lipid unsaturation during ripening. Since increases in membrane fluidity are accompanied by increases in the passive permeability to small molecules in a number of membrane systems, it is suggested that the increased leakage which has been previously demonstrated in ripening banana fruit tissue is due to increases in the permeability of at least some cell membranes. PMID:667087

  13. Structures of chlorophyll catabolites in bananas (Musa acuminata) reveal a split path of chlorophyll breakdown in a ripening fruit.

    PubMed

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-08-27

    The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  14. Structures of Chlorophyll Catabolites in Bananas (Musa acuminata) Reveal a Split Path of Chlorophyll Breakdown in a Ripening Fruit

    PubMed Central

    Moser, Simone; Müller, Thomas; Holzinger, Andreas; Lütz, Cornelius; Kräutler, Bernhard

    2012-01-01

    Abstract The disappearance of chlorophyll is a visual sign of fruit ripening. Yet, chlorophyll breakdown in fruit has hardly been explored; its non-green degradation products are largely unknown. Here we report the analysis and structure elucidation of colorless tetrapyrrolic chlorophyll breakdown products in commercially available, ripening bananas (Musa acuminata, Cavendish cultivar). In banana peels, chlorophyll catabolites were found in an unprecedented structural richness: a variety of new fluorescent chlorophyll catabolites (FCCs) and nonfluorescent chlorophyll catabolites (NCCs) were detected. As a rule, FCCs exist only "fleetingly" and are hard to observe. However, in bananas several of the FCCs (named Mc-FCCs) were persistent and carried an ester function at the propionate side-chain. NCCs were less abundant, and exhibited a free propionic acid group, but functional modifications elsewhere. The modifications of NCCs in banana peels were similar to those found in NCCs from senescent leaves. They are presumed to be introduced by enzymatic transformations at the stage of the mostly unobserved, direct FCC-precursors. The observed divergent functional group characteristics of the Mc-FCCs versus those of the Mc-NCCs indicated two major "late" processing lines of chlorophyll breakdown in ripening bananas. The "last common precursor" at the branching point to either the persistent FCCs, or towards the NCCs, was identified as a temporarily abundant "secondary" FCC. The existence of two "downstream" branches of chlorophyll breakdown in banana peels, and the striking accumulation of persistent Mc-FCCs call for attention as to the still-elusive biological roles of the resulting colorless linear tetrapyrroles. PMID:22807397

  15. Changes in alpha-L-arabinofuranosidase activity in peel and pulp of banana (Musa sp.) fruits during ripening and softening.

    PubMed

    Zhuang, Jun-Ping; Su, Jing; Li, Xue-Ping; Chen, Wei-Xin

    2007-04-01

    Arabinose is one of the most dynamic cell wall glycosyl residues released during fruit ripening, alpha-L-arabinofuranosidase (alpha-Arab) are major glycosidases that may remove arabinose units from fruit cell wall polysaccharides. To find out whether alpha-Arab plays important roles in banana fruit softening, the enzyme activities in peel and pulp, fruit firmness, respiration rate and ethylene release rate were assayed during banana softening. The results showed that alpha-Arab activities in banana pulp and peel increased slightly at the beginning of storage and reached their maxima when the fruit firmness decreased drastically, alpha-Arab activity increased by more than ten folds in both pulp and peel during ripening and alpha-Arab activities were higher in pulp than in peel. Treatment of banana fruits with ethylene absorbent postponed the time of reaching of its maxima of respiration and ethylene, enhanced the firmness of pup and decreased alpha-Arab activity in the peel and pulp. These results suggest that alpha-Arab induced the decrease of fruit firmness and played an important role in banana fruit softening, and its activity was regulated by ethylene. PMID:17452798

  16. Expression patterns of cell wall-modifying genes from banana during fruit ripening and in relationship with finger drop

    PubMed Central

    Mbéguié-A-Mbéguié, D.; Hubert, O.; Baurens, F. C.; Matsumoto, T.; Chillet, M.; Fils-Lycaon, B.; Sidibé-Bocs, S.

    2009-01-01

    Few molecular studies have been devoted to the finger drop process that occurs during banana fruit ripening. Recent studies revealed the involvement of changes in the properties of cell wall polysaccharides in the pedicel rupture area. In this study, the expression of cell-wall modifying genes was monitored in peel tissue during post-harvest ripening of Cavendish banana fruit, at median area (control zone) and compared with that in the pedicel rupture area (drop zone). To this end, three pectin methylesterase (PME) and seven xyloglucan endotransglycosylase/hydrolase (XTH) genes were isolated. The accumulation of their mRNAs and those of polygalaturonase, expansin, and pectate lyase genes already isolated from banana were examined. During post-harvest ripening, transcripts of all genes were detected in both zones, but accumulated differentially. MaPME1, MaPG1, and MaXTH4 mRNA levels did not change in either zone. Levels of MaPME3 and MaPG3 mRNAs increased greatly only in the control zone and at the late ripening stages. For other genes, the main molecular changes occurred 1–4 d after ripening induction. MaPME2, MaPEL1, MaPEL2, MaPG4, MaXTH6, MaXTH8, MaXTH9, MaEXP1, MaEXP4, and MaEXP5 accumulated highly in the drop zone, contrary to MaXTH3 and MaXTH5, and MaEXP2 throughout ripening. For MaPG2, MaXET1, and MaXET2 genes, high accumulation in the drop zone was transient. The transcriptional data obtained from all genes examined suggested that finger drop and peel softening involved similar mechanisms. These findings also led to the proposal of a sequence of molecular events leading to finger drop and to suggest some candidates. PMID:19357434

  17. Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric.

    PubMed

    Hubbard, N L; Pharr, D M; Huber, S C

    1990-09-01

    During ripening of bananas (Musa spp. [AAA group, Cavendish subgroup]), there is a massive conversion of starch to sucrose. Also during ripening there is a rise in respiration known as the respiratory climacteric. In this study changes in carbohydrate content, activities of starch and sucrose metabolizing enzymes, and respiration were measured to assess their potential interrelationships. Sucrose phosphate synthase activity increased dramatically during the first 4 days after initiation of ripening by ethylene treatment. Starch concentration decreased and sucrose concentration increased during this time period. Developmental changes in sucrose phosphate synthase activity were measured with limiting substrate (plus Pi) and saturating substrate concentrations. Activities were not parallel under the two assay conditions, providing tentative evidence that kinetically different forms of the enzyme may exist at different stages of ripening. Sucrose accumulation rate was most highly correlated with sucrose phosphate synthase activity assayed with limiting substrate concentrations (plus Pi). The cumulative amount of CO(2) respired during ripening was positively correlated with sugar accumulation (R(2) = 0.97). From this linear regression it was calculated that a constant 0.605 millimoles of CO(2) was evolved per mole of sucrose formed throughout ripening. Using this quantity, the percentage of the total respiratory ATP produced which was required for the conversion of starch to sucrose was calculated assuming different models for carbon export from the amyloplast. The results suggest that sucrose biosynthesis during ripening constitutes a significant sink for respiratory ATP. PMID:16667688

  18. Banana Ovate Family Protein MaOFP1 and MADS-Box Protein MuMADS1 Antagonistically Regulated Banana Fruit Ripening

    PubMed Central

    Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  19. Banana Ovate family protein MaOFP1 and MADS-box protein MuMADS1 antagonistically regulated banana fruit ripening.

    PubMed

    Liu, Juhua; Zhang, Jing; Hu, Wei; Miao, Hongxia; Zhang, Jianbin; Jia, Caihong; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    The ovate family protein named MaOFP1 was identified in banana (Musa acuminata L.AAA) fruit by a yeast two-hybrid (Y2H) method using the banana MADS-box gene MuMADS1 as bait and a 2 day postharvest (DPH) banana fruit cDNA library as prey. The interaction between MuMADS1 and MaOFP1 was further confirmed by Y2H and Bimolecular Fluorescence Complementation (BiFC) methods, which showed that the MuMADS1 K domain interacted with MaOFP1. Real-time quantitative PCR evaluation of MuMADS1 and MaOFP1 expression patterns in banana showed that they are highly expressed in 0 DPH fruit, but present in low levels in the stem, which suggests that simultaneous but different expression patterns exist for both MuMADS1 and MaOFP1 in different tissues and developing fruits. Meanwhile, MuMADS1 and MaOFP1 expression was highly stimulated and greatly suppressed, respectively, by exogenous ethylene. In contrast, MaOFP1 expression was highly stimulated while MuMADS1 was greatly suppressed by the ethylene competitor 1-methylcyclopropene (1-MCP). These results indicate that MuMADS1 and MaOFP1 are antagonistically regulated by ethylene and might play important roles in postharvest banana fruit ripening. PMID:25886169

  20. Identification and expression analysis of four 14-3-3 genes during fruit ripening in banana (Musa acuminata L. AAA group, cv. Brazilian).

    PubMed

    Li, Mei-Ying; Xu, Bi-Yu; Liu, Ju-Hua; Yang, Xiao-Liang; Zhang, Jian-Bin; Jia, Cai-Hong; Ren, Li-Cheng; Jin, Zhi-Qiang

    2012-02-01

    To investigate the regulation of 14-3-3 proteins in banana (Musa acuminata L. AAA group, cv. Brazilian) fruit postharvest ripening, four cDNAs encoding 14-3-3 proteins were isolated from banana and designated as Ma-14-3-3a, Ma-14-3-3c, Ma-14-3-3e, and Ma-14-3-3i, respectively. Amino acid sequence alignment showed that the four 14-3-3 proteins shared a highly conserved core structure and variable C-terminal as well as N-terminal regions with 14-3-3 proteins from other plant species. Phylogenetic analysis revealed that the four 14-3-3 genes belong to the non-ε groups. They were differentially and specifically expressed in various tissues. Real-time RT-PCR analysis indicated that these four genes function differentially during banana fruit postharvest ripening. Three genes, Ma-14-3-3a, Ma-14-3-3c, and Ma-14-3-3e, were significantly induced by exogenous ethylene treatment. However, gene function differed in naturally ripened fruits. Ethylene could induce Ma-14-3-3c expression during postharvest ripening, but expression patterns of Ma-14-3-3a and Ma-14-3-3e suggest that these two genes appear to be involved in regulating ethylene biosynthesis during fruit ripening. No obvious relationship emerged between Ma-14-3-3i expression in naturally ripened and 1-MCP (1-methylcyclopropene)-treated fruit groups during fruit ripening. These results indicate that the 14-3-3 proteins might be involved in various regulatory processes of banana fruit ripening. Further studies will mainly focus on revealing the detailed biological mechanisms of these four 14-3-3 genes in regulating banana fruit postharvest ripening. PMID:22009053

  1. Effect of gamma radiation on the ripening and levels of bioactive amines in bananas cv. Prata

    NASA Astrophysics Data System (ADS)

    Gloria, Maria Beatriz A.; Adão, Regina C.

    2013-06-01

    Green Prata bananas at the full three-quarter stage were exposed to gamma radiation at doses of 0.0 (control), 1.0, 1.5 and 2.0 kGy and stored at 16±1 °C and 85% relative humidity. Samples were collected periodically and analyzed for peel color, pulp-to-peel ratio and levels of starch, soluble sugars and bioactive amines. Degradation of starch and formation of fructose and glucose followed first- and zero-order kinetics, respectively. Higher irradiation doses caused increased inhibitory effect on starch degradation and glucose formation. However, doses of 1.5 and 2.0 kGy caused browning of the peel, making the fruit unacceptable. Irradiation at 1.0 kGy was the most promising dose: it did not affect peel color, the pulp-to-peel ratio or the levels of the amines spermidine, serotonin and putrescine. However, it slowed down starch degradation and the formation and accumulation of fructose and glucose, delaying the ripening of the fruit for 7 days.

  2. Role for the banana AGAMOUS-like gene MaMADS7 in regulation of fruit ripening and quality.

    PubMed

    Liu, Juhua; Liu, Lin; Li, Yujia; Jia, Caihong; Zhang, Jianbin; Miao, Hongxia; Hu, Wei; Wang, Zhuo; Xu, Biyu; Jin, Zhiqiang

    2015-11-01

    MADS-box transcription factors play important roles in organ development. In plants, most studies on MADS-box genes have mainly focused on flower development and only a few concerned fruit development and ripening. A new MADS-box gene named MaMADS7 was isolated from banana fruit by rapid amplification of cDNA ends (RACE) based on a MADS-box fragment obtained from a banana suppression subtractive hybridization (SSH) cDNA library. MaMADS7 is an AGAMOUS-like MADS-box gene that is preferentially expressed in the ovaries and fruits and in tobacco its protein product localizes to the nucleus. This study found that MaMADS7 expression can be induced by exogenous ethylene. Ectopic expression of MaMADS7 in tomato resulted in broad ripening phenotypes. The expression levels of seven ripening and quality-related genes, ACO1, ACS2, E4, E8, PG, CNR and PSY1 in MaMADS7 transgenic tomato fruits were greatly increased while the expression of the AG-like MADS-box gene TAGL1 was suppressed. Compared with the control, the contents of β-carotene, lycopene, ascorbic acid and organic acid in transformed tomato fruits were increased, while the contents of glucose and fructose were slightly decreased. MaMADS7 interacted with banana 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene 1 (MaACO1) and tomato phytoene synthase gene (LePSY1) promoters. Our results indicated that MaMADS7 plays an important role in initiating endogenous ethylene biosynthesis and fruit ripening. PMID:25980771

  3. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening.

    PubMed

    Shan, Wei; Kuang, Jian-fei; Chen, Lei; Xie, Hui; Peng, Huan-huan; Xiao, Yun-yi; Li, Xue-ping; Chen, Wei-xin; He, Quan-guang; Chen, Jian-ye; Lu, Wang-jin

    2012-09-01

    The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components. PMID:22888129

  4. A Ser/Thr protein kinase phosphorylates MA-ACS1 (Musa acuminata 1-aminocyclopropane-1-carboxylic acid synthase 1) during banana fruit ripening.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2012-08-01

    1-Aminocyclopropane-1-carboxylic acid synthase (ACS) catalyzes the rate-limiting step in ethylene biosynthesis during ripening. ACS isozymes are regulated both transcriptionally and post-translationally. However, in banana, an important climacteric fruit, little is known about post-translational regulation of ACS. Here, we report the post-translational modification of MA-ACS1 (Musa acuminata ACS1), a ripening inducible isozyme in the ACS family, which plays a key role in ethylene biosynthesis during banana fruit ripening. Immunoprecipitation analyses of phospholabeled protein extracts from banana fruit using affinity-purified anti-MA-ACS1 antibody have revealed phosphorylation of MA-ACS1, particularly in ripe fruit tissue. We have identified the induction of a 41-kDa protein kinase activity in pulp at the onset of ripening. The 41-kDa protein kinase has been identified as a putative protein kinase by MALDI-TOF/MS analysis. Biochemical analyses using partially purified protein kinase fraction from banana fruit have identified the protein kinase as a Ser/Thr family of protein kinase and its possible involvement in MA-ACS1 phosphorylation during ripening. In vitro phosphorylation analyses using synthetic peptides and site-directed mutagenized recombinant MA-ACS1 have revealed that serine 476 and 479 residues at the C-terminal region of MA-ACS1 are phosphorylated. Overall, this study provides important novel evidence for in vivo phosphorylation of MA-ACS1 at the molecular level as a possible mechanism of post-translational regulation of this key regulatory protein in ethylene signaling pathway in banana fruit during ripening. PMID:22419220

  5. Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Das, Ranjan; Sengupta, Dibyendu N

    2008-12-01

    Sucrose phosphate synthase (SPS) (EC 2.3.1.14) is the key regulatory component in sucrose formation in banana (Musa acuminata subgroup Cavendish, cv Giant governor) fruit during ripening. This report illustrates differential transcriptional responses of banana SPS gene following ethylene, auxin, wounding, low temperature and different photoperiods during ripening in banana fruit. Whereas ethylene strongly stimulated SPS transcript accumulation, auxin and cold treatment only marginally increased the abundance of SPS mRNA level, while wounding negatively regulated SPS gene expression. Conversely, SPS transcript level was distinctly increased by constant exposure to white light. Protein level, enzymatic activity of SPS and sucrose synthesis were substantially increased by ethylene and increased exposure to white light conditions as compared to other treatments. To further study the transcriptional regulation of SPS in banana fruit, the promoter region of SPS gene was cloned and some cis-acting regulatory elements such as a reverse GCC-box ERE, two ARE motifs (TGTCTC), one LTRE (CCGAA), a GAGA-box (GAGA...) and a GATA-box LRE (GATAAG) were identified along with the TATA and CAAT-box. DNA-protein interaction studies using these cis-elements indicated a highly specific cis-trans interaction in the banana nuclear extract. Furthermore, we specifically studied the light responsive characteristics of GATA-box containing synthetic as well as native banana SPS promoter. Transient expression assays using banana SPS promoter have also indicated the functional importance of the SPS promoter in regulating gene expression. Together, these results provide insights into the transcriptional regulation of banana SPS gene in response to phytohormones and other environmental factors during fruit ripening. PMID:18830708

  6. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes.

    PubMed

    Feng, Bi-Hong; Han, Yan-Chao; Xiao, Yun-Yi; Kuang, Jian-Fei; Fan, Zhong-Qi; Chen, Jian-Ye; Lu, Wang-Jin

    2016-04-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25MaDofgenes from banana fruit (Musa acuminata), designated asMaDof1-MaDof25 Gene expression analysis in fruit subjected to different ripening conditions revealed thatMaDofs were differentially expressed during different stages of ripening.MaDof10,23,24, and25were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, includingMaEXP1/2/3/5,MaXET7,MaPG1,MaPME3,MaPL2,MaCAT, andMaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. PMID:26889012

  7. The banana fruit Dof transcription factor MaDof23 acts as a repressor and interacts with MaERF9 in regulating ripening-related genes

    PubMed Central

    Feng, Bi-hong; Han, Yan-chao; Xiao, Yun-yi; Kuang, Jian-fei; Fan, Zhong-qi; Chen, Jian-ye; Lu, Wang-jin

    2016-01-01

    The DNA binding with one finger (Dof) proteins, a family of plant-specific transcription factors, are involved in a variety of plant biological processes. However, little information is available on their involvement in fruit ripening. We have characterized 25 MaDof genes from banana fruit (Musa acuminata), designated as MaDof1–MaDof25. Gene expression analysis in fruit subjected to different ripening conditions revealed that MaDofs were differentially expressed during different stages of ripening. MaDof10, 23, 24, and 25 were ethylene-inducible and nuclear-localized, and their transcript levels increased during fruit ripening. Moreover, yeast two-hybrid and bimolecular fluorescence complementation analyses demonstrated a physical interaction between MaDof23 and MaERF9, a potential regulator of fruit ripening reported in a previous study. We determined that MaDof23 is a transcriptional repressor, whereas MaERF9 is a transcriptional activator. We suggest that they might act antagonistically in regulating 10 ripening-related genes, including MaEXP1/2/3/5, MaXET7, MaPG1, MaPME3, MaPL2, MaCAT, and MaPDC, which are associated with cell wall degradation and aroma formation. Taken together, our findings provide new insight into the transcriptional regulation network controlling banana fruit ripening. PMID:26889012

  8. Dietary fibre components and pectin chemical features of peels during ripening in banana and plantain varieties.

    PubMed

    Happi Emaga, Thomas; Robert, Christelle; Ronkart, Sébastien N; Wathelet, Bernard; Paquot, Michel

    2008-07-01

    The effects of the ripeness stage of banana (Musa AAA) and plantain (Musa AAB) peels on neutral detergent fibre, acid detergent fibre, cellulose, hemicelluloses, lignin, pectin contents, and pectin chemical features were studied. Plantain peels contained a higher amount of lignin but had a lower hemicellulose content than banana peels. A sequential extraction of pectins showed that acid extraction was the most efficient to isolate banana peel pectins, whereas an ammonium oxalate extraction was more appropriate for plantain peels. In all the stages of maturation, the pectin content in banana peels was higher compared to plantain peels. Moreover, the galacturonic acid and methoxy group contents in banana peels were higher than in plantain peels. The average molecular weights of the extracted pectins were in the range of 132.6-573.8 kDa and were not dependant on peel variety, while the stage of maturation did not affect the dietary fibre yields and the composition in pectic polysaccharides in a consistent manner. This study has showed that banana peels are a potential source of dietary fibres and pectins. PMID:17931857

  9. The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene.

    PubMed

    Elitzur, Tomer; Vrebalov, Julia; Giovannoni, James J; Goldschmidt, Eliezer E; Friedman, Haya

    2010-03-01

    Six MaMADS-box genes have been cloned from the banana fruit cultivar Grand Nain. The similarity of these genes to tomato LeRIN is low and neither MaMADS2 nor MaMADS1 complement the tomato rin mutation. Nevertheless, the expression patterns, specifically in fruit and the induction during ripening and in response to ethylene and 1-MCP, suggest that some of these genes may participate in ripening. MaMADS1, 2, and 3, are highly expressed in fruit only, while the others are expressed in fruit as well as in other organs. Moreover, the suites of MaMADS-box genes and their temporal expression differ in peel and pulp during ripening. In the pulp, the increase in MaMADS2, 3, 4, and 5 expression preceded an increase in ethylene production, but coincides with the CO(2) peak. However, MaMADS1 expression in pulp coincided with ethylene production, but a massive increase in its expression occurred late during ripening, together with a second wave in the expression of MaMADS2, 3, and 4. In the peel, on the other hand, an increase in expression of MaMADS1, 3, and to a lesser degree also of MaMADS4 and 2 coincided with an increase in ethylene production. Except MaMADS3, which was induced by ethylene in pulp and peel, only MaMADS4, and 5 in pulp and MaMADS1 in peel were induced by ethylene. 1-MCP applied at the onset of the increase in ethylene production, increased the levels of MaMADS4 and MaMADS1 in pulp, while it decreased MaMADS1, 3, 4, and 5 in peel, suggesting that MaMADS4 and MaMADS1 are negatively controlled by ethylene at the onset of ethylene production only in pulp. Only MaMADS2 is neither induced by ethylene nor by 1-MCP, and it is expressed mainly in pulp. Our results suggest that two independent ripening programs are employed in pulp and peel which involve the activation of mainly MaMADS2, 4, and 5 and later on also MaMADS1 in pulp, and mainly MaMADS1, and 3 in peel. Hence, our results are consistent with MaMADS2, a SEP3 homologue, acting in the pulp upstream of the

  10. Benzothiadiazole-Mediated Induced Resistance to Colletotrichum musae and Delayed Ripening of Harvested Banana Fruit.

    PubMed

    Zhu, Xiaoyang; Lin, Huanzhang; Si, Zhenwei; Xia, Yihua; Chen, Weixin; Li, Xueping

    2016-02-24

    Benzothiadiazole (BTH) works as a plant activator. The effects of different BTH treatments and fungicides SPORGON on fruit ripening and disease incidence were investigated. The results showed that BTH treatment significantly delayed fruit ripening, maintained fruit firmness, color, and good fruit quality, and dramatically reduced the incidence of disease. BTH effectively inhibited the invasion and development of pathogenic bacteria and controlled the occurrence of disease. BTH treatment enhanced the activities of defense-related enzymes, including chitinase, phenylalanine ammonia-lyase, peroxidase, and polyphenol oxidase, increased the content of hydrogen peroxide and total antioxidant capacity, and reduced malondialdehyde content. Cellular structure analysis after inoculation confirmed that BTH treatment effectively maintained the cell structural integrity. SPORGON did not provide benefits for delaying fruit ripening or for the resistance system, while it can control the disease only during the earlier stage and not at later stages. PMID:26871966

  11. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins.

    PubMed

    Peumans, Willy J; Proost, Paul; Swennen, Rony L; Van Damme, Els J M

    2002-10-01

    Analyses of the protein content and composition revealed dramatic changes in gene expression during in situ banana (Musa spp.) fruit formation/ripening. The total banana protein content rapidly increases during the first 60 to 70 d, but remains constant for the rest of fruit formation/ripening. During the phase of rapid protein accumulation, an inactive homolog of class III chitinases accounts for up to 40% (w/v) of the total protein. Concomitant with the arrest of net protein accumulation, the chitinase-related protein (CRP) progressively decreases and several novel proteins appear in the electropherograms. Hence, CRP behaves as a fruit-specific vegetative storage protein that accumulates during early fruit formation and serves as a source of amino acids for the synthesis of ripening-associated proteins. Analyses of individual proteins revealed that a thaumatin-like protein, a beta-1,3-glucanase, a class I chitinase, and a mannose-binding lectin are the most abundant ripening-associated proteins. Because during the ripening of prematurely harvested bananas, similar changes take place as in the in situ ripening bananas, CRP present in immature fruits is a sufficient source of amino acids for a quasi-normal synthesis of ripening-associated proteins. However, it is evident that the conversion of CRP in ripening-associated proteins takes place at an accelerated rate, especially when climacteric ripening is induced by ethylene. The present report also includes a discussion of the accumulation of the major banana allergens and the identification of suitable promoters for the production of vaccines in transgenic bananas. PMID:12376669

  12. Preliminary report on a catalyst derived from induced cells of Rhodococcus rhodochrous strain DAP 96253 that delays the ripening of selected climacteric fruit: bananas, avocados, and peaches.

    PubMed

    Pierce, G E; Drago, G K; Ganguly, S; Tucker, T-A M; Hooker, J W; Jones, S; Crow, S A

    2011-09-01

    Despite the use of refrigeration, improved packaging, adsorbents, and ethylene receptor blockers, on average, nearly 40% of all fruits and vegetables harvested in the US are not consumed. Many plant products, especially fruit, continue to ripen after harvesting, and as they do so, become increasingly susceptible to mechanical injury, resulting in increased rot. Other plant products during transportation and storage are susceptible to chill injury (CI). There is a real need for products that can delay ripening or mitigate the effects of CI, yet still permit full ripeness and quality to be achieved. Preliminary results are discussed where catalyst derived from cells of Rhodococcus rhodochrous DAP 96253, grown under conditions that induced high levels of nitrile hydratase, were able to extend the ripening and thus the shelf-life of selected climacteric fruits (banana, avocado, and peach). A catalyst, when placed in proximity to, but not touching, the test fruit delayed the ripening but did not alter the final ripeness of the fruit tested. Organoleptic evaluations conducted with control peaches and with peaches exposed to, but not in contact with, the catalyst showed that the catalyst-treated peaches achieved full, natural levels of ripeness with respect to aroma, flavor, sweetness, and juice content. Furthermore, the results of delayed ripening were achieved at ambient temperatures (without the need for refrigeration). PMID:21409422

  13. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress

    PubMed Central

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  14. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress.

    PubMed

    Hu, Wei; Zuo, Jiao; Hou, Xiaowan; Yan, Yan; Wei, Yunxie; Liu, Juhua; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Auxin signaling regulates various auxin-responsive genes via two types of transcriptional regulators, Auxin Response Factors (ARF) and Aux/IAA. ARF transcription factors act as critical components of auxin signaling that play important roles in modulating various biological processes. However, limited information about this gene family in fruit crops is currently available. Herein, 47 ARF genes were identified in banana based on its genome sequence. Phylogenetic analysis of the ARFs from banana, rice, and Arabidopsis suggested that the ARFs could be divided into four subgroups, among which most ARFs from the banana showed a closer relationship with those from rice than those from Arabidopsis. Conserved motif analysis showed that all identified MaARFs had typical DNA-binding and ARF domains, but 12 members lacked the dimerization domain. Gene structure analysis showed that the number of exons in MaARF genes ranged from 5 to 21, suggesting large variation amongst banana ARF genes. The comprehensive expression profiles of MaARF genes yielded useful information about their involvement in diverse tissues, different stages of fruit development and ripening, and responses to abiotic stresses in different varieties. Interaction networks and co-expression assays indicated the strong transcriptional response of banana ARFs and ARF-mediated networks in early fruit development for different varieties. Our systematic analysis of MaARFs revealed robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MaARF genes for further functional assays in planta. These findings could lead to potential applications in the genetic improvement of banana cultivars, and yield new insights into the complexity of the control of MaARF gene expression at the transcriptional level. Finally, they support the hypothesis that ARFs are a crucial component of the auxin signaling pathway, which regulates a wide range of physiological processes. PMID:26442055

  15. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana.

    PubMed

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  16. Genome-wide analyses of the bZIP family reveal their involvement in the development, ripening and abiotic stress response in banana

    PubMed Central

    Hu, Wei; Wang, Lianzhe; Tie, Weiwei; Yan, Yan; Ding, Zehong; Liu, Juhua; Li, Meiying; Peng, Ming; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The leucine zipper (bZIP) transcription factors play important roles in multiple biological processes. However, less information is available regarding the bZIP family in the important fruit crop banana. In this study, 121 bZIP transcription factor genes were identified in the banana genome. Phylogenetic analysis showed that MabZIPs were classified into 11 subfamilies. The majority of MabZIP genes in the same subfamily shared similar gene structures and conserved motifs. The comprehensive transcriptome analysis of two banana genotypes revealed the differential expression patterns of MabZIP genes in different organs, in various stages of fruit development and ripening, and in responses to abiotic stresses, including drought, cold, and salt. Interaction networks and co-expression assays showed that group A MabZIP-mediated networks participated in various stress signaling, which was strongly activated in Musa ABB Pisang Awak. This study provided new insights into the complicated transcriptional control of MabZIP genes and provided robust tissue-specific, development-dependent, and abiotic stress-responsive candidate MabZIP genes for potential applications in the genetic improvement of banana cultivars. PMID:27445085

  17. Gene expression in the pulp of ripening bananas. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products and cDNA cloning of 25 different ripening-related mRNAs.

    PubMed

    Medina-Suárez, R; Manning, K; Fletcher, J; Aked, J; Bird, C R; Seymour, G B

    1997-10-01

    mRNA was extracted from the pulp and peel of preclimacteric (d 0) bananas (Musa AAA group, cv Grand Nain) and those exposed to ethylene gas for 24 h and stored in air alone for a further 1 (d 2) and 4 d (d 5). Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of in vitro translation products from the pulp and peel of these fruits revealed significant up-regulation of numerous transcripts during ripening. The majority of the changes were initiated by d 2, with the level of these messages increasing during the remainder of the ripening period. Pulp tissue from d 2 was used for the construction of a cDNA library. This library was differentially screened for ripening-related clones using cDNA from d-0 and d-2 pulp by a novel microtiter plate method. In the primary screen 250 up- and down-regulated clones were isolated. Of these, 59 differentially expressed clones were obtained from the secondary screen. All of these cDNAs were partially sequenced and grouped into families after database searches. Twenty-five nonredundant groups of pulp clones were identified. These encoded enzymes were involved in ethylene biosynthesis, respiration, starch metabolism, cell wall degradation, and several other key metabolic events. We describe the analysis of these clones and their possible involvement in ripening. PMID:9342865

  18. Effects of ethylene and 1-methylcyclopropene (1-MCP) on gene expression and activity profile of alpha-1,4-glucan-phosphorylase during banana ripening.

    PubMed

    Mainardi, Janaina Aparecida; Purgatto, Eduardo; Vieira, Adair; Bastos, Walter Arato; Cordenunsi, Beatriz Rosana; Oliveira do Nascimento, João Roberto; Lajolo, Franco Maria

    2006-09-20

    Starch phosphorylases are enzymes that can use starch as substrate, and they are supposed to act in both in starch synthesis and degradation. This paper reports the effects of ethylene and 1-methylcyclopropene (1-MCP) on the degradation of starch and phosphorylase activity and gene expression. The results indicate that phosphorylase activity is induced during ripening and that it is associated with the onset of starch degradation. The regulation of banana phosphorylase activity is mainly dependent on gene expression, and the absence of ethylene perception by 1-MCP had a positive effect. However, this effect can be precluded by increased levels of ethylene, both autocatalytic and exogenous. PMID:16968096

  19. Characterization of cultivar differences in beta-1,3 glucanase gene expression, glucanase activity and fruit pulp softening rates during fruit ripening in three naturally occurring banana cultivars.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Sengupta, Dibyendu N

    2009-11-01

    beta-1,3 glucanase (E.C.3.2.1.39) is the key enzyme involved in the hydrolytic cleavage of 1,3 beta-D glucosidic linkages in beta-1,3 glucans. This work describes a comparative analysis of expression patterns of beta-1,3 glucanase gene in relation to changes in fruit pulp softening rates in three banana cultivars, Rasthali (AAB), Kanthali (AB), and Monthan (ABB). Analysis of transcript and protein levels of beta-1,3 glucanase gene during ripening revealed differential timing in expression of the gene which correlated well with the variation in enzymatic activity of glucanase and fruit pulp softening rates in the three cultivars. Exogenously applied ethylene strongly induced beta-1,3 glucanase expression during the early ripening days in Rasthali, while the expression of the gene was marginally stimulated following ethylene treatment in preclimacteric Kanthali fruit. Conversely, in Monthan, beta-1,3 glucanase expression was very low throughout the ripening stages, and ethylene treatment did not induce the expression of the gene in this cultivar. Analysis of glucanase activity using protein extracts from unripe and ripe fruit of Monthan with crude cell wall polysaccharide fractions (used as substrate) indicated that the natural substrate for glucanase remained almost unutilized in this cultivar due to low in vivo glucanase activity. Furthermore, the recombinant beta-1,3 glucanase protein, overexpressed in E. coli, showed requirement for substrates with contiguous beta-1,3 linkages for optimal activity. Overall, our results provide new information on the expression profile of beta-1,3 glucanase gene in connection with the pattern of changes in fruit firmness at the physiological and molecular levels during ripening in three banana cultivars. PMID:19697038

  20. Characterization of differential ripening pattern in association with ethylene biosynthesis in the fruits of five naturally occurring banana cultivars and detection of a GCC-box-specific DNA-binding protein.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Saha, Progya Paramita; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2008-07-01

    MA-ACS1 and MA-ACO1 are the two major ripening genes in banana and play crucial role in the regulation of ethylene production during ripening. Here, we report a comparative ripening pattern in five different naturally occurring banana cultivars namely Cavendish (AAA), Rasthali (AAB), Kanthali (AB), Poovan (AAB) and Monthan (ABB), which have distinct genome composition. We found a distinct variation in the climacteric ethylene production and in-vivo ACC oxidase activity level during the ripening stages in the five cultivars. We identified the cDNAs for MA-ACS1 and MA-ACO1 from the five cultivars and studied the transcript accumulation patterns of the two genes, which correlated well with the differential timing in the expression of these two genes during ripening. The GCC-box is one of the ethylene-responsive elements (EREs) found in the promoters of many ethylene-inducible genes. We have identified a GCC-box motif (putative ERE) in the promoters of MA-ACS1 and MA-ACO1 in banana cultivars. DNA-protein interaction studies revealed the presence of a GCC-box-specific DNA-binding activity in the fruit nuclear extract and such DNA-binding activity was enhanced following ethylene treatment. South-Western blotting revealed a 25-kDa nuclear protein that binds specifically to GCC-box DNA in the climacteric banana fruit. Together, these results indicate the probable involvement of the GCC-box motif as the cis-acting ERE in the regulation of MA-ACS1 and MA-ACO1 during ripening in banana fruits via binding of specific ERE-binding protein. PMID:18449546

  1. Effect of 1-Methylcyclopropene coupled with controlled atmosphere storage on the ripening and quality of ‘Cavendish’ bananas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fresh-fruit banana is well known to have a short-life after harvest. A short pre-pilot study was carried out to test the effect of atmospheric condition exposure to 1-MCP on the quality, limited to cosmetic and peel appearance, and shelf life of fresh-fruit bananas. Low level of O2 (3 kPa) and high ...

  2. Understanding the molecular mechanism of transcriptional regulation of banana Sucrose phosphate synthase (SPS) gene during fruit ripening: an insight into the functions of various cis-acting regulatory elements.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2010-05-01

    Recently, we have reported the characterization of promoter region of Sucrose phosphate synthase (SPS) gene in banana and investigated the role of some cis-elements/motifs, present in the promoter of SPS, in the transcriptional regulation of the gene. DNA-protein interaction studies have demonstrated the presence of specific trans-acting factors which showed specific interactions with ethylene, auxin, low temperature and light responsive elements in regulating SPS transcription. Transient expression analyses have demonstrated the functional significance of the various cis-acting regulatory elements present in banana SPS promoter in regulating SPS expression during ripening. (1) Here, we have further discussed the possible role of these regulatory sequences in the regulation of transcriptional network and comment on their function in relation to sucrose metabolism during banana fruit ripening. PMID:20139735

  3. Genome-wide identification and expression analysis of the mitogen-activated protein kinase gene family from banana suggest involvement of specific members in different stages of fruit ripening.

    PubMed

    Asif, Mehar Hasan; Lakhwani, Deepika; Pathak, Sumya; Bhambhani, Sweta; Bag, Sumit K; Trivedi, Prabodh Kumar

    2014-03-01

    Mitogen-activated protein kinases (MAPKs) are important components of the tripartite mitogen-activated protein kinase signaling cascade and play an important role in plant growth and development. Although members of the MAPK gene family have been identified in model plants, little information is available regarding this gene family in fruit crops. In this study, we carried out a computational analysis using the Musa Genome database to identify members of the MAPK gene family in banana, an economically important crop and the most popular fruit worldwide. Our analysis identified 25 members of the MAP kinase (MAPK or MPK) gene family. Phylogenetic analyses of MPKs in Arabidopsis, Oryza, and Populus have classified these MPKs into four subgroups. The presence of conserved domains in the deduced amino acid sequences, phylogeny, and genomic organization strongly support their identity as members of the MPK gene family. Expression analysis during ethylene-induced banana fruit ripening suggests the involvement of several MPKs in the ethylene signal transduction pathway that are necessary for banana fruit ripening. Analysis of the cis-regulatory elements in the promoter regions and the involvement of the identified MPKs in various cellular processes, as analyzed using Pathway Studio, suggest a role for the banana MPK gene family in diverse functions related to growth, development, and the stress response. This report is the first concerning the identification of members of a gene family and the elucidation of their role in various processes using the Musa Genome database. PMID:24275941

  4. Molecular characterization and differential expression of beta-1,3-glucanase during ripening in banana fruit in response to ethylene, auxin, ABA, wounding, cold and light-dark cycles.

    PubMed

    Roy Choudhury, Swarup; Roy, Sujit; Singh, Sanjay Kumar; Sengupta, Dibyendu N

    2010-08-01

    beta-1,3-Glucanases (E.C. 3.2.1.39) are widely distributed enzyme among bacteria, fungi, and higher plants. Analyses of accumulation levels of beta-1,3-glucanase protein in various tissues in banana have clearly indicated abundance of beta-1,3-glucanase protein accumulation in ripe pulp tissue. After cloning of beta-1,3-glucanase from banana pulp (cultivar Cavendish), we have carried out an in silico analysis to investigate the sequential, structural, and phylogenetic characteristics of the putative banana beta-1,3-glucanase protein. As like other ripening specific genes, beta-1,3-glucanase is regulated in response to a wide variety of factors. Therefore, we have analyzed the transcript accumulation pattern and protein levels of beta-1,3-glucanase in response to ethylene, auxin, ABA, wounding and, low temperature in preclimacteric banana fruit. Expression profile analyses have indicated that whereas exogenous application of ethylene strongly stimulated beta-1,3-glucanase transcript accumulation, ABA partially induced the expression of the gene. On the other hand, wound treatment did not induce beta-1,3-glucanase expression. Conversely, auxin and cold treatment negatively regulated beta-1,3-glucanase gene expression and thus inhibited glucanase activity. In addition, beta-1,3-glucanase transcript level was markedly decreased by constant exposure to white light. Protein level and enzymatic activity of beta-1,3-glucanase were substantially increased with considerable decrease in fruit firmness by ethylene treatment and reduced exposure to white light conditions as compared with other treatments. Together, the overall study of beta-1,3-glucanase expression pattern, glucanase activity, and changes in fruit firmness during ripening in various conditions suggest the possible physiological function of beta-1,3-glucanase in fruit pulp softening. PMID:20467747

  5. Characterization of transcriptional profiles of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding, cold and different photoperiods during ripening in banana fruit.

    PubMed

    Choudhury, Swarup Roy; Roy, Sujit; Sengupta, Dibyendu N

    2008-12-01

    The ripening-specific genes MA-ACS1 (Musa acuminata ACC synthase1) and MA-ACO1 (M. acuminata ACC oxidase 1) are regulated in response to a wide variety of factors. Here, we have studied the differential transcript accumulation pattern and protein levels of MA-ACS1 and MA-ACO1 genes in response to ethylene, auxin, wounding and low temperature in preclimacteric banana fruit. We have shown that exogenous application of ethylene and auxin induced the expression of MA-ACS1, while MA-ACO1 showed marginal expression following ethylene treatment in preclimacteric stage. Auxin did not induce MA-ACO1 expression. Thus, auxin-treated banana fruits showed lower ethylene production rate as compared to ethylene-treated fruits. Conversely, wounding and cold treatment down-regulated the expression of both the genes and thus inhibited ethylene production. Furthermore, we have detected a GCC-box putative ethylene-responsive element (ERE)- and an auxin-responsive element (ARE)-specific DNA-binding activity in the banana pulp and studied the ethylene and auxin responsive characteristics of the GCC-box and ARE (TGTCTC) containing synthetic promoter fragments. In addition, we have detected an enhanced ethylene production rate and expression level of MA-ACS1 and MA-ACO1 genes along with a strong GCC-box-specific DNA-binding activity following exposure to constant dark period for 8d at the preclimacteric stage. Together, our study provides interesting information about the regulation of expression of MA-ACS1 and MA-ACO1 genes in response to various factors during ripening in banana fruit, which may have physiological relevance concerning ethylene biosynthesis during post-harvest conditions. PMID:18554749

  6. Banana Transcription Factor MaERF11 Recruits Histone Deacetylase MaHDA1 and Represses the Expression of MaACO1 and Expansins during Fruit Ripening1[OPEN

    PubMed Central

    Han, Yan-Chao; Kuang, Jian-Fei; Xiao, Yun-Yi; Fu, Chang-Chun; Wang, Jun-Ning

    2016-01-01

    Phytohormone ethylene controls diverse developmental and physiological processes such as fruit ripening via modulation of ethylene signaling pathway. Our previous study identified that ETHYLENE RESPONSE FACTOR11 (MaERF11), a transcription factor in the ethylene signaling pathway, negatively regulates the ripening of banana, but the mechanism for the MaERF11-mediated transcriptional regulation remains largely unknown. Here we showed that MaERF11 has intrinsic transcriptional repression activity in planta. Electrophoretic mobility shift assay and chromatin immunoprecipitation analyses demonstrated that MaERF11 binds to promoters of three ripening-related Expansin genes, MaEXP2, MaEXP7 and MaEXP8, as well as an ethylene biosynthetic gene MaACO1, via the GCC-box motif. Furthermore, expression patterns of MaACO1, MaEXP2, MaEXP7, and MaEXP8 genes are correlated with the changes of histone H3 and H4 acetylation level during fruit ripening. Moreover, we found that MaERF11 physically interacts with a histone deacetylase, MaHDA1, which has histone deacetylase activity, and the interaction significantly strengthens the MaERF11-mediated transcriptional repression of MaACO1 and Expansins. Taken together, these findings suggest that MaERF11 may recruit MaHDA1 to its target genes and repress their expression via histone deacetylation. PMID:27208241

  7. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest.

    PubMed

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  8. Implication of Abscisic Acid on Ripening and Quality in Sweet Cherries: Differential Effects during Pre- and Post-harvest

    PubMed Central

    Tijero, Verónica; Teribia, Natalia; Muñoz, Paula; Munné-Bosch, Sergi

    2016-01-01

    Sweet cherry, a non-climacteric fruit, is usually cold-stored during post-harvest to prevent over-ripening. The aim of the study was to evaluate the role of abscisic acid (ABA) on fruit growth and ripening of this fruit, considering as well its putative implication in over-ripening and effects on quality. We measured the endogenous concentrations of ABA during the ripening of sweet cherries (Prunus avium L. var. Prime Giant) collected from orchard trees and in cherries exposed to 4°C and 23°C during 10 days of post-harvest. Furthermore, we examined to what extent endogenous ABA concentrations were related to quality parameters, such as fruit biomass, anthocyanin accumulation and levels of vitamins C and E. Endogenous concentrations of ABA in fruits increased progressively during fruit growth and ripening on the tree, to decrease later during post-harvest at 23°C. Cold treatment, however, increased ABA levels and led to an inhibition of over-ripening. Furthermore, ABA levels positively correlated with anthocyanin and vitamin E levels during pre-harvest, but not during post-harvest. We conclude that ABA plays a major role in sweet cherry development, stimulating its ripening process and positively influencing quality parameters during pre-harvest. The possible influence of ABA preventing over-ripening in cold-stored sweet cherries is also discussed. PMID:27200070

  9. Postharvest quality of specialty bananas after irradiation for quarantine security

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit quality and ripening of 'Dwarf Brazilian' ("apple") bananas were determined following x-ray irradiation for disinfestation of quarantine pests. The USDA-approved minimum absorbed dosage for banana exports from Hawaii is either 400 Gy with inspection for the presence of banana moth, or 150 Gy ...

  10. Spatial and temporal variation in nematocide leaching, management implications for a Costa Rican banana plantation

    NASA Astrophysics Data System (ADS)

    Stoorvogel, J. J.; Kooistra, L.; Bouma, J.

    Leaching of excess applications of agro-chemicals is common in both western and tropical agricultural. Although the pollution originates from non-point sources, point models are frequently used to assess areal pollution. Average "representative soil profiles" and average climatic data in terms of rainfall, temperature etc. are often used in modeling studies. However, variability both in space and time is known to occur. As a result, modeled soil behavior, like leaching of agro-chemicals, may be similarly variable and concentrated on specific niches. Linear aggregation of point results is extremely dangerous and may lead to serious over- or under-estimations of environmental effects. A risk assessment in space and time has been carried out for nematocide use in a Costa Rican banana plantation. A detailed soil survey was made and pesticide behavior in the soil was measured in terms of half-life times and fixation coefficients. Nematocide leaching was modeled using the LEACHP model for representative soil profiles as well as individual augerings. Results show that simulated pesticide leaching is restricted to small areas in the plantation and only in particular periods of the year. This spatial variation in nematocide leaching is not captured using representative profiles. Better timing of the applications and taking into account soil variation can significantly reduce nematocide leaching. Threshold values for nematocide leaching are not available. Therefore, questions about the restrictions on nematocide leaching at farm level or point level are evaluated in terms of potential implications for farm management.

  11. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas*

    PubMed Central

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-01-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  12. Effect of physiological harvest stages on the composition of bioactive compounds in Cavendish bananas.

    PubMed

    Bruno Bonnet, Christelle; Hubert, Olivier; Mbeguie-A-Mbeguie, Didier; Pallet, Dominique; Hiol, Abel; Reynes, Max; Poucheret, Patrick

    2013-04-01

    The combined influence of maturation, ripening, and climate on the profile of bioactive compounds was studied in banana (Musa acuminata, AAA, Cavendish, cv. Grande Naine). Their bioactive compounds were determined by the Folin-Ciocalteu assay and high-performance thin layer chromatographic (HPTLC) method. The polyphenol content of bananas harvested after 400 degree days remained unchanged during ripening, while bananas harvested after 600 and 900 degree days exhibited a significant polyphenol increase. Although dopamine was the polyphenol with the highest concentration in banana peels during the green developmental stage and ripening, its kinetics differed from the total polyphenol profile. Our results showed that this matrix of choice (maturation, ripening, and climate) may allow selection of the banana (M. acuminata, AAA, Cavendish, cv. Grande Naine) status that will produce optimal concentrations of identified compounds with human health relevance. PMID:23549844

  13. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening

    PubMed Central

    Zhu, Benzhong; Yang, Yongfang; Li, Ran; Fu, Daqi; Wen, Liwei; Luo, Yunbo; Zhu, Hongliang

    2015-01-01

    Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening. PMID:25948705

  14. Remote quality monitoring in the banana chain

    PubMed Central

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-01-01

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  15. Remote quality monitoring in the banana chain.

    PubMed

    Jedermann, Reiner; Praeger, Ulrike; Geyer, Martin; Lang, Walter

    2014-06-13

    Quality problems occurring during or after sea transportation of bananas in refrigerated containers are mainly caused by insufficient cooling and non-optimal atmospheric conditions, but also by the heat generated by respiration activity. Tools to measure and evaluate these effects can largely help to reduce losses along the banana supply chain. The presented green life model provides a tool to predict the effect of deviating temperature, relative humidity, and CO2 and O2 gas concentrations on the storage stability of bananas. A second thermal model allows evaluation of the cooling efficiency, the effect of changes in packaging and stowage and the amount of respiration heat from the measured temperature curves. Spontaneous ripening causes higher respiration heat and CO2 production rate. The resulting risk for creation of hot spots increases in positions in which the respiration heat exceeds the available cooling capacity. In case studies on the transport of bananas from Costa Rica to Europe, we validated the models and showed how they can be applied to generate automated warning messages for containers with reduced banana green life or with temperature problems and also for remote monitoring of the ripening process inside the container. PMID:24797132

  16. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana

    PubMed Central

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  17. Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana.

    PubMed

    Hu, Wei; Hou, Xiaowan; Huang, Chao; Yan, Yan; Tie, Weiwei; Ding, Zehong; Wei, Yunxie; Liu, Juhua; Miao, Hongxia; Lu, Zhiwei; Li, Meiying; Xu, Biyu; Jin, Zhiqiang

    2015-01-01

    Aquaporins (AQPs) function to selectively control the flow of water and other small molecules through biological membranes, playing crucial roles in various biological processes. However, little information is available on the AQP gene family in bananas. In this study, we identified 47 banana AQP genes based on the banana genome sequence. Evolutionary analysis of AQPs from banana, Arabidopsis, poplar, and rice indicated that banana AQPs (MaAQPs) were clustered into four subfamilies. Conserved motif analysis showed that all banana AQPs contained the typical AQP-like or major intrinsic protein (MIP) domain. Gene structure analysis suggested the majority of MaAQPs had two to four introns with a highly specific number and length for each subfamily. Expression analysis of MaAQP genes during fruit development and postharvest ripening showed that some MaAQP genes exhibited high expression levels during these stages, indicating the involvement of MaAQP genes in banana fruit development and ripening. Additionally, some MaAQP genes showed strong induction after stress treatment and therefore, may represent potential candidates for improving banana resistance to abiotic stress. Taken together, this study identified some excellent tissue-specific, fruit development- and ripening-dependent, and abiotic stress-responsive candidate MaAQP genes, which could lay a solid foundation for genetic improvement of banana cultivars. PMID:26307965

  18. Characterization and expression analysis of a banana gene encoding 1-aminocyclopropane-1-carboxylate oxidase.

    PubMed

    Huang, P L; Do, Y Y; Huang, F C; Thay, T S; Chang, T W

    1997-04-01

    A cDNA encoding the banana 1-aminocyclopropane-1-carboxylate (ACC) oxidase has previously been isolated from a cDNA library that was constructed by extracting poly(A)+ RNA from peels of ripening banana. This cDNA, designated as pMAO2, has 1,199 bp and contains an open reading frame of 318 amino acids. In order to identify ripening-related promoters of the banana ACC oxidase gene, pMAO2 was used as a probe to screen a banana genomic library constructed in the lambda EMBL3 vector. The banana ACC oxidase MAO2 gene has four exons and three introns, with all of the boundaries between these introns and exons sharing a consensus dinucleotide sequence of GT-AG. The expression of MAO2 gene in banana begins after the onset of ripening (stage 2) and continuous into later stages of the ripening process. The accumulation of MAO2 mRNA can be induced by 1 microliter/l exogenous ethylene, and it reached steady state level when 100 microliters/l exogenous ethylene was present. PMID:9137825

  19. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    PubMed

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes. PMID:17185740

  20. Let's Go Bananas.

    ERIC Educational Resources Information Center

    Brown, Helen; And Others

    1995-01-01

    Presents a hands-on primary science unit of activities designed to teach students concepts about bananas. Real bananas are used as students investigate and use the process skills of observation, measurement, and communication. Using bananas as a theme, science, mathematics, social studies, music, and writing are integrated into the curriculum of…

  1. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit.

    PubMed

    Liu, Ju-Hua; Zhang, Jing; Jia, Cai-Hong; Zhang, Jian-Bin; Wang, Jia-Shui; Yang, Zi-Xian; Xu, Bi-Yu; Jin, Zhi-Qiang

    2013-01-01

    KEY MESSAGE : The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening. The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening. PMID:23007689

  2. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programs of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and...

  3. Generalized banana-drift transport

    SciTech Connect

    Mynick, H.E.

    1985-10-01

    The theory of tokamak ripple transport in the banana-drift and ripple-plateau regimes is extended in a number of directions. The theory is valid for small values of the toroidal periodicity number n of the perturbation, as well as for the moderate values (n approx. 10 to 20) previously assumed. It is shown that low-n perturbations can produce much greater transport than the larger-n perturbations usually studied. In addition, the ripple perturbation is allowed arbitrary values of poloidal mode number m and frequency ..omega.., making it applicable to the transport induced by MHD modes. Bounce averaging is avoided, so the theory includes the contributions to transport from all harmonics of the bounce frequency, providing a continuous description of the transition from the banana drift to the ripple-plateau regime. The implications of the theory for toroidal rotation in tokamaks are considered.

  4. Anaphylaxis caused by banana.

    PubMed

    Savonius, B; Kanerva, L

    1993-04-01

    An anaphylactic reaction following ingestion of banana occurred in a 32-year-old female cook. The sensitization to banana occurred simultaneously with the development of occupational asthma caused by grain flour. The patient was sensitized to a wide range of airborne and ingestible proteins but not to rubber latex. PMID:8506993

  5. Regulation of fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit ripening is a process unique to plants in which floral seed bearing organs mature into fleshy structures attractive and nutritious to seed dispersing organisms. While the specific characteristics of ripening fruit vary among species, a number of general themes are exhibited in many fleshy rip...

  6. Sugarcane ripener update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical sugarcane ripeners glyphosate and trinexapac-ethyl play an important role in the Louisiana sugarcane industry. Their use allows for earlier starts to the sugarcane harvest season, increase recoverable sucrose (TRS) at the mill, and increases harvest efficiency. Response to ripeners oft...

  7. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    PubMed

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption. PMID:27250565

  8. Effect of chitosan coating and bamboo FSC (fruit storage chamber) to expand banana shelf life

    NASA Astrophysics Data System (ADS)

    Pratiwi, Aksarani'Sa; Dwivany, Fenny M.; Larasati, Dwinita; Islamia, Hana Cahya; Martien, Ronny

    2015-09-01

    Chitosan has been widely used as fruit preserver and proven to extend the shelf life of many fruits, such as banana. However, banana producers and many industries in Indonesia still facing storage problems which may lead to mechanical damage of the fruits and ripening acceleration. Therefore, we have designed food storage chamber (FSC) based on bamboo material. Bamboo was selected because of material abundance in Indonesia, economically effective, and not causing an autocatalytic reaction to the ethylene gas produced by the banana. In this research, Cavendish banana that has reached the maturity level of mature green were coated with 1% chitosan and placed inside the FSC. As control treatments, uncoated banana was also placed inside the FSC as well as uncoated banana that were placed at open space. All of the treatments were placed at 25°C temperature and observed for 9 days. Water produced by respiration was reduced by the addition of charcoal inside a fabric pouch. The result showed that treatment using FSC and chitosan can delay ripening process.

  9. The Banana Genome Hub

    PubMed Central

    Droc, Gaëtan; Larivière, Delphine; Guignon, Valentin; Yahiaoui, Nabila; This, Dominique; Garsmeur, Olivier; Dereeper, Alexis; Hamelin, Chantal; Argout, Xavier; Dufayard, Jean-François; Lengelle, Juliette; Baurens, Franc-Christophe; Cenci, Alberto; Pitollat, Bertrand; D’Hont, Angélique; Ruiz, Manuel; Rouard, Mathieu; Bocs, Stéphanie

    2013-01-01

    Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems. Database URL: http://banana-genome.cirad.fr/ PMID:23707967

  10. Natural Radioactivity in Bananas

    SciTech Connect

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-07

    The content of {sup 40}K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, Sao Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  11. Natural Radioactivity in Bananas

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Medina, N. H.; Okuno, E.; Umisedo, N. K.

    2008-08-01

    The content of 40K natural radionuclide in bananas (Musa sapientum) from the Vale do Ribeira region, São Paulo, Brazil, has been measured. We have collected several samples of bananas prata and nanica, its peels, leaves, and also different soils where the banana tree was planted, such as soil with a standard amount of fertilizer, the fertilizer itself and also soil without fertilizer for comparison. We have used the gamma-ray spectroscopy technique with a NaI(T1) crystal inside a 12 cm thick lead shield to detect the gamma-radiation. The results indicate that only part of the available potassium is absorbed by the plant, which is mainly concentrated in the banana peel.

  12. Preinduction cervical ripening.

    PubMed

    Thiery, M

    1983-01-01

    This work reviews the evolution of cervical ripening procedures and discusses the most effective current techniques. Current knowledge of the process of spontaneous ripening of the cervix is briefly assessed, but the review concentrates on methodological aspects and the clinical results of preinduction cervical ripening. The historical development of mechanical and pharmacologic ripening procedures is examined, including enzymes, oxytocin, relaxin, corticosteriods, estrogens administered parenterally or locally, and prostaglandins (PGs) administered intravenously, orally, locally, and intravaginally. 3 effective procedures for preinduction cervical ripening are identified and described in greater detail: the catheter technique and local and vaginal administration of PGs. The extraamniotic catheter technique is simple, effective, and safe and is recommended for patients with not totally unripe cervixes and for whom PGs are unavailable or contraindicated. Single-dose extraamniotic instillation of PGE2 in Tylose gel was found to be highly effective for priming the unfavorable cervix before conventional labor induction. In some patients the procedure induces labor. The technique is easy to use, well accepted by the woman, and safe when applied appropriately to carefully selected patients. PGF2alpha gel has been less thoroughly studied. Electronic monitoring at the ripening stage is recommended for patients at risk, and even in low-risk cases much larger series will require study before conclusions can be reached about safety. Injection of PG gel into the cervical canal is less invasive than extraamniotic instillation, but no definite conclusions about its safety are possible due to small series and dissimilar clinical protocols. Pericervical administration of PGE2 and PGF2 alpha and intracervical and intraamniotic tablets of PGE2 are briefly assessed. Adoption of the intravaginal route has been a major step in the development of ripening techniques. 3 types of media

  13. Going Bananas over The Rainforest

    ERIC Educational Resources Information Center

    Curriculum Review, 2005

    2005-01-01

    With a market of nearly $5 billion a year, the banana is the world's most popular fruit, and the most important food crop after rice, wheat, and maize. Banana businesses are economic pillars in many tropical countries, providing millions of jobs for rural residents. But, for much of its history, the banana industry was notorious for destructive…

  14. Fruit ripening mutants yield insight into ripening control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit ripening is a developmental process exclusive to plants whereby mature seed-bearing organs undergo physiological and metabolic changes promoting seed dispersal. Molecular investigations into ripening control mechanisms have been aided by the recent cloning of tomato ripening genes known previ...

  15. Glycolysis at the climacteric of bananas.

    PubMed

    Ball, K L; Green, J H; ap Rees, T

    1991-04-10

    This work was carried out to investigate the relative roles of phosphofructokinase and pyrophosphate-fructose-6-phosphate 1-phosphotransferase during the increased glycolysis at the climacteric in ripening bananas (Musa cavendishii Lamb ex Paxton). Fruit were ripened in the dark in a continuous stream of air in the absence of ethylene. CO2 production, the contents of glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and PPi; and the maximum catalytic activities of pyrophosphate-fructose-6-phosphate 1-phosphotransferase, 6-phosphofructokinase, pyruvate kinase and phosphoenolpyruvate carboxylase were measured over a 12-day period that included the climacteric. Cytosolic fructose-1,6- bisphosphatase could not be detected in extracts of climacteric fruit. The peak of CO2 production was preceded by a threefold rise in phosphofructokinase, and accompanied by falls in fructose 6-phosphate and glucose 6-phosphate, and a rise in fructose 1,6-bisphosphate. No change in pyrophosphate-fructose-6-phosphate 1-phosphotransferase or pyrophosphate was found. It is argued that phosphofructokinase is primarily responsible for the increased entry of fructose 6-phosphate into glycolysis at the climacteric. PMID:1849821

  16. Biochemical and In-silico Studies on Pectin Methylesterase from G9 Variety of Musa acuminata for Delayed Ripening.

    PubMed

    Verma, Charu; R K, Singh; Singh, Ram B; Mishra, Sanjay

    2015-01-01

    Ripening of fruit is a very important process but in some fruits early ripening leads to a great damage during long distance transportation. There are various biochemical changes taking place during the phase of ripening of fruit such as changes in respiration, aroma, flavor, ethylene production and activity of cell wall degrading enzymes. Some important cell wall degrading enzymes are Polygalacturonase (PG), Pectin methylesterase (PME), Pectin lyase, RGase. PME is known to act as a cell wall hydrolyzing enzyme, responsible for demethyl esterification of cell wall polygalacturonan. The present study includes the biochemical and molecular characterization of PME from Grand naine variety of Musa acuminata (banana). This study also deals with the in-silico study reflecting inhibition of PME activity in context to delayed ripening in banana. It mainly deals with the identification of a PME1 gene from Grand naine variety of banana. The expression of this gene is related with the process of ripening. The expression of PME1 gene was observed to be peaked on 3(rd) day in ethylene treated samples of banana but the activity in untreated samples called control was rather slow and then there was a sudden decrease in their activity in both treated as well as untreated samples. With the help of in-silico study, we observed that banana has maximum homology with carrot by using cross species analysis.The designed model has been reported to be of good quality on the basis of its verification and validation. The designed model was observed to be appropriate for docking. The information of binding sites of ligand provides new insights into the predictable functioning of relevant protein. PMID:25926894

  17. Biochemical and In-silico Studies on Pectin Methylesterase from G9 Variety of Musa acuminata for Delayed Ripening

    PubMed Central

    Verma, Charu; R.K, Singh; Singh, Ram B; Mishra, Sanjay

    2015-01-01

    Ripening of fruit is a very important process but in some fruits early ripening leads to a great damage during long distance transportation. There are various biochemical changes taking place during the phase of ripening of fruit such as changes in respiration, aroma, flavor, ethylene production and activity of cell wall degrading enzymes. Some important cell wall degrading enzymes are Polygalacturonase (PG), Pectin methylesterase (PME), Pectin lyase, RGase. PME is known to act as a cell wall hydrolyzing enzyme, responsible for demethyl esterification of cell wall polygalacturonan. The present study includes the biochemical and molecular characterization of PME from Grand naine variety of Musa acuminata (banana). This study also deals with the in-silico study reflecting inhibition of PME activity in context to delayed ripening in banana. It mainly deals with the identification of a PME1 gene from Grand naine variety of banana. The expression of this gene is related with the process of ripening. The expression of PME1 gene was observed to be peaked on 3rd day in ethylene treated samples of banana but the activity in untreated samples called control was rather slow and then there was a sudden decrease in their activity in both treated as well as untreated samples. With the help of in-silico study, we observed that banana has maximum homology with carrot by using cross species analysis.The designed model has been reported to be of good quality on the basis of its verification and validation. The designed model was observed to be appropriate for docking. The information of binding sites of ligand provides new insights into the predictable functioning of relevant protein. PMID:25926894

  18. Purification and characterization of cytosolic pyruvate kinase from banana fruit.

    PubMed Central

    Turner, W L; Plaxton, W C

    2000-01-01

    Cytosolic pyruvate kinase (PK(c)) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7 micromol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240 kDa homotetramer composed of subunits of 57 kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of V(max)/K(m) for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH 6.9 and 7.5. PK(c) activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg(2+) and K(+) respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg(2+) and K(+) (K(m) values of 0.098, 0.12, 0.27 and 0.91 mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PK(c) by L-glutamate. The allosteric features of banana PK(c) are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807-816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas. PMID:11104698

  19. Genetic networks influencing fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato is a model for ripening control and the basis of many characterized genes underlying this process. Cloning of the CNR, RIN and NOR genes defined the first ripening-specific transcription factors and provided insight into a ripening control system upstream of ethylene. RIN is a central player ...

  20. Microbiology of Ripening Honey

    PubMed Central

    Ruiz-Argueso, T.; Rodriguez-Navarro, A.

    1975-01-01

    Two main groups of bacteria, classified as Gluconobacter and Lactobacillus, are present in ripening honey. A third bacterial group, classified as Zymomonas, and several types of yeast are occasionally isolated. Both in natural honey and in synthetic syrup the bacterial population decreases in the course of the ripening process. Lactobacillus and Gluconobacter disappear after minimum moisture (about 18%) is reached, but the former does so sooner than the latter. The presence of these bacteria in different parts of the bee has been also investigated. PMID:16350044

  1. Ripening and postharvest deterioration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    True ripening of sugarcane will result in sucrose mass increases and not only increases in sucrose content. Nitrogen, crop age, temperature and water stress have been described in the literature as the main factors that influence the direct or indirect production of sucrose. The roles of these facto...

  2. Ethylene and Fruit Ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments designed to down-regulate specific tomato ethylene receptor isoforms using antisense suppression have been reported for LeETR1, NR and LeETR4. Down-regulation of LeETR1 expression in transgenic plants did not alter fruit ripening but resulted in plants with shorter internodes and reduce...

  3. How Do Fruits Ripen?

    ERIC Educational Resources Information Center

    Sargent, Steven A.

    2005-01-01

    A fruit is alive, and for it to ripen normally, many biochemical reactions must occur in a proper order. After pollination, proper nutrition, growing conditions, and certain plant hormones cause the fruit to develop and grow to proper size. During this time, fruits store energy in the form of starch and sugars, called photosynthates because they…

  4. Prototheca associated with banana.

    PubMed

    Pore, R S

    1985-06-01

    Prototheca stagnora was found to be a habitant of older harvested banana (Musa sapientum) and plantain (M. paradisiaca) stumps while P. wickerhamii colonized fresh Musa sp. stumps and flower bract water of Heliconia sp. While Prototheca sp. were known to habituate woody plants, this is the first evidence that herbaceous plants also serve as habitats. PMID:4033739

  5. Total soluble solids from banana: evaluation and optimization of extraction parameters.

    PubMed

    Carvalho, Giovani B M; Silva, Daniel P; Santos, Júlio C; Izário Filho, Hélcio J; Vicente, António A; Teixeira, José A; Felipe, Maria das Graças A; Almeida e Silva, João B

    2009-05-01

    Banana, an important component in the diet of the global population, is one of the most consumed fruits in the world. This fruit is also very favorable to industry processes (e.g., fermented beverages) due to its rich content on soluble solids and minerals, with low acidity. The main objective of this work was to evaluate the influence of factors such as banana weight and extraction time during a hot aqueous extraction process on the total soluble solids content of banana. The extract is to be used by the food and beverage industries. The experiments were performed with 105 mL of water, considering the moisture of the ripe banana (65%). Total sugar concentrations were obtained in a beer analyzer and the result expressed in degrees Plato (degrees P, which is the weight of the extract or the sugar equivalent in 100 g solution at 20 degrees C), aiming at facilitating the use of these results by the beverage industries. After previous studies of characterization of the fruit and of ripening performance, a 2(2) full-factorial star design was carried out, and a model was developed to describe the behavior of the dependent variable (total soluble solids) as a function of the factors (banana weight and extraction time), indicating as optimum conditions for extraction 38.5 g of banana at 39.7 min. PMID:19082923

  6. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments

    PubMed Central

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L−1 of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox–oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  7. Proteome changes in banana fruit peel tissue in response to ethylene and high-temperature treatments.

    PubMed

    Du, Lina; Song, Jun; Forney, Charles; Palmer, Leslie Campbell; Fillmore, Sherry; Zhang, ZhaoQi

    2016-01-01

    Banana (Musa AAA group) is one of the most consumed fruits in the world due to its flavor and nutritional value. As a typical climacteric fruit, banana responds to ethylene treatment, which induces rapid changes of color, flavor (aroma and taste), sweetness and nutritional composition. It has also been reported that ripening bananas at temperatures above 24 °C inhibits chlorophyll breakdown and color formation but increases the rate of senescence. To gain fundamental knowledge about the effects of high temperature and ethylene on banana ripening, a quantitative proteomic study employing multiplex peptide stable isotope dimethyl labeling was conducted. In this study, green (immature) untreated banana fruit were subjected to treatment with 10 μL L(-1) of ethylene for 24 h. After ethylene treatment, treated and untreated fruit were stored at 20 or 30 °C for 24 h. Fruit peel tissues were then sampled after 0 and 1 day of storage, and peel color and chlorophyll fluorescence were evaluated. Quantitative proteomic analysis was conducted on the fruit peels after 1 day of storage. In total, 413 common proteins were identified and quantified from two biological replicates. Among these proteins, 91 changed significantly in response to ethylene and high-temperature treatments. Cluster analysis on these 91 proteins identified 7 groups of changed proteins. Ethylene treatment and storage at 20 °C induced 40 proteins that are correlated with pathogen resistance, cell wall metabolism, ethylene biosynthesis, allergens and ribosomal proteins, and it repressed 36 proteins that are associated with fatty acid and lipid metabolism, redox-oxidative responses, and protein biosynthesis and modification. Ethylene treatment and storage at 30 °C induced 32 proteins, which were mainly similar to those in group 1 but also included 8 proteins in group 3 (identified as chitinase, cinnamyl alcohol dehydrogenase 1, cysteine synthase, villin-2, leucine-transfer RNA ligase, CP47

  8. Black leaf streak disease affects starch metabolism in banana fruit.

    PubMed

    Saraiva, Lorenzo de Amorim; Castelan, Florence Polegato; Shitakubo, Renata; Hassimotto, Neuza Mariko Aymoto; Purgatto, Eduardo; Chillet, Marc; Cordenunsi, Beatriz Rosana

    2013-06-12

    Black leaf streak disease (BLSD), also known as black sigatoka, represents the main foliar disease in Brazilian banana plantations. In addition to photosynthetic leaf area losses and yield losses, this disease causes an alteration in the pre- and postharvest behavior of the fruit. The aim of this work was to investigate the starch metabolism of fruits during fruit ripening from plants infected with BLSD by evaluating carbohydrate content (i.e., starch, soluble sugars, oligosaccharides, amylose), phenolic compound content, phytohormones, enzymatic activities (i.e., starch phosphorylases, α- and β-amylase), and starch granules. The results indicated that the starch metabolism in banana fruit ripening is affected by BLSD infection. Fruit from infested plots contained unusual amounts of soluble sugars in the green stage and smaller starch granules and showed a different pattern of superficial degradation. Enzymatic activities linked to starch degradation were also altered by the disease. Moreover, the levels of indole-acetic acid and phenolic compounds indicated an advanced fruit physiological age for fruits from infested plots. PMID:23692371

  9. Environment effect on fruit ripening related gene to develop a new post harvest technology

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny; Esyanti, Rizkita Rahmi; Robertlee, Jekson; Paramaputra, Indra Chandra; Permatadewi, Rinda Kania; Tambun, Dina Hermawaty; Handayani, Resnanti Utami; Pratiwi, Aksarani'Sa; Zaskia, Herafi

    2014-03-01

    Ripening process of fruits is a very complex process, which involves ethylene production, causing alteration on molecular and physiology level. Environmental stress caused by biotic and abiotic stress conditions (such as pathogen, mechanical stress, physical and physiology stress) can stimulate ethylene production. High levels of ethylene in turn can also inhibit growth, cause premature ripening and induce the onset of senescence, which then potentially reduce plant productivity. The ACC Synthase (ACS) and ACC Oxidase (ACO) genes are genes that have role in the ethylene production. By regulating those genes, especially ethylene biosynthesis genes, we might improve the quality of fruit at post harvest condition. Therefore, in this research we studied fruit ripening related genes expression on banana such as MaACS family at different environment condition. The result of study can give contributions in developing of new plants with desired traits or new post harvest technologies.

  10. Fructose 2,6-bisphosphate and the climacteric in bananas.

    PubMed

    Ball, K L; ap Rees, T

    1988-11-15

    This work was done to test the view that there is a marked rise in the content of fructose 2,6-bisphosphate during the climacteric of the fruit of banana (Musa cavendishii Lamb ex. Paxton). Bananas were ripened in the dark in a continuous stream of air in the absence of exogenous ethylene. CO2 production and the contents of fructose 2,6-bisphosphate and sucrose were monitored over a 15-day period. A range of extraction procedures for fructose 2,6-bisphosphate were compared. Recovery of fructose 2,6-bisphosphate added to samples of unripe fruit varied from poor to unmeasurable. Recoveries from samples of ripe fruit were high. It is argued that this differential recovery of fructose 2,6-bisphosphate undermines claims that the amount of this compound increases at the climacteric. When recoveries are taken into account, our data suggest that there is no major change in fructose 2,6-bisphosphate content during the onset of the climacteric in bananas. PMID:3143570

  11. Banana Gold: Problem or Solution?

    ERIC Educational Resources Information Center

    Joseph, Garnet

    1992-01-01

    Since 1955, the British banana industry has dominated the lives of the Caribs and other peoples in Dominica. Banana growing supplants other economic activities, including local food production; toxic chemicals and fertilizers pollute the land; community is dwindling; suicide is common; and child labor diminishes school attendance. (SV)

  12. Banana Dehydration Utilizing Infrared Radiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The enzyme of polyphenol oxidase (PPO) has been found to be the main cause of browning in bananas. Infrared radiation (IR) drying could be used to minimize biochemical degradation hence eliminating the need for pre-treatments. This study was to investigate quality characteristics of bananas dried ...

  13. Ostwald ripening theory

    NASA Technical Reports Server (NTRS)

    Baird, J. K.

    1986-01-01

    The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.

  14. Molecular regulation of fruit ripening

    PubMed Central

    Osorio, Sonia; Scossa, Federico; Fernie, Alisdair R.

    2013-01-01

    Fruit ripening is a highly coordinated developmental process that coincides with seed maturation. The ripening process is regulated by thousands of genes that control progressive softening and/or lignification of pericarp layers, accumulation of sugars, acids, pigments, and release of volatiles. Key to crop improvement is a deeper understanding of the processes underlying fruit ripening. In tomato, mutations blocking the transition to ripe fruits have provided insights into the role of ethylene and its associated molecular networks involved in the control of ripening. However, the role of other plant hormones is still poorly understood. In this review, we describe how plant hormones, transcription factors, and epigenetic changes are intimately related to provide a tight control of the ripening process. Recent findings from comparative genomics and system biology approaches are discussed. PMID:23785378

  15. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. PMID:24716518

  16. Cooking enhances but the degree of ripeness does not affect provitamin A carotenoid bioavailability from bananas in Mongolian gerbils.

    PubMed

    Bresnahan, Kara A; Arscott, Sara A; Khanna, Harjeet; Arinaitwe, Geofrey; Dale, James; Tushemereirwe, Wilberforce; Mondloch, Stephanie; Tanumihardjo, Jacob P; De Moura, Fabiana F; Tanumihardjo, Sherry A

    2012-12-01

    Banana is a staple crop in many regions where vitamin A deficiency is prevalent, making it a target for provitamin A biofortification. However, matrix effects may limit provitamin A bioavailability from bananas. The retinol bioefficacies of unripe and ripe bananas (study 1A), unripe high-provitamin A bananas (study 1B), and raw and cooked bananas (study 2) were determined in retinol-depleted Mongolian gerbils (n = 97/study) using positive and negative controls. After feeding a retinol-deficient diet for 6 and 4 wk in studies 1 and 2, respectively, customized diets containing 60, 30, or 15% banana were fed for 17 and 13 d, respectively. In study 1A, the hepatic retinol of the 60% ripe Cavendish group (0.52 ± 0.13 μmol retinol/liver) differed from baseline (0.65 ± 0.15 μmol retinol/liver) and was higher than the negative control group (0.39 ± 0.16 μmol retinol/liver; P < 0.0065). In study 1B, no groups differed from baseline (0.65 ± 0.15 μmol retinol/liver; P = 0.20). In study 2, the 60% raw Butobe group (0.68 ± 0.17 μmol retinol/liver) differed from the 60% cooked Butobe group (0.87 ± 0.24 μmol retinol/liver); neither group differed from baseline (0.80 ± 0.27 μmol retinol/liver; P < 0.0001). Total liver retinol was higher in the groups fed cooked bananas than in those fed raw (P = 0.0027). Body weights did not differ even though gerbils ate more green, ripe, and raw bananas than cooked, suggesting a greater indigestible component. In conclusion, thermal processing, but not ripening, improves the retinol bioefficacy of bananas. Food matrix modification affects carotenoid bioavailability from provitamin A biofortification targets. PMID:23096010

  17. Histological aspects of cervical ripening.

    PubMed

    Ichijo, M; Shimizu, T; Sasai, Y

    1976-02-01

    There is a close relationship between the rate of the uterine cervix opening during parturition and the presence or absence of a completely ripened cervix. In order to learn the basic pattern of the ripening of cervix, histological and histochemical studies were performed on the human uterine cervix during pregnancy. It was noted that the collagen bundles disintegrated into fine fibers and also underwent quantitative changes during the ripening process of the cervix. During pregnancy, the number of connective tissue cells was increased, but that of mast cells was decreased. Acid mucopolysaccharides in the cervical ground substance were found to increase in late pregnancy. PMID:136067

  18. [The effect of ethylene biosynthesis regulators on metabolic processes in the banana fruits in various physiological states].

    PubMed

    Bulantseva, E A; Thang, Nguyen Tien; Ruzhitskiĭ, A O; Protsenko, M A; Korableva, N P

    2009-01-01

    The effects of ethylene-evolving preparations-2-chloroethylphosphonic acid (2-CEPA), the new generation binary preparation ethacide, and the specific inhibitor of ethylene biosynthesis aminooxyacetic acid (AOA)--on the ethylene evolution by banana (Musa sp.) fruits at various ripening stages and the content of protein inhibitor of polygalacturonase (PIPG), associated with prevention of fruit tissue softening, were studied. It was demonstrated that the ripening stage was of significant importance for the results of treatment with the mentioned preparations. Their effects were most pronounced in the fruits of medium ripeness. 2-CEPA and ethacide increased the ethylene evolution in banana fruits on the average by 25-30%. AOA treatment decreased the ethylene evolution in these fruits by 30%. The PIPG content in fruit pulp was insignificant; 2-CEPA almost did not change its content in banana skin, while ethacide and AOA somewhat decreased it. Consequently, the regulators of ethylene biosynthesis have a potential for optimizing the state of banana fruits during storage and sale. PMID:19235517

  19. Plantain and banana starches: granule structural characteristics explain the differences in their starch degradation patterns.

    PubMed

    Soares, Claudinéia Aparecida; Peroni-Okita, Fernanda Helena Gonçalves; Cardoso, Mateus Borba; Shitakubo, Renata; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2011-06-22

    Different banana cultivars were used to investigate the influences of starch granule structure and hydrolases on degradation. The highest degrees of starch degradation were observed in dessert bananas during ripening. Scanning electron microscopy images revealed smooth granule surface in the green stage in all cultivars, except for Mysore. The small and round granules were preferentially degraded in all of the cultivars. Terra demonstrated a higher degree of crystallinity and a short amylopectin chain length distribution, resulting in high starch content in the ripe stage. Amylose content and the crystallinity index were more strongly correlated than the distribution of amylopectin branch chain lengths in banana starches. α- and β-amylase activities were found in both forms, soluble in the pulp and associated with the starch granule. Starch-phosphorylase was not found in Mysore. On the basis of the profile of α-amylase in vitro digestion and the structural characteristics, it could be concluded that the starch of plantains has an arrangement of granules more resistant to enzymes than the starch of dessert bananas. PMID:21591784

  20. The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group Musa Cultivar.

    PubMed

    Buah, Stephen; Mlalazi, Bulukani; Khanna, Harjeet; Dale, James L; Mortimer, Cara L

    2016-04-27

    The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana. PMID:27041343

  1. Phenotyping bananas for drought resistance

    PubMed Central

    Ravi, Iyyakkutty; Uma, Subbaraya; Vaganan, Muthu Mayil; Mustaffa, Mohamed M.

    2012-01-01

    Drought has emerged as one of the major constraints in banana production. Its effects are pronounced substantially in the tropics and sub-tropics of the world due to climate change. Bananas are quite sensitive to drought; however, genotypes with “B” genome are more tolerant to abiotic stresses than those solely based on “A” genome. In particular, bananas with “ABB” genomes are more tolerant to drought and other abiotic stresses than other genotypes. A good phenotyping plan is a prerequisite for any improvement program for targeted traits. In the present article, known drought tolerant traits of other crop plants are validated in bananas with different genomic backgrounds and presented. Since, banana is recalcitrant to breeding, strategies for making hybrids between different genomic backgrounds are also discussed. Stomatal conductance, cell membrane stability (CMS), leaf emergence rate, rate of leaf senescence, RWC, and bunch yield under soil moisture deficit stress are some of the traits associated with drought tolerance. Among these stress bunch yield under drought should be given top priority for phenotyping. In the light of recently released Musa genome draft sequence, the molecular breeders may have interest in developing molecular markers for drought resistance. PMID:23443573

  2. Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae.

    PubMed

    Zhu, Xiangfei; Wang, Aiping; Zhu, Shijiang; Zhang, Lubin

    2011-09-15

    The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO1expression in the ethephon-treated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MaERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition of JA biosynthesis by application of IBU down-regulated the expression of MaERF and significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon. PMID:21511361

  3. Fusarium Wilt of Banana.

    PubMed

    Ploetz, Randy C

    2015-12-01

    Banana (Musa spp.) is one of the world's most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the 'Gros Michel'-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a 'Cavendish'-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere. PMID:26057187

  4. The contribution of stored malate and citrate to the substrate requirements of metabolism of ripening peach (Prunus persica L. Batsch) flesh is negligible. Implications for the occurrence of phosphoenolpyruvate carboxykinase and gluconeogenesis.

    PubMed

    Famiani, Franco; Farinelli, Daniela; Moscatello, Stefano; Battistelli, Alberto; Leegood, Richard C; Walker, Robert P

    2016-04-01

    The first aim of this study was to determine the contribution of stored malate and citrate to the substrate requirements of metabolism in the ripening flesh of the peach (Prunus persica L. Batsch) cultivar Adriatica. In the flesh, stored malate accumulated before ripening could contribute little or nothing to the net substrate requirements of metabolism. This was because there was synthesis and not dissimilation of malate throughout ripening. Stored citrate could potentially contribute a very small amount (about 5.8%) of the substrate required by metabolism when the whole ripening period was considered, and a maximum of about 7.5% over the latter part of ripening. The second aim of this study was to investigate why phosphoenolpyruvate carboxykinase (PEPCK) an enzyme utilised in gluconeogenesis from malate and citrate is present in peach flesh. The occurrence and localisation of enzymes utilised in the metabolism of malate, citrate and amino acids were determined in peach flesh throughout its development. Phosphoenolpyruvate carboxylase (essential for the synthesis of malate and citrate) was present in the same cells and at the same time as PEPCK and NADP-malic enzyme (both utilised in the dissimilation of malate and citrate). A hypothesis is presented to explain the presence of these enzymes and to account for the likely occurrence of gluconeogenesis. PMID:26852108

  5. Radiation preservation of foods of plant origin. III. Tropical fruits: bananas, mangoes, and papayas

    SciTech Connect

    Thomas, P.

    1986-01-01

    The current status of research on the use of ionizing radiation for shelf life improvement and disinfestation of fresh tropical fruits like bananas, mangoes, and papayas are reviewed. The aspects covered are influence of maturity and physiological state of the fruits on delayed ripening and tolerance to radiation; varietal responses; changes in chemical constituents, volatiles, respiration, and ethylene evolution; biochemical mechanisms of delayed ripening and browning of irradiated fruits; and organoleptic quality. The efficacy of the combination of hot water dip and radiation treatments for control of postharvest fungal diseases are considered. The immediate potential of radiation as a quarantine treatment, in place of the currently used chemical fumigants, for disinfestation of fruit flies and mango seed weevil are discussed. Future prospects for irradiation of tropical fruits are discussed in the light of experience gained from studies conducted in different countries.146 references.

  6. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue.

    PubMed

    Seymour, Graham B; Ryder, Carol D; Cevik, Volkan; Hammond, John P; Popovich, Alexandra; King, Graham J; Vrebalov, Julia; Giovannoni, James J; Manning, Kenneth

    2011-01-01

    Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available. PMID:21115665

  7. Changes in ethylene signaling and MADS box gene expression are associated with banana finger drop.

    PubMed

    Hubert, O; Piral, G; Galas, C; Baurens, F-C; Mbéguié-A-Mbéguié, D

    2014-06-01

    Banana finger drop was examined in ripening banana harvested at immature (iMG), early (eMG) and late mature green (lMG) stages, with contrasting ripening rates and ethylene sensitivities. Concomitantly, 11 ethylene signal transduction components (ESTC) and 6 MADS box gene expressions were comparatively studied in median (control zone, CZ) and pedicel rupture (drop zone DZ) areas in peel tissue. iMG fruit did not ripen or develop finger drop while eMG and lMG fruits displayed a similar finger drop pattern. Several ESTC and MADS box gene mRNAs were differentially induced in DZ and CZ and sequentially in eMG and lMG fruits. MaESR2, 3 and MaEIL1, MaMADS2 and MaMADS5 had a higher mRNA level in eMG and acted earlier, whereas MaERS1, MaCTR1, MaEIL3/AB266319, MaEIL4/AB266320 and MaEIL5/AB266321, MaMADS4 and to a lesser extent MaMADS2 and 5 acted later in lMG. In this fruit, MaERS1 and 3, MaCTR1, MaEIL3, 4 and MaEIL5/AB266321, and MaMADS4 were enhanced by finger drop, suggesting their specific involvement in this process. MaEIL1, MaMADS1 and 3, induced at comparable levels in DZ and CZ, are probably related to the overall fruit ripening process. These findings led us to consider that developmental cues are the predominant finger drop regulation factor. PMID:24767119

  8. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit.

    PubMed

    Chen, Jiao; Chen, Jian-Ye; Wang, Jun-Ning; Kuang, Jian-Fei; Shan, Wei; Lu, Wang-Jin

    2012-04-01

    CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses. PMID:22285923

  9. Antioxidant activity of banana flavonoids.

    PubMed

    Vijayakumar, S; Presannakumar, G; Vijayalakshmi, N R

    2008-06-01

    The antioxidant activity of flavonoids from banana (Musa paradisiaca) was studied in rats fed normal as well as high fat diets. Concentrations of peroxidation products namely malondialdehyde, hydroperoxides and conjugated diens were significantly decreased whereas the activities of catalase and superoxide dismutase were enhanced significantly. Concentrations of glutathione were also elevated in the treated animals. PMID:18329185

  10. Herbicides as ripeners for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical ripening of sugarcane is an important component to profitable sugar production in the U.S. as well as other sugarcane industries throughout the world. Harvesting of sugarcane often begins before the sugarcane reaches a desirable level of maturity. This is especially true in the Louisiana ...

  11. Ripening events in seeded watermelons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seeded watermelons generally start color development in the locule (seed cavity), with color progressing to the center of the fruit during the ripening process. Soluble solids content (SSR) is thought to be highest at the blossom end. In large-fruited watermelon where only a portion of the fruit is...

  12. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv ‘Embul’

    PubMed Central

    Abayasekara, C. L.; Adikaram, N. K. B.; Wanigasekara, U. W. N. P.; Bandara, B. M. R.

    2013-01-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar ‘Embul’ (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. 1H and 13C NMR spectral data of one purified phytoalexin compared closely with 4′-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana. PMID:25288931

  13. Phyllosticta musarum Infection-Induced Defences Suppress Anthracnose Disease Caused by Colletotrichum musae in Banana Fruits cv 'Embul'.

    PubMed

    Abayasekara, C L; Adikaram, N K B; Wanigasekara, U W N P; Bandara, B M R

    2013-03-01

    Anthracnose development by Colletotrichum musae was observed to be significantly less in the fruits of the banana cultivar 'Embul' (Mysore, AAB) infected with Phyllosticta musarum than in fruits without such infections. Anthracnose disease originates from quiescent C. musae infections in the immature fruit. P. musarum incites minute, scattered spots, referred to as freckles, in the superficial tissues of immature banana peel which do not expand during maturation or ripening. P. musarum does not appear to have a direct suppressive effect on C. musae as conidia of C. musae germinate on both freckled and non-freckled fruit forming quiescent infections. Our investigations have shown that P. musarum infection induced several defence responses in fruit including the accumulation of five phytoalexins, upregulation of chitinase and β-1,3-glucanase, phenylalanine ammonia lyase (PAL) activity and cell wall lignification. (1)H and (13)C NMR spectral data of one purified phytoalexin compared closely with 4'-hydroxyanigorufone. Some of the P. musarum-induced defences that retained during ripening, restrict C. musae development at the ripe stage. This paper examines the potential of P. musarum-induced defences, in the control of anthracnose, the most destructive postharvest disease in banana. PMID:25288931

  14. Fruit ripening mutants reveal cell metabolism and redox state during ripening.

    PubMed

    Kumar, Vinay; Irfan, Mohammad; Ghosh, Sumit; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-03-01

    Ripening which leads to fruit senescence is an inimitable process characterized by vivid changes in color, texture, flavor, and aroma of the fleshy fruits. Our understanding of the mechanisms underlying the regulation of fruit ripening and senescence is far from complete. Molecular and biochemical studies on tomato (Solanum lycopersicum) ripening mutants such as ripening inhibitor (rin), nonripening (nor), and never ripe (Nr) have been useful in our understanding of fruit development and ripening. The MADS-box transcription factor RIN, a global regulator of fruit ripening, is vital for the broad aspects of ripening, in both ethylene-dependent and independent manners. Here, we have carried out microarray analysis to study the expression profiles of tomato genes during ripening of wild type and rin mutant fruits. Analysis of the differentially expressed genes revealed the role of RIN in regulation of several molecular and biochemical events during fruit ripening including fruit specialized metabolism and cellular redox state. The role of reactive oxygen species (ROS) during fruit ripening and senescence was further examined by determining the changes in ROS level during ripening of wild type and mutant fruits and by analyzing expression profiles of the genes involved in maintaining cellular redox state. Taken together, our findings suggest an important role of ROS during fruit ripening and senescence, and therefore, modulation of ROS level during ripening could be useful in achieving desired fruit quality. PMID:26008650

  15. A cDNA clone highly expressed in ripe banana fruit shows homology to pectate lyases.

    PubMed

    Dominguez-Puigjaner, E; LLop, I; Vendrell, M; Prat, S

    1997-07-01

    A cDNA clone (Ban17), encoding a protein homologous to pectate lyase, has been isolated from a cDNA library from climacteric banana fruit by means of differential screening. Northern analysis showed that Ban17 mRNA is first detected in early climacteric fruit, reaches a steady-state maximum at the climacteric peak, and declines thereafter in overripe fruit. Accumulation of the Ban17 transcript can be induced in green banana fruit by exogenous application of ethylene. The demonstrates that expression of this gene is under hormonal control, its induction being regulated by the rapid increase in ethylene production at the onset of ripening. The deduced amino acid sequence derived from the Ban17 cDNA shares significant identity with pectate lyases from pollen and plant pathogenic bacteria of the genus Erwinia. Similarity to bacterial pectate lyases that were proven to break down the pectic substances of the plant cell wall suggest that Ban17 might play a role in the loss of mesocarp firmness during fruit ripening. PMID:9232883

  16. Production of ethyl alcohol from bananas

    SciTech Connect

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  17. Early stages of Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Shneidman, Vitaly A.

    2013-07-01

    The Becker-Döring (BD) nucleation equation is known to predict a narrow double-exponential front (DEF) in the distribution of growing particles over sizes, which is due to early transient effects. When mass conservation is included, nucleation is eventually exhausted while independent growth is replaced by ripening. Despite the enormous difference in the associated time scales, and the resulting demand on numerics, within the generalized BD model the early DEF is shown to be crucial for the selection of the unique self-similar Lifshitz-Slyozov-Wagner asymptotic regime. Being preserved till the latest stages of growth, the DEF provides a universal part of the initial conditions for the ripening problem, regardless of the mass exchange mechanism between the nucleus and the matrix.

  18. Purification and characterization of a novel phosphoenolpyruvate carboxylase from banana fruit.

    PubMed Central

    Law, R D; Plaxton, W C

    1995-01-01

    Phosphoenolpyruvate carboxylase (PEPC) from ripened banana (Musa cavendishii L.) fruits has been purified 127-fold to apparent homogeneity and a final specific activity of 32 mumol of oxaloacetate produced/min per mg of protein. Non-denaturing PAGE of the final preparation resolved a single protein-staining band that co-migrated with PEPC activity. Polypeptides of 103 (alpha-subunit) and 100 (beta-subunit) kDa, which stain for protein with equal intensity and cross-react strongly with anti-(maize leaf PEPC) immune serum, were observed following SDS/PAGE of the final preparation. CNBr cleavage patterns of the two subunits were similar, but not identical, suggesting that these polypeptides are related, but distinct, proteins. The enzyme's native molecular mass was estimated to be about 425 kDa. These data indicate that in contrast to the homotetrameric PEPC from most other sources, the banana fruit enzyme exists as an alpha 2 beta 2 heterotetramer. Monospecific rabbit anti-(banana PEPC) immune serum effectively immunoprecipitated the activity of the purified enzyme. Immunoblotting studies established that the 100 kDa subunit did not arise via proteolysis of the 103 kDa subunit after tissue extraction, and that the subunit composition of banana PEPC remains uniform throughout the ripening process. PEPC displayed a typical pH activity profile with an alkaline optimum and activity rapidly decreasing below pH 7.0. Enzymic activity was absolutely dependent on the presence of a bivalent metal cation, with Mg2+ or Mn2+ fulfilling this requirement. The response of the PEPC activity to PEP concentration and to various effectors was greatly influenced by pH and glycerol addition to the assay. The enzyme was activated by hexose-monophosphates and potently inhibited by malate, succinate, aspartate and glutamate at pH 7.0, whereas the effect of these metabolites was considerably diminished or completely abolished at pH 8.0. The significance of metabolite regulation of PEPC is

  19. In-depth proteomic analysis of banana (Musa spp.) fruit with combinatorial peptide ligand libraries.

    PubMed

    Esteve, Clara; D'Amato, Alfonsina; Marina, María Luisa; García, María Concepción; Righetti, Pier Giorgio

    2013-01-01

    Musa ssp. is among the world's leading fruit crops. Although a strong interest on banana biochemistry exists in the scientific community, focused on metabolite composition, proteins have been scarcely investigated even if they play an important role in food allergy and stability, are a source of biologically active peptides, and can provide information about nutritional aspects of this fruit. In this work we have employed the combinatorial peptide ligand libraries after different types of protein extractions, for searching the very low-abundance proteins in banana. The use of advanced MS techniques and Musa ssp. mRNAs database in combination with the Uniprot_viridiplantae database allowed us to identify 1131 proteins. Among this huge amount of proteins we found several already known allergens such as Mus a 1, pectinesterase, superoxide dismutase, and potentially new allergens. Additionally several enzymes involved in degradation of starch granules and strictly correlated to ripening stage were identified. This is the first in-depth exploration of the banana fruit proteome and one of the largest descriptions of the proteome of any vegetable system. PMID:23161558

  20. Effect of phytohormones on pectate lyase activity in ripening Musa acuminata.

    PubMed

    Payasi, Anurag; Misra, P C; Sanwal, G G

    2004-12-01

    A differential activity peak of pectate lyase (PEL) was observed during ripening of banana fruits (Musa acuminata Harichhal) receiving different hormone treatments. Exposure of fruits to 25 ppm ethylene for 24 h, as well as dipping of M. acuminata fruits in 1 mM 2,4-dichlorophenoxy acetic acid (2,4-D) for 4 h, hastened fruit ripening. Both PEL activity peak and climacteric peak were observed on the 4th and 10th days of treatment with ethylene and 2,4-D, respectively, compared to the 16th day in control fruits. Gibberellic acid (GA) treatment retarded fruit ripening and both PEL activity and climacteric peaks were observed on the 19th day. Treatment of fruits with ethylene or 2,4-D also advanced the appearance of a polygalacturonase (PG) peak and GA delayed its appearance, but the activity peaks always appeared in post-climacteric fruits, in contrast to PEL activity peaks coinciding with the respiratory peaks. PMID:15694279

  1. Suppression of tomato SlNAC1 transcription factor delays fruit ripening.

    PubMed

    Meng, Chen; Yang, Dongyue; Ma, Xiaocui; Zhao, Weiyang; Liang, Xiaoqing; Ma, Nana; Meng, Qingwei

    2016-04-01

    Fruit ripening is a complex process involving many physiological and biochemical changes, including those for ethylene, carotenoid, and cell wall metabolism. Tomato (Solanum lycopersicum) serves as a research model for fruit development and ripening because it possesses numerous favorable genetic features. In this study, SlNAC1 was cloned. An antisense (AS) vector was constructed and transferred to tomato to further explore the function of SlNAC1. The results showed that AS fruits exhibited delayed ripening and a deeper red appearance when these fruits were fully ripened. Fully ripened AS fruits also produced higher total carotenoid and lycopene contents than those of the wild-type (WT) line. Ethylene production of AS fruits was delayed but occurred to a higher extent than that of WT fruits. The softening of AS fruits was slower than that of WT fruits. Endogenous abscisic acid (ABA) level in AS-4 fruits was lower than that in WT fruits. Exogenous ABA accelerated the softening of AS fruits. Furthermore, AS fruits demonstrated up-regulated expression of genes related to lycopene and ethylene biosynthesis but down-regulated expression of genes related to cell wall metabolism and ABA synthesis. Therefore, SlNAC1 is likely implicated in fruit ripening. PMID:26962710

  2. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1982-01-01

    Ripple transport in tokamaks is discussed for the ''banana drift'' collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and consequently the resulting transport coefficients can differ by several orders of magnitude.

  3. Banana drift transport in tokamaks with ripple

    SciTech Connect

    Linsker, R.; Boozer, A.H.

    1981-04-01

    Ripple transport in tokamaks is discussed for the banana drift collisionality regime, which lies below the ripple plateau regime treated earlier. The physical mechanisms that dominate banana drift transport are found to differ from those considered in previous work on this regime, and the resulting transport coefficients can consequently differ by several orders of magnitude.

  4. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  5. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  6. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  7. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  8. 33 CFR 117.263 - Banana River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Banana River. 117.263 Section 117.263 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.263 Banana River. (a) The draw of the Mathers...

  9. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated

  10. Extension of Ostwald Ripening Theory

    NASA Technical Reports Server (NTRS)

    Baird, J.; Naumann, R.

    1985-01-01

    The objective is to develop models based on the mean field approximation of Ostwald ripening to describe the growth of second phase droplets or crystallites. The models will include time variations in nucleation rate, control of saturation through addition of solute, precipitating agents, changes in temperature, and various surface kinetic effects. Numerical integration schemes have been developed and tested against the asymptotic solution of Liftshitz, Slyozov and Wagner (LSW). A second attractor (in addition to the LSW distribution) has been found and, contrary to the LSW theory, the final distribution is dependent on the initial distribution. A series of microgravity experiments is being planned to test this and other results from this work.

  11. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana

    PubMed Central

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H.; Trivedi, Prabodh K.

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  12. Genome-wide Expression Analysis and Metabolite Profiling Elucidate Transcriptional Regulation of Flavonoid Biosynthesis and Modulation under Abiotic Stresses in Banana.

    PubMed

    Pandey, Ashutosh; Alok, Anshu; Lakhwani, Deepika; Singh, Jagdeep; Asif, Mehar H; Trivedi, Prabodh K

    2016-01-01

    Flavonoid biosynthesis is largely regulated at the transcriptional level due to the modulated expression of genes related to the phenylpropanoid pathway in plants. Although accumulation of different flavonoids has been reported in banana, a staple fruit crop, no detailed information is available on regulation of the biosynthesis in this important plant. We carried out genome-wide analysis of banana (Musa acuminata, AAA genome) and identified 28 genes belonging to 9 gene families associated with flavonoid biosynthesis. Expression analysis suggested spatial and temporal regulation of the identified genes in different tissues of banana. Analysis revealed enhanced expression of genes related to flavonol and proanthocyanidin (PA) biosynthesis in peel and pulp at the early developmental stages of fruit. Genes involved in anthocyanin biosynthesis were highly expressed during banana fruit ripening. In general, higher accumulation of metabolites was observed in the peel as compared to pulp tissue. A correlation between expression of genes and metabolite content was observed at the early stage of fruit development. Furthermore, this study also suggests regulation of flavonoid biosynthesis, at transcriptional level, under light and dark exposures as well as methyl jasmonate (MJ) treatment in banana. PMID:27539368

  13. Negative differential resistance: Another banana?

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, H.-F.; Shao, G.-Q.; Wu, B.-L.; Ouyang, S.-X.

    2014-10-01

    Just like the artefact found in ferroelectric hysteresis loops, the nearly identical NDR effect shown in Sr3Co2Fe24O41, TiO2, Al2O3, glass and even banana skins is confirmed to be a kind of water behavior. The combination of water-induced tunneling effect, water decomposition and absorption plays a crucial role in the NDR effect. The results and mechanism demonstrated here illustrate that much attention should be paid to the chemical environment when studying electrical properties of materials/devices.

  14. Multidisciplinary perspectives on banana (Musa spp.) domestication

    PubMed Central

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-01-01

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145

  15. Multidisciplinary perspectives on banana (Musa spp.) domestication.

    PubMed

    Perrier, Xavier; De Langhe, Edmond; Donohue, Mark; Lentfer, Carol; Vrydaghs, Luc; Bakry, Frédéric; Carreel, Françoise; Hippolyte, Isabelle; Horry, Jean-Pierre; Jenny, Christophe; Lebot, Vincent; Risterucci, Ange-Marie; Tomekpe, Kodjo; Doutrelepont, Hugues; Ball, Terry; Manwaring, Jason; de Maret, Pierre; Denham, Tim

    2011-07-12

    Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future. PMID:21730145

  16. Statistical differentiation of bananas according to their mineral composition.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Martín, Jacinto Darias; Díaz Romero, Carlos

    2002-10-01

    The concentrations of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn were determined in banana cultivars Gran enana and Pequeña enana cultivated in Tenerife and in cv. Gran enana bananas from Ecuador. The mineral concentrations in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the mineral concentrations except in the case of Fe. Variations according to cultivation method (greenhouse and outdoors) and farming style (conventional and organic) in the mineral concentrations in the bananas from Tenerife were observed. The mineral concentrations in the internal part of the banana were higher than those in the middle and external parts. Representation of double log correlations K-Mg and Zn-Mn tended to separate the banana samples according to origin. Applying factor and cluster analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife, and therefore, these are useful tools for differentiating the origin of bananas. PMID:12358491

  17. Space Curvature and the "Heavy Banana 'Paradox.'"

    ERIC Educational Resources Information Center

    Gruber, Ronald P.; And Others

    1991-01-01

    Two ways to visually enhance the concept of space curvature are described. Viewing space curvature as a meterstick contraction and the heavy banana "paradox" are discussed. The meterstick contraction is mathematically explained. (KR)

  18. Banana cultivars, cultivation practices, and physicochemical properties.

    PubMed

    Arvanitoyannis, I S; Mavromatis, A

    2009-02-01

    The physicochemical (pH, texture, Vitamin C, ash, fat, minerals) and sensory properties of banana were correlated with the genotype and growing conditions. Minerals in particular were shown to discriminate banana cultivars of different geographical origin quite accurately. Another issue relates to the beneficial properties of bananas both in terms of the high dietary fiber and antioxidant compounds, the latter being abundant in the peel. Therefore, banana can be further exploited for extracting several important components such as starch, and antioxidant compounds which can find industrial and pharmaceutical applications. Finally, the various storage methodologies were presented with an emphasis on Modified Atmosphere Packaging which appears to be one of the most promising of technologies. PMID:18989831

  19. Ex-Ante Economic Impact Assessment of Genetically Modified Banana Resistant to Xanthomonas Wilt in the Great Lakes Region of Africa

    PubMed Central

    Ainembabazi, John Herbert; Tripathi, Leena; Rusike, Joseph; Abdoulaye, Tahirou; Manyong, Victor

    2015-01-01

    Background Credible empirical evidence is scanty on the social implications of genetically modified (GM) crops in Africa, especially on vegetatively propagated crops. Little is known about the future success of introducing GM technologies into staple crops such as bananas, which are widely produced and consumed in the Great Lakes Region of Africa (GLA). GM banana has a potential to control the destructive banana Xanthomonas wilt disease. Objective To gain a better understanding of future adoption and consumption of GM banana in the GLA countries which are yet to permit the production of GM crops; specifically, to evaluate the potential economic impacts of GM cultivars resistant to banana Xanthomonas wilt disease. Data Sources The paper uses data collected from farmers, traders, agricultural extension agents and key informants in the GLA. Analysis We analyze the perceptions of the respondents about the adoption and consumption of GM crop. Economic surplus model is used to determine future economic benefits and costs of producing GM banana. Results On the release of GM banana for commercialization, the expected initial adoption rate ranges from 21 to 70%, while the ceiling adoption rate is up to 100%. Investment in the development of GM banana is economically viable. However, aggregate benefits vary substantially across the target countries ranging from US$ 20 million to 953 million, highest in countries where disease incidence and production losses are high, ranging from 51 to 83% of production. Conclusion The findings support investment in the development of GM banana resistant to Xanthomonas wilt disease. The main beneficiaries of this technology development are farmers and consumers, although the latter benefit more than the former from reduced prices. Designing a participatory breeding program involving farmers and consumers signifies the successful adoption and consumption of GM banana in the target countries. PMID:26414379

  20. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis.

    PubMed

    Sun, Peiguang; Miao, Hongxia; Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  1. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis

    PubMed Central

    Yu, Xiaomeng; Jia, Caihong; Liu, Juhua; Zhang, Jianbin; Wang, Jingyi; Wang, Zhuo; Wang, Anbang; Xu, Biyu; Jin, Zhiqiang

    2016-01-01

    The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants. PMID:27486844

  2. Polyamines and regulation of ripening and senescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polyamines (PAs) are small polycationic, biogenic amines that influence many biochemical and physiological processes such as cell division, cell elongation, flowering, fruit set and development, fruit ripening and senescence. Significant information about PA action has emerged from indirect studies ...

  3. Structure function calculations for Ostwald Ripening processes

    NASA Technical Reports Server (NTRS)

    Hassan, Razi A.

    1990-01-01

    A program for computing the structure function for configurations involved in Ostwald Ripening was written. The basic algorithms are derived from a mathematical analysis of a two-dimensional model system developed by Bortz, et. al. (1974). While it is expected that the values form the computer simulations will reflect Ostwald Ripening, at this point the program is still being tested. Some preliminary runs seem to justify the expectations.

  4. Cell Wall Metabolism in Ripening Fruit

    PubMed Central

    Ahmed, Ahmed Elrayah; Labavitch, John M.

    1980-01-01

    Mature `Bartlett' pear (Pyrus communis) fruits were ripened at 20 C. Fruits at different stages of ripeness were homogenized, and extracts of the low speed pellet (crude cell wall) were prepared. These extracts contained polygalacturonase, pectin esterase, and activity against seven p-nitrophenyl glycoside substrates. Polygalacturonase, α-galactosidase, and α-mannosidase increased in activity as the fruit ripened. Cellulase and activities against pear wall xylan and arabinan were absent from the extracts. PMID:16661276

  5. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  6. I Have a Banana Tree in My Classroom

    ERIC Educational Resources Information Center

    Williams, Patricia A.

    2007-01-01

    When the banana is growing, the broadest part of the banana is located at the bottom, while the tapered end points upward. It appears upside down, however, from the banana tree's perspective, it is growing right side up. The author observes that the students in her classroom labeled by society as "at risk," are also, in a sense, "upside down."…

  7. Olfactory responses of banana weevil predators to volatiles from banana pseudostem tissue and synthetic pheromone.

    PubMed

    Tinzaara, W; Gold, C S; Dicke, M; van Huis, A

    2005-07-01

    As a response to attack by herbivores, plants can emit a variety of volatile substances that attract natural enemies of these insect pests. Predators of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) such as Dactylosternum abdominale (Coleoptera: Hydrophilidae) and Pheidole megacephala (Hymenoptera: Formicidae), are normally found in association with weevil-infested rotten pseudostems and harvested stumps. We investigated whether these predators are attracted to such environments in response to volatiles produced by the host plant, by the weevil, or by the weevil plant complex. We evaluated predator responses towards volatiles from banana pseudostem tissue (synomones) and the synthetic banana weevil aggregation pheromone Cosmolure+ in a two-choice olfactometer. The beetle D. abdominale was attracted to fermenting banana pseudostem tissue and Cosmolure+, whereas the ant P. megacephala was attracted only to fermented pseudostem tissue. Both predators were attracted to banana pseudostem tissue that had been damaged by weevil larvae irrespective of weevil presence. Adding pheromone did not enhance predator response to volatiles from pseudostem tissue fed on by weevils. The numbers of both predators recovered with pseudostem traps in the field from banana mats with a pheromone trap were similar to those in pseudostem traps at different distance ranges from the pheromone. Our study shows that the generalist predators D. abdominale and P. megacephala use volatiles from fermented banana pseudostem tissue as the major chemical cue when searching for prey. PMID:16222791

  8. Complex Interplay of Hormonal Signals during Grape Berry Ripening.

    PubMed

    Fortes, Ana Margarida; Teixeira, Rita Teresa; Agudelo-Romero, Patricia

    2015-01-01

    Grape and wine production and quality is extremely dependent on the fruit ripening process. Sensory and nutritional characteristics are important aspects for consumers and their development during fruit ripening involves complex hormonal control. In this review, we explored data already published on grape ripening and compared it with the hormonal regulation of ripening of other climacteric and non-climacteric fruits. The roles of abscisic acid, ethylene, and brassinosteroids as promoters of ripening are discussed, as well as the role of auxins, cytokinins, gibberellins, jasmonates, and polyamines as inhibitors of ripening. In particular, the recently described role of polyamine catabolism in grape ripening is discussed, together with its putative interaction with other hormones. Furthermore, other recent examples of cross-talk among the different hormones are presented, revealing a complex interplay of signals during grape development and ripening. PMID:26007186

  9. DEBDOM: Database Exploring Banana Diversity of Manipur

    PubMed Central

    Singh, Warepam Amuchou; Gopalrao, Somkuwar Bharat; Gourshyam, Thingnam; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2013-01-01

    Being poor man's apple, banana has a wide popularity worldwide. It's one of the important horticultural crops used irrespective of rich and poor alike. Manipur along with the other states of Northeast India harboured with plenty of wild and cultivated species of banana that are not fully explored. A data base named DEBDOM has been developed here describing the diversity of banana resources of Manipur and it comprises twenty eight genotypes of Musaceae. The database DEBDOM provides a sophisticated web base access to the details of the taxonomy, morphological characteristics, utility as well as sites of collection of Musa genotypes, and it would have contribute as a potential gene pool sources for the conservation, sustainability as well as for crop improvement in the future breeding programmes. Availability http://ibsd.gov.in/debdom/ PMID:23516335

  10. Dissipation and residue of azoxystrobin in banana under field condition.

    PubMed

    Wang, Siwei; Sun, Haibin; Liu, Yanping

    2013-09-01

    A method was developed for determining azoxystrobin in banana and cultivation soil using gas chromatography. The dissipation and residue of azoxystrobin in banana fields at GAP conditions were investigated. The average recoveries ranged from 80.3 to 96.0 % with relative standard deviations of 2.9 to 7.2 % at three different spiking levels for each matrix. The results indicated that the half-life of azoxystrobin in bananas and soil ranged from 7.5 to 13.5 days in Guangdong and from 8.7 to 12.7 days in Fujian. The dissipation rates of azoxystrobin in banana and soil were almost the same. Terminal residues in banana and banana flesh (0.01 mg/kg) were all below the maximum residue limit (2 mg/kg by Codex Alimentarius Commission and China). The results demonstrated that the safety of using azoxystrobin at the recommended agriculture dosage to protect bananas from diseases. PMID:23443637

  11. Ostwald ripening of clays and metamorphic minerals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  12. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples. PMID:25393892

  13. A possible scenario for the evolution of Banana streak virus in banana.

    PubMed

    Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Duroy, Pierre-Olivier; Muller, Emmanuelle

    2014-06-24

    Outbreaks of Banana streak virus (BSV) have been recorded worldwide where Musa spp. is grown during the last 20 years with no convincing evidence of epidemics. Epidemics were previously reported in Uganda where BSV is currently endemic. BSV is a plant pararetrovirus of the family Caulimoviridae, genus Badnavirus it causes chlorosis leaf streak disease. The information currently available on banana streak disease makes it possible to identify a complex of distinct BSV species each causing the same disease. BSV exists in two states: one as an episomal form, infecting plant cells; the other as viral DNA integrated within the B genome of banana (endogenous BSV-eBSV) forming a viral genome for de novo viral particles. Both forms can be infectious in banana plants. The BSV phylogeny is polyphyletic with BSV distributed in two clades. Clade 1 clusters BSV species that occur worldwide and may have an eBSV counterpart, whereas Clade 3 only comprises BSV species from Uganda. Clearly, two distinct origins explain such BSV diversity. However, the epidemiology/outbreaks of BSV remains unclear and the role of eBSV needs to be clarified. In this review, the biodiversity of BSV is explained and discussed in the light of field and molecular epidemiology data. A scheme is proposed for the co-evolution of BSV and banana based on old or recent infection hypotheses related to African domestication sites and banana dissemination to explain the disease context. PMID:24457073

  14. Phenylphenalenones Accumulate in Plant Tissues of Two Banana Cultivars in Response to Herbivory by the Banana Weevil and Banana Stem Weevil.

    PubMed

    Hölscher, Dirk; Buerkert, Andreas; Schneider, Bernd

    2016-01-01

    Phenylphenalenone-type compounds accumulated in the tissues of two banana cultivars-Musa acuminata cv. "Grande Naine" (AAA) and Musa acuminata × balbisiana Colla cv. "Bluggoe" (ABB)-when these were fed on by the banana weevil (Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae)) and the banana stem weevil (Odoiporus longicollis (Oliver) (Coleoptera: Curculionidae)). The chemical constituents of the banana material were separated by means of chromatographic techniques and identified by NMR spectroscopy. One new compound, 2-methoxy-4-phenylphenalen-1-one, was found exclusively in the corm material of "Bluggoe" that had been fed on by the weevils. PMID:27571112

  15. Ecuadorian banana farms should consider organic banana with low price risks in their land-use portfolios.

    PubMed

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios. PMID:25799506

  16. Ecuadorian Banana Farms Should Consider Organic Banana with Low Price Risks in Their Land-Use Portfolios

    PubMed Central

    Castro, Luz Maria; Calvas, Baltazar; Knoke, Thomas

    2015-01-01

    Organic farming is a more environmentally friendly form of land use than conventional agriculture. However, recent studies point out production tradeoffs that often prevent the adoption of such practices by farmers. Our study shows with the example of organic banana production in Ecuador that economic tradeoffs depend much on the approach of the analysis. We test, if organic banana should be included in economic land-use portfolios, which indicate how much of the land is provided for which type of land-use. We use time series data for productivity and prices over 30 years to compute the economic return (as annualized net present value) and its volatility (with standard deviation as risk measure) for eight crops to derive land-use portfolios for different levels of risk, which maximize economic return. We find that organic banana is included in land-use portfolios for almost every level of accepted risk with proportions from 1% to maximally 32%, even if the same high uncertainty as for conventional banana is simulated for organic banana. A more realistic, lower simulated price risk increased the proportion of organic banana substantially to up to 57% and increased annual economic returns by up to US$ 187 per ha. Under an assumed integration of both markets, for organic and conventional banana, simulated by an increased coefficient of correlation of economic return from organic and conventional banana (ρ up to +0.7), organic banana holds significant portions in the land-use portfolios tested only, if a low price risk of organic banana is considered. We conclude that uncertainty is a key issue for the adoption of organic banana. As historic data support a low price risk for organic banana compared to conventional banana, Ecuadorian farmers should consider organic banana as an advantageous land-use option in their land-use portfolios. PMID:25799506

  17. Love Is Like a Squished Banana

    ERIC Educational Resources Information Center

    Brown, Stephen

    1976-01-01

    An unemployed poet obtained a CETA public service job as a teacher's aide in Marin County, California, where he has guided elementary children's imaginative projects. His experiences are described. He has published a volume of the children's verse under the title "Love Is Like a Squished Banana." (AJ)

  18. Banana fruit NAC transcription factor MaNAC1 is a direct target of MaICE1 and involved in cold stress through interacting with MaCBF1.

    PubMed

    Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2014-09-01

    Our previous studies have indicated that the banana ripening-induced MaNAC1, a NAC (NAM, ATAF1/2 and CUC2) transcription factor (TF) gene, is regulated by ethylene during fruit ripening, and propylene, a functional ethylene analogue, induces cold tolerance of banana fruits. However, the involvement of MaNAC1 in propylene-induced cold tolerance of banana fruits is not understood. In the present work, the possible involvement of MaNAC1 in cold tolerance of banana fruits was investigated. MaNAC1 was noticeably induced by cold stress or following propylene treatment during cold storage. Transient protoplast assays showed that MaNAC1 promoter was activated by cold stress and ethylene treatment. Yeast one-hybrid (Y1H), electrophoretic mobility shift assay (EMSA) and transient expression assays demonstrated MaNAC1 as a novel direct target of MaICE1, and that the ability of MaICE1 binding to MaNAC1 promoter might be enhanced by MaICE1 phosphorylation and cold stress. Moreover, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses revealed physical interaction between MaNAC1 and MaCBF1, a downstream component of inducer of C-repeat binding factor (CBF) expression 1 (ICE1) in cold signalling. Taken together, these results suggest that the cold-responsive MaNAC1 may be involved in cold tolerance of banana fruits through its interaction with ICE1-CBF cold signalling pathway, providing new insights into the regulatory activity of NAC TF. PMID:24548087

  19. Fruit ripening: physiology, signalling and genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit development and ripening represent the terminal phase of plant development. It is during this phase that fleshy fruits are enriched with sensory and nutritional quality attributes. Fruits are a dietary source of vitamins, minerals and fibre but, due to their short postharvest life, a large por...

  20. Herbicides as stimulators regulators and ripeners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of low doses of herbicide as plant growth regulators to increase sugar concentrations (ripen) in sugarcane prior to harvest plays an important role in the profitable and sustainable production of sugarcane in the U.S. as well as in other sugarcane industries around the world. Several studies...

  1. Growth of Organic Crystals by Ostwald Ripening

    NASA Technical Reports Server (NTRS)

    Egbert, W.; Podsiadly, C.; Naumann, R.

    1985-01-01

    The objective of this investigation is to evaluate the growth of various organic crystals by chemical precipitation and Ostwald ripening. Six precipitation reactors were flown on STS-51A. Five of the reactors contained proprietary materials. The sixth contained urea dissolved in ethanol with toluene as the precipitating agent. The size distribution will be analyzed and compared with a similar model being developed.

  2. Suppression of Ostwald Ripening by Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-03-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable and coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Ostwald ripening must thus be suppressed to stabilize emulsions, e.g. to control the properties of pharmaceuticals, food, or cosmetics. Suppression of Ostwald ripening is also important in biological cells, which contain stable liquid-like compartments, e.g. germ granules, Cajal-bodies, and centrosomes. Such systems are often driven away from equilibrium by chemical reactions and can thus be called active emulsions. Here, we show that non-equilibrium chemical reactions can suppress Ostwald Ripening, leading to stable, monodisperse emulsions. We derive analytical approximations of the typical droplet size, droplet count, and time scale of the dynamics from a coarse-grained description of the droplet dynamics. We also compare these results to numerical simulations of the continuous concentration fields. Generally, we thus show how chemical reactions can be used to stabilize emulsions and to control their properties in technology and nature.

  3. Temperature and relative humidity influence the ripening descriptors of Camembert-type cheeses throughout ripening.

    PubMed

    Leclercq-Perlat, M-N; Sicard, M; Perrot, N; Trelea, I C; Picque, D; Corrieu, G

    2015-02-01

    Ripening descriptors are the main factors that determine consumers' preferences of soft cheeses. Six descriptors were defined to represent the sensory changes in Camembert cheeses: Penicillium camemberti appearance, cheese odor and rind color, creamy underrind thickness and consistency, and core hardness. To evaluate the effects of the main process parameters on these descriptors, Camembert cheeses were ripened under different temperatures (8, 12, and 16°C) and relative humidity (RH; 88, 92, and 98%). The sensory descriptors were highly dependent on the temperature and RH used throughout ripening in a ripening chamber. All sensory descriptor changes could be explained by microorganism growth, pH, carbon substrate metabolism, and cheese moisture, as well as by microbial enzymatic activities. On d 40, at 8°C and 88% RH, all sensory descriptors scored the worst: the cheese was too dry, its odor and its color were similar to those of the unripe cheese, the underrind was driest, and the core was hardest. At 16°C and 98% RH, the odor was strongly ammonia and the color was dark brown, and the creamy underrind represented the entire thickness of the cheese but was completely runny, descriptors indicative of an over ripened cheese. Statistical analysis showed that the best ripening conditions to achieve an optimum balance between cheese sensory qualities and marketability were 13±1°C and 94±1% RH. PMID:25497800

  4. Emulsion ripening through molecular exchange at droplet contacts.

    PubMed

    Roger, Kevin; Olsson, Ulf; Schweins, Ralf; Cabane, Bernard

    2015-01-26

    Two coarsening mechanisms of emulsions are well established: droplet coalescence (fusion of two droplets) and Ostwald ripening (molecular exchange through the continuous phase). Here a third mechanism is identified, contact ripening, which operates through molecular exchange upon droplets collisions. A contrast manipulated small-angle neutron scattering experiment was performed to isolate contact ripening from coalescence and Ostwald ripening. A kinetic study was conducted, using dynamic light scattering and monodisperse nanoemulsions, to obtain the exchange key parameters. Decreasing the concentration or adding ionic repulsions between droplets hinders contact ripening by decreasing the collision frequency. Using long surfactant chains and well-hydrated heads inhibits contact ripening by hindering fluctuations in the film. Contact ripening can be controlled by these parameters, which is essential for both emulsion formulation and delivery of hydrophobic ingredients. PMID:25504340

  5. Breakdown of Chlorophyll in Higher Plants-Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death.

    PubMed

    Kräutler, Bernhard

    2016-04-11

    Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin-type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical-biological efforts have led to the elucidation of the key Chl-breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572

  6. Breakdown of Chlorophyll in Higher Plants—Phyllobilins as Abundant, Yet Hardly Visible Signs of Ripening, Senescence, and Cell Death

    PubMed Central

    2016-01-01

    Abstract Fall colors have always been fascinating and are still a remarkably puzzling phenomenon associated with the breakdown of chlorophyll (Chl) in leaves. As discovered in recent years, nongreen bilin‐type Chl catabolites are generated, which are known as the phyllobilins. Collaborative chemical‐biological efforts have led to the elucidation of the key Chl‐breakdown processes in senescent leaves and in ripening fruit. Colorless and largely photoinactive phyllobilins are rapidly produced from Chl, apparently primarily as part of a detoxification program. However, fluorescent Chl catabolites accumulate in some senescent leaves and in peels of ripe bananas and induce a striking blue glow. The structural features, chemical properties, and abundance of the phyllobilins in the biosphere suggest biological roles, which still remain to be elucidated. PMID:26919572

  7. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses

    PubMed Central

    Guenther, Susanne

    2011-01-01

    Soft-ripened cheeses belong to the type of food most often contaminated with Listeria monocytogenes, and they have been implicated in several outbreaks of listeriosis. Bacteriophages represent an attractive way to combat foodborne pathogens without affecting other properties of the food. We used the broad host range, virulent Listeria phage A511 for control of L. monocytogenes during the production and ripening phases of both types of soft-ripened cheeses, white mold (Camembert-type) cheese, as well as washed-rind cheese with a red-smear surface (Limburger-type). The surfaces of young, unripened cheese were inoculated with 101–103 cfu/cm2 L. monocytogenes strains Scott A (serovar 4b) or CNL 103/2005 (serovar 1/2a). Phage was applied at defined time points thereafter, in single or repeated treatments, at 3 × 108 or 1 × 109 pfu/cm2. With Scott A (103 cfu/cm2) and a single dose of A511 (3 × 108 pfu/cm2) on camembert-type cheese, viable counts dropped 2.5 logs at the end of the 21 day ripening period. Repeated phage application did not further inhibit the bacteria, whereas a single higher dose (1 × 109 pfu/cm2) was found to be more effective. On red-smear cheese ripened for 22 days, Listeria counts were down by more than 3 logs. Repeated application of A511 further delayed re-growth of Listeria, but did not affect bacterial counts after 22 days. With lower initial Listeria contamination (101–102 cfu/cm2), viable counts dropped below the limit of detection, corresponding to more than 6 logs reduction compared to the control. Our data clearly demonstrate the potential of bacteriophage for biocontrol of L. monocytogenes in soft cheese. PMID:22334865

  8. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses.

    PubMed

    Guenther, Susanne; Loessner, Martin J

    2011-03-01

    Soft-ripened cheeses belong to the type of food most often contaminated with Listeria monocytogenes, and they have been implicated in several outbreaks of listeriosis. Bacteriophages represent an attractive way to combat foodborne pathogens without affecting other properties of the food. We used the broad host range, virulent Listeria phage A511 for control of L. monocytogenes during the production and ripening phases of both types of soft-ripened cheeses, white mold (Camembert-type) cheese, as well as washed-rind cheese with a red-smear surface (Limburger-type). The surfaces of young, unripened cheese were inoculated with 10(1)-10(3) cfu/cm(2)L. monocytogenes strains Scott A (serovar 4b) or CNL 10(3)/2005 (serovar 1/2a). Phage was applied at defined time points thereafter, in single or repeated treatments, at 3 × 10(8) or 1 × 10(9) pfu/cm(2). With Scott A (10(3) cfu/cm(2)) and a single dose of A511 (3 × 10(8) pfu/cm(2)) on camembert-type cheese, viable counts dropped 2.5 logs at the end of the 21 day ripening period. Repeated phage application did not further inhibit the bacteria, whereas a single higher dose (1 × 10(9) pfu/cm(2)) was found to be more effective. On red-smear cheese ripened for 22 days, Listeria counts were down by more than 3 logs. Repeated application of A511 further delayed re-growth of Listeria, but did not affect bacterial counts after 22 days. With lower initial Listeria contamination (10(1)-10(2) cfu/cm(2)), viable counts dropped below the limit of detection, corresponding to more than 6 logs reduction compared to the control. Our data clearly demonstrate the potential of bacteriophage for biocontrol of L. monocytogenes in soft cheese. PMID:22334865

  9. Effect of Acupressure on Cervical Ripening

    PubMed Central

    Torkzahrani, Shahnaz; Ghobadi, Khadighe; Heshmat, Reza; Shakeri, Nezhat; Jalali Aria, Katayoun

    2015-01-01

    Background: Cervical ripening is one of the main stages of initiation labor. Acupressure in Chinese medicine is considered as an invasive technique, which through reliving oxytocin ripens the cervix. Acupoint Sanyinjiao (SP6) was selected in this study because it is the acupoint selected in gynecology and it is easy for women to locate and apply pressure without medical assistance. Objectives: The aim of this study was to determine the effect of acupressure on cervical ripening. Patients and Methods: In this randomized clinical trial, 150 primigravida with term pregnancy who had referred to Deziani hospital in Gorgan were chosen and divided to three groups: in the first group acupressure was done by the researcher while in the second groups this was performed by the mother her self, and the third group served as a control and only received routine care. For both intervention groups the pressure was applied on Sp6 for about 20 minutes during one to five days. Elements were checked from cervical ripening at 48 and 96 hours after intervention and at the time of hospitalization. The tools for gathering information included demographic characteristics and midwifery history questionnaire, daily records and follow up forms. Content validity was used for validity of tools. Reliability of the observation check-list and physical examination was confirmed by inter-rater scores (inter observer), and daily records by test-re-test. Data was analyzed by analysis of variance (ANOVA), Kruskal-Wallis and Chi-squared tests (P ≤ 0.05). Results: There was a significant difference between mothers’ educations in the three groups. Most of the mothers (59.5%) in the researcher-performed acupressure group had secondary education. Cervical ripening was significantly different between the three groups after 48 hours (P ≤ 0.05), yet there was no significant difference after 96 hours and at the time of admission. Mean Bishop score was enhanced after 48 hours in the researcher

  10. Cloning and expression of resistance gene analogs (RGAs) from wild banana resistant to banana Fusarium wilt.

    PubMed

    Chen, Ya-Ping; Chen, Yun-Feng; Zhao, Jie-Tang; Huang, Xia; Huang, Xue-Lin

    2007-12-01

    Wild banana species are essential natural gene pools for banana improvement. In this study, six RGAs about 500 bp were obtained from leaves of Musa acuminata, a wild banana shown to be resistant to banana Fusarium wilt race 4, by PCR amplification with degenerate primers designed according to the conserved NBS motif and serine/threonine kinase domain of plant resistance (R) genes. Among these RGAs, the deduced amino acids of WNB1 and WNB2 contain NB-ARC domain and WNB1 can be translated into polypeptide uninterrupted by stop codons. The deduced amino acids of other four RGAs (WST1, WST2, WST3 and WST4) all contain the serine/threonine kinase domain and WST3 encodes a polypeptide homologous to that of bacterial blight resistance gene Xa21 of rice. At different time after inoculation with Fusarium oxysporum f. sp. cubense (FOC) race 4, the transcript patterns of WNB1 and WST3 was enhanced, which implied that the expression of WNB1 and WST3 may be related to the resistance of banana to Fusarium wilt. PMID:18349511

  11. Pasta with unripe banana flour: physical, texture, and preference study.

    PubMed

    Agama-Acevedo, Edith; Islas-Hernandez, José J; Osorio-Díaz, Perla; Rendón-Villalobos, Rodolfo; Utrilla-Coello, Rubí G; Angulo, Ofelia; Bello-Pérez, Luis A

    2009-08-01

    Banana is a starchy food that contains a high proportion of undigestible compounds such as resistant starch and nonstarch polysaccharides. Products with low glycemic response such as pasta are considered favorable to health. The objective of this study was to use unripe banana flour to make spaghetti with low-carbohydrates digestibility and evaluate its physical and texture characteristics, as well as consumer preference. Formulations with 100% durum wheat semolina (control) and formulations with 3 semolina: banana flour ratios (85: 15, 70: 30, and 55: 45) were prepared for spaghetti processing. The use of banana flour decreased the lightness and diameter of cooked spaghetti, and increased the water absorption of the product. Hardness and elasticity of spaghetti were not affected by banana flour, but adhesiveness and chewiness increased as the banana flour level in the blend rose. Spaghettis prepared in the laboratory (control and those with banana flour) did not show differences in preference by consumers. In general, the preference of spaghettis with different banana flour level was similar. The addition of a source of undigestible carbohydrates (banana flour) to spaghetti is possible without affecting the consumer preference. PMID:19723232

  12. Domestication, Genomics and the Future for Banana

    PubMed Central

    Heslop-Harrison, J. S.; Schwarzacher, Trude

    2007-01-01

    Background Cultivated bananas and plantains are giant herbaceous plants within the genus Musa. They are both sterile and parthenocarpic so the fruit develops without seed. The cultivated hybrids and species are mostly triploid (2n = 3x = 33; a few are diploid or tetraploid), and most have been propagated from mutants found in the wild. With a production of 100 million tons annually, banana is a staple food across the Asian, African and American tropics, with the 15 % that is exported being important to many economies. Scope There are well over a thousand domesticated Musa cultivars and their genetic diversity is high, indicating multiple origins from different wild hybrids between two principle ancestral species. However, the difficulty of genetics and sterility of the crop has meant that the development of new varieties through hybridization, mutation or transformation was not very successful in the 20th century. Knowledge of structural and functional genomics and genes, reproductive physiology, cytogenetics, and comparative genomics with rice, Arabidopsis and other model species has increased our understanding of Musa and its diversity enormously. Conclusions There are major challenges to banana production from virulent diseases, abiotic stresses and new demands for sustainability, quality, transport and yield. Within the genepool of cultivars and wild species there are genetic resistances to many stresses. Genomic approaches are now rapidly advancing in Musa and have the prospect of helping enable banana to maintain and increase its importance as a staple food and cash crop through integration of genetical, evolutionary and structural data, allowing targeted breeding, transformation and efficient use of Musa biodiversity in the future. PMID:17766312

  13. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  14. Pervaporation of ethanol produced from banana waste.

    PubMed

    Bello, Roger Hoel; Linzmeyer, Poliana; Franco, Cláudia Maria Bueno; Souza, Ozair; Sellin, Noeli; Medeiros, Sandra Helena Westrupp; Marangoni, Cintia

    2014-08-01

    Banana waste has the potential to produce ethanol with a low-cost and sustainable production method. The present work seeks to evaluate the separation of ethanol produced from banana waste (rejected fruit) using pervaporation with different operating conditions. Tests were carried out with model solutions and broth with commercial hollow hydrophobic polydimethylsiloxane membranes. It was observed that pervaporation performance for ethanol/water binary mixtures was strongly dependent on the feed concentration and operating temperature with ethanol concentrations of 1-10%; that an increase of feed flow rate can enhance the permeation rate of ethanol with the water remaining at almost the same value; that water and ethanol fluxes was increased with the temperature increase; and that the higher effect in flux increase was observed when the vapor pressure in the permeate stream was close to the ethanol vapor pressure. Better results were obtained with fermentation broth than with model solutions, indicated by the permeance and membrane selectivity. This could be attributed to by-products present in the multicomponent mixtures, facilitating the ethanol permeability. By-products analyses show that the presence of lactic acid increased the hydrophilicity of the membrane. Based on this, we believe that pervaporation with hollow membrane of ethanol produced from banana waste is indeed a technology with the potential to be applied. PMID:24834817

  15. Peroxidase gene expression during tomato fruit ripening

    SciTech Connect

    Biggs, M.S.; Flurkey, W.H.; Handa, A.K.

    1987-04-01

    Auxin oxidation has been reported to play a critical role in the initiation of pear fruit ripening and a tomato fruit peroxidase (POD) has been shown to have IAA-oxidase activity. However, little is known about changes in the expression of POD mRNA in tomato fruit development. They are investigating the expression of POD mRNA during tomato fruit maturation. Fruit pericarp tissues from six stages of fruit development and ripening (immature green, mature green, breaker, turning, ripe, and red ripe fruits) were used to extract poly (A)/sup +/ RNAs. These RNAs were translated in vitro in a rabbit reticulocyte lysate system using L-/sup 35/S-methionine. The /sup 35/S-labeled products were immunoprecipitated with POD antibodies to determine the relative proportions of POD mRNA. High levels of POD mRNA were present in immature green and mature green pericarp, but declined greatly by the turning stage of fruit ripening. In addition, the distribution of POD mRNA on free vs bound polyribosomes will be presented, as well as the presence or absence of POD mRNA in other tomato tissues.

  16. Low-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness.

    PubMed

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T; Correa, Alessandra A; Alves, William F; Leite, Fábio L; Herrmann, Paulo S P

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  17. Low-Cost Gas Sensors Produced by the Graphite Line-Patterning Technique Applied to Monitoring Banana Ripeness

    PubMed Central

    Manzoli, Alexandra; Steffens, Clarice; Paschoalin, Rafaella T.; Correa, Alessandra A.; Alves, William F.; Leite, Fábio L.; Herrmann, Paulo S. P.

    2011-01-01

    A low-cost sensor array system for banana ripeness monitoring is presented. The sensors are constructed by employing a graphite line-patterning technique (LPT) to print interdigitated graphite electrodes on tracing paper and then coating the printed area with a thin film of polyaniline (PANI) by in-situ polymerization as the gas-sensitive layer. The PANI layers were used for the detection of volatile organic compounds (VOCs), including ethylene, emitted during ripening. The influence of the various acid dopants, hydrochloric acid (HCl), methanesulfonic acid (MSA), p-toluenesulfonic acid (TSA) and camphorsulfonic acid (CSA), on the electrical properties of the thin film of PANI adsorbed on the electrodes was also studied. The extent of doping of the films was investigated by UV-Vis absorption spectroscopy and tests showed that the type of dopant plays an important role in the performance of these low-cost sensors. The array of three sensors, without the PANI-HCl sensor, was able to produce a distinct pattern of signals, taken as a signature (fingerprint) that can be used to characterize bananas ripeness. PMID:22163963

  18. Drying characteristics and quality of bananas under infrared radiation heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot air (HA) drying of banana has low drying efficiency and results in undesirable product quality. The objectives of this research were to investigate the feasibility of infrared (IR) heating to improve banana drying rate, evaluate quality of the dried product, and establish models for predicting d...

  19. Agronomic performance of five banana cultivars under protected cultivation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana has been grown both in open-field and protected cultivation in Turkey. So far protected cultivation is very popular due to the high yield and quality. The objective of the study was to evaluate agronomic performance of five new banana cultivars under plastic greenhouse. ‘MA 13’, ‘Williams’, ‘...

  20. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... fruit flies; (2) No bananas from bunches containing prematurely ripe fingers (i.e., individual yellow... process); and (4) To safeguard from fruit fly infestation, the bananas must be covered with insect-proof... part 305 of this chapter for the Mediterranean fruit fly (Ceratitis capitata), the melon fruit...

  1. [Banana tree pests attacking Heliconia latispatha Benth. (Heliconiaceae)].

    PubMed

    Watanabe, Maria A

    2007-01-01

    In mid-May 2005, the caterpillars Antichloris eriphia (Fabr.) (Lepidoptera: Arctiidae) and Calligo illioneus (Cramer) (Lepidoptera: Nymphalidae) which are banana tree pests, were found attacking six-month old stalks of Heliconia latispatha Benth., planted near a banana tree plantation in Jaguariuna, SP, Brazil. The attack by C. illioneus is observed by the first time in Brazil. PMID:17607468

  2. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  3. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  4. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  5. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  6. 33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana...

  7. Bananas, pesticides and health in southwestern Ecuador: A scalar narrative approach to targeting public health responses.

    PubMed

    Brisbois, Benjamin

    2016-02-01

    Public health responses to agricultural pesticide exposure are often informed by ethnographic or other qualitative studies of pesticide risk perception. In addition to highlighting the importance of structural determinants of exposure, such studies can identify the specific scales at which pesticide-exposed individuals locate responsibility for their health issues, with implications for study and intervention design. In this study, an ethnographic approach was employed to map scalar features within explanatory narratives of pesticides and health in Ecuador's banana-producing El Oro province. Unstructured observation, 14 key informant interviews and 15 in-depth semi-structured interviews were carried out during 8 months of fieldwork in 2011-2013. Analysis of interview data was informed by human geographic literature on the social construction of scale. Individual-focused narratives of some participants highlighted characteristics such as carelessness and ignorance, leading to suggestions for educational interventions. More structural explanations invoked farm-scale processes, such as uncontrolled aerial fumigations on plantations owned by elites. Organization into cooperatives helped to protect small-scale farmers from 'deadly' banana markets, which in turn were linked to the Ecuadorian nation-state and actors in the banana-consuming world. These scalar elements interacted in complex ways that appear linked to social class, as more well-off individuals frequently attributed the health problems of other (poorer) people to individual behaviours, while providing more structural explanations of their own difficulties. Such individualizing narratives may help to stabilize inequitable social structures. Research implications of this study include the possibility of using scale-focused qualitative research to generate theory and candidate levels for multi-level models. Equity implications include a need for public health researchers planning interventions to engage with

  8. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry

    NASA Astrophysics Data System (ADS)

    Lambrecht, Glenn; Diamond, Larryn William

    2014-09-01

    not associated with dark-CL zone-refined patches. This new understanding has implications for the interpretation of solids within fluid inclusions (e.g., Ti- and Al-minerals) and for the elemental analysis of hydrothermal and metamorphic quartz and its fluid inclusions by microbeam methods such as LA-ICPMS and SIMS. As Ti is a common trace element in quartz, its sequestration by fluid inclusions and its depletion in zone-refined patches impacts on applications of the Ti-in-quartz geothermometer.

  9. A DEMETER-like DNA demethylase governs tomato fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work shows that active DNA demethylation governs ripening, an important plant developmental process. Our work defines a molecular mechanism, which has until now been missing, to explain the correlation between genomic DNA demethylation and fruit ripening. It demonstrates a direct cause-and-effe...

  10. Transcriptomic analysis of apple fruit ripening and texture attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. The ripening behavior and texture attributes of two apple cultivars, ‘Pink Lady’ and ‘Honey...

  11. Preinduction cervical ripening: basis and methods of current practice.

    PubMed

    Rayburn, William F

    2002-10-01

    The rate of women undergoing labor induction is increasing, primarily because of patient-physician preferences. The widespread availability of preinduction cervical ripening agents has contributed to this rising trend. Approximately half of all women undergoing an induction of labor will have an unfavorable cervix that will require some ripening agent. Pharmacologic and mechanical dilator techniques have been proven to ripen the unfavorable cervix. A topically applied prostaglandin product, containing either dinoprostone or misoprostol, is the most popular means to soften and dilate the cervix. Any uterine hyperstimulation may be reversed by administering a tocolytic drug and, if possible, by removal of the ripening agent. A minimum trial of adequate labor is necessary before considering the induction to be a failure. Cesarean delivery rates may be higher and the length of hospital stay more prolonged. Careful consideration about the need for labor induction is recommended until prospective clinical trials can better validate marginal reasons for cervical ripening. PMID:12368596

  12. Changes in the content and biosynthesis of phytoalexins in banana fruit.

    PubMed

    Kamo, T; Hirai, N; Tsuda, M; Fujioka, D; Ohigashi, H

    2000-10-01

    Changes in the phytoalexin content in unripe fruit of banana, Musa acuminata, were analyzed after various treatments. The results show that level of hydroxyanigorufone started to increase 1-2 day after either wounding or inoculation with conidia of Colletotrichum musae. Inoculation followed by wounding induced the formation of many other phenylphenalenones. The accumulation of hydroxyanigorufone decreased, after its transient maximum, on ripening by exposure of the wounded fruit to ethylene. The level of production of hydroxyanigorufone in ripe fruit treated by wounding and/or by inoculation was much lower than that in unripe fruit. 2-Aminooxyacetic acid, an inhibitor of phenylalanine ammonia-lyase (PAL), inhibited the accumulation of hydroxyanigorufone in wounded fruit, and the PAL activity increased after wounding and ethylene treatment, respectively. Feeding experiments with [1-(13)C] and [2-(13)C]cinnamic acids, and [2-(13)C]malonate show that two molecules of cinnamic acid and one of malonate were incorporated into each molecule of hydroxyanigorufone. The phytoalexins isolated from fruit to which deuterated hydroxyanigorufone and irenolone had been administered revealed that 2-(4'-hydroxyphenyl)-1,8-naphthalic anhydride was biosynthesized from hydroxyanigorufone rather than from irenolone. PMID:11129580

  13. The control properties of phosphofructokinase in relation to the respiratory climacteric in banana fruit.

    PubMed

    Salminen, S O; Young, R E

    1975-01-01

    Glucose 6-phosphate, fructose 6-phosphate, fructose 1, 6-diphosphate, and triose phosphates, and the enzymes phosphofructokinase, aldolase, and glucose 6-phosphate dehydrogenase were extracted from banana fruit (Musa cavendishii, Lambert var. Valery) at the (a) preclimacteric, (b) climacteric rise, (c) climacteric peak, and (d) postclimacteric stages of ripening. The level of fructose 1, 6-diphosphate increased 20-fold whereas the concentration of other intermediates changed no more than 2.5-fold between stages a and c. For these same extracts, phosphofructokinase activity increased 2.5-fold whereas the activity of glucose 6-phosphate dehydrogenase and aldolase changed only fractionally. Substrate saturation studies (fructose 6-phosphate) of phosphofructokinase activity showed a decrease in the [S](0.5) from 5.6 to 1.7 mM betwen stages a and c. The enzyme from both sources seems to be regulated by a negative cooperative effect with the control being more stringent in the enzyme from stage a. The difference in enzyme activity is consistent with the increase in respiratory activity between the two stages. PMID:16659026

  14. Suppression of Ostwald ripening in active emulsions.

    PubMed

    Zwicker, David; Hyman, Anthony A; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties. PMID:26274171

  15. Suppression of Ostwald ripening in active emulsions

    NASA Astrophysics Data System (ADS)

    Zwicker, David; Hyman, Anthony A.; Jülicher, Frank

    2015-07-01

    Emulsions consisting of droplets immersed in a fluid are typically unstable since they coarsen over time. One important coarsening process is Ostwald ripening, which is driven by the surface tension of the droplets. Stability of emulsions is relevant not only in complex fluids but also in biological cells, which contain liquidlike compartments, e.g., germ granules, Cajal bodies, and centrosomes. Such cellular systems are driven away from equilibrium, e.g., by chemical reactions, and thus can be called active emulsions. In this paper, we study such active emulsions by developing a coarse-grained description of the droplet dynamics, which we analyze for two different chemical reaction schemes. We first consider the simple case of first-order reactions, which leads to stable, monodisperse emulsions in which Ostwald ripening is suppressed within a range of chemical reaction rates. We then consider autocatalytic droplets, which catalyze the production of their own droplet material. Spontaneous nucleation of autocatalytic droplets is strongly suppressed and their emulsions are typically unstable. We show that autocatalytic droplets can be nucleated reliably and their emulsions stabilized by the help of chemically active cores, which catalyze the production of droplet material. In summary, different reaction schemes and catalytic cores can be used to stabilize emulsions and to control their properties.

  16. Influence of atmospheric oxygen and ozone on ripening indices of normal (Rin) and ripening inhibited (rin) tomato cultivars

    SciTech Connect

    Maguire, Y.P.; Solberg, M.; Haard, N.F.

    1980-01-01

    Ethylene (10 ppm) dependent mediation of normal and mutant (rin) tomato fruit ripening was promoted by 100% oxygen, 3.7 pphm ozone, or their combination. All ripening indices studied (respiration, chlorophyll degradation, carotenoid accumulation, softening, and aroma development) were promoted by oxygen and/or ozone. Ozone also acted independent of ethylene in promoting chlorophyll degradation and aroma development in normal fruit, but did not appreciably affect these quality attributes in mutant fruit. Lycopene accumulation in normal and mutant fruit and aroma formation in normal fruit were promoted to a greater extent by ozone than were other ripening indices. Mutant (rin) fruit contained 27% of the lycopene that was present in normal (Rin) fruit after ripening in O/sub 2/ containing 10ppm ethylene and 3.7 pphm ozone, whereas they contained only 3% of the lycopene in normal fruit after ripening in air containing 10ppm ethylene.

  17. An improved choice of oscillator basis for banana shaped nuclides

    SciTech Connect

    Chasman, R.R.

    1994-03-01

    The question of the appropriate choice of oscillator basis functions for studying exotic nuclear shapes is raised. Difficulties with the conventional choice of oscillator basis states are noted for shapes having a large banana component. A prescription for an improved oscillator basis to study these shapes is given. It can be applied in a more general context. New calculations with this improved basis are presented for the banana deformation mode. The change of basis gives results that improve the prospects of finding states in the banana minimum for many isotopes of Tl, Pb and Bi.

  18. Effects of Ripening Duration and Rosemary Powder Addition on Salchichon Modified Sausage Quality

    PubMed Central

    Jung, Jong-Hyun; Shim, Kwan-Seob; Shin, Daekeun

    2015-01-01

    The ripening durations and ingredients for the Salchichon sausages were modified to increase pork rear leg consumption by Korean consumers. The salchichon, a ripened pork sausage, was produced to evaluate the efficacy of two different ripening durations with and without rosemary powder on salchichon sausage quality, and the treatments were: i) 45 days of ripening without rosemary, ii) 60 days of ripening without rosemary, iii) 45 days of ripening with 0.05% rosemary, and iv) 60 days of ripening with 0.05% rosemary. Significant differences were observed in both moisture and fat content for ripening durations, with the highest moisture and least fat content observed in salchichon modified sausage (SMS) ripened for 45 days. Ripening duration and rosemary addition appeared to influence water activity (aw) of salchichon sausages. The aw of SMS ripened for 45 days was 0.80, whereas the other had aw values <0.80. Lactic acid bacteria were predominant, as Korean traditional fermented red pepper paste was added to sausages; however, the Bacillus cereus population was significantly affected by rosemary powder addition. Chewiness and gumminess decreased significantly due to the addition of rosemary powder compared to SMS without rosemary powder, and both 45 days of ripening and rosemary powder addition influenced the hardness of SMS. In conclusion, ripening duration of SMS for 45 days in the presence of rosemary powder provided superior SMS quality with an economical ripening duration compared to that of ripening with rosemary powder or ripening for 60 days. PMID:25924959

  19. Isolation of banana lectin-a practical scale procedure from ripe banana fruit.

    PubMed

    Wearne, Kimberly; Winter, Harry C; Goldstein, Irwin J

    2013-01-01

    Banana lectin (BanLec) was isolated from slightly overripe bananas (PCI 6-7) by homogenation in NaCl solution, followed by extraction in the presence of glucose, ammonium sulfate precipitation, and affinity chromatography. Yields were approximately 10-fold greater that those of previously published methods using acidic extraction from very overripe fruit (Peel Color Index [PCI] 7+). By dilution of added isotopically labeled recombinant lectin, the content of total exchangeable BalLec was shown to be constant or to slightly decrease with increasing stage of ripeness, even though extractable BanLec increased, followed by rapid decrease in overripened fruit. In the course of this study we observed that recombinant BanLec expressed in Escherichia coli, although chemically and functionally identical to native BanLec, differed slightly in its apparent molecular size on gel filtration, probably due to differences in its native folding. PMID:23379275

  20. Iron absorption in raw and cooked bananas: a field study using stable isotopes in women

    PubMed Central

    García, Olga P.; Martínez, Mara; Romano, Diana; Camacho, Mariela; de Moura, Fabiana F.; Abrams, Steve A.; Khanna, Harjeet K.; Dale, James L.; Rosado, Jorge L.

    2015-01-01

    Background Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. Objective The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Design Thirty women (34.9±6.6 years) from rural Mexico were randomly assigned to one of two groups each consuming: 1) 480 g/day of raw banana for 6 days, or 2) 500 g/day of cooked banana for 4 days. Iron absorption was measured after extrinsically labeling with 2 mg of 58Fe and a reference dose of 6 mg 57Fe; analysis was done using ICP-MS. Results Iron content in cooked bananas was significantly higher than raw bananas (0.53 mg/100 g bananas vs. 0.33 mg/100 mg bananas, respectively) (p<0.001). Percent iron absorption was significantly higher in raw bananas (49.3±21.3%) compared with cooked banana (33.9±16.2%) (p=0.035). Total amount of iron absorbed from raw and cooked bananas was similar (0.77±0.33 mg vs. 0.86±0.41 mg, respectively). Conclusion Total amount of absorbed iron is similar between cooked and raw bananas. The banana matrix does not affect iron absorption and is therefore a potential effective target for genetic modification for iron biofortification. PMID:25660254

  1. Hormonal changes during non-climacteric ripening in strawberry

    PubMed Central

    Reid, J.B.

    2012-01-01

    In contrast to climacteric fruits, where ethylene is known to be pivotal, the regulation of ripening in non-climacteric fruits is not well understood. In the non-climacteric strawberry (Fragaria anannassa), auxin and abscisic acid (ABA) are thought to be important, but the roles of other hormones suggested to be involved in fruit development and ripening are not clear. Here changes in the levels of indole-3-acetic acid (IAA), ABA, GA1, and castasterone from anthesis to fully ripened fruit are reported. The levels of IAA and GA1 rise early in fruit development before dropping to low levels prior to colour accumulation. Castasterone levels are highest at anthesis and drop to very low levels well before ripening commences, suggesting that brassinosteroids do not play an important role in ripening in strawberry. ABA levels are low at anthesis and gradually rise through development and ripening. The synthetic auxin, 1-naphthaleneacetic acid (NAA), can delay ripening, but the application of GA3, the gibberellin biosythesis inhibitor paclobutrazol, and ABA had no significant effect. IAA and ABA levels are higher in the developing achenes than in the receptacle tissue and may be important for receptacle enlargement and ripening, and seed maturation, respectively. Contrary to a recent report, the biologically active GA4 was not detected. The pattern of changes in the levels of the hormones are different from those reported in another well studied non-climateric fruit, grape, suggesting that a single consistent pattern of hormone changes does not occur in this group of fruit during ripening. PMID:22791823

  2. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato1[OPEN

    PubMed Central

    Gomes, Bruna Lima; Mila, Isabelle; Frasse, Pierre; Zouine, Mohamed; Bouzayen, Mondher

    2016-01-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  3. Comprehensive Profiling of Ethylene Response Factor Expression Identifies Ripening-Associated ERF Genes and Their Link to Key Regulators of Fruit Ripening in Tomato.

    PubMed

    Liu, Mingchun; Gomes, Bruna Lima; Mila, Isabelle; Purgatto, Eduardo; Peres, Lázaro E P; Frasse, Pierre; Maza, Elie; Zouine, Mohamed; Roustan, Jean-Paul; Bouzayen, Mondher; Pirrello, Julien

    2016-03-01

    Our knowledge of the factors mediating ethylene-dependent ripening of climacteric fruit remains limited. The transcription of ethylene-regulated genes is mediated by ethylene response factors (ERFs), but mutants providing information on the specific role of the ERFs in fruit ripening are still lacking, likely due to functional redundancy among this large multigene family of transcription factors. We present here a comprehensive expression profiling of tomato (Solanum lycopersicum) ERFs in wild-type and tomato ripening-impaired tomato mutants (Never-ripe [Nr], ripening-inhibitor [rin], and non-ripening [nor]), indicating that out of the 77 ERFs present in the tomato genome, 27 show enhanced expression at the onset of ripening while 28 display a ripening-associated decrease in expression, suggesting that different ERFs may have contrasting roles in fruit ripening. Among the 19 ERFs exhibiting the most consistent up-regulation during ripening, the expression of 11 ERFs is strongly down-regulated in rin, nor, and Nr tomato ripening mutants, while only three are consistently up-regulated. Members of subclass E, SlERF.E1, SlERF.E2, and SlERF.E4, show dramatic down-regulation in the ripening mutants, suggesting that their expression might be instrumental in fruit ripening. This study illustrates the high complexity of the regulatory network connecting RIN and ERFs and identifies subclass E members as the most active ERFs in ethylene- and RIN/NOR-dependent ripening. PMID:26739234

  4. Adatom emission from nanoparticles: Implications for Ostwald ripening

    NASA Astrophysics Data System (ADS)

    Johns, Tyne Richele

    To achieve clean air in our cities, all modern means of ground transportation make use of catalytic converters. Precious metal-based catalysts such as Pt and Pd are currently used in catalytic converters. To achieve higher fuel efficiency, combustion can be carried out in excess air resulting in a reduction of greenhouse gas (GHG) emissions. Reduction of these emissions has emerged as a major challenge. Most of the pollutants are emitted within the first 30 seconds after starting an engine because the catalyst is cold. The development of catalysts which achieve high activity at low temperatures will improve fuel efficiency and therefore reduce the nation's dependence on foreign fossil fuels. The supplies of precious metals are limited worldwide, but there is increasing demand for clean energy. Therefore, there is a need to develop more active catalysts that provide long-term stable performance at elevated temperatures with minimal use of precious metals such as platinum. A major problem is that catalysts lose activity during use. Pt particles sinter, leading to poor stability. There is universal agreement that addition of Pd improves the catalytic performance as well as the durability of the Pt catalysts; however, the mechanisms by which Pd improves the performance of Pt are less clear. Conventional supported catalysts (Pt, Pd, and Pt-Pd) have been used to explore the microstructure of diesel oxidation catalysts (DOCs) in their working state (i.e. under oxidizing conditions). Model catalysts have been used to study the evolution of platinum and palladium nanoparticles. Both a statistical and a microscopic approach have been used to understand the ways in which Pd affects Pt. The catalytic activity and kinetics of various monometallic as well as bimetallic powder catalysts aged under different conditions has also been studied. NO oxidation in the presence of NO, O2, and NO2 was the probe reaction used to distinguish between the differing activities of Pt/Al2O3 and Pt-Pd/Al2O 3. The work described here focuses on important problems in the field of catalysis. A fundamental understanding of the role of palladium on both the catalytic activity and long-term performance of platinum catalysts has been gained.

  5. Ostwald ripening in multiple-bubble nuclei

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-01

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 106 Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t-x with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t1/2 law) to diffusion-limited (the t1/3 law) growth.

  6. Banana orbits in elliptic tokamaks with hole currents

    NASA Astrophysics Data System (ADS)

    Martin, P.; Castro, E.; Puerta, J.

    2015-03-01

    Ware Pinch is a consequence of breaking of up-down symmetry due to the inductive electric field. This symmetry breaking happens, though up-down symmetry for magnetic surface is assumed. In previous work Ware Pinch and banana orbits were studied for tokamak magnetic surface with ellipticity and triangularity, but up-down symmetry. Hole currents appear in large tokamaks and their influence in Ware Pinch and banana orbits are now considered here for tokamaks magnetic surfaces with ellipticity and triangularity.

  7. Regulation of hyaluronan expression during cervical ripening.

    PubMed

    Straach, Kelly J; Shelton, John M; Richardson, James A; Hascall, Vincent C; Mahendroo, Mala S

    2005-01-01

    In preparation for birth, the uterine cervix undergoes a remarkable transformation from a closed, rigid structure to a distensible, remodeled configuration that stretches to allow passage of a fetus. Cervical ripening requires changes in the composition and structure of the extracellular matrix. These include an increase in the glycosaminoglycan hyaluronan (HA) prior to parturition. We show that the increase in cervical HA with advancing gestation correlates with the temporal increase in transcription of hyaluronan synthase 2 (HAS2) in the mouse. On gestation day 18, 1 day prior to birth, HAS2 transcripts are most abundant and begin to decline after birth. The steroid 5alpha-reductase type 1 deficient mouse, which fails to undergo cervical remodeling, has decreased expression of HAS2 mRNA and decreased tissue HA. HAS2 transcripts are expressed by cervical epithelium, and HA is localized to the matrix surrounding the stroma and to a lesser extent around the epithelium. HAS2 expression is suppressed in mice treated with progesterone. The mRNA expression levels of HA metabolizing enzymes hyaluronidase 1 and 2 were unchanged during pregnancy but increased after birth. Thus the net increase in HA content at term correlates with increased transcription of HAS2. Regulation of HA content is conserved in women because HAS2 transcripts are up-regulated in cervices of women in labor as compared to pregnant women not in labor. These results provide insights into the regulation of HA biosynthesis during cervical ripening and underscore the physiological role of HA in this essential process. PMID:15317739

  8. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development

    PubMed Central

    Dong, Chen; Hu, Huigang; Hu, Yulin; Xie, Jianghui

    2016-01-01

    Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. ‘Xiangfen 1,’ a novel flavonoid-rich banana germplasm, was studied with ‘Brazil’ serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with ‘Brazil,’ ‘Xiangfen 1’ fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and ‘Xiangfen 1’ banana can be a rich source of natural antioxidants in human diets. PMID:27625665

  9. Metabolism of Flavonoids in Novel Banana Germplasm during Fruit Development.

    PubMed

    Dong, Chen; Hu, Huigang; Hu, Yulin; Xie, Jianghui

    2016-01-01

    Banana is a commercially important fruit, but its flavonoid composition and characteristics has not been well studied in detail. In the present study, the metabolism of flavonoids was investigated in banana pulp during the entire developmental period of fruit. 'Xiangfen 1,' a novel flavonoid-rich banana germplasm, was studied with 'Brazil' serving as a control. In both varieties, flavonoids were found to exist mainly in free soluble form and quercetin was the predominant flavonoid. The most abundant free soluble flavonoid was cyanidin-3-O-glucoside chloride, and quercetin was the major conjugated soluble and bound flavonoid. Higher content of soluble flavonoids was associated with stronger antioxidant activity compared with the bound flavonoids. Strong correlation was observed between antioxidant activity and cyanidin-3-O-glucoside chloride content, suggesting that cyanidin-3-O-glucoside chloride is one of the major antioxidants in banana. In addition, compared with 'Brazil,' 'Xiangfen 1' fruit exhibited higher antioxidant activity and had more total flavonoids. These results indicate that soluble flavonoids play a key role in the antioxidant activity of banana, and 'Xiangfen 1' banana can be a rich source of natural antioxidants in human diets. PMID:27625665

  10. Banana peel: an effective biosorbent for aflatoxins.

    PubMed

    Shar, Zahid Hussain; Fletcher, Mary T; Sumbal, Gul Amer; Sherazi, Syed Tufail Hussain; Giles, Cindy; Bhanger, Muhammad Iqbal; Nizamani, Shafi Muhammad

    2016-05-01

    This work reports the application of banana peel as a novel bioadsorbent for in vitro removal of five mycotoxins (aflatoxins (AFB1, AFB2, AFG1, AFG2) and ochratoxin A). The effect of operational parameters including initial pH, adsorbent dose, contact time and temperature were studied in batch adsorption experiments. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and point of zero charge (pHpzc) analysis were used to characterise the adsorbent material. Aflatoxins' adsorption equilibrium was achieved in 15 min, with highest adsorption at alkaline pH (6-8), while ochratoxin has not shown any significant adsorption due to surface charge repulsion. The experimental equilibrium data were tested by Langmuir, Freundlich and Hill isotherms. The Langmuir isotherm was found to be the best fitted model for aflatoxins, and the maximum monolayer coverage (Q0) was determined to be 8.4, 9.5, 0.4 and 1.1 ng mg(-1) for AFB1, AFB2, AFG1 and AFG2 respectively. Thermodynamic parameters including changes in free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) were determined for the four aflatoxins. Free energy change and enthalpy change demonstrated that the adsorption process was exothermic and spontaneous. Adsorption and desorption study at different pH further demonstrated that the sorption of toxins was strong enough to sustain pH changes that would be experienced in the gastrointestinal tract. This study suggests that biosorption of aflatoxins by dried banana peel may be an effective low-cost decontamination method for incorporation in animal feed diets. PMID:27052947

  11. Microarray analysis of gene expression profiles in ripening pineapple fruits

    PubMed Central

    2012-01-01

    Background Pineapple (Ananas comosus) is a tropical fruit crop of significant commercial importance. Although the physiological changes that occur during pineapple fruit development have been well characterized, little is known about the molecular events that occur during the fruit ripening process. Understanding the molecular basis of pineapple fruit ripening will aid the development of new varieties via molecular breeding or genetic modification. In this study we developed a 9277 element pineapple microarray and used it to profile gene expression changes that occur during pineapple fruit ripening. Results Microarray analyses identified 271 unique cDNAs differentially expressed at least 1.5-fold between the mature green and mature yellow stages of pineapple fruit ripening. Among these 271 sequences, 184 share significant homology with genes encoding proteins of known function, 53 share homology with genes encoding proteins of unknown function and 34 share no significant homology with any database accession. Of the 237 pineapple sequences with homologs, 160 were up-regulated and 77 were down-regulated during pineapple fruit ripening. DAVID Functional Annotation Cluster (FAC) analysis of all 237 sequences with homologs revealed confident enrichment scores for redox activity, organic acid metabolism, metalloenzyme activity, glycolysis, vitamin C biosynthesis, antioxidant activity and cysteine peptidase activity, indicating the functional significance and importance of these processes and pathways during pineapple fruit development. Quantitative real-time PCR analysis validated the microarray expression results for nine out of ten genes tested. Conclusions This is the first report of a microarray based gene expression study undertaken in pineapple. Our bioinformatic analyses of the transcript profiles have identified a number of genes, processes and pathways with putative involvement in the pineapple fruit ripening process. This study extends our knowledge of the

  12. Kinetics of a Multilamellar Lipid Vesicle Ripening: Simulation and Theory.

    PubMed

    Xu, Rui; He, Xuehao

    2016-03-10

    Lipid vesicle ripening via unimolecular diffusion and exchange greatly influences the evolution of complex vesicle structure. However, this behavior is difficult to capture using conventional experimental technology and molecular simulation. In the present work, the ripening of a multilamellar lipid vesicle (MLV) is effectively explored using a mesoscale coarse-grained molecular model. The simulation reveals that a small MLV evolves into a unilamellar vesicle over a very long time period. In this process, only the outermost bilayer inflates, and the inner bilayers shrink. With increasing MLV size, the ripening process becomes complex and depends on competition between a series of adjacent bilayers in the MLV. To understand the diffusion behavior of the unimolecule, the potentials of mean force (PMFs) of a single lipid molecule across unilamellar vesicles with different sizes are calculated. It is found that the PMF of lipid dissociation from the inner layer is different than that of the outer layer, and the dissociation energy barrier sensitively depends on the curvature of the bilayer. A kinetics theoretical model of MLV ripening that considers the lipid dissociation energy for curved bilayers is proposed. The model successfully interprets the MLV ripening process with various numbers of bilayers and shows potential to predict the ripening kinetics of complex lipid vesicles. PMID:26882997

  13. Pectic polysaccharides are attacked by hydroxyl radicals in ripening fruit: evidence from a fluorescent fingerprinting method

    PubMed Central

    Fry, Stephen C.

    2016-01-01

    Background and aims Many fruits soften during ripening, which is important commercially and in rendering the fruit attractive to seed-dispersing animals. Cell-wall polysaccharide hydrolases may contribute to softening, but sometimes appear to be absent. An alternative hypothesis is that hydroxyl radicals (•OH) non-enzymically cleave wall polysaccharides. We evaluated this hypothesis by using a new fluorescent labelling procedure to ‘fingerprint’ •OH-attacked polysaccharides. Methods We tagged fruit polysaccharides with 2-(isopropylamino)-acridone (pAMAC) groups to detect (a) any mid-chain glycosulose residues formed in vivo during •OH action and (b) the conventional reducing termini. The pAMAC-labelled pectins were digested with Driselase, and the products resolved by high-voltage electrophoresis and high-pressure liquid chromatography. Key Results Strawberry, pear, mango, banana, apple, avocado, Arbutus unedo, plum and nectarine pectins all yielded several pAMAC-labelled products. GalA–pAMAC (monomeric galacturonate, labelled with pAMAC at carbon-1) was produced in all species, usually increasing during fruit softening. The six true fruits also gave pAMAC·UA-GalA disaccharides (where pAMAC·UA is an unspecified uronate, labelled at a position other than carbon-1), with yields increasing during softening. Among false fruits, apple and strawberry gave little pAMAC·UA-GalA; pear produced it transiently. Conclusions GalA–pAMAC arises from pectic reducing termini, formed by any of three proposed chain-cleaving agents (•OH, endopolygalacturonase and pectate lyase), any of which could cause its ripening-related increase. In contrast, pAMAC·UA-GalA conjugates are diagnostic of mid-chain oxidation of pectins by •OH. The evidence shows that •OH radicals do indeed attack fruit cell wall polysaccharides non-enzymically during softening in vivo. This applies much more prominently to drupes and berries (true fruits) than to false fruits (swollen

  14. Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene

    PubMed Central

    Irfan, Mohammad; Ghosh, Sumit; Meli, Vijaykumar S.; Kumar, Anil; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-01-01

    α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression. PMID:26834776

  15. Fruit Ripening Regulation of α-Mannosidase Expression by the MADS Box Transcription Factor RIPENING INHIBITOR and Ethylene.

    PubMed

    Irfan, Mohammad; Ghosh, Sumit; Meli, Vijaykumar S; Kumar, Anil; Kumar, Vinay; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2016-01-01

    α-Mannosidase (α-Man), a fruit ripening-specific N-glycan processing enzyme, is involved in ripening-associated fruit softening process. However, the regulation of fruit-ripening specific expression of α-Man is not well understood. We have identified and functionally characterized the promoter of tomato (Solanum lycopersicum) α-Man to provide molecular insights into its transcriptional regulation during fruit ripening. Fruit ripening-specific activation of the α-Man promoter was revealed by analysing promoter driven expression of beta-glucuronidase (GUS) reporter in transgenic tomato. We found that RIPENING INHIBITOR (RIN), a MADS box family transcription factor acts as positive transcriptional regulator of α-Man during fruit ripening. RIN directly bound to the α-Man promoter sequence and promoter activation/α-Man expression was compromised in rin mutant fruit. Deletion analysis revealed that a promoter fragment (567 bp upstream of translational start site) that contained three CArG boxes (binding sites for RIN) was sufficient to drive GUS expression in fruits. In addition, α-Man expression was down-regulated in fruits of Nr mutant which is impaired in ethylene perception and promoter activation/α-Man expression was induced in wild type following treatment with a precursor of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylic acid (ACC). Although, α-Man expression was induced in rin mutant after ACC treatment, the transcript level was less as compared to ACC-treated wild type. Taken together, these results suggest RIN-mediated direct transcriptional regulation of α-Man during fruit ripening and ethylene may acts in RIN-dependent and -independent ways to regulate α-Man expression. PMID:26834776

  16. Effect of ethylene treatment on the concentration of fructose-2,6-bisphosphate and on the activity of phosphofructokinase 2/fructose-2,6-bisphosphatase in banana.

    PubMed

    Mertens, E; Marcellin, P; Van Schaftingen, E; Hers, H G

    1987-09-15

    Preclimacteric bananas fruits were treated for 12 h with ethylene to induce the climacteric rise in respiration. One day after the end of the hormonal treatment, the two activities of the bifunctional enzyme, phosphofructokinase 2/fructose-2,6-bisphosphatase started to increase to reach fourfold their initial value 6 days later. By contrast, the activities of the pyrophosphate-dependent and of the ATP-dependent 6-phosphofructo-1-kinases remained constant during the whole experimental period, the first one being fourfold greater than the second. The concentrations of fructose 2,6-bisphosphate and of fructose 1,6-bisphosphate increased in parallel during 4 days and then slowly decreased, the second one being always about 100-fold greater than the first. The change in fructose 2,6-bisphosphate concentration can be partly explained by the rise of the bifunctional enzyme, but also by an early increase in the concentration of fructose 6-phosphate, the substrate of all phosphofructokinases, and also by the decrease in the concentration of glycerate 3-phosphate, a potent inhibitor of phosphofructokinase 2. The burst in fructose 2,6-bisphosphate and the activity of the pyrophosphate-dependent phosphofructokinase, which is in banana the only enzyme known to be sensitive to fructose 2,6-bisphosphate, can explain the well-known increase in fructose 1,6-bisphosphate which occurs during ripening. PMID:2820731

  17. An insight into the sequential, structural and phylogenetic properties of banana 1-aminocyclopropane-1-carboxylate synthase 1 and study of its interaction with pyridoxal-5'-phosphate and aminoethoxyvinylglycine.

    PubMed

    Choudhury, Swarup Roy; Singh, Sanjay Kumar; Roy, Sujit; Sengupta, Dibyendu N

    2010-06-01

    In banana, ethylene production for ripening is accompanied by a dramatic increase in 1-aminocyclopropane-1-carboxylate (ACC) content, transcript level of Musa acuminata ACC synthase 1 (MA-ACS1) and the enzymatic activity of ACC synthase 1 at the onset of the climacteric period. MA-ACS1 catalyses the conversion of S-adenosyl-L-methionine (SAM) to ACC, the key regulatory step in ethylene biosynthesis. Multiple sequence alignments of 1-aminocyclopropane-1-carboxylate synthase (ACS) amino acid sequences based on database searches have indicated that MA-ACS1 is a highly conserved protein across the plant kingdom. This report describes an in silico analysis to provide the first important insightful information about the sequential, structural and phylogenetic characteristics of MA-ACS1. The three-dimensional structure of MA-ACS1, constructed based on homology modelling, in combination with the available data enabled a comparative mechanistic analysis of MA-ACS1 to explain the catalytic roles of the conserved and non-conserved active site residues. We have further demonstrated that, as in apple and tomato, banana- ACS1 (MA-ACS1) forms a homodimer and a complex with cofactor pyridoxal-5'-phosphate (PLP) and inhibitor aminoethoxyvinylglycine (AVG). We have also predicted that the residues from the PLP-binding pocket, essential for ligand binding, are mostly conserved across the MA-ACS1 structure and the competitive inhibitor AVG binds at a location adjacent to PLP. PMID:20689184

  18. Iron absorption in raw and cooked bananas: A field study using stable isotopes in women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Thirty women (34.9 +/- 6.6 years...

  19. Evaluation of Information and Communication Technology Utilization by Small Holder Banana Farmers in Gatanga District, Kenya

    ERIC Educational Resources Information Center

    Mwombe, Simon O. L.; Mugivane, Fred I.; Adolwa, Ivan S.; Nderitu, John H.

    2014-01-01

    Purpose: The study was carried out to identify information communication technologies (ICTs) used in production and marketing of bananas, to determine factors influencing intensity of use of ICT tools and to assess whether use of ICT has a significant influence on adoption of tissue culture bananas by small-scale banana farmers in Gatanga…

  20. Study of Banana Dehydration Using Sequential Infrared Radiation and Freeze-Drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The drying and quality characteristics of banana slices processed with a sequential infrared radiation and freeze-drying (SIRFD) method were investigated. To study the drying characteristics of bananas during the infrared (IR) and hot air predehydration, Cavendish bananas slices with 5 mm thickness...

  1. Subpopulation level variation of banana streak viruses in India and common evolution of banana and sugarcane badnaviruses.

    PubMed

    Sharma, Susheel Kumar; Vignesh Kumar, P; Geetanjali, A Swapna; Pun, Khem Bahadur; Baranwal, Virendra Kumar

    2015-06-01

    Genome sequences of three episomal Banana streak MY virus (BSMYV) isolates sampled from triploid banana hybrids (Chini Champa: AAB; Malbhog: AAB and Monthan: ABB), grown in North-East and South India are reported in this study by sequence-independent improved rolling circle amplification (RCA). RCA coupled with restriction fragment length polymorphism revealed diverse restriction profiles of five BSMYV isolates. Nucleotide substitution rates of BSMYV subpopulation and Banana streak OL virus subpopulation was 7.13 × 10(-3) to 1.59 × 10(-2) and 2.65 × 10(-3) to 5.49 × 10(-3), respectively, for the different coding regions. Analysis of the genetic diversity of banana and sugarcane badnaviruses revealed a total of 32 unique recombination events among banana and sugarcane badnaviruses (inter BSV-SCBV), in addition to the extensive recombination with in banana streak viruses and sugarcane bacilliform viruses (intra-BSV and intra-SCBV). Many unique fragments were shown to contain similar ruminant sequence fragments which indicated the possibility that the two groups of badnaviruses or their ancestors to colonise same host before making the host shift. The distribution of recombination events, hot-spots (intergenic region and C-terminal of ORF3) as well as cold-spots (distributed in ORF3) displayed the mirroring of recombination traces in both group of badnaviruses. These results support the hypothesis of relatedness of banana and sugarcane badnaviruses and the host and geographical shifts that followed the fixation of the species complex appear to be a recent event. PMID:25672291

  2. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening

    PubMed Central

    Arhondakis, Stilianos; Bita, Craita E.; Perrakis, Andreas; Manioudaki, Maria E.; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  3. In silico Transcriptional Regulatory Networks Involved in Tomato Fruit Ripening.

    PubMed

    Arhondakis, Stilianos; Bita, Craita E; Perrakis, Andreas; Manioudaki, Maria E; Krokida, Afroditi; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2016-01-01

    Tomato fruit ripening is a complex developmental programme partly mediated by transcriptional regulatory networks. Several transcription factors (TFs) which are members of gene families such as MADS-box and ERF were shown to play a significant role in ripening through interconnections into an intricate network. The accumulation of large datasets of expression profiles corresponding to different stages of tomato fruit ripening and the availability of bioinformatics tools for their analysis provide an opportunity to identify TFs which might regulate gene clusters with similar co-expression patterns. We identified two TFs, a SlWRKY22-like and a SlER24 transcriptional activator which were shown to regulate modules by using the LeMoNe algorithm for the analysis of our microarray datasets representing four stages of fruit ripening, breaker, turning, pink and red ripe. The WRKY22-like module comprised a subgroup of six various calcium sensing transcripts with similar to the TF expression patterns according to real time PCR validation. A promoter motif search identified a cis acting element, the W-box, recognized by WRKY TFs that was present in the promoter region of all six calcium sensing genes. Moreover, publicly available microarray datasets of similar ripening stages were also analyzed with LeMoNe resulting in TFs such as SlERF.E1, SlERF.C1, SlERF.B2, SLERF.A2, SlWRKY24, SLWRKY37, and MADS-box/TM29 which might also play an important role in regulation of ripening. These results suggest that the SlWRKY22-like might be involved in the coordinated regulation of expression of the six calcium sensing genes. Conclusively the LeMoNe tool might lead to the identification of putative TF targets for further physiological analysis as regulators of tomato fruit ripening. PMID:27625653

  4. Production of bioethanol using agricultural waste: Banana pseudo stem

    PubMed Central

    Ingale, Snehal; Joshi, Sanket J.; Gupte, Akshaya

    2014-01-01

    India is amongst the largest banana (Musa acuminata) producing countries and thus banana pseudo stem is commonly available agricultural waste to be used as lignocellulosic substrate. Present study focuses on exploitation of banana pseudo stem as a source for bioethanol production from the sugars released due to different chemical and biological pretreatments. Two fungal strains Aspergillus ellipticus and Aspergillus fumigatus reported to be producing cellulolytic enzymes on sugarcane bagasse were used under co-culture fermentation on banana pseudo stem to degrade holocellulose and facilitate maximum release of reducing sugars. The hydrolysate obtained after alkali and microbial treatments was fermented by Saccharomyces cerevisiae NCIM 3570 to produce ethanol. Fermentation of cellulosic hydrolysate (4.1 g%) gave maximum ethanol (17.1 g/L) with yield (84%) and productivity (0.024 g%/h) after 72 h. Some critical aspects of fungal pretreatment for saccharification of cellulosic substrate using A. ellipticus and A. fumigatus for ethanol production by S. cerevisiae NCIM 3570 have been explored in this study. It was observed that pretreated banana pseudo stem can be economically utilized as a cheaper substrate for ethanol production. PMID:25477922

  5. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    PubMed

    Breitel, Dario A; Chappell-Maor, Louise; Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-03-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  6. AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening

    PubMed Central

    Meir, Sagit; Panizel, Irina; Puig, Clara Pons; Hao, Yanwei; Yifhar, Tamar; Yasuor, Hagai; Zouine, Mohamed; Bouzayen, Mondher; Granell Richart, Antonio; Rogachev, Ilana; Aharoni, Asaph

    2016-01-01

    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process. PMID:26959229

  7. A comparative study of ripening among berries of the grape cluster reveals an altered transcriptional programme and enhanced ripening rate in delayed berries

    PubMed Central

    Gouthu, Satyanarayana; O’Neil, Shawn T.; Di, Yanming; Ansarolia, Mitra; Megraw, Molly; Deluc, Laurent G.

    2014-01-01

    Transcriptional studies in relation to fruit ripening generally aim to identify the transcriptional states associated with physiological ripening stages and the transcriptional changes between stages within the ripening programme. In non-climacteric fruits such as grape, all ripening-related genes involved in this programme have not been identified, mainly due to the lack of mutants for comparative transcriptomic studies. A feature in grape cluster ripening (Vitis vinifera cv. Pinot noir), where all berries do not initiate the ripening at the same time, was exploited to study their shifted ripening programmes in parallel. Berries that showed marked ripening state differences in a véraison-stage cluster (ripening onset) ultimately reached similar ripeness states toward maturity, indicating the flexibility of the ripening programme. The expression variance between these véraison-stage berry classes, where 11% of the genes were found to be differentially expressed, was reduced significantly toward maturity, resulting in the synchronization of their transcriptional states. Defined quantitative expression changes (transcriptional distances) not only existed between the véraison transitional stages, but also between the véraison to maturity stages, regardless of the berry class. It was observed that lagging berries complete their transcriptional programme in a shorter time through altered gene expressions and ripening-related hormone dynamics, and enhance the rate of physiological ripening progression. Finally, the reduction in expression variance of genes can identify new genes directly associated with ripening and also assess the relevance of gene activity to the phase of the ripening programme. PMID:25135520

  8. Surface Microflora of Four Smear-Ripened Cheeses

    PubMed Central

    Mounier, Jérôme; Gelsomino, Roberto; Goerges, Stefanie; Vancanneyt, Marc; Vandemeulebroecke, Katrien; Hoste, Bart; Scherer, Siegfried; Swings, Jean; Fitzgerald, Gerald F.; Cogan, Timothy M.

    2005-01-01

    The microbial composition of smear-ripened cheeses is not very clear. A total of 194 bacterial isolates and 187 yeast isolates from the surfaces of four Irish farmhouse smear-ripened cheeses were identified at the midpoint of ripening using pulsed-field gel electrophoresis (PFGE), repetitive sequence-based PCR, and 16S rRNA gene sequencing for identifying and typing the bacteria and Fourier transform infrared spectroscopy and mitochondrial DNA restriction fragment length polymorphism (mtDNA RFLP) analysis for identifying and typing the yeast. The yeast microflora was very uniform, and Debaryomyces hansenii was the dominant species in the four cheeses. Yarrowia lipolytica was also isolated in low numbers from one cheese. The bacteria were highly diverse, and 14 different species, Corynebacterium casei, Corynebacterium variabile, Arthrobacter arilaitensis, Arthrobacter sp., Microbacterium gubbeenense, Agrococcus sp. nov., Brevibacterium linens, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, Micrococcus luteus, Halomonas venusta, Vibrio sp., and Bacillus sp., were identified on the four cheeses. Each cheese had a more or less unique microflora with four to nine species on its surface. However, two bacteria, C. casei and A. arilaitensis, were found on each cheese. Diversity at the strain level was also observed, based on the different PFGE patterns and mtDNA RFLP profiles of the dominant bacterial and yeast species. None of the ripening cultures deliberately inoculated onto the surface were reisolated from the cheeses. This study confirms the importance of the adventitious, resident microflora in the ripening of smear cheeses. PMID:16269673

  9. Methods for cervical ripening and induction of labor.

    PubMed

    Tenore, Josie L

    2003-05-15

    Induction of labor is common in obstetric practice. According to the most current studies, the rate varies from 9.5 to 33.7 percent of all pregnancies annually. In the absence of a ripe or favorable cervix, a successful vaginal birth is less likely. Therefore, cervical ripening or preparedness for induction should be assessed before a regimen is selected. Assessment is accomplished by calculating a Bishop score. When the Bishop score is less than 6, it is recommended that a cervical ripening agent be used before labor induction. Nonpharmacologic approaches to cervical ripening and labor induction have included herbal compounds, castor oil, hot baths, enemas, sexual intercourse, breast stimulation, acupuncture, acupressure, transcutaneous nerve stimulation, and mechanical and surgical modalities. Of these nonpharmacologic methods, only the mechanical and surgical methods have proven efficacy for cervical ripening or induction of labor. Pharmacologic agents available for cervical ripening and labor induction include prostaglandins, misoprostol, mifepristone, and relaxin. When the Bishop score is favorable, the preferred pharmacologic agent is oxytocin. PMID:12776961

  10. Banana leaf and glucose mineralization and soil organic matter in microhabitats of banana plantations under long-term pesticide use.

    PubMed

    Blume, Elena; Reichert, José Miguel

    2015-06-01

    Soil organic matter (SOM) and microbial activity are key components of soil quality and sustainability. In the humid tropics of Costa Rica 3 pesticide regimes were studied-fungicide (low input); fungicide and herbicide (medium input); and fungicide, herbicide, and nematicide (high input)-under continuous banana cultivation for 5 yr (young) or 20 yr (old) in 3 microhabitats-nematicide ring around plants, litter pile of harvested banana, and bare area between litter pile and nematicide ring. Soil samples were incubated sequentially in the laboratory: unamended, amended with glucose, and amended with ground banana leaves. Soil organic matter varied with microhabitat, being greatest in the litter pile, where microbes had the greatest basal respiration with ground banana leaf, whereas microbes in the nematicide ring had the greatest respiration with glucose. These results suggest that soil microbes adapt to specific microhabitats. Young banana plantations had similar SOM compared with old plantations, but the former had greater basal microbial respiration in unamended and in glucose-amended soil and greater first-order mineralization rates in glucose-amended soil, thus indicating soil biological quality decline over time. High pesticide input did not decrease microbial activity or mineralization rate in surface soil. In conclusion, microbial activity in tropical volcanic soil is highly adaptable to organic and inorganic inputs. PMID:25703385

  11. Wild Banana Seed Phytobezoar Rectal Impaction Causing Intestinal Obstruction.

    PubMed

    Chai, Feng Yih; Heng, Sophia Si Ling; Asilah, Siti Mohd Desa; Adila, Irene Nur Ibrahim; Tan, Yew Eng; Chong, Hock Chin

    2016-08-01

    Wild banana (Musa acuminata subsp. microcarpa) seed phytobezoar rectal impaction in adult is a rare entity. Here, we report a 75-year-old male with dementia who presented with lower abdominal pain, per-rectal bleeding and overflow faecal incontinence. Our investigation discovered a large wild banana seed phytobezoar impacted in the rectum causing intestinal obstruction, stercoral ulcer and faecal overflow incontinence. In this article, we discuss the patient's clinical findings, imaging and management. The culprit plant was identified and depicted. This may be the first report of its kind. Public consumption of these wild bananas should be curtailed. It is hoped that this report would increase the awareness of such condition and its identification. PMID:27574355

  12. Green banana pasta: an alternative for gluten-free diets.

    PubMed

    Zandonadi, Renata Puppin; Botelho, Raquel Braz Assunção; Gandolfi, Lenora; Ginani, Janini Selva; Montenegro, Flávio Martins; Pratesi, Riccardo

    2012-07-01

    The objective of this study was to develop and analyze a gluten-free pasta made with green banana flour. The study was divided into five steps: preparation/selection, chemical, sensory, technological, and statistical analysis. The modified sample presented greater acceptance (84.5% for celiac individuals and 61.2% for nonceliac) than standard samples (53.6% for nonceliac individuals). There was no significant difference between the modified and the standard samples in terms of appearance, aroma, flavor, and overall quality. The modified pastas presented approximately 98% less lipids. Green bananas are considered a subproduct of low commercial value with little industrial use. The possibility of developing gluten-free products with green banana flour can expand the product supply for people with celiac disease and contribute to a more diverse diet. PMID:22889636

  13. Visualization of internal structure of banana starch granule through AFM.

    PubMed

    Peroni-Okita, Fernanda H G; Gunning, A Patrick; Kirby, Andrew; Simão, Renata A; Soares, Claudinéia A; Cordenunsi, Beatriz R

    2015-09-01

    Atomic force microscopy (AFM) is a high resolution technique for studying the external and internal structures of starch granules. For this purpose granules were isolated from bananas and embedded in a non-penetrating resin. To achieve image contrast of the ultrastructure, the face of the cut blocks were wetted in steam and force modulation mode imaging was used. Images of starch from green bananas showed large variation of height across the granule due to a locational specific absorption of water and swelling of amorphous regions; the data reveal that the center of the granules are structurally different and have different viscoelastic properties. Images of starches from ripe bananas showed an even greater different level of organization: absence of growth rings around the hilum; the central region of the granule is richer in amylose; very porous surface with round shaped dark structures; the size of blocklets are larger than the green fruits. PMID:26005137

  14. Hyperspectral imaging system for disease scanning on banana plants

    NASA Astrophysics Data System (ADS)

    Ochoa, Daniel; Cevallos, Juan; Vargas, German; Criollo, Ronald; Romero, Dennis; Castro, Rodrigo; Bayona, Oswaldo

    2016-05-01

    Black Sigatoka (BS) is a banana plant disease caused by the fungus Mycosphaerella fijiensis. BS symptoms can be observed at late infection stages. By that time, BS has probably spread to other plants. In this paper, we present our current work on building an hyper-spectral (HS) imaging system aimed at in-vivo detection of BS pre-symptomatic responses in banana leaves. The proposed imaging system comprises a motorized stage, a high-sensitivity VIS-NIR camera and an optical spectrograph. To capture images of the banana leaf, the stage's speed and camera's frame rate must be computed to reduce motion blur and to obtain the same resolution along both spatial dimensions of the resulting HS cube. Our continuous leaf scanning approach allows imaging leaves of arbitrary length with minimum frame loss. Once the images are captured, a denoising step is performed to improve HS image quality and spectral profile extraction.

  15. Biosynthesis of CdS nanoparticles in banana peel extract.

    PubMed

    Zhou, Guang Ju; Li, Shuo Hao; Zhang, Yu Cang; Fu, Yun Zhi

    2014-06-01

    Cadmium sulfide (CdS) nanoparticles (NPs) were synthesized by using banana peel extract as a convenient, non-toxic, eco-friendly 'green' capping agent. Cadmium nitrate and sodium sulfide are main reagents. A variety of CdS NPs are prepared through changing reaction conditions (banana extracts, the amount of banana peel extract, solution pH, concentration and reactive temperature). The prepared CdS colloid displays strong fluorescence spectrum. X-ray diffraction analysis demonstrates the successful formation of CdS NPs. Fourier transform infra-red (FTIR) spectrogram indicates the involvement of carboxyl, amine and hydroxyl groups in the formation of CdS NPs. Transmission electron microscope (TEM) result reveals that the average size of the NPs is around 1.48 nm. PMID:24738409

  16. Cloning and sequence analysis of banana streak virus DNA.

    PubMed

    Harper, G; Hull, R

    1998-01-01

    Banana streak virus (BSV), a member of the Badnavirus group of plant viruses, causes severe problems in banana cultivation, reducing fruit yield and restricting plant breeding and the movement of germplasm. Current detection methods are relatively insensitive. In order to develop a PCR-based diagnostic method that is both reliable and sensitive, the genome of a Nigerian isolate of BSV has been sequenced and shown to comprise 7389 bp and to be organized in a manner characteristic of badnaviruses. Comparison of this sequence with those of other badnaviruses showed that BSV is a distinct virus. PCR with primers based on sequence data indicated that BSV sequences are present in the banana genome. PMID:9926402

  17. Complete genome sequence of a novel badnavirus, banana streak IM virus.

    PubMed

    Geering, Andrew D W; Parry, Judith N; Thomas, John E

    2011-04-01

    In 1999, banana streak disease outbreaks occurred at two locations in Australia in new banana hybrids that were being screened for fusarium wilt resistance. Two different badnaviruses, banana streak GF virus and a newly discovered virus called banana streak IM virus (BSIMV), were detected in these plants. The complete nucleotide sequence of the BSIMV genome was determined and comprised 7768 nt. Three open reading frames were detected, the first beginning with a non-conventional start codon (CUG). A 55-nt repetition in the putative pregenomic RNA promoter was also identified. Phylogenetic analysis suggests that BSIMV is most closely related to banana streak VN virus. PMID:21347843

  18. Differential characteristics in the chemical composition of bananas from Tenerife (Canary Islands) and Ecuador.

    PubMed

    Forster, Markus Paul; Rodríguez Rodríguez, Elena; Díaz Romero, Carlos

    2002-12-18

    The contents of moisture, protein, ash, ascorbic acid, glucose, fructose, total sugars, and total and insoluble fiber were determined in cultivars of bananas (Gran Enana and Pequeña Enana) harvested in Tenerife and in bananas (Gran Enana) from Ecuador. The chemical compositions in the bananas from Tenerife and from Ecuador were clearly different. The cultivar did not influence the chemical composition, except for insoluble fiber content. Variations of the chemical composition were observed in the bananas from Tenerife according to cultivation method (greenhouse and outdoors), farming style (conventional and organic), and region of production (north and south). A highly significant (r = 0.995) correlation between glucose and fructose was observed. Correlations of ash and protein contents tend to separate the banana samples according to origin. A higher content of protein, ash, and ascorbic acid was observed as the length of the banana decreased. Applying factor analysis, the bananas from Ecuador were well separated from the bananas produced in Tenerife. An almost total differentiation (91.7%) between bananas from Tenerife and bananas from Ecuador was obtained by selecting protein, ash, and ascorbic acid content and applying stepwise discriminant analysis. By selecting the bananas Pequeña Enana and using discriminant analysis, a clear separation of the samples according to the region of production and farming style was observed. PMID:12475275

  19. A DEMETER-like DNA demethylase governs tomato fruit ripening

    PubMed Central

    Liu, Ruie; How-Kit, Alexandre; Stammitti, Linda; Teyssier, Emeline; Rolin, Dominique; Mortain-Bertrand, Anne; Halle, Stefanie; Liu, Mingchun; Kong, Junhua; Wu, Chaoqun; Degraeve-Guibault, Charlotte; Chapman, Natalie H.; Maucourt, Mickael; Hodgman, T. Charlie; Tost, Jörg; Bouzayen, Mondher; Hong, Yiguo; Seymour, Graham B.; Giovannoni, James J.; Gallusci, Philippe

    2015-01-01

    In plants, genomic DNA methylation which contributes to development and stress responses can be actively removed by DEMETER-like DNA demethylases (DMLs). Indeed, in Arabidopsis DMLs are important for maternal imprinting and endosperm demethylation, but only a few studies demonstrate the developmental roles of active DNA demethylation conclusively in this plant. Here, we show a direct cause and effect relationship between active DNA demethylation mainly mediated by the tomato DML, SlDML2, and fruit ripening— an important developmental process unique to plants. RNAi SlDML2 knockdown results in ripening inhibition via hypermethylation and repression of the expression of genes encoding ripening transcription factors and rate-limiting enzymes of key biochemical processes such as carotenoid synthesis. Our data demonstrate that active DNA demethylation is central to the control of ripening in tomato. PMID:26261318

  20. Current trends in cervical ripening and labor induction.

    PubMed

    Harman, J H; Kim, A

    1999-08-01

    Labor is induced in more than 13 percent of deliveries in the United States. Postdate pregnancy is the most common indication. Oxytocin is the drug of choice for labor induction when the cervical examination shows that the cervix is favorable. The use of this agent requires experience and vigilant observation for uterine hyperstimulation, hypertonus or maternal fluid overload. In a patient whose cervix is unfavorable, the use of prostaglandin analogs for cervical ripening markedly enhances the success of inductions. Misoprostol, a prostaglandin E1 analog marketed as a gastrointestinal mucosal protective agent, is safe, efficacious and inexpensive for use in cervical ripening and labor induction. Further studies will better delineate its optimal use. Family physicians need to be familiar with the various methods of cervical ripening and labor induction. PMID:10465223

  1. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in...

  2. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in...

  3. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in...

  4. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in...

  5. 7 CFR 932.109 - Canned ripe olives of the tree-ripened type.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Canned ripe olives of the tree-ripened type. 932.109... OLIVES GROWN IN CALIFORNIA Rules and Regulations § 932.109 Canned ripe olives of the tree-ripened type. (a) Canned ripe olives of the tree-ripened type means packaged olives, not oxidized in...

  6. Transcriptional control of fleshy fruit development and ripening.

    PubMed

    Karlova, Rumyana; Chapman, Natalie; David, Karine; Angenent, Gerco C; Seymour, Graham B; de Maagd, Ruud A

    2014-08-01

    Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on tomato. While aspects of fruit development are probably conserved throughout the angiosperms, including the model plant Arabidopsis thaliana, it is shown that the likely orthologues of Arabidopsis genes have distinct functions in fleshy fruits. The model for the study of fleshy fruit development is tomato, because of the availability of single gene mutants and transgenic knock-down lines. In other species, our knowledge is often incomplete or absent. Tomato fruit size and shape are co-determined by transcription factors acting during formation of the ovary. Other transcription factors play a role in fruit chloroplast formation, and upon ripening impact quality aspects such as secondary metabolite content. In tomato, the transcription factors NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and RIPENING INHIBITOR (MADS-RIN) in concert with ethylene signalling regulate ripening, possibly in response to a developmental switch. Additional components include TOMATO AGAMOUS-LIKE1 (TAGL1), APETALA2a (AP2a), and FRUITFULL (FUL1 and FUL2). The links between this highly connected regulatory network and downstream effectors modulating colour, texture, and flavour are still relatively poorly understood. Intertwined with this network is post-transcriptional regulation by fruit-expressed microRNAs targeting several of these transcription factors. This important developmental process is also governed by changes in DNA methylation levels and possibly chromatin remodelling. PMID:25080453

  7. Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling

    PubMed Central

    Kanno, Yuri; Jordan, Mark C.; Kamiya, Yuji; Seo, Mitsunori; Ayele, Belay T.

    2013-01-01

    Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals. PMID:23437172

  8. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.

    PubMed

    Liu, Aihua; Gao, Feng; Kanno, Yuri; Jordan, Mark C; Kamiya, Yuji; Seo, Mitsunori; Ayele, Belay T

    2013-01-01

    Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals. PMID:23437172

  9. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... process); and (4) To safeguard from fruit fly infestation, the bananas must be covered with insect-proof... part 305 of this chapter for the Mediterranean fruit fly (Ceratitis capitata), the melon fruit fly (Bactrocera curcurbitae), the Oriental fruit fly (Bactrocera dorsalis), and the green scale (Coccus...

  10. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... process); and (4) To safeguard from fruit fly infestation, the bananas must be covered with insect-proof... chapter for the Mediterranean fruit fly (Ceratitis capitata), the melon fruit fly (Bactrocera curcurbitae), the Oriental fruit fly (Bactrocera dorsalis), and the green scale (Coccus viridis) and are...

  11. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... process); and (4) To safeguard from fruit fly infestation, the bananas must be covered with insect-proof... part 305 of this chapter for the Mediterranean fruit fly (Ceratitis capitata), the melon fruit fly (Bactrocera curcurbitae), the Oriental fruit fly (Bactrocera dorsalis), and the green scale (Coccus...

  12. 7 CFR 318.13-22 - Bananas from Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... process); and (4) To safeguard from fruit fly infestation, the bananas must be covered with insect-proof... part 305 of this chapter for the Mediterranean fruit fly (Ceratitis capitata), the melon fruit fly (Bactrocera curcurbitae), the Oriental fruit fly (Bactrocera dorsalis), and the green scale (Coccus...

  13. Resistant starch in Micronesian banana cultivars offers health benefits.

    PubMed

    Thakorlal, J; Perera, C O; Smith, B; Englberger, L; Lorens, A

    2010-04-01

    Resistant Starch (RS) is a type of starch that is resistant to starch hydrolyzing enzymes in the stomach and thus behaves more like dietary fibre. RS has been shown to have beneficial effects in disease prevention including modulation of glycaemic index diabetes, cholesterol lowering capability and weight management, which are critically important for many people in the Federated States of Micronesia. Green bananas are known to contain substantial concentrations of RS and are a common part of the Micronesian diet. Therefore the aim of this study was to determine the RS content in banana cultivars from Pohnpei, Micronesia: Daiwang, Inahsio, Karat, Utin Kerenis and Utin Ruk, for which no such information was available. Utin Kerenis, Inahsio and Utin Ruk were found to contain the highest amounts of RS. The fate of RS after incorporation into a food product (i.e., pancakes) was also studied and a significant reduction in the RS content was found for each cultivar after cooking. Microscopy of the banana samples indicated that the overall morphology of the cultivars was similar. In conclusion, green banana, including these varieties, should be promoted in Micronesia and other places for their rich RS content and related health benefits including diabetes control. Further research is needed to more clearly determine the effects of cooking and food processing on RS. PMID:20968236

  14. Quality Characteristics of Dried Bananas Produced with Infrared Radiation Technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Browning of fruits during drying is a major quality concern. The enzyme polyphenol oxidase has been found to be the main cause of browning in bananas. Infrared radiation (IR) drying could be used to minimize enzymatic browning hence eliminating the need for pre-treatments. This study was to inves...

  15. Ammonia-nitrogen sorptional properties of banana peels.

    PubMed

    Chen, Yunnen; Ding, Lichao; Fan, Jingbiao

    2011-04-01

    Using modified banana peel as a biosorbent to treat water containing ammonia-nitrogen (NH4(+)-N) was studied. Related parameters in the sorptional process, such as chemical modification, pH, and contact time were investigated. The experimental results showed that banana peel modified by 30% sodium hydroxide (NaOH) and mesothermal microwaves (NMBPs) can greatly improve the sorption removal for NH4(+)-N. The kinetics study revealed that the sorption behavior better fit the pseudo-second-order equation than the Lagergren first-order equation. Fourier transform infrared absorption spectrum analysis of banana peels and NMBPs before and after NH4(+)-N sorption revealed that the activity of hydroxyl groups at the surface of the banana peels was strengthened after modification, and nitrogenous groups appeared after biosorpting the NH4(+)-N. In the end, metallurgical wastewater containing a low concentration of NH4(+)-N was treated by NMBPs. The initial NH4(+)-N concentration of 138 mg/L was reduced to 13 mg/L in 25 minutes by 4 g/L NMBPs at pH 10. PMID:21553592

  16. Fluorinated banana-shaped 1,2,4-oxadiazoles

    NASA Astrophysics Data System (ADS)

    Karamysheva, L. A.; Agafonova, I. F.; Geivandova, T. A.; Torgova, Sofia I.; Becchi, M.

    2002-06-01

    A series of banana-shaped diesters derivated of 3,5-bis-(p- hydroxyphenyl)-1,2;4-oxadiazole and p-alkyloxy- fluoro(difluoro)benzoic acids were synthesized and investigated by optical microscopy and DSC method. The influence of the alkyloxy-substituent lengths and of the F- group position in the molecule on its mesomorphic properties is discussed.

  17. Sequencing the Major Mycosphaerella Pathogens of Wheat and Banana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella is one of the largest genera of plant pathogenic fungi with more than 1,000 named species, many of which are important pathogens causing leaf spotting diseases in a wide variety of crops including cereals, citrus, banana, eucalypts, soft fruits, and horticultural crops. A few species ...

  18. Effect of endogenously synthesized and exogenously applied ethanol on tomato fruit ripening

    SciTech Connect

    Kelly, M.O.; Saltveit, M.E. Jr.

    1988-09-01

    Tomato (Lycopersicon esculentum Mill. var Castlemart) fruit ripening was inhibited by tissue concentrations of ethanol that were produced by either exposure to exogenous ethanol vapors or synthesis under anaerobic atmospheres. Ethanol was not detected in aerobically ripened tomato fruit. Ripening was not inhibited by exposure to methanol at an equivalent molar concentration to inhibitory concentrations of ethanol, while ripening was slightly more inhibited by n-propanol than by equivalent molar concentrations of ethanol. The mottled appearance of a few ripened ethanol-treated fruit was not observed in n-propanol-treated fruit.

  19. Ripening process of Cascaval cheese: compositional and textural aspects.

    PubMed

    Andronoiu, Doina Georgeta; Botez, Elisabeta; Nistor, Oana Viorela; Mocanu, Gabriel Dănuţ

    2015-08-01

    Two textural characteristics, elasticity modulus and firmness, were determined during the ripening process of Cascaval cheese, using both instrumental and sensorial techniques. Uniaxial compression was used to determine the textural characteristics and the results were compared with the ones obtained by sensorial analysis, revealing a good correlation. The chemical composition of cheese was also determined, including the nitrogen fractions (total nitrogen, water soluble nitrogen, non-protein nitrogen and phosphotungstic acid soluble nitrogen). The data thus obtained were statistically processed in order to find the differences between the samples, as well as to find the correlation between the techniques of analysis. The study showed that the ripening process of the Cascaval cheese is similar to the ripening of other pasta filata cheese. The moisture content decreases during maturation as a result of water evaporation. The concentration of nitrogen fractions increases during the ripening stage, and so do the firmness and elasticity modulus. The biochemical processes that occur during maturation largely influence the textural parameters and this is proved by both instrumental and sensorial analyses. PMID:26243953

  20. Reevaluation of the changes in polygalacturonases in tomatoes during ripening.

    PubMed

    Pressey, R

    1988-04-01

    A procedure was developed for the differential extraction of polygalacturonases (PG) I and II from tomatoes (Lycopersicon esculentum Mill.). Extraction of pericarp tissue from ripe fruit at conventional conditions of 1.0 M NaCl and pH 6.0 yielded nearly equal amounts of the two enzymes. However, most of the PG activity could be extracted also with water at pH 1.6, and the water extract contained only PG II. Subsequent extraction of the pellet with 1.0 M NaCl at pH 6.0 and 10.0 yielded some PG I and high levels of PG converter, the protein in tomatoes that reacts with PG II to form PG I. Application of this procedure to tomatoes at different stages of ripening showed that PG II appeared as ripening began and then increased during ripening. Much lower levels of PG I than of PG II were extracted at all stages of ripeness. The PG converter was present in unripe fruit and increased during ripening. The results demonstrate that PG I is formed when PG II and PG converter are solubilized simultaneously and that PG II is the only endogenous PG in tomatoes. PMID:24221415

  1. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant

    PubMed Central

    Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape. PMID:27610363

  2. Environmental Influences on Ripening and Phenolics in Grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade, we refined our understanding of the effects of solar radiation and temperature on grape ripening, especially in dark-skinned cultivars used for wine. In three separate studies, we deployed up to ten combinations of berry temperature and exposure to solar radiation, then asses...

  3. Environmental Influences on Ripening and Phenolics in Grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the past decade we refined our understanding of the effects of solar radiation and temperature on grape ripening, especially in red-skinned cultivars used for wine. In three separate studies, we deployed up to ten combinations of berry temperature and exposure to solar radiation, then assesse...

  4. Genetics and control of tomato fruit ripening and quality attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato ripening is a highly coordinated developmental process coinciding with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids and volatile compounds that increase attraction to animals. A combination of molecular...

  5. Histological and Molecular Characterization of Grape Early Ripening Bud Mutant.

    PubMed

    Guo, Da-Long; Yu, Yi-He; Xi, Fei-Fei; Shi, Yan-Yan; Zhang, Guo-Hai

    2016-01-01

    An early ripening bud mutant was analyzed based on the histological, SSR, and methylation-sensitive amplified polymorphism (MSAP) analysis and a layer-specific approach was used to investigate the differentiation between the bud mutant and its parent. The results showed that the thickness of leaf spongy tissue of mutant (MT) is larger than that of wild type (WT) and the differences are significant. The mean size of cell layer L2 was increased in the mutant and the difference is significant. The genetic background of bud mutant revealed by SSR analysis is highly uniform to its parent; just the variations from VVS2 SSR marker were detected in MT. The total methylation ratio of MT is lower than that of the corresponding WT. The outside methylation ratio in MT is much less than that in WT; the average inner methylation ratio in MT is larger than that in WT. The early ripening bud mutant has certain proportion demethylation in cell layer L2. All the results suggested that cell layer L2 of the early ripening bud mutant has changed from the WT. This study provided the basis for a better understanding of the characteristic features of the early ripening bud mutant in grape. PMID:27610363

  6. Traditional Banana Diversity in Oceania: An Endangered Heritage

    PubMed Central

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the

  7. Traditional Banana Diversity in Oceania: An Endangered Heritage.

    PubMed

    Kagy, Valérie; Wong, Maurice; Vandenbroucke, Henri; Jenny, Christophe; Dubois, Cécile; Ollivier, Anthony; Cardi, Céline; Mournet, Pierre; Tuia, Valérie; Roux, Nicolas; Doležel, Jaroslav; Perrier, Xavier

    2016-01-01

    This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the

  8. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages.

    PubMed

    Liu, Ying; Ma, Shuang-shuang; Ibrahim, S A; Li, Er-hu; Yang, Hong; Huang, Wen

    2015-10-15

    In this study, polyphenols from lotus seed epicarp (PLSE) at three different ripening stages were purified by column chromatography and identified by RP-HPLC and HPLC-ESI-MS(2). The antioxidant activities of PLSE were also investigated. We found that the contents of PLSE at the green ripening stage, half ripening stage and full ripening stage are 13.08%, 10.95% and 6.73% respectively. The levels of catechin, epicatechin, hyperoside, and isoquercitrin in PLSE at the three different ripening stages were different. Moreover, the amounts of catechin and epicatechin decreased, while the contents of hyperoside and isoquercitrin increased as the seed ripened. We found that PLSE at three different ripening stages had good scavenging abilities on DPPH and ABTS(+) radicals. However, the scavenging ability decreased with maturation. Our results may be valuable with regard to the utilization of lotus seed epicarp as a functional food material. PMID:25952854

  9. Transcriptional analysis of late ripening stages of grapevine berry

    PubMed Central

    2011-01-01

    Background The composition of grapevine berry at harvest is a major determinant of wine quality. Optimal oenological maturity of berries is characterized by a high sugar/acidity ratio, high anthocyanin content in the skin, and low astringency. However, harvest time is still mostly determined empirically, based on crude biochemical composition and berry tasting. In this context, it is interesting to identify genes that are expressed/repressed specifically at the late stages of ripening and which may be used as indicators of maturity. Results Whole bunches and berries sorted by density were collected in vineyard on Chardonnay (white cultivar) grapevines for two consecutive years at three stages of ripening (7-days before harvest (TH-7), harvest (TH), and 10-days after harvest (TH+10)). Microvinification and sensory analysis indicate that the quality of the wines made from the whole bunches collected at TH-7, TH and TH+10 differed, TH providing the highest quality wines. In parallel, gene expression was studied with Qiagen/Operon microarrays using two types of samples, i.e. whole bunches and berries sorted by density. Only 12 genes were consistently up- or down-regulated in whole bunches and density sorted berries for the two years studied in Chardonnay. 52 genes were differentially expressed between the TH-7 and TH samples. In order to determine whether these genes followed a similar pattern of expression during the late stages of berry ripening in a red cultivar, nine genes were selected for RT-PCR analysis with Cabernet Sauvignon grown under two different temperature regimes affecting the precocity of ripening. The expression profiles and their relationship to ripening were confirmed in Cabernet Sauvignon for seven genes, encoding a carotenoid cleavage dioxygenase, a galactinol synthase, a late embryogenesis abundant protein, a dirigent-like protein, a histidine kinase receptor, a valencene synthase and a putative S-adenosyl-L-methionine:salicylic acid carboxyl

  10. Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of miRNA156 in Transgenic Banana Plants

    PubMed Central

    Ganapathi, Thumballi R.

    2015-01-01

    Micro RNAs (miRNAs) are a class of non-coding, short RNAs having important roles in regulation of gene expression. Although plant miRNAs have been studied in detail in some model plants, less is known about these miRNAs in important fruit plants like banana. miRNAs have pivotal roles in plant growth and development, and in responses to diverse biotic and abiotic stress stimuli. Here, we have analyzed the small RNA expression profiles of two different economically significant banana cultivars by using high-throughput sequencing technology. We identified a total of 170 and 244 miRNAs in the two libraries respectively derived from cv. Grand Naine and cv. Rasthali leaves. In addition, several cultivar specific microRNAs along with their putative target transcripts were also detected in our studies. To validate our findings regarding the small RNA profiles, we also undertook overexpression of a common microRNA, MusamiRNA156 in transgenic banana plants. The transgenic plants overexpressing the stem-loop sequence derived from MusamiRNA156 gene were stunted in their growth together with peculiar changes in leaf anatomy. These results provide a foundation for further investigations into important physiological and metabolic pathways operational in banana in general and cultivar specific traits in particular. PMID:25962076

  11. Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of miRNA156 in Transgenic Banana Plants.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2015-01-01

    Micro RNAs (miRNAs) are a class of non-coding, short RNAs having important roles in regulation of gene expression. Although plant miRNAs have been studied in detail in some model plants, less is known about these miRNAs in important fruit plants like banana. miRNAs have pivotal roles in plant growth and development, and in responses to diverse biotic and abiotic stress stimuli. Here, we have analyzed the small RNA expression profiles of two different economically significant banana cultivars by using high-throughput sequencing technology. We identified a total of 170 and 244 miRNAs in the two libraries respectively derived from cv. Grand Naine and cv. Rasthali leaves. In addition, several cultivar specific microRNAs along with their putative target transcripts were also detected in our studies. To validate our findings regarding the small RNA profiles, we also undertook overexpression of a common microRNA, MusamiRNA156 in transgenic banana plants. The transgenic plants overexpressing the stem-loop sequence derived from MusamiRNA156 gene were stunted in their growth together with peculiar changes in leaf anatomy. These results provide a foundation for further investigations into important physiological and metabolic pathways operational in banana in general and cultivar specific traits in particular. PMID:25962076

  12. Recent advances in fruit development and ripening: an overview.

    PubMed

    White, Philip J

    2002-10-01

    This article provides an overview of the Journal of Experimental Botany Special Issue on Fruit Development and Ripening. It reports that significant progress is being made in identifying genes controlling the development of dry dehiscent fruits in the model plant species Arabidopsis thaliana. In plants with fleshy fruits, a major focus has been the dissection of biochemical and genetic regulatory cascades controlling ripening, using tomato as a model species. Intermediates of the ethylene-signalling cascade, potential cross-talk between ethylene and auxin signals, and the role of ethylene-independent signals have all been described in this climacteric fruit. The recent isolation of the NOR and LeMADS-RIN genes, which participate in ethylene-independent signalling in tomato, and the discovery that a homologue of the RIN gene is expressed in strawberry, a non-climacteric fruit, suggests that common regulatory cascades may operate in all fruits. Transcriptional profiling during the development and ripening of both climacteric (tomato) and non-climacteric (strawberry) fruit has supported these observations, and also identified a number of novel genes involved in the biochemistry of fruit development and ripening. The use of phylogenies based on chloroplast gene sequences has allowed an insight into the evolution of fruit forms and fruit biochemistry, which may be useful for the manipulation of commercial species. Several molecular approaches, including positional cloning, QTL mapping and genetic engineering, are helping to define the biochemical and molecular bases of texture, flavour, colour, and aroma. As the understanding of the biology of fruit ripening has improved, so has the ability to improve the organoleptic and nutritional qualities of fruits through crop management, breeding or biotechnology. PMID:12324524

  13. Detection and Viability of Lactococcus lactis throughout Cheese Ripening

    PubMed Central

    Cocolin, Luca

    2014-01-01

    Recent evidences highlighted the presence of Lactococcus lactis during late cheese ripening. For this reason, the role of this microorganism, well known as dairy starter, should be reconsidered throughout cheese manufacturing and ripening. Thus, the main objective of this study was to develop a RT-qPCR protocol for the detection, quantification and determination of the viability of L. lactis in ripened cheese samples by direct analysis of microbial nucleic acids. Standard curves were constructed for the specific quantification of L. lactis in cheese matrices and good results in terms of selectivity, correlation coefficient and efficiency were obtained. Thirty-three ripened cheeses were analyzed and, on the basis of RNA analysis, twelve samples showed 106 to 108 CFU of L. lactis per gram of product, thirteen from 103 to 105 CFU/g, and in eight cheeses, L. lactis was not detected. Traditional plating on M17 medium led to loads ranging from 105 to 109 CFU/g, including the cheese samples where no L. lactis was found by RT-qPCR. From these cheeses, none of the colonies isolated on M17 medium was identified as L. lactis species. These data could be interpreted as a lack of selectivity of M17 medium where colony growth is not always related to lactococcal species. At the same time, the absence or low abundance of L. lactis isolates on M17 medium from cheese where L. lactis was detected by RT-qPCR support the hypothesis that L. lactis starter populations are mainly present in viable but not culturable state during ripening and, for this reason, culture-dependent methods have to be supplemented with direct analysis of cheese. PMID:25503474

  14. Circadian oscillatory transcriptional programs in grapevine ripening fruits

    PubMed Central

    2014-01-01

    Background Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. Results Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. Conclusions The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control

  15. Sensitization profiles to purified plant food allergens among pediatric patients with allergy to banana.

    PubMed

    Palacin, Arantxa; Quirce, Santiago; Sanchez-Monge, Rosa; Bobolea, Irina; Diaz-Perales, Araceli; Martin-Muñoz, Flora; Pascual, Cristina; Salcedo, Gabriel

    2011-03-01

    Banana fruit allergy is well known, but neither immunoglobulin E recognition patterns to purified plant food allergens nor true prevalences of putative banana allergens have been established. This study aimed to characterize β-1,3-glucanase and thaumatin-like protein (TLP) as banana allergens, testing them, together with other plant food allergens, in 51 children with allergic reactions after banana ingestion and both positive specific IgE and skin prick test (SPT) to banana. Banana β-1,3-glucanase and TLP were isolated and characterized. Both banana allergens, together with kiwifruit TLP Act d 2, avocado class I chitinase Pers a 1, palm pollen profilin Pho d 2 and peach fruit lipid transfer protein (LTP) Pru p 3, were tested by in vitro and in vivo assays. Banana β-1,3-glucanase (Mus a 5) was glycosylated, whereas banana TLP (Mus a 4) was not, in contrast with its homologous kiwi allergen Act d 2. Specific IgE to both banana allergens, as well as to peach Pru p 3, was found in over 70% of sera from banana-allergic children, and Mus a 4 and Pru p 3 provoked positive SPT responses in 6 of the 12 tested patients, whereas Mus a 5 in only one of them. Both peptidic epitopes and cross-reactive carbohydrate determinants were involved in the IgE-binding to Mus a 5, whereas cross-reactivity between Mus a 4 and Act d 2 was only based on common IgE protein epitopes. Profilin Pho d 2 elicited a relevant proportion of positive responses on in vitro (41%) and in vivo (58%) tests. Therefore, Mus a 4 and LTP behave as major banana allergens in the study population, and profilin seems to be also a relevant allergen. Mus a 5 is an equivocal allergenic protein, showing high IgE-binding to its attached complex glycan, and low in vivo potency. PMID:21284746

  16. The effect of a Foley catheter balloon on cervical ripening.

    PubMed

    Lim, S Y; Kim, Y H; Kim, C H; Cho, M K; Kim, J W; Kang, W D; Kim, S M; Cho, H Y; Ahn, K Y; Lee, K H; Song, T B

    2013-11-01

    The Foley catheter balloon may affect cervical ripening through changes in biochemical mediators by immunoassay and immunohistochemistry, when it is used for pre-induction cervical ripening. The aim of the study was to evaluate the changes in the biochemical mediators from the extra-amniotic space and immunohistochemistry in ripened cervical tissue after the insertion of a Foley catheter balloon (FCB) for pre-induction cervical ripening. A total of 18 pregnant women with a Bishop's score < 6, who were undergoing labour induction, were evaluated in this prospective study. The FCB was irrigated with 10 ml of phosphate buffered saline and the irrigant was collected 0, 2, 4 and 8 h after placement of the FCB or until spontaneous expulsion of the FCB occurred. Irrigant specimens were also collected from 10 spontaneous labouring (SL) women in the active phase of labour. The levels of interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-8 and NO were measured. Cervical specimens were obtained from 12 women, including four undergoing induction; four SL and four non-pregnant (NP) women. Immunohistochemical staining was performed to localise hyaluronic acid synthase (HAS)-1, IL-6, IL-8, MMP-8, endothelial nitric oxide synthase (eNOS) and inducible NOS (iNOS). Results showed that the levels of IL-6, IL-8, and MMP-8 significantly increased over time in FCB group (p < 0.01). In the immunohistochemical analysis of cervical tissues, immunoreactivity of HAS-1 in the after FCB group was stronger than any of the other groups. The protein expressions of IL-6, IL-8, MMP-8, eNOS and iNOS were more prominent in the after FCB and SL groups than in the NP and the before FCB groups. iNOS was only observed in the after FCB and SL groups. It was concluded that FCB may affect cervical ripening through changes in biochemical mediators by immunoassay and immunohistochemistry, when it is used for pre-induction cervical ripening. PMID:24219725

  17. Transgenic banana expressing Pflp gene confers enhanced resistance to Xanthomonas wilt disease.

    PubMed

    Namukwaya, B; Tripathi, L; Tripathi, J N; Arinaitwe, G; Mukasa, S B; Tushemereirwe, W K

    2012-08-01

    Banana Xanthomonas wilt (BXW), caused by Xanthomonas campestris pv. musacearum, is one of the most important diseases of banana (Musa sp.) and currently considered as the biggest threat to banana production in Great Lakes region of East and Central Africa. The pathogen is highly contagious and its spread has endangered the livelihood of millions of farmers who rely on banana for food and income. The development of disease resistant banana cultivars remains a high priority since farmers are reluctant to employ labor-intensive disease control measures and there is no host plant resistance among banana cultivars. In this study, we demonstrate that BXW can be efficiently controlled using transgenic technology. Transgenic bananas expressing the plant ferredoxin-like protein (Pflp) gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of banana. These transgenic lines were characterized by molecular analysis. After challenge with X. campestris pv. musacearum transgenic lines showed high resistance. About 67% of transgenic lines evaluated were completely resistant to BXW. These transgenic lines did not show any disease symptoms after artificial inoculation of in vitro plants under laboratory conditions as well as potted plants in the screen-house, whereas non-transgenic control plants showed severe symptoms resulting in complete wilting. This study confirms that expression of the Pflp gene in banana results in enhanced resistance to BXW. This transgenic technology can provide a timely solution to the BXW pandemic. PMID:22101927

  18. Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions

    PubMed Central

    Ioannidi, Eugenia; Kalamaki, Mary S.; Engineer, Cawas; Pateraki, Irene; Alexandrou, Dimitris; Mellidou, Ifigeneia; Giovannonni, James; Kanellis, Angelos K.

    2009-01-01

    L-Ascorbate (the reduced form of vitamin C) participates in diverse biological processes including pathogen defence mechanisms, and the modulation of plant growth and morphology, and also acts as an enzyme cofactor and redox status indicator. One of its chief biological functions is as an antioxidant. L-Ascorbate intake has been implicated in the prevention/alleviation of varied human ailments and diseases including cancer. To study the regulation of accumulation of this important nutraceutical in fruit, the expression of 24 tomato (Solanum lycopersicon) genes involved in the biosynthesis, oxidation, and recycling of L-ascorbate during the development and ripening of fruit have been characterized. Taken together with L-ascorbate abundance data, the results show distinct changes in the expression profiles for these genes, implicating them in nodal regulatory roles during the process of L-ascorbate accumulation in tomato fruit. The expression of these genes was further studied in the context of abiotic and post-harvest stress, including the effects of heat, cold, wounding, oxygen supply, and ethylene. Important aspects of the hypoxic and post-anoxic response in tomato fruit are discussed. The data suggest that L-galactose-1-phosphate phosphatase could play an important role in regulating ascorbic acid accumulation during tomato fruit development and ripening. PMID:19129160

  19. Holographic entanglement entropy for hollow cones and banana shaped regions

    NASA Astrophysics Data System (ADS)

    Dorn, Harald

    2016-06-01

    We consider banana shaped regions as examples of compact regions, whose boundary has two conical singularities. Their regularised holographic entropy is calculated with all divergent as well as finite terms. The coefficient of the squared logarithmic divergence, also in such a case with internally curved boundary, agrees with that calculated in the literature for infinite circular cones with their internally flat boundary. For the otherwise conformally invariant coefficient of the ordinary logarithmic divergence an anomaly under exceptional conformal transformations is observed.

  20. Analytic expression for poloidal flow velocity in the banana regime

    SciTech Connect

    Taguchi, M.

    2013-01-15

    The poloidal flow velocity in the banana regime is calculated by improving the l = 1 approximation for the Fokker-Planck collision operator [M. Taguchi, Plasma Phys. Controlled Fusion 30, 1897 (1988)]. The obtained analytic expression for this flow, which can be used for general axisymmetric toroidal plasmas, agrees quite well with the recently calculated numerical results by Parker and Catto [Plasma Phys. Controlled Fusion 54, 085011 (2012)] in the full range of aspect ratio.

  1. Factors influencing the drain and rinse operation of Banana screens

    SciTech Connect

    O'Brien, M.; Firth, B.

    2005-06-01

    An Australian Coal Association Research Project (ACARP) study to identify the variables and effects on Banana screens is described in this article. The impacts of the following system variables were investigated: panel angle, volumetric feed flow rate, solids content of feed screen motion, vibration frequency, magnetite content and impact of screen aperture. The article was adapted from a presentation at Coal Prep 2005, Lexington, KY, USA in May 2005. 4 refs., 8 figs., 1 tab.

  2. Did backcrossing contribute to the origin of hybrid edible bananas?

    PubMed Central

    De Langhe, Edmond; Hřibová, Eva; Carpentier, Sebastien; Doležel, Jaroslav; Swennen, Rony

    2010-01-01

    Background Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae. Scope On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies. PMID:20858591

  3. Ostwald ripening of charged supported metal nanoparticles: Schottky model

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2015-07-01

    Due to high surface area, supported metal nanoparticles are thermodynamically prone to sintering. The experimental studies of this process exhibit sometimes transient bimodal particle size distributions. Such observations may result from the support heterogeneity. Looking retrospectively, one can also find the prediction that in the case of Ostwald ripening this feature can be related to charge of metal nanoparticles. In real systems, this charge is often associated with the metal-support interaction and can be interpreted in the framework of the Schottky model. Using this model, the author shows that the charge redistribution cannot be behind bimodal particle size distributions. Moreover, the corresponding contribution to the driving force for Ostwald ripening is typically much smaller than the conventional one.

  4. Direct observation of small cluster mobility and ripening

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1976-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single-crystalline thin graphite substrates have been studied by in situ transmission electron microscopy (TEM) under controlled environmental conditions in the temperature range from 25 to 450 C. It was possible to monitor all stages of the experiments by TEM observation of the same specimen area. Slow Ostwald ripening was found to occur over the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility. This was concluded from in situ observations of individual particles during annealing and from measurements of cluster size distributions, cluster number densities, area coverages, and mean cluster diameters.

  5. Numerical simulation of morphological development during Ostwald ripening

    NASA Technical Reports Server (NTRS)

    Voorhees, P. W.; Mcfadden, G. B.; Boisvert, R. F.; Meiron, D. I.

    1988-01-01

    The morphological evolution of a small number of particles undergoing Ostwald ripening in two dimensions was investigated using a boundary integral technique. The numerical calculations show that, in many cases, interparticle diffusional interactions do not induce large distortions in particle morphology from a circle, due to the strong local interaction between regions of different curvature on the same particle. Particle migration due to interparticle diffusional interactions was observed, with the migration distance larger than the initial radius of a particle, which is linked to the particle spatial arrangement. As diffusion is the mechanism for the migration, it is expected that particle movement is a generic aspect of the coarsening process at high volume fractions of coarsening phase and, possibly, at low volume fractions. The calculations support unambiguously the Ostwald ripening mechanism for flat formation during liquid-phase sintering. As such, the appearance or regions of low interfacial curvature is a dynamic phenomenon dependent on interparticle diffusion.

  6. [Subchronic toxicity testing of mold-ripened cheese].

    PubMed

    Schoch, U; Lüthy, J; Schlatter, C

    1984-08-01

    The biological effects of known mycotoxins of Penicillium roqueforti or P. camemberti and other still unknown, but potentially toxic metabolites in mould ripened cheese (commercial samples of Blue- and Camembert cheese) were investigated. High amounts of mycelium (equivalents of 100 kg cheese/man and day) were fed to mice in a subchronic feeding trial. The following parameters were determined: development of body weight, organ weights, hematology, blood plasma enzymes. No signs of adverse effects produced by cheese mycotoxins could be detected after 28 days. No still unknown toxic metabolites could be demonstrated. From these results no health hazard from the consumption of mould ripened cheese, even in high amounts, appears to exist. PMID:6485557

  7. Island Ripening via a Polymerization-Depolymerization Mechanism

    NASA Astrophysics Data System (ADS)

    Hesse, Martin; von Boehn, Bernhard; Locatelli, Andrea; Sala, Alessandro; Menteş, Tevfik O.; Imbihl, Ronald

    2015-09-01

    In catalytic methanol oxidation on ultrathin vanadium oxide layers on Rh(111) (ΘV≈0.2 monolayer equivalent) we observe a 2D ripening of the VOx islands that is controlled by the catalytic reaction. Neighboring VOx islands move under reaction conditions towards each other and coalesce. The motion and the coalescence of the islands are explained by a polymerization-depolymerization equilibrium that is sensitive to gradients in the adsorbate coverages.

  8. Volatile compound profiling of Turkish Divle Cave cheese during production and ripening.

    PubMed

    Ozturkoglu-Budak, S; Gursoy, A; Aykas, D P; Koçak, C; Dönmez, S; de Vries, R P; Bron, P A

    2016-07-01

    The formation of volatile compounds in Turkish Divle Cave cheese produced in 3 different dairy farms was determined during production and ripening, revealing 110 compounds including acids, alcohols, ketones, esters, and terpenes. The presence and concentration of these volatile compounds varied between specific phases of the production and the 120-d ripening process. Smaller differences were also detected between cheeses produced at different farms. Carboxylic acids were established as a major class at the end of ripening. The relative amounts of acids and ketones increased until d 90 of ripening, whereas alcohols increased for the first 30d and tailed off during the remaining part of the ripening process. The level of esters increased gradually until the end of ripening. Butanoic, acetic, and valeric acids, 2-butanol, 2-butanone, 2-heptanone, ethyl butanoate, α-pinene, and toluene were the most abundant compounds, likely contributing to the characteristic aroma of this traditional cheese. PMID:27108178

  9. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    PubMed

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper. PMID:11589547

  10. Analysis of strawberry ripening by dynamic speckle measurements

    NASA Astrophysics Data System (ADS)

    Mulone, C.; Budini, N.; Vincitorio, F. M.; Freyre, C.; López Díaz, A. J.; Ramil Rego, A.

    2013-11-01

    This work seeks to determine the age of a fruit from observation of its dynamic speckle pattern. A mobile speckle pattern originates on the fruit's surface due to the interference of the wavefronts reflected from moving scatterers. For this work we analyzed two series of photographs of a strawberry speckle pattern, at different stages of ripening, acquired with a CMOS camera. The first day, we took ten photographs at an interval of one second. The same procedure was repeated the next day. From each series of images we extracted several statistical descriptors of pixel-to-pixel gray level variation during the observation time. By comparing these values from the first to the second day we noticed a diminution of the speckle activity. This decay demonstrated that after only one day the ripening process of the strawberry can be detected by dynamic speckle pattern analysis. For this study we employed a simple new algorithm to process the data obtained from the photographs. This algorithm allows defining a global mobility index that indicates the evolution of the fruit's ripening.

  11. Purification and characterization of pyrophosphate- and ATP-dependent phosphofructokinases from banana fruit.

    PubMed

    Turner, William L; Plaxton, William C

    2003-05-01

    Pyrophosphate-dependent phosphofructokinase (PFP; EC 2.7.1.90) and two isoforms of ATP-dependent phosphofructokinase (PFK I and PFK II; EC 2.7.1.11) from ripened banana ( Musa cavendishii L. cv. Cavendish) fruits were resolved via hydrophobic interaction fast protein liquid chromatography (FPLC), and further purified using anion-exchange and gel filtration FPLC. PFP was purified 1,158-fold to a final specific activity of 13.9 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Gel filtration FPLC and immunoblot analyses indicated that this PFP exists as a 490-kDa heterooctomer composed of equal amounts of 66- (alpha) and 60-kDa (beta) subunits. PFP displayed hyperbolic saturation kinetics for fructose 6-phosphate (Fru 6-P), PPi, fructose 1,6-bisphosphate, and Pi ( K(m) values = 32, 9.7, 25, and 410 microM, respectively) in the presence of saturating (5 microM) fructose 2,6-bisphosphate, which elicited a 24-fold enhancement of glycolytic PFP activity ( K(a)=8 nM). PFK I and PFK II were each purified about 350-fold to final specific activities of 5.5-6.0 micromol fructose 1,6-bisphosphate produced (mg protein)(-1) x min(-1). Analytical gel filtration yielded respective native molecular masses of 210 and 160 kDa for PFK I and PFK II. Several properties of PFK I and PFK II were consistent with their respective designation as plastid and cytosolic PFK isozymes. PFK I and PFK II exhibited: (i) pH optima of 8.0 and 7.3, respectively; (ii) hyperbolic saturation kinetics for ATP ( K(m)=34 and 21 microM, respectively); and (iii) sigmoidal saturation kinetics for Fru 6-P ( S0.5=540 and 90 microM, respectively). Allosteric effects of phospho enolpyruvate (PEP) and Pi on the activities of PFP, PFK I, and PFK II were characterized. Increasing concentrations of PEP or Pi progressively disrupted fructose 2,6-bisphosphate binding by PFP. PEP potently inhibited PFK I and to a lesser extent PFK II ( I50=2.3 and 900 microM, respectively), while Pi activated PFK I

  12. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice.

    PubMed

    Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C

    2015-06-01

    Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10. PMID:26028740

  13. Effects of Ripening Conditions on the ‘Lomo embuchado’ Sausage Quality

    PubMed Central

    Choe, Ho Sung; Shim, Kwanseob; Jung, Jong Hyun; Chung, Yi Hyung

    2014-01-01

    The objective of this study was to investigate the effects of two different ripening durations, with, or without adding rosemary powder, on Lomo embuchado (LEO) sausage quality. All LEOs were ripened for two different durations, 45 or 60 d, with, or without the addition of rosemary powder, as follows: 1) LEO ripened for 45 d (LER45), 2) LEO ripened for 60 d (LER60), 3) rosemary LEO ripened for 45 d (RLE45), and 4) rosemary LEO ripened for 60 d (RLE60). Significant differences were observed in both moisture and ash content, with higher moisture and less ash content in LER45 (p<0.05). No trend was shown in the crude protein content of the four different treatments, but significantly low protein content was shown only in RLE45 (p<0.05). Ripening for 45 d improved the lightness, yellowness, and water activity of LEOs (p<0.05). However, ripening duration together with rosemary powder addition had no significant effects on redness (p>0.05). The LER45 generated significantly improved chewiness, gumminess, and hardness, as compared to both LER60 and RLE60 (p<0.05). In conclusion, the results suggest that ripening for 45 d seems to enhance LEO quality, but that rosemary powder addition may not be required to develop good LEO quality. PMID:26761174

  14. Tuning LeSPL-CNR expression by SlymiR157 affects tomato fruit ripening

    PubMed Central

    Chen, Weiwei; Kong, Junhua; Lai, Tongfei; Manning, Kenneth; Wu, Chaoqun; Wang, Ying; Qin, Cheng; Li, Bin; Yu, Zhiming; Zhang, Xian; He, Meiling; Zhang, Pengcheng; Gu, Mei; Yang, Xin; Mahammed, Atef; Li, Chunyang; Osman, Toba; Shi, Nongnong; Wang, Huizhong; Jackson, Stephen; Liu, Yule; Gallusci, Philippe; Hong, Yiguo

    2015-01-01

    In plants, microRNAs (miRNAs) play essential roles in growth, development, yield, stress response and interactions with pathogens. However no miRNA has been experimentally documented to be functionally involved in fruit ripening although many miRNAs have been profiled in fruits. Here we show that SlymiR157 and SlymiR156 differentially modulate ripening and softening in tomato (Solanum lycopersicum). SlymiR157 is expressed and developmentally regulated in normal tomato fruits and in those of the Colourless non-ripening (Cnr) epimutant. It regulates expression of the key ripening gene LeSPL-CNR in a likely dose-dependent manner through miRNA-induced mRNA degradation and translation repression. Viral delivery of either pre-SlymiR157 or mature SlymiR157 results in delayed ripening. Furthermore, qRT-PCR profiling of key ripening regulatory genes indicates that the SlymiR157-target LeSPL-CNR may affect expression of LeMADS-RIN, LeHB1, SlAP2a and SlTAGL1. However SlymiR156 does not affect the onset of ripening, but it impacts fruit softening after the red ripe stage. Our findings reveal that working together with a ripening network of transcription factors, SlymiR157 and SlymiR156 form a critical additional layer of regulatory control over the fruit ripening process in tomato. PMID:25597857

  15. Evidence for the presence of a female produced sex pheromone in the banana weevil, Cosmopolites sordidus Germar (Coleoptera: Curculionidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Behavior-modifying chemicals such as pheromones and kairomones have great potential in pest management. Studies reported here investigated chemical cues involved in mating and aggregation behavior of banana weevil, Cosmopolites sordidus, a major insect pest of banana in every country where bananas a...

  16. "The Rotten Banana" Fires Back: The Story of a Danish Discourse of "Inclusive" Rurality in the Making

    ERIC Educational Resources Information Center

    Winther, Malene Brandt; Svendsen, Gunnar Lind Haase

    2012-01-01

    The popularity of a particular term--the Rotten Banana--has paralleled the one-sided centralisation of public services since the Danish Municipal Reform of 2007. The Rotten Banana denotes peripheral Denmark, which takes a geographically curved form that resembles a banana, and it symbolises the belief that rural areas are backward and (too)…

  17. Cell Wall Metabolism in Ripening Fruit (VII. Biologically Active Pectin Oligomers in Ripening Tomato (Lycopersicon esculentum Mill.) Fruits).

    PubMed

    Melotto, E.; Greve, L. C.; Labavitch, J. M.

    1994-10-01

    A water-soluble, ethanol-insoluble extract of autolytically inactive tomato (Lycopersicon esculentum Mill.) pericarp tissue contains a series of galacturonic acid-containing (pectic) oligosaccharides that will elicit a transient increase in ethylene biosynthesis when applied to pericarp discs cut from mature green fruit. The concentration of these oligosaccharides in extracts (2.2 [mu]g/g fresh weight) is in excess of that required to promote ethylene synthesis. Oligomers in extracts of ripening fruits were partially purified by preparative high-performance liquid chromatography, and their compositions are described. Pectins were extracted from cell walls prepared from mature green fruit using chelator and Na2CO3 solutions. These pectins are not active in eliciting ethylene synthesis. However, treatment of the Na2CO3-soluble, but not the chelator-soluble, pectin with pure tomato polygalacturonase 1 generates oligomers that are similar to those extracted from ripening fruit (according to high-performance liquid chromatography analysis) and are active as elicitors. The possibility that pectin-derived oligomers are endogenous regulators of ripening is discussed. PMID:12232350

  18. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type.

    PubMed

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72-1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening. PMID:27104786

  19. Genome-Wide Identification of the Transcription Factors Involved in Citrus Fruit Ripening from the Transcriptomes of a Late-Ripening Sweet Orange Mutant and Its Wild Type

    PubMed Central

    Wu, Juxun; Fu, Lili; Yi, Hualin

    2016-01-01

    Fruit ripening is a genetically programmed process. Transcription factors (TFs) play key roles in plant development and ripening by temporarily and spatially regulating the transcription of their target genes. In this study, a total of 159 TFs were identified from a spontaneous late-ripening mutant 'Fengwan' (C. sinensis L. Osbeck) sweet orange (MT) and its wild-type counterpart ('Fengjie 72–1', WT) along the ripening period via the Transcription Factor Prediction of PlantTFDB 3.0. Fifty-two differentially expressed TFs were identified between MT and WT; 92 and 120 differentially expressed TFs were identified in WT and MT, respectively. The Venn diagram analysis showed that 16 differentially expressed TFs were identified between MT and WT and during the ripening of WT and MT. These TFs were primarily assigned to the families of C2H2, Dof, bHLH, ERF, MYB, NAC and LBD. Particularly, the number of TFs of the ERF family was the greatest between MT and WT. According to the results of the WGCNA analysis, a weighted correlation network analysis tool, several important TFs correlated to abscisic acid (ABA), citric acid, fructose, glucose and sucrose were identified, such as RD26, NTT, GATA7 and MYB21/62/77. Hierarchical cluster analysis and the expression analysis conducted at five fruit ripening stages further validated the pivotal TFs that potentially function during orange fruit development and ripening. PMID:27104786

  20. Study of Banana Dehydration using Sequential Infrared Radiation Heating and Freeze-Drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The drying and quality characteristics of banana slices processed with a sequential infrared radiation and freeze drying (SIRFD) method were investigated. Cavendish banana slices with 5 mm thickness were predehydrated using IR heating at each one of three radiation intensities, 3000, 4000, and 5000...

  1. Specific detection of banana residue in processed foods using polymerase chain reaction.

    PubMed

    Sakai, Yumiko; Ishihata, Kimie; Nakano, Shigeru; Yamada, Toshihiro; Yano, Takeo; Uchida, Kouji; Nakao, Yoshiki; Urisu, Atsuo; Adachi, Reiko; Teshima, Reiko; Akiyama, Hiroshi

    2010-07-28

    Specific polymerase chain reaction (PCR) methods were developed for the detection of banana residue in processed foods. For high banana specificity, the primer set BAN-F/BAN-R was designed on the basis of the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL) genes of chloroplasts and used to obtain amplified products specific to banana by both conventional and real-time PCR. To confirm the specificity of these methods, genomic DNA samples from 31 other species were examined; no amplification products were detected. Subsequently, eight kinds of processed foods containing banana were investigated using these methods to confirm the presence of banana DNA. Conventional PCR had a detection limit of 1 ppm (w/w) banana DNA spiked in 50 ng of salmon testis DNA, whereas SYBR Green I real-time semiquantitative PCR had a detection limit as low as 10 ppm banana DNA. Thus, both methods show high sensitivity and may be applicable as specific tools for the detection of trace amounts of banana in commercial food products. PMID:20604506

  2. A Study on the Morphological and PhysicoChemical Characteristics of Five Cooking Bananas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field evaluation of five banana clones was carried out at the National Germplasm Repository in Miami, Florida, USA from July 2006 to July 2008. Bananas (Musa acuminata Colla [AA, AAA]; Musa x paradisiaca Colla (ABB, AAAB, AABB), are one of the worlds most important food crops. Five clones of cookin...

  3. The Draft Genome Sequence of Mycosphaerella fijiensis, the Black Sigatoka Pathogen of Banana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella fijiensis is a fungal pathogen of banana and the causal agent of the devastating Black Sigatoka or black leaf streak disease. Its control requires weekly fungicide applications when bananas are grown under disease-conducive conditions, which mostly represent precarious tropical enviro...

  4. Molecular Characterization of Geographically Different Banana bunchy top virus Isolates in India.

    PubMed

    Selvarajan, R; Mary Sheeba, M; Balasubramanian, V; Rajmohan, R; Dhevi, N Lakshmi; Sasireka, T

    2010-10-01

    Banana bunchy top disease (BBTD) caused by Banana bunchy top virus (BBTV) is one of the most devastating diseases of banana and poses a serious threat for cultivars like Hill Banana (Syn: Virupakshi) and Grand Naine in India. In this study, we have cloned and sequenced the complete genome comprised of six DNA components of BBTV infecting Hill Banana grown in lower Pulney hills, Tamil Nadu State, India. The complete genome sequence of this hill banana isolate showed high degree of similarity with the corresponding sequences of BBTV isolates originating from Lucknow, Uttar Pradesh State, India, and from Fiji, Egypt, Pakistan, and Australia. In addition, sixteen coat protein (CP) and thirteen replicase genes (Rep) sequences of BBTV isolates collected from different banana growing states of India were cloned and sequenced. The replicase sequences of 13 isolates showed high degree of similarity with that of South Pacific group of BBTV isolates. However, the CP gene of BBTV isolates from Shervroy and Kodaikanal hills of Tamil Nadu showed higher amino acid sequence variability compared to other isolates. Another hill banana isolate from Meghalaya state had 23 nucleotide substitutions in the CP gene but the amino acid sequence was conserved. This is the first report of the characterization of a complete genome of BBTV occurring in the high altitudes of India. Our study revealed that the Indian BBTV isolates with distinct geographical origins belongs to the South Pacific group, except Shervroy and Kodaikanal hill isolates which neither belong to the South Pacific nor the Asian group. PMID:23637489

  5. 77 FR 31829 - Importation of Fresh Bananas From the Philippines Into the Continental United States...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... the Continental United States'' and published in the Federal Register on April 16, 2012 (77 FR 22510... Animal and Plant Health Inspection Service Importation of Fresh Bananas From the Philippines Into the... the importation of fresh bananas from the Philippines into the continental United States....

  6. 77 FR 22510 - Importation of Fresh Bananas From the Philippines Into the Continental United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ... not limited to: Quantity of produce, type of packaging, identification of grower or packinghouse on the packaging, and documents consigning the fruits or vegetables to a wholesaler or retailer. Produce...., bananas with no yellow or green color break) is a standard industry practice for banana production...

  7. In vitro fermentation of chewed mango and banana: particle size, starch and vascular fibre effects.

    PubMed

    Low, Dorrain Y; Williams, Barbara A; D'Arcy, Bruce R; Flanagan, Bernadine M; Gidley, Michael J

    2015-08-01

    Fruits (and vegetables) contain cellular structures that are not degraded by human digestive enzymes. Therefore, the structure of the insoluble fraction of swallowed fruits is mostly retained until intestinal microbial fermentation. In vitro fermentation of mango and banana cell structures, which survived in vivo mastication and in vitro gastrointestinal digestion, were incubated with porcine faecal inoculum and showed intensive metabolic activity. This included degradation of cell walls, leading to the release of encapsulated cell contents for further microbial metabolism. Production of cumulative gas, short chain fatty acids and ammonia were greater for mango than for banana. Microscopic and spectroscopic analyses showed this was due to a major fermentation-resistant starch fraction present in banana, that was absent in mango. This study demonstrated distinctive differences in the fermentability of banana and mango, reflecting a preferential degradation of (parenchyma) fleshy cell walls over resistant starch in banana, and the thick cellulosic vascular fibres in mango. PMID:26215214

  8. Rapid and sensitive detection of Banana bunchy top virus by loop-mediated isothermal amplification.

    PubMed

    Peng, Jun; Zhang, Junfang; Xia, Zihao; Li, Yongqiang; Huang, Junsheng; Fan, Zaifeng

    2012-11-01

    A sensitive loop-mediated isothermal amplification (LAMP) assay was developed for rapid detection of Banana bunchy top virus (BBTV) infection. The reaction was performed in a single tube at 63°C for 90 min, with an improved closed-tube detection system by adding the SYBR Green I dye to the inside of the tube lid prior to amplification. The detection limit of the LAMP assay was approximately 1 pg/μl plasmid DNA when mixed with extracted DNA from healthy banana plant, and no cross-reaction with other banana-infected pathogens was observed. Real-time turbidimetry was used to monitor the amplification result in the tubes, and it was shown that this LAMP assay was about 100-fold more sensitive than PCR. The results demonstrated that this LAMP method should be useful for both banana disease monitoring and mass propagation of virus-free banana plantlets. PMID:22771738

  9. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    PubMed

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after-ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1. PMID:26205956

  10. Expression of sweet pepper Hrap gene in banana enhances resistance to Xanthomonas campestris pv. musacearum.

    PubMed

    Tripathi, Leena; Mwaka, Henry; Tripathi, Jaindra Nath; Tushemereirwe, Wilberforce Kateera

    2010-11-01

    Banana Xanthomonas wilt (BXW), caused by the bacterium Xanthomonas campestris pv. musacearum, is the most devastating disease of banana in the Great Lakes region of Africa. The pathogen's rapid spread has threatened the livelihood of millions of Africans who rely on banana fruit for food security and income. The disease is very destructive, infecting all banana varieties, including both East African Highland bananas and exotic types of banana. In the absence of natural host plant resistance among banana cultivars, the constitutive expression of the hypersensitivity response-assisting protein (Hrap) gene from sweet pepper (Capsicum annuum) was evaluated for its ability to confer resistance to BXW. Transgenic lines expressing the Hrap gene under the regulation of the constitutive CaMV35S promoter were generated using embryogenic cell suspensions of two banana cultivars: 'Sukali Ndiizi' and 'Mpologoma'. These lines were characterized by molecular analysis, and were challenged with Xanthomonas campestris pv. musacearum to analyse the efficacy of the Hrap gene against BXW. The majority of transgenic lines (six of eight) expressing Hrap did not show any symptoms of infection after artificial inoculation of potted plants in the screenhouse, whereas control nontransgenic plants showed severe symptoms resulting in complete wilting. This study demonstrates that the constitutive expression of the sweet pepper Hrap gene in banana results in enhanced resistance to BXW. We describe the development of transgenic banana varieties resistant to BXW, which will boost the arsenal available to fight this epidemic disease and save livelihoods in the Great Lakes region of East and Central Africa. PMID:21029318

  11. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  12. Transgenic banana plants expressing small interfering RNAs targeted against viral replication initiation gene display high-level resistance to banana bunchy top virus infection.

    PubMed

    Shekhawat, Upendra K S; Ganapathi, Thumballi R; Hadapad, Ashok B

    2012-08-01

    The banana aphid-transmitted Banana bunchy top virus (BBTV) is the most destructive viral pathogen of bananas and plantains worldwide. Lack of natural sources of resistance to BBTV has necessitated the exploitation of proven transgenic technologies for obtaining BBTV-resistant banana cultivars. In this study, we have explored the concept of using intron-hairpin-RNA (ihpRNA) transcripts corresponding to viral master replication initiation protein (Rep) to generate BBTV-resistant transgenic banana plants. Two ihpRNA constructs namely ihpRNA-Rep and ihpRNA-ProRep generated using Rep full coding sequence or Rep partial coding sequence together with its 5' upstream regulatory region, respectively, and castor bean catalase intron were successfully transformed into banana embryogenic cells. ihpRNA-Rep- and ihpRNA-ProRep-derived transgenic banana plants, selected based on preliminary screening for efficient reporter gene expression, were completely resistant to BBTV infection as indicated by the absence of disease symptoms after 6 months of viruliferous aphid inoculation. The resistance to BBTV infection was also evident by the inability to detect cDNAs coding for viral coat protein, movement protein and Rep protein by RT-PCR from inoculated transgenic leaf extracts. Southern analysis of the two groups of transgenics showed that ihpRNA transgene was stably integrated into the banana genome. The detection of small interfering RNAs (siRNAs) derived from the ihpRNA transgene sequence in transformed BBTV-resistant plants positively established RNA interference as the mechanism underlying the observed resistance to BBTV. Efficient screening of optimal transformants in this vegetatively propagated non-segregating fruit crop ensured that all the transgenic plants assayed were resistant to BBTV infection. PMID:22552945

  13. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese

    PubMed Central

    Martins, José M.; Galinari, Éder; Pimentel-Filho, Natan J.; Ribeiro, José I.; Furtado, Mauro M.; Ferreira, Célia L.L.F.

    2015-01-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September) and rainy season (October–March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g −1 ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g −1 ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  14. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene

    PubMed Central

    Lin, Hong-Hui

    2012-01-01

    Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato. PMID:22915749

  15. While they were asleep: Do seeds after-ripen in cold storage? Experiences with Calendula

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The progressive loss of seed dormancy after maturity is known as after-ripening. Although after-ripening is generally well understood in seeds stored at relatively high temperatures, little is known about this phenomenon at lower temperatures (e.g. 4 degrees C) generally used for medium-term seed s...

  16. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin.

    PubMed

    Li, Jiayin; Tao, Xiaoya; Li, Li; Mao, Linchun; Luo, Zisheng; Khan, Zia Ullah; Ying, Tiejin

    2016-01-01

    Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene. PMID:27228127

  17. Comprehensive RNA-Seq Analysis on the Regulation of Tomato Ripening by Exogenous Auxin

    PubMed Central

    Li, Li; Mao, Linchun; Luo, Zisheng; Khan, Zia Ullah; Ying, Tiejin

    2016-01-01

    Auxin has been shown to modulate the fruit ripening process. However, the molecular mechanisms underlying auxin regulation of fruit ripening are still not clear. Illumina RNA sequencing was performed on mature green cherry tomato fruit 1 and 7 days after auxin treatment, with untreated fruit as a control. The results showed that exogenous auxin maintained system 1 ethylene synthesis and delayed the onset of system 2 ethylene synthesis and the ripening process. At the molecular level, genes associated with stress resistance were significantly up-regulated, but genes related to carotenoid metabolism, cell degradation and energy metabolism were strongly down-regulated by exogenous auxin. Furthermore, genes encoding DNA demethylases were inhibited by auxin, whereas genes encoding cytosine-5 DNA methyltransferases were induced, which contributed to the maintenance of high methylation levels in the nucleus and thus inhibited the ripening process. Additionally, exogenous auxin altered the expression patterns of ethylene and auxin signaling-related genes that were induced or repressed in the normal ripening process, suggesting significant crosstalk between these two hormones during tomato ripening. The present work is the first comprehensive transcriptome analysis of auxin-treated tomato fruit during ripening. Our results provide comprehensive insights into the effects of auxin on the tomato ripening process and the mechanism of crosstalk between auxin and ethylene. PMID:27228127

  18. Seasonal timing of glyphosate ripener application affects sugarcane’s response in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyphosate is applied as a ripener to ratoon sugarcane in Louisiana to increase theoretically recoverable sugar (TRS) in harvested sugarcane. While glyphosate is applied as a ripener throughout the harvest season, recommendations for these applications have been based primarily on the response of s...

  19. Gene expression profiles for two auxin transporters during apple fruit maturation and ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The maturation and ripening patterns of apple varieties differ greatly due to their long history of cultivation, self-incompatible nature and the high-level heterozygosity of the apple genome. The ripening season across elite apple cultivars can span more than three months. Apple maturation and ripe...

  20. Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese.

    PubMed

    Martins, José M; Galinari, Éder; Pimentel-Filho, Natan J; Ribeiro, José I; Furtado, Mauro M; Ferreira, Célia L L F

    2015-03-01

    Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April-September) and rainy season (October-March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g (-1) ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g (-1) ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111

  1. Expression of ripening-related genes in cold stored tomato fruit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of chilling on fruit ripening and the expression of ripening-related genes have been investigated in a wild species introgression breeding tomato line (Solanum lycopersicum ' S. pennelli) that preliminary investigations suggested harbors some fruit chilling tolerance. Fruit were harveste...

  2. Maturity and Ripening-Stage Specific Modulation of Tomato (Solanum lycopersicum) Fruit Transcriptome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato (Solanum lycopersicum) fruit is a model to study molecular basis of fleshy fruit development and ripening. We profiled gene expression in immature green and mature green fruit (fruit development program), and during advanced ripening from breaker (BR) stage onwards to obtain a global perspect...

  3. Quality comparison of hydroponic tomatoes (Lycopersicon esculentum) ripened on and off vine

    NASA Technical Reports Server (NTRS)

    Arias, R.; Lee, T. C.; Specca, D.; Janes, H.

    2000-01-01

    There is a general belief that the quality of tomatoes ripened on vine is better than tomatoes ripened off the vine, influencing among other parameters, the price of this commodity. We compared the quality of hydroponic tomatoes ripened on and off vine by chemical, physical, and sensory evaluation to find what attributes are affected and to what extent. Lycopene, beta-carotene, total and soluble solids, moisture content, ascorbic acid, acidity, pH, texture, and color were analyzed. Tomatoes ripened on vine had significantly more lycopene, beta-carotene, soluble and total solids, higher a* and lower L*, and were firmer. However, a 100-judge panel rated only the color and overall liking of the vine-ripened tomatoes as more intense than the fruit ripened off vine. Therefore, the chemical and physical differences were mostly not large enough to influence the panelist's perception. The characterization of tomatoes ripened on and off vine may help to guide post-harvest handling and treatment and to improve the quality of tomatoes ripened off vine.

  4. Water use efficiency of a banana plantation in a screenhouse

    NASA Astrophysics Data System (ADS)

    Tanny, J.; Dicken, U.; Grava, A.; Cohen, S.

    2009-04-01

    Shading banana and other orchard crops with screens is becoming increasingly popular in arid and semi-arid regions due to the resulting decreased water use and increased fruit quality. This study focused on measurements of water vapor and CO2 fluxes in a large commercial flat-roof banana screenhouse in northern Israel whose dimensions were 300 m long, 200 m wide and 6 m high. Measurements were conducted using an eddy covariance system deployed on a pole near the center of the screenhouse, allowing a minimum fetch of 100 m in all wind directions. The system measured the three air velocity components, air sonic temperature, air humidity and CO2 concentration. Measurements were conducted during 21 days between July 7th (DOY 189) and August 17th 2007 (DOY 230). During this period the banana plants grew from 2.8 to 4.6 m height and leaf area index increased from 0.5 to 1.8. Additional measurements of net radiation and soil heat flux enabled the analysis of energy balance closure. Energy balance closure analysis gave the regression line Y = 0.85X - 0.5 (R2 = 0.84) where Y represents the consumed energy (latent plus sensible heat fluxes) and X represents the available energy (net radiation minus soil heat flux). This result (slope close to unity) validates the measured evapotranspiration (latent heat flux). Farmer's irrigation increased during the measurement period due to both plant growth and climate variation. Daily evapotranspiration of the plantation increased from 1.7 to 3.2 mm of water during the measurement period. Daily water consumption was on average 70% of the applied irrigation, suggesting that the plantation was over-irrigated. The water use efficiency (WUE) was defined as the total daily mass of CO2 consumed by the plantation per unit mass of water used. Results show that WUE generally increased during the measurement period, implying that larger banana plants were more efficient in using the available water than smaller plants.

  5. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    SciTech Connect

    Klabunde, Kenneth J.

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms “digestive ripening” and “nanomachining” and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity

  6. Involvement of Peroxidase and Indole-3-acetic Acid Oxidase Isozymes from Pear, Tomato, and Blueberry Fruit in Ripening

    PubMed Central

    Frenkel, Chaim

    1972-01-01

    Protein extracts were obtained from climacteric fruits (pear, tomato) and nonclimacteric fruits (blueberry) during various stages of ripening. The use of a gel electrophoresis technique revealed a consistent reinforcement in indoleacetic acid oxidase but not in peroxidase isozymes during ripening. The significance of the results is discussed in relation to the resistance of fruits to ripening and ethylene action. Images PMID:16658043

  7. THE DUAL EFFECTS OF METHYL SALICYLATE ON RIPENING AND EXPRESSION OF ETHYLENE BIOSYNTHESIS GENES IN TOMATO FRUIT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato fruit (Lycopersicon esculentum Mill. cv. Sun Bright) at three ripening stages (mature green, breaker and turning) were treated with three different concentrations of methyl salicylate (MeSA) vapor to investigate the impact on ripening and ethylene production. The tomato ripening process, incl...

  8. Metabolic differences in ripening of Solanum lycopersicum 'Ailsa Craig' and three monogenic mutants.

    PubMed

    Beisken, Stephan; Earll, Mark; Baxter, Charles; Portwood, David; Ament, Zsuzsanna; Kende, Aniko; Hodgman, Charlie; Seymour, Graham; Smith, Rebecca; Fraser, Paul; Seymour, Mark; Salek, Reza M; Steinbeck, Christoph

    2014-01-01

    Application of mass spectrometry enables the detection of metabolic differences between groups of related organisms. Differences in the metabolic fingerprints of wild-type Solanum lycopersicum and three monogenic mutants, ripening inhibitor (rin), non-ripening (nor) and Colourless non-ripening (Cnr), of tomato are captured with regard to ripening behaviour. A high-resolution tandem mass spectrometry system coupled to liquid chromatography produced a time series of the ripening behaviour at discrete intervals with a focus on changes post-anthesis. Internal standards and quality controls were used to ensure system stability. The raw data of the samples and reference compounds including study protocols have been deposited in the open metabolomics database MetaboLights via the metadata annotation tool Isatab to enable efficient re-use of the datasets, such as in metabolomics cross-study comparisons or data fusion exercises. PMID:25977786

  9. Overview of a Surface-Ripened Cheese Community Functioning by Meta-Omics Analyses

    PubMed Central

    Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal

    2015-01-01

    Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897

  10. Overview of a surface-ripened cheese community functioning by meta-omics analyses.

    PubMed

    Dugat-Bony, Eric; Straub, Cécile; Teissandier, Aurélie; Onésime, Djamila; Loux, Valentin; Monnet, Christophe; Irlinger, Françoise; Landaud, Sophie; Leclercq-Perlat, Marie-Noëlle; Bento, Pascal; Fraud, Sébastien; Gibrat, Jean-François; Aubert, Julie; Fer, Frédéric; Guédon, Eric; Pons, Nicolas; Kennedy, Sean; Beckerich, Jean-Marie; Swennen, Dominique; Bonnarme, Pascal

    2015-01-01

    Cheese ripening is a complex biochemical process driven by microbial communities composed of both eukaryotes and prokaryotes. Surface-ripened cheeses are widely consumed all over the world and are appreciated for their characteristic flavor. Microbial community composition has been studied for a long time on surface-ripened cheeses, but only limited knowledge has been acquired about its in situ metabolic activities. We applied metagenomic, metatranscriptomic and biochemical analyses to an experimental surface-ripened cheese composed of nine microbial species during four weeks of ripening. By combining all of the data, we were able to obtain an overview of the cheese maturation process and to better understand the metabolic activities of the different community members and their possible interactions. Furthermore, differential expression analysis was used to select a set of biomarker genes, providing a valuable tool that can be used to monitor the cheese-making process. PMID:25867897

  11. Effect of the degree of substitution of octenyl succinic anhydride-banana starch on emulsion stability.

    PubMed

    Bello-Pérez, Luis A; Bello-Flores, Christopher A; Nuñez-Santiago, María del Carmen; Coronel-Aguilera, Claudia P; Alvarez-Ramirez, J

    2015-11-01

    Banana starch was esterified with octenylsuccinic anhydride (OSA) at different degree substitution (DS) and used to stabilize emulsions. Morphology, emulsion stability, emulsification index, rheological properties and particle size distribution of the emulsions were tested. Emulsions dyed with Solvent Red 26 showed affinity for the oil phase. Backscattering light showed three regions in the emulsion where the emulsified region was present. Starch concentration had higher effect in the emulsification index (EI) than the DS used in the study because similar values were found with OSA-banana and native starches. However, OSA-banana presented greater stability of the emulsified region. Rheological tests in emulsions with OSA-banana showed G'>G" values and low dependence of G' with the frequency, indicating a dominant elastic response to shear. When emulsions were prepared under high-pressure conditions, the emulsions with OSA-banana starch with different DS showed a bimodal distribution of particle size. The emulsion with OSA-banana starch and the low DS showed similar mean droplet diameter than its native counterpart. In contrast, the highest DS led to the highest mean droplet diameter. It is concluded that OSA-banana starch with DS can be used to stabilize specific emulsion types. PMID:26256319

  12. Study on oil absorbency of succinic anhydride modified banana cellulose in ionic liquid.

    PubMed

    Shang, Wenting; Sheng, Zhanwu; Shen, Yixiao; Ai, Binling; Zheng, Lili; Yang, Jingsong; Xu, Zhimin

    2016-05-01

    Banana cellulose contained number of hydrophilic hydroxyl groups which were succinylated to be hydrophobic groups with high oil affinity. Succinic anhydride was used to modify banana cellulose in 1-allyl-3-methylimidazolium chloride ionic liquid in this study. The modified banana cellulose had a high oil absorption capacity. The effects of reaction time, temperature, and molar ratio of succinic anhydride to anhydroglucose on the degree of substitution of modified banana cellulose were evaluated. The optimal reaction condition was at a ratio of succinic anhydride and anhydroglucose 6:1 (m:m), reaction time 60min and temperature 90°C. The maximum degree of acylation reaction reached to 0.37. The characterization analysis of the modified banana cellulose was performed using X-ray diffractometer, Fourier transform infrared spectrometer, scanning electron microscopy and thermogravimetry. The oil absorption capacity and kinetics of the modified banana cellulose were evaluated at the modified cellulose dose (0.025-0.3g), initial oil amount (5-30g), and temperature (15-35°C) conditions. The maximum oil absorption capacity was 32.12g/g at the condition of the cellulose dose (0.05g), initial oil amount (25g) and temperature (15°C). The kinetics of oil absorption of the cellulose followed a pseudo-second-order model. The results of this study demonstrated that the modified banana cellulose could be used as an efficient bio-sorbent for oil adsorption. PMID:26877005

  13. Banana production systems: identification of alternative systems for more sustainable production.

    PubMed

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides. PMID:23055273

  14. The banana E2 gene family: Genomic identification, characterization, expression profiling analysis.

    PubMed

    Dong, Chen; Hu, Huigang; Jue, Dengwei; Zhao, Qiufang; Chen, Hongliang; Xie, Jianghui; Jia, Liqiang

    2016-04-01

    The E2 is at the center of a cascade of Ub1 transfers, and it links activation of the Ub1 by E1 to its eventual E3-catalyzed attachment to substrate. Although the genome-wide analysis of this family has been performed in some species, little is known about analysis of E2 genes in banana. In this study, 74 E2 genes of banana were identified and phylogenetically clustered into thirteen subgroups. The predicted banana E2 genes were distributed across all 11 chromosomes at different densities. Additionally, the E2 domain, gene structure and motif compositions were analyzed. The expression of all of the banana E2 genes was analyzed in the root, stem, leaf, flower organs, five stages of fruit development and under abiotic stresses. All of the banana E2 genes, with the exception of few genes in each group, were expressed in at least one of the organs and fruit developments, which indicated that the E2 genes might involve in various aspects of the physiological and developmental processes of the banana. Quantitative RT-PCR (qRT-PCR) analysis identified that 45 E2s under drought and 33 E2s under salt were induced. To the best of our knowledge, this report describes the first genome-wide analysis of the banana E2 gene family, and the results should provide valuable information for understanding the classification, cloning and putative functions of this family. PMID:26940488

  15. Storage stability of banana chips in polypropylene based nanocomposite packaging films.

    PubMed

    Manikantan, M R; Sharma, Rajiv; Kasturi, R; Varadharaju, N

    2014-11-01

    In this study, polypropylene (PP) based nanocomposite films of 15 different compositions of nanoclay, compatibilizer and thickness were developed and used for packaging and storage of banana chips. The effect of nanocomposite films on the quality characteristics viz. moisture content (MC), water activity (WA), total color difference(TCD), breaking force (BF), free fatty acid (FFA), peroxide value(PV), total plate count (TPC) and overall acceptability score of banana chips under ambient condition at every 15 days interval were studied for 120 days. All quality parameters of stored banana chips increased whereas overall acceptability scores decreased during storage. The elevation in FFA, BF and TCD of stored banana chips increased with elapse of storage period as well as with increased proportion of both nanoclay and compatibilizer but decreased by reducing the thickness of film. Among all the packaging materials, the WA of banana chips remained lower than 0.60 i.e. critical limit for microbial growth up to 90 days of storage. The PV of banana chips packaged also remained within the safe limit of 25 meq oxygen kg(-1) throughout the storage period. Among all the nanocomposite films, packaging material having 5 % compatibilizer, 2 % nanoclay & 100 μm thickness (treatment E) and 10 % compatibilizer, 4 % nanoclay & 120 μm thickness (treatment N) showed better stability of measured quality characteristics of banana chips than any other treatment. PMID:26396292

  16. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants

    PubMed Central

    Ghag, Siddhesh B.; Shekhawat, Upendra K. Singh; Ganapathi, Thumballi R.

    2014-01-01

    In order to feed an ever-increasing world population, there is an urgent need to improve the production of staple food and fruit crops. The productivity of important food and fruit crops is constrained by numerous biotic and abiotic factors. The cultivation of banana, which is an important fruit crop, is severely threatened by Fusarium wilt disease caused by infestation by an ascomycetes fungus Fusarium oxysporum f. sp. cubense (Foc). Since there are no established edible cultivars of banana resistant to all the pathogenic races of Foc, genetic engineering is the only option for the generation of resistant cultivars. Since Foc is a hemibiotrophic fungus, investigations into the roles played by different cell-death-related genes in the progression of Foc infection on host banana plants are important. Towards this goal, three such genes namely MusaDAD1, MusaBAG1 and MusaBI1 were identified in banana. The study of their expression pattern in banana cells in response to Foc inoculation (using Foc cultures or fungal toxins like fusaric acid and beauvericin) indicated that they were indeed differentially regulated by fungal inoculation. Among the three genes studied, MusaBAG1 showed the highest up-regulation upon Foc inoculation. Further, in order to characterize these genes in the context of Foc infection in banana, we generated transgenic banana plants constitutively overexpressing the three genes that were later subjected to Foc bioassays in a contained greenhouse. Among the three groups of transgenics tested, transformed banana plants overexpressing MusaBAG1 demonstrated the best resistance towards Foc infection. Further, these plants also showed the highest relative overexpression of the transgene (MusaBAG1) among the three groups of transformed plants generated. Our study showed for the first time that native genes like MusaBAG1 can be used to develop transgenic banana plants with efficient resistance towards pathogens like Foc. PMID:24996429

  17. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants.

    PubMed

    Ghag, Siddhesh B; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R

    2014-01-01

    In order to feed an ever-increasing world population, there is an urgent need to improve the production of staple food and fruit crops. The productivity of important food and fruit crops is constrained by numerous biotic and abiotic factors. The cultivation of banana, which is an important fruit crop, is severely threatened by Fusarium wilt disease caused by infestation by an ascomycetes fungus Fusarium oxysporum f. sp. cubense (Foc). Since there are no established edible cultivars of banana resistant to all the pathogenic races of Foc, genetic engineering is the only option for the generation of resistant cultivars. Since Foc is a hemibiotrophic fungus, investigations into the roles played by different cell-death-related genes in the progression of Foc infection on host banana plants are important. Towards this goal, three such genes namely MusaDAD1, MusaBAG1 and MusaBI1 were identified in banana. The study of their expression pattern in banana cells in response to Foc inoculation (using Foc cultures or fungal toxins like fusaric acid and beauvericin) indicated that they were indeed differentially regulated by fungal inoculation. Among the three genes studied, MusaBAG1 showed the highest up-regulation upon Foc inoculation. Further, in order to characterize these genes in the context of Foc infection in banana, we generated transgenic banana plants constitutively overexpressing the three genes that were later subjected to Foc bioassays in a contained greenhouse. Among the three groups of transgenics tested, transformed banana plants overexpressing MusaBAG1 demonstrated the best resistance towards Foc infection. Further, these plants also showed the highest relative overexpression of the transgene (MusaBAG1) among the three groups of transformed plants generated. Our study showed for the first time that native genes like MusaBAG1 can be used to develop transgenic banana plants with efficient resistance towards pathogens like Foc. PMID:24996429

  18. Biochemical and molecular tools reveal two diverse Xanthomonas groups in bananas.

    PubMed

    Adriko, J; Aritua, V; Mortensen, C N; Tushemereirwe, W K; Mulondo, A L; Kubiriba, J; Lund, O S

    2016-02-01

    Xanthomonas campestris pv. musacearum (Xcm) causing the banana Xanthomonas wilt (BXW) disease has been the main xanthomonad associated with bananas in East and Central Africa based on phenotypic and biochemical characteristics. However, biochemical methods cannot effectively distinguish between pathogenic and non-pathogenic xanthomonads. In this study, gram-negative and yellow-pigmented mucoid bacteria were isolated from BXW symptomatic and symptomless bananas collected from different parts of Uganda. Biolog, Xcm-specific (GspDm), Xanthomonas vasicola species-specific (NZ085) and Xanthomonas genus-specific (X1623) primers in PCR, and sequencing of ITS region were used to identify and characterize the isolates. Biolog tests revealed several isolates as xanthomonads. The GspDm and NZ085 primers accurately identified three isolates from diseased bananas as Xcm and these were pathogenic when re-inoculated into bananas. DNA from more isolates than those amplified by GspDm and NZ085 primers were amplified by the X1623 primers implying they are xanthomonads, these were however non-pathogenic on bananas. In the 16-23 ITS sequence based phylogeny, the pathogenic bacteria clustered together with the Xcm reference strain, while the non-pathogenic xanthomonads isolated from both BXW symptomatic and symptomless bananas clustered with group I xanthomonads. The findings reveal dynamic Xanthomonas populations in bananas, which can easily be misrepresented by only using phenotyping and biochemical tests. A combination of tools provides the most accurate identity and characterization of these plant associated bacteria. The interactions between the pathogenic and non-pathogenic xanthomonads in bananas may pave way to understanding effect of microbial interactions on BXW disease development and offer clues to biocontrol of Xcm. PMID:26805624

  19. The BANANA project. V. Misaligned and precessing stellar rotation axes in CV Velorum

    SciTech Connect

    Albrecht, Simon; Winn, Joshua N.; Triaud, Amaury; Torres, Guillermo; Fabrycky, Daniel C.; Setiawan, Johny; Gillon, Michaël; Jehin, Emmanuel; Queloz, Didier; Snellen, Ignas; Eggleton, Peter

    2014-04-20

    As part of the Binaries Are Not Always Neatly Aligned project (BANANA), we have found that the eclipsing binary CV Velorum has misaligned rotation axes. Based on our analysis of the Rossiter-McLaughlin effect, we find sky-projected spin-orbit angles of β{sub p} = –52° ± 6° and β{sub s} = 3° ± 7° for the primary and secondary stars (B2.5V + B2.5V, P = 6.9 days). We combine this information with several measurements of changing projected stellar rotation speeds (vsin i {sub *}) over the last 30 yr, leading to a model in which the primary star's obliquity is ≈65°, and its spin axis precesses around the total angular momentum vector with a period of about 140 yr. The geometry of the secondary star is less clear, although a significant obliquity is also implicated by the observed time variations in the vsin i {sub *}. By integrating the secular tidal evolution equations backward in time, we find that the system could have evolved from a state of even stronger misalignment similar to DI Herculis, a younger but otherwise comparable binary.

  20. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  1. Tearing instabilities in the banana-plateau collisionality regime

    SciTech Connect

    Qu, W.X.; Callen, J.D.

    1985-04-01

    Starting from a resistive MHD set of equations and adding neoclassical currents (bootstrap, enhanced polarization and pinch type), we derive the eigenmode equation and relevant dispersion relation for ''neoclassical MHD'' tearing modes in the banana-plateau collisionality regime. The ballooning mode representation and a multiple length scale approximation are utilized. Analysis of the dispersion relation shows that the neoclassical effects on tearing modes are quite strong for ..sqrt..epsilon ..beta../sub p/(1 + nu/sub *//sub e/)/sup -1/ > S/sup -2/5/ (epsilon is the inverse aspect ratio, ..beta../sub p/ is the poloidal beta value, nu/sub *//sub e/ is the electron collisionality factor and S is the neoclassical MHD Reynolds number). The growth rate ..gamma.. and singular layer width deltax are increased typically by more than one order of magnitude from the usual values for epsilon ..beta../sub p/ approx. = 1. For our model, the changes in the tearing modes from the banana-plateau collisionality regime to the usual Pfirsch-Schlueter regime are very clear and natural.

  2. Control of Fusarium wilt in banana with Chinese leek.

    PubMed

    Huang, Y H; Wang, R C; Li, C H; Zuo, C W; Wei, Y R; Zhang, L; Yi, G J

    2012-09-01

    The inhibitory effects of Chinese leek(Allium tuberosum) on Fusarium oxysporum f. sp. cubense (Foc) and on Fusarium wilt incidence were studied in order to identify a potential efficient way to control the disease. Adopting the rotation system of Chinese leek-banana reduced the Fusarium wilt incidence and disease severity index by 88 %-97 % and 91 %-96 %, respectively, improved the crop value by 36 %-86 %, in an area heavily infested by Foc between 2007 and 2009. As a result of inoculation in the greenhouse, Chinese leek treatment reduced disease incidence and the disease severity index by 58 % and 62 %, respectively in the variety Baxi (AAA) and by 79 % and 81 %, respectively in the variety Guangfen NO.1 (ABB). Crude extracts of Chinese leek completely inhibited the growth of Foc race 4 on Petri dishes, suppressed the proliferation of the spores by 91 % and caused 87 % spore mortality. The findings of this study suggest that Chinese leek has the potential to inhibit Foc growth and Fusarium wilt incidence. This potential may be developed into an environmentally friendly treatment to control Fusarium wilt of banana. PMID:23144534

  3. Control of Fusarium wilt in banana with Chinese leek

    PubMed Central

    Huang, Y.H.; Wang, R.C.; Li, C. H.; Zuo, C.W.; Wei, Y. R.; Zhang, L.; Yi, G.J.

    2012-01-01

    The inhibitory effects of Chinese leek(Allium tuberosum) on Fusarium oxysporum f. sp. cubense (Foc) and on Fusarium wilt incidence were studied in order to identify a potential efficient way to control the disease. Adopting the rotation system of Chinese leek-banana reduced the Fusarium wilt incidence and disease severity index by 88 %-97 % and 91 %-96 %, respectively, improved the crop value by 36 %-86 %, in an area heavily infested by Foc between 2007 and 2009. As a result of inoculation in the greenhouse, Chinese leek treatment reduced disease incidence and the disease severity index by 58 % and 62 %, respectively in the variety Baxi (AAA) and by 79 % and 81 %, respectively in the variety Guangfen NO.1 (ABB). Crude extracts of Chinese leek completely inhibited the growth of Foc race 4 on Petri dishes, suppressed the proliferation of the spores by 91 % and caused 87 % spore mortality. The findings of this study suggest that Chinese leek has the potential to inhibit Foc growth and Fusarium wilt incidence. This potential may be developed into an environmentally friendly treatment to control Fusarium wilt of banana. PMID:23144534

  4. Theory of Ostwald ripening in a two-component system

    NASA Technical Reports Server (NTRS)

    Baird, J. K.; Lee, L. K.; Frazier, D. O.; Naumann, R. J.

    1986-01-01

    When a two-component system is cooled below the minimum temperature for its stability, it separates into two or more immiscible phases. The initial nucleation produces grains (if solid) or droplets (if liquid) of one of the phases dispersed in the other. The dynamics by which these nuclei proceed toward equilibrium is called Ostwald ripening. The dynamics of growth of the droplets depends upon the following factors: (1) The solubility of the droplet depends upon its radius and the interfacial energy between it and the surrounding (continuous) phase. There is a critical radius determined by the supersaturation in the continuous phase. Droplets with radii smaller than critical dissolve, while droplets with radii larger grow. (2) The droplets concentrate one component and reject the other. The rate at which this occurs is assumed to be determined by the interdiffusion of the two components in the continuous phase. (3) The Ostwald ripening is constrained by conservation of mass; e.g., the amount of materials in the droplet phase plus the remaining supersaturation in the continuous phase must equal the supersaturation available at the start. (4) There is a distribution of droplet sizes associated with a mean droplet radius, which grows continuously with time. This distribution function satisfies a continuity equation, which is solved asymptotically by a similarity transformation method.

  5. [Expansion dilatation balloons for cervical ripening in obstetric practice].

    PubMed

    Ducarme, G; Grange, J; Vital, M

    2016-02-01

    During recent decades, mechanical devices have been substituted by pharmacological methods. Their place in the therapeutic arsenal remains important with a renewed obstetrical interest for these devices. Due to a lack of data they are still not recommended as first-line. This review thus attempted to examine the use of expansion dilatation balloons (Foley catheter and double-balloons) to analyze their effectiveness in case of native uterus and previous cesarean section. Twenty-seven clinical trials had compared balloons catheter and prostaglandins in patients without a history of uterine scar. The risk of cesarean section did not differ. Mechanical methods seemed to be more effective in achieving delivery within 24hours, with fewer episodes of excessive uterine contractions, but they necessitated more oxytocin during labor. Ten clinical trials analyzed dilatation balloons in patients with previous cesarean section. More than 70% women had favorable cervical ripening (Bishop score>6), and vaginal delivery was reported between 35 and 70% of patients. The risk of uterine rupture was low between 0.64 and 0.72%, with neither increased risk of severe neonatal and maternal morbidity nor increased risk of infectious morbidity. Mechanical methods are effective and safe for third trimester cervical ripening, mainly in women with previous cesarean section. Potential advantages may include wide availability and reduction of some of the side effects. PMID:26774842

  6. Effect of Salinity on Tomato Fruit Ripening 1

    PubMed Central

    Mizrahi, Yosef

    1982-01-01

    Tomato (Lycopersicon esculentum Mill) plants from various cultivars growing on half-strength Hoagland solution were exposed at anthesis to 3 or 6 grams per liter NaCl. Salinity shortened the time of fruit development by 4 to 15%. Fruits of salt-treated plants were smaller and tasted better than did fruits of control plants. This result was obtained both for ripe fruits tested on the day of picking and for those picked at 100% development and allowed to ripen at room temperature for 9 days. Percentage of dry weight, total soluble solids, and titratable acidity; content of reducing sugars, Cl−, Na+, and various pericarp pigments; and electrical conductivity of the juice were higher in fruits of saline-treated plants than they were in those of control plants, while the pH was lower. Ethylene and CO2 evolution rates during ripening; as well as the activities of pectin methyl esterase, polymethylgalacturonase, and polygalacturonase; were also higher in fruits of the saline-treated plants. The treatment with 6 grams per liter NaCl shortened the fruit shelf life considerably. PMID:16662327

  7. Ostwald ripening and interparticle-diffraction effects for illite crystals

    USGS Publications Warehouse

    Eberl, D.D.; Srodon, J.

    1988-01-01

    The Warren-Averbach method, an X-ray diffraction (XRD) method used to measure mean particle thickness and particle-thickness distribution, is used to restudy sericite from the Silverton caldera. Apparent particle-thickness distributions indicate that the clays may have undergone Ostwald ripening and that this process has modified the K-Ar ages of the samples. The mechanism of Ostwald ripening can account for many of the features found for the hydrothermal alteration of illite. Expandabilities measured by the XRD peak-position method for illite/smectites (I/S) from various locations are smaller than expandabilities measured by transmission electron microscopy (TEM) and by the Warren-Averbach (W-A) method. This disparity is interpreted as being related to the presence of nonswelling basal surfaces that form the ends of stacks of illite particles (short-stack effect), stacks that, according to the theory of interparticle diffraction, diffract as coherent X-ray scattering domains. -from Authors

  8. Neoclassical ion thermal conductivity modified by finite banana effects in a tokamak plasma

    SciTech Connect

    Chang, C.S.

    1997-06-01

    A finite-banana-width correction to the neoclassical ion thermal conductivity is obtained in a tokamak plasma under the conventional assumption that the particle flow parallel to magnetic-field lines dominates the trapped particle{close_quote}s orbital dynamics. It is found that the finite-banana-width effect makes ion thermal conductivity itself be a function of radial plasma density gradient and magnetic shear. Negative radial gradients in plasma density and/or safety factor can reduce the neoclassical ion thermal conductivity when the banana width is a significant fraction of the gradient scale length. {copyright} {ital 1997 American Institute of Physics.}

  9. Evaluation of chemical parameters in soft mold-ripened cheese during ripening by mid-infrared spectroscopy.

    PubMed

    Martín-del-Campo, S T; Picque, D; Cosío-Ramírez, R; Corrieu, G

    2007-06-01

    The suitability of mid-infrared spectroscopy (MIR) to follow the evolution throughout ripening of specific physicochemical parameters in Camembert-type cheeses was evaluated. The infrared spectra were obtained directly from raw cheese samples deposited on an attenuated total reflectance crystal. Significant correlations were observed between physicochemical data, pH, acid-soluble nitrogen, nonprotein nitrogen, ammonia (NH4+), lactose, and lactic acid. Dry matter showed significant correlation only with lactose and nonprotein nitrogen. Principal components analysis factorial maps of physicochemical data showed a ripening evolution in 2 steps, from d 1 to d 7 and from d 8 to d 27, similar to that observed previously from infrared spectral data. Partial least squares regressions made it possible to obtain good prediction models for dry matter, acid-soluble nitrogen, nonprotein nitrogen, lactose, lactic acid, and NH4+ values from spectral data of raw cheese. The values of 3 statistical parameters (coefficient of determination, root mean square error of cross validation, and ratio prediction deviation) are satisfactory. Less precise models were obtained for pH. PMID:17517744

  10. iTRAQ-Based Quantitative Proteomics of Developing and Ripening Muscadine Grape Berry

    PubMed Central

    Kambiranda, Devaiah; Katam, Ramesh; Basha, Sheikh M.; Siebert, Shalom

    2014-01-01

    Grapes are among the widely cultivated fruit crops in the world. Grape berries like other nonclimacteric fruits undergo a complex set of dynamic, physical, physiological, and biochemical changes during ripening. Muscadine grapes are widely cultivated in the southern United States for fresh fruit and wine. To date, changes in the metabolites composition of muscadine grapes have been well documented; however, the molecular changes during berry development and ripening are not fully known. The aim of this study was to investigate changes in the berry proteome during ripening in muscadine grape cv. Noble. Isobaric tags for relative and absolute quantification (iTRAQ) MS/MS was used to detect statistically significant changes in the berry proteome. A total of 674 proteins were detected, and 76 were differentially expressed across four time points in muscadine berry. Proteins obtained were further analyzed to provide information about its potential functions during ripening. Several proteins involved in abiotic and biotic stimuli and sucrose and hexose metabolism were upregulated during berry ripening. Quantitative real-time PCR analysis validated the protein expression results for nine proteins. Identification of vicilin-like antimicrobial peptides indicates additional disease tolerance proteins are present in muscadines for berry protection during ripening. The results provide new information for characterization and understanding muscadine berry proteome and grape ripening. PMID:24251720

  11. Flavor characterization of ripened cod roe by gas chromatography, sensory analysis, and electronic nose.

    PubMed

    Jonsdottir, Rosa; Olafsdottir, Gudrun; Martinsdottir, Emilia; Stefansson, Gudmundur

    2004-10-01

    Characterization of the flavors of ripened roe products is of importance to establish a basis for a standardized product. Flavor profiles of commercially processed ripened roe from Iceland and Norway were studied by sensory analysis, gas chromatography-olfactometry (GC-O), gas chromatography-mass spectrometry (GC-MS), and an electronic nose to characterize the headspace of ripened roe. Sensory analysis showed that ripened roe odor and flavor in combination with caviar flavor and whey/caramel-like odor give the overall positive effect of the complex characteristic roe flavor. Analysis of volatiles by GC-MS and electronic nose confirmed the presence of aroma compounds contributing to the typical ripening and spoilage flavors detected by the sensory analysis. Methional, 1-octen-3-ol, and 2,6-nonadienal were the most important compounds contributing to ripened roe odor. Spoilage flavors were partly contributed by 3-methyl-1-butanol and 3-methylbutanal, which can be measured by the electronic nose and are suggested as quality indicators for objectively assessing the ripening of roe. Principal component analysis of the overall data showed that GC-O correlated well with sensory evaluation and the electronic nose measurements. PMID:15453695

  12. Comparative Transcriptome Analyses between a Spontaneous Late-Ripening Sweet Orange Mutant and Its Wild Type Suggest the Functions of ABA, Sucrose and JA during Citrus Fruit Ripening

    PubMed Central

    Zhang, Ya-Jian; Wang, Xing-Jian; Wu, Ju-Xun; Chen, Shan-Yan; Chen, Hong; Chai, Li-Jun; Yi, Hua-Lin

    2014-01-01

    A spontaneous late-ripening mutant of ‘Jincheng’ (C. sinensis L. Osbeck) sweet orange exhibited a delay of fruit pigmentation and harvesting. In this work, we studied the processes of orange fruit ripening through the comparative analysis between the Jincheng mutant and its wild type. This study revealed that the fruit quality began to differ on 166th days after anthesis. At this stage, fruits were subjected to transcriptome analysis by RNA sequencing. 13,412 differentially expressed unigenes (DEGs) were found. Of these unigenes, 75.8% were down-regulated in the wild type, suggesting that the transcription level of wild type was lower than that of the mutant during this stage. These DEGs were mainly clustered into five pathways: metabolic pathways, plant-pathogen interaction, spliceosome, biosynthesis of plant hormones and biosynthesis of phenylpropanoids. Therefore, the expression profiles of the genes that are involved in abscisic acid, sucrose, and jasmonic acid metabolism and signal transduction pathways were analyzed during the six fruit ripening stages. The results revealed the regulation mechanism of sweet orange fruit ripening metabolism in the following four aspects: First, the more mature orange fruits were, the lower the transcription levels were. Second, the expression level of PME boosted with the maturity of the citrus fruit. Therefore, the expression level of PME might represent the degree of the orange fruit ripeness. Third, the interaction of PP2C, PYR/PYL, and SnRK2 was peculiar to the orange fruit ripening process. Fourth, abscisic acid, sucrose, and jasmonic acid all took part in orange fruit ripening process and might interact with each other. These findings provide an insight into the intricate process of sweet orange fruit ripening. PMID:25551568

  13. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling.

    PubMed

    Torrigiani, Patrizia; Bressanin, Daniela; Ruiz, Karina Beatriz; Tadiello, Alice; Trainotti, Livio; Bonghi, Claudio; Ziosi, Vanina; Costa, Guglielmo

    2012-09-01

    Peach (Prunus persica var. laevis Gray) was chosen to unravel the molecular basis underlying the ability of spermidine (Sd) to influence fruit development and ripening. Field applications of 1 mM Sd on peach fruit at an early developmental stage, 41 days after full bloom (dAFB), i.e. at late stage S1, led to a slowing down of fruit ripening. At commercial harvest (125 dAFB, S4II) Sd-treated fruits showed a reduced ethylene production and flesh softening. The endogenous concentration of free and insoluble conjugated polyamines (PAs) increased (0.3-2.6-fold) 1 day after treatment (short-term response) butsoon it declined to control levels; starting from S3/S4, when soluble conjugated forms increased (up to five-fold relative to controls at ripening), PA levels became more abundant in treated fruits, (long-term response). Real-time reverse transcription-polymerase chain reaction analyses revealed that peaks in transcript levels of fruit developmental marker genes were shifted ahead in accord with a developmental slowing down. At ripening (S4I-S4II) the upregulation of the ethylene biosynthetic genes ACO1 and ACS1 was dramatically counteracted by Sd and this led to a strong downregulation of genes responsible for fruit softening, such as PG and PMEI. Auxin-related gene expression was also altered both in the short term (TRPB) and in the long term (GH3, TIR1 and PIN1), indicating that auxin plays different roles during development and ripening processes. Messenger RNA amounts of other hormone-related ripening-regulated genes, such as NCED and GA2-OX, were strongly downregulated at maturity. Results suggest that Sd interferes with fruit development/ripening by interacting with multiple hormonal pathways. PMID:22409726

  14. Microbiology, biochemistry, and volatile composition of Tulum cheese ripened in goat's skin or plastic bags.

    PubMed

    Hayaloglu, A A; Cakmakci, S; Brechany, E Y; Deegan, K C; McSweeney, P L H

    2007-03-01

    Tulum cheeses were manufactured from raw ewe's milk and ripened in goat's skin bags (tulums) or plastic containers to understand the effect of ripening container on the chemical composition, biochemistry, microbiology, and volatile composition of Tulum cheeses during 150 d of ripening. Chemical compositions of the cheeses ripened in tulums were significantly different and the moisture contents decreased rapidly in those cheeses because of the porous structure of the tulum. Higher microbial counts were detected in the cheeses ripened in plastic than in cheeses ripened in tulums. Differences in nitrogenous compounds and total free AA of the cheeses were not significant. Total concentrations of free AA in cheeses increased with age and Glu, Ala, Val, Leu, and Phe were the most abundant AA in the cheeses. Urea-PAGE of pH 4.6-insoluble fractions of the cheeses during ripening showed similar degradation patterns in all cheeses. Peptide profiles by reversed-phase HPLC of pH 4.6- and ethanol-soluble or ethanol-insoluble fractions of the cheeses revealed only minor differences in the concentrations of some peptides among the cheeses; however, age-related changes in peptide concentrations were significantly different among the cheeses. Cheeses were analyzed at 90 d of ripening for volatile compounds by solid-phase microextraction gas chromatography-mass spectrometry. One hundred volatile components were identified, including 11 acids, 16 esters, 12 methyl ketones, 7 aldehydes, 22 alcohols, 7 sulfur compounds, 6 terpenes, and 19 miscellaneous compounds. The main components were short-chain fatty acids, 2-butanone, diacetyl, and primary alcohols. Quantitative differences in several volatile compounds were evident among the cheeses. Cheeses ripened in tulums or plastic had similar aroma patterns, but the concentrations of some components were different. PMID:17297085

  15. Fate of Lactococcus lactis starter cultures during late ripening in cheese models.

    PubMed

    Ruggirello, Marianna; Cocolin, Luca; Dolci, Paola

    2016-10-01

    The presence of Lactococcus lactis, commonly employed as starter culture, was, recently, highlighted and investigated during late cheese ripening. Thus, the main goal of the present study was to assess the persistence and viability of this microorganism throughout manufacturing and ripening of model cheeses. Eight commercial starters, constituted of L. lactis subsp. lactis and L. lactis subsp. cremoris, were inoculated in pasteurized milk in order to manufacture miniature cheeses, ripened for six months. Samples were analysed at different steps (milk after inoculum, curd after cutting, curd after pressing and draining, cheese immediately after salting and cheese at 7, 15, 30, 60, 90, 120, 150 and 180 days of ripening) and submitted to both culture-dependent (traditional plating on M17) and -independent analysis (reverse transcription-quantitative PCR). On the basis of direct RNA analysis, L. lactis populations were detected in all miniature cheeses up to the sixth month of ripening, confirming the presence of viable cells during the whole ripening process, including late stages. Noteworthy, L. lactis was detected by RT-qPCR in cheese samples also when traditional plating failed to indicate its presence. This discrepancy could be explain with the fact that lactococci, during ripening process, enter in a stressed physiological state (viable not culturable, VNC), which might cause their inability to grow on synthetic medium despite their viability in cheese matrix. Preliminary results obtained by "resuscitation" assays corroborated this hypothesis and 2.5% glucose enrichment was effective to recover L. lactis cells in VNC state. The capability of L. lactis to persist in late ripening, and the presence of VNC cells which are known to shift their catabolism to peptides and amino acids consumption, suggests a possible technological role of this microorganism in cheese ripening with a possible impact on flavour formation. PMID:27375251

  16. Effect of banana on cold stress test & peak expiratory flow rate in healthy volunteers.

    PubMed

    Sarkar, C; Bairy, K L; Rao, N M; Udupa, E G

    1999-07-01

    The effect of banana on cold stress induced hypertension, peak expiratory flow rate and plasma ACE activity in healthy human volunteers was tested. Systolic blood pressure (P < 0.005), diastolic blood pressure (P < 0.025) and mean arterial blood pressure (P < 0.005) were significantly decreased during cold stress after banana treatment compared to controls subjected to cold stress. There was no significant changes in heart rate and peak expiratory flow rate but only significant decrease in plasma ACE activity after banana treatment. Banana decreased the rise of systolic blood pressure and diastolic blood pressure in healthy volunteers subjected to cold stress test without much effect on heart rate and peak expiratory flow rate. PMID:10709336

  17. Prediction of banana quality indices from color features using support vector regression.

    PubMed

    Sanaeifar, Alireza; Bakhshipour, Adel; de la Guardia, Miguel

    2016-02-01

    Banana undergoes significant quality indices and color transformations during shelf-life process, which in turn affect important chemical and physical characteristics for the organoleptic quality of banana. A computer vision system was implemented in order to evaluate color of banana in RGB, L*a*b* and HSV color spaces, and changes in color features of banana during shelf-life were employed for the quantitative prediction of quality indices. The radial basis function (RBF) was applied as the kernel function of support vector regression (SVR) and the color features, in different color spaces, were selected as the inputs of the model, being determined total soluble solids, pH, titratable acidity and firmness as the output. Experimental results provided an improvement in predictive accuracy as compared with those obtained by using artificial neural network (ANN). PMID:26653423

  18. Discrete Dynamical Systems Meet the Classic Monkey-and-the-Bananas Problem.

    ERIC Educational Resources Information Center

    Gannon, Gerald E.; Martelli, Mario U.

    2001-01-01

    Presents a solution of the three-sailors-and-the-bananas problem and attempts a generalization. Introduces an interesting way of looking at the mathematics with an idea drawn from discrete dynamical systems. (KHR)

  19. Chemical control of the red palm mite, Raoiella indica (Acari: Tenuipalpidae) in banana and coconut.

    PubMed

    Rodrigues, Jose Carlos Verle; Peña, J E

    2012-08-01

    The red palm mite (RPM), Raoiella indica Hirst, is a predominant pest of coconuts, date palms and other palm species, as well as a major pest of bananas (Musa spp.) in different parts of the world. Recently, RPM dispersed throughout the Caribbean islands and has reached both the North and South American continents. The RPM introductions have caused severe damage to palm species, and bananas and plantains in the Caribbean region. The work presented herein is the result of several acaricide trials conducted in Puerto Rico and Florida on palms and bananas in order to provide chemical control alternatives to minimize the impact of this pest. Spiromesifen, dicofol and acequinocyl were effective in reducing the population of R. indica in coconut in Puerto Rico. Spray treatments with etoxanole, abamectin, pyridaben, milbemectin and sulfur showed mite control in Florida. In addition, the acaricides acequinocyl and spiromesifen were able to reduce the population of R. indica in banana trials. PMID:21983877

  20. Feeding of banana (Musa spp.) plantation wastes for fast pyrolysis process

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd

    2013-05-01

    Using the pyrolysis process, agricultural residue such as banana waste can be converted into bio-char, bio-oil, and gases. The fast pyrolysis process of banana wastes on the available 150g/h rig requires particle size reduction. The particle size of less than 150μm constitutes 50% and particles in the 150-250μm ranges make up 28% of the distribution of particle size of banana leaves. The particle size of less than 150μm makes up 52% and particles in the 150-250μm ranges constitute 28% of the distribution of particle size for banana pseudo-stem. A new gravity chute feeder is also designed for this fast pyrolysis system. A series of feeding tests were conducted using this new feeder. The advantages and limitations will be presented. A comparison with the previously designed feeder will be discussed.

  1. Development and Characterization of Spaghetti with High Resistant Starch Content Supplemented with Banana Starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasta products, such as spaghetti, are relatively healthy foods traditionally manufactured from durum wheat semolina and water. Nutritionally improved spaghetti products with additional health benefits can be produced by supplementing durum wheat with suitable food additives, such as banana starch....

  2. Two-dimensional Ostwald ripening on a patterned support and in a mixed overlayer

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2016-02-01

    The author presents lattice Monte Carlo simulations of Ostwald ripening of islands formed of monomers with attractive nearest-neighbor interaction in two situations. The first one implies that monomers of one kind are located on a heterogeneous support which itself includes embedded frozen patterns of the Ostwald type. This feature is demonstrated to be able to terminate the island ripening. In the second case, the support is considered to be uniform while the overlayer is assumed to contain monomers of two kinds. This complicating factor is found to nearly not modify the ripening kinetics or make it somewhat slower despite appreciable correlations in the arrangement of different monomers.

  3. Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limon, Costa Rica.

    PubMed

    Castillo, Luisa Eugenia; Martínez, Eduardo; Ruepert, Clemens; Savage, Candida; Gilek, Michael; Pinnock, Margareth; Solis, Efrain

    2006-08-15

    Pesticides used in banana production may enter watercourses and pose ecological risks for aquatic ecosystems. The occurrence and effects of pesticides in a stream draining a banana plantation was evaluated using chemical characterization, toxicity testing and macrobenthic community composition. All nematicides studied were detected in the surface waters of the banana plantation during application periods, with peak concentrations following applications. Toxicity tests were limited to the carbofuran application and no toxicity was observed with the acute tests used. However, since pesticide concentrations were generally below the lowest LC50 value for crustaceans but above calculated aquatic quality criteria, there remains a risk of chronic toxicity. Accurate ecological assessments of pesticide use in banana plantations are currently limited by the lack of local short-term chronic toxicity tests and tests using sensitive native species. Relatively constant levels of four pesticides (imazalil, thiabendazole, chlorpyrifos and propiconazole), which had toxic effects according to the 96h hydra and 21d daphnia chronic test, were recorded in the effluent of the packing plant throughout the study, indicating that the solid waste trap used in this facility was not effective in eliminating toxic chemicals. Certain taxa, such as Heterelmis sp. (Elmidae), Heteragrion sp. (Megapodagrionidae, Odonata), Caenis sp. (Caenidae, Ephemerotera), and Smicridea sp. (Hidropsychidae, Trichoptera), were more abundant at reference sites than in the banana farm waters, and may be good candidates for toxicity testing. Multivariate analyses of the macroinvertebrate communities clearly showed that the banana plantation sites were significantly different from the reference sites. Moreover, following the pesticide applications, all the banana plantation sites showed significant changes in community composition, with the same genera being affected at all sites and for all pesticides (terbufos

  4. M = 1 internal kink mode in the plateau and banana regimes in tokamaks

    SciTech Connect

    Mikhailovskii, A.B.; Tsypin, V.S.

    1983-01-01

    A theory is derived for the m = 1 internal kink mode of a tokamak in the plateau and banana regimes. The growth rate for this mode in the plateau regime is shown to be smaller by a factor of a/R than the MHD prediction (a and R are the minor and major radii of the torus). The growth rate in the banana regime is higher than in the plateau regime and approaches the standard MHD value.

  5. Biology, etiology, and control of virus diseases of banana and plantain.

    PubMed

    Kumar, P Lava; Selvarajan, Ramasamy; Iskra-Caruana, Marie-Line; Chabannes, Matthieu; Hanna, Rachid

    2015-01-01

    Banana and plantain (Musa spp.), produced in 10.3 million ha in the tropics, are among the world's top 10 food crops. They are vegetatively propagated using suckers or tissue culture plants and grown almost as perennial plantations. These are prone to the accumulation of pests and pathogens, especially viruses which contribute to yield reduction and are also barriers to the international exchange of germplasm. The most economically important viruses of banana and plantain are Banana bunchy top virus (BBTV), a complex of banana streak viruses (BSVs) and Banana bract mosaic virus (BBrMV). BBTV is known to cause the most serious economic losses in the "Old World," contributing to a yield reduction of up to 100% and responsible for a dramatic reduction in cropping area. The BSVs exist as episomal and endogenous forms are known to be worldwide in distribution. In India and the Philippines, BBrMV is known to be economically important but recently the virus was discovered in Colombia and Costa Rica, thus signaling its spread into the "New World." Banana and plantain are also known to be susceptible to five other viruses of minor significance, such as Abaca mosaic virus, Abaca bunchy top virus, Banana mild mosaic virus, Banana virus X, and Cucumber mosaic virus. Studies over the past 100 years have contributed to important knowledge on disease biology, distribution, and spread. Research during the last 25 years have led to a better understanding of the virus-vector-host interactions, virus diversity, disease etiology, and epidemiology. In addition, new diagnostic tools were developed which were used for surveillance and the certification of planting material. Due to a lack of durable host resistance in the Musa spp., phytosanitary measures and the use of virus-free planting material are the major methods of virus control. The state of knowledge on BBTV, BBrMV, and BSVs, and other minor viruses, disease spread, and control are summarized in this review. PMID:25591881

  6. Geometrogenesis under quantum graphity: Problems with the ripening universe

    NASA Astrophysics Data System (ADS)

    Wilkinson, Samuel A.; Greentree, Andrew D.

    2015-10-01

    Quantum graphity (QG) is a model of emergent geometry in which space is represented by a dynamical graph. The graph evolves under the action of a Hamiltonian from a high-energy pregeometric state to a low-energy state in which geometry emerges as a coarse-grained effective property of space. Here we show the results of numerical modeling of the evolution of the QG Hamiltonian, a process we term "ripening" by analogy with crystallographic growth. We find that the model as originally presented favors a graph composed of small disjoint subgraphs. Such a disconnected space is a poor representation of our Universe. A new term is introduced to the original QG Hamiltonian, which we call the hypervalence term. It is shown that the inclusion of a hypervalence term causes a connected latticelike graph to be favored over small isolated subgraphs.

  7. Ceria Nanotube Formed by Sacrificed Precursors Template through Oswald Ripening

    PubMed Central

    Pang, Laixue; Wang, Xiaoying; Tang, Xinde

    2015-01-01

    Controllable preparation of ceria nanotube was realized by hydrothermal treatment of Ce(OH)CO3 precursors. The gradually changing morphologies and microstructures of cerium oxide were characterized by X-ray powder diffraction, scanning electron microscopy and transmission electron microscopy. A top-down path is illuminated to have an insight to the morphological transformation from nanorod to nanotube by adjusting the reaction time. The growth process is investigated by preparing a series of intermediate morphologies during the shape evolution of CeO2nanostructure based on the scanning electron microscopy image observation. On the basis of the time-dependent experimental observation, the possible formation mechanism related to oriented attachment and Oswald ripening was proposed, which might afford some guidance for the synthesis of other inorganic nanotubes. PMID:26151866

  8. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    SciTech Connect

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-15

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations ({epsilon}{identical_to}{delta}B/2B<<1). Solutions are obtained by integrating the drift-kinetic equation along field lines in steady state. A closure for the local value of the parallel viscous force B{center_dot}{nabla}{center_dot}{pi}{sub parallel} is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force by a factor of O(1/{epsilon}). A high-frequency limit ({omega}>>{nu}) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions.

  9. Finite banana width effect on magnetoacoustic cyclotron instability

    SciTech Connect

    Chen, Y.P.; Tsai, S.T.

    1995-08-01

    The finite banana width (FBW) effect on the coupling between magnetoacoustic waves and the near harmonic gyro-oscillations of the energetic ions/{alpha} particles in tokamaks are studied. The gyrokinetic equation with FBW effect is rederived for the energetic trapped ions. The dispersion relation and growth rate of the magnetoacoustic cyclotron instability (MACI) are obtained. It is found that the coherence interaction between the energetic ion trajectory and mode field has a significant effect when the Larmor radius of energetic ions is larger than the wavelength of MACI. Near the low field side the FBW effect destabilizes the mode, while away from it the FBW gives a stabilizing effect. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  10. Impact of diseases on export and smallholder production of banana.

    PubMed

    Ploetz, Randy C; Kema, Gert H J; Ma, Li-Jun

    2015-01-01

    Banana (Musa spp.) is one of the world's most valuable primary agricultural commodities. Exported fruit are key commodities in several producing countries yet make up less than 15% of the total annual output of 145 million metric tons (MMT). Transnational exporters market fruit of the Cavendish cultivars, which are usually produced in large plantations with fixed infrastructures and high inputs of fertilizers, pesticides, and irrigation. In contrast, smallholders grow diverse cultivars, often for domestic markets, with minimal inputs. Diseases are serious constraints for export as well as smallholder production. Although black leaf streak disease (BLSD), which is present throughout Asian, African, and American production areas, is a primary global concern, other diseases with limited distributions, notably tropical race 4 of Fusarium wilt, rival its impact. Here, we summarize recent developments on the most significant of these problems. PMID:26002290

  11. Structure analysis and laxative effects of oligosaccharides isolated from bananas.

    PubMed

    Wang, Juan; Huang, Hui Hua; Cheng, Yan Feng; Yang, Gong Ming

    2012-10-01

    Banana oligosaccharides (BOS) were extracted with water, and then separated and purified using column chromatography. Gel penetration chromatography was used to determine the molecular weights. Thin layer chromatogram and capillary electrophoresis were employed to analyze the monosaccharide composition. The indican bond and structure of the BOS molecule were determined using Fourier transform infrared spectroscopy and nuclear magnetic resonance. Results showed that BOS were probably composed of eight β-D-pyran glucose units linked with 1→6 indican bonds. The laxative effects of BOS were investigated in mice using the method described in "Handbook of Technical Standards for Testing and Assessment of Health Food in China." The length of the small intestine over which a carbon suspension solution advanced in mice treated with low-, middle-, and high-dose BOS was significantly greater than that in the model group, suggesting that BOS are effective in accelerating the movement of the small intestine. PMID:23039112

  12. Tomato ABSCISIC ACID STRESS RIPENING (ASR) Gene Family Revisited

    PubMed Central

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  13. Tomato ABSCISIC ACID STRESS RIPENING (ASR) gene family revisited.

    PubMed

    Golan, Ido; Dominguez, Pia Guadalupe; Konrad, Zvia; Shkolnik-Inbar, Doron; Carrari, Fernando; Bar-Zvi, Dudy

    2014-01-01

    Tomato ABSCISIC ACID RIPENING 1 (ASR1) was the first cloned plant ASR gene. ASR orthologs were then cloned from a large number of monocot, dicot and gymnosperm plants, where they are mostly involved in response to abiotic (drought and salinity) stress and fruit ripening. The tomato genome encodes five ASR genes: ASR1, 2, 3 and 5 encode low-molecular-weight proteins (ca. 110 amino acid residues each), whereas ASR4 encodes a 297-residue polypeptide. Information on the expression of the tomato ASR gene family is scarce. We used quantitative RT-PCR to assay the expression of this gene family in plant development and in response to salt and osmotic stresses. ASR1 and ASR4 were the main expressed genes in all tested organs and conditions, whereas ASR2 and ASR3/5 expression was two to three orders of magnitude lower (with the exception of cotyledons). ASR1 is expressed in all plant tissues tested whereas ASR4 expression is limited to photosynthetic organs and stamens. Essentially, ASR1 accounted for most of ASR gene expression in roots, stems and fruits at all developmental stages, whereas ASR4 was the major gene expressed in cotyledons and young and fully developed leaves. Both ASR1 and ASR4 were expressed in flower organs, with ASR1 expression dominating in stamens and pistils, ASR4 in sepals and petals. Steady-state levels of ASR1 and ASR4 were upregulated in plant vegetative organs following exposure to salt stress, osmotic stress or the plant abiotic stress hormone abscisic acid (ABA). Tomato plants overexpressing ASR1 displayed enhanced survival rates under conditions of water stress, whereas ASR1-antisense plants displayed marginal hypersensitivity to water withholding. PMID:25310287

  14. Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars

    PubMed Central

    Sousa, Lisete; Pais, Maria Salomé; Kopka, Joachim; Fortes, Ana Margarida

    2013-01-01

    Background Grapes (Vitis species) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to ripening of berries as well as how aroma is developed are not fully understood. Methodology/Principal Findings In an attempt to identify the common mechanisms associated with the onset of ripening independently of the cultivar, grapes of Portuguese elite cultivars, Trincadeira, Aragonês, and Touriga Nacional, were studied. The mRNA expression profiles corresponding to veraison (EL35) and mature berries (EL36) were compared. Across the three varieties, 9,8% (2255) probesets corresponding to 1915 unigenes were robustly differentially expressed at EL 36 compared to EL 35. Eleven functional categories were represented in this differential gene set. Information on gene expression related to primary and secondary metabolism was verified by RT-qPCR analysis of selected candidate genes at four developmental stages (EL32, EL35, EL36 and EL 38). Gene expression data were integrated with metabolic profiling data from GC-EI-TOF/MS and headspace GC-EI-MS platforms. Conclusions/Significance Putative molecular and metabolic markers of grape pre-ripening and ripening related to primary and secondary metabolism were established and revealed a substantial developmental reprogramming of cellular metabolism. Altogether the results provide valuable new information on the main metabolic events leading to grape ripening. Furthermore, we provide first hints about how the development of a cultivar specific aroma is controlled at transcriptional level. PMID:23565246

  15. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression.

    PubMed

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-01-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096

  16. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America.

    PubMed

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  17. Continous application of bioorganic fertilizer induced resilient culturable bacteria community associated with banana Fusarium wilt suppression

    PubMed Central

    Fu, Lin; Ruan, Yunze; Tao, Chengyuan; Li, Rong; Shen, Qirong

    2016-01-01

    Fusarium wilt of banana always drives farmers to find new land for banana cultivation due to the comeback of the disease after a few cropping years. A novel idea for solving this problem is the continuous application of bioorganic fertilizer (BIO), which should be practiced from the beginning of banana planting. In this study, BIO was applied in newly reclaimed fields to pre-control banana Fusarium wilt and the culturable rhizobacteria community were evaluated using Biolog Ecoplates and culture-dependent denaturing gradient gel electrophoresis (CD-DGGE). The results showed that BIO application significantly reduced disease incidences and increased crop yields, respectivly. And the stabilized general bacterial metabolic potential, especially for the utilization of carbohydrates, carboxylic acids and phenolic compounds, was induced by BIO application. DGGE profiles demonstrated that resilient community structure of culturable rhizobacteria with higher richness and diversity were observed in BIO treated soils. Morever, enriched culturable bacteria affiliated with Firmicutes, Gammaproteobacteria and Actinobacteria were also detected. In total, continuous application of BIO effectively suppressed Fusarium wilt disease by stabilizing culturable bacterial metabolic potential and community structure. This study revealed a new method to control Fusarium wilt of banana for long term banana cultivation. PMID:27306096

  18. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum.

    PubMed

    Zhuang, Jun; Coates, Christopher J; Mao, Qianzhuo; Wu, Zujian; Xie, Lianhui

    2016-06-01

    The viral-induced banana bunchy top disease and the fungal-induced banana blight are two major causes of concern for industrial scale production of bananas. Banana blight is particularly troublesome, affecting ∼80% of crops worldwide. Strict guidelines and protocols are in place in order to ameliorate the effects of this devastating disease, yet little success has been achieved. From the data presented here, we have found that Banana bunchy top virus (BBTV)-infected bananas are more resistant to Fusarium oxysporum f. sp. cubense (Foc). BBTV appears to be antagonistic towards Foc, thus improving the survivability of plants against blight. The BBTV suppressor of RNA silencing, namely protein B4, displays fungicidal properties in vitro. Furthermore, transgenic tomatoes expressing green fluorescent protein (GFP)-tagged protein B4 demonstrate enhanced resistance to F. oxysporum f. sp. lycopersici (Fol). Differential gene expression analysis indicates that increased numbers of photogenesis-related gene transcripts are present in dark-green leaves of B4-GFP-modified tomato plants relative to those found in WT plants. Conversely, the transcript abundance of immunity-related genes is substantially lower in transgenic tomatoes compared with WT plants, suggesting that plant defences may be influenced by protein B4. This viral-fungal interaction provides new insights into microbial community dynamics within a single host and has potential commercial value for the breeding of transgenic resistance to Fusarium-related blight/wilt. PMID:26369403

  19. Characterization of banana (Musa spp.) plantation wastes as a potential renewable energy source

    NASA Astrophysics Data System (ADS)

    Abdullah, Nurhayati; Sulaiman, Fauziah; Taib, Rahmad Mohd

    2013-05-01

    Agricultural residue such as banana waste is one of the biomass categories that can be used for conversion to bio-char, bio-oil, and gases by using thermochemical process. The aim of this work is to characterize banana leaves and pseudo-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana leaves and pseudo-stem are 7.5 mf wt.% and 11.0 mf wt.%, while the carbon content of banana leaf and pseudo-stem are 42.4 mf wt.% and 37.9 mf wt.%, respectively. The measured heating value of banana leaf and pseudo-stem are 17.7MJ/kg and 15.5MJ/kg, respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The potential of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.

  20. Agroforestry leads to shifts within the gammaproteobacterial microbiome of banana plants cultivated in Central America

    PubMed Central

    Köberl, Martina; Dita, Miguel; Martinuz, Alfonso; Staver, Charles; Berg, Gabriele

    2015-01-01

    Bananas (Musa spp.) belong to the most important global food commodities, and their cultivation represents the world's largest monoculture. Although the plant-associated microbiome has substantial influence on plant growth and health, there is a lack of knowledge of the banana microbiome and its influencing factors. We studied the impact of (i) biogeography, and (ii) agroforestry on the banana-associated gammaproteobacterial microbiome analyzing plants grown in smallholder farms in Nicaragua and Costa Rica. Profiles of 16S rRNA genes revealed high abundances of Pseudomonadales, Enterobacteriales, Xanthomonadales, and Legionellales. An extraordinary high diversity of the gammaproteobacterial microbiota was observed within the endophytic microenvironments (endorhiza and pseudostem), which was similar in both countries. Enterobacteria were identified as dominant group of above-ground plant parts (pseudostem and leaves). Neither biogeography nor agroforestry showed a statistically significant impact on the gammaproteobacterial banana microbiome in general. However, indicator species for each microenvironment and country, as well as for plants grown in Coffea intercropping systems with and without agri-silvicultural production of different Fabaceae trees (Inga spp. in Nicaragua and Erythrina poeppigiana in Costa Rica) could be identified. For example, banana plants grown in agroforestry systems were characterized by an increase of potential plant-beneficial bacteria, like Pseudomonas and Stenotrophomonas, and on the other side by a decrease of Erwinia. Hence, this study could show that as a result of legume-based agroforestry the indigenous banana-associated gammaproteobacterial community noticeably shifted. PMID:25717322

  1. Socioeconomic Importance of the Banana Tree (Musa Spp.) in the Guinean Highland Savannah Agroforests

    PubMed Central

    Mapongmetsem, Pierre Marie; Nkongmeneck, Bernard Aloys; Gubbuk, Hamide

    2012-01-01

    Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time. PMID:22629136

  2. Socioeconomic importance of the banana tree (Musa spp.) in the Guinean Highland Savannah agroforests.

    PubMed

    Mapongmetsem, Pierre Marie; Nkongmeneck, Bernard Aloys; Gubbuk, Hamide

    2012-01-01

    Home gardens are defined as less complex agroforests which look like and function as natural forest ecosystems but are integrated into agricultural management systems located around houses. Investigations were carried out in 187 households. The aim of the study was to identify the different types of banana home gardens existing in the periurban zone of Ngaoundere town. The results showed that the majority of home gardens in the area were very young (less than 15 years old) and very small in size (less than 1 ha). Eleven types of home gardens were found in the periurban area of Ngaoundere town. The different home garden types showed important variations in all their structural characteristics. Two local species of banana are cultivated in the systems, Musa sinensis and Musa paradisiaca. The total banana production is 3.57 tons per year. The total quantity of banana consumed in the periurban zone was 3.54 tons (93.5%) whereas 1.01 tons were sold in local or urban markets. The main banana producers belonged to home gardens 2, 4, 7, and 9. The quantity of banana offered to relatives was more than what the farmers received from others. Farmers, rely on agroforests because the flow of their products helps them consolidate friendship and conserve biodiversity at the same time. PMID:22629136

  3. Bioactive compounds in banana and their associated health benefits - A review.

    PubMed

    Singh, Balwinder; Singh, Jatinder Pal; Kaur, Amritpal; Singh, Narpinder

    2016-09-01

    Banana is a very popular fruit in the world market and is consumed as staple food in many countries. It is grown worldwide and constitutes the fifth most important agricultural food crop in terms of world trade. It has been classified into the dessert or sweet bananas and the cooking bananas or plantains. It is either eaten raw or processed, and also as a functional ingredient in various food products. Banana contains several bioactive compounds, such as phenolics, carotenoids, biogenic amines and phytosterols, which are highly desirable in the diet as they exert many positive effects on human health and well-being. Many of these compounds have antioxidant activities and are effective in protecting the body against various oxidative stresses. In the past, bananas were effectively used in the treatment of various diseases, including reducing the risk of many chronic degenerative disorders. In the present review, historical background, cultivar classification, beneficial phytochemicals, antioxidant activity and health benefits of bananas are discussed. PMID:27041291

  4. Identification of Genes Encoding Granule-Bound Starch Synthase Involved in Amylose Metabolism in Banana Fruit

    PubMed Central

    Liu, Weixin; Xu, Biyu; Jin, Zhiqiang

    2014-01-01

    Granule-bound starch synthase (GBSS) is responsible for amylose synthesis, but the role of GBSS genes and their encoded proteins remains poorly understood in banana. In this study, amylose content and GBSS activity gradually increased during development of the banana fruit, and decreased during storage of the mature fruit. GBSS protein in banana starch granules was approximately 55.0 kDa. The protein was up-regulated expression during development while it was down-regulated expression during storage. Six genes, designated as MaGBSSI-1, MaGBSSI-2, MaGBSSI-3, MaGBSSI-4, MaGBSSII-1, and MaGBSSII-2, were cloned and characterized from banana fruit. Among the six genes, the expression pattern of MaGBSSI-3 was the most consistent with the changes in amylose content, GBSS enzyme activity, GBSS protein levels, and the quantity or size of starch granules in banana fruit. These results suggest that MaGBSSI-3 might regulate amylose metabolism by affecting the variation of GBSS levels and the quantity or size of starch granules in banana fruit during development or storage. PMID:24505384

  5. Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration.

    PubMed

    Subramanyam, Kondeti; Subramanyam, Koona; Sailaja, K V; Srinivasulu, M; Lakshmidevi, K

    2011-03-01

    A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana. PMID:21212957

  6. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review.

    PubMed

    Pappu, Asokan; Patil, Vikas; Jain, Sonal; Mahindrakar, Amit; Haque, Ruhi; Thakur, Vijay Kumar

    2015-08-01

    Biological macromolecules enriched resources are rapidly emerging as sustainable, cost effective and environmental friendly materials for several industrial applications. Among different biological macromolecules enriched resources, banana fibres are one of the unexplored high potential bio-resources. Compared to various natural fibres such as jute, coir, palm etc., the banana fibres exhibits a better tensile strength i.e. 458 MPa with 17.14 GPa tensile modulus. Traditionally used petroleum based synthetic fibres have been proven to be toxic, non-biodegradable and energy intensive for manufacturing. Cellulosic banana fibres are potential engineering materials having considerable scope to be used as an environmental friendly reinforcing element for manufacturing of polymer based green materials. This paper summarizes the world scenario of current production of biological macromolecules rich banana residues and fibres; major user's of banana fibres. The quality and quantity of biological macromolecules especially the cellulose, hemicellulose, lignin, wax, engineering and mechanical properties of banana biofibre resources are reported and discussed. Subsequently, the findings of the recent research on bio resource composites, materials performance and opportunities have been discussed which would be a real challenge for the tomorrow world to enhance the livelihood environmental friendly advancement. PMID:26001493

  7. Mycotoxin Production by Fusarium Species Isolated from Bananas

    PubMed Central

    Jimenez, M.; Huerta, T.; Mateo, R.

    1997-01-01

    The ability of Fusarium species isolated from bananas to produce mycotoxins was studied with 66 isolates of the following species: F. semitectum var. majus (8 isolates), F. camptoceras (3 isolates), a Fusarium sp. (3 isolates), F. moniliforme (16 isolates), F. proliferatum (9 isolates), F. subglutinans (3 isolates), F. solani (3 isolates), F. oxysporum (5 isolates), F. graminearum (7 isolates), F. dimerum (3 isolates), F. acuminatum (3 isolates), and F. equiseti (3 isolates). All isolates were cultured on autoclaved corn grains. Their toxicity to Artemia salina L. larvae was examined. Some of the toxic effects observed arose from the production of known mycotoxins that were determined by thin-layer chromatography, gas chromatography, or high-performance liquid chromatography. All F. camptoceras and Fusarium sp. isolates proved toxic to A. salina larvae; however, no specific toxic metabolites could be identified. This was also the case with eight isolates of F. moniliforme and three of F. proliferatum. The following mycotoxins were encountered in the corn culture extracts: fumonisin B(inf1) (40 to 2,900 (mu)g/g), fumonisin B(inf2) (150 to 320 (mu)g/g), moniliformin (10 to 1,670 (mu)g/g), zearalenone (5 to 470 (mu)g/g), (alpha)-zearalenol (5 to 10 (mu)g/g), deoxynivalenol (8 to 35 (mu)g/g), 3-acetyldeoxynivalenol (5 to 10 (mu)g/g), neosolaniol (50 to 180 (mu)g/g), and T-2 tetraol (5 to 15 (mu)g/g). Based on the results, additional compounds produced by the fungal isolates may play prominent roles in the toxic effects on larvae observed. This is the first reported study on the mycotoxin-producing abilities of Fusarium species that contaminate bananas. PMID:16535503

  8. Acyl substrate preferences of an IAA-amido synthetase account for variations in grape (Vitis vinifera L.) berry ripening caused by different auxinic compounds indicating the importance of auxin conjugation in plant development

    PubMed Central

    Böttcher, Christine; Boss, Paul K.; Davies, Christopher

    2011-01-01

    Nine Gretchen Hagen (GH3) genes were identified in grapevine (Vitis vinifera L.) and six of these were predicted on the basis of protein sequence similarity to act as indole-3-acetic acid (IAA)-amido synthetases. The activity of these enzymes is thought to be important in controlling free IAA levels and one auxin-inducible grapevine GH3 protein, GH3-1, has previously been implicated in the berry ripening process. Ex planta assays showed that the expression of only one other GH3 gene, GH3-2, increased following the treatment of grape berries with auxinic compounds. One of these was the naturally occurring IAA and the other two were synthetic, α-naphthalene acetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA). The determination of steady-state kinetic parameters for the recombinant GH3-1 and GH3-2 proteins revealed that both enzymes efficiently conjugated aspartic acid (Asp) to IAA and less well to NAA, while BTOA was a poor substrate. GH3-2 gene expression was induced by IAA treatment of pre-ripening berries with an associated increase in levels of IAA-Asp and a decrease in free IAA levels. This indicates that GH3-2 responded to excess auxin to maintain low levels of free IAA. Grape berry ripening was not affected by IAA application prior to veraison (ripening onset) but was considerably delayed by NAA and even more so by BTOA. The differential effects of the three auxinic compounds on berry ripening can therefore be explained by the induction and acyl substrate specificity of GH3-2. These results further indicate an important role for GH3 proteins in controlling auxin-related plant developmental processes. PMID:21543520

  9. Transcriptome and Metabolite Profiling Show That APETALA2a Is a Major Regulator of Tomato Fruit Ripening[C][W

    PubMed Central

    Karlova, Rumyana; Rosin, Faye M.; Busscher-Lange, Jacqueline; Parapunova, Violeta; Do, Phuc T.; Fernie, Alisdair R.; Fraser, Paul D.; Baxter, Charles; Angenent, Gerco C.; de Maagd, Ruud A.

    2011-01-01

    Fruit ripening in tomato (Solanum lycopersicum) requires the coordination of both developmental cues as well as the plant hormone ethylene. Although the role of ethylene in mediating climacteric ripening has been established, knowledge regarding the developmental regulators that modulate the involvement of ethylene in tomato fruit ripening is still lacking. Here, we show that the tomato APETALA2a (AP2a) transcription factor regulates fruit ripening via regulation of ethylene biosynthesis and signaling. RNA interference (RNAi)-mediated repression of AP2a resulted in alterations in fruit shape, orange ripe fruits, and altered carotenoid accumulation. Microarray expression analyses of the ripe AP2 RNAi fruits showed altered expression of genes involved in various metabolic pathways, such as the phenylpropanoid and carotenoid pathways, as well as in hormone synthesis and perception. Genes involved in chromoplast differentiation and other ripening-associated processes were also differentially expressed, but softening and ethylene biosynthesis occurred in the transgenic plants. Ripening regulators RIPENING-INHIBITOR, NON-RIPENING, and COLORLESS NON-RIPENING (CNR) function upstream of AP2a and positively regulate its expression. In the pericarp of AP2 RNAi fruits, mRNA levels of CNR were elevated, indicating that AP2a and CNR are part of a negative feedback loop in the regulation of ripening. Moreover, we demonstrated that CNR binds to the promoter of AP2a in vitro. PMID:21398570

  10. 'Movers and shakers' in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit.

    PubMed

    Cherian, Sam; Figueroa, Carlos R; Nair, Helen

    2014-09-01

    Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology. PMID:24994760

  11. Transcriptome profiling analysis of cultivar-specific apple fruit ripening and texture attributes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular events regulating cultivar-specific apple fruit ripening and sensory quality are largely unknown. Such knowledge is essential for genomic-assisted apple breeding and postharvest quality management. In this study, transcriptome profile analysis, scanning electron microscopic examination an...

  12. Conserved changes in dynamics of metabolic processes during fruit development and ripening across species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During these maturation processes, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organism...

  13. Photopyroelectric Monitoring of Olive's Ripening Conditions and Olive Oil Quality Using Pulsed Wideband IR Thermal Source

    NASA Astrophysics Data System (ADS)

    Abu-Taha, M. I.; Sarahneh, Y.; Saleh, A. M.

    The present study is based on band absorption of radiation from pulsed wideband infrared (IR) thermal source (PWBS) in conjunction with polyvinylidene fluoride film (PVDF). It is the first time to be employed to monitor the ripening state of olive fruit. Olive's characteristics vary at different stages of ripening, and hence, cultivation of olives at the right time is important in ensuring the best oil quality and maximizes the harvest yield. The photopyroelectric (PPE) signal resulting from absorption of wideband infrared (IR) radiation by fresh olive juice indicates the ripening stage of olives, i.e., allows an estimate of the suitable harvest time. The technique was found to be very useful in discriminating between olive oil samples according to geographical region, shelf life, some storage conditions, and deliberate adulteration. Our results for monitoring oil accumulation in olives during the ripening season agree well with the complicated analytical studies carried out by other researchers.

  14. Detection of antimicrobial activity of banana peel (Musa paradisiaca L.) on Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Kapadia, Suraj Premal; Pudakalkatti, Pushpa S.; Shivanaikar, Sachin

    2015-01-01

    Introduction and Aim: Banana is used widely because of its nutritional values. In past, there are studies that show banana plant parts, and their fruits can be used to treat the human diseases. Banana peel is a part of banana fruit that also has the antibacterial activity against microorganisms but has not been studied extensively. Since, there are no studies that relate the antibacterial activity of banana peel against periodontal pathogens. Hence, the aim of this study is to determine the antimicrobial activity of banana peel extract on Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans). Material and Methods: Standard strains of P. gingivalis and A. actinomycetemcomitans were used in this study which was obtained from the in-house bacterial bank of Department of Molecular Biology and Immunology at Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre. The banana peel extract was prepared, and the antibacterial activity was assessed using well agar diffusion method and minimum inhibitory concentration was assessed using serial broth dilution method. Results: In the current study, both the tested microorganisms showed antibacterial activity. In well diffusion method, P. gingivalis and A. actinomycetemcomitans showed 15 mm and 12 mm inhibition zone against an alcoholic extract of banana peel, respectively. In serial broth dilution method P. gingivalis and A. actinomycetemcomitans were sensitive until 31.25 μg/ml dilutions. Conclusion: From results of the study, it is suggested that an alcoholic extract of banana peel has antimicrobial activity against P. gingivalis and A. actinomycetemcomitans. PMID:26681854

  15. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    PubMed Central

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  16. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early

  17. Origins and Domestication of Cultivated Banana Inferred from Chloroplast and Nuclear Genes

    PubMed Central

    Zhang, Cui; Wang, Xin-Feng; Shi, Feng-Xue; Chen, Wen-Na; Ge, Xue-Jun

    2013-01-01

    Background Cultivated bananas are large, vegetatively-propagated members of the genus Musa. More than 1,000 cultivars are grown worldwide and they are major economic and food resources in numerous developing countries. It has been suggested that cultivated bananas originated from the islands of Southeast Asia (ISEA) and have been developed through complex geodomestication pathways. However, the maternal and parental donors of most cultivars are unknown, and the pattern of nucleotide diversity in domesticated banana has not been fully resolved. Methodology/Principal Findings We studied the genetics of 16 cultivated and 18 wild Musa accessions using two single-copy nuclear (granule-bound starch synthase I, GBSS I, also known as Waxy, and alcohol dehydrogenase 1, Adh1) and two chloroplast (maturase K, matK, and the trnL-F gene cluster) genes. The results of phylogenetic analyses showed that all A-genome haplotypes of cultivated bananas were grouped together with those of ISEA subspecies of M. acuminata (A-genome). Similarly, the B- and S-genome haplotypes of cultivated bananas clustered with the wild species M. balbisiana (B-genome) and M. schizocarpa (S-genome), respectively. Notably, it has been shown that distinct haplotypes of each cultivar (A-genome group) were nested together to different ISEA subspecies M. acuminata. Analyses of nucleotide polymorphism in the Waxy and Adh1 genes revealed that, in comparison to the wild relatives, cultivated banana exhibited slightly lower nucleotide diversity both across all sites and specifically at silent sites. However, dramatically reduced nucleotide diversity was found at nonsynonymous sites for cultivated bananas. Conclusions/Significance Our study not only confirmed the origin of cultivated banana as arising from multiple intra- and inter-specific hybridization events, but also showed that cultivated banana may have not suffered a severe genetic bottleneck during the domestication process. Importantly, our findings

  18. Effect of packaging materials on shelf life and quality of banana cultivars (Musa spp.).

    PubMed

    Hailu, M; Seyoum Workneh, T; Belew, D

    2014-11-01

    This study was carried out to evaluate the effect of packaging materials on the shelf life of three banana cultivars. Four packaging materials, namely, perforated low density polyethylene bag, perforated high density polyethylene bag, dried banana leaf, teff straw and no packaging materials (control) were used with three banana cultivars, locally known as, Poyo, Giant Cavendish and Williams I. The experiment was carried out in Randomized Complete Block Design in a factorial combination with three replications. Physical parameters including weight loss, peel colour, peel thickness, pulp thickness, pulp to peel ratio, pulp firmness, pulp dry matter, decay, loss percent of marketability were assessed every 3 days. Banana remained marketable for 36 days in the high density polyethylene and low density polyethylene bags, and for 18 days in banana leaf and teff straw packaging treatments. Unpackaged fruits remained marketable for 15 days only. Fruits that were not packaged lost their weight by 24.0 % whereas fruits packaged in banana leaf and teff straw became unmarketable with final weight loss of 19.8 % and 20.9 %, respectively. Packaged fruits remained well until 36th days of storage with final weight loss of only 8.2 % and 9.20 %, respectively. Starting from green mature stage, the colour of the banana peel changed to yellow and this process was found to be fast for unpackaged fruits. Packaging maintained the peel and the pulp thickness, firmness, dry matter and pulp to peel ratio was kept lower. Decay loss for unpackaged banana fruits was16 % at the end of date 15, whereas the decay loss of fruits packaged using high density and low density polyethylene bags were 43.0 % and 41.2 %, respectively at the end of the 36th day of the experiment. It can, thus, be concluded that packaging of banana fruits in high density and low density polyethylene bags resulted in longer shelf life and improved quality of the produce followed by packaging in dried banana leaf

  19. Singlet molecular oxygen generation by light-activated DHN-melanin of the fungal pathogen Mycosphaerella fijiensis in black Sigatoka disease of bananas.

    PubMed

    Beltrán-García, Miguel J; Prado, Fernanda M; Oliveira, Marilene S; Ortiz-Mendoza, David; Scalfo, Alexsandra C; Pessoa, Adalberto; Medeiros, Marisa H G; White, James F; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis. PMID:24646830

  20. Singlet Molecular Oxygen Generation by Light-Activated DHN-Melanin of the Fungal Pathogen Mycosphaerella fijiensis in Black Sigatoka Disease of Bananas

    PubMed Central

    Beltrán-García, Miguel J.; Prado, Fernanda M.; Oliveira, Marilene S.; Ortiz-Mendoza, David; Scalfo, Alexsandra C.; Pessoa, Adalberto; Medeiros, Marisa H. G.; White, James F.; Di Mascio, Paolo

    2014-01-01

    In pathogenic fungi, melanin contributes to virulence, allowing tissue invasion and inactivation of the plant defence system, but has never been implicated as a factor for host cell death, or as a light-activated phytotoxin. Our research shows that melanin synthesized by the fungal banana pathogen Mycosphaerella fijiensis acts as a virulence factor through the photogeneration of singlet molecular oxygen O2 (1Δg). Using analytical tools, including elemental analysis, ultraviolet/infrared absorption spectrophometry and MALDI-TOF mass spectrometry analysis, we characterized both pigment content in mycelia and secreted to the culture media as 1,8-dihydroxynaphthalene (DHN)-melanin type compound. This is sole melanin-type in M. fijiensis. Isolated melanins irradiated with a Nd:YAG laser at 532 nm produced monomol light emission at 1270 nm, confirming generation of O2 (1Δg), a highly reactive oxygen specie (ROS) that causes cellular death by reacting with all cellular macromolecules. Intermediary polyketides accumulated in culture media by using tricyclazole and pyroquilon (two inhibitors of DHN-melanin synthesis) were identified by ESI-HPLC-MS/MS. Additionally, irradiation at 532 nm of that mixture of compounds and whole melanized mycelium also generated O2 (1Δg). A pigmented-strain generated more O2 (1Δg) than a strain with low melanin content. Banana leaves of cultivar Cavendish, naturally infected with different stages of black Sigatoka disease, were collected from field. Direct staining of the naturally infected leaf tissues showed the presence of melanin that was positively correlated to the disease stage. We also found hydrogen peroxide (H2O2) but we cannot distinguish the source. Our results suggest that O2 (1Δg) photogenerated by DHN-melanin may be involved in the destructive effects of Mycosphaerella fijiensis on banana leaf tissues. Further studies are needed to fully evaluate contributions of melanin-mediated ROS to microbial pathogenesis. PMID:24646830

  1. DNA Methylation and Chromatin Regulation during Fleshy Fruit Development and Ripening

    PubMed Central

    Gallusci, Philippe; Hodgman, Charlie; Teyssier, Emeline; Seymour, Graham B.

    2016-01-01

    Fruit ripening is a developmental process that results in the leaf-like carpel organ of the flower becoming a mature ovary primed for dispersal of the seeds. Ripening in fleshy fruits involves a profound metabolic phase change that is under strict hormonal and genetic control. This work reviews recent developments in our understanding of the epigenetic regulation of fruit ripening. We start by describing the current state of the art about processes involved in histone post-translational modifications and the remodeling of chromatin structure and their impact on fruit development and ripening. However, the focus of the review is the consequences of changes in DNA methylation levels on the expression of ripening-related genes. This includes those changes that result in heritable phenotypic variation in the absence of DNA sequence alterations, and the mechanisms for their initiation and maintenance. The majority of the studies described in the literature involve work on tomato, but evidence is emerging that ripening in other fruit species may also be under epigenetic control. We discuss how epigenetic differences may provide new targets for breeding and crop improvement. PMID:27379113

  2. Evolution of watermelon fruit physicochemical and phytochemical composition during ripening as affected by grafting.

    PubMed

    Soteriou, G A; Kyriacou, M C; Siomos, A S; Gerasopoulos, D

    2014-12-15

    Flesh reflectance colorimetry, mechanical texture analysis, pH, titratable acidity (TA), and soluble solid (SS), soluble carbohydrate, lycopene and citrulline content of watermelon fruit were assessed throughout ripening (30-50 days post-anthesis; dpa) in grafted and self-rooted plants. Grafting increased firmness, TA, and lycopene content though it delayed its peak. Lycopene content was mostly ripening-dependant, highly correlated and synchronous with changes in pulp chroma (C) and colour a. The sweetness was affected only by ripening. However, total sugars and SS peaked later in fruit of grafted plants than in non-grafted ones, and significant interaction of ripening with grafting was observed. Citrulline content increased with ripening in fruit of grafted plants, reaching a peak at 45 dpa; whereas in non-grafted ones it was unchanged between 30 and 45 dpa and declined at 50 dpa. As ripening overall was retarded by grafting, fruit quality of grafted watermelon may benefit from belated harvest. PMID:25038677

  3. Identification of Solanum habrochaites loci that quantitatively influence tomato fruit ripening-associated ethylene emissions.

    PubMed

    Dal Cin, Valeriano; Kevany, Brian; Fei, Zhangjun; Klee, Harry J

    2009-11-01

    The phytohormone ethylene is essential for ripening of climacteric fruits such as tomato. While many of the genes responsible for ethylene synthesis and perception have been identified, the regulatory network controlling autocatalytic climacteric ethylene synthesis is not well understood. In order to better understand the regulation of ripening-associated ethylene, we have exploited the genetic variation within Solanum Sect. Lycopersicon. In particular, we have used a near-isogenic population of S. habrochaites introgression lines to identify chromosome segments affecting ethylene emissions during ripening. S. habrochaites fruits produce much larger quantities of ethylene during ripening than do cultivated S. lycopersicum tomatoes. A total of 17 segments were identified; 3 had emissions more than twice the level of the tomato parent, 11 had less than a twofold increase and 3 had significantly reduced emissions at one or more ripening stages. While several of these segments co-segregate with known ethylene-related genes, many do not correspond to known genes. Thus, they may identify novel modes of regulation. These results illustrate the utility of wild relatives and their introgression lines to understand regulation of fruit ripening-related processes. PMID:19680624

  4. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    PubMed Central

    2012-01-01

    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process. PMID:23256600

  5. Banana-Associated Microbial Communities in Uganda Are Highly Diverse but Dominated by Enterobacteriaceae

    PubMed Central

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles

    2012-01-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 109 gene copy numbers g−1). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988

  6. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang

    2016-04-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ~0.128 and 0.47m, and ~0.223 and 0.01m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47×10-2 and 7.13×10-3, and 2.91×10-3 and 1.96×10-3, for banana plantation and alpine meadow areas, respectively. This is the first time in Asia that long-term open field measurements have been taken with the specific aim of making comparisons between banana plantation and alpine meadow surfaces.

  7. A High-Throughput Regeneration and Transformation Platform for Production of Genetically Modified Banana

    PubMed Central

    Tripathi, Jaindra N.; Oduor, Richard O.; Tripathi, Leena

    2015-01-01

    Banana (Musa spp.) is an important staple food as well as cash crop in tropical and subtropical countries. Various bacterial, fungal, and viral diseases and pests such as nematodes are major constraints in its production and are currently destabilizing the banana production in sub-Saharan Africa. Genetic engineering is a complementary option used for incorporating useful traits in banana to bypass the long generation time, polyploidy, and sterility of most of the cultivated varieties. A robust transformation protocol for farmer preferred varieties is crucial for banana genomics and improvement. A robust and reproducible system for genetic transformation of banana using embryogenic cell suspensions (ECS) has been developed in this study. Two different types of explants (immature male flowers and multiple buds) were tested for their ability to develop ECS in several varieties of banana locally grown in Africa. ECS of banana varieties “Cavendish Williams” and “Gros Michel” were developed using multiple buds, whereas ECS of “Sukali Ndiizi” was developed using immature male flowers. Regeneration efficiency of ECS was about 20,000–50,000 plantlets per ml of settled cell volume (SCV) depending on variety. ECS of three different varieties were transformed through Agrobacterium-mediated transformation using gusA reporter gene and 20–70 independent transgenic events per ml SCV of ECS were regenerated on selective medium. The presence and integration of gusA gene in transgenic plants was confirmed by PCR, dot blot, and Southern blot analysis and expression by histochemical GUS assays. The robust transformation platform was successfully used to generate hundreds of transgenic lines with disease resistance. Such a platform will facilitate the transfer of technologies to national agricultural research systems (NARS) in Africa. PMID:26635849

  8. Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae.

    PubMed

    Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles; Berg, Gabriele

    2012-07-01

    Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 10(9) gene copy numbers g(-1)). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988

  9. Tomato ACS4 is necessary for timely start of and progression through the climacteric phase of fruit ripening

    PubMed Central

    Hoogstrate, Suzanne W.; van Bussel, Lambertus J. A.; Cristescu, Simona M.; Cator, Eric; Mariani, Celestina; Vriezen, Wim H.; Rieu, Ivo

    2014-01-01

    Climacteric fruit ripening, as it occurs in many fruit crops, depends on a rapid, autocatalytic increase in ethylene production. This agriculturally important process has been studied extensively, with tomato simultaneously acting both as a model species and target crop for modification. In tomato, the ethylene biosynthetic genes ACC SYNTHASE2 (ACS2) and ACS4 are highly expressed during fruit ripening, with a combined loss of both ACS2 and ACS4 activity preventing generation of the ethylene burst necessary for fruit ripening. However, the individual roles and importance of ACS2 and ACS4 have not been determined. In this study, we examined specifically the role of ACS4 by comparing the phenotype of an acs4 mutant firstly with that of the wild-type, and secondly with two novel ripening-inhibitor (rin) mutants. Ethylene production during ripening was significantly reduced in both acs4-1, and rin lines, with rin genotypes showing the weaker ethylene burst. Also i) the time between anthesis and the start of fruit ripening and ii) the time required to progress through ripening were significantly longer in acs4-1 than in the wild type, but shorter than in the strongest rin mutant. The delay in ripening was reflected in the lower expression of ripening-related transcripts during the mature green and light red ripening stages. Furthermore, expression of ACS2 and ACS4 was strongly dependent on a functional RIN gene, while ACS2 expression was largely independent of ACS4. Altogether, we show that ACS4 is necessary for normal progression of tomato fruit ripening and that mutation of this gene may provide a useful means for altering ripening traits. PMID:25278945

  10. 33 CFR 334.540 - Banana River at the Eastern Range, 45th Space Wing, Cape Canaveral Air Force Station, FL...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... navigable waters of the United States, as defined at 33 CFR part 329, within the Banana River contiguous to... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at the Eastern Range... AND RESTRICTED AREA REGULATIONS § 334.540 Banana River at the Eastern Range, 45th Space Wing,...

  11. Development of VNTR Markers to Assess Genetic Diversity of Mycosphaerella Fijiensis, the Causal Agent of Black Leaf Streak Disease in Bananas (Musa spp.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella fijiensis is the causal agent of black leaf streak (BLS) disease in bananas. This pathogen threatens global banana production as the main export cultivars are highly susceptible. As a consequence, commercial banana plantations must be protected chemically with fungicides; up to 40 app...

  12. Development of a genetic linkage map of Mycosphaerella fijiensis, the causal agent of black leaf streak disease in bananas (Musa spp.) using SSR and DArT markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella fijiensis is the causal agent of black leaf streak (BLS) disease in bananas. This pathogen threatens global banana production as the main export cultivars are highly susceptible. As a consequence, commercial banana plantations must be protected chemically with fungicides; up to 40 app...

  13. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato.

    PubMed

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-12-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. PMID:26716451

  14. Auxin Response Factor SlARF2 Is an Essential Component of the Regulatory Mechanism Controlling Fruit Ripening in Tomato

    PubMed Central

    Hao, Yanwei; Hu, Guojian; Breitel, Dario; Liu, Mingchun; Mila, Isabelle; Frasse, Pierre; Fu, Yongyao; Aharoni, Asaph; Bouzayen, Mondher; Zouine, Mohamed

    2015-01-01

    Ethylene is the main regulator of climacteric fruit ripening, by contrast the putative role of other phytohormones in this process remains poorly understood. The present study brings auxin signaling components into the mechanism regulating tomato fruit ripening through the functional characterization of Auxin Response Factor2 (SlARF2) which encodes a downstream component of auxin signaling. Two paralogs, SlARF2A and SlARF2B, are found in the tomato genome, both displaying a marked ripening-associated expression but distinct responsiveness to ethylene and auxin. Down-regulation of either SlARF2A or SlARF2B resulted in ripening defects while simultaneous silencing of both genes led to severe ripening inhibition suggesting a functional redundancy among the two ARFs. Tomato fruits under-expressing SlARF2 produced less climacteric ethylene and exhibited a dramatic down-regulation of the key ripening regulators RIN, CNR, NOR and TAGL1. Ethylene treatment failed to reverse the non-ripening phenotype and the expression of ethylene signaling and biosynthesis genes was strongly altered in SlARF2 down-regulated fruits. Although both SlARF proteins are transcriptional repressors the data indicate they work as positive regulators of tomato fruit ripening. Altogether, the study defines SlARF2 as a new component of the regulatory network controlling the ripening process in tomato. PMID:26716451

  15. MusaWRKY71 overexpression in banana plants leads to altered abiotic and biotic stress responses.

    PubMed

    Shekhawat, Upendra K S; Ganapathi, Thumballi R

    2013-01-01

    WRKY transcription factors are specifically involved in the transcriptional reprogramming following incidence of abiotic or biotic stress on plants. We have previously documented a novel WRKY gene from banana, MusaWRKY71, which was inducible in response to a wide array of abiotic or biotic stress stimuli. The present work details the effects of MusaWRKY71 overexpression in transgenic banana plants. Stable integration and overexpression of MusaWRKY71 in transgenic banana plants was proved by Southern blot analysis and quantitative real time PCR. Transgenic banana plants overexpressing MusaWRKY71 displayed enhanced tolerance towards oxidative and salt stress as indicated by better photosynthesis efficiency (Fv/Fm) and lower membrane damage of the assayed leaves. Further, differential regulation of putative downstream genes of MusaWRKY71 was investigated using real-time RT-PCR expression analysis. Out of a total of 122 genes belonging to WRKY, pathogenesis-related (PR) protein genes, non-expressor of pathogenesis-related genes 1 (NPR1) and chitinase families analyzed, 10 genes (six belonging to WRKY family, three belonging to PR proteins family and one belonging to chitinase family) showed significant differential regulation in MusaWRKY71 overexpressing lines. These results indicate that MusaWRKY71 is an important constituent in the transcriptional reprogramming involved in diverse stress responses in banana. PMID:24116051

  16. MusaWRKY71 Overexpression in Banana Plants Leads to Altered Abiotic and Biotic Stress Responses

    PubMed Central

    Shekhawat, Upendra K. S.; Ganapathi, Thumballi R.

    2013-01-01

    WRKY transcription factors are specifically involved in the transcriptional reprogramming following incidence of abiotic or biotic stress on plants. We have previously documented a novel WRKY gene from banana, MusaWRKY71, which was inducible in response to a wide array of abiotic or biotic stress stimuli. The present work details the effects of MusaWRKY71 overexpression in transgenic banana plants. Stable integration and overexpression of MusaWRKY71 in transgenic banana plants was proved by Southern blot analysis and quantitative real time PCR. Transgenic banana plants overexpressing MusaWRKY71 displayed enhanced tolerance towards oxidative and salt stress as indicated by better photosynthesis efficiency (Fv/Fm) and lower membrane damage of the assayed leaves. Further, differential regulation of putative downstream genes of MusaWRKY71 was investigated using real-time RT-PCR expression analysis. Out of a total of 122 genes belonging to WRKY, pathogenesis-related (PR) protein genes, non-expressor of pathogenesis-related genes 1 (NPR1) and chitinase families analyzed, 10 genes (six belonging to WRKY family, three belonging to PR proteins family and one belonging to chitinase family) showed significant differential regulation in MusaWRKY71 overexpressing lines. These results indicate that MusaWRKY71 is an important constituent in the transcriptional reprogramming involved in diverse stress responses in banana. PMID:24116051

  17. Spatial and temporal variations in percolation fluxes in a tropical Andosol influenced by banana cropping patterns

    NASA Astrophysics Data System (ADS)

    Cattan, P.; Voltz, M.; Cabidoche, Y.-M.; Lacas, J.-G.; Sansoulet, J.

    2007-03-01

    SummarySpatial variability in percolation fluxes was studied in field plots cropped with banana plants, which induce very heterogeneous rainfall partitioning at the soil surface, with high subsequent infiltration in Andosols. Percolation fluxes were measured for just over a year at 1-7 day intervals in eight wick (WL) and gravity lysimeters (GL) that had been buried in the soil at a depth of 60 cm. The results revealed that WL captured unsaturated fluxes while GL only functioned after ponding occurred. The percolation flux measurements were highly biased with both systems, i.e. overpercolation with WL and underpercolation with GL. Percolation fluxes seemed, however, to be mainly unsaturated in the soil types studied. High percolation flux variability was noted on a plot scale, which could be explained by the vegetation structure: total percolation flux (WL) was 2.1-fold higher under banana plants; saturated percolation flux (GL) was 7-fold higher under banana plants and almost absent between banana plants. Eighty-eight per cent of the total variance in percolation flux could be explained by the rainfall intensity under the banana canopy, calculated while taking the rainfall partitioning by the vegetation and the initial water status into account. The number of lysimeters required for assessing percolation flux in a field plot can be reduced by taking the spatial patterns of the flux boundary conditions into account.

  18. Predicting the Benefits of Banana Bunchy Top Virus Exclusion from Commercial Plantations in Australia

    PubMed Central

    Cook, David C.; Liu, Shuang; Edwards, Jacqueline; Villalta, Oscar N.; Aurambout, Jean-Philippe; Kriticos, Darren J.; Drenth, Andre; De Barro, Paul J.

    2012-01-01

    Benefit cost analysis is a tried and tested analytical framework that can clearly communicate likely net changes in producer welfare from investment decisions to diverse stakeholder audiences. However, in a plant biosecurity context, it is often difficult to predict policy benefits over time due to complex biophysical interactions between invasive species, their hosts, and the environment. In this paper, we demonstrate how a break-even style benefit cost analysis remains highly relevant to biosecurity decision-makers using the example of banana bunchy top virus, a plant pathogen targeted for eradication from banana growing regions of Australia. We develop an analytical approach using a stratified diffusion spread model to simulate the likely benefits of exclusion of this virus from commercial banana plantations over time relative to a nil management scenario in which no surveillance or containment activities take place. Using Monte Carlo simulation to generate a range of possible future incursion scenarios, we predict the exclusion benefits of the disease will avoid Aus$15.9-27.0 million in annual losses for the banana industry. For these exclusion benefits to be reduced to zero would require a bunchy top re-establishment event in commercial banana plantations three years in every four. Sensitivity analysis indicates that exclusion benefits can be greatly enhanced through improvements in disease surveillance and incursion response. PMID:22879960

  19. Improved tolerance toward fungal diseases in transgenic Cavendish banana (Musa spp. AAA group) cv. Grand Nain.

    PubMed

    Vishnevetsky, Jane; White, Thomas L; Palmateer, Aaron J; Flaishman, Moshe; Cohen, Yuval; Elad, Yigal; Velcheva, Margarita; Hanania, Uri; Sahar, Nachman; Dgani, Oded; Perl, Avihai

    2011-02-01

    The most devastating disease currently threatening to destroy the banana industry worldwide is undoubtedly Sigatoka Leaf spot disease caused by Mycosphaerella fijiensis. In this study, we developed a transformation system for banana and expressed the endochitinase gene ThEn-42 from Trichoderma harzianum together with the grape stilbene synthase (StSy) gene in transgenic banana plants under the control of the 35S promoter and the inducible PR-10 promoter, respectively. The superoxide dismutase gene Cu,Zn-SOD from tomato, under control of the ubiquitin promoter, was added to this cassette to improve scavenging of free radicals generated during fungal attack. A 4-year field trial demonstrated several transgenic banana lines with improved tolerance to Sigatoka. As the genes conferring Sigatoka tolerance may have a wide range of anti-fungal activities we also inoculated the regenerated banana plants with Botrytis cinerea. The best transgenic lines exhibiting Sigatoka tolerance were also found to have tolerance to B. cinerea in laboratory assays. PMID:20397044

  20. In vitro colonic fermentation and glycemic response of different kinds of unripe banana flour.

    PubMed

    Menezes, Elizabete Wenzel; Dan, Milana C T; Cardenette, Giselli H L; Goñi, Isabel; Bello-Pérez, Luis Arturo; Lajolo, Franco M

    2010-12-01

    This work aimed to study the in vitro colonic fermentation profile of unavailable carbohydrates of two different kinds of unripe banana flour and to evaluate their postprandial glycemic responses. The unripe banana mass (UBM), obtained from the cooked pulp of unripe bananas (Musa acuminata, Nanicão variety), and the unripe banana starch (UBS), obtained from isolated starch of unripe banana, plantain type (Musa paradisiaca) in natura, were studied. The fermentability of the flours was evaluated by different parameters, using rat inoculum, as well as the glycemic response produced after the ingestion by healthy volunteers. The flours presented high concentration of unavailable carbohydrates, which varied in the content of resistant starch, dietary fiber and indigestible fraction (IF). The in vitro colonic fermentation of the flours was high, 98% for the UBS and 75% for the UBM when expressed by the total amount of SCFA such as acetate, butyrate and propionate in relation to lactulose. The increase in the area under the glycemic curve after ingestion of the flours was 90% lower for the UBS and 40% lower for the UBM than the increase produced after bread intake. These characteristics highlight the potential of UBM and UBS as functional ingredients. However, in vivo studies are necessary in order to evaluate the possible benefit effects of the fermentation on intestinal health. PMID:20839056

  1. Oral immunogenicity of porcine reproductive and respiratory syndrome virus antigen expressed in transgenic banana.

    PubMed

    Chan, Hui-Ting; Chia, Min-Yuan; Pang, Victor Fei; Jeng, Chian-Ren; Do, Yi-Yin; Huang, Pung-Ling

    2013-04-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a persistent threat of economically significant influence to the swine industry worldwide. Recombinant DNA technology coupled with tissue culture technology is a viable alternative for the inexpensive production of heterologous proteins in planta. Embryogenic cells of banana cv. 'Pei chiao' (AAA) have been transformed with the ORF5 gene of PRRSV envelope glycoprotein (GP5) using Agrobacterium-mediated transformation and have been confirmed. Recombinant GP5 protein levels in the transgenic banana leaves were detected and ranged from 0.021%-0.037% of total soluble protein. Pigs were immunized with recombinant GP5 protein by orally feeding transgenic banana leaves for three consecutive doses at a 2-week interval and challenged with PRRSV at 7 weeks postinitial immunization. A vaccination-dependent gradational increase in the elicitation of serum and saliva anti-PRRSV IgG and IgA was observed. Furthermore, significantly lower viraemia and tissue viral load were recorded when compared with the pigs fed with untransformed banana leaves. The results suggest that transgenic banana leaves expressing recombinant GP5 protein can be an effective strategy for oral delivery of recombinant subunit vaccines in pigs and can open new avenues for the production of vaccines against PRRSV. PMID:23116484

  2. Soil water requirements of tissue-cultured Dwarf Cavendish banana ( Musa spp. L)

    NASA Astrophysics Data System (ADS)

    Shongwe, V. D.; Tumber, R.; Masarirambi, M. T.; Mutukumira, A. N.

    The banana is one of the most important fruit crops in the world. In terms of consumption, the banana fruit is ranked high yet there has not been much research particularly in relation to water requirements for propagules produced by tissue culture. In recent years, tissue culture banana planting material has become increasingly important due to its vigorous growth and high yields. The objective of this study was to investigate optimum soil water requirements of tissue-cultured banana. Dwarf Cavendish tissue-cultured plantlets grown in pots in a greenhouse were subjected to four irrigation regimes at 100% ETm, 85% ETm, 65% ETm, and 40% ETm. Plant parameters measured were leaf number, plant height, pseudo-stem girth, leaf length, leaf width, leaf area, leaf area index, leaf index, leaf colour, and plant vigour. Soil water potential measurements were also made over a three-month period. Differences between irrigating at 100% ETm and 85% ETm were not significantly ( P < 0.05) different. Both irrigation regimes resulted in significant ( P < 0.05) increases in leaf number, leaf length, leaf area, leaf area index, green leaf colour intensity, plant height, and plant height, compared to 65% and 40% ETm treatments. Pseudo-stem girth was highest from the 100% ETm compared to the other treatments. Economic yields of banana may be obtained with irrigation regimes ranging between 100% ETm and 85% ETm.

  3. Phenotypic and molecular characterization of Colletotrichum species associated with anthracnose of banana (Musa spp) in Malaysia.

    PubMed

    Intan Sakinah, M A; Suzianti, I V; Latiffah, Z

    2014-01-01

    Anthracnose caused by Colletotrichum species is a common postharvest disease of banana fruit. We investigated and identified Colletotrichum species associated with anthracnose in several local banana cultivars based on morphological characteristics and sequencing of ITS regions and of the β-tubulin gene. Thirty-eight Colletotrichum isolates were encountered in anthracnose lesions of five local banana cultivars, 'berangan', 'mas', 'awak', 'rastali', and 'nangka'. Based on morphological characteristics, 32 isolates were identified as Colletotrichum gloeosporioides and 6 isolates as C. musae. C. gloeosporioides isolates were divided into two morphotypes, with differences in colony color, shape of the conidia and growth rate. Based on ITS regions and β-tubulin sequences, 35 of the isolates were identified as C. gloeosporioides and only 3 isolates as C. musae; the percentage of similarity from BLAST ranged from 95-100% for ITS regions and 97-100% for β-tubulin. C. gloeosporioides isolates were more prevalent compared to C. musae. This is the first record of C. gloeosporioides associated with banana anthracnose in Malaysia. In a phylogenetic analysis of the combined dataset of ITS regions and β-tubulin using a maximum likelihood method, C. gloeosporioides and C. musae isolates were clearly separated into two groups. We concluded that C. gloeosporioides and C. musae isolates are associated with anthracnose in the local banana cultivars and that C. gloeosporioides is more prevalent than C. musae. PMID:24854442

  4. Carbon footprint of premium quality export bananas: case study in Ecuador, the world's largest exporter.

    PubMed

    Iriarte, Alfredo; Almeida, Maria Gabriela; Villalobos, Pablo

    2014-02-15

    Nowadays, the new international market demands challenge the food producing countries to include the measurement of the environmental impact generated along the production process for their products. In order to comply with the environmentally responsible market requests the measurement of the greenhouse gas emissions of Ecuadorian agricultural goods has been promoted employing the carbon footprint concept. Ecuador is the largest exporter of bananas in the world. Within this context, this study is a first assessment of the carbon footprint of the Ecuadorian premium export banana (Musa AAA) using a considerable amount of field data. The system boundaries considered from agricultural production to delivery in a European destination port. The data collected over three years permitted identifying the hot spot stages. For the calculation, the CCaLC V3.0 software developed by the University of Manchester is used. The carbon footprint of the Ecuadorian export banana ranged from 0.45 to 1.04 kg CO2-equivalent/kg banana depending on the international overseas transport employed. The principal contributors to the carbon footprint are the on farm production and overseas transport stages. Mitigation and reduction strategies were suggested for the main emission sources in order to achieve sustainable banana production. PMID:24361571

  5. Image analysis to evaluate the browning degree of banana (Musa spp.) peel.

    PubMed

    Cho, Jeong-Seok; Lee, Hyeon-Jeong; Park, Jung-Hoon; Sung, Jun-Hyung; Choi, Ji-Young; Moon, Kwang-Deog

    2016-03-01

    Image analysis was applied to examine banana peel browning. The banana samples were divided into 3 treatment groups: no treatment and normal packaging (Cont); CO2 gas exchange packaging (CO); normal packaging with an ethylene generator (ET). We confirmed that the browning of banana peels developed more quickly in the CO group than the other groups based on sensory test and enzyme assay. The G (green) and CIE L(∗), a(∗), and b(∗) values obtained from the image analysis sharply increased or decreased in the CO group. And these colour values showed high correlation coefficients (>0.9) with the sensory test results. CIE L(∗)a(∗)b(∗) values using a colorimeter also showed high correlation coefficients but comparatively lower than those of image analysis. Based on this analysis, browning of the banana occurred more quickly for CO2 gas exchange packaging, and image analysis can be used to evaluate the browning of banana peels. PMID:26471649

  6. Transcriptomic analysis of Chinese bayberry (Myrica rubra) fruit development and ripening using RNA-Seq

    PubMed Central

    2012-01-01

    Background Chinese bayberry (Myrica rubra Sieb. and Zucc.) is an important subtropical fruit crop and an ideal species for fruit quality research due to the rapid and substantial changes that occur during development and ripening, including changes in fruit color and taste. However, research at the molecular level is limited by a lack of sequence data. The present study was designed to obtain transcript sequence data and examine gene expression in bayberry developing fruit based on RNA-Seq and bioinformatic analysis, to provide a foundation for understanding the molecular mechanisms controlling fruit quality changes during ripening. Results RNA-Seq generated 1.92 G raw data, which was then de novo assembled into 41,239 UniGenes with a mean length of 531 bp. Approximately 80% of the UniGenes (32,805) were annotated against public protein databases, and coding sequences (CDS) of 31,665 UniGenes were determined. Over 3,600 UniGenes were differentially expressed during fruit ripening, with 826 up-regulated and 1,407 down-regulated. GO comparisons between the UniGenes of these two types and interactive pathways (Ipath) analysis found that energy-related metabolism was enhanced, and catalytic activity was increased. All genes involved in anthocyanin biosynthesis were up-regulated during the fruit ripening processes, concurrent with color change. Important changes in carbohydrate and acid metabolism in the ripening fruit are likely associated with expression of sucrose phosphate synthase (SPS) and glutamate decarboxylase (GAD). Conclusions Mass sequence data of Chinese bayberry was obtained and the expression profiles were examined during fruit ripening. The UniGenes were annotated, providing a platform for functional genomic research with this species. Using pathway mapping and expression profiles, the molecular mechanisms for changes in fruit color and taste during ripening were examined. This provides a reference for the study of complicated metabolism in non

  7. Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening

    PubMed Central

    Jiang, Yue-ming; Zhao, Ming-lei; Shan, Wei; Kuang, Jian-fei; Lu, Wang-jin

    2011-01-01

    Background ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. Methodology/Principal Findings FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. Conclusions These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening. PMID:21915355

  8. Tomato fruit continues growing while ripening, affecting cuticle properties and cracking.

    PubMed

    Domínguez, Eva; Fernández, María Dolores; Hernández, Juan Carlos López; Parra, Jerónimo Pérez; España, Laura; Heredia, Antonio; Cuartero, Jesús

    2012-12-01

    Fruit cuticle composition and their mechanical performance have a special role during ripening because internal pressure is no longer sustained by the degraded cell walls of the pericarp but is directly transmitted to epidermis and cuticle which could eventually crack. We have studied fruit growth, cuticle modifications and its biomechanics, and fruit cracking in tomato; tomato has been considered a model system for studying fleshy fruit growth and ripening. Tomato fruit cracking is a major disorder that causes severe economic losses and, in cherry tomato, crack appearance is limited to the ripening process. As environmental conditions play a crucial role in fruit growing, ripening and cracking, we grow two cherry tomato cultivars in four conditions of radiation and relative humidity (RH). High RH and low radiation decreased the amount of cuticle and cuticle components accumulated. No effect of RH in cuticle biomechanics was detected. However, cracked fruits had a significantly less deformable (lower maximum strain) cuticle than non-cracked fruits. A significant and continuous fruit growth from mature green to overripe has been detected with special displacement sensors. This growth rate varied among genotypes, with cracking-sensitive genotypes showing higher growth rates than cracking-resistant ones. Environmental conditions modified this growth rate during ripening, with higher growing rates under high RH and radiation. These conditions corresponded to those that favored fruit cracking. Fruit growth rate during ripening, probably sustained by an internal turgor pressure, is a key parameter in fruit cracking, because fruits that ripened detached from the vine did not crack. PMID:22582930

  9. Proteomics as an approach to the understanding of the molecular physiology of fruit development and ripening.

    PubMed

    Palma, José M; Corpas, Francisco J; del Río, Luís A

    2011-08-12

    Fruit ripening is a developmental complex process which occurs in higher plants and involves a number of stages displayed from immature to mature fruits that depend on the plant species and the environmental conditions. Nowadays, the importance of fruit ripening comes mainly from the link between this physiological process in plants and the economic repercussions as a result of one of the human activities, the agricultural industry. In most cases, fruit ripening is accompanied by colour changes due to different pigment content and increases in sugar levels, among others. Major physiological modifications that affect colour, texture, flavour, and aroma are under the control of both external (light and temperature) and internal (developmental gene regulation and hormonal control) factors. Due to the huge amount of metabolic changes that take place during ripening in fruits from higher plants, the accomplishment of new throughput methods which can provide a global evaluation of this process would be desirable. Differential proteomics of immature and mature fruits would be a useful tool to gain information on the molecular changes which occur during ripening, but also the investigation of fruits at different ripening stages will provide a dynamic picture of the whole transformation of fruits. This subject is furthermore of great interest as many fruits are essential for human nutrition. Thus far different maturation profiles have been reported specific for each crop species. In this work, a thorough review of the proteomic database from fruit development and maturation of important crop species will be updated to understand the molecular physiology of fruits at ripening stages. PMID:21524723

  10. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  11. Camembert-type cheese ripening dynamics are changed by the properties of wrapping films.

    PubMed

    Picque, D; Leclercq-Perlat, M N; Guillemin, H; Perret, B; Cattenoz, T; Provost, J J; Corrieu, G

    2010-12-01

    Four gas-permeable wrapping films exhibiting different degrees of water permeability (ranging from 1.6 to 500 g/m(2) per d) were tested to study their effect on soft-mold (Camembert-type) cheese-ripening dynamics compared with unwrapped cheeses. Twenty-three-day trials were performed in 2 laboratory-size (18L) respiratory-ripening cells under controlled temperature (6 ± 0.5°C), relative humidity (75 ± 2%), and carbon dioxide content (0.5 to 1%). The films allowed for a high degree of respiratory activity; no limitation in gas permeability was observed. The wide range of water permeability of the films led to considerable differences in cheese water loss (from 0.5 to 12% on d 23, compared with 15% for unwrapped cheeses), which appeared to be a key factor in controlling cheese-ripening progress. A new relationship between 2 important cheese-ripening descriptors (increase of the cheese core pH and increase of the cheese's creamy underrind thickness) was shown in relation to the water permeability of the wrapping film. High water losses (more than 10 to 12% on d 23) also were observed for unwrapped cheeses, leading to Camembert cheeses that were too dry and poorly ripened. On the other hand, low water losses (from 0.5 to 1% on d 23) led to over-ripening in the cheese underrind, which became runny as a result. Finally, water losses from around 3 to 6% on d 23 led to good ripening dynamics and the best cheese quality. This level of water loss appeared to be ideal in terms of cheese-wrapping film design. PMID:21094731

  12. Identification and evaluation of two diagnostic markers linked to Fusarium wilt resistance (race 4) in banana (Musa spp.).

    PubMed

    Wang, Wei; Hu, Yulin; Sun, Dequan; Staehelin, Christian; Xin, Dawei; Xie, Jianghui

    2012-01-01

    Fusarium wilt caused by the fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4) results in vascular tissue damage and ultimately death of banana (Musa spp.) plants. Somaclonal variants of in vitro micropropagated banana can hamper success in propagation of genotypes resistant to FOC4. Early identification of FOC4 resistance in micropropagated banana plantlets is difficult, however. In this study, we identified sequence-characterized amplified region (SCAR) markers of banana associated with resistance to FOC4. Using pooled DNA from resistant or susceptible genotypes and 500 arbitrary 10-mer oligonucleotide primers, 24 random amplified polymorphic DNA (RAPD) products were identified. Two of these RAPD markers were successfully converted to SCAR markers, called ScaU1001 (GenBank accession number HQ613949) and ScaS0901 (GenBank accession number HQ613950). ScaS0901 and ScaU1001 could be amplified in FOC4-resistant banana genotypes ("Williams 8818-1" and Goldfinger), but not in five tested banana cultivars susceptible to FOC4. The two SCAR markers were then used to identify a somaclonal variant of the genotype "Williams 8818-1", which lost resistance to FOC4. Hence, the identified SCAR markers can be applied for a rapid quality control of FOC4-resistant banana plantlets immediately after the in vitro micropropagation stage. Furthermore, ScaU1001 and ScaS0901 will facilitate marker-assisted selection of new banana cultivars resistant to FOC4. PMID:21547366

  13. Hyperspectral Surface Analysis for Ripeness Estimation and Quick UV-C Surface Treatments for Preservation of Bananas

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Yang, Zh.; Chen, Zh.; Liu, J.; Wang, W. Ch.; Zheng, W. Yu.

    2016-05-01

    This study aimed to determine the ripeness of bananas using hyperspectral surface analysis and how a rapid UV-C (ultraviolet-C light) surface treatment could reduce decay. The surface of the banana fruit and its stages of maturity were studied using a hyperspectral imaging technique in the visible and near infrared (370-1000 nm) regions. The vselected color ratios from these spectral images were used for classifying the whole banana into immature, ripe, half-ripe and overripe stages. By using a BP neural network, models based on the wavelengths were developed to predict quality attributes. The mean discrimination rate was 98.17%. The surface of the fresh bananas was treated with UV-C at dosages from 15-55 μW/cm2. The visual qualities with or without UV-C treatment were compared using the image, the chromatic aberration test, the firmness test and the area of black spot on the banana skin. The results showed that high dosages of UV-C damaged the banana skin, while low dosages were more efficient at delaying changes in the relative brightness of the skin. The maximum UV-C treatment dose for satisfactory banana preservation was between 21 and 24 μW/cm2. These results could help to improve the visual quality of bananas and to classify their ripeness more easily.

  14. A Temporal -omic Study of Propionibacterium freudenreichii CIRM-BIA1T Adaptation Strategies in Conditions Mimicking Cheese Ripening in the Cold

    PubMed Central

    Dalmasso, Marion; Aubert, Julie; Briard-Bion, Valérie; Chuat, Victoria; Deutsch, Stéphanie-Marie; Even, Sergine; Falentin, Hélène; Jan, Gwénaël; Jardin, Julien; Maillard, Marie-Bernadette; Parayre, Sandrine; Piot, Michel; Tanskanen, Jarna; Thierry, Anne

    2012-01-01

    Propionibacterium freudenreichii is used as a ripening culture in Swiss cheese manufacture. It grows when cheeses are ripened in a warm room (about 24°C). Cheeses with an acceptable eye formation level are transferred to a cold room (about 4°C), inducing a marked slowdown of propionic fermentation, but P. freudenreichii remains active in the cold. To investigate the P. freudenreichii strategies of adaptation and survival in the cold, we performed the first global gene expression profile for this species. The time-course transcriptomic response of P. freudenreichii CIRM-BIA1T strain was analyzed at five times of incubation, during growth at 30°C then for 9 days at 4°C, under conditions preventing nutrient starvation. Gene expression was also confirmed by RT-qPCR for 28 genes. In addition, proteomic experiments were carried out and the main metabolites were quantified. Microarray analysis revealed that 565 genes (25% of the protein-coding sequences of P. freudenreichii genome) were differentially expressed during transition from 30°C to 4°C (P<0.05 and |fold change|>1). At 4°C, a general slowing down was observed for genes implicated in the cell machinery. On the contrary, P. freudenreichii CIRM-BIA1T strain over-expressed genes involved in lactate, alanine and serine conversion to pyruvate, in gluconeogenesis, and in glycogen synthesis. Interestingly, the expression of different genes involved in the formation of important cheese flavor compounds, remained unchanged at 4°C. This could explain the contribution of P. freudenreichii to cheese ripening even in the cold. In conclusion, P. freudenreichii remains metabolically active at 4°C and induces pathways to maintain its long-term survival. PMID:22253706

  15. Characterization of banana starches obtained from cultivars grown in Brazil.

    PubMed

    de Barros Mesquita, Camila; Leonel, Magali; Franco, Célia Maria Landi; Leonel, Sarita; Garcia, Emerson Loli; Dos Santos, Thaís Paes Rodrigues

    2016-08-01

    The starch market is constantly evolving and studies that provide information about the physical and rheological properties of native starches to meet the diverse demands of the sector are increasingly necessary. In this study starches obtained from five cultivars of banana were analyzed for size and shape of granules, crystallinity, chemical composition, resistant starch, swelling power, solubility, thermal and paste properties. The granules of starch were large (36.58-47.24μm), oval, showed crystallinity pattern type B and the index of crystallinity ranged from 31.94 to 34.06%. The phosphorus content ranged from 0.003 to 0.011%, the amylose ranged from 25.13 to 29.01% and the resistant starch ranged from 65.70 to 80.28%. The starches showed high peak viscosity and breakdown, especially those obtained from 'Nanicão' and 'Grand Naine'. Peak temperature of gelatinization was around 71°C, the enthalpy change (ΔH) ranged from 9.45 to 14.73Jg(-1). The starch from 'Grand Naine' showed higher swelling power (15.19gg(-1)) and the starch from 'Prata-Anã' higher solubility (11.61%). The starches studied are highlighted by their physical and chemical characteristics and may be used in several applications. PMID:27180297

  16. Collisional ballooning mode dispersion relation in the banana regime

    SciTech Connect

    Zheng, L.; Tessarotto, M.

    1995-08-01

    Collisional ballooning mode theory in the banana regime is developed for tokamak configurations from the gyrokinetic formalism. A general dispersion relation is obtained, which in principle can deal with a collision operator of any type. However, investigation of an approximate Fokker--Planck collision operator developed in recent neoclassical transport theory is detailed. The most significant feature of the present theory as compared to the customary treatment lies in that the distinction between particle and fluid velocities is made in the ordering analyses. This reveals that the eigenfrequency of modes is determined by balancing the small-parallel-ion-velocity (SPIV) effect [L.-J. Zheng and M. Tessarotto, Phys. Plasmas {bold 1}, 3928 (1994)], instead of the fluid inertia one, with the instability drives. Since the parallel-electric-field effect is found to be negligible as compared to the SPIV effect, in contrast to the customary resistive ballooning mode picture, the leading collisional effect is demonstrated to be the modification of the SPIV effect instead of the relaxation of the frozen-in-law. The ion--ion collisions are the cause for this modification, while the electron collisional effect is shown to be negligible. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  17. A sarabande of tropical fruit proteomics: Avocado, banana, and mango.

    PubMed

    Righetti, Pier Giorgio; Esteve, Clara; D'Amato, Alfonsina; Fasoli, Elisa; Luisa Marina, María; Concepción García, María

    2015-05-01

    The present review highlights the progress made in plant proteomics via the introduction of combinatorial peptide ligand libraries (CPLL) for detecting low-abundance species. Thanks to a novel approach to the CPLL methodology, namely, that of performing the capture both under native and denaturing conditions, identifying plant species in the order of thousands, rather than hundreds, is now possible. We report here data on a trio of tropical fruits, namely, banana, avocado, and mango. The first two are classified as "recalcitrant" tissues since minute amounts of proteins (in the order of 1%) are embedded on a very large matrix of plant-specific material (e.g., polysaccharides and other plant polymers). Yet, even under these adverse conditions we could report, in a single sweep, from 1000 to 3000 unique gene products. In the case of mango the investigation has been extended to the peel too, since this skin is popularly used to flavor dishes in Far East cuisine. Even in this tough peel 330 proteins could be identified, whereas in soft peels, such as in lemons, one thousand unique species could be detected. PMID:25476008

  18. Banana peel extract mediated synthesis of gold nanoparticles.

    PubMed

    Bankar, Ashok; Joshi, Bhagyashree; Kumar, Ameeta Ravi; Zinjarde, Smita

    2010-10-01

    Gold nanoparticles were synthesized by using banana peel extract (BPE) as a simple, non-toxic, eco-friendly 'green material'. The boiled, crushed, acetone precipitated, air-dried peel powder was used to reduce chloroauric acid. A variety of nanoparticles were formed when the reaction conditions were altered with respect to pH, BPE content, chloroauric acid concentration and temperature of incubation. The reaction mixtures displayed vivid colors and UV-vis spectra characteristic of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size of the nanoparticles under standard synthetic conditions was around 300nm. Scanning electron microscopy and energy dispersive spectrometry (EDS) confirmed these results. A coffee ring phenomenon, led to the aggregation of the nanoparticles into microcubes and microwire networks towards the periphery of the air-dried samples. X-ray diffraction studies of the samples revealed spectra that were characteristic for gold. Fourier transform infra red (FTIR) spectroscopy indicated the involvement of carboxyl, amine and hydroxyl groups in the synthetic process. The BPE mediated nanoparticles displayed efficient antimicrobial activity towards most of the tested fungal and bacterial cultures. PMID:20620890

  19. Ultrasonic probing of the banana photon distribution in turbid media

    NASA Astrophysics Data System (ADS)

    Lev, Aner; Kotler, Zvi; Sfez, Bruno

    2001-06-01

    Probing photon density in diffusive media is very important in order to model and understand their propagation. It is possible to detect photons outside the medium, but their non-invasive detection inside it is still an unsolved problem. An elegant, semi-invasive approach to perform this task is to scan a small absorbing sphere inside the turbid medium and measure the light outside the sample when the sphere is present and when it is not. However this method requires the medium to be liquid and such a procedure cannot be performed in the case of biological tissues. Ultrasound tagging of light has been introduced initially for transillumination imaging in turbid media, and then extended to the case of reflection imaging. Here we present results showing that it is possible to map the photon density inside solid turbid media by locally tagging photons using an ultrasonic field. We experimentally retrieve the well-known banana-shaped photons distribution when the source and the detectors are in a back-scattering configuration, using a gel-based homogeneous phantom. We also present experiments where hemoglobin has been introduced inside the gel. By fitting the experimental results with the theoretical formula, we are able to quantitatively retrieve the amount of hemoglobin introduced inside the gel, not only from data obtained by scanning the ultrasound waist inside the phantom, the in put and output fibers staying fixed.

  20. Morphological, physicochemical, and antioxidant profile of noncommercial banana cultivars

    PubMed Central

    Anyasi, Tonna A; Jideani, Afam IO; Mchau, Godwin A

    2015-01-01

    Banana cultivars––Luvhele (MusaABB), Mabonde (MusaAAA), and Muomva-red (Musa balbisiana) ––were characterized for morphological, physicochemical, and antioxidant properties. All three cultivars varied significantly (P < 0.05) in their morphology, pH, titratable acidity and total soluble solids with no significant difference in their ash content. Individual cultivars showed variations in flour starch granule when observed using a scanning electron microscope. Characterization of cultivars for total polyphenols (TPs) and antioxidant activity upon pretreatment with ascorbic, citric, and lactic acid shows that the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay of samples varied significantly as Muomva-red cultivar (1.02 ± 0.01 mg GA/g) expressed the highest DPPH activity at lactic acid concentration of 20 g/L. Total polyphenol content was also highest for Muomva-red [1091.76 ± 122.81 mg GAE/100 g (d.w.)]. The high amount of TPs present in these cultivars make them suitable source of bio-nutrients with great medicinal and health functions. PMID:25987997

  1. [Analysis of thiabendazole in citrus fruits and bananas].

    PubMed

    Romminger, K; Hoppe, H

    1976-01-01

    With regard to routine analyses in market control, the authors recommend two methods (according to the expected amounts of active principle) for the determination of thiabendazole residues on citrus fruits and bananas. The ultraviolet spectrophotometric method is preferable in determining thiabendazole contents of more than 1 p.p.m., if the cleaning operations described are respected. For the detection of thiabendazole and for the determination of amounts of less than 1 p.p.m. (the tolerance limit being 0.2 p.p.m. for pomes, berries, stone fruits, kernel fruits and also for potatoes) the thin-layer chromatographic method seems likewise to be suited (also in considering that it is semi-quantitative by nature); especially since the spectrophotometric method yields values by 0.2 p.p.m. too high (due to the measurement of residual absorption of vegetable constituents). The authors are of opinion that such an error must be considered to be too high for contents lower than 1 p.p.m. PMID:950991

  2. Prostaglandins are essential for cervical ripening in LPS-mediated preterm birth but not term or antiprogestin-driven preterm ripening.

    PubMed

    Timmons, Brenda C; Reese, Jeff; Socrate, Simona; Ehinger, Noah; Paria, Bibhash C; Milne, Ginger L; Akins, Meredith L; Auchus, Richard J; McIntire, Don; House, Michael; Mahendroo, Mala

    2014-01-01

    Globally, an estimated 13 million preterm babies are born each year. These babies are at increased risk of infant mortality and life-long health complications. Interventions to prevent preterm birth (PTB) require an understanding of processes driving parturition. Prostaglandins (PGs) have diverse functions in parturition, including regulation of uterine contractility and tissue remodeling. Our studies on cervical remodeling in mice suggest that although local synthesis of PGs are not increased in term ripening, transcripts encoding PG-endoperoxide synthase 2 (Ptgs2) are induced in lipopolysaccharide (LPS)-mediated premature ripening. This study provides evidence for two distinct pathways of cervical ripening: one dependent on PGs derived from paracrine or endocrine sources and the other independent of PG actions. Cervical PG levels are increased in LPS-treated mice, a model of infection-mediated PTB, consistent with increases in PG synthesizing enzymes and reduction in PG-metabolizing enzymes. Administration of SC-236, a PTGS2 inhibitor, along with LPS attenuated cervical softening, consistent with the essential role of PGs in LPS-induced ripening. In contrast, during term and preterm ripening mediated by the antiprogestin, mifepristone, cervical PG levels, and expression of PG synthetic and catabolic enzymes did not change in a manner that supports a role for PGs. These findings in mice, supported by correlative studies in women, suggest PGs do not regulate all aspects of the parturition process. Additionally, it suggests a need to refocus current strategies toward developing therapies for the prevention of PTB that target early, pathway-specific processes rather than focusing on common late end point mediators of PTB. PMID:24189143

  3. Broadening of mesophase temperature range induced by doping calamitic mesogen with banana-shaped mesogen

    NASA Astrophysics Data System (ADS)

    Cvetinov, Miroslav; Stojanović, Maja; Obadović, Dušanka; Vajda, Aniko; Fodor-Csorba, Katalin; Eber, Nandor

    2016-03-01

    We have investigated three binary mixtures composed of selected banana-shaped dopant in low concentrations and calamitic mesogen in high. Banana-shaped dopant forms a B7 phase, while the calamitic mesogen exhibit nematic and smectic SmA and SmC phases. The occurring mesophases have been identified by their optical textures. At dopant concentrations of 2.2 and 3.1 mol%, there is evident broadening of nematic and smectic SmA temperature ranges in respect to the pure calamitic compound. Yet, the mixture with dopant concentration of 7 mol% exhibits narrower temperature ranges of mesophases. Increasing dopant concentration caused lowering of all phase transitions temperatures (TI-N, TN-SmA, TSmA-SmC) in all investigated mixtures. Therefore, mixing classic calamitic compounds with novel banana-shaped compound in low concentrations is viable way to attain useful mesophase range for application in industry.

  4. BANANAS: providing child care services to a multi-ethnic community.

    PubMed

    Vu, Catherine M; Schwartz, Sara L; Austin, Michael J

    2011-01-01

    BANANAS, Inc. is a nonprofit organization that has provided child care resource and referral services for over 35 years. BANANAS emerged as a grassroots effort initiated by a group of female volunteers who sought to build a network of women with children who needed childcare. As the organization developed, its leaders recognized and responded to additional needs, including resource and information sharing, workshops and classes, and political advocacy. Beginning as a collective, BANANAS has grown into a multifaceted service delivery and advocacy nonprofit operating with an annual budget of $12 million. This history of the agency reflects the development of a unique community-based effort, its challenges and rewards, and the multiple successes that this pioneering nonprofit has experienced. PMID:21416429

  5. Banana fluxes in the plateau regime for a nonaxisymmetrically confined plasma

    SciTech Connect

    Balescu, R.; Fantechi, S. )

    1990-09-01

    The banana (or banana-plateau) fluxes, related to the generalized stresses {l angle}{bold B}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle}, {l angle}{bold B}{sub {ital T}}{center dot}{del}{center dot}{pi}{sup {alpha}({ital n})}{r angle} have been determined in the plateau regime, for a plasma confined by a toroidal magnetic field of arbitrary geometry. The complete set of transport coefficients for both the parallel'' (ambipolar) and toroidal'' (nonambipolar) banana fluxes was obtained in the 13-moment (13M) approximation, going beyond the previously known expressions in the nonaxisymmetric case. The main emphasis is laid on the structure of the transport matrix and of its coefficients. It is shown that the Onsager symmetry of this matrix partly breaks down (for the mixed electron--ion coefficients) in a nonaxisymmetrically confined plasma.

  6. Morphological and biodegradability studies of Euphorbia latex modified polyester - Banana fiber composites

    NASA Astrophysics Data System (ADS)

    Rai, Bhuvneshwar; Kumar, Gulshan; Diwan, R. K.

    2016-05-01

    The composites of Banana fiber were prepared using polyester resin blended Euphorbia coagulum, morphology and the degree of rate of aerobic biodegradation of the prepared composites were studied. Polyester resin blended Euphorbia coagulum containing Banana fiber, Euphorbia coagulum and polyester resin taken in the ratio 40: 24: 36 was used for the study, which was the optimum composition of the composite reported in a previous study by the authors. In the biodegradability study cellulose has been used as positive reference material. Result shows that Euphorbia coagulum modified polyester - Banana fiber composites exhibited biodegradation to the extent of around 40%. The use of developed green composites may help in reducing the generation of non-biodegradable polymeric wastes.

  7. Correction for the iatrogenic form of banana fold and sensuous triangle deformity.

    PubMed

    Pereira, Luiz Haroldo; Sterodimas, Aris

    2008-11-01

    The "banana fold," or the infragluteal fold, is a fat deposit on the posterior thigh near the gluteal crease and parallel to it. The "sensuous triangle" is found at the junction of the lateral buttocks, the lateral thigh, and the posterior thigh. The iatrogenic forms of banana fold and sensuous triangle deformity are produced by excessive liposuction. The authors' experience using autologous fat transplantation to treat tissue defects led them to use this technique for correcting iatrogenic forms of banana fold and sensuous triangle deformity. The simplicity of the procedure, the low incidence of complications, and the high satisfaction rate makes autologous fat transplantation an attractive option for correcting iatrogenic complications of liposuction. PMID:18663513

  8. The influence of ripening period length and season on the microbiological parameters of a traditional Brazilian cheese

    PubMed Central

    Cardoso, Valéria M.; Dias, Ricardo S.; Soares, Barbara M.; Clementino, Letícia A.; Araújo, Cristiano P.; Rosa, Carlos A.

    2013-01-01

    The ripening process of Serro Minas cheese, one of the most popular cheeses produced with raw milk in Brazil, was studied over the course of 60 days of ripening during dry and rainy seasons. Brazilian legislation prohibits the production of cheese from raw milk unless it was submitted to a maturation period greater than 60 days. However Minas Serro cheese is sold within a few days of ripening. A total of 100 samples of Serro cheese were obtained from five farms; 50 samples were collected during the dry season (winter in Brazil) and 50 samples were collected during the rainy season (summer in Brazil). From each farm, ten cheeses were collected during each season after two days of ripening. Our results showed high levels of total and fecal coliforms at the beginning of the ripening period (approximately 4 Log MPN/g with 3 days of ripening) that decreased with 60 days of ripening reaching almost 1.5 Log MPN/g. Contamination by coagulase-positive staphylococci was reduced by the end of the ripening period. Salmonella spp. was not detected. The staphylococcal enterotoxins B and C were detected in 1% and 4% of the cheeses, respectively, after 30 days of ripening. These results suggest that the ripening process was not effective in eliminating staphylococcal enterotoxins from the cheese. However, none of the investigated strains of Staphylococcus spp. isolated from Serro cheese produced enterotoxins A, B, C or D. The high pathogen and coliform levels at the beginning of the ripening process for the cheese produced during both seasons indicate the need for improvement of the sanitation of the manufacturing conditions. PMID:24516419

  9. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening

    PubMed Central

    Wang, Shufen; Lu, Gang; Hou, Zheng; Luo, Zhidan; Wang, Taotao; Li, Hanxia; Zhang, Junhong; Ye, Zhibiao

    2014-01-01

    The tomato (Solanum lycopersicum) protein MADS-RIN plays important roles in fruit ripening. In this study, the functions of two homologous tomato proteins, FUL1 and FUL2, which contain conserved MIKC domains that typify plant MADS-box proteins, and which interact with MADS-RIN, were analysed. Transgenic functional analysis showed that FUL1 and FUL2 function redundantly in fruit ripening regulation, but exhibit distinct roles in the regulation of cellular differentiation and expansion. Over-expression of FUL2 in tomato resulted in a pointed tip at the blossom end of the fruit, together with a thinner pericarp, reduced stem diameter, and smaller leaves, but no obvious phenotypes resulted from FUL1 over-expression. Dual suppression of FUL1 and FUL2 substantially inhibited fruit ripening by blocking ethylene biosynthesis and decreasing carotenoid accumulation. In addition, the levels of transcript corresponding to ACC SYNTHASE2 (ACS2), which plays a key role in ethylene biosynthesis, were significantly decreased in the FUL1/FUL2 knock-down tomato fruits. Overall, our results suggest that FUL proteins can regulate tomato fruit ripening through fine-tuning ethylene biosynthesis and the expression of ripening-related genes. PMID:24723399

  10. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    PubMed

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-01

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. PMID:27382958

  11. Influence of ripening stages on antioxidant properties of papaya fruit (Carica papaya L.)

    NASA Astrophysics Data System (ADS)

    Addai, Zuhair Radhi; Abdullah, Aminah; Mutalib, Sahilah Abd.

    2013-11-01

    Papaya (Carica papaya L. cv Eksotika) is one of the most commonly consumed tropical fruits by humans, especially Malaysians. The objective of this study was to determine the phenolic compounds and antioxidants activity in different ripening stages of papaya fruit. The fruits were harvested at five different, stages RS1, RS2, RS3, RS4, and RS5 corresponding to 12, 14, 16, 18, and 20 weeks after anthesis, respectively. Papayas fruit at five different stage of ripening were obtained from farms at Pusat Flora Cheras, JabatanPertanian and Hulu Langat Semenyih, Selangor, Malaysia. The antioxidants activity were analyzed using the total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant Power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The analyses were conducted in triplicate and the data were subjected to statistical analysis using SPSS. The results showed significant differences (P< 0.05) were found at different stages of ripening. The total phenol content TPC, TFC, FRAP and DPPH values increased significantly (P<0.05) with the ripening process. The results showed the important role of the ripening stage in increasing the antioxidant content of papaya fruits.

  12. Proteomic analysis of papaya fruit ripening using 2DE-DIGE.

    PubMed

    Nogueira, Silvia Beserra; Labate, Carlos Alberto; Gozzo, Fabio Cesar; Pilau, Eduardo Jorge; Lajolo, Franco Maria; Oliveira do Nascimento, João Roberto

    2012-02-01

    Papayas have a very short green life as a result of their rapid pulp softening as well as their susceptibility to physical injury and mold growth. The ripening-related changes take place very quickly, and there is a continued interest in the reduction of postharvest losses. Proteins have a central role in biological processes, and differential proteomics enables the discrimination of proteins affected during papaya ripening. A comparative analysis of the proteomes of climacteric and pre-climacteric papayas was performed using 2DE-DIGE. Third seven proteins corresponding to spots with significant differences in abundance during ripening were submitted to MS analysis, and 27 proteins were identified and classified into six main categories related to the metabolic changes occurring during ripening. Proteins from the cell wall (alpha-galactosidase and invertase), ethylene biosynthesis (methionine synthase), climacteric respiratory burst, stress response, synthesis of carotenoid precursors (hydroxymethylbutenyl 4-diphosphate synthase, GcpE), and chromoplast differentiation (fibrillin) were identified. There was some correspondence between the identified proteins and the data from previous transcript profiling of papaya fruit, but new, accumulated proteins were identified, which reinforces the importance of differential proteomics as a tool to investigate ripening and provides potentially useful information for maintaining fruit quality and minimizing postharvest losses. PMID:22134357

  13. Biological and physico-chemical formation of Birnessite during the ripening of manganese removal filters.

    PubMed

    Bruins, Jantinus H; Petrusevski, Branislav; Slokar, Yness M; Huysman, Koen; Joris, Koen; Kruithof, Joop C; Kennedy, Maria D

    2015-02-01

    The efficiency of manganese removal in conventional groundwater treatment consisting of aeration followed by rapid sand filtration, strongly depends on the ability of filter media to promote auto-catalytic adsorption of dissolved manganese and its subsequent oxidation. Earlier studies have shown that the compound responsible for the auto-catalytic activity in ripened filters is a manganese oxide called Birnessite. The aim of this study was to determine if the ripening of manganese removal filters and the formation of Birnessite on virgin sand is initiated biologically or physico-chemically. The ripening of virgin filter media in a pilot filter column fed by pre-treated manganese containing groundwater was studied for approximately 600 days. Samples of filter media were taken at regular time intervals, and the manganese oxides formed in the coating were analysed by Raman spectroscopy, Electron Paramagnetic Resonance (EPR) and Scanning Electron Microscopy (SEM). From the EPR analyses, it was established that the formation of Birnessite was most likely initiated via biological activity. With the progress of filter ripening and development of the coating, Birnessite formation became predominantly physico-chemical, although biological manganese oxidation continued to contribute to the overall manganese removal. The knowledge that manganese removal in conventional groundwater treatment is initiated biologically could be of help in reducing typically long ripening times by creating conditions that are favourable for the growth of manganese oxidizing bacteria. PMID:25463936

  14. Edible coatings influence fruit ripening, quality, and aroma biosynthesis in mango fruit.

    PubMed

    Dang, Khuyen T H; Singh, Zora; Swinny, Ewald E

    2008-02-27

    The effects of different edible coatings on mango fruit ripening and ripe fruit quality parameters including color, firmness, soluble solids concentrations, total acidity, ascorbic acid, total carotenoids, fatty acids, and aroma volatiles were investigated. Hard mature green mango (Mangifera indica L. cv. Kensigton Pride) fruits were coated with aqueous mango carnauba (1:1 v/v), Semperfresh (0.6%), Aloe vera gel (1:1, v/v), or A. vera gel (100%). Untreated fruit served as the control. Following the coating, fruits were allowed to dry at room temperature and packed in soft-board trays to ripen at 21+/-1 degrees C and 55.2+/-11.1% relative humidity until the eating soft stage. Mango carnauba was effective in retarding fruit ripening, retaining fruit firmness, and improving fruit quality attributes including levels of fatty acids and aroma volatiles. Semperfresh and A. vera gel (1:1 or 100%) slightly delayed fruit ripening but reduced fruit aroma volatile development. A. vera gel coating did not exceed the commercial mango carnauba and Semperfresh in retarding fruit ripening and improving aroma volatile biosynthesis. PMID:18247535

  15. Cloning and Expression of a Hexose Transporter Gene Expressed during the Ripening of Grape Berry1

    PubMed Central

    Fillion, Laurent; Ageorges, Agnès; Picaud, Sarah; Coutos-Thévenot, Pierre; Lemoine, Rémi; Romieu, Charles; Delrot, Serge

    1999-01-01

    The ripening of grape (Vitis vinifera L.) is characterized by massive sugar import into the berries. The events triggering this process and the pathways of assimilate transport are still poorly known. A genomic clone Vvht1 (Vitis vinifera hexose transporter1) and the corresponding cDNA encoding a hexose transporter whose expression is induced during berry ripening have been isolated. Vvht1 is expressed mainly in the berries, with a first peak of expression at anthesis, and a second peak about 5 weeks after véraison (a viniculture term for the inception of ripening). Vvht is strictly conserved between two grape cultivars (Pinot Noir and Ugni-Blanc). The organization of the Vvht1 genomic sequence is homologous to that of the Arabidopsis hexose transporter, but differs strongly from that of the Chlorella kessleri hexose transporter genes. The Vvht1 promoter sequence contains several potential regulating cis elements, including ethylene-, abscisic acid-, and sugar-responsive boxes. Comparison of the Vvht1 promoter with the promoter of grape alcohol dehydrogenase, which is expressed at the same time during ripening, also allowed the identification of a 15-bp consensus sequence, which suggests a possible co-regulation of the expression of these genes. The expression of Vvht1 during ripening indicates that sucrose is at least partially cleaved before uptake into the flesh cells. PMID:10444092

  16. Isozymes of antioxidative enzymes during ripening and storage of ber ( Ziziphus mauritiana Lamk.).

    PubMed

    Kumar, Sunil; Yadav, Praduman; Jain, Veena; Malhotra, Sarla P

    2014-02-01

    Isozyme profile of antioxidative enzymes viz. superoxide dismutase (SOD), peroxidase (POX), catalase (CAT) and ascorbate peroxidase (APX) was studied during ripening and storage of two cultivars of ber fruit (Ziziphus mauritiana Lamk.) differing in their shelf-lives viz. Umran (shelf-life, 8-9 d) and Kaithali (shelf-life, 4-5 d). The profile revealed that Umran variety exhibited three bands each of SOD and POX while in Kaithali, these enzymes had two isoenzymes throughout ripening. CAT and APX, however, showed two isozymes each during ripening of both the varieties and the pattern remained the same at all the stages of ripening except at the initial stage i.e immature green stage where single CAT isozyme was visible. During storage, one extra band each of SOD and POX present only in Umran got disappeared at later stages of storage, whereas in Kaithali, the pattern remained unchanged. Also, there was no change in the pattern of CAT and APX isozymes during storage of both the varieties. One isozyme of CAT could be considered as ripening related while one isozyme each of SOD and POX could be related to higher shelf life of fruits. PMID:24493891

  17. Modeling the Flushing Response to the Construction of a Low Crested Weir in the Banana River

    NASA Astrophysics Data System (ADS)

    Saberi, A.; Weaver, R. J.

    2014-12-01

    The ADCIRC hydrodynamic model coupled with a Lagrangian Particle Tracking Model (LPTM) is applied to study circulation in the Banana River. The purpose of this study is to determine the extent to which constructing a low crested weir adjacent to Port Canaveral can improve flushing in this region. The Banana River a 50 km long sub-basin of the Indian River Lagoon (IRL), located on the central-east coast of Florida in Brevard County between Cape Canaveral and Merritt Island. Although Banana River has an outlet to the ocean through the Port Canaveral locks, the locks remain closed when there is no passing vessel resulting in limited circulation, long flushing time and poor water quality. Recent high mortality events of different species, e.g. dolphins, manatees and pelicans in the lagoon ecosystem, can be linked to the decline in the water quality. ADCIRC is used to simulate the hydrodynamic properties of the study area and determine the 2D depth-averaged velocity field for two separate cases: one with only tidal and another with both tidal and meteorological forces considered. Simulations are run, first to establish the baseline hydrodynamics of the unmodified system, and then to predict the effects of modifying the domain. Passive particles are placed in the Banana River portion of our domain, and the movement of these particles is tracked using LPTM for both cases. Flushing and residence time are then computed. Results indicate an improvement in flushing in both the Banana River and the central Indian River Lagoon, driven by an induced southerly current. In the portion of the Banana River to the south of the port complex, tidal flushing time is significantly reduced for the case of modified domain. In this southern region the flushing time based on 50% renewal time, is decreased from 100 days down to 15 days, after the addition of the weir to the domain.

  18. A comparison between energy transfer and atmospheric turbulent exchanges over alpine meadow and banana plantation

    NASA Astrophysics Data System (ADS)

    Ding, Zhangwei; Ma, Yaoming; Wen, Zhiping; Ma, Weiqiang; Chen, Shiji

    2016-03-01

    Banana plantation and alpine meadow ecosystems in southern China and the Tibetan Plateau (TP) are unique in the underlying surfaces they exhibit. In this study, we used eddy covariance and a micrometeorological tower to examine the characteristics of land surface energy exchanges over a banana plantation in southern China and an alpine meadow in the Tibetan Plateau from May 2010 to August 2012. The results showed that the diurnal and seasonal variations in upward shortwave radiation flux and surface soil heat flux were larger over the alpine meadow than over the banana plantation surface. Dominant energy partitioning varied with season. Latent heat flux was the main consumer of net radiation flux in the growing season, whereas sensible heat flux was the main consumer during other periods. The Monin-Obukhov similarity theory was employed for comparative purposes, using sonic anemometer observations of flow over the surfaces of banana plantations in the humid southern China monsoon region and the semi-arid areas of the TP, and was found to be applicable. Over banana plantation and alpine meadow areas, the average surface albedo and surface aerodynamic roughness lengths under neutral atmospheric conditions were ˜0.128 and 0.47 m, and ˜0.223 and 0.01 m, respectively. During the measuring period, the mean annual bulk transfer coefficients for momentum and sensible heat were 1.47 × 10-2 and 7.13 × 10-3, and 2.91 × 10-3 and 1.96 × 10-3, for banana plantation and alpine meadow areas, respectively.

  19. Deleterious effects of plant cystatins against the banana weevil Cosmopolites sordidus.

    PubMed

    Kiggundu, Andrew; Muchwezi, Josephine; Van der Vyver, Christell; Viljoen, Altus; Vorster, Juan; Schlüter, Urte; Kunert, Karl; Michaud, Dominique

    2010-02-01

    The general potential of plant cystatins for the development of insect-resistant transgenic plants still remains to be established given the natural ability of several insects to compensate for the loss of digestive cysteine protease activities. Here we assessed the potential of cystatins for the development of banana lines resistant to the banana weevil Cosmopolites sordidus, a major pest of banana and plantain in Africa. Protease inhibitory assays were conducted with protein and methylcoumarin (MCA) peptide substrates to measure the inhibitory efficiency of different cystatins in vitro, followed by a diet assay with cystatin-infiltrated banana stem disks to monitor the impact of two plant cystatins, oryzacystatin I (OC-I, or OsCYS1) and papaya cystatin (CpCYS1), on the overall growth rate of weevil larvae. As observed earlier for other Coleoptera, banana weevils produce a variety of proteases for dietary protein digestion, including in particular Z-Phe-Arg-MCA-hydrolyzing (cathepsin L-like) and Z-Arg-Arg-MCA-hydrolyzing (cathepsin B-like) proteases active in mildly acidic conditions. Both enzyme populations were sensitive to the cysteine protease inhibitor E-64 and to different plant cystatins including OsCYS1. In line with the broad inhibitory effects of cystatins, OsCYS1 and CpCYS1 caused an important growth delay in young larvae developing for 10 days in cystatin-infiltrated banana stem disks. These promising results, which illustrate the susceptibility of C. sordidus to plant cystatins, are discussed in the light of recent hypotheses suggesting a key role for cathepsin B-like enzymes as a determinant for resistance or susceptibility to plant cystatins in Coleoptera. PMID:20035549

  20. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic 'Lady Finger' bananas.

    PubMed

    Paul, Jean-Yves; Becker, Douglas K; Dickman, Martin B; Harding, Robert M; Khanna, Harjeet K; Dale, James L

    2011-12-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition-related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, 'Lady Finger', were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3' UTR, and independently transformed plant lines were regenerated for testing. Following a 12-week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 × Bcl-xL, 3 × Ced-9 and 2 × Bcl-2 3' UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible 'Lady Finger' banana plants used as positive controls. Of these, one Bcl-2 3' UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23-week postinoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type 'Lady Finger' plants consistent with a necrotrophic phase in the life cycle of this pathogen. This was further supported by the observed reduction in these effects in the roots of the resistant Bcl-2 3' UTR-transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt. PMID:21819535

  1. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress

    PubMed Central

    Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang

    2015-01-01

    Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury. PMID:26074928

  2. Variable content and distribution of arabinogalactan proteins in banana (Musa spp.) under low temperature stress.

    PubMed

    Yan, Yonglian; Takáč, Tomáš; Li, Xiaoquan; Chen, Houbin; Wang, Yingying; Xu, Enfeng; Xie, Ling; Su, Zhaohua; Šamaj, Jozef; Xu, Chunxiang

    2015-01-01

    Information on the spatial distribution of arabinogalactan proteins (AGPs) in plant organs and tissues during plant reactions to low temperature (LT) is limited. In this study, the extracellular distribution of AGPs in banana leaves and roots, and their changes under LT stress were investigated in two genotypes differing in chilling tolerance, by immuno-techniques using 17 monoclonal antibodies against different AGP epitopes. Changes in total classical AGPs in banana leaves were also tested. The results showed that AGP epitopes recognized by JIM4, JIM14, JIM16, and CCRC-M32 antibodies were primarily distributed in leaf veins, while those recognized by JIM8, JIM13, JIM15, and PN16.4B4 antibodies exhibited predominant sclerenchymal localization. Epitopes recognized by LM2, LM14, and MAC207 antibodies were distributed in both epidermal and mesophyll cells. Both genotypes accumulated classical AGPs in leaves under LT treatment, and the chilling tolerant genotype contained higher classical AGPs at each temperature treatment. The abundance of JIM4 and JIM16 epitopes in the chilling-sensitive genotype decreased slightly after LT treatment, and this trend was opposite for the tolerant one. LT induced accumulation of LM2- and LM14-immunoreactive AGPs in the tolerant genotype compared to the sensitive one, especially in phloem and mesophyll cells. These epitopes thus might play important roles in banana LT tolerance. Different AGP components also showed differential distribution patterns in banana roots. In general, banana roots started to accumulate AGPs under LT treatment earlier than leaves. The levels of AGPs recognized by MAC207 and JIM13 antibodies in the control roots of the tolerant genotype were higher than in the chilling sensitive one. Furthermore, the chilling tolerant genotype showed high immuno-reactivity against JIM13 antibody. These results indicate that several AGPs are likely involved in banana tolerance to chilling injury. PMID:26074928

  3. Production of mixed fruit (pawpaw, banana and watermelon) wine using Saccharomyces cerevisiae isolated from palm wine.

    PubMed

    Ogodo, Alloysius Chibuike; Ugbogu, Ositadinma Chinyere; Ugbogu, Amadike Eziuche; Ezeonu, Chukwuma Stephen

    2015-01-01

    Pawpaw, banana and watermelon are tropical fruits with short shelf-lives under the prevailing temperatures and humid conditions in tropical countries like Nigeria. Production of wine from these fruits could help reduce the level of post-harvest loss and increase variety of wines. Pawpaw, banana and watermelon were used to produce mixed fruit wines using Saccharomyces cerevisiae isolated from palm wine. Exactly 609 and 406 g each of the fruits in two-mixed and three-mixed fruit fermentation respectively were crushed using laboratory blender, mixed with distilled water (1:1 w/v), and heated for 30 min with subsequent addition of sugar (0.656 kg). The fruit musts were subjected to primary (aerobic) and secondary (anaerobic) fermentation for 4 and 21 days respectively. During fermentation, aliquots were removed from the fermentation tank for analysis. During primary fermentation, consistent increases in alcohol contents (ranging from 0.0 to 15.0 %) and total acidities (ranging from 0.20 to 0.80 %) were observed with gradual decrease in specific gravities (ranging from 1.060 to 0.9800) and pH (ranging from 4.80 to 2.90). Temperature ranged from 27 °C to 29 °C. The alcoholic content of the final wines were 17.50 ± 0.02 % (pawpaw and watermelon), 16.00 ± 0.02 % (pawpaw and banana), 18.50 ± 0.02 % (banana and watermelon wine) and 18.00 ± 0.02 % (pawpaw, banana and watermelon). The alcoholic content of the wines did not differ significantly (p > 0.05). The pH of all the wines were acidic and ranged from 2.5 ± 0.01 to 3.8 ± 0.01 (p > 0.05). The acid concentration (residual and volatile acidity) were within the acceptable limit and ranged from 0.35 ± 0.02 to 0.88 ± 0.01 % (p > 0.05). Sensory evaluation (P > 0.05) rated the wines acceptability as 'pawpaw and banana wine' > 'pawpaw and watermelon' > 'pawpaw, watermelon and banana' > 'banana and watermelon wine'. This study has shown that acceptable mixed fruit wines could be

  4. Quantitative trait loci affecting pathogen resistance and ripening of grapevines.

    PubMed

    Zyprian, Eva; Ochßner, Iris; Schwander, Florian; Šimon, Silvio; Hausmann, Ludger; Bonow-Rex, Martina; Moreno-Sanz, Paula; Grando, Maria Stella; Wiedemann-Merdinoglu, Sabine; Merdinoglu, Didier; Eibach, Rudolf; Töpfer, Reinhard

    2016-08-01

    Grapevines (Vitis vinifera L.) form the basis of viticulture, and are susceptible to diseases such as downy mildew (Plasmopara viticola) and powdery mildew (Erysiphe necator). Therefore, successful viticulture programs require the use of pesticides. Breeding for resistance is the only eco-friendly solution. Marker-assisted selection is currently widely used for grapevine breeding. Consequently, traits of interest must be tagged with molecular markers linked to quantitative trait loci (QTL). We herein present our findings regarding genetic mapping and QTL analysis of resistance to downy and powdery mildew diseases in the progenies of the GF.GA-47-42 ('Bacchus' × 'Seyval') × 'Villard blanc' cross. Simple sequence repeats and single nucleotide polymorphisms of 151 individuals were analyzed. A map consisting of 543 loci was screened for QTL analyses based on phenotypic variations observed in plants grown in the field or under controlled conditions. A major QTL for downy mildew resistance was detected on chromosome 18. For powdery mildew resistance, a QTL was identified on chromosome 15. This QTL was replaced by a novel QTL on chromosome 18 in 2003 (abnormally high temperatures) and 2004. Subsequently, both QTLs functioned together. Additionally, variations in the timing of the onset of veraison, which is a crucial step during grape ripening, were studied to identify genomic regions affecting this trait. A major QTL was detected on linkage group 16, which was supplemented by a minor QTL on linkage group 18. This study provides useful information regarding novel QTL-linked markers relevant for the breeding of disease-resistant grapevines adapted to current climatic conditions. PMID:27038830

  5. The effect of time of whitefly infestation and plant nutrition on the development of tomato irregular ripening disorder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato irregular ripening (TIR) is a physiological plant disorder caused by Bemisia tabaci biotype B feeding on foliage and resulting in incomplete ripening of longitudinal sections of fruit.Our objective was to determine the effect of time of whitefly infestation and plant nutrition on the developm...

  6. The effect of time of sweetpotato whitefly infestation on plant nutrition and development of tomato irregular ripening disorder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tomato irregular ripening (TIR) disorder is associated with Bemisia tabaci biotype B feeding and is characterized by incomplete ripening of longitudinal sections of fruit. Our objective was to determine the effect of time of whitefly infestation on plant nutrition and the development of tomato irreg...

  7. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To gain insight into the molecular process regulating ripening in apple, and to compare to tomato, we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. T...

  8. Effects of after-ripening and storage regimes on seed germination behavior of seven species of Physaria germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The after-ripening response has been well documented in many plant species but studies of this topic are lacking in many new oilseed crops such as Physaria. In a factorial experiment, we tested the effect of different after-ripening periods and germination conditions on freshly harvested seeds of se...

  9. Tomato golden 2-like (GLK) transcription factors reveal molecular gradients that function during fruit development and ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fruit ripening is the summation of changes rendering fleshy fruit tissues attractive and palatable to seed dispersing organisms. For example, sugar content is influenced by plastid numbers and photosynthetic activity in unripe fruit and later by starch and sugar catabolism during ripening. Tomato fr...

  10. Influence of cold storage prior to and after ripening on quality factors and sensory attributes of ‘Hass’ avocados

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Partially-ripened avocados are often held in cold storage in an attempt to enable the consistent delivery of ripe fruit to food service or retail outlets, although the effect on the quality of such fruit is incompletely understood. ‘Hass’ avocados were ripened to near ripeness (13.3 - 17.8 N) at 20 ...

  11. Effects of after-ripening and storage regimes on seed-germination behavior of seven species of Physaria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The after-ripening response has been well documented in many plant species but studies of this topic are lacking in many new oilseed crops such as Physaria. In a factorial experiment, we tested the effect of different after-ripening periods and germination conditions on freshly harvested seeds of se...

  12. A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transition of fleshy fruit maturation to ripening is regulated by exogenous and endogenous signals which coordinate the transition of the fruit to a final state of attractiveness to seed dispersing organisms. Tomato is a model for biology and genetics regulating specific ripening pathways includ...

  13. The Impact of Ripening Time on Technological Quality Traits, Chemical Change and Sensory Characteristics of Dry-cured Loin

    PubMed Central

    Seong, Pil Nam; Park, Kyoung Mi; Kang, Geun Ho; Cho, Soo Hyun; Park, Beom Young; Van Ba, Hoa

    2015-01-01

    The effect of ripening time on the technological quality traits, fatty acid compositions and sensory characteristics of dry-cured loin was studied. Pork loins (n = 102) at 24 h post-mortem were used to produce dry-cured loins. The dry-cured loins were assessed at 30, 60, and 90 days of ripening for the aforementioned characteristics. Our results showed that the water activity (aw) decreased (p<0.05) up to 60 days and did not change thereafter. The lipid oxidation and weight loss levels significantly (p<0.05) increased with increased ripening time. The Commission Internationale de l’Eclairage (CIE) L* decreased for 90 days while CIE a* increased for 60 days and did not increase thereafter. More noticeably, the levels of most of unsaturated fatty acids and total polyunsaturated fatty acids significantly decreased as increasing ripening time up to 90 days. The 30 days-ripened loins had lower (p<0.05) color, flavor and overall acceptability scores than the loins ripened for 60 and 90 days, however, no differences in sensory traits occurred between the 60 and 90 day-ripened samples. Based on the results obtained in the present study, it is suggested that the ripening duration between 30 and 60 days could be more appropriate for producing dry-cured loin product with higher quality and economic benefits. PMID:25715685

  14. Simulation of particle growth and Ostwald ripening via the Cahn-Hilliard equations

    NASA Astrophysics Data System (ADS)

    Kupper, T.; Masbaum, N.

    1994-06-01

    The Cahn-Hilliard-Equation (CHE) is a diffusion equation extended by terms taking interfacial energies into account. It has been established as a useful tool to understand phase separation of a binary system in a qualitatively correct frame. We study the processes of phase separation by numerical simulations based on the CHE. Specifically we consider the growth of particles in a supersaturated matrix as well as the process of Ostwald ripening. In both cases the results are compared with established theories such as Zener's law and the LSW-theory for Ostwald ripening. The numerical simulation, especially in the case of Ostwald ripening, can be helpful to answer open questions concerning the dependence of the growth rate and the asymptotic distribution of the particle sizes as a function of the volume fraction of the precipitate. As an example for the parameters of the CHE we have chosen the monotectic alloy aluminum-indium.

  15. Simulation of particle growth and Ostwald ripening via the Cahn-Hilliard equation

    SciTech Connect

    Kuepper, T.; Masbaum, N. . Mathematisches Inst.)

    1994-06-01

    The Cahn-Hilliard-equation (CHE) is a diffusion equation extended by terms taking interfacial energies into account. It has been established as a useful tool to understand phase separation of a binary system in a qualitatively correct frame. The authors study the processes of phase separation by numerical simulations based on the CHE. Specifically they consider the growth of particles in a supersaturated matrix as well as the process of Ostwald ripening. In both cases the results are compared with established theories such as Zener's law and the LSW-theory for Ostwald ripening. The numerical simulation, especially in the case of Ostwald ripening, can be helpful to answer open questions concerning the dependence of the growth rate and the asymptotic distribution of the particle sizes as a function of the volume fraction of the precipitate. As an example for the parameters of the CHE they have chosen the monotectic alloy aluminium-indium.

  16. Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.

    PubMed

    Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana

    2016-01-13

    Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers. PMID:26627983

  17. Quality characteristics and antioxidant properties of Turkish monovarietal olive oils regarding stages of olive ripening.

    PubMed

    Köseoğlu, Oya; Sevim, Didar; Kadiroğlu, Pınar

    2016-12-01

    The aim of this study was to discriminate the extra virgin olive oils (EVOO) based on quality characteristics, chemical composition and antioxidant activity according to ripening stages of olives. Two different olive varieties (Memecik and Gemlik) were obtained at different stages of ripening based on skin color (green, purple and black). Quality properties of olive oils; free fatty acidity, peroxide value, K232 and K270, purity properties; fatty acid and triacylglycerol (TAG) composition and antioxidant compounds like total phenol, carotenoid and chlorophyll content and antioxidant activity (oxidative stability, ABTS radical scavenging activity) analyses were performed. Higher amount of oleic, linoleic and palmitic acids were observed in olive oils. Oleic acid amount of olive oils decreased, linoleic acid increased with ripening. The most abundant TAG of olive oils were ECN 48, OOO, SLO+POO, ECN 46 and LOO/PLO. Olive oils were clearly classified by principal component analysis based on fatty acid and TAG composition. PMID:27374577

  18. Evolution of aroma and phenolic compounds during ripening of 'superior seedless' grapes.

    PubMed

    Hellín, Pilar; Manso, Angela; Flores, Pilar; Fenoll, José

    2010-05-26

    The evolution of aroma and phenolic compounds was studied during ripening of Vitis vinifera cv. 'Superior Seedless' grapes in two consecutive years. The major free detected compounds were citral, geraniol, and benzyl alcohol whereas geraniol, citral, nerol, citronellol, dienediol I, linalol oxide I, linalol oxide II, benzyl alcohol, and 2-phenylethanol were identified in the glycosidically bound fraction. Concentrations of the main free terpene alcohols responsible for 'Superior Seedless' aroma decreased during grape development, and bound compounds became predominant at grape maturity. Calculation of odor activity values showed that geraniol was the most active odorant followed to a lesser extent by citral and nerol. With regard to phenolic compound evolution, flavan-3-ols and flavonols were maximal at veraison and decreased throughout the ripening, stilbenes content decreased from the first stage, and total phenolics increased to show a maximum in the ripe grapes. At ripening, quercetin 3-O-glucoside and catechin were the main compounds detected in 'Superior Seedless'. PMID:20438135

  19. Evolution of the taste of a bitter Camembert cheese during ripening: characterization of a matrix effect.

    PubMed

    Engel, E; Nicklaus, S; Septier, C; Salles, C; Le Quéré, J L

    2001-06-01

    The objective of this study was to characterize the effect of ripening on the taste of a typically bitter Camembert cheese. The first step was to select a typically bitter cheese among several products obtained by different processes supposed to enhance this taste defect. Second, the evolution of cheese taste during ripening was characterized from a sensory point of view. Finally, the relative impact of fat, proteins, and water-soluble molecules on cheese taste was determined by using omission tests performed on a reconstituted cheese. These omission tests showed that cheese taste resulted mainly from the gustatory properties of water-soluble molecules but was modulated by a matrix effect due to fat, proteins, and cheese structure. The evolution of this matrix effect during ripening was discussed for each taste characteristic. PMID:11409989

  20. Earlier wine-grape ripening driven by climatic warming and drying and management practices

    NASA Astrophysics Data System (ADS)

    Webb, L. B.; Whetton, P. H.; Bhend, J.; Darbyshire, R.; Briggs, P. R.; Barlow, E. W. R.

    2012-04-01

    Trends in phenological phases associated with climate change are widely reported--yet attribution remains rare. Attribution research in biological systems is critical in assisting stakeholders to develop adaptation strategies, particularly if human factors may be exacerbating impacts. Detailed, quantified attribution helps to effectively target adaptation strategies, and counters recent tendencies to overattribute phenological trends to climate shifts. Wine grapes have been ripening earlier in Australia in recent years, often with undesirable impacts. Attribution analysis of detected trends in wine-grape maturity, using time series of up to 64 years in duration, indicates that two climate variables--warming and declines in soil water content--are driving a major portion of this ripening trend. Crop-yield reductions and evolving management practices have probably also contributed to earlier ripening. Potential adaptation options are identified, as some drivers of the trend to earlier maturity can be manipulated through directed management initiatives, such as managing soil moisture and crop yield.