Science.gov

Sample records for bands on-orbit calibration

  1. MODIS On-orbit Spectral Calibration for the Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Che, N.; Barnes, W.

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) makes observations in 36 spectral bands with wavelengths from 0.41 to 14.5 microns. The bands with center wavelengths below 2.2 microns are referred as the reflective solar bands (RSB) with their radiometric calibration performed by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). This paper focuses on the MODIS spectral calibration performed by its unique on-board calibrator (OBC): the Spectro-Radiometric Calibration Assembly (SRCA). When operated in the spectral mode, the SRCA acts as a monochromator with internal spherical integration source (SIS) that measures the spectral responses for all the reflective solar bands. A wavelength calibrator, a didymium filter with known spectral profile, is utilized to calibrate the wavelength scale for the grating positions during each SRCA spectral calibration activity. The capability of self-wavelength calibration allows the SRCA to track the center wavelength shifts and to monitor the spectral response changes throughout the instruments lifetime. The MODIS spectral calibration, same for both Terra and Aqua missions, is performed every three months on-orbit. An overview of MODIS spectral characterization approach and a summary of the on-orbit results will be presented in this paper.

  2. On-Orbit Calibration and Performance of Aqua MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Xie, Xiaobo; Barnes, William; Salomonson, Vincent

    2009-01-01

    Aqua MODIS has successfully operated on-orbit for more than 6 years since its launch in May 2002, continuously making global observations and improving studies of changes in the Earth's climate and environment. 20 of the 36 MODIS spectral bands, covering wavelengths from 0.41 to 2.2 microns, are the reflective solar bands (RSB). They are calibrated on-orbit using an on-board solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition, regularly scheduled lunar observations are made to track the RSB calibration stability. This paper presents Aqua MODIS RSB on-orbit calibration and characterization activities, methodologies, and performance. Included in this study are characterizations of detector signal-to-noise ratio (SNR), short-term stability, and long-term response change. Spectral wavelength dependent degradation of the SD bidirectional reflectance factor (BRF) and scan mirror reflectance, which also varies with angle of incidence (AOI), are examined. On-orbit results show that Aqua MODIS onboard calibrators have performed well, enabling accurate calibration coefficients to be derived and updated for the Level 1B (L1B) production and assuring high quality science data products to be continuously generated and distributed. Since launch, the short-term response, on a scan-by-scan basis, has remained extremely stable for most RSB detectors. With the exception of band 6, there have been no new RSB noisy or inoperable detectors. Like its predecessor, Terra MODIS, launched in December 1999, the Aqua MODIS visible (VIS) spectral bands have experienced relatively large changes, with an annual response decrease (mirror side 1) of 3.6% for band 8 at 0.412 microns, 2.3% for band 9 at 0.443 microns, 1.6% for band 3 at 0.469 microns, and 1.2% for band 10 at 0.488 microns. For other RSB bands with wavelengths greater than 0.5 microns, the annual response changes are typically less than 0.5%. In general, Aqua MODIS optics degradation is smaller than Terra

  3. VIIRS reflective solar bands on-orbit calibration and performance: a three-year update

    NASA Astrophysics Data System (ADS)

    Sun, Junqiang; Wang, Menghua

    2014-11-01

    The on-orbit calibration of the reflective solar bands (RSBs) of VIIRS and the result from the analysis of the up-to-date 3 years of mission data are presented. The VIIRS solar diffuser (SD) and lunar calibration methodology are discussed, and the calibration coefficients, called F-factors, for the RSBs are given for the latest reincarnation. The coefficients derived from the two calibrations are compared and the uncertainties of the calibrations are discussed. Numerous improvements are made, with the major improvement to the calibration result come mainly from the improved bidirectional reflectance factor (BRF) of the SD and the vignetting functions of both the SD screen and the sun-view screen. The very clean results, devoid of many previously known noises and artifacts, assures that VIIRS has performed well for the three years on orbit since launch, and in particular that the solar diffuser stability monitor (SDSM) is functioning essentially without flaws. The SD degradation, or H-factors, for most part shows the expected decline except for the surprising rise on day 830 lasting for 75 days signaling a new degradation phenomenon. Nevertheless the SDSM and the calibration methodology have successfully captured the SD degradation for RSB calibration. The overall improvement has the most significant and direct impact on the ocean color products which demands high accuracy from RSB observations.

  4. VIIRS thermal emissive bands on-orbit calibration coefficient performance using vicarious calibration results

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Moeller, C.; De Luccia, F.

    2013-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS), a primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, was launched October 28, 2011. It has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The TEBs cover the spectral wavelengths between 3.7 to 12 μm and have two 371 m and five 742 m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the sea surface temperature (SST) which uses bands M12 (3.7 μm), M15 (10.8 μm) and M16's (12.0 μm) calibrated Science Data Records (SDRs). The TEB SDRs rely on pre-launch calibration coefficients used in a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using vicarious calibration information from the Cross-track Infrared Sounder (CrIS) also onboard the SNPP spacecraft and the Infrared Atmospheric Sounding Interferometer (IASI) on-board the Meteorological Operational (MetOp) satellite. Changes to the pre-launch calibration coefficients' offset term c0 to improve the SDR's performance at cold scene temperatures will also be discussed.

  5. Terra and Aqua MODIS Thermal Emissive Bands On-Orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.; Madhavan, Sriharsha; Wang, Zhipeng; Li, Yonghong; Chen, Na; Barnes, William L.; Salomonson, Vincent V.

    2015-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on the Terra and Aqua spacecraft have operated successfully for more than 14 and 12 years, respectively. A key instrument for National Aeronautics and Space Administration Earth Observing System missions, MODIS was designed to make continuous observations for studies of Earth's land, ocean, and atmospheric properties and to extend existing data records from heritage Earth observing sensors. The 16 thermal emissive bands (TEBs) (3.75-14.24 micrometers) are calibrated on orbit using a temperature controlled blackbody (BB). Both Terra and Aqua MODIS BBs have displayed minimal drift over the mission lifetime, and the seasonal variations of the BB temperature are extremely small in Aqua MODIS. The long-term gain and noise equivalent difference in temperature performance of the 160 TEB detectors on both MODIS instruments have been well behaved and generally very stable. Small but noticeable variations of Aqua MODIS bands 33-36 (13.34-14.24 micrometer) response in recent years are primarily due to loss of temperature control margin of its passive cryoradiative cooler. As a result, fixed calibration coefficients, previously used by bands when the BB temperature is above their saturation temperatures, are replaced by the focal-plane-temperature-dependent calibration coefficients. This paper presents an overview of the MODIS TEB calibration, the on-orbit performance, and the challenging issues likely to impact the instruments as they continue operating well past their designed lifetime of six years.

  6. Performance of MODIS Thermal Emissive Bands On-orbit Calibration Algorithms

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chang, T.

    2009-01-01

    Two nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) are currently operated on-board the Terra and Aqua spacecrafts, launched in December 1999 and May 2002, respectively. Together, they have produced an unprecedented amount of science data products, which are widely used for the studies of changes in the Earth's system of land, oceans, and atmosphere. MODIS is a cross-track scanning radiometer, which uses a two-sided scan mirror and collects data continuously over a wide scan angle range (+/-55 degree relative to the instrument nadir) each scan of 1.47 seconds. It has 36 spectral bands with wavelengths ranging from visible (VIS) to long-wave infrared (LWIR). MODIS bands 1-19 and 26 are the reflective solar bands (RSB) and bands 20-25 and 27-36 are the thermal emissive bands (TEB). MODIS was developed and designed with improvements made over its heritage sensors (such as AVHRR and Landsat) and, in particular, with more stringent calibration requirements. Because of this, MODIS was built with a set of state-of-art on-board calibrators (OBC), which include a solar diffuser (SD), a solar diffuser stability monitor (SDSM), a blackbody (BB), a spectroradiometric calibration assembly (SRCA), and a space view (SV) port. With the exception of view angle differences, MODIS OBC measurements and the Earth View (EV) observations are made via the same optical path. MODIS TEB have a total of 160 individual TEB detectors (10 per band), which are located on two cold focal plane assemblies (CFPA). For nominal on-orbit operation, the CFPA temperature is controlled at 83K via a passive radiative cooler. For the TEB, the calibration requirements at specified typical scene radiances are less than or equal to 1% with an exception for the fire detection (low gain) band. MODIS TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic calibration algorithm, and data collected from sensor responses to the onboard BB and SV. The BB

  7. VIIRS reflective solar bands on-orbit calibration coefficient performance using imagery and moderate band intercomparisons

    NASA Astrophysics Data System (ADS)

    Moyer, D.; Vandermierden, N.; Rausch, K.; De Luccia, F.

    2014-09-01

    A primary sensor on-board the Suomi-National Polar-orbiting Partnership (SNPP) spacecraft, the Visible Infrared Imaging Radiometer Suite (VIIRS) has 22 bands: 7 thermal emissive bands (TEBs), 14 reflective solar bands (RSBs) and a Day Night Band (DNB). The RSBs cover the spectral wavelengths between 0.412 to 2.25 μm and have three (I1-I3) 371m and eleven (M1-M11) 742m spatial resolution bands. A VIIRS Key Performance Parameter (KPP) is the Ocean Color/Chlorophyll (OCC) which uses moderate bands M1 (0.412μm) through M7's (0.865 μm) calibrated Science Data Records (SDRs). The RSB SDRs rely on prelaunch calibration coefficients which use a quadratic algorithm to convert the detector's response to calibrated radiance. This paper will evaluate the performance of these prelaunch calibration coefficients using SDR comparisons between bands with the same spectral characteristics: I2 with M7 (0.865 μm) and I3 with M10 (1.610 μm). Changes to the prelaunch calibration coefficient's offset term c0 to improve the SDR's performance at low radiance levels will also be discussed.

  8. Multiyear On-orbit Calibration and Performance of Terra MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwo-Fu; Wu, Aisheng; Barnes, William; Guenther, Bruce; Salomonson, Vincent

    2007-01-01

    Since launch in December 1999, Terra MODIS has been making continuous Earth observations for more than seven years. It has produced a broad range of land, ocean, and atmospheric science data products for improvements in studies of global climate and environmental change. Among its 36 spectral bands, there are 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS thermal emissive bands cover the mid-wave infrared (MWIR) and long-wave infrared (LWIR) spectral regions with wavelengths from 3.7 to 14.4pm. They are calibrated on-orbit using an on-board blackbody (BB) with its temperature measured by a set of thermistors on a scan-by-scan basis. This paper will provide a brief overview of MODIS TEB calibration and characterization methodologies and illustrate on-board BB functions and TEB performance over more than seven years of on-orbit operation and calibration. Discussions will be focused on TEB detector short-term stability and noise characterization, and changes in long-term response (or system gain). Results show that Terra MODIS BB operation has been extremely stable since launch. When operated at its nominal controlled temperature of 290K, the BB temperature variation is typically less than +0.30mK on a scan-by-scan basis and there has been no time-dependent temperature drift. In addition to excellent short-term stability, most TEB detectors continue to meet or exceed their specified noise characterization requirements, thus enabling calibration accuracy and science data product quality to be maintained. Excluding the noisy detectors identified pre-launch and those that occurred post-launch, the changes in TEB responses have been less than 0.7% on an annual basis. The optical leak corrections applied to bands 32-36 have been effective and stable over the entire mission

  9. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  10. Initial on-orbit radiometric calibration of the Suomi NPP VIIRS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Kwofu; Xiong, Xiaoxiong

    2012-09-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector's digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  11. Initial On-Orbit Radiometric Calibration of the Suomi NPP VIIRS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Lei, Ning; Wang, Zhipeng; Fulbright, Jon; Lee, Shihyan; McIntire, Jeff; Chiang, Vincent; Xiong, Jack

    2012-01-01

    The on-orbit radiometric response calibration of the VISible/Near InfraRed (VISNIR) and the Short-Wave InfraRed (SWIR) bands of the Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP) satellite is carried out through a Solar Diffuser (SD). The transmittance of the SD screen and the SD's Bidirectional Reflectance Distribution Function (BRDF) are measured before launch and tabulated, allowing the VIIRS sensor aperture spectral radiance to be accurately determined. The radiometric response of a detector is described by a quadratic polynomial of the detector?s digital number (dn). The coefficients were determined before launch. Once on orbit, the coefficients are assumed to change by a common factor: the F-factor. The radiance scattered from the SD allows the determination of the F-factor. In this Proceeding, we describe the methodology and the associated algorithms in the determination of the F-factors and discuss the results.

  12. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  13. On-orbit performance and calibration improvements for the reflective solar bands of Terra and Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Xiong, Xiaoxiong (Jack); Wu, Aisheng; Chen, Hongda; Geng, Xu; Link, Daniel; Li, Yonghong; Wald, Andrew; Brinkmann, Jake

    2016-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) is the keystone instrument for NASA's EOS Terra and Aqua missions, designed to extend and improve heritage sensor measurements and data records of the land, oceans and atmosphere. The reflective solar bands (RSB) of MODIS covering wavelengths from 0.41 μm to 2.2 μm, are calibrated on-orbit using a solar diffuser (SD), with its on-orbit bi-directional reflectance factor (BRF) changes tracked using a solar diffuser stability monitor (SDSM). MODIS is a scanning radiometer using a two-sided paddle-wheel mirror to collect earth view (EV) data over a range of +/-55° off instrument nadir. In addition to the solar calibration provided by the SD and SDSM system, lunar observations at nearly constant phase angles are regularly scheduled to monitor the RSB calibration stability. For both Terra and Aqua MODIS, the SD and lunar observations are used together to track the on-orbit changes of RSB response versus scan angle (RVS) as the SD and SV port are viewed at different angles of incidence (AOI) on the scan mirror. The MODIS Level 1B (L1B) Collection 6 (C6) algorithm incorporated several enhancements over its predecessor Collection 5 (C5) algorithm. A notable improvement was the use of the earth-view (EV) response trends from pseudo-invariant desert targets to characterize the on-orbit RVS for select RSB (Terra bands 1-4, 8, 9 and Aqua bands 8, 9) and the time, AOI, and wavelength-dependent uncertainty. The MODIS Characterization Support Team (MCST) has been maintaining and enhancing the C6 algorithm since its first update in November, 2011 for Aqua MODIS, and February, 2012 for Terra MODIS. Several calibration improvements have been incorporated that include extending the EV-based RVS approach to other RSB, additional correction for SD degradation at SWIR wavelengths, and alternative approaches for on-orbit RVS characterization. In addition to the on-orbit performance of the MODIS RSB, this paper also discusses in

  14. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-08-20

    nm, Band M11), respectively, since 20 January 2012. It is established that the SD calibration accurately catches the on-orbit RSB degradation according to the instrument design and the calibration algorithm. However, due to the inherent nonuniform degradation of the SD affecting especially the short wavelength bands and the lack of capability of the SDSM calibration to catch degradation beyond 935 nm, the direct and the unmitigated application of the SD calibration result will introduce nonnegligible error into the calibration coefficients resulting in long-term drifts in the sensor data records and consequently the high-level products. We explicitly unveil the effect of the nonuniformity in SD degradation in the RSB calibration coefficients but also briefly discuss a critical yet simple mitigation to restore the accuracy of the calibration coefficients based on lunar observations. The methodology presented here thus remains intact as the cornerstone of the RSB calibration, and our derived RSB calibration coefficients represent the optimal result. This work has the most impact on the quality of the ocean color products that sensitively depend on the moderate visible and NIR bands (M1-M7), as well as the SWIR bands (M8, M10, and M11). PMID:26368755

  15. MODIS On-orbit Calibration Uncertainty Assessment

    NASA Technical Reports Server (NTRS)

    Chiang, Vincent; Sun, Junqiang; Wu, Aisheng

    2011-01-01

    MODIS has 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). Compared to its heritage sensors, MODIS was developed with very stringent calibration uncertainty requirements. As a result, MODIS was designed and built with a set of on-board calibrators (OBC), which allow key sensor performance parameters and on-orbit calibration coefficients to be monitored and updated. In terms of its calibration traceability, MODIS RSB calibration is reflectance based using an on-board solar diffuser (SD) and the TEB calibration is radiance based using an on-board blackbody (BB). In addition to on-orbit calibration coefficients derived from its OBC, calibration parameters determined from sensor pre-launch calibration and characterization are used in both the RSB and TEB calibration and retrieval algorithms. This paper provides a brief description of MODIS calibration methodologies and an in-depth analysis of its on-orbit calibration uncertainties. Also discussed in this paper are uncertainty contributions from individual components and differences due to Terra and Aqua MODIS instrument characteristics and on-orbit performance.

  16. Radiometric calibration of GOSAT TANSO-FTS SWIR bands: comparison of vicarious to on-orbit results

    NASA Astrophysics Data System (ADS)

    Taylor, T. E.; O'Dell, C.; O'Brien, D. M.; Kataoka, F.; Kuze, A.; Bruegge, C.

    2012-12-01

    The Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) aboard the Greenhouse gases Observing SATellite (GOSAT) has been providing global, space-based measurements of solar reflected radiances since early 2009. Several operational or semi-operational algorithms exist to invert the measured radiances, producing column-averaged carbon dioxide (CO2) dry air mole fraction (XCO2). The resulting XCO2 are used as inputs to flux inversion models to determine sources and sinks of CO2. An accurate radiometric calibration of the TANSO-FTS short wave infrared (SWIR) channels is required in order to yield results with high accuracy. In this work we summarize the latest estimation of ground-based vicarious calibration coefficients (VCC) from four separate field campaigns conducted at the Railroad Valley playa in June of 2009-2012. We then provide a comparison of the time-dependent VCC with the results from the radiometric calibration performed using on-orbit solar observations. While both approaches indicate some radiometric degradation in the SWIR bands, with the strongest decay in the Oxygen-A band, the magnitude of the changes disagree.

  17. Calibration effects on orbit determination

    NASA Technical Reports Server (NTRS)

    Madrid, G. A.; Winn, F. B.; Zielenbach, J. W.; Yip, K. B.

    1974-01-01

    The effects of charged particle and tropospheric calibrations on the orbit determination (OD) process are analyzed. The calibration process consisted of correcting the Doppler observables for the media effects. Calibrated and uncalibrated Doppler data sets were used to obtain OD results for past missions as well as Mariner Mars 1971. Comparisons of these Doppler reductions show the significance of the calibrations. For the MM'71 mission, the media calibrations proved themselves effective in diminishing the overall B-plane error and reducing the Doppler residual signatures.

  18. Aqua MODIS 8-Year On-Orbit Operation and Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Madhavan, Sriharsha; Choi, Taeyoung; Dodd, Jennifer; Geng, Xu; Wang, Zhipeng; Toller, Gary; Barnes, William

    2010-01-01

    Launched in May 2002, the NASA EOS Aqua MODIS has successfully operated for more than 8 years. Observations from Aqua MODIS and its predecessor, Terra MODIS, have generated an unprecedented amount of data products and made significant contributions to studies of changes in the Earth s system of land, oceans, and atmosphere. MODIS collects data in 36 spectral bands: 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). It has a set of on-board calibrators (OBC), providing sensor on-orbit radiometric, spectral, and spatial calibration and characterization. This paper briefly summarizes Aqua MODIS on-orbit operation and calibration activities and illustrates instrument on-orbit performance from launch to present. Discussions are focused on OBC functions and changes in detector radiometric gains, spectral responses, and spatial registrations. With ongoing calibration effort, Aqua MODIS will continue serving the science community with high quality data products

  19. Early on-orbit calibration results from Aqua MODIS

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Barnes, William L.

    2003-04-01

    Aqua MODIS, also known as the MODIS Flight Model 1 (FM1), was launched on May 4, 2002. It opened its nadir aperture door (NAD) on June 24, 2002, beginning its Earth observing mission. In this paper, we present early results from Aqua MODIS on-orbit calibration and characterization and assess the instrument's overall performance. MODIS has 36 spectral bands located on four focal plane assemblies (FPAs). Bands 1-19, and 26 with wavelengths from 0.412 to 2.1 microns are the reflective solar bands (RSB) that are calibrated on-orbit by a solar diffuser (SD). The degradation of the SD is tracked using a solar diffuser stability monitor (SDSM). The bands 20-25, and 27-36 with wavelengths from 3.75 to 14.5 microns are the thermal emissive bands (TEB) that are calibrated on-orbit by a blackbody (BB). Early results indicate that the on-orbit performance has been in good agreement with the predications determined from pre-launch measurements. Except for band 21, the low gain fire band, band 6, known to have some inoperable detectors from pre-launch characterization, and one noisy detector in band 36, all of the detectors' noise characterizations are within their specifications. Examples of the sensor's short-term and limited long-term responses in both TEB and RSB will be provided to illustrate the sensor's on-orbit stability. In addition, we will show some of the improvements that Aqua MODIS made over its predecessor, Terra MODIS (Protoflight Model - PFM), such as removal of the optical leak into the long-wave infrared (LWIR) photoconductive (PC) bands and reduction of electronic crosstalk and out-of-band (OOB) thermal leak into the short-wave infrared (SWIR) bands.

  20. VIIRS on-orbit calibration methodology and performance

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Butler, James; Chiang, Kwofu; Efremova, Boryana; Fulbright, Jon; Lei, Ning; McIntire, Jeff; Oudrari, Hassan; Sun, Junqiang; Wang, Zhipeng; Wu, Aisheng

    2014-05-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor aboard the Suomi National Polar-orbiting Partnership spacecraft has successfully operated since its launch in October 2011. The VIIRS collects data in 22 spectral bands that are calibrated by a set of onboard calibrators (OBC). In addition, lunar observations are made to independently track VIIRS long-term calibration stability for the reflective solar bands (RSB). This paper provides an overview of VIIRS OBC functions as well as its on-orbit operation and calibration activities. It also describes sensor calibration methodologies and demonstrates VIIRS on-orbit performance from launch to present. Results reported in this paper include on-orbit changes in sensor spectral band responses, detector noise characterization, and key calibration parameters. Issues identified and their potential impacts on sensor calibration are also discussed. Since launch, the VIIRS instrument nominal operation temperature has been stable to within ±1.0 K. The cold focal plane temperatures have been well controlled, with variations of less than 20 mK over a period of 1.5 years. In general, changes in thermal emissive bands (TEB) detector responses have been less than 0.5%. Despite large response degradation in several near-infrared and short-wave infrared bands and large SD degradation at short visible wavelengths, the VIIRS sensor and OBC overall performance has been excellent postlaunch. The degradation caused by the telescope mirror coating contamination has been modeled and its impact addressed through the use of modulated relative spectral response in the improved calibration and the current sensor data record data production. Based on current instrument characteristics and performance, it is expected that the VIIRS calibration will continue to meet its design requirements, including RSB detector signal to noise ratio and TEB detector noise equivalent temperature difference, throughout its 7 year design lifetime.

  1. On-orbit noise characterization of MODIS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Xiong, Xiaoxiong; Sun, Junqiang; Geng, Xu

    2015-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), launched on the Terra and Aqua spacecrafts, was designed to collect complementary and comprehensive measurements of the Earth's properties on a global scale. The 20 reflective solar bands (RSBs), covering a wavelength range from 0.41 to 2.1 μm, are calibrated on-orbit using regularly scheduled solar diffuser (SD) observations. Although primarily used for on-orbit gain derivation, the SD observations also facilitate the characterization of the detector signal-to-noise ratio (SNR). In addition to the calibration requirement of 2% for the reflectance factors and 5% for the radiances, the required SNRs are also specified for all RSB at their typical scene radiances. A methodology to characterize the on-orbit SNR for the MODIS RSB is presented. Overall performance shows that a majority of the RSB continue to meet the specification, therefore performing well. A temporal decrease in the SNR, observed in the short-wavelength bands, is attributed primarily to the decrease in their detector responses. With the exception of the inoperable and noisy detectors in band 6 identified prelaunch, the detectors of Aqua MODIS RSB perform better than Terra MODIS. The approach formulated for on-orbit SNR characterization can also be used by other sensors that use on-board SDs for their on-orbit calibration (e.g., Suomi National Polar-Orbiting Partnership [SNPP]-Visible Infrared Imaging Radiometer Suite).

  2. On-Orbit Noise Characterization of MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Sun, Junqiang; Geng, Xu

    2015-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), launched on the Terra and Aqua spacecrafts, was designed to collect complementary and comprehensive measurements of the Earth's properties on a global scale. The 20 reflective solar bands (RSBs), covering a wavelength range from 0.41 to 2.1 micrometers, are calibrated on-orbit using regularly scheduled solar diffuser (SD) observations. Although primarily used for on-orbit gain derivation, the SD observations also facilitate the characterization of the detector signal-to-noise ratio (SNR). In addition to the calibration requirement of 2% for the reflectance factors and 5% for the radiances, the required SNRs are also specified for all RSB at their typical scene radiances. A methodology to characterize the on-orbit SNR for the MODIS RSB is presented. Overall performance shows that a majority of the RSB continue to meet the specification, therefore performing well. A temporal decrease in the SNR, observed in the short-wavelength bands, is attributed primarily to the decrease in their detector responses. With the exception of the inoperable and noisy detectors in band 6 identified prelaunch, the detectors of AquaMODIS RSB perform better than TerraMODIS. The approach formulated for on-orbit SNR characterization can also be used by other sensors that use on-board SDs for their on-orbit calibration (e.g., Suomi National Polar-Orbiting Partnership [SNPP]-Visible Infrared Imaging Radiometer Suite).

  3. VIIRS On-Orbit Calibration for Ocean Color Data Processing

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Turpie, Kevin R.; Fireman, Gwyn F.; Meister, Gerhard; Stone, Thomas C.; Patt, Frederick S.; Franz, Bryan; Bailey, Sean W.; Robinson, Wayne D.; McClain, Charles R.

    2012-01-01

    The NASA VIIRS Ocean Science Team (VOST) has the task of evaluating Suomi NPP VIIRS ocean color data for the continuity of the NASA ocean color climate data records. The generation of science quality ocean color data products requires an instrument calibration that is stable over time. Since the VIIRS NIR Degradation Anomaly directly impacts the bands used for atmospheric correction of the ocean color data (Bands M6 and M7), the VOST has adapted the VIIRS on-orbit calibration approach to meet the ocean science requirements. The solar diffuser calibration time series and the solar diffuser stability monitor time series have been used to derive changes in the instrument response and diffuser reflectance over time for bands M1-M11.

  4. Landsat-7 ETM+ On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Kaita, Ed; Miller, Jeff; Barsi, Julia; Smith, David E. (Technical Monitor)

    2000-01-01

    As of July, 2000 the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 has been operating on-orbit for about 15 months. The ETM+ images the Earth in has eight spectral bands in the visible, near-infrared (IR), short wavelength infrared (SWIR), and thermal portions of the spectrum. Three on-board calibration systems are available for the reflective bands: (1) the Internal Calibrator (IC), (2) the Partial Aperture Solar Calibrator (PASC), and (3) the Full Aperture Solar Calibrator (FASC). The Internal Calibrator also provides the thermal band calibration. Several investigators on the Landsat science team are also regularly performing vicarious calibrations. The internal calibrator, which during much of the pre-launch testing and early on-orbit check out period, showed up to 15% variability with time, has since stabilized as the instrument has assumed a regular schedule of operations and is now typically showing only a few percent variation with time, mostly associated with warm-up. The PASC has been the most variable of the sources: the response to the PASC has increased by as much as 50% is some bands and is oscillating with time, perhaps due to contamination. The FASC has been the most stable of the sources: mid scan response to the FASC diffuser have varied from -4%/yr for band 4 (0.83 microns) to -2%/yr for band 1 (0.49 microns) to +1%/yr for band 7 (2.2 microns). These decreases in response in bands 1-4 would have been about half as large if measured on the right (west) side of the panel and about twice as large if measured on the left side of the panel. The current interpretation is that the FASC diffuser panel is changing non-uniformly in its reflectance characteristics. Vicarious ground measurements have generally been consistent with the pre-launch measurements of the instrument responsivity and have not shown evidence of a change in responsivity with time. The FASC, IC, and vicarious results suggest the instrument has not changed by more than two

  5. MODIS On-Orbit Calibration and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Xiong, Jack

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for NASA's Earth Observing System (EOS) Terra and Aqua missions. Since launch, Terra and Aqua MODIS have successfully operated for more than 12 and 10 years, respectively, and generated an unprecedented amount of data products for the science and user community over a wide range of applications. MODIS was developed with improved design and stringent calibration requirements over its heritage sensors in order . to extend and enhance their long-term data records. Its follow-on instrument, the Visible/Infrared Imager Radiometer Suite (VIIRS), was launched on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft October 28, 2011. MODIS collects data in 36 spectral bands, covering wavelengths from 0.41 to 14.S!Jlll, and at 250m, SOOm, and lkm spatial resolutions (nadir). MODIS on-orbit calibration is provided by a set of onboard calibrators (OBC), including a solar diffuser (SO), a solar diffuser stability monitor (SDSM), a blackbody (BB), and a spectroradiometric calibration assembly (SRCA). In addition to the onboard calibrators, regular lunar observations are made by both Terra and Aqua MODIS to track their calibration stability in the reflective solar region. This tutorial session provides an overview of MODIS on-orbit calibration and characterization methodologies. It discusses challenging issues and lessons learned from sensor design, operation, calibration, and inter-comparisons. Examples of instrument on-orbit performance are illustrated with a focus on the improvements made based on various lessons learned. It is expected that MODIS experience and lessons will continue to provide valuable information for future earth observing missions/sensors.

  6. Status of Aqua MODIS On-orbit Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Barnes, W.; Chiang, K.; Erives, H.; Che, N.; Sun, J.; Isaacman, A.; Salomonson, V.

    2004-01-01

    The MODIS Flight Model 1 (FM1) has been in operation for more than two years since its launch onboard the NASA's Earth Observing System (EOS) Aqua spacecraft on May 4, 2002. The MODIS has 36 spectral bands: 20 reflective solar bands (RSB) with center wavelengths from 0.41 to 2.2 micron and 16 thermal emissive bands (TEB) from 3.7 to 14.5 micron. It provides the science community observations (data products) of the Earth's land, oceans, and atmosphere for a board range of applications. Its primary on-orbit calibration and characterization activities are performed using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM) system for the RSB and a blackbody for the TEB. Another on-board calibrator (OBC) known as the spectro-radiometric calibration assembly (SRCA) is used for the instrument's spatial (TEB and RSB) and spectral (RSB only) characterization. We present in this paper the status of Aqua MODIS calibration and characterization during its first two years of on-orbit operation. Discussions will be focused on the calibration activities executed on-orbit in order to maintain and enhance the instrument's performance and the quality of its Level 1B (L1B) data products. We also provide comparisons between Aqua MODIS and Terra MODIS (launched in December, 1999), including their similarity and difference in response trending and optics degradation. Existing data and results show that Aqua MODIS bands 8 (0.412 micron) and 9 (0.443 micron) have much smaller degradation than Terra MODIS bands 8 and 9. The most noticeable feature shown in the RSB trending is that the mirror side differences in Aqua MODIS are extremely small and stable (<0.1%) while the Terra MODIS RSB trending has shown significant mirror side difference and wavelength dependent degradation. The overall stability of the Aqua MODIS TEB is also better than that of the Terra MODIS during their first two years of on-orbit operation.

  7. Landsat-7 EMT+ On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    1999-01-01

    Landsat-7 was launched on April 15, 1999 and completed its on orbit initialization and verification period on June 28, 1999. The ETM+ payload is similar to the TM sensors on previous Landsat satellites and incorporates two new devices to improve its absolute radiometric calibration. The Full Aperture Solar Calibrator (FASC) is a deployable diffuser panel. This device has been deployed 9 times to date, with a normal deployment schedule of once per month. The initial analysis of the FASC data has given absolute calibration results within 5% of the prelaunch integrating sphere calibrations and a range of variation of 2% between dates. The Partial Aperture Solar Calibrator (PASC), is a set of auxiliary optics that allows the ETM+ to view the sun through a reduced aperture. Data have normally been acquired on a daily basis with the PASC. Initial results with the PASC were encouraging, despite some unexpected saturation in the shortest wavelength band. The response of the ETM+ short wavelength (silicon) bands to the PASC increased initially and has begun to decrease in some of these bands. The longer wavelength (InSb) bands have shown up to 30% oscillations that vary between detectors within the band. Studies are ongoing to better characterize the response to the PASC. The ETM+ also incorporates an internal calibrator (IC), a shutter that oscillates in front of the focal plane that directs light from the internal calibrator lamps to the focal plane. The responses to this device are also varying, though differently than the PASC results. Both the IC and PASC results are attributable to the calibration devices as opposed to the ETM+ itself.

  8. On-Orbit Noise Characterization for MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Xie, X.; Angal, A.

    2008-01-01

    Since launch, the Moderate Resolution Imaging Spectroradiometer (MODIS) has operated successfully on-board the NASA Earth Observing System (EOS) Terra and EOS Aqua spacecraft. MODIS is a passive cross-track scanning radiometer that makes observations in 36 spectral bands with spectral wavelengths from visible (VIS) to long-wave infrared. MODIS bands 1-19 and 26 are the reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers. They are calibrated on-orbit using an on-board solar diffuser (SD) and a SD stability monitor (SDSM) system. For MODIS RSB, the level 1B calibration algorithm produces top of the atmosphere reflectance factors and radiances for every pixel of the Earth view. The sensor radiometric calibration accuracy, specified at each spectral band's typical scene radiance, is 2% for the RSB reflectance factors and 5% for the RSB radiances. Also specified at the typical scene radiance is the detector signal-to-noise ratio (SNR), a key sensor performance parameter that directly impacts its radiometric calibration accuracy and stability, as well as the image quality. This paper describes an on-orbit SNR characterization approach developed to evaluate and track MODIS RSB detector performance. In order to perform on-orbit SNR characterization, MODIS RSB detector responses to the solar illumination reflected from the SD panel must be corrected for factors due to variations of the solar angles and the SD bi-directional reflectance factor. This approach enables RSB SNR characterization to be performed at different response levels for each detector. On-orbit results show that both Terra and Aqua MODIS RSB detectors have performed well since launch. Except for a few noisy or inoperable detectors which were identified pre-launch, most RSB detectors continue to meet the SNR design requirements and are able to maintain satisfactory short-term stability. A comparison of on-orbit noise characterization results with results derived from pre

  9. Landsat 8 on-orbit characterization and calibration system

    USGS Publications Warehouse

    Micijevic, Esad; Morfitt, Ron; Choate, Michael J.

    2011-01-01

    The Landsat Data Continuity Mission (LDCM) is planning to launch the Landsat 8 satellite in December 2012, which continues an uninterrupted record of consistently calibrated globally acquired multispectral images of the Earth started in 1972. The satellite will carry two imaging sensors: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The OLI will provide visible, near-infrared and short-wave infrared data in nine spectral bands while the TIRS will acquire thermal infrared data in two bands. Both sensors have a pushbroom design and consequently, each has a large number of detectors to be characterized. Image and calibration data downlinked from the satellite will be processed by the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center using the Landsat 8 Image Assessment System (IAS), a component of the Ground System. In addition to extracting statistics from all Earth images acquired, the IAS will process and trend results from analysis of special calibration acquisitions, such as solar diffuser, lunar, shutter, night, lamp and blackbody data, and preselected calibration sites. The trended data will be systematically processed and analyzed, and calibration and characterization parameters will be updated using both automatic and customized manual tools. This paper describes the analysis tools and the system developed to monitor and characterize on-orbit performance and calibrate the Landsat 8 sensors and image data products.

  10. MODIS and SeaWIFS on-orbit lunar calibration

    USGS Publications Warehouse

    Sun, Jielun; Eplee, R.E., Jr.; Xiong, X.; Stone, T.; Meister, G.; McClain, C.R.

    2008-01-01

    corrections to the SeaWiFS data, after more than ten years on orbit, are 19% at 865 nm, 8% at 765 nm, and 1-3% in the other bands. In this report, the lunar calibration algorithms are reviewed and the RSB gain changes observed by the lunar observations are shown for all three sensors. The lunar observations for the three instruments are compared using the USGS photometric model. The USGS lunar model facilitates the cross calibration of instruments with different spectra bandpasses whose measurements of the Moon differ in time and observing geometry.

  11. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  12. On-orbit instrument calibration of CALET

    NASA Astrophysics Data System (ADS)

    Javaid, Amir; Calet Collaboration

    2015-04-01

    The CALorimetric Electron Telescope (CALET) is a high-energy cosmic ray experiment which will be placed on the International Space Station in 2015. Primary goals of CALET are measurement of cosmic ray electron spectra from 1 GeV to 20 TeV, gamma rays from 10 GeV to 10 TeV, and protons and nuclei from 10 GeV up to 1000 TeV. The detector consists of three main components: a Charge Detector (CHD), Imaging Calorimeter (IMC), and Total Absorption Calorimeter (TASC). As CALET is going to work in the ISS orbit space environment, it needs to be calibrated while it is in orbit. Penetrating non-showering protons and helium nuclei are prime candidates for instrument calibration, as they provide a known energy signal for calibrating the detector response. In the present paper, we discuss estimation of CALET's detector efficiency to protons and helium nuclei. Included is a discussion of different galactic cosmic ray and trapped proton models used for flux calculation and simulations performed for detector geometric area and trigger rate calculation. This paper also discusses the importance of the albedo proton flux for the CALET detector calibration. This research was supported by NASA at Louisiana State University under Grant Number NNX11AE01G.

  13. S-NPP VIIRS on-orbit Band to Band Registration Estimation using the Moon

    NASA Astrophysics Data System (ADS)

    Choi, T.

    2015-12-01

    The Soumi National Polar-orbit Partnership (S-NPP) was successfully launched and has been operational since October 28, 2011, which carries the Visible Infrared Radiometer Suite (VIIRS) with among other instruments. Since VIIRS does not include on-board spatial calibrator such as Spectroradiometric Calibration Assembly (SRCA) on the predecessor sensor called MODerate resolution Imaging Spectroradiometer (MODIS), the on-orbit estimation of the spatial parameters needs to be measured independently. As a well-known radiometric target, the moon is utilized to estimate Band-to-Band (BBR) results as a part of spatial quality factors using the lifetime scheduled lunar collections. The reference band of the BBR is chosen to be the VIIRS band of Imaging band 1 (I1), because of its high signal-to-noise ratio, and high spatial sampling frequency compared to other moderate (M) bands. In this study, the conventional BBR calculation applied MODIS called weighted sum method is applied providing along-track and along-scan direction results. The BBR differences based on the reference band I1 results are very stable over the 3 years of VIIRS operation. The along-scan direction BBR results are mostly within ± 0.5 nominal Ground Sampling Distance (GSD) and the along-track direction BBR values are mostly between + 0.1 and -0.4 GSD. The final BBR results are available publically at the National Oceanic Atmospheric Agency (NOAA) Integrated Calibration Validation System (ICVS) webpage.

  14. On-orbit lunar calibration compared with vicarious calibration for GOSAT

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Kawakami, S.; kuze, A.; Suto, H.; Hashiguchi, T.; Kataoka, F.; Higuchi, R.; Bruegge, C.; Schwandner, F. M.

    2013-12-01

    JAXA's Greenhouse Gases Observing Satellite (GOSAT) is since 2009 in polar orbit to monitor greenhouse gases such as CO2 and CH4 from space. GOSAT consists of a Fourier Transform Spectrometer (TANSO-FTS) and a Cloud and Aerosol Imager (TANSO-CAI). The FTS has 3 polarized SWIR narrow bands and a TIR wide band. The FTS observes globally with gridded points of 10 km FOV using discrete pointing. The CAI carries 4 radiometers in the UV to SWIR with high spatial resolution of 0.5-1.5 km and a wide swath of 1000 km. In this study, we compare the lunar calibration results with the results of our annual vicarious calibration campaigns. For lunar calibrations, GOSAT observes a nearly full moon for the on-orbit radiometric calibration of the FTS SWIR bands and the CAI. Lunar calibrations are operated in April for investigation of continuous annual sensitivity trends and in July, corresponding to the annual Railroad Valley Cal/Val campaign. Since the 3rd year, lunar calibration has been planned to observe in a phase angle around 7 degrees to avoid the reflectance opposition surge in order to target the nearly-unchanged and brightest reflectance as a function of phase angle. The Railroad Valley vicarious calibration campaign is conducted by measuring the surface reflectance and atmospheric parameters coincident with a dedicated GOSAT target observation, to derive top-of-the-atmosphere radiance. The nadir surface reflectance is collected in 500x500 m areas corresponding to the CAI resolution. The off-nadir reflectance is obtained simultaneously with BRDF values, for correction. We will discuss the sensitivity study by comparison between the GOSAT lunar observation and the vicarious calibration.

  15. Overview of Aqua MODIS 10-year On-orbit Calibration and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wenny, B.; Sun, J.; Wu, A.; Chen, H.; Angal, A.; Choi, T.; Madhavan, S.; Geng, X.; Link, D.; Toller, G.; Barnes, W.; Salomonson, V.

    2012-01-01

    Since launch in May 2002, Aqua MODIS has successfully operated for nearly 10 years, continuously collecting global datasets for scientific studies of key parameters of the earth's land, ocean, and atmospheric properties and their changes over time. The quality of these geophysical parameters relies on the input quality of sensor calibrated radiances. MODIS observations are made in 36 spectral bands with wavelengths ranging from visible (VIS) to longwave infrared (LWIR). Its reflective solar bands (RSB) are calibrated using data collected from its on-board solar diffuser and regularly scheduled lunar views. The thermal emissive bands (TEB) are calibrated using an on-board blackbody (BB). The changes in the sensor's spectral and spatial characteristics are monitored by an on-board spectroradiometric calibration assembly (SRCA). This paper presents an overview of Aqua MODIS 10-year on-orbit operation and calibration activities, from launch to present, and summarizes its on-orbit radiometric, spectral, and spatial calibration and characterization performance. In addition, it will illustrate and discuss on-orbit changes in sensor characteristics and corrections applied to continuously maintain the sensor level 1B (L1B) data quality, as well as lessons learned that could benefit future calibration efforts.

  16. On-orbit calibration of SeaWiFS.

    PubMed

    Eplee, Robert E; Meister, Gerhard; Patt, Frederick S; Barnes, Robert A; Bailey, Sean W; Franz, Bryan A; McClain, Charles R

    2012-12-20

    Ocean color climate data records (CDRs) require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the-atmosphere (TOA) radiances. The rigorous prelaunch and on-orbit calibration program developed and implemented for Sea-viewing Wide Field-of-view Sensor (SeaWiFS) by the NASA Ocean Biology Processing Group (OBPG) has led to the incorporation of significant changes into the on-orbit calibration methodology over the 13-year lifetime of the instrument. Evolving instrument performance and ongoing algorithm refinement have resulted in updates to approaches for the lunar, solar, and vicarious calibration of SeaWiFS. The uncertainties in the calibrated TOA radiances are addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The biases are 2%-3% from lunar calibration and 1%-2% from vicarious calibration. The precision is 0.16% from solar signal-to-noise ratios, 0.13% from lunar residuals, and 0.10% from vicarious gains. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariously calibrated TOA radiances, incorporating the uncertainties of the in situ measurements and the atmospheric correction, is 0.30%. This stability of the radiometric calibration of SeaWiFS over its 13-year on-orbit lifetime has allowed the OBPG to produce CDRs from the ocean color data set. PMID:23262612

  17. Aquarius Radiometer Performance: Early On-Orbit Calibration and Results

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; LeVine, David M.; Yueh, Simon H.; Wentz, Frank; Ruf, Christopher

    2012-01-01

    The Aquarius/SAC-D observatory was launched into a 657-km altitude, 6-PM ascending node, sun-synchronous polar orbit from Vandenberg, California, USA on June 10, 2011. The Aquarius instrument was commissioned two months after launch and began operating in mission mode August 25. The Aquarius radiometer meets all engineering requirements, exhibited initial calibration biases within expected error bars, and continues to operate well. A review of the instrument design, discussion of early on-orbit performance and calibration assessment, and investigation of an on-going calibration drift are summarized in this abstract.

  18. Results of MODIS Band-to-Band Registration Characterization Using On-Orbit Lunar Observations

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Angal,Amit

    2011-01-01

    Since launch, lunar observations have been made regularly by both Terra and Aqua MODIS and used for a number of sensor calibration and characterization related applications, including radiometric stability monitoring, spatial characterization, optical leak and electronic cross-talk characterization, and calibration inter-comparison. MODIS has 36 spectral bands with a total of 490 individual detectors. They are located on four focal plane assemblies (FPA). This paper focuses on the use of MODIS lunar observations to characterize its band-to-band registration (BBR). In addition to BBR, the approach developed by the MODIS Characterization Support Team (MCST) can be used to characterize MODIS detector-to-detector registration (DDR). Long-term BBR results developed from this approach are presented and compared with that derived from a unique on-board calibrator (OBC). Results show that on-orbit changes of BBR have been very small for both Terra and Aqua MODIS and this approach can be applied to other remote sensing instruments.

  19. Terra MODIS RSB on-orbit calibration and performance: four years of data

    NASA Astrophysics Data System (ADS)

    Erives, Hector; Xiong, Xiaoxiong; Sun, Junqiang; Esposito, Joseph A.; Xiong, Sanxiong; Barnes, William L.

    2004-11-01

    Terra MODIS, also referred to as the MODIS Protoflight Model (PFM), was launched on-board the NASA's EOS Terra spacecraft on December 18, 1999. It has been in operation for more than four years and continuously providing the science community quality data sets for studies of the Earth's land, oceans, and atmosphere. It has also served as the primary source of information for the MODIS Land Rapid Response System for observing and reporting on natural disasters, and providing active fire information around the Earth. The MODIS instrument has 36 spectral bands with wavelengths ranging from 0.41mm to 14.5mm: 20 bands with wavelengths below 2.2mm are the reflective solar bands (RSB) and the other 16 bands are the thermal emissive bands (TEB). The RSB are calibrated on-orbit using a solar diffuser (SD) with the degradation of its bi-directional reflectance factor (BRF) tracked by an on-board solar diffuser stability monitor (SDSM). The calibration coefficients are updated via Look-Up Tables (LUTs) for the Level 1B code that converts the sensor's Earth view response from digital counts to calibrated reflectance and radiance. In this paper we review the MODIS RSB on-orbit calibration algorithm and the methodology of computing and updating the calibration coefficients determined from the SD and SDSM data sets. We present examples of the sensor's long-term and short-term stability trending of key RSB calibration parameters using over four years of on-orbit calibration data sets. Special considerations due to changes in instrument configuration and sensor response are also discussed.

  20. Landsat 8 operational land imager on-orbit geometric calibration and performance

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.; Lee, Kenton

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying the Operational Land Imager (OLI) payload for moderate resolution imaging in the visible, near infrared (NIR), and short-wave infrared (SWIR) spectral bands. During the 90-day commissioning period following launch, several on-orbit geometric calibration activities were performed to refine the prelaunch calibration parameters. The results of these calibration activities were subsequently used to measure geometric performance characteristics in order to verify the OLI geometric requirements. Three types of geometric calibrations were performed including: (1) updating the OLI-to-spacecraft alignment knowledge; (2) refining the alignment of the sub-images from the multiple OLI sensor chips; and (3) refining the alignment of the OLI spectral bands. The aspects of geometric performance that were measured and verified included: (1) geolocation accuracy with terrain correction, but without ground control (L1Gt); (2) Level 1 product accuracy with terrain correction and ground control (L1T); (3) band-to-band registration accuracy; and (4) multi-temporal image-to-image registration accuracy. Using the results of the on-orbit calibration update, all aspects of geometric performance were shown to meet or exceed system requirements.

  1. Progress on alternative method of the on-orbit RVS characterization for MODIS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Chen, H.; Xiong, X.; Angal, A.; Geng, X.; Wu, A.

    2014-09-01

    MODIS Reflective Solar Bands (RSB) are calibrated on-orbit using its onboard calibrators, including a Solar Diffuser (SD), a Solar Diffuser Stability Monitor (SDSM), and a Spectroradiometric Calibration Assembly (SRCA). A Space View (SV) port is used to provide a background reference, and also facilitate near monthly lunar observations via a spacecraft roll. In every scan, the earth's surface, SV and onboard calibrators are viewed via a two sided scan mirror, whose reflectance depends on the angles of the incidence (AOI) as well as the wavelength of the incident light. Response versus Scan angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the Earth View (EV) response from pseudo-invariant desert targets obtained at different AOI. The current approach, as implemented in Collection 6 (C6), uses EV responses from the Libyan desert sites to track the on-orbit RVS change. It strongly depends on the long-term temporal stability of the desert sites. As an effort to validate and, if necessary, to improve MODIS RSB RVS characterization for future applications, the MODIS Characterization Support Team (MCST) has developed and tested an alternative approach to monitor the on-orbit RVS change, using a response from a single desert site. The purpose of using data from one site is to avoid the impact of possible differences in the long-term temporal stability among multiple sites on the calculation of the on-orbit RVS. This paper updates recent progress in the formulation of the alternative RVS approach. Comprehensive comparisons were also performed with current C6 RVS results for both Terra and Aqua MODIS. Results demonstrate that this alternative method provides a supplemental means to track the on-orbit RVS for MODIS RSB.

  2. VIIRS On-Orbit Calibration and Performance Update

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Butler, J.; Chiang, K.; Efremova, B.; Fulbright, J.; Lei, N.; McIntire, J.; Wang, Z.

    2014-01-01

    The S-NPP VIIRS was launched on October 28, 2011 and activated on November 8, and then went through a series of intensive functional tests in order to establish the sensor's baseline characteristics and initial on-orbit performance. With the exception of large optical degradation in the NIR and SWIR spectral regions that is due to pre-launch mirror coating contamination, both the VIIRS instrument and its on-board calibrators continue to operate and function normally. With continuous dedicated effort, it is expected that most of the sensor calibration parameters will continue to meet their design requirements and that high quality data products will be continuously generated and used by the operational as well as research community.

  3. On-orbit radiometric performance characterization of S-NPP VIIRS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Uprety, Sirish; Blonski, Slawomir; Cao, Changyong

    2016-05-01

    It has been nearly four years that the S-NPP was launched. In an effort to improve the VIIRS calibration, VIIRS has undergone a number of major look up table updates during this period. RSB bands such as M1 through M3 suggested higher solar diffuser degradation rate. Similarly, for higher wavelengths, even though the solar diffuser degradation is much smaller and even negligible for SWIR bands, bands such as M7 suffer from major degradation due to RTA throughput degradation. Even though the solar diffuser and mirror degradation is well characterized, the data quality needs to be independently validated to ensure that data are well within the specification. We have used on-orbit calibration/validation techniques such as extended SNOs to estimate the bias of these bands and quantify the radiometric performance since launch. Assuming MODIS as a standard reference, intercomparison was performed to analyze the VIIRS radiometric performance. It was observed that some of the VIIRS bands such as M5 and M7 suggest bias on the order of 1.5% or more for most of the time period since early launch. VIIRS bias trends keep changing over time which can be mainly correlated to calibration updates and instrument anomalies. Results on VIIRS on-orbit calibration performance and its bias since early launch will be presented during meeting to help users better understand the data quality and its impacts on broader scientific research and applications.

  4. Status of Aqua MODIS Instrument On-Orbit Operation and Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Jack; Angal, Amit; Madhaven, Sri; Choi, Jason; Wenny, Brian; Sun, Junqiang; Wu, Aisheng; Chen, Hongda; Salomonson, Vincent; Barnes, William

    2011-01-01

    The Aqua MOderate resolution Imaging Spectroradiometer (MODIS) has successfully operated for nearly a decade, since its launch in May 2002. MODIS was developed and designed with improvements over its heritage sensors in terms of its overall spectral, spatial, and temporal characteristics, and with more stringent calibration requirements. MODIS carries a set of on-board calibrators that can be used to track and monitor its on-orbit radiometric, spectral, and spatial performance. Since launch, extensive instrument calibration and characterization activities have been scheduled and executed by the MODIS Characterization Support Team (MCST). These efforts are made to assure the quality of instrument calibration and L 1B data products, as well as support all science disciplines (land, ocean, and atmospheric) for continuous improvements of science data product quality. MODIS observations from both Terra and Aqua have significantly contributed to the science and user community over a wide range of research activities and applications. This paper provides an overview of Aqua MODIS on-orbit operation and calibration activities, instrument health status, and on-board calibrators (OBC) performance. On-orbit changes of key sensor parameters, such as spectral band radiometric responses, center wavelengths, and bandwidth, are illustrated and compared with those derived from its predecessor, Terra MODIS. Lessons and challenges identified from Aqua MODIS performance are also discussed in this paper. These lessons are not only critical to future improvements of Aqua MODIS on-orbit operation and calibration but also beneficial to its follow-on instrument, the Visible Infrared Imager Radiometer Suite (VIIRS) to be launched on NPOESS Preparatory Project (NPP) spacecraft.

  5. Suomi NPP VIIRS prelaunch and on-orbit geometric calibration and characterization

    NASA Astrophysics Data System (ADS)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna P.; Tilton, James C.; Isaacman, Alice R.

    2013-10-01

    Visible Infrared Imaging Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polar-orbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 µm and 12.01 µm, including 16 moderate resolution bands (M-bands) with a nominal spatial resolution of 750 m at nadir, five imaging resolution bands (I-bands) with a nominal spatial resolution of 375 m at nadir, and a day-night band (DNB) with a near-constant nominal 750 m spatial resolution throughout the scan. These bands are located in a visible and near-infrared focal plane assembly (FPA), a shortwave and midwave infrared FPA, and a long-wave infrared FPA. All bands, except the DNB, are coregistered for proper environmental data records retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational community's use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data are important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1300 m to within 75 m (20% I-band pixel size) and the second of which fine-tuned scan-angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band coregistration are also described.

  6. Suomi NPP VIIRS Prelaunch and On-orbit Geometric Calibration and Characterization

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna P.; Tilton, James C.; Isaacman, Alice R.

    2013-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) sensor was launched 28 October 2011 on the Suomi National Polarorbiting Partnership (SNPP) satellite. VIIRS has 22 spectral bands covering the spectrum between 0.412 m and 12.01 m, including 16 moderate resolution bands (M-bands) with a spatial resolution of 750 m at nadir, 5 imaging resolution bands (I-bands) with a spatial resolution of 375 m at nadir, and 1 day-night band (DNB) with a near-constant 750 m spatial resolution throughout the scan. These bands are located in a visible and near infrared (VisNIR) focal plane assembly (FPA), a short- and mid-wave infrared (SWMWIR) FPA and a long-wave infrared (LWIR) FPA. All bands, except the DNB, are co-registered for proper environmental data records (EDRs) retrievals. Observations from VIIRS instrument provide long-term measurements of biogeophysical variables for climate research and polar satellite data stream for the operational communitys use in weather forecasting and disaster relief and other applications. Well Earth-located (geolocated) instrument data is important to retrieving accurate biogeophysical variables. This paper describes prelaunch pointing and alignment measurements, and the two sets of on-orbit correction of geolocation errors, the first of which corrected error from 1,300 m to within 75 m (20 I-band pixel size), and the second of which fine tuned scan angle dependent errors, bringing VIIRS geolocation products to high maturity in one and a half years of the SNPP VIIRS on-orbit operations. Prelaunch calibration and the on-orbit characterization of sensor spatial impulse responses and band-to-band co-registration (BBR) are also described.

  7. Four years of Landsat-7 on-orbit geometric calibration and performance

    USGS Publications Warehouse

    Lee, D.S.; Storey, J.C.; Choate, M.J.; Hayes, R.W.

    2004-01-01

    Unlike its predecessors, Landsat-7 has undergone regular geometric and radiometric performance monitoring and calibration since launch in April 1999. This ongoing activity, which includes issuing quarterly updates to calibration parameters, has generated a wealth of geometric performance data over the four-year on-orbit period of operations. A suite of geometric characterization (measurement and evaluation procedures) and calibration (procedures to derive improved estimates of instrument parameters) methods are employed by the Landsat-7 Image Assessment System to maintain the geometric calibration and to track specific aspects of geometric performance. These include geodetic accuracy, band-to-band registration accuracy, and image-to-image registration accuracy. These characterization and calibration activities maintain image product geometric accuracy at a high level - by monitoring performance to determine when calibration is necessary, generating new calibration parameters, and verifying that new parameters achieve desired improvements in accuracy. Landsat-7 continues to meet and exceed all geometric accuracy requirements, although aging components have begun to affect performance.

  8. CALET Data Processing and On-Orbit Detector Calibration

    NASA Astrophysics Data System (ADS)

    Asaoka, Yoichi

    2016-07-01

    The CALET (CALorimetric Electron Telescope), launched to the International Space Station (ISS) in August 2015 and accumulating scientific data since October 2015, aims at long duration observations of high-energy cosmic rays onboard the ISS. The CALET detector features the very thick calorimeter of 30 radiation-length which consists of imaging and total absorption calorimeters (IMC and TASC respectively). It will directly measure the cosmic-ray electron spectrum in the energy range of 1 GeV-20 TeV with 2% energy resolution. In addition, the instrument has capabilities to measure the spectra of gamma-rays, protons and nuclei well into the TeV range. Precise pointing direction is determined with an attached Advanced Stellar Camera (ASC). To operate the CALET onboard ISS, the CALET Ground Support Equipment (CALET-GSE) and Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda Univ., respectively. Scientific operations of CALET are planned in the WCOC taking into account the orbital variations of geomagnetic rigidity cutoff. Scheduled command sequence is utilized to control CALET observation mode on orbit. A calibration data trigger mode, such as recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, and other dedicated trigger modes are scheduled around the ISS orbit while maintaining the maximum exposure to high-energy electrons. Scientific raw data called CALET Level 0 data are generated from raw telemetry packets in the CALET-GSE on an hourly basis by correcting time-order and by completing the data set using stored data taken during loss of real-time telemetry downlink. Level 0 data are processed to CALET Level 1 data in the WCOC by interpreting all the raw packets and building cosmic-ray event data as well as house keeping data. Level 1 data are then distributed to the collaboration for scientific data analysis. Level 1 data analysis is focused on the detector

  9. The Algorithm for MODIS Wavelength On-Orbit Calibration Using the SRCA

    NASA Technical Reports Server (NTRS)

    Montgomery, Harry; Che, Nianzeng; Parker, Kirsten; Bowser, Jeff

    1998-01-01

    The Spectro-Radiometric Calibration Assembly (SRCA) provides on-orbit spectral calibration of the MODerate resolution Imaging Spectroradiometer (MODIS) reflected solar bands and this paper describes how it is accomplished. The SRCA has two adjacent exit slits: 1) Main slit and 2) Calibration slit. The output from the main slit is measured by a reference silicon photo-diode (SIPD) and then passes through the MODIS. The output from the calibration slit passes through a piece of didymium transmission glass and then it is measured by a calibration SIPD. The centroids of the sharp spectral peaks of a didymium glass are utilized as wavelength standards. After normalization using the reference SIPD signal to eliminate the effects of the illuminating source spectra, the calibration SIPD establishes the relationship between the peaks of the didymium spectra and the grating angle; this is accomplished through the grating equation. In the grating equation the monochromator parameters, Beta (half angle between the incident and diffractive beams) and Theta(sub off) (offset angle of the grating motor) are determined by matching, in a least square sense, the known centroid wavelengths of the didymium peaks and the calculated centroid grating angles from the calibration SIPD signals for the peaks. A displacement between the calibration SIPD and the reference SIPD complicates the signal processing.

  10. An Overview of MODIS On-orbit Operation, Calibration, and Lessons

    NASA Technical Reports Server (NTRS)

    Xiong, Jack; Barnes, William; Salomonson, Vincent

    2012-01-01

    Two nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODIS) have successfully operated onboard the Terra and Aqua spacecraft for more than II years and 9 years since their launch in December 1999 and May 2002, respectively. MODIS is a key instrument for the NASA's Earth Observing System (EOS) missions. MODIS observations have produced an unprecedented amount and a broad range of data products and significantly benefited the science and user community. Its follow-on instrument, the Visible/Infrared Imager Radiometer Suite (VIIRS) on-board the NPOESS Preparatory Project (NPP) spacecraft, is currently scheduled for launch in late October, 2011. The NPP serves as a bridge mission between EOS and the Joint Polar Satellite System (JPSS). MODIS collects data in 36 spectral bands, covering spectral regions from visible (VIS) to long-wave infrared (L WIR), and at three different spatial resolutions. Because of its stringent design requirements, MODIS was built with a complete set of onboard calibrators, including a solar diffuser (SO), a solar diffuser stability monitor (SDSM), a blackbody (BB), a spectroradiometric calibration assembly (SRCA), and a space view (SV) port. Except for tbe SRCA, VIlRS carries the same set of onboard calibrators as MODIS. The SD/SDSM system is used together to calibrate tbe reflective solar bands (RSB). The BB is designed for the thermal emissive bands (TEB) calibration. Similar to Terra and Aqua MODIS, VIlRS will also make regular lunar observations to monitor RSB radiometric calibration stability. In this paper, we provide an overview of MODIS on-orbit operation and calibration activities and present issues identified and lessons learned from mission-long instrument operations and implementation of various calibration and characterization strategies. Examples of both Terra and Aqua MODIS instrument on-orbit performance, including their similarities and unique characteristics, are discussed in tbe context of what

  11. NPP VIIRS on-orbit calibration and characterization using the moon

    NASA Astrophysics Data System (ADS)

    Sun, J.; Xiong, X.; Butler, J.

    2012-09-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polarorbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2012. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56° to -55° in the first three scheduled lunar observations and then changed to the range from -51.5° to -50.5°, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14°, 0°] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  12. NPP VIIRS On-Orbit Calibration and Characterization Using the Moon

    NASA Technical Reports Server (NTRS)

    Sun, J.; Xiong, X.; Butler, J.

    2012-01-01

    The Visible Infrared Imager Radiometer Suite (VIIRS) is one of five instruments on-board the Suomi National Polar orbiting Partnership (NPP) satellite that launched from Vandenberg Air Force Base, Calif., on Oct. 28, 2011. VIIRS has been scheduled to view the Moon approximately monthly with a spacecraft roll maneuver after its NADIR door open on November 21, 2011. To reduce the uncertainty of the radiometric calibration due to the view geometry, the lunar phase angles of the scheduled lunar observations were confined in the range from -56 deg to -55 deg in the first three scheduled lunar observations and then changed to the range from -51.5 deg to -50.5 deg, where the negative sign for the phase angles indicates that the VIIRS views a waxing moon. Unlike the MODIS lunar observations, most scheduled VIIRS lunar views occur on the day side of the Earth. For the safety of the instrument, the roll angles of the scheduled VIIRS lunar observations are required to be within [-14 deg, 0 deg] and the aforementioned change of the phase angle range was aimed to further minimize the roll angle required for each lunar observation while keeping the number of months in which the moon can be viewed by the VIIRS instrument each year unchanged. The lunar observations can be used to identify if there is crosstalk in VIIRS bands and to track on-orbit changes in VIIRS Reflective Solar Bands (RSB) detector gains. In this paper, we report our results using the lunar observations to examine the on-orbit crosstalk effects among NPP VIIRS bands, to track the VIIRS RSB gain changes in first few months on-orbit, and to compare the gain changes derived from lunar and SD/SDSM calibration.

  13. NIR- and SWIR-based on-orbit vicarious calibrations for satellite ocean color sensors.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide; Voss, Kenneth

    2016-09-01

    The near-infrared (NIR) and shortwave infrared (SWIR)-based atmospheric correction algorithms are used in satellite ocean color data processing, with the SWIR-based algorithm particularly useful for turbid coastal and inland waters. In this study, we describe the NIR- and two SWIR-based on-orbit vicarious calibration approaches for satellite ocean color sensors, and compare results from these three on-orbit vicarious calibrations using satellite measurements from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). Vicarious calibration gains for VIIRS spectral bands are derived using the in situ normalized water-leaving radiance nLw(λ) spectra from the Marine Optical Buoy (MOBY) in waters off Hawaii. The SWIR vicarious gains are determined using VIIRS measurements from the South Pacific Gyre region, where waters are the clearest and generally stable. Specifically, vicarious gain sets for VIIRS spectral bands of 410, 443, 486, 551, and 671 nm derived from the NIR method using the NIR 745 and 862 nm bands, the SWIR method using the SWIR 1238 and 1601 nm bands, and the SWIR method using the SWIR 1238 and 2257 nm bands are (0.979954, 0.974892, 0.974685, 0.965832, 0.979042), (0.980344, 0.975344, 0.975357, 0.965531, 0.979518), and (0.980820, 0.975609, 0.975761, 0.965888, 0.978576), respectively. Thus, the NIR-based vicarious calibration gains are consistent with those from the two SWIR-based approaches with discrepancies mostly within ~0.05% from three data processing methods. In addition, the NIR vicarious gains (745 and 862 nm) derived from the two SWIR methods are (0.982065, 1.00001) and (0.981811, 1.00000), respectively, with the difference ~0.03% at the NIR 745 nm band. This is the fundamental basis for the NIR-SWIR combined atmospheric correction algorithm, which has been used to derive improved satellite ocean color products over open oceans and turbid coastal/inland waters. Therefore, a unified

  14. MODIS on-orbit thermal emissive bands lifetime performance

    NASA Astrophysics Data System (ADS)

    Madhavan, Sriharsha; Wu, Aisheng; Chen, Na; Xiong, Xiaoxiong

    2016-05-01

    MODerate resolution Imaging Spectroradiometer (MODIS), a leading heritage sensor in the fleet of Earth Observing System for the National Aeronautics and Space Administration (NASA) is in space orbit on two spacecrafts. They are the Terra (T) and Aqua (A) platforms. Both instruments have successfully continued to operate beyond the 6 year design life time, with the T-MODIS currently functional beyond 15 years and the A-MODIS operating beyond 13 years respectively. The MODIS sensor characteristics include a spectral coverage from 0.41 μm - 14.4 μm, of which wavelengths ranging from 3.7 μm - 14. 4 μm cover the thermal infrared region also referred to as the Thermal Emissive Bands (TEBs). The TEBs is calibrated using a v-grooved BlackBody (BB) whose temperature measurements are traceable to the National Institute of Standards and Technology temperature scales. The TEBs calibration based on the onboard BB is extremely important for its high radiometric fidelity. In this paper, we provide a complete characterization of the lifetime instrument performance of both MODIS instruments in terms of the sensor gain, the Noise Equivalent difference Temperature, key instrument telemetry such as the BB lifetime trends, the instrument temperature trends, the Cold Focal Plane telemetry and finally, the total assessed calibration uncertainty of the TEBs.

  15. On-Orbit Calibration of ADEOS OCTS with an AVIRIS Underflight

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Pavri, Betina; Boardman, Joseph W.; Shimada, Masanobu; Oaku, Hiromi

    2000-01-01

    The Ocean Color Temperature Scanner (OCTS) onboard the Advanced Earth Observation Satellite (ADEOS) was launched on August 17, 1996. Calibration of OCTS is required for use of the on-orbit measured data for retrieval of physical properties of the ocean. In the solar reflected portion of the electromagnetic spectrum, OCTS measures images with nominally 700-m spatial resolution through eight multispectral bands. The objective of this research was to establish the absolute radiometric calibration of OCTS on orbit through an underflight by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS is a NASA earth-observing imaging spectrometer designed, built and operated by the Jet Propulsion Laboratory (JPL). AVIRIS acquires data from 20-km altitude on a NASA ER-2 aircraft, above most of the Earth's atmosphere. AVIRIS measures the solar reflected spectrum from 370 nm to 2500 nm through 224 contiguous spectral channels. The full width at half maximum (FWHM) of the spectral channels is nominally 10-nm. AVIRIS spectra are acquired as images of 11 km by up to 800 km extent with 20-m spatial resolution. The high spectral resolution of AVIRIS data allows direct convolution to the spectral response functions of the eight multispectral bands of OCTS. The high spatial resolution of AVIRIS data allows for spatial re-sampling of the data to match the ADEOS sensors spatial resolution. In addition, the AVIRIS high spatial resolution allows assessment of the scaling effects due to environmental factors of thin cirrus clouds, sub-pixel cloud cover, white caps, ocean foam, sun-glint, and bright-target adjacency. The platform navigation information recorded by AVIRIS allows calculation of the position and observation geometry of each spectrum for matching to the OCTS measurement. AVIRIS is rigorously characterized and calibrated in the laboratory prior to and following the flight season. The stability and repeatability of AVIRIS calibration have been validated through an

  16. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  17. On Orbit Measurement of Response vs. Scan Angle for the Infrared Bands on TRMM/VIRS

    NASA Technical Reports Server (NTRS)

    Barnes, William L.; Lyu, Cheng-Hsuan; Barnes, Robert A.

    1999-01-01

    The Visible and Infrared Scanner on the Tropical Rainfall Measuring Mission (TRMM/VIRS) is a whiskbroom imaging radiometer with two reflected solar bands and three emissive infrared bands. All five detectors are on a single cooled focal plane. This configuration necessitated the use of a paddlewheel scan mirror to avoid the effects of focal plane rotation that arise when using a scan mirror that is inclined to its axis of rotation. System radiometric requirements led to the need for protected silver as the mirror surface. Unfortunately, the SiO(x) coatings currently used to protect silver from oxidation introduce a change in reflectance with angle of incidence (AOI). This AOI dependence results in a modulation of system level response with scan angle. Measurement of system response vs. scan angle (RVS) was not difficult for the VIRS reflected solar bands, but attaining the required accuracy for the IR bands in the laboratory was not possible without a large vacuum chamber and a considerable amount of custom designed testing apparatus. Therefore, the decision was made to conduct the measurement on-orbit. On three separate occasions, the TRMM spacecraft was rotated about its pitch axis and, after the nadir view passed over the Earth's limb, the VIRS performed several thousand scans while viewing deep space. The resulting data has been analyzed and the RVS curves generated for the three IR bands are being used in the VIRS radiometric calibration algorithm. This, to our knowledge, the first time this measurement has been made on-orbit. Similar measurements are planned for the EOS-AM and EOS-PM MODIS sensors and are being considered for several systems under development. The VIRS on-orbit results will be compared to VIRS and MODIS system level laboratory measurements, MODIS scan mirror witness sample measurements and modeled data.

  18. On-orbit Characterization of RVS for MODIS Thermal Emissive Bands

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V.; Chiang, K.; Wu, A.; Guenther, B.; Barnes, W.

    2004-01-01

    Response versus scan angle (RVS) is a key calibration parameter for remote sensing radiometers that make observations using a scanning optical system, such as a scan mirror in MODIS and GLI or a rotating telescope in SeaWiFS and VIIRS, since the calibration is typically performed at a fixed viewing angle while the Earth scene observations are made over a range of viewing angles. Terra MODIS has been in operation for more than four years since its launch in December 1999. It has 36 spectral bands covering spectral range from visible (VIS) to long-wave infrared (LWIR). It is a cross-track scanning radiometer using a two-sided paddle wheel scan mirror, making observations over a wide field of view (FOV) of +/-55 deg from the instrument nadir. This paper describes on-orbit characterization of MODIS RVS for its thermal emissive bands (TEB), using the Earth view data collected during Terra spacecraft deep space maneuvers (DSM). Comparisons with pre-launch analysis and early on-orbit measurements are also provided.

  19. Landsat-7 ETM+: 12 years on-orbit reflective-band radiometric performance

    USGS Publications Warehouse

    Markham, B.L.; Haque, M.O.; Barsi, J.A.; Micijevic, E.; Helder, D.L.; Thome, K.J.; Aaron, D.; Czapla-Myers, J. S.

    2012-01-01

    The Landsat-7 ETM+ sensor has been operating on orbit for more than 12 years, and characterizations of its performance have been ongoing over this period. In general, the radiometric performance of the instrument has been remarkably stable: 1) noise performance has degraded by 2% or less overall, with a few detectors displaying step changes in noise of 2% or less; 2) coherent noise frequencies and magnitudes have generally been stable, though the within-scan amplitude variation of the 20 kHz noise in bands 1 and 8 disappeared with the failure of the scan line corrector and a new similar frequency noise (now about 18 kHz) has appeared in two detectors in band 5 and increased in magnitude with time; 3) bias stability has been better than 0.25 DN out of a normal value of 15 DN in high gain; 4) relative gains, the differences in response between the detectors in the band, have generally changed by 0.1% or less over the mission, with the exception of a few detectors with a step response change of 1% or less; and 5) gain stability averaged across all detectors in a band, which is related to the stability of the absolute calibration, has been more stable than the techniques used to measure it. Due to the inability to confirm changes in the gain (beyond a few detectors that have been corrected back to the band average), ETM+ reflective band data continues to be calibrated with the prelaunch measured gains. In the worst case, some bands may have changed as much as 2% in uncompensated absolute calibration over the 12 years.

  20. On-orbit calibration and performance of S-NPP VIIRS DNB

    NASA Astrophysics Data System (ADS)

    Chen, H.; Sun, C.; Chen, X.; Chiang, K.; Xiong, X.

    2016-05-01

    The S-NPP VIIRS instrument has successfully operated since its launch in October 2011. The VIIRS Day-Night Band (DNB) is a panchromatic channel covering wavelengths from 0.5 to 0.9 μm that is capable of observing Earth scenes during both day and nighttime orbits at a spatial resolution of 750 m. To cover the large dynamic range, the DNB operates at low, mid, or high gain stages, and it uses an onboard solar diffuser (SD) for its low gain stage calibration. The SD observations also provide a means to compute gain ratios of low-to-mid and mid-to-high gain stages. This paper describes the DNB on-orbit calibration methodologies used by the VIIRS Characterization Support Team (VCST) in supporting the NASA earth science community with consistent VIIRS sensor data records (SDRs) made available by the Land Science Investigator-led Processing Systems (SIPS). It provides an assessment and update of DNB on-orbit performance, including the SD degradation in the DNB spectral range, detector gain and gain ratio trending, stray light contamination and its correction. Also presented in this paper are performance validations based on earth scenes and lunar observations.

  1. Challenging Issues for On-orbit Calibration in the VIS and NIR

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Waluschka, E.; Salomonson, V. V.; Wolfe, R.; Barnes, W.; Guenther, B.

    2004-01-01

    On-orbit calibration of Earth-observing sensors in the VIS and NIR spectral regions is usually performed using the sensors on-board devices such as internal lamp(s) or solar diffuser plate(s) to provide calibration parameters. For sensors with no (or with less reliable) on-board calibrators, lunar calibration or ground validation approaches are often used. Each of these has its own set of problems that need to be fully addressed in order to support high quality on-orbit calibration and characterization. Some science products, such as Ocean color, may impose more stringent requirements that demand greater calibration precision. This paper uses MODIS as an example to illustrate challenging issues involved in VIS and NIR on-orbit calibration. It focuses on the solar diffuser (SD) calibration approach, including the effects due to SD BRF, SD attenuation screen(s), and earthshine. The impact of optics (solar diffuser and scan mirror) on-orbit degradation, including changes in the sensor s response versus scan angle (RVS), on the calibration and subsequent data quality is also discussed.

  2. Alternative method of on-orbit response-versus-scan-angle characterization for MODIS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-04-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 μm, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  3. Alternative Method of On-Orbit Response-Versus-Scan-Angle Characterization for MODIS Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Chen, Hongda; Xiong, Xiaoxiong; Angal, Amit; Geng, Xu; Wu, Aisheng

    2016-01-01

    The moderate resolution imaging spectroradiometer (MODIS) has 20 reflective solar bands (RSB), covering a spectral range from 0.41 to 2.2 microns, which are calibrated on-orbit using its onboard calibrators, which include a solar diffuser, a solar diffuser stability monitor, and a spectroradiometric calibration assembly. A space view (SV) port is used to provide a background reference and also facilitates near-monthly lunar observations through a spacecraft roll. In every scan, the Earth's surface, SV, and onboard calibrators are viewed via a two-sided scan mirror, the reflectance of which depends on the angle of incidence (AOI) as well as the wavelength of the incident light. Response-versus-scan-angle (RVS) is defined as a dependence function of the scan mirror's reflectance over AOI. An initial RVS for each RSB was measured prelaunch for both Terra and Aqua MODIS. Algorithms have been developed to track the on-orbit RVS variation using the measurements from the onboard calibrators, supplemented with the earth view (EV) trends from pseudoinvariant desert targets obtained at different AOI. Since the mission beginning, the MODIS characterization support team (MCST) has dedicated efforts in evaluating approaches of characterizing the on-orbit RVS. A majority of the approaches focused on fitting the data at each AOI over time and then deriving the relative change at different AOI. The current version of the on-orbit RVS algorithm, as implemented in the collection 6 (C6) level-1B (L1B), is also based on the above rationale. It utilizes the EV response trends from the pseudoinvariant Libyan desert targets to supplement the gain derived from the onboard calibrators. The primary limitation of this approach is the assumption of the temporal stability of these desert sites. Consequently, MCST developed an approach that derives the on-orbit RVS change using measurements from a single desert site, combined with the on-orbit lunar measurements. In addition, the EV and onboard

  4. Cross-Calibration of the GOES-R SUVI with On-Orbit Solar EUV Instruments

    NASA Astrophysics Data System (ADS)

    Darnel, Jonathan; Seaton, Daniel B.

    2016-05-01

    Maintaining the calibration of on-orbit instruments has always been a challenge, but one which is crucial for the accuracy of the data record. This challenge is magnified for solar Extreme UltraViolet (EUV) instruments. Absolute calibration is out of the question as stable and known sources of EUV irradiance are not practical in on-orbit environments. This leaves relative calibration against other solar EUV instruments whose calibration has been well tracked. The need for such cross-calibration efforts is especially acute for an instrument like the Solar Ultraviolet Imager (SUVI), which will fly on the GOES-R spacecraft later this year and is expected to provide two decades of solar observation between four identical instruments. Not only must calibration between the four instruments in the SUVI line be maintained, but the relative calibration between SUVI and both present day imagers like SDO/AIA and PROBA2/SWAP and future instruments yet to be developed must be established as well. We present the methodology developed using current on-orbit solar EUV instruments in order to maintain the calibration of the SUVI instruments.

  5. The On-Orbit Calibrations for the Fermi Large Area Telescope

    SciTech Connect

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Ampe, J.; Anderson, B.; Atwood, W.B.; Axelsson, M.; Bagagli, R.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bartelt, J.; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bederede, D.; Bellardi, F.; Bellazzini, R.; Belli, F.; Berenji, B.; Bisello, D.; /more authors..

    2011-11-17

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.

  6. Degradation of MODIS Optics and its Reflective Solar Bands Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Sun, J.; Esposito, J.; Pan, C.; Xiong, S.; Guenther, B.; Barnes, W. L.; Degnan, John (Technical Monitor)

    2001-01-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) has 36 spectral bands with wavelength ranging from 0.41 micron to 14.5 micron and spatial resolution between 0.25, 0.5, and 1.0 km at Nadir. Its ProtoFlight Model (PFM) on the NASA EOS Terra spacecraft has been providing global coverage of the Land, Ocean, and Atmosphere for the science community since the instrument opened its Nadir door on 24 February 2000. The MODIS optical system consists of a 2-sided paddle wheel scan mirror, a fold mirror, a primary mirror, and other aft optics. The sensor's 20 reflective solar bands from 0.41 to 2.1 micron are calibrated on-orbit by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). In addition to SD, degradation of the MODIS optics in the reflective solar bands has been observed, including variations in degradation between the two sides of the MODIS scan mirror. During MODIS first year of on-orbit operation, the overall degradations at the shortest wavelength (0.41 micron) are about 3% for SD, and in excess of 10% for the MODIS system. In this paper, we will present our degradation analysis results and discuss their impact on the reflective solar bands' on-orbit calibration.

  7. On-Orbit Calibration of a Multi-Spectral Satellite Satellite Sensor Using a High Altitude Airborne Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, R. O.; Shimada, M.

    1996-01-01

    Earth-looking satellites must be calibrated in order to quantitatively measure and monitor components of land, water and atmosphere of the Earth system. The inevitable change in performance due to the stress of satellite launch requires that the calibration of a satellite sensor be established and validated on-orbit. A new approach to on-orbit satellite sensor calibration has been developed using the flight of a high altitude calibrated airborne imaging spectrometer below a multi-spectral satellite sensor.

  8. On-orbit Metrology and Calibration Requirements for Space Station Activities Definition Study

    NASA Technical Reports Server (NTRS)

    Cotty, G. M.; Ranganathan, B. N.; Sorrell, A. L.

    1989-01-01

    The Space Station is the focal point for the commercial development of space. The long term routine operation of the Space Station and the conduct of future commercial activities suggests the need for in-space metrology capabilities analogous when possible to those on-Earth. The ability to perform periodic calibrations and measurements with proper traceability is imperative for the routine operation of the Space Station. An initial review, however, indicated a paucity of data related to metrology and calibration requirements for in-space operations. This condition probably exists because of the highly developmental aspect of space activities to date, their short duration, and nonroutine nature. The on-orbit metrology and calibration needs of the Space Station were examined and assessed. In order to achieve this goal, the following tasks were performed: an up-to-date literature review; identification of on-orbit calibration techniques; identification of sensor calibration requirements; identification of calibration equipment requirements; definition of traceability requirements; preparation of technology development plans; and preparation of the final report. Significant information and major highlights pertaining to each task is presented. In addition, some general (generic) conclusions/observations and recommendations that are pertinent to the overall in-space metrology and calibration activities are presented.

  9. On-orbit aqua MODIS modulation transfer function trending in along-scan from the Spectro-Radiometric Calibration Assembly

    NASA Astrophysics Data System (ADS)

    Choi, Taeyoung; Che, Nianzeng; Xiong, Xiaoxiong

    2008-08-01

    The Spectro-Radiometric Calibration Assembly (SRCA) is one of the on-board calibrators for the MODIS instrument. The SRCA is operated in three modes: spectral, spatial, and radiometric. The spatial mode is used to track the changes in band-to-band registration both along-scan (band and detector) and along-track (band) and the MTF in the along-scan direction for all 36 MODIS bands over the MODIS lifetime. In the SRCA spatial mode, a rectangular knife-edge reticle, located at the focus of the SRCA collimator, is imaged onto four MODIS Focal Plane Assemblies (FPA). The reticle is illuminated by a spherical integration sphere and a glow-bar so that all bands can have an appropriate signal level. When the MODIS scan mirror rotates, the illuminated knife-edge scans across the bands/detectors. In addition, there are five electronic phase-delays so that the sampling spacing is reduced to 1/5 of the detector size, which results in dense data points. After combining detector responses from all phase-delays, a combined bell-shaped response profile is formed. The derivative of the detector response to the knife-edge is the Line Spread Function (LSF). In the frequency domain, the Modulation Transfer Functions (MTF) are calculated from the normalized Fourier transform of the LSF. The MTF results from the SRCA are validated by the pre-launch results from the Integrated Alignment Collimator (IAC) and a SRCA collection performed in the Thermal Vacuum (TV). The six-year plus on-orbit MTF trending results show very stable responses in the VIS and NIR FPAs, and meet the design specifications. Although there are noticeable MTF degradations over the instrument lifetime in bands 1 and 2, they are negligible with the large specification margins. In addition, a similar relationship is found between the band locations in the VIS and NIR FPAs versus MTF values.

  10. Early Assessment of VIIRS On-Orbit Calibration and Support Activities

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Kwofu; McIntire, Jeffrey; Oudrari, Hassan; Wu, Aisheng; Schwaller, Mathew; Butler, James

    2012-01-01

    The Suomi National Polar-orbiting Partnership (S-NPP) satellite, formally the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), provides a bridge between current and future low-Earth orbiting weather and environmental observation satellite systems. The NASA s NPP VIIRS Characterization Support Team (VCST) is designed to assess the long term geometric and radiometric performance of the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard the S-NPP spacecraft and to support NPP Science Team Principal Investigators (PI) for their independent evaluation of VIIRS Environmental Data Records (EDRs). This paper provides an overview of Suomi NPP VIIRS on-orbit calibration activities and examples of sensor initial on-orbit performance. It focuses on the radiometric calibration support activities and capabilities provided by the NASA VCST.

  11. Landsat TM and ETM+ Thermal Band Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Hook, Simon J.; Palluconi, Frank D.; Schott, John R.; Raqueno, Nina G.

    2006-01-01

    Landsat-5 Thematic Mapper (TM) has been imaging the Earth since March 1984 and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) was added to the series of Landsat instruments in April 1999. The stability and calibration of the ETM+ has been monitored extensively since launch. Though not monitored for many years, TM now has a similar system in place to monitor stability and calibration. University teams have been evaluating the on-board calibration of the instruments through ground-based measurements since 1999. This paper considers the calibration efforts for the thermal band, Band 6, of both the Landsat-5 and Landsat-7 instruments.

  12. EOS ASTER thermal infrared band vicarious calibration

    NASA Technical Reports Server (NTRS)

    Palluconi, F.; Tonooka, H.; Hook, S.; Abtahi, A.; Alley, R.; Thompson, T.; Hoover, G.; Zadourian, S.

    2001-01-01

    Calibration of the 5 EOS ASTER instrument emission bands (90 m pixels at surface) is being checked during the operational life of the mission using field measurements simultaneous with the image acquisition.

  13. On-orbit performance of the Landsat-7 ETM+ radiometric calibrators

    USGS Publications Warehouse

    Markham, Brian L; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    2003-01-01

    The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) incorporates two new devices to improve its absolute radiometric calibration: a Full Aperture Solar Calibrator (FASC) and a Partial Aperture Solar Calibrator (PASC). The FASC is a diffuser panel, typically deployed once per month. Initial FASC absolute calibration results were within 5% of the pre-launch calibrations. Over time, the responses of the ETM+ to the FASC have varied with the location viewed on the panel, suggesting a localized degradation or contamination of the panel. On the best part of the panel, the trends in response range from m 1.4% y m 1 (band 4) to +0.6% y m 1 (band 7), with band 5 showing the least change at m 0.4% y m 1 . Changes in the panel reflectance due to UV exposure are believed to be the origin of these trends. The PASC is a set of auxiliary optics that allows the ETM+ to image the Sun through reduced apertures. PASC data have normally been acquired on a daily basis. Unlike the FASC, the PASC has exhibited significant anomalies. During the first six months of operation, responses to the PASC increased up to 60%, sending bands 2, 3 and 8 into saturation (band 1 was saturated at launch). The short-wave infrared (SWIR) band individual detectors have shown variations up to - 20% in response to the PASC. The variation is different for each detector. After the first six months, the responses to the PASC have become more stable, with much of the variation related to the within-scan position of the solar image. Overall results to date for all calibrators and comparisons with vicarious calibrations indicate that most of the response variations have been due to the calibrators themselves and suggest that the instrument has been stable with changes in response of less than 0.5% y m 1 .

  14. Uncertainty Assessment of the SeaWiFS On-Orbit Calibration

    NASA Technical Reports Server (NTRS)

    Eplee, Robert E., Jr.; Meister, Gerhard; Patt, Frederick S.; Franz, Bryan A.; McClain, Charles R.

    2011-01-01

    Ocean color climate data records require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the atmosphere radiances. The rigorous on-orbit calibration program developed and implemented for SeaWiFS by the NASA Ocean Biology Processing Group (OBPG) Calibration and Validation Team (CVT) has allowed the CVT to maintain the stability of the radiometric calibration of SeaWiFS at 0.13% or better over the mission. The uncertainties in the resulting calibrated top-of-the-atmosphere (TOA) radiances can be addressed in terms of accuracy (biases in the measurements), precision (scatter in the measurements), and stability (repeatability of the measurements). The calibration biases of lunar observations relative to the USGS RObotic Lunar Observatory (ROLO) photometric model of the Moon are 2-3%. The biases from the vicarious calibration against the Marine Optical Buoy (MOBY) are 1-2%. The precision of the calibration derived from the solar calibration signal-tonoise ratios are 0.16%, from the lunar residuals are 0.13%, and from the vicarious gains are 0.10%. The long-term stability of the TOA radiances, derived from the lunar time series, is 0.13%. The stability of the vicariouslycalibrated TOA radiances, incorporating the uncertainties in the MOBY measurements and the atmospheric correction, is 0.30%. These results allow the OBPG to produce climate data records from the SeaWiFS ocean color data.

  15. Use of the moon to support on-orbit sensor calibration for climate change measurements

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.

    2006-01-01

    Production of reliable climate datasets from multiple observational measurements acquired by remote sensing satellite systems available now and in the future places stringent requirements on the stability of sensors and consistency among the instruments and platforms. Detecting trends in environmental parameters measured at solar reflectance wavelengths (0.3 to 2.5 microns) requires on-orbit instrument stability at a level of 1% over a decade. This benchmark can be attained using the Moon as a radiometric reference. The lunar calibration program at the U.S. Geological Survey has an operational model to predict the lunar spectral irradiance with precision ???1%, explicitly accounting for the effects of phase, lunar librations, and the lunar surface photometric function. A system for utilization of the Moon by on-orbit instruments has been established. With multiple lunar views taken by a spacecraft instrument, sensor response characterization with sub-percent precision over several years has been achieved. Meteorological satellites in geostationary orbit (GEO) capture the Moon in operational images; applying lunar calibration to GEO visible-channel image archives has the potential to develop a climate record extending decades into the past. The USGS model and system can provide reliable transfer of calibration among instruments that have viewed the Moon as a common source. This capability will be enhanced with improvements to the USGS model absolute scale. Lunar calibration may prove essential to the critical calibration needs to cover a potential gap in observational capabilities prior to deployment of NPP/NPOESS. A key requirement is that current and future instruments observe the Moon.

  16. Using Lunar Observations to Assess Terra MODIS Thermal Emissive Bands Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chen, Hongda

    2010-01-01

    MODIS collects data in both the reflected solar and thermal emissive regions using 36 spectral bands. The center wavelengths of these bands cover the3.7 to 14.24 micron region. In addition to using its on-board calibrators (OBC), which include a full aperture solar diffuser (SD) and a blackbody (BB), lunar observations have been scheduled on a regular basis to support both Terra and Aqua MODIS on-orbit calibration and characterization. This paper provides an overview of MODIS lunar observations and their applications for the reflective solar bands (RSB) and thermal emissive bands (TEB) with an emphasis on potential calibration improvements of MODIS band 21 at 3.96 microns. This spectral band has detectors set with low gains to enable fire detection. Methodologies are proposed and examined on the use of lunar observations for the band 21 calibration. Also presented in this paper are preliminary results derived from Terra MODIS lunar observations and remaining challenging issues.

  17. On-Orbit Performance and Calibration of the Soft X-Ray Telescope on Yohkoh

    NASA Astrophysics Data System (ADS)

    Acton, Loren W.

    2016-02-01

    This paper documents details of the on-orbit performance, data problem solving, and calibration of the Soft X-ray Telescope (SXT) experiment on Yohkoh. This information is important to a full understanding of the strengths and weaknesses of the SXT data set. The paper begins with summaries of SXT calibration issues and how they have been addressed, operational anomalies experienced during the mission, and a brief discussion of the SXT optical train. The following section on the accuracy of Yohkoh pointing determination provides information important for alignment of SXT images with each other and with other solar data. The remainder of the paper gives details of work by the experiment team to understand and ameliorate the many instrument anomalies and changes which impacted the scientific data.

  18. On-orbit calibration approach for star cameras based on the iteration method with variable weights.

    PubMed

    Wang, Mi; Cheng, Yufeng; Yang, Bo; Chen, Xiao

    2015-07-20

    To perform efficient on-orbit calibration for star cameras, we developed an attitude-independent calibration approach for global optimization and noise removal by least-square estimation using multiple star images, with which the optimal principal point, focal length, and the high-order focal plane distortion can be obtained in one step in full consideration of the interaction among star camera parameters. To avoid the problem when stars could be misidentified in star images, an iteration method with variable weights is introduced to eliminate the influence of misidentified star pairs. The approach can increase the precision of least-square estimation and use fewer star images. The proposed approach has been well verified to be precise and robust in three experiments. PMID:26367824

  19. On-Orbit Absolute Temperature Calibration for CLARREO Using Multiple Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Ellington, S. D.; Thielman, D. J.; Revercomb, H. E.; Perepezko, J. H.

    2008-12-01

    NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors, suitable for CLARREO on-orbit operation, has been demonstrated in the laboratory at the University of Wisconsin, and is now undergoing refinement under NASA Instrument Incubator Program funding. In this scheme, small quantities of reference materials (mercury, water, and gallium - to date) are imbedded into the blackbody cavity wall, in a manner similar to the temperature sensors to be calibrated. As the blackbody cavity is slowly heated through a reference material melt temperature, the transient temperature signature of the imbedded thermistor sensors provides a very accurate indication of the melt temperature. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). The flight implementation of this new scheme will involve special considerations for packaging the phase change materials to ensure long-term compatibility with the containment system, and design features that help ensure that the on-orbit melt behavior in a microgravity environment is unchanged from pre-flight full gravitational conditions under which the system is characterized.

  20. Using the Moon to Track MODIS Reflective Solar Bands Calibration Stability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Geng, Xu; Angal, Amit; Sun, Junqiang; Barnes, William

    2011-01-01

    MODIS has 20 reflective solar bands (RSB) in the visible (VIS), near infrared (NIR), and short-wave infrared (SWIR) spectral regions. In addition to instrument on-board calibrators (OBC), lunar observations have been used by both Terra and Aqua MODIS to track their reflective solar bands (RSB) on-orbit calibration stability. On a near monthly basis, lunar observations are scheduled and implemented for each instrument at nearly the same lunar phase angles. A time series of normalized detector responses to the Moon is used to monitor its on-orbit calibration stability. The normalization is applied to correct the differences of lunar viewing geometries and the Sun-Moon-Sensor distances among different lunar observations. Initially, the lunar calibration stability monitoring was only applied to MODIS bands (1-4 and 8-12) that do not saturate while viewing the Moon. As the mission continued, we extended the lunar calibration stability monitoring to other RSB bands (bands 13-16) that contain saturated pixels. For these bands, the calibration stability is monitored by referencing their non-saturated pixels to the matched pixels in a non-saturation band. In this paper, we describe this relative approach and apply it to MODIS regularly scheduled lunar observations. We present lunar trending results for both Terra and Aqua MODIS over their entire missions. Also discussed in the paper are the advantages and limitations of this approach and its potential applications to other earth-observing sensors. Keywords: Terra, Aqua, MODIS, sensor, Moon, calibration, stability

  1. Radiometric calibration stability of the EO-1 advanced land imager: 5 years on-orbit

    USGS Publications Warehouse

    Markham, B.L.; Ong, L.; Barsi, J.A.; Mendenhall, J.A.; Lencioni, D.E.; Helder, D.L.; Hollaren, D.M.; Morfitt, R.

    2006-01-01

    The Advanced Land Imager (ALI) was developed as a prototype sensor for follow on missions to Landsat-7. It was launched in November 2000 on the Earth Observing One (EO-1) satellite as a nominal one-year technology demonstration mission. As of this writing, the sensor has continued to operate in excess of 5 years. Six of the ALl's nine multi-spectral (MS) bands and the panchromatic band have similar spectral coverage as those on the Landsat-7 ETM+. In addition to on-board lamps, which have been significantly more stable than the lamps on ETM+, the ALI has a solar diffuser and has imaged the moon monthly since launch. This combined calibration dataset allows understanding of the radiometric stability of the ALI system, its calibrators and some differentiation of the sources of the changes with time. The solar dataset is limited as the mechanism controlling the aperture to the solar diffuser failed approximately 18 months after launch. Results over 5 years indicate that: the shortest wavelength band (443 nm) has degraded in response about 2%; the 482 nm and 565 nm bands decreased in response about 1%; the 660 nm, 790 nm and 868 nm bands each degraded about 5%; the 1250 nm and 1650 nm bands did not change significantly and the 2215 nm band increased in response about 2%.

  2. Calibration improvements for MODIS and VIIRS SWIR spectral bands

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Angal, Amit; Fulbright, Jon; Lei, Ning; Mu, Qiaozhen; Wang, Zhipeng; Wu, Aisheng

    2015-09-01

    Both MODIS and VIIRS use a solar diffuser (SD) to calibrate their reflective solar bands (RSB), covering wavelengths from 0.41 to 2.3 μm. On-orbit changes of the SD bi-directional reflectance factor (BRF) are tracked by an on-board solar diffuser stability monitor (SDSM). The current SDSM design only covers the spectral range from 0.41 to 0.93 μm. In general, the SD degradation is strongly wavelength-dependent with larger degradation occurring at shorter wavelengths, and the degradation in the SWIR region is expected to be extremely small. As each mission continues, however, the impact due to SD degradation at SWIR needs to be carefully examined and the correction if necessary should be applied in order to maintain the calibration quality. For Terra MODIS, alternative approaches have been developed and used to estimate the SD degradation for its band 5 at 1.24 μm and a time-dependent correction has already been applied to the current level 1B (L1B) collection 6 (C6). In this paper, we present different methodologies that can be used to examine the SD degradation and their applications for both Terra and Aqua MODIS and S-NPP VIIRS SWIR calibration. These methodologies include but not limited to the use of lunar observations, Pseudo Invariant Calibration Sites (PICS), and deep convective clouds (DCC). A brief description of relative approaches and their use is also provided in this paper.

  3. MODIS thermal emissive band calibration stability derived from surface targets

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Xiong, X.; Dodd, J.

    2009-09-01

    The 16 MODIS Thermal Emissive Bands (TEB), with wavelengths covering from 3.7μm to 14.4μm, are calibrated using scan-by-scan observations of an on-orbit blackbody (BB). Select Earth surface targets can be used to track the long-term consistency, stability and relative bias between the two MODIS instruments currently in orbit. Measurements at Dome C, Antarctica have shown a relative bias of less than 0.01K over a 5 year period between Terra and Aqua MODIS Band 31 (11μm). Dome C surface temperatures are typically outside the MODIS BB calibration range. Sea surface temperature (SST) measurements from data buoys provide a useful reference at higher scene temperatures. This paper extends the techniques previously applied only to Band 31 to the remaining TEB using both Dome C and SST sites. The long-term calibration stability and relative bias between Terra and Aqua MODIS is discussed.

  4. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation

    USGS Publications Warehouse

    Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P.; Annadurai, M.; Besse, S.; Barr, D.; Buratti, B.; Cate, D.; Chatterjee, A.; Clark, R.; Cheek, L.; Combe, J.; Dhingra, D.; Essandoh, V.; Geier, S.; Goswami, J.N.; Green, R.; Haemmerle, V.; Head, J.; Hovland, L.; Hyman, S.; Klima, R.; Koch, T.; Kramer, G.; Kumar, A.S.K.; Lee, Kenneth; Lundeen, S.; Malaret, E.; McCord, T.; McLaughlin, S.; Mustard, J.; Nettles, J.; Petro, N.; Plourde, K.; Racho, C.; Rodriquez, J.; Runyon, C.; Sellar, G.; Smith, C.; Sobel, H.; Staid, M.; Sunshine, J.; Taylor, L.; Thaisen, K.; Tompkins, S.; Tseng, H.; Vane, G.; Varanasi, P.; White, M.; Wilson, D.

    2011-01-01

    , spatial, and uniformity validation effort has been pursued with selected data sets including an Earth-view data set. With this effort an initial validation of the on-orbit performance of the imaging spectrometer has been achieved, including validation of the cross-track spectral uniformity and spectral instantaneous field of view uniformity. The Moon Mineralogy Mapper is the first imaging spectrometer to measure a data set of this kind at the Moon. These calibrated science measurements are being used to address the full set of science goals and objectives for this mission. Copyright 2011 by the American Geophysical Union.

  5. On-Orbit Performance Verification and End-To-End Characterization of the TDRS-H Ka-band Communications Payload

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)

    2002-01-01

    In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates of up to 25 Mb/sec using the 22.55-23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to at least 800 Mb/sec using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications, and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include antenna gain pattern, antenna Gain-to-System Noise Temperature (G/T), Effective Isotropically Radiated Power (EIRP), antenna pointing accuracy, frequency tunability, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.

  6. On-Orbit Performance Verification and End-to-End Characterization of the TDRS-H Ka-Band Communications Payload

    NASA Technical Reports Server (NTRS)

    Toral, Marco; Wesdock, John; Kassa, Abby; Pogorelc, Patsy; Jenkens, Robert (Technical Monitor)

    2002-01-01

    In June 2000, NASA launched the first of three next generation Tracking and Data Relay Satellites (TDRS-H) equipped with a Ka-band forward and return service capability. This Ka-band service supports forward data rates up to 25 Mb/sec using the 22.55 - 23.55 GHz space-to-space allocation. Return services are supported via channel bandwidths of 225 and 650 MHz for data rates up to 800 Mb/sec (QPSK) using the 25.25 - 27.5 GHz space-to-space allocation. As part of NASA's acceptance of the TDRS-H spacecraft, an extensive on-orbit calibration, verification and characterization effort was performed to ensure that on-orbit spacecraft performance is within specified limits. This process verified the compliance of the Ka-band communications payload with all performance specifications and demonstrated an end-to-end Ka-band service capability. This paper summarizes the results of the TDRS-H Ka-band communications payload on-orbit performance verification and end-to-end service characterization. Performance parameters addressed include Effective Isotropically Radiated Power (EIRP), antenna Gain-to-System Noise Temperature (G/T), antenna gain pattern, frequency tunability and accuracy, channel magnitude response, and Ka-band service Bit-Error-Rate (BER) performance.

  7. The moon as a radiometric reference source for on-orbit sensor stability calibration

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  8. On-orbit performance testing of the Pointing Calibration & Reference Sensor for the Spitzer Space Telescope

    NASA Technical Reports Server (NTRS)

    Mainzer, Amanda K.; Young, Erick T.; Swanson, Daniel S.

    2004-01-01

    We present the on-orbit performance results of the Pointing Calibration and Reference Sensor (PCRS) for the Spitzer Space Telescope. A cryogenic optical (center wavelength 0.55 mu) imager, the PCRS serves as the Observatory's fine guidance sensor by providing an alignment reference between the telescope boresight and the external spacecraft attitude determination system. The PCRS makes precision measurements of the positions of known guide stars; these are used to calibrate measurements from Spitzer's star tracker and gyroscopes to obtain the actual pointing of the Spitzer telescope. The PCRS calibrates out thermomoechanical drifts between the 300 K spacecraft bus and the 5.5 K telescope. By using only 16 pixels, the PCRS provides high precision centroiding with extremely low (`64 mu W) power dissipation, resulting in minimal impact to Spritzer's helium lifetime. We have demonstrated that the PCRS meets its centroiding accuracy requirement of 0.14 arcsec 1-sigma radial, which represents about1/100 pixel centroiding. The Spitzer Space Telescope was launched in 25 August, 2003 and completed its In-Orbit Checkout phase two months later; the PCRS has been operating failure free ever since.

  9. PREMOS Absolute Radiometer Calibration and Implications to on-orbit Measurements of the Total Solar Irradiance

    NASA Astrophysics Data System (ADS)

    Fehlmann, A.; Kopp, G.; Schmutz, W. K.; Winkler, R.; Finsterle, W.; Fox, N.

    2011-12-01

    On orbit measurements starting in the late 1970's, have revealed the 11 year cycle of the Total Solar Irradiance (TSI). However, the absolute results from individual experiments differ although all instrument teams claim to measure an absolute value. Especially the data from the TIM/SORCE experiment confused the community as it measures 0.3 % lower than the other instruments, e.g. VIRGO/SOHO by PMOD/WRC, which clearly exceeds the uncertainty stated for the absolute characterization of the experiments. The PREMOS package on the PICARD platform launched in June 2010 is the latest space experiment by PMOD/WRC measuring the TSI. We have put great effort in the calibration and characterization of this instrument in order to resolve the inter-instrument differences. We performed calibrations at the National Physical Laboratory (NPL) in London and the Laboratory for Atmospheric and Space Physics (LASP) in Boulder against national SI standards for radiant power using a laser beam with a diameter being smaller than the aperture of the instrument. These measurements together with the World Radiometric Reference (WRR) calibration in Davos allowed to compare the WRR and the SI radiant power scale. We found that the WRR lies 0.18 % above the SI radiant power scale which explains a part of the VIRGO-TIM difference. The Total solar irradiance Radiometer Facility (TRF) at the LASP allows to generate a beam that over fills the apertures of our instruments, giving the presently best available representation of solar irradiance in a laboratory. These irradiance calibrations revealed a stray light contribution between 0.09 and 0.3 % to the measurements which had been underestimated in the characterization of our instruments. Using the irradiance calibrations, we found that the WRR lies 0.32 % above the TRF scale which in turn explains the full VIRGO-TIM difference. The first light PREMOS measurements in space confirmed our findings. If we use the WRR calibration, PREMOS yields a TSI

  10. On-Orbit Absolute Temperature Calibration Using Multiple Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Best, F. A.; Adler, D. P.; Pettersen, C.; Revercomb, H. E.; Perepezko, J. H.

    2009-12-01

    NASA’s anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors, suitable for CLARREO on-orbit operation, has been demonstrated in the laboratory at the University of Wisconsin, and is now undergoing refinement under NASA Instrument Incubator Program funding. In this scheme, small quantities of reference materials (mercury, water, and gallium) are imbedded into the blackbody cavity wall, in a manner similar to the temperature sensors to be calibrated. As the blackbody cavity is slowly heated through the melt point of each reference material, the transient temperature signature from the imbedded thermistor sensors provides a very accurate indication of the melt temperature. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.

  11. Radiometric calibration of Landsat Thematic Mapper Thermal Band

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Gibbons, D. E.; Martucci, L. M.; Foote, H. P.

    1989-01-01

    Radiometric calibration of satellite-acquired data is essential for quantitative scientific studies, as well as for a variety of image-processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM) Band 6 conducted at DOE's Pacific Northwest Laboratory. Numerous Landsat TM scenes acquired and analyzed included day and night coverages at several geographical locations over several seasons. Concurrent with Landsat overpasses, thermal field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and nonwater land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that, for both water and nonwater features, TM Band 6 average corrected temperature determinations using local radiosonde data to adjust for atmospheric effects, and using appropriate emissivities, are within 1.0 C of GT temperature values. Temperatures of water pixels derived from uncorrected TM Band 6 data varied roughly between 1 and 3 C of ground truth values for water temperatures ranging between 4 and 24 C. Moreover, corrections using nonlocal and noncoincident radiosonde data resulted in errors as large as 12 C. Corrections using the U.S. Standard Atmosphere gave temperature values within 1 to 2 C of GT. The average uncertainty for field instruments was + or - 0.2 C; average uncertainty for Landsat TM corrected temperature determinations was + or - 0.4 C.

  12. On-Orbit Cross-Calibration of AM Satellite Remote Sensing Instruments using the Moon

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Kieffer, Hugh H.; Barnes, Robert A.; Stone, Thomas C.

    2003-01-01

    On April 14,2003, three Earth remote sensing spacecraft were maneuvered enabling six satellite instruments operating in the visible through shortwave infrared wavelength region to view the Moon for purposes of on-orbit cross-calibration. These instruments included the Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging SpectroRadiometer (MISR), the Advanced Spaceborne Thermal Emission and Reflection (ASTER) radiometer on the Earth Observing System (EOS) Terra spacecraft, the Advanced Land Imager (ALI) and Hyperion instrument on Earth Observing-1 (EO-1) spacecraft, and the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) on the SeaStar spacecraft. Observations of the Moon were compared using a spectral photometric mode for lunar irradiance developed by the Robotic Lunar Observatory (ROLO) project located at the United States Geological Survey in Flagstaff, Arizona. The ROLO model effectively accounts for variations in lunar irradiance corresponding to lunar phase and libration angles, allowing intercomparison of observations made by instruments on different spacecraft under different time and location conditions. The spacecraft maneuvers necessary to view the Moon are briefly described and results of using the lunar irradiance model in comparing the radiometric calibration scales of the six satellite instruments are presented here.

  13. On-Orbit Calibration of Redundant Spacecraft Gyros by Optimal Reduction to Three Axes

    NASA Technical Reports Server (NTRS)

    Radomski, M. S.

    2001-01-01

    The Aqua spacecraft will carry four single-axis gyros configured with three orthogonal axes and one skew axis. This redundancy presents a challenge for batch methods of on-orbit gyro calibration that use a spacecraft rotation model deterministically related to gyro data, in that sensor data can respond to at most three angular velocity components. When the number of gyros, N, is greater than 3, the 3xN matrix, G, that reduces the N gyro measurements to three body-frame angular-velocity components cannot be fully determined by such methods; there are many such matrices that produce essentially the same angular velocity history. In such a case, spacecraft operators require information about the Nx3 gyro linear response matrix, R, that relates gyro outputs to the body-frame angular velocities causing them. This matrix provides sufficient information to determine multiple reduced-dimension G-matrices for use in case of failure or degradation of one or more gyros, as well as to determine an optimal 3xN G for the fully-functional configuration. A viable proposal is to apply a 3xN pre-filter matrix, F, to the N gyro outputs before carrying out a conventional gyro calibration procedure. The angular-velocity history emerging from conventional calibration may then be used as input data, together with the same gyro data that generated it, to fit the alignment, scale-factor, and bias parameters of each gyro axis in turn. A difficulty of such a proposal is the arbitrariness in the choice of F. Due to gyro noise, different pre-filter matrices produce different calibrations. This paper presents a method of choosing F that is based on optimizing gyro consistency in the limit of infinite weight on gyro data, as compared to sensor data. The choice of F is independent of a priori alignment and is based on the gyro data alone. The method is applicable to any N of three or more, but reduces to conventional batch-estimation methodologies when N = 3. Results of computational comparison

  14. Calibration of VIIRS F1 Sensor Fire Detection Band Using lunar Observations

    NASA Technical Reports Server (NTRS)

    McIntire, Jeff; Efremova, Boryana; Xiong, Xiaoxiong

    2012-01-01

    Visible Infrared Imager Radiometer Suite (VIIRS) Fight 1 (Fl) sensor includes a fire detection band at roughly 4 microns. This spectral band has two gain states; fire detection occurs in the low gain state above approximately 345 K. The thermal bands normally utilize an on-board blackbody to provide on-orbit calibration. However, as the maximum temperature of this blackbody is 315 K, the low gain state of the 4 micron band cannot be calibrated in the same manner as the rest of the thermal bands. Regular observations of the moon provide an alternative calibration source. The lunar surface temperature has been recently mapped by the DIVINER sensor on the LRO platform. The periodic on-board high gain calibration along with the DIVINER surface temperatures was used to determine the emissivity and solar reflectance of the lunar surface at 4 microns; these factors and the lunar data are then used to fit the low gain calibration coefficients of the 4 micron band. Furthermore, the emissivity of the lunar surface is well known near 8.5 microns due to the Christiansen feature (an emissivity maximum associated with Si-O stretching vibrations) and the solar reflectance is negligible. Thus, the 8.5 micron band is used for relative calibration with the 4 micron band to de-trend any temporal variations. In addition, the remaining thermal bands are analyzed in a similar fashion, with both calculated emissivities and solar reflectances produced.

  15. Comparing On-Orbit and Ground Performance for an S-Band Software-Defined Radio

    NASA Technical Reports Server (NTRS)

    Chelmins, David T.; Welch, Bryan W.

    2014-01-01

    NASA's Space Communications and Navigation Testbed was installed on an external truss of the International Space Station in 2012. The testbed contains several software-defined radios (SDRs), including the Jet Propulsion Laboratory (JPL) SDR, which underwent performance testing throughout 2013 with NASAs Tracking and Data Relay Satellite System (TDRSS). On-orbit testing of the JPL SDR was conducted at S-band with the Glenn Goddard TDRSS waveform and compared against an extensive dataset collected on the ground prior to launch. This paper will focus on the development of a waveform power estimator on the ground post-launch and discuss the performance challenges associated with operating the power estimator in space.

  16. Comparing On-Orbit and Ground Performance for an S-Band Software-Defined Radio

    NASA Technical Reports Server (NTRS)

    Chelmins, David; Welch, Bryan

    2014-01-01

    NASA's Space Communications and Navigation Testbed was installed on an external truss of the International Space Station in 2012. The testbed contains several software-defined radios (SDRs), including the Jet Propulsion Laboratory (JPL) SDR, which underwent performance testing throughout 2013 with NASA's Tracking and Data Relay Satellite System (TDRSS). On-orbit testing of the JPL SDR was conducted at S-band with the Glenn Goddard TDRSS waveform and compared against an extensive dataset collected on the ground prior to launch. This paper will focus on the development of a waveform power estimator on the ground post-launch and discuss the performance challenges associated with operating the power estimator in space.

  17. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors

    PubMed Central

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-01-01

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously. PMID:26703599

  18. A Novel Error Model of Optical Systems and an On-Orbit Calibration Method for Star Sensors.

    PubMed

    Wang, Shuang; Geng, Yunhai; Jin, Rongyu

    2015-01-01

    In order to improve the on-orbit measurement accuracy of star sensors, the effects of image-plane rotary error, image-plane tilt error and distortions of optical systems resulting from the on-orbit thermal environment were studied in this paper. Since these issues will affect the precision of star image point positions, in this paper, a novel measurement error model based on the traditional error model is explored. Due to the orthonormal characteristics of image-plane rotary-tilt errors and the strong nonlinearity among these error parameters, it is difficult to calibrate all the parameters simultaneously. To solve this difficulty, for the new error model, a modified two-step calibration method based on the Extended Kalman Filter (EKF) and Least Square Methods (LSM) is presented. The former one is used to calibrate the main point drift, focal length error and distortions of optical systems while the latter estimates the image-plane rotary-tilt errors. With this calibration method, the precision of star image point position influenced by the above errors is greatly improved from 15.42% to 1.389%. Finally, the simulation results demonstrate that the presented measurement error model for star sensors has higher precision. Moreover, the proposed two-step method can effectively calibrate model error parameters, and the calibration precision of on-orbit star sensors is also improved obviously. PMID:26703599

  19. On-Orbit Geometric Calibration Approach for High-Resolution Geostationary Optical Satellite GaoFen-4

    NASA Astrophysics Data System (ADS)

    Wang, Mi; Cheng, Yufeng; Long, Xiaoxiang; Yang, Bo

    2016-06-01

    The GaoFen-4 (GF-4) remote sensing satellite is China's first civilian high-resolution geostationary optical satellite, which has been launched at the end of December 2015. To guarantee the geometric quality of imagery, this paper presents an on-orbit geometric calibration method for the area-array camera of GF-4. Firstly, we introduce the imaging features of area-array camera of GF-4 and construct a rigorous imaging model based on the analysis of the major error sources from three aspects: attitude measurement error, orbit measurement error and camera distortion. Secondly, we construct an on-orbit geometric calibration model by selecting and optimizing parameters of the rigorous geometric imaging model. On this basis, the calibration parameters are divided into two groups: external and internal calibration parameters. The external parameters are installation angles between the area-array camera and the star tracker, and we propose a two-dimensional direction angle model as internal parameters to describe the distortion of the areaarray camera. Thirdly, we propose a stepwise parameters estimation method that external parameters are estimated firstly, then internal parameters are estimated based on the generalized camera frame determined by external parameters. Experiments based on the real data of GF-4 shows that after on-orbit geometric calibration, the geometric accuracy of the images without ground control points is significantly improved.

  20. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  1. A Traceable Ground to On-Orbit Radiometric Calibration System for the Solar Reflective Wavelength Region

    NASA Technical Reports Server (NTRS)

    Heath, Donald F.; Georgiev, Georgi

    2012-01-01

    This paper describes the combination of a Mie scattering spectral BSDF and BTDF albedo standard whose calibration is traceable to the NIST SIRCUS Facility or the NIST STARR II Facility. The Space-based Calibration Transfer Spectroradiometer (SCATS) sensor uses a simple, invariant optical configuration and dedicated narrow band spectral channel modules to provide very accurate, polarization-insensitive, stable measurements of earth albedo and lunar disk albedo. Optical degradation effects on calibration stability are eliminated through use of a common optical system for observations of the Sun, Earth, and Moon. The measurements from space would be traceable to SI units through preflight calibrations of radiance and irradiance at NIST's SIRCUS facility and the invariant optical system used in the sensor. Simultaneous measurements are made in multiple spectral channels covering the solar reflective wavelength range of 300 nm to 2.4 microns. The large dynamic range of signals is handled by use of single-element, highly-linear detectors, stable discrete electronic components, and a non imaging optical configuration. Up to 19 spectral modules can be mounted on a single-axis drive to give direct pointing at the Earth and at least once per orbit view of the Sun and Moon. By observing the Sun on every orbit, the most stringent stability requirements of the system are limited to short time periods. The invariant optical system for both radiance and irradiance measurements also give excellent transfer to-orbit SI traceability. Emerging instrumental requirements for remotely sensing tropospheric trace species have led to a rethinking by some of the paradigm for Systeme International d'Unites (SI) traceability of the spectral irradiance and radiance radiometric calibrations to spectral albedo (sr(exp -1)) which is not a SI unit. In the solar reflective wavelength region the spectral albedo calibrations are tied often to either the spectral albedo of a solar diffuser or the Moon

  2. On-Orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Wide Angle Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R.; Robinson, M. S.

    2013-12-01

    Lunar Reconnaissance Orbiter (LRO) is equipped with a single Wide Angle Camera (WAC) [1] designed to collect monochromatic and multispectral observations of the lunar surface. Cartographically accurate image mosaics and stereo image based terrain models requires the position of each pixel in a given image be known to a corresponding point on the lunar surface with a high degree of accuracy and precision. The Lunar Reconnaissance Orbiter Camera (LROC) team initially characterized the WAC geometry prior to launch at the Malin Space Science Systems calibration facility. After lunar orbit insertion, the LROC team recognized spatially varying geometric offsets between color bands. These misregistrations made analysis of the color data problematic and showed that refinements to the pre-launch geometric analysis were necessary. The geometric parameters that define the WAC optical system were characterized from statistics gathered from co-registering over 84,000 image pairs. For each pair, we registered all five visible WAC bands to a precisely rectified Narrow Angle Camera (NAC) image (accuracy <15 m) [2] to compute key geometric parameters. In total, we registered 2,896 monochrome and 1,079 color WAC observations to nearly 34,000 NAC observations and collected over 13.7 million data points across the visible portion of the WAC CCD. Using the collected statistics, we refined the relative pointing (yaw, pitch and roll), effective focal length, principal point coordinates, and radial distortion coefficients. This large dataset also revealed spatial offsets between bands after orthorectification due to chromatic aberrations in the optical system. As white light enters the optical system, the light bends at different magnitudes as a function of wavelength, causing a single incident ray to disperse in a spectral spread of color [3,4]. This lateral chromatic aberration effect, also known as 'chromatic difference in magnification' [5] introduces variation to the effective focal

  3. Assessment of on-orbit crosstalk impact for SNPP VIIRS VisNIR bands

    NASA Astrophysics Data System (ADS)

    Lee, Shihyan; Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong

    2014-09-01

    Electronic and optical crosstalk is one of the major challenges facing space-based Earth observing sensors, the effects of which could pose serious risks to the successful retrieval of geophysical information. There was an extensive effort during the SNPP VIIRS design and testing phase to characterize the on-orbit VisNIR crosstalk and its impact on environmental products. This paper describes an approach to assess the level of optical and electronic crosstalk on the measured radiance, and thereafter the retrieved geophysical products. During SNPP VIIRS pre-launch testing, a set of electronic and optical cross-talk influence coefficients was derived from measurements, which represent the amount of signal contamination received by each detector when other detectors on the same focal plane were illuminated. These coefficients were used to assess the potential crosstalk and its uncertainty on typical SNPP VIIRS land, atmosphere and ocean scenes. The simulation results show SNPP VIIRS crosstalk contamination is very small, less than 0.3 % for the stressing scenes, except for bands M7 and I2 over the dark ocean regions. These results are encouraging and constitute further evidence that SNPP VIIRS produces high quality imagery. The simulation approach presented in this paper could also be used for early crosstalk impact assessments for future VIIRS instruments.

  4. Suomi NPP VIIRS day-night band on-orbit performance

    NASA Astrophysics Data System (ADS)

    Liao, L. B.; Weiss, Stephanie; Mills, Steve; Hauss, Bruce

    2013-11-01

    Suomi National Polar-Orbiting Partnership (NPP) launched on 28 October 2011 hosts the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor. The VIIRS sensor includes a day-night band (DNB) that covers almost 7 orders of magnitude in its dynamic range from full sunlit scenes to lunar-illuminated clouds. The DNB is panchromatic and covers the wavelengths from 500 nm to 900 nm. Since launch, extensive effort has gone into its characterization. We have shown that the DNB is performing extremely well, meeting most of its specifications with some minor exceedances. The DNB characteristics evaluated include the following: sampling and resolution across the swath, geolocation uncertainty, radiometric sensitivity, radiometric uncertainty, and stray light. The only significant deviation from specification involves the stray light specification. On-orbit, the characterization shows that the DNB suffers stray light level on the order of 100% Lmin or 3 × 10-9 W•cm-2•sr-1. After algorithmic correction, the residual radiometric error was reduced to approximately 4.5 × 10-10 W•cm-2•sr-1.

  5. Modeling the Radiance of the Moon for On-orbit Calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Becker, K.J.

    2003-01-01

    The RObotic Lunar Observatory (ROLO) project has developed radiometric models of the Moon for disk-integrated irradiance and spatially resolved radiance. Although the brightness of the Moon varies spatially and with complex dependencies upon illumination and viewing geometry, the surface photometric properties are extremely stable, and therefore potentially knowable to high accuracy. The ROLO project has acquired 5+ years of spatially resolved lunar images in 23 VNIR and 9 SWIR filter bands at phase angles up to 90??. These images are calibrated to exoatmospheric radiance using nightly stellar observations in a band-coupled extinction algorithm and a radiometric scale based upon observations of the star Vega. An effort is currently underway to establish an absolute scale with direct traceability to NIST radiometric standards. The ROLO radiance model performs linear fitting of the spatially resolved lunar image data on an individual pixel basis. The results are radiance images directly comparable to spacecraft observations of the Moon. Model-generated radiance images have been produced for the ASTER lunar view conducted on 14 April 2003. The radiance model is still experimental - simplified photometric functions have been used, and initial results show evidence of computational instabilities, particularly at the lunar poles. The ROLO lunar image dataset is unique and extensive and presents opportunities for development of novel approaches to lunar photometric modeling.

  6. Pre-flight and On-orbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera

    NASA Astrophysics Data System (ADS)

    Speyerer, E. J.; Wagner, R. V.; Robinson, M. S.; Licht, A.; Thomas, P. C.; Becker, K.; Anderson, J.; Brylow, S. M.; Humm, D. C.; Tschimmel, M.

    2016-04-01

    The Lunar Reconnaissance Orbiter Camera (LROC) consists of two imaging systems that provide multispectral and high resolution imaging of the lunar surface. The Wide Angle Camera (WAC) is a seven color push-frame imager with a 90∘ field of view in monochrome mode and 60∘ field of view in color mode. From the nominal 50 km polar orbit, the WAC acquires images with a nadir ground sampling distance of 75 m for each of the five visible bands and 384 m for the two ultraviolet bands. The Narrow Angle Camera (NAC) consists of two identical cameras capable of acquiring images with a ground sampling distance of 0.5 m from an altitude of 50 km. The LROC team geometrically calibrated each camera before launch at Malin Space Science Systems in San Diego, California and the resulting measurements enabled the generation of a detailed camera model for all three cameras. The cameras were mounted and subsequently launched on the Lunar Reconnaissance Orbiter (LRO) on 18 June 2009. Using a subset of the over 793000 NAC and 207000 WAC images of illuminated terrain collected between 30 June 2009 and 15 December 2013, we improved the interior and exterior orientation parameters for each camera, including the addition of a wavelength dependent radial distortion model for the multispectral WAC. These geometric refinements, along with refined ephemeris, enable seamless projections of NAC image pairs with a geodetic accuracy better than 20 meters and sub-pixel precision and accuracy when orthorectifying WAC images.

  7. On-orbit radiometric calibration of Earth-observing sensors using the Radiometric Calibration Test Site (RadCaTS)

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey S.; Leisso, Nathan P.; Anderson, Nikolaus J.; Biggar, Stuart F.

    2012-06-01

    Vicarious techniques are used to provide supplemental radiometric calibration data for sensors with onboard calibration systems, and are increasingly important for sensors without onboard calibration systems. The Radiometric Calibration Test Site (RadCaTS) is located at Railroad Valley, Nevada. It is a facility that was developed with the goal of increasing the amount of ground-based radiometric calibration data that are collected annually while maintaining the current level of radiometric accuracy produced by traditional manned field campaigns. RadCaTS is based on the reflectance-based approach, and currently consists of a Cimel sun photometer to measure the atmosphere, a weather station to monitor meteorological conditions, and ground-viewing radiometers (GVRs) that are used the determine the surface reflectance throughout the 1 × 1-km area. The data from these instruments are used in MODTRAN5 to determine the at-sensor spectral radiance at the time of overpass. This work describes the RadCaTS concept, the instruments used to obtain the data, and the processing method used to determine the surface reflectance and top-of-atmosphere spectral radiance. A discussion on the design and calibration of three new eight-channel GVRs is introduced, and the surface reflectance retrievals are compared to in situ measurements. Radiometric calibration results determined using RadCaTS are compared to Landsat 7 ETM+, MODIS, and MISR.

  8. On-orbit calibration of soft X-ray detector on Chang'E-2 satellite

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Peng, Wen-Xi; Wang, Huan-Yu; Cui, Xing-Zhu; Guo, Dong-Ya

    2015-10-01

    The X-ray spectrometer is one of the satellite payloads on the Chang'E-2 satellite. The soft X-ray detector is one of the devices on the X-ray spectrometer, designed to detect the major rock-forming elements within the 0.5-10 keV range on the lunar surface. In this paper, energy linearity and energy resolution calibration is done using a weak 55Fe source. Temperature and time effects are found not to give a large error. The total uncertainty of calibration is estimated to be within 5% after correction. Supported by National Science Foundation of Ministry of Education

  9. CLARREO: Reference Inter-Calibration on Orbit With Reflected Solar Spectrometer

    NASA Technical Reports Server (NTRS)

    Lukashin, C.; Roithmayr, C.; Currey, C.; Wielicki, B.; Goldin, D.; Sun, W.

    2016-01-01

    The CLARREO approach for reference intercalibration is based on obtaining coincident highly accurate spectral reflectance and reflected radiance measurements, and establish an on-orbit reference for existing Earth viewing reflected solar radiation sensors: CERES and VIIRS on JPSS satellites, AVHRR and follow-on imagers on MetOp, and imagers on GEO platforms. The mission goal is to be able to provide CLARREO RS reference observations that are matched in space, time, and viewing angles with measurements from the aforementioned instruments, with sampling sufficient to overcome the random error sources from imperfect data matching and instrument noise. The intercalibration method is to monitor over time changes in targeted sensor response function parameters: effective offset, gain, nonlinearity, spectral degradation, and sensitivity to polarization of optics.

  10. Status of use of lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Anderson, J.M.

    2002-01-01

    Routine observations of the Moon have been acquired by the Robotic Lunar Observatory (ROLO) for over four years. The ROLO instruments measure lunar radiance in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands every month when the Moon is at phase angle less than 90 degrees. These are converted to exoatmospheric values at standard distances using an atmospheric extinction model based on observations of standard stars and a NIST-traceable absolute calibration source. Reduction of the stellar images also provides an independent pathway for absolute calibration. Comparison of stellar-based and lamp-based absolute calibrations of the lunar images currently shows unacceptably large differences. An analytic model of lunar irradiance as a function of phase angle and viewing geometry is derived from the calibrated lunar images. Residuals from models which fit hundreds of observations at each wavelength average less than 2%. Comparison with SeaWiFS observations over three years reveals a small quasi-periodic change in SeaWiFS responsivity that correlates with distance from the Sun for the first two years, then departs from this correlation.

  11. On-orbit absolute temperature calibration using multiple phase change materials: overview of recent technology advancements

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Adler, Douglas P.; Pettersen, Claire; Revercomb, Henry E.; Perepezko, John H.

    2010-11-01

    NASA's anticipated plan for a mission dedicated to Climate (CLARREO) will hinge upon the ability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances will require high-emissivity calibration blackbodies that have absolute temperature uncertainties of better than 0.045K (3 sigma). A novel scheme to provide absolute calibration of temperature sensors onorbit, that uses the transient melt signatures from multiple phase change materials, has been demonstrated in the laboratory at the University of Wisconsin and is now undergoing technology advancement under NASA Instrument Incubator Program funding. Using small quantities of phase change material (less than half of a percent of the mass of the cavity), melt temperature accuracies of better than 10 mK have been demonstrated for mercury, water, and gallium (providing calibration from 233K to 303K). Refinements currently underway focus on ensuring that the melt materials in their sealed confinement housings perform as expected in the thermal and microgravity environment of a multi-year spaceflight mission. Thermal soak and cycling tests are underway to demonstrate that there is no dissolution from the housings into the melt materials that could alter melt temperature, and that there is no liquid metal embrittlement of the housings from the metal melt materials. In addition, NASA funding has been recently secured to conduct a demonstration of this scheme in the microgravity environment of the International Space Station.

  12. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  13. Automatic PCM guard-band selector and calibrator

    NASA Technical Reports Server (NTRS)

    Noda, T. T.

    1974-01-01

    Automatic method for selection of proper guard band eliminates human error and speeds up calibration process. There is also an option which allows a single channel to be calibrated, independently of other channels. Entire system is designed on 3- by 4-inch printed-circuit cards and may be used with any pulse code modulation system.

  14. Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites

    USGS Publications Warehouse

    Chander, G.; Xiong, X.(J.); Choi, T.(J.); Angal, A.

    2010-01-01

    The ability to detect and quantify changes in the Earth's environment depends on sensors that can provide calibrated, consistent measurements of the Earth's surface features through time. A critical step in this process is to put image data from different sensors onto a common radiometric scale. This work focuses on monitoring the long-term on-orbit calibration stability of the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and the Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors using the Committee on Earth Observation Satellites (CEOS) reference standard pseudo-invariant test sites (Libya 4, Mauritania 1/2, Algeria 3, Libya 1, and Algeria 5). These sites have been frequently used as radiometric targets because of their relatively stable surface conditions temporally. This study was performed using all cloud-free calibrated images from the Terra MODIS and the L7 ETM+ sensors, acquired from launch to December 2008. Homogeneous regions of interest (ROI) were selected in the calibrated images and the mean target statistics were derived from sensor measurements in terms of top-of-atmosphere (TOA) reflectance. For each band pair, a set of fitted coefficients (slope and offset) is provided to monitor the long-term stability over very stable pseudo-invariant test sites. The average percent differences in intercept from the long-term trends obtained from the ETM + TOA reflectance estimates relative to the MODIS for all the CEOS reference standard test sites range from 2.5% to 15%. This gives an estimate of the collective differences due to the Relative Spectral Response (RSR) characteristics of each sensor, bi-directional reflectance distribution function (BRDF), spectral signature of the ground target, and atmospheric composition. The lifetime TOA reflectance trends from both sensors over 10 years are extremely stable, changing by no more than 0.4% per year in its TOA reflectance over the CEOS reference standard test sites. ?? 2009 Elsevier Inc.

  15. On-orbit radiometric calibration over time and between spacecraft using the moon

    USGS Publications Warehouse

    Kieffer, H.H.; Stone, T.C.; Barnes, R.A.; Bender, S.; Eplee, R.E., Jr.; Mendenhall, J.; Ong, L.

    2002-01-01

    The Robotic Lunar Observatory (ROLO) project has developed a spectral irradiance model of the Moon that accounts for variations with lunar phase through the bright half of a month, lunar librations, and the location of an Earth-orbiting spacecraft. The methodology of comparing spacecraft observations of the Moon with this model has been developed to a set of standardized procedures so that comparisons can be readily made. In the cases where observations extend over several years (e.g., SeaWiFS), instrument response degradation has been determined with precision of about 0.1% per year. Because of the strong dependence of lunar irradiance on geometric angles, observations by two spacecraft cannot be directly compared unless acquired at the same time and location. Rather, the lunar irradiance based on each spacecraft instrument calibration can be compared with the lunar irradiance model. Even single observations by an instrument allow inter-comparison of its radiometric scale with other instruments participating in the lunar calibration program. Observations by SeaWiFS, ALI, Hyperion and MTI are compared here.

  16. Twenty-Five Years of Landsat Thermal Band Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Schoff, John R.; Hook, Simon J.; Raqueno, Nina G.

    2010-01-01

    Landsat-7 Enhanced Thematic Mapper+ (ETM+), launched in April 1999, and Landsat-5 Thematic Mapper (TM), launched in 1984, both have a single thermal band. Both instruments thermal band calibrations have been updated previously: ETM+ in 2001 for a pre-launch calibration error and TM in 2007 for data acquired since the current era of vicarious calibration has been in place (1999). Vicarious calibration teams at Rochester Institute of Technology (RIT) and NASA/Jet Propulsion Laboratory (JPL) have been working to validate the instrument calibration since 1999. Recent developments in their techniques and sites have expanded the temperature and temporal range of the validation. The new data indicate that the calibration of both instruments had errors: the ETM+ calibration contained a gain error of 5.8% since launch; the TM calibration contained a gain error of 5% and an additional offset error between 1997 and 1999. Both instruments required adjustments in their thermal calibration coefficients in order to correct for the errors. The new coefficients were calculated and added to the Landsat operational processing system in early 2010. With the corrections, both instruments are calibrated to within +/-0.7K.

  17. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  18. Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band.

  19. Continued Monitoring of Landsat Reflective Band Calibration Using Pseudo-Invariant Calibration Sites

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Markham, Brian L.; Helder, Dennis L.

    2012-01-01

    Though both of the current Landsat instruments, Landsat-7 Enhanced Thematic Mapper+ (ETM+) and Landsat-5 Thematic Mapper (TM), include on-board calibration systems, since 2001, pseudo-invariant calibration sites (PICS) have been added to the suite of metrics to assess the instruments calibration. These sites do not provide absolute calibration data since there are no ground measurements of the sites, but in monitoring these PICS over time, the relative calibration can be tracked. The sites used by the Landsat instruments are primarily in the Saharan Desert. To date, the trending from the PICS sites has confirmed that most of the degradation seen in the ETM+ on-board calibration systems is likely not degradation of the instrument, but rather degradation of the calibration systems themselves. However, the PICS data show statistically significant degradation (at 2-sigma) in all the reflective spectral bands of up to -0.22%/year since July 2003. For the TM, the PICS were instrumental in updating the calibration in 2007 and now suggest two bands may require another update. The data show a statistically significant degradation (at 2-sigma) in Bands 1 and 3 of -0.27 and -0.15%/year, respectively, since March 1999. The data filtering and processing methods are currently being reviewed but these PICS results may lead to an update in the reflective band calibration of both Landsat-7 and Landsat-5.

  20. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    another blackbody, the ABI on-board calibrator. Using the detector-level SRFs reduces the structure across the arrays but leaves some residual bias. Further understanding of this bias could lead to refinements of the blackbody thermal model. This work shows the calibration impacts of using an average SRF across many detectors instead of accounting for each detector SRF independently in the TEB calibration. Note that these impacts neglect effects from the spectral sampling of Earth scene radiances that include atmospheric effects, which may further contribute to artifacts post-launch and cannot be mitigated by processing with detector-level SRFs. This study enhances the ability to diagnose anomalies on-orbit and reduce calibration uncertainty for improved system performance.

  1. AN H-BAND SPECTROSCOPIC METALLICITY CALIBRATION FOR M DWARFS

    SciTech Connect

    Terrien, Ryan C.; Mahadevan, Suvrath; Bender, Chad F.; Deshpande, Rohit; Ramsey, Lawrence W.; Bochanski, John J.

    2012-03-10

    We present an empirical near-infrared (NIR) spectroscopic method for estimating M dwarf metallicities, based on features in the H band, as well as an implementation of a similar published method in the K band. We obtained R {approx} 2000 NIR spectra of a sample of M dwarfs using the NASA IRTF-SpeX spectrograph, including 22 M dwarf metallicity calibration targets that have FGK companions with known metallicities. The H-band and K-band calibrations provide equivalent fits to the metallicities of these binaries, with an accuracy of {+-}0.12 dex. We derive the first empirically calibrated spectroscopic metallicity estimate for the giant planet-hosting M dwarf GJ 317, confirming its supersolar metallicity. Combining this result with observations of eight other M dwarf planet hosts, we find that M dwarfs with giant planets are preferentially metal-rich compared to those that host less massive planets. Our H-band calibration relies on strongly metallicity-dependent features in the H band, which will be useful in compositional studies using mid- to high-resolution NIR M dwarf spectra, such as those produced by multiplexed surveys like SDSS-III APOGEE. These results will also be immediately useful for ongoing spectroscopic surveys of M dwarfs.

  2. Impact of MODIS SWIR band calibration improvements on Level-3 atmospheric products

    NASA Astrophysics Data System (ADS)

    Wald, Andrew; Levy, Robert C.; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-05-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For λ <0.94 μm the SD's on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For λ <0.94 μm, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 μm band over the entire mission, and for the 1.38 μm band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 μm) and 26 (1.38 μm), and produce three sets (B5, B26 correction = on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by >10%, which is a large change.

  3. L-band tone-code-data transponder calibration

    NASA Technical Reports Server (NTRS)

    Brisken, A. F.

    1977-01-01

    The objectives of this program were to identify and quantify factors which affect the performance of the L-band tone-code-data ranging transponders. Specific objectives included the following: (1) assemble the L-band ranging transponder, previously deployed in Hawaii for the tracking of the ATS-5 satellite, at the GE Radio-Optical Observatory; (2) configure the observatory to conduct calibration exercises with the transponder; and (3) conduct sufficient calibration experiments to demonstrate factors which degrade transponder accuracy, precision, and reliability, to quantify these factors where possible, and to verify long term transponder stability under controlled conditions.

  4. Mission history of reflective solar band calibration performance of VIIRS

    NASA Astrophysics Data System (ADS)

    Moy, G.; Rausch, K.; Haas, E.; Wilkinson, T.; Cardema, J.; De Luccia, F.

    2015-09-01

    Environmental Data Records (EDR) from the Visible Infrared Imaging Radiometer Suite (VIIRS) have a need for Reflective Solar Band (RSB) calibration errors of less than 0.1%. Throughout the mission history of VIIRS, the overall instrument calibrated response scale factor (F factor) has been calculated with a manual process that uses data at least one week old and up to two weeks old until a new calibration Look Up Table (LUT) is put into operation. This one to two week lag routinely adds more than 0.1% calibration error. In this paper, we discuss trending the solar diffuser degradation (H factor), a key component of the F factor, improving H factor accuracy with improved bidirectional reflectance distribution function (BRDF) and attenuation screen LUTs , trending F factor, and how using RSB Automated Calibration (RSBAutoCal) will eliminate the lag and look-ahead extrapolation error.

  5. Cross-Track Infrared Sounder Science Data Record Pre-launch Calibration and On-Orbit Validation Plans

    NASA Astrophysics Data System (ADS)

    Hagan, D. E.; Bingham, G. E.; Predina, J.; Gu, D.; Sabet-Peyman, F.; Wang, C.; de Amici, G.; Plonski, M.; Farrow, S. V.; Hohn, J.; Esplin, M.; Zavyalov, V.; Fish, C. S.; Glumb, R.; Wells, S.; Suwinski, L.; Strong, J.; Behrens, C.; Kilcoyne, H.; Feeley, J.; Kratz, G.; Tremblay, D. A.

    2009-12-01

    The Cross-Track Infrared Sounder (CrIS) together with the Advanced Technology Microwave Sounder will provide retrievals of atmospheric moisture and temperature profiles for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). The NPOESS is the next generation of low Earth orbiting weather and climate satellites managed by the tri-agency Integrated Program Office, which includes the Department of Commerce, Department of Defense and the National Aeronautics and Space Administration. The CrIS is a Fourier-transform Michelson interferometer covering the spectral range of 3.9 to 15.4 microns (650 to 2550 wavenumbers) developed by ITT under contract to Northrop Grumman Aerospace Systems. The first deployment of the CrIS (Flight Model 1) is scheduled for 2010 on the NPOESS Preparatory Project (NPP) satellite, an early instrument risk reduction component of the NPOESS mission. The analysis and data results from comprehensive TVAC testing of the CrIS FM1 sensor demonstrate a very accurate radiometric and spectral calibration system. We describe instrument performance parameters, and the end-to-end plans and analysis tools for on-orbit verification of sensor characteristics and validation of the SDR radiance products.

  6. Sensor-centric calibration and characterization of the VIIRS Ocean Color bands using Suomi NPP operational data

    NASA Astrophysics Data System (ADS)

    Pratt, P.

    2012-12-01

    Ocean color bands on VIIRS span the visible spectrum and include two NIR bands. There are sixteen detectors per band and two HAM (Half-angle mirror) sides giving a total of thirty two independent systems. For each scan, thirty two hundred pixels are collected and each has a fixed specific optical path and a dynamic position relative to the earth geoid. For a given calibration target where scene variation is minimized, sensor characteristics can be observed. This gives insight into the performance and calibration of the instrument from a sensor-centric perspective. Calibration of the blue bands is especially challenging since there are few blue targets on land. An ocean region called the South Pacific Gyre (SPG) was chosen for its known stability and large area to serve as a calibration target for this investigation. Thousands of pixels from every granule that views the SPG are collected daily through an automated system and tabulated along with the detector, HAM and scan position. These are then collated and organized in a sensor-centric set of tables. The data are then analyzed by slicing by each variable and then plotted in a number of ways over time. Trends in the data show that the VIIRS sensor is largely behaving as expected according to heritage data and also reveals weaknesses where additional characterization of the sensor is possible. This work by Northrop Grumman NPP CalVal Team is supporting the VIIRS on-orbit calibration and validation teams for the sensor and ocean color as well as providing scientists interested in performing ground truth with results that show which detectors and scan angles are the most reliable over time. This novel approach offers a comprehensive sensor-centric on-orbit characterization of the VIIRS instrument on the NASA Suomi NPP mission.

  7. Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands

    NASA Astrophysics Data System (ADS)

    Schott, John R.; Gerace, Aaron; Raqueno, Nina; Ientilucci, Emmett; Raqueno, Rolando; Lunsford, Allen W.

    2014-10-01

    The Thermal Infrared Sensor (TIRS) on board Landsat 8 has exhibited a number of anomalous characteristics that have made it difficult to calibrate. These anomalies include differences in the radiometric appearance across the blackbody pre- and post-launch, variations in the cross calibration ratios between detectors that overlap on adjacent arrays (resulting in banding) and bias errors in the absolute calibration that can change spatially/temporally. Several updates to the TIRS calibration procedures were made in the months after launch to attempt to mitigate the impact of these anomalies on flat fielding (cosmetic removal of banding and striping) and mean level bias correction. As a result, banding and striping variations have been reduced but not eliminated and residual bias errors in band 10 should be less than 2 degrees for most targets but can be significantly more in some cases and are often larger in band 11. These corrections have all been essentially ad hoc without understanding or properly accounting for the source of the anomalies, which were, at the time unknown. This paper addresses the procedures that have been undertaken to; better characterize the nature of these anomalies, attempt to identify the source(s) of the anomalies, quantify the phenomenon responsible for them, and develop correction procedures to more effectively remove the impacts on the radiometric products. Our current understanding points to all of the anomalies being the result of internal reflections of energy from outside the target detector's field-of-view, and often outside the telescope field-of-view, onto the target detector. This paper discusses how various members of the Landsat calibration team discovered the clues that led to how; these "ghosts" were identified, they are now being characterized, and their impact can hopefully eventually be corrected. This includes use of lunar scans to generate initial maps of influence regions, use of long path overlap ratios to explore

  8. Using the Moon to evaluate the radiometric calibration performance of S-NPP VIIRS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng; Xiong, Xiaoxiong; Efremova, Boryana V.; Chen, Hongda

    2014-09-01

    The Suomi-NPP VIIRS thermal emissive bands (TEB) are radiometrically calibrated on-orbit with reference to a blackbody (BB) operated at a nominal temperature of approximately 292.5 K. The quality of the calibration can be evaluated at other temperature ranges using independent thermal sources. The thermal properties of the lunar surface are extremely stable over time, making it a feasible target for the TEB calibration stability assessment for the space-borne sensors with regular lunar observations. VIIRS is scheduled to view the Moon on a nearly monthly basis at approximately the same phase angle since January 2012, before the cryo-cooler door was open and TEB started to collect data. In this paper, the brightness temperatures (BT) of the lunar surface retrieved using the calibration coefficients derived from the BB calibration are trended for VIIRS TEB to examine the calibration stability. The lunar surface temperature varies greatly with location and also oscillates seasonally with the solar illumination geometry. Radiance from many lunar locations saturates TEB detectors. Therefore, the trending must base on the regions of the Moon that do not saturate the detectors at any lunar observation event and thus their BT can be consistently retrieved. To achieve that, a temporally dynamic spatial mask is built for each detector to clip the locations of the Moon that may saturate the detector at any lunar event. Results show the radiometric calibration of all TEB detectors has been stable within 1 K range since being functional.

  9. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Adler, D. P.; Best, F. A.; Aguilar, D. M.; Perepezko, J. H.

    2011-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and are undergoing further refinement under the NASA Instrument Incubator Program (IIP). In particular, the OARS has embedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium (providing calibration from 233K to 303K). One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity. We present the details of a demonstration experiment to be conducted on the International Space Station later this year. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. The planned microgravity demonstration will compare melt signatures obtained pre-flight on the ground with those obtained on the ISS for three phase change materials (water, gallium-tin, and gallium). With a successful demonstration experiment the phase transition cells in a microgravity environment will have cleared the last hurdle before being ready for

  10. Assessment of MODIS on-orbit spatial performance

    NASA Astrophysics Data System (ADS)

    Link, Daniel; Xiong, Xiaoxiong J.; Wang, Zhipeng

    2015-10-01

    The Terra and Aqua satellites are part of NASA's Earth Observing System and both satellites host a nearly-identical Moderate Resolution Imaging Spectroradiometer (MODIS). Of the 36 MODIS spectral bands mounted among four Focal Plane Assemblies (FPAs) two have a 250 meter spatial resolution at nadir. Five bands have a spatial resolution of 500 meters, while the remaining bands make observations at 1 kilometer resolution. MODIS is equipped with a suite of onboard calibrators to track on-orbit changes in key sensor performance parameters. The Spectro-Radiometric Calibration Assembly (SRCA) contains a calibration source that allows on-orbit assessment of MODIS spatial performance, providing information on current band-to-band registration (BBR), FPA-to-FPA registration (FFR), detector-to-detector registration (DDR), modulation transfer function (MTF), and instantaneous field-of-view (IFOV). In this paper, we present the methodology of the on-orbit spatial calibrations using SRCA and the results of these key spatial parameters. The MODIS spatial characteristics, measured on-orbit, are compared against design specifications and pre-launch measurements.

  11. Performance Demonstration of Miniature Phase Transition Cells in Microgravity as a Validation for their use in the Absolute Calibration of Temperature Sensors On-Orbit

    NASA Astrophysics Data System (ADS)

    Pettersen, C.; Best, F. A.; Adler, D. P.; Aguilar, D. M.; Perepezko, J. H.

    2012-12-01

    The next generation of infrared remote sensing missions, including the climate benchmark missions, will require better absolute measurement accuracy than now available, and will most certainly rely on the emerging capability to fly SI traceable standards that provide irrefutable absolute measurement accuracy. As an example, instrumentation designed to measure spectrally resolved infrared radiances with an absolute brightness temperature error of better than 0.1 K will require high-emissivity (>0.999) calibration blackbodies requiring absolute temperature uncertainties of better than 0.045K (k=3). Key elements of an On-Orbit Absolute Radiance Standard (OARS) meeting these stringent requirements have been demonstrated in the laboratory at the University of Wisconsin and were further refined under the NASA Instrument Incubator Program (IIP). In particular, the OARS has imbedded thermistors that can be periodically calibrated on-orbit using the melt signatures of small quantities (<0.5g) of three reference materials - mercury, water, and gallium, providing calibration from 233K to 303K. One of the many tests to determine the readiness of this technology for on-orbit application is a demonstration of performance in microgravity to be conducted on the International Space Station (ISS). This demonstration will make use of an Experiment Support Package developed by Utah State Space Dynamics Laboratory to continuously run melt cycles on miniature phase change cells containing gallium, a gallium-tin eutectic, and water. The phase change cells will be mounted in a small aluminum block along with a thermistor temperature sensor. A thermoelectric cooler will be used to change the temperature of the block. The demonstration will use the configuration of the phase transition cells developed under our NASA IIP that has been tested extensively in the laboratory under simulated mission life cycle scenarios - these included vibration, thermal soaks, and deep cycling. Melt signatures

  12. Calibrated Landsat ETM+ nonthermal-band image mosaics of Afghanistan

    USGS Publications Warehouse

    Davis, Philip A.

    2006-01-01

    In 2005, the U.S. Agency for International Development and the U.S. Trade and Development Agency contracted with the U.S. Geological Survey to perform assessments of the natural resources within Afghanistan. The assessments concentrate on the resources that are related to the economic development of that country. Therefore, assessments were initiated in oil and gas, coal, mineral resources, water resources, and earthquake hazards. All of these assessments require geologic, structural, and topographic information throughout the country at a finer scale and better accuracy than that provided by the existing maps, which were published in the 1970s by the Russians and Germans. The very rugged terrain in Afghanistan, the large scale of these assessments, and the terrorist threat in Afghanistan indicated that the best approach to provide the preliminary assessments was to use remotely sensed, satellite image data, although this may also apply to subsequent phases of the assessments. Therefore, the first step in the assessment process was to produce satellite image mosaics of Afghanistan that would be useful for these assessments. This report discusses the production and characteristics of the fundamental satellite image databases produced for these assessments, which are calibrated image mosaics of all six Landsat nonthermal (reflected) bands.

  13. On-orbit performance of MODIS solar diffuser stability monitor

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong (Jack); Angal, Amit; Choi, Taeyoung; Sun, Junqiang; Johnson, Eric

    2012-09-01

    MODIS reflective solar bands (RSB) calibration is provided by an on-board solar diffuser (SD). On-orbit changes in the SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM). The SDSM consists of a solar integration sphere (SIS) with nine detectors covering wavelengths from 0.41 to 0.94 μm. It functions as a ratioing radiometer, making alternate observations of the sunlight through a fixed attenuation screen and the sunlight diffusely reflected from the SD during each scheduled SD/SDSM calibration event. Since launch, Terra and Aqua MODIS SD/SDSM systems have been operated regularly to support the RSB on-orbit calibration. This paper provides an overview of MODIS SDSM design functions, its operation and calibration strategies, and on-orbit performance. Changes in SDSM detector responses over time and their potential impact on tracking SD on-orbit degradation are examined. Also presented in this paper are lessons learned from MODIS SD/SDSM calibration system and improvements made to the VIIRS SD/SDSM system, including preliminary comparisons of MODIS and VIIRS SDSM on-orbit performance.

  14. On-Orbit Performance of MODIS Solar Diffuser Stability Monitor

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Angal, Amit; Choi, Taeyoung; Sun, Jungiang; Johnson, Eric

    2014-01-01

    MODIS reflective solar bands (RSB) calibration is provided by an on-board solar diffuser (SD). On-orbit changes in the SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM). The SDSM consists of a solar integration sphere (SIS) with nine detectors covering wavelengths from 0.41 to 0.94 microns. It functions as a ratioing radiometer, making alternate observations of the sunlight through a fixed attenuation screen and the sunlight diffusely reflected from the SD during each scheduled SD/SDSM calibration event. Since launch, Terra and Aqua MODIS SD/SDSM systems have been operated regularly to support the RSB on-orbit calibration. This paper provides an overview of MODIS SDSM design functions, its operation and calibration strategies, and on-orbit performance. Changes in SDSM detector responses over time and their potential impact on tracking SD on-orbit degradation are examined. Also presented in this paper are lessons learned from MODIS SD/SDSM calibration system and improvements made to the VIIRS SD/SDSM system, including preliminary comparisons of MODIS and VIIRS SDSM on-orbit performance.

  15. 15 Years of Terra MODIS Instrument on-Orbit Performance

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Salomonson, V.

    2014-12-01

    The first MODIS instrument, launched on-board the NASA EOS Terra spacecraft in December 1999, has successfully operated for nearly 15 years. MODIS observations have significantly contributed to the studies of many geophysical parameters of the earth's system and its changes over time. Dedicated effort made by the MODIS Characterization Support Team (MCST) to constantly monitor instrument operation, to calibrate changes in sensor response, to derive and update sensor calibration parameters, and to maintain and improve calibration algorithms has played an extremely important role to assure the quality of MODIS data products. MODIS was developed with overall improvements over its heritage sensors. Its observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are calibrated on-orbit by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 27-36) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are tracked by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities implemented from launch to present and the status of instrument health and functions. It demonstrates sensor on-orbit performance derived from its telemetry, on-board calibrators (OBC), and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain level 1B data quality, various challenging issues, and future improvements.

  16. Results and Lessons from a Decade of Terra MODIS On-Orbit Spectral Characterization

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Choi, T.; Che, N.; Wang, Z.; Dodd, J.

    2010-01-01

    Since its launch in December 1999, the NASA EOS Terra MODIS has successfully operated for more than a decade. MODIS makes observations in 36 spectral bands from visible (VIS) to longwave infrared (LWIR) and at three nadir spatial resolutions: 250m (2 bands), 500m (5 bands), and 1km (29 bands). In addition to its on-board calibrators designed for the radiometric calibration, MODIS was built with a unique device, called the spectro-radiometric calibration assembly (SRCA). It can be configured in three different modes: radiometric, spatial, and spectral. When it is operated in the spectral modes, the SRCA can monitor changes in Sensor spectral performance for the VIS and near-infrared (NIR) spectral bands. For more than 10 years, the SRCA operation has continued to provide valuable information for MODIS on-orbit spectral performance. This paper briefly describes SRCA on-orbit operation and calibration activities; it presents decade-long spectral characterization results for Terra MODIS VIS and NIR spectral bands in terms of chances in their center wavelengths (CW) and bandwidths (BW). It is shown that the SRCA on-orbit wavelength calibration capability remains satisfactory. For most spectral bands, the changes in CW and BW are less than 0.5 and 1 nm, respectively. Results and lessons from Terra MODIS on-orbit spectral characterization have and will continue to benefit its successor, Aqua MODIS, and other future missions.

  17. GOES-R Space Environment In-Situ Suite: instruments overview, calibration results, and data processing algorithms, and expected on-orbit performance

    NASA Astrophysics Data System (ADS)

    Galica, G. E.; Dichter, B. K.; Tsui, S.; Golightly, M. J.; Lopate, C.; Connell, J. J.

    2016-05-01

    The space weather instruments (Space Environment In-Situ Suite - SEISS) on the soon to be launched, NOAA GOES-R series spacecraft offer significant space weather measurement performance advances over the previous GOES N-P series instruments. The specifications require that the instruments ensure proper operation under the most stressful high flux conditions corresponding to the largest solar particle event expected during the program, while maintaining high sensitivity at low flux levels. Since the performance of remote sensing instruments is sensitive to local space weather conditions, the SEISS data will be of be of use to a broad community of users. The SEISS suite comprises five individual sensors and a data processing unit: Magnetospheric Particle Sensor-Low (0.03-30 keV electrons and ions), Magnetospheric Particle Sensor-High (0.05-4 MeV electrons, 0.08-12 MeV protons), two Solar And Galactic Proton Sensors (1 to >500 MeV protons), and the Energetic Heavy ion Sensor (10-200 MeV for H, H to Fe with single element resolution). We present comparisons between the enhanced GOES-R instruments and the current GOES space weather measurement capabilities. We provide an overview of the sensor configurations and performance. Results of extensive sensor modeling with GEANT, FLUKA and SIMION are compared with calibration data measured over nearly the entire energy range of the instruments. Combination of the calibration results and model are used to calculate the geometric factors of the various energy channels. The calibrated geometric factors and typical and extreme space weather environments are used to calculate the expected on-orbit performance.

  18. MTI Thermal Bands Calibration at Ivanpah Playa with a Fourier Transform Infrared Spectrometer

    SciTech Connect

    Villa-Aleman, E.

    2001-06-27

    The Savannah River Technology Center (SRTC) is currently calibrating the Multispectral Thermal Imager (MTI) satellite sponsored by the Department of Energy. The reflective bands of the MTI satellite are calibrated in desert playas such as Ivanpah Playa in the Nevada/California border. The five MTI thermal bands are calibrated with targets of known emissivity and temperature such as power plant heated lakes. In order to accomplish a full calibration at the desert playas, a Fourier transform infrared spectrometer was used to measure soil surface radiance and temperature during the satellite overpass. The results obtained with the mobile FTIR during the ground truth campaign at Ivanpah Playa will be presented.

  19. Calibration Adjustments to the MODIS Aqua Ocean Color Bands

    NASA Technical Reports Server (NTRS)

    Meister, Gerhard

    2012-01-01

    After the end of the SeaWiFS mission in 2010 and the MERIS mission in 2012, the ocean color products of the MODIS on Aqua are the only remaining source to continue the ocean color climate data record until the VIIRS ocean color products become operational (expected for summer 2013). The MODIS on Aqua is well beyond its expected lifetime, and the calibration accuracy of the short wavelengths (412nm and 443nm) has deteriorated in recent years_ Initially, SeaWiFS data were used to improve the MODIS Aqua calibration, but this solution was not applicable after the end of the SeaWiFS mission_ In 2012, a new calibration methodology was applied by the MODIS calibration and support team using desert sites to improve the degradation trending_ This presentation presents further improvements to this new approach. The 2012 reprocessing of the MODIS Aqua ocean color products is based on the new methodology.

  20. Updated radiometric calibration for the Landsat-5 thematic mapper reflective bands

    USGS Publications Warehouse

    Helder, D.L.; Markham, B.L.; Thome, K.J.; Barsi, J.A.; Chander, G.; Malla, R.

    2008-01-01

    The Landsat-5 Thematic Mapper (TM) has been the workhorse of the Landsat system. Launched in 1984, it continues collecting data through the time frame of this paper. Thus, it provides an invaluable link to the past history of the land features of the Earth's surface, and it becomes imperative to provide an accurate radiometric calibration of the reflective bands to the user community. Previous calibration has been based on information obtained from prelaunch, the onboard calibrator, vicarious calibration attempts, and cross-calibration with Landsat-7. Currently, additional data sources are available to improve this calibration. Specifically, improvements in vicarious calibration methods and development of the use of pseudoinvariant sites for trending provide two additional independent calibration sources. The use of these additional estimates has resulted in a consistent calibration approach that ties together all of the available calibration data sources. Results from this analysis indicate a simple exponential, or a constant model may be used for all bands throughout the lifetime of Landsat-5 TM. Where previously time constants for the exponential models were approximately one year, the updated model has significantly longer time constants in bands 1-3. In contrast, bands 4, 5, and 7 are shown to be best modeled by a constant. The models proposed in this paper indicate calibration knowledge of 5% or better early in life, decreasing to nearly 2% later in life. These models have been implemented at the U.S. Geological Survey Earth Resources Observation and Science (EROS) and are the default calibration used for all Landsat TM data now distributed through EROS. ?? 2008 IEEE.

  1. Optical design and system calibration for three-band spectral imaging system with interchangeable filters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design and calibration of a three-band image acquisition system was reported. The prototype system developed in this research was a three-band spectral imaging system that acquired two visible (510 and 568 nm) images and a near-infrared (NIR) (800 nm) image simultaneously. The system was proto...

  2. On-Orbit Operation and Performance of MODIS Blackbody

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Chang, T.; Barnes, W.

    2009-01-01

    MODIS collects data in 36 spectral bands, including 20 reflective solar bands (RSB) and 16 thermal emissive bands (TES). The TEB on-orbit calibration is performed on a scan-by-scan basis using a quadratic algorithm that relates the detector response with the calibration radiance from the sensor on-board blackbody (BB). The calibration radiance is accurately determined each scan from the BB temperature measured using a set of 12 thermistors. The BB thermistors were calibrated pre-launch with traceability to the NIST temperature standard. Unlike many heritage sensors, the MODIS BB can be operated at a constant temperature or with the temperature continuously varying between instrument ambient (about 270K) and 315K. In this paper, we provide an overview of both Terra and Aqua MODIS on-board BB operations, functions, and on-orbit performance. We also examine the impact of key calibration parameters, such as BB emissivity and temperature (stability and gradient) determined from its thermistors, on the TEB calibration and Level I (LIB) data product uncertainty.

  3. Use of GPS TEC Maps for Calibrating Single Band VLBI Sessions

    NASA Technical Reports Server (NTRS)

    Gordon, David

    2010-01-01

    GPS TEC ionosphere maps were first applied to a series of K and Q band VLBA astrometry sessions to try to eliminate a declination bias in estimated source positions. Their usage has been expanded to calibrate X-band only VLBI observations as well. At K-band, approx.60% of the declination bias appears to be removed with the application of GPS ionosphere calibrations. At X-band however, it appears that up to 90% or more of the declination bias is removed, with a corresponding increase in RA and declination uncertainties of approx.0.5 mas. GPS ionosphere calibrations may be very useful for improving the estimated positions of the X-only and S-only sources in the VCS and RDV sessions.

  4. Radiometric calibration stability and inter-calibration of solar-band instruments in orbit using the moon

    USGS Publications Warehouse

    Stone, T.C.

    2008-01-01

    With the increased emphasis on monitoring the Earth's climate from space, more stringent calibration requirements are being placed on the data products from remote sensing satellite instruments. Among these are stability over decade-length time scales and consistency across sensors and platforms. For radiometer instruments in the solar reflectance wavelength range (visible to shortwave infrared), maintaining calibration on orbit is difficult due to the lack of absolute radiometric standards suitable for flight use. The Moon presents a luminous source that can be viewed by all instruments in Earth orbit. Considered as a solar diffuser, the lunar surface is exceedingly stable. The chief difficulty with using the Moon is the strong variations in the Moon's brightness with illumination and viewing geometry. This mandates the use of a photometric model to compare lunar observations, either over time by the same instrument or between instruments. The U.S. Geological Survey in Flagstaff, Arizona, under NASA sponsorship, has developed a model for the lunar spectral irradiance that explicitly accounts for the effects of phase, the lunar librations, and the lunar surface reflectance properties. The model predicts variations in the Moon's brightness with precision ???1% over a continuous phase range from eclipse to the quarter lunar phases. Given a time series of Moon observations taken by an instrument, the geometric prediction capability of the lunar irradiance model enables sensor calibration stability with sub-percent per year precision. Cross-calibration of instruments with similar passbands can be achieved with precision comparable to the model precision. Although the Moon observations used for intercomparison can be widely separated in phase angle and/or time, SeaWiFS and MODIS have acquired lunar views closely spaced in time. These data provide an example to assess inter-calibration biases between these two instruments.

  5. MODIS Instrument Operation and Calibration Improvements

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Angal, A.; Madhavan, S.; Link, D.; Geng, X.; Wenny, B.; Wu, A.; Chen, H.; Salomonson, V.

    2014-01-01

    Terra and Aqua MODIS have successfully operated for over 14 and 12 years since their respective launches in 1999 and 2002. The MODIS on-orbit calibration is performed using a set of on-board calibrators, which include a solar diffuser for calibrating the reflective solar bands (RSB) and a blackbody for the thermal emissive bands (TEB). On-orbit changes in the sensor responses as well as key performance parameters are monitored using the measurements of these on-board calibrators. This paper provides an overview of MODIS on-orbit operation and calibration activities, and instrument long-term performance. It presents a brief summary of the calibration enhancements made in the latest MODIS data collection 6 (C6). Future improvements in the MODIS calibration and their potential applications to the S-NPP VIIRS are also discussed.

  6. NPP VIIRS early on-orbit geometric performance

    NASA Astrophysics Data System (ADS)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna P.; Montano, Enrique

    2012-09-01

    The NASA/NOAA Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the Suomi National Polar-orbiting Partnership satellite was launched in October 2011. Assessment of VIIRS' geometric performance includes measurements of the sensor's spatial response, band-to-band co-registration (BBR), and geolocation accuracy and precision. The instrument sensor (detector) spatial response is estimated by line spread functions (LSFs) in the scan and track directions. The LSFs are parameterized by dynamic field of view in the scan direction and instantaneous FOV in the track direction, modulation transfer function for the 16 moderate resolution bands (M-bands), and horizontal spatial resolution for the five imagery bands (I-bands). VIIRS BBR for the M and I bands is defined as the overlapped fractional area of angular pixel sizes from the corresponding detectors in a band pair, including nested I-bands into M-bands, and measured on-orbit using lunar and earth data. VIIRS geolocation accuracy and precision are affected by instrument parameters, ancillary data (i.e., ephemeris and attitude), and thermally induced pointing variations with respect to orbital position. These are being tracked by a ground control point matching program and corrected in geolocation parameter lookup tables in the ground data processing software. This on-orbit geometric performance assessment is an important aspect of the VIIRS sensor data record calibration and validation process. In this paper, we will discuss VIIRS' geometric performance based on the first seven-month of VIIRS' on-orbit earth and lunar data, and compare these results with the at-launch performance based on ground test data and numerical modeling results. Overall, VIIRS' on-orbit geometric performance is very good and matches the prelaunch performance, and is thus expected to meet the needs of both the long-term monitoring and operational communities.

  7. On-orbit spatial characterization of VIIRS using the Moon

    NASA Astrophysics Data System (ADS)

    Wang, Zhipeng (Ben); Xiong, Xiaoxiong (Jack)

    2013-09-01

    The moon is a stable source for the on-orbit calibration of the space-borne sensors with regular lunar observation capability, such as MODIS on-board the Terra and Aqua satellites and VIIRS on-board the Suomi NPP satellite. The spectral bands of both sensors are located on multiple focal plane assemblies and spatially co-registered in both the along-scan and along-track directions. Any mis-registration, or the band-to-band registration (BBR) shift, can deteriorate the quality of the science products that are derived from the data of multiple spectral bands. In this paper, the VIIRS spatial performance, mainly focusing on its BBR, is characterized using its lunar observations via an algorithm developed and verified for MODIS. In this algorithm, the centroids of the lunar images of various bands are calculated and the BBR shift between bands is determined by differentiating these centroids. Results show that the on-orbit change of the BBR has been small for VIIRS reflective solar bands (RSB) since its launch in Oct. 2011. The modulation transfer function (MTF), a measure of the image sharpness of an optical system, is also derived for RSB from the same set of lunar images by an algorithm inherited from MODIS characterization. The VIIRS on-orbit MTF in the along-track direction is trended and shown to have been stable.

  8. A Self-Calibrating Multi-Band Region Growing Approach to Segmentation of Single and Multi-Band Images

    SciTech Connect

    Paglieroni, D W

    2002-12-20

    Image segmentation transforms pixel-level information from raw images to a higher level of abstraction in which related pixels are grouped into disjoint spatial regions. Such regions typically correspond to natural or man-made objects or structures, natural variations in land cover, etc. For many image interpretation tasks (such as land use assessment, automatic target cueing, defining relationships between objects, etc.), segmentation can be an important early step. Remotely sensed images (e.g., multi-spectral and hyperspectral images) often contain many spectral bands (i.e., multiple layers of 2D images). Multi-band images are important because they contain more information than single-band images. Objects or natural variations that are readily apparent in certain spectral bands may be invisible in 2D broadband images. In this paper, the classical region growing approach to image segmentation is generalized from single to multi-band images. While it is widely recognized that the quality of image segmentation is affected by which segmentation algorithm is used, this paper shows that algorithm parameter values can have an even more profound effect. A novel self-calibration framework is developed for automatically selecting parameter values that produce segmentations that most closely resemble a calibration edge map (derived separately using a simple edge detector). Although the framework is generic in the sense that it can imbed any core segmentation algorithm, this paper only demonstrates self-calibration with multi-band region growing. The framework is applied to a variety of AVIRIS image blocks at different spectral resolutions, in an effort to assess the impact of spectral resolution on segmentation quality. The image segmentations are assessed quantitatively, and it is shown that segmentation quality does not generally appear to be highly correlated with spectral resolution.

  9. A robust method for determining calibration coefficients for VIIRS reflective solar bands

    NASA Astrophysics Data System (ADS)

    Ji, Qiang; McIntire, Jeffrey; Efremova, Boryana; Schwarting, Thomas; Oudrari, Hassan; Zeng, Jinan; Xiong, Xiaoxiong

    2015-09-01

    This paper presents a robust method for determining the calibration coefficients in polynomial calibration equations, and discusses the corresponding calibration uncertainties. An attenuator method that takes into account all measurements with and without an attenuator screen was used to restrict the impact of the absolute calibration of the light source. The originally proposed procedure attempts to simultaneously determine all unknowns nonlinearly using polynomial curve fitting. The newly proposed method divides the task into two simpler parts. For example, in the case of a quadratic calibration equation, the first part becomes a quadratic equation solely for the transmittance of attenuator, which has an analytical solution using three or four sets of measurements. Additionally, it is straightforward to determine the median value and the standard deviation of the transmittance from the solutions using all combinations of measured data points. In conjunction, the second part becomes a linear fit, with the ratio of the zeroth-order to first-order calibration coefficients as the intercept and the ratio of the second-order to first-order calibration coefficients as the slope. These ratios are unaffected by the absolute calibration of the light source and are then used in the calibration equation to calculate the first-order calibration coefficient. How the new method works is straightforward to visualize, which makes its results easier to verify. This is demonstrated using measurements from the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands (RSB) pre-launch testing.

  10. MODIS Radiometric Calibration and Uncertainty Assessment

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Chiang, Vincent; Sun, Junqiang; Wu, Aisheng

    2011-01-01

    Since launch, Terra and Aqua MODIS have collected more than II and 9 years of datasets for comprehensive studies of the Earth's land, ocean, and atmospheric properties. MODIS observations are made in 36 spectral bands: 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). Compared to its heritage sensors, MODIS was developed with very stringent calibration and uncertainty requirements. As a result, MODIS was designed and built with a set of state of the art on-board calibrators (OBC), which allow key sensor performance parameters and on-orbit calibration coefficients to be monitored and updated if necessary. In terms of its calibration traceability, MODIS RSB calibration is reflectance based using an on-board solar diffuser (SD) and the TEB calibration is radiance based using an on-board blackbody (BB). In addition to on-orbit calibration coefficients derived from its OBC, calibration parameters determined from sensor pre-launch calibration and characterization are used in both the RSB and TEB calibration and retrieval algorithms. This paper provides a brief description of MODIS calibration methodologies and discusses details of its on-orbit calibration uncertainties. It assesses uncertainty contributions from individual components and differences between Terra and Aqua MODIS due to their design characteristics and on-orbit periormance. Also discussed in this paper is the use of MODIS LIB uncertainty index CUI) product.

  11. Radiometric calibration of the Visible Infrared Imaging Radiometer Suite reflective solar bands with robust characterizations and hybrid calibration coefficients.

    PubMed

    Sun, Junqiang; Wang, Menghua

    2015-11-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) is now entering its fourth year of in-orbit global environmental observation and is producing a wide range of scientific output. The ocean color products in particular require a level of accuracy from the reflective solar bands (RSBs) that is a magnitude higher than the specification. In this work, we present an updated and completed core calibration pipeline that achieves the best sensor data records (SDR) to date and helps the ocean color products to reach maturity. We review the core calibration methodology of the RSBs and describe each essential input, including the solar diffuser stability monitor, the solar diffuser (SD), and lunar calibrations. Their associated issues, along with the successful mitigation and improved results, are described and presented. In particular, we illuminate the inaccuracy suffered due to the evolving angular dependence in the degradation of the on-board SD that impacts the heart of the RSB calibration, but also show that lunar-based calibration instead provides the correct long-term baseline for the successful restoration of the core methodology. The new look-up tables, which combine the coefficients from the SD-based and lunar-based calibrations, produce the optimal result, with an estimated accuracy of ∼0.2%. This hybrid approach highlights significant progress in the VIIRS RSB calibration and marks a completion of the core calibration result upon which other physical impacts or scientific issues can then be more accurately examined. We demonstrate the significant improvement and its impact on the ocean color products by comparing the current official output to the newly generated result. Lastly, we point out that this hybrid calibration coefficients scheme is made possible by a VIIRS design and layout change over its predecessor, the Moderate Resolution Imaging Spectroradiometer, that allows both the SD and the moon to be viewed by the RSB at the same angle of incidence

  12. Third generation infrared system calibration using dual band thermoelectric thermal reference sources and test systems to calibrate uncooled IRFPAs

    NASA Astrophysics Data System (ADS)

    Finfrock, David K.; Kolander, William L.

    2008-04-01

    As dual band, 3rd generation FLIR systems progress from the research lab into the field, supporting technologies must also advance. This paper describes advances in Thermoelectric Thermal Reference Sources (TTRS) from single band (3 to 5 or 8 to 12 microns) to dual band in one assembly (3 to 5 and 8 to 12 microns). It will describe the optical, system, electrical, and mechanical parameters of dual band TTRS units. It provides IR system design engineers with the critical parameters of dual band TTRS units to aid in their design process. TTRS assemblies provide a temperature controllable radiometrically uniform surface. When viewed by theFLIR system detectors, the TTRS enables the system electronics to perform gain and offset calibration as well as DC restoration for each pixel's preamp Some of the parameters for 3rd Generation FLIR system TTRS units included in this paper will be: Emissivity of BB surfaces. Apparent thermal radiometric uniformity. How this is predicted and measured. Window material wavelength transmission (Hermetically sealed units only). TTRS emitter surface temperatures as a function of heat sink temperatures. Trade-off between uniformity, power consumption, and transient performance. Power consumption, Thermal interfaces and required heat sinking Types and accuracy of Temperature sensors mounted on emitter surface. Also included in this paper is a description of a Thermoelectric Black Body Test Apparatus that can be used to generate temperature coefficients needed to "burn" Proms for uncooled IRFPAs during their production and burn in processing.

  13. Applications of spectral band adjustment factors (SBAF) for cross-calibration

    USGS Publications Warehouse

    Chander, Gyanesh

    2013-01-01

    To monitor land surface processes over a wide range of temporal and spatial scales, it is critical to have coordinated observations of the Earth's surface acquired from multiple spaceborne imaging sensors. However, an integrated global observation framework requires an understanding of how land surface processes are seen differently by various sensors. This is particularly true for sensors acquiring data in spectral bands whose relative spectral responses (RSRs) are not similar and thus may produce different results while observing the same target. The intrinsic offsets between two sensors caused by RSR mismatches can be compensated by using a spectral band adjustment factor (SBAF), which takes into account the spectral profile of the target and the RSR of the two sensors. The motivation of this work comes from the need to compensate the spectral response differences of multispectral sensors in order to provide a more accurate cross-calibration between the sensors. In this paper, radiometric cross-calibration of the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) sensors was performed using near-simultaneous observations over the Libya 4 pseudoinvariant calibration site in the visible and near-infrared spectral range. The RSR differences of the analogous ETM+ and MODIS spectral bands provide the opportunity to explore, understand, quantify, and compensate for the measurement differences between these two sensors. The cross-calibration was initially performed by comparing the top-of-atmosphere (TOA) reflectances between the two sensors over their lifetimes. The average percent differences in the long-term trends ranged from $-$5% to $+$6%. The RSR compensated ETM+ TOA reflectance (ETM+$^{ast}$) measurements were then found to agree with MODIS TOA reflectance to within 5% for all bands when Earth Observing-1 Hy- erion hyperspectral data were used to produce the SBAFs. These differences were later

  14. A Review of the Strategy for the Meteosat Solar Band Calibration

    NASA Astrophysics Data System (ADS)

    Wagner, S. C.; Hewison, T.; Roebeling, R. A.

    2012-04-01

    One of the EUMETSAT missions is to operate European geostationary meteorological satellites. Up to now, 30 years of Meteosat observations in the visible and the infrared part of the spectrum have been retrieved and archived. These observations have been acquired first by the MVIRI instruments aboard Meteosat 2 to 7, and since 2004 by the SEVIRI radiometers on-board Meteosat 8 and 9. More data will come with Meteosat 10 and 11, and the future Meteosat Third Generation Flexible Combined Imager (MTG-FCI). During the course of the years, technology and data processing capabilities have improved significantly, leading to higher observation frequencies, pixel resolutions, and number of bands available in the visible part of the spectrum. Whereas MVIRI channels include only one broad solar band (ranging from 0.45 to 1μm), SEVIRI senses the Earth disc in four solar band channels (from a total of twelve channels), and the future FCI instrument will have eight solar band channels (from a total of sixteen channels). In order to support real-time, near real-time, and long-term applications such as climate monitoring, the definition of a framework for the operational calibration of the solar band channels is essential in order to ensure data quality and traceability to community agreed calibration references. This framework must integrate more and more stringent requirements on the calibration accuracy and on the long-term behaviour of the instruments. This paper describes the strategy adopted by EUMETSAT for the calibration of the solar band channels for the past, present and future geostationary imagers. This strategy includes the implementation of recommendations and standards as formulated by the Global Space-based Inter-Calibration System (GSICS) and QA4EO (a quality assurance framework for Earth Observation). We will present work done on the development of a vicarious calibration system that is based on the comparison between observed and modelled radiances over desert

  15. Adaptive digital calibration techniques for narrow band low-IF receivers with on-chip PLL

    NASA Astrophysics Data System (ADS)

    Juan, Li; Huajiang, Zhang; Feng, Zhao; Zhiliang, Hong

    2009-06-01

    Digital calibration and control techniques for narrow band integrated low-IF receivers with on-chip frequency synthesizer are presented. The calibration and control system, which is adopted to ensure an achievable signal-to-noise ratio and bit error rate, consists of a digitally controlled, high resolution dB-linear automatic gain control (AGC), an inphase (I) and quadrature (Q) gain and phase mismatch calibration, and an automatic frequency calibration (AFC) of a wideband voltage-controlled oscillator in a PLL based frequency synthesizer. The calibration system has a low design complexity with little power and small die area. Simulation results show that the calibration system can enlarge the dynamic range to 72 dB and minimize the phase and amplitude imbalance between I and Q to 0.08° and 0.024 dB, respectively, which means the image rejection ratio is better than 60 dB. In addition, the calibration time of the AFC is 1.12 μs only with a reference clock of 100 MHz.

  16. Assessment of MODIS and VIIRS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-09-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94μm. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  17. Recent progress of MODIS solar diffuser on-orbit degradation characterization

    NASA Astrophysics Data System (ADS)

    Chen, H.; Wang, Z.; Sun, J.; Angal, A.; Xiong, X.

    2012-09-01

    An on-board Solar Diffuser (SD) is used for the MODIS reflective solar bands (RSB) calibration. Its on-orbit bidirectional reflectance factor (BRF) degradation is tracked using an on-board Solar Diffuser Stability Monitor (SDSM). The SDSM is a ratioing radiometer with nine detectors, covering wavelengths from 412 nm to 936 nm. During each scheduled SD calibration event, the SDSM makes alternate observations of the Sun and the sunlight reflected by the SD. To best match the SDSM detector signals from its Sun view and SD view, a fix attenuation screen is placed in its Sun view path. This paper provides a brief description of MODIS RSB on-orbit calibration and the use of its on-board SD and SDSM subsystem, including different approaches developed and used to track MODIS SD on-orbit degradation. It reports recent progress made to better characterize MODIS SD on-orbit degradation and to support MODIS Level 1B (L1B) calibration look-up table (LUT) updates for the upcoming collection 6 (C6) reprocessing. Results of both Terra and Aqua SD on-orbit degradation derived from newly improved SDSM Sun view screen vignetting function and response fitting strategy, and their impact on RSB calibration uncertainties are also presented.

  18. Assessment of MODIS and VIIRS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Fulbright, Jon; Angal, Amit; Wang, Zhipeng; Geng, Xu; Butler, Jim

    2015-01-01

    Both MODIS and VIIRS instruments use a solar diffuser (SD) for their reflective solar bands (RSB) on-orbit calibration. On-orbit changes in SD bi-directional reflectance factor (BRF) are tracked by a solar diffuser stability monitor (SDSM) using its alternate measurements of the sunlight reflected off the SD panel and direct sunlight through a fixed attenuation screen. The SDSM calibration data are collected by a number of filtered detectors, covering wavelengths from 0.41 to 0.94 micrometers. In this paper we describe briefly the Terra and Aqua MODIS and S-NPP VIIRS SDSM on-orbit operation and calibration activities and strategies, provide an overall assessment of their SDSM on-orbit performance, including wavelength-dependent changes in the SDSM detector responses and changes in their SD BRF, and discuss remaining challenging issues and their potential impact on RSB calibration quality. Due to different launch dates, operating configurations, and calibration frequencies, the Terra and Aqua MODIS and S-NPP VIIRS SD have experienced different amount of SD degradation. However, in general the shorter the wavelength, the larger is the SD on-orbit degradation. On the other hand, the larger changes in SDSM detector responses are observed at longer wavelengths in the near infrared (NIR).

  19. VIIRS Day-Night Band (DNB) calibration methods for improved uniformity

    NASA Astrophysics Data System (ADS)

    Mills, Stephen; Miller, Steven D.

    2014-10-01

    The Suomi-NPP VIIRS Day-Night Band (DNB) offers quantitative measurements of visible and near-infrared light over a dynamic range from full daylight to the dimmest nighttime scenes. This range presents a challenge to radiometric calibration, but the instrument has exceeded all of its absolute radiometric requirements. Nevertheless, striping and banding are still visible, day or night, but especially in low-light scenes. The causes may be cross talk, stray light or hysteresis in the data used for calibration. These issues combine to reduce the utility of these unique observations for gaining new insight on the nocturnal environment. This paper presents methods for improving gain and offset uniformity for both day and night scenes while maintaining absolute radiometric accuracy. We evaluate removal of fixed-pattern non-uniformity in dark scenes on a per orbit basis using three different techniques: i) tracking the darkest 25th percentile calibration sector signal; ii) taking the mean of filtered dark Earth-view scenes to determine offset; iii) minimizing correlated error for dark scenes within an aggregation zone. For gain uniformity we discuss some problems with the current calibration methods, and demonstrate a technique to minimize the correlated error between detectors and aggregation zones using the moment matching technique for moonlit scenes. A similar technique can be used for daytime and twilight scenes. An alternative cross-calibration technique between gain stages uses indirect illumination of solar diffuser view. The use of the space view and blackbody view for cross-calibration is also discussed. Histogram equalization is discussed for minimizing striping and banding. In all cases, data with stray light is filtered out to prevent contamination of the destriping process.

  20. Characterization and calibration of 8-channel E-band heterodyne radiometer system for SST-1 tokamak

    SciTech Connect

    Siju, Varsha; Kumar, Dharmendra; Shukla, Praveena; Pathak, S. K.

    2014-05-15

    An 8-channel E-band heterodyne radiometer system (74–86 GHz) is designed, characterized, and calibrated to measure the radial electron temperature profile by measuring Electron Cyclotron Emission spectrum at SST-1 Tokamak. The developed radiometer has a noise equivalent temperature of 1 eV and sensitivity of 5 × 10{sup 9} V/W. In order to precisely measure the absolute value of electron temperature, a calibration measurement of the radiometer system is performed using hot-cold Dicke switch method, which confirms the system linearity.

  1. Radiometric calibration of a 100 cm sphere integrating source for VIIRS solar diffuser stability monitor bands

    NASA Astrophysics Data System (ADS)

    Kim, Eugene D.; Murgai, Vijay; Menzel, Reinhard W.

    2012-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Joint Polar-orbiting Satellite System (JPSS) mission has a solar diffuser as a reflective band calibrator. Due to UV solarization of the solar diffuser, the Solar Diffuser Stability Monitor (SDSM) is on-board to track the reflectance change of the solar diffuser in visible to near IR wavelengths. A 100 cm Sphere Integrating Source (SIS) has been used to configure and test the SDSM on the ground since MODerate resolution Imaging Spectroradiometer (MODIS) programs. Recent upgrades of the radiance transfer and BRDF measurement instruments in Raytheon have enabled more spectral data and faster measurement time with comparable uncertainty to the previous methods. The SIS has a Radiance Monitor, which has been mainly used as a SIS real-time health checker. It has been observed that the Radiance Monitor response is sufficiently linear and stable thus the Radiance Monitor can be used as a calibrator for ground tests. This paper describes the upgraded SIS calibration instruments, and the changes in the calibration philosophy of the SIS for the SDSM bands.

  2. DSN 70-meter antenna X- and S-band calibration. Part 1: Gain measurements

    NASA Technical Reports Server (NTRS)

    Richter, P. H.; Slobin, S. D.

    1989-01-01

    Aperture efficiency measurements made during 1988 on the three 70-m stations (DSS-14, DSS-43, and DSS-63) at X-band (8420 MHz) and S-band (2295 MHz) have been analyzed and reduced to yield best estimates of antenna gain versus elevation. The analysis has been carried out by fitting the gain data to a theoretical expression based on the Ruze formula. Newly derived flux density and source-size correction factors for the natural radio calibration sources used in the measurements have been used in the reduction of the data. Peak gains measured at the three stations were 74.18 (plus or minus 0.10) dBi at X-band, and 63.34 (plus or minus 0.03) dBi at S-band, with corresponding peak aperture efficiencies of 0.687 (plus or minus 0.015) and 0.762 (plus or minus 0.006), respectively. The values quoted assume no atmosphere is present, and the estimated absolute accuracy of the gain measurements is approximately plus or minus 0.2 dB at X-band and plus or minus 0.1 dB at S-band (1-sigma values).

  3. On-orbit calibration of the Special Sensor Ultraviolet Scanning Imager (SSUSI): a far-UV imaging spectrograph on DMSP F-16

    NASA Astrophysics Data System (ADS)

    Morrison, Daniel; Paxton, Larry J.; Humm, David C.; Wolven, Brian; Kil, Hyosub; Zhang, Yongliang; Ogorzalek, Bernard S.; Meng, Ching-I.

    2002-01-01

    The Special Sensor Ultraviolet Spectrographic Imager (SSUSI) is currently slated for launch on the Defense Meteorological Satellite Program (DMSP) F-16 in November 2001. This instrument consists of a scanning imaging spectrograph (SIS) whose field-of-view is scanned from horizon-to-horizon and a nadir-looking photometer system (NPS). It will provide operational information about the state of the atmosphere above 100 km. The unique problems incurred by the observational requirements (e.g. that we be able to make daytime and nighttime observations) and the design trade-offs needed to meet those requirements were strong drivers on calibration requirements. Those design trade-offs and the expectation that the instrument calibration will change appreciably in-flight have led to the requirement to perform a large instrument characterization in-flight using only natural sources. We focus, in this paper, on the flight characterization of the SSUSI instrument. This includes discussions of the stellar calibration approach for radiometric calibration, measurements of internally scattered light, sensitivity to the South Atlantic Anomaly, measurements of changing pulse height distributions, and measuring changing reflectivity of a nadir viewing scan mirror. In addition, the calibration of the NPS system using natural sources is addressed.

  4. Multitemporal Cross-Calibration of the Terra MODIS and Landsat 7 ETM+ Reflective Solar Bands

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Xiong, Xiaoxiong; Wu, Aisheng; Changler, Gyanesh; Choi, Taeyoyung

    2013-01-01

    In recent years, there has been a significant increase in the use of remotely sensed data to address global issues. With the open data policy, the data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Enhanced Thematic Mapper Plus (ETM+) sensors have become a critical component of numerous applications. These two sensors have been operational for more than a decade, providing a rich archive of multispectral imagery for analysis of mutitemporal remote sensing data. This paper focuses on evaluating the radiometric calibration agreement between MODIS and ETM+ using the near-simultaneous and cloud-free image pairs over an African pseudo-invariant calibration site, Libya 4. To account for the combined uncertainties in the top-of-atmosphere (TOA) reflectance due to surface and atmospheric bidirectional reflectance distribution function (BRDF), a semiempirical BRDF model was adopted to normalize the TOA reflectance to the same illumination and viewing geometry. In addition, the spectra from the Earth Observing-1 (EO-1) Hyperion were used to compute spectral corrections between the corresponding MODIS and ETM+ spectral bands. As EO-1 Hyperion scenes were not available for all MODIS and ETM+ data pairs, MODerate resolution atmospheric TRANsmission (MODTRAN) 5.0 simulations were also used to adjust for differences due to the presence or lack of absorption features in some of the bands. A MODIS split-window algorithm provides the atmospheric water vapor column abundance during the overpasses for the MODTRAN simulations. Additionally, the column atmospheric water vapor content during the overpass was retrieved using the MODIS precipitable water vapor product. After performing these adjustments, the radiometric cross-calibration of the two sensors was consistent to within 7%. Some drifts in the response of the bands are evident, with MODIS band 3 being the largest of about 6% over 10 years, a change that will be corrected in Collection 6 MODIS processing.

  5. NPP VIIRS Early On-Orbit Geometric Performance

    NASA Technical Reports Server (NTRS)

    Wolfe, Robert E.; Lin, Guoqing; Nishihama, Masahiro; Tewari, Krishna; Montano, Enrique

    2012-01-01

    The NASA/NOAA Visible Infrared Imager Radiometer Suite (VIIRS) instrument on-board the Suomi National Polar-orbiting Partnership (NPP) satellite was launched in October, 2011. The instrument geometric performance includes sensor spatial response, band-to-band co-registration (BBR), and geolocation accuracy and precision. The geometric performance is an important aspect of sensor data record (SDR) calibration and validation. In this paper we will discuss geometric performance parameter characterization using the first seven-month of VIIRS' earth and lunar data, and compare with the at-launch performance using ground testing data and analysis of numerical modeling results as the first step in on-orbit geometric calibration and validation.

  6. Assessment of MODIS Reflected Solar Calibration Uncertainty

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Sun, Junqiang; Butler, James

    2011-01-01

    Determination of the calibration accuracy and traceability of a remote sensing instrument is a driving issue in the use of satellite data for calibration inter-comparisons and studying climate change. The Terra and Aqua MODerate Resolution Imaging Spectroradiometer (MODIS) instruments have successfully operated for more than 11 and 9 years, respectively. Twenty of the thirty six MODIS spectral bands are in the reflected solar region with center wavelengths ranging from 0.41 to 2.2 microns. MODIS reflective solar band (RSB) on-orbit calibration is reflectance based through the use of an on-board solar diffuser (SO). The calibration uncertainty requirements are +/-2.0% for the RSB reflectance factors at sensor specified typical scene reflectances or radiances. The SO bi-directional reflectance factor (BRF) was characterized pre-launch and its on-orbit changes are tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides an assessment of MODIS RSB on-orbit calibration traceability and uncertainty for its Level 1B (L1B) reflectance factors. It examines in details each of the uncertainty contributors, including those from pre-launch measurements as well as on-orbit observations. Common challenging issues and differences due to individual sensors' specific characteristics and on-orbit performance are also discussed in this paper. Guidance and recommendations are presented, based on lessons from MODIS RSB calibration uncertainty assessment, for the development of future instrument calibration and validation plans.

  7. Preliminary Assessment of Suomi-NPP VIIRS On-orbit Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; DeLuccia, Frank; McIntire, Jeff; Moyer, David; Chiang, Vincent; Xiong, Xiao-xiong; Butler, James

    2012-01-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polar-orbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of most of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370.and 740 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.412 11m and 12.01 11m, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (ON B). VIIRS observations are used to generate 22 environmental data products (EORs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SO) and solar diffuser stability monitor (SOSM), and emissive bands calibration based on the on-board blackbody calibration (OBC). A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS on-orbit early performance, and a plan for future cal/val activities and performance enhancements will be presented.

  8. Preliminary assessment of Suomi-NPP VIIRS on-orbit radiometric performance

    NASA Astrophysics Data System (ADS)

    Oudrari, Hassan; McIntire, Jeff; Moyer, David; Chiang, Kwofu; Xiong, Xiaoxiong; Butler, James

    2012-09-01

    The Visible-Infrared Imaging Radiometer Suite (VIIRS) is a key instrument on-board the Suomi National Polarorbiting Partnership (NPP) spacecraft that was launched on October 28th 2011. VIIRS was designed to provide moderate and imaging resolution of the planet Earth twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 375 m and 750 m at nadir for imaging and moderate bands, respectively. It has 22 spectral bands covering the spectrum between 0.4 μm and 12.5 μm, including 14 reflective solar bands (RSB), 7 thermal emissive bands (TEB), and 1 day-night band (DNB). VIIRS observations are used to generate 22 environmental data record (EDRs). This paper will briefly describe NPP VIIRS calibration strategies performed by the independent government team, for the initial on-orbit Intensive Calibration and Validation (ICV) activities. In addition, this paper will provide an early assessment of the sensor on-orbit radiometric performance, such as the sensor signal to noise ratios (SNRs), dual gain transition verification, dynamic range and linearity, reflective bands calibration based on the solar diffuser (SD) and solar diffuser stability monitor (SDSM), emissive bands calibration based on the on-board blackbody calibration (OBC), and cross-comparison with MODIS. A comprehensive set of performance metrics generated during the pre-launch testing program will be compared to VIIRS early on-orbit performance, and a plan for future cal/val activities and performance enhancements will be presented.

  9. Sensor Correction and Radiometric Calibration of a 6-BAND Multispectral Imaging Sensor for Uav Remote Sensing

    NASA Astrophysics Data System (ADS)

    Kelcey, J.; Lucieer, A.

    2012-07-01

    The increased availability of unmanned aerial vehicles (UAVs) has resulted in their frequent adoption for a growing range of remote sensing tasks which include precision agriculture, vegetation surveying and fine-scale topographic mapping. The development and utilisation of UAV platforms requires broad technical skills covering the three major facets of remote sensing: data acquisition, data post-processing, and image analysis. In this study, UAV image data acquired by a miniature 6-band multispectral imaging sensor was corrected and calibrated using practical image-based data post-processing techniques. Data correction techniques included dark offset subtraction to reduce sensor noise, flat-field derived per-pixel look-up-tables to correct vignetting, and implementation of the Brown- Conrady model to correct lens distortion. Radiometric calibration was conducted with an image-based empirical line model using pseudo-invariant features (PIFs). Sensor corrections and radiometric calibration improve the quality of the data, aiding quantitative analysis and generating consistency with other calibrated datasets.

  10. On-Orbit Spatial Characterization of MODIS with ASTER Aboard the Terra Spacecraft

    NASA Technical Reports Server (NTRS)

    Xie, Yong; Xiong, Xiaoxiong

    2011-01-01

    This letter presents a novel approach for on-orbit characterization of MODerate resolution Imaging Spectroradiometer (MODIS) band-to-band registration (BBR) using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) aboard the Terra spacecraft. The spatial resolution of ASTER spectral bands is much higher than that of MODIS, making it feasible to characterize MODIS on-orbit BBR using their simultaneous observations. The ground target selected for on-orbit MODIS BBR characterization in this letter is a water body, which is a uniform scene with high signal contrast relative to its neighbor areas. A key step of this approach is to accurately localize the measurements of each MODIS band in an ASTER measurement plane coordinate (AMPC). The ASTER measurements are first interpolated and aggregated to simulate the measurements of each MODIS band. The best measurement match between ASTER and each MODIS band is obtained when the measurement difference reaches its weighted minimum. The position of each MODIS band in the AMPC is then used to calculate the BBR. The results are compared with those derived from MODIS onboard Spectro-Radiometric Calibration Assembly. They are in good agreement, generally less than 0.1 MODIS pixel. This approach is useful for other sensors without onboard spatial characterization capability. Index Terms Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), band-to-band registration (BBR), MODerate resolution Imaging Spectroradiometer (MODIS), spatial characterization.

  11. GEOS-C C-band transponder prelaunch calibration and test data

    NASA Technical Reports Server (NTRS)

    Selser, A. R.

    1976-01-01

    The delay characteristics and spacecraft telemetry housekeeping data for the GEOS-C C-Band transponders are presented. The data are presented in graphical form to provide a convenient method for computing radar range measurement corrections as a function of signal strength at the transponder and spacecraft environment. The data are also presented in tabular form along with the mathematical models used to derive the curves. Also included are a list of the operating characteristics of each transponder and a description of the calibration test equipment set-up.

  12. Radiometric calibration of DMSP-OLS sensor using VIIRS day/night band

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Cao, Changyong; Zhang, Bin; Qiu, Shi; Elvidge, Christopher; Von Hendy, Michael

    2014-11-01

    Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has been collecting global night light imaging data for more than 40 years. With the launch of Suomi-NPP satellite in 2011, the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) represents a major advancement in night time imaging capabilities because it surpasses DMSP-OLS in having broader radiometric measurement range, more accurate radiometric calibration, finer spatial resolution, and better geometric quality. DMSP-OLS sensor does not have on-board calibration and data is recorded as digital number (DN). Therefore, VIIRS-DNB provides opportunities to perform quantitative radiometric calibration of DMSP-OLS sensor. In this paper, vicarious radiometric calibration of DMSP-OLS at night under lunar illumination is performed. Events were selected when satellite flies above Dome C in Antarctic at night and the moon illuminates the site with lunar phase being more than quarter moon. Additional event selection criteria to limit solar and lunar zenith angle range have been applied to ensure no influence of stray light effects and adequate lunar illumination. The data from DMSP-OLS and VIIRS-DNB were analyzed to derive the characteristic radiance or DN for the region of interest. The scaling coefficient for converting DMSP-OLS DN values into radiance is determined to optimally merge the observation of DMSP-OLS into VIIRS-DNB radiance data as a function of lunar phases. Calibrating the nighttime light data collected by the DMSP-OLS sensors into radiance unit can enable applications of using both sensor data and advance the applications of night time imagery data.

  13. Characterization of MODIS and SeaWiFS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.

    2009-08-01

    MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor with reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWiFS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from both sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.

  14. Characterization of MODIS and SeaWiFS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Eplee, R. E., Jr.; Sun, J.; Patt, F. S.; Angal, A.; McClain, C. R.

    2009-01-01

    MODIS has 20 reflective solar bands (RSB), covering the VIS, NIR, and SWIR spectral regions. They are calibrated on-orbit using a solar diffuser (SD) panel, made of space-grade Spectralon. The SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor reference to the NIST reflectance standard. Its on-orbit degradation is tracked by an on-board solar diffuser stability monitor (SDSM). The SeaWifS on-orbit calibration strategy uses monthly lunar observations to monitor the long-term radiometric stability of the instrument and applies daily observations of its solar diffuser (an aluminum plate coated with YB71 paint) to track the short-term changes in the instrument response. This paper provides an overview of MODIS and SeaWiFS SD observations, applications, and approaches used to track their on-orbit degradations. Results from sensors are presented with emphasis on the spectral dependence and temporal trends of the SD degradation. Lessons and challenges from the use of SD for sensor on-orbit calibration are also discussed.

  15. Broad band X-ray telescope (BBXRT) displacement monitor system (DMS) testing and calibration

    NASA Technical Reports Server (NTRS)

    Hagopian, John G.; Northcutt, William

    1989-01-01

    NASA's shuttle-borne Broad Band X-Ray Telescope (BBXRT) consists of two glancing incidence imaging mirror assemblies mounted on an optical bench which is bolted to the primary structure of the instrument. The X-ray detectors are located in the focal plane of the mirror assemblies approximately 3.5 meters away. It is desirable to monitor the relative alignment of these components throughout ground testing, and to determine the magnitude of launch or thermally induced perturbations to the alignment during flight. The Displacement Monitor System (DMS) was designed to accomplish this task. This paper describes the design of the DMS, the development and optimization of the DMS calibration facility, and the characterization of the system. The characterization of the DMS includes environmental qualification, displacement vs output calibration over the operating temperature range, a detailed error analysis, and the generation of a calibration polynomial which utilizes DMS detector output and thermocouple data to optimize system performance. The DMS accuracy exceeded the requirements of a 15 arc second limit of error, and passed the stringent environmental tests. As such, the DMS is one of the first flight qualified displacement monitor systems with this accuracy to be flown in space.

  16. Status of Terra and Aqua MODIS Instrument Operation and Calibration

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Wenny, B. N.; Sun, J.; Angal, A.; Salomonson, V. V.

    2013-12-01

    Terra and Aqua MODIS have successfully operated for more than 13 and 11 years since their respective launches in 1999 and 2002. Nearly 40 data products, developed for studies of the earth's land, ocean, and atmosphere, have been routinely generated from calibrated and geo-located MODIS observations and widely distributed to the science and user community. MODIS on-orbit calibration is performed by a set of on-board calibrators, which include a solar diffuser for the reflective solar bands calibration and a blackbody for the thermal emissive bands calibration. MODIS on-board calibrators are regularly operated to monitor on-orbit changes in sensor responses and key performance parameters, such as radiometric calibration coefficients. Since launch, extensive instrument calibration and characterization activities have been scheduled and executed by the MODIS Characterization Support Team (MCST). This presentation provides an overview of both Terra and Aqua MODIS instrument status, their on-orbit operation and calibration activities, and overall long-term performance. It reports calibration improvements (algorithms and look-up tables) made in the latest MODIS data collection (C6). Lessons learned from both Terra and Aqua MODIS and their applications to the S-NPP VIIRS on-orbit calibration are also discussed.

  17. Assess Calibration Consistency of MODIS and AVHRR Thermal Infrared Bands Using SNO Observations Corrected for Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Xie, Yong; Xiong, Xiaoxiong; Chu, I-Wen

    2012-01-01

    Monitoring environmental changes from space requires extremely well-calibrated observations to achieve the necessary high accuracy and stability. The calibration differences between the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Very High Resolution Radiometer (AVHRR) thermal bands provide a valuable quality assessment of the instrument performance. This letter compares the calibration differences between the Aqua MODIS and NOAA-18 AVHRR bands at 11.0 and 12.0 /Lm using simultaneous nadir overpass observations obtained in nearly parallel orbits. Impacts due to the relative spectral-response differences between the two sensors are estimated by MODTRAN simulations with real-time atmospheric profiles of temperature, water vapor, atmospheric pressure and ozone, and surface skin temperatures. Results show that the temperature difference after the removal of atmospheric impacts is within 0.30 K (or 0.40% in radiance) across the effective calibration range (or the 1l.0 l'm band/channel. For the 12.0 pm band, the differences are OAO K (or 0.50%) at the typical radiance and up to 0.70 K (or 0.90%) close to the maximum radiance, indicating an excellent calibration consistency between MODIS and AVHRR for both bands.

  18. AN EMPIRICAL CALIBRATION TO ESTIMATE COOL DWARF FUNDAMENTAL PARAMETERS FROM H-BAND SPECTRA

    SciTech Connect

    Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Mann, Andrew W.

    2015-02-20

    Interferometric radius measurements provide a direct probe of the fundamental parameters of M dwarfs. However, interferometry is within reach for only a limited sample of nearby, bright stars. We use interferometrically measured radii, bolometric luminosities, and effective temperatures to develop new empirical calibrations based on low-resolution, near-infrared spectra. We find that H-band Mg and Al spectral features are good tracers of stellar properties, and derive functions that relate effective temperature, radius, and log luminosity to these features. The standard deviations in the residuals of our best fits are, respectively, 73 K, 0.027 R {sub ☉}, and 0.049 dex (an 11% error on luminosity). Our calibrations are valid from mid K to mid M dwarf stars, roughly corresponding to temperatures between 3100 and 4800 K. We apply our H-band relationships to M dwarfs targeted by the MEarth transiting planet survey and to the cool Kepler Objects of Interest (KOIs). We present spectral measurements and estimated stellar parameters for these stars. Parallaxes are also available for many of the MEarth targets, allowing us to independently validate our calibrations by demonstrating a clear relationship between our inferred parameters and the stars' absolute K magnitudes. We identify objects with magnitudes that are too bright for their inferred luminosities as candidate multiple systems. We also use our estimated luminosities to address the applicability of near-infrared metallicity calibrations to mid and late M dwarfs. The temperatures we infer for the KOIs agree remarkably well with those from the literature; however, our stellar radii are systematically larger than those presented in previous works that derive radii from model isochrones. This results in a mean planet radius that is 15% larger than one would infer using the stellar properties from recent catalogs. Our results confirm the derived parameters from previous in-depth studies of KOIs 961 (Kepler-42

  19. FPGA-based data processing module design of on-board radiometric calibration in visible/near infrared bands

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqing; Li, Chenyang; Yue, Tao; Liu, Na; Jiang, Linjun; Sun, Yue; Li, Mingyan

    2015-12-01

    FPGA technology has long been applied to on-board radiometric calibration data processing however the integration of FPGA program is not good enough. For example, some sensors compressed remote sensing images and transferred to ground station to calculate the calibration coefficients. It will affect the timeliness of on-board radiometric calibration. This paper designs an integrated flow chart of on-board radiometric calibration. Building FPGA-based radiometric calibration data processing modules uses system generator. Thesis focuses on analyzing the calculation accuracy of FPGA-based two-point method and verifies the feasibility of this method. Calibration data was acquired by hardware platform which was built using integrating sphere, CMOS camera (canon 60d), ASD spectrometers and light filter (center wavelength: 690nm, bandwidth: 45nm). The platform can simulate single-band on-board radiometric calibration data acquisition in visible/near infrared band. Making an experiment of calibration coefficients calculation uses obtained data and FPGA modules. Experimental results show that: the camera linearity is above 99% meeting the experimental requirement. Compares with MATLAB the calculation accuracy of two-point method by FPGA are as follows: the error of gain value is 0.0053%; the error of offset value is 0.00038719%. Those results meet experimental accuracy requirement.

  20. Suomi-NPP VIIRS day/night band calibration with stars

    NASA Astrophysics Data System (ADS)

    Fulbright, Jon P.; Xiong, Xiaoxiong

    2015-09-01

    Observations of stars can be used to calibrate the radiometric performance of the Day/Night Band (DNB) of the Suomi-NPP instrument VIIRS. Bright stars are normally visible in the Space View window. In this paper, we describe several potential applications of stellar observations with preliminary results for several. These applications include routine trending of the gain of the highand mid-gain stages of the DNB and trending the gain ratio between those stages. Many of the stars observed by the VIIRS DNB have absolute flux curves available, allowing for an absolute calibration. Additionally, stars are visible during scheduled lunar roll observations. The electronic sector rotations applied during the scheduled lunar observations greatly increases the sky area recorded for a brief period, increasing the observing opportunities. Additionally, the DNB recorded data during the spacecraft pitch maneuver. This means the deep sky was viewed through the full Earth View. In this situation, thousands of stars (and the planet Mars) are recorded over a very short time period and over all aggregation zones. A possible application would be to create a gain curve by comparing the instrument response to the known apparent stellar brightness for a large number of stars of similar spectral shape. Finally, the DNB is especially affected the mirror degradation afflicting VIIRS. The degradation has shifted peak of the relative spectral response (RSR) of the DNB the blue and the effective band pass has been slightly reduced. The change in response for hot stars (effective temperatures of over 30,000 K) due to this degradation will differ by about 10 percent from the response change of cool stars (below 3500 K).

  1. Calibration/Validation of S-NPP/VIIRS Day-Night Band using Moon Light

    NASA Astrophysics Data System (ADS)

    Shao, X.; Cao, C.; Uprety, S.

    2013-12-01

    The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard S-NPP represents a major advancement in night time imaging capabilities. The DNB of the VIIRS sensor utilizes a backside-illuminated charge coupled device (CCD) focal plane array (FPA) for sensing of radiances spanning 7 orders of magnitude in one panchromatic (0.5-0.9 μm) reflective solar band (RSB). In order to cover this extremely broad measurement range, the DNB employs four imaging arrays that comprise three gain stages. The low gain stage (LGS) gain values are determined by solar diffuser data. In operations, the medium and high gain stage values are determined by multiplying the LGS gains by the medium gain stage (MGS)/LGS and high gain stage (HGS)/LGS gain ratios, respectively. In this study, we demonstrate the radiometric calibration of DNB using moon light. This is performed by selecting events when S-NPP flies above the vicarious sites such as Dome C in Antarctic and Greenland in northern hemisphere at night and the moon illuminates the site with lunar phase being more than half moon. This helps to independently verify the radiometric accuracy of HGS of DNB. The calibration of DNB is performed using a lunar spectral irradiance model as a function of Sun-Earth-Moon distances and lunar phase to determine the top-of-atmosphere (TOA) reflectance at vicarious sites. Analysis of the vicariously-derived reflectance from DNB observations show general agreement with the reflectance derived from Hyperion observations of the vicarious sites. The stability of DNB is further verified from reflectance derived from observation of deep convective cloud with lunar illumination.

  2. An Analytical Calibration Approach for the Polarimetric Airborne C Band Radiometer

    NASA Technical Reports Server (NTRS)

    Pham, Hanh; Kim, Edward J.

    2004-01-01

    Passive microwave remote sensing is sensitive to the quantity and distribution of water in soil and vegetation. During summer 2000, the Microwave Geophysics Group a t the University of Michigan conducted the seventh Radiobrighness Energy Balance Experiment (REBEX-7) over a corn canopy in Michigan. Long time series of brightness temperatures, soil moisture and micrometeorology on the plot were taken. This paper addresses the calibration of the NASA GSFC polarimetric airborne C band microwave radiometer (ACMR) that participated in REBEX-7. These passive polarimeters are typically calibrated using an end-to-end approach based upon a standard artificial target or a well-known geophysical target. Analyzing the major internal functional subsystems offers a different perspective. The primary goal of this approach is to provide a transfer function that not only describes the system in its entire5 but also accounts for the contributions of each subsystem toward the final modified Stokes parameters. This approach does not assume that the radiometric system is linear as it does not take polarization isolation for granted, and it also serves as a realistic instrument simulator, a useful tool for future designs. The ACMR architecture can be partitioned into functional subsystems. The characteristics of each subsystem was extensively measured and the estimated parameters were imported into the overall dosed form system model. Inversion of the model yields a calibration for the modeled Stokes parameters with uncertainties of 0.2 K for the V and H polarizations and 2.4 K for the 3rd and 4th parameters. Application to the full Stokes parameters over a senescent cornfield is presented.

  3. C-band station coordinate determination for the GEOS-C altimeter calibration area

    NASA Technical Reports Server (NTRS)

    Krabill, W. B.; Klosko, S. M.

    1974-01-01

    Dynamical orbital techniques were employed to estimate the center-of-mass station coordinates of six C-band radars located in the designated primary GEOS-C radar altimeter calibration area. This work was performed in support of the planned GEOS-C mission (December, 1974 launch). The sites included Bermuda, Grand Turk, Antigua, Wallops Island (Virginia), and Merritt Island (Florida). Two sites were estimated independently at Wallops Island yielding better than 40 cm relative height recovery, with better than 10 cm and 1 m (relative) recovery for phi and gamma respectively. Error analysis and comparisons with other investigators indicate that better than 2 m relative recovery was achieved at all sites. The data used were exclusively that from the estimated sites and included 18 orbital arcs which were less than two orbital revolutions in length, having successive tracks over the area. The techniques employed here, given their independence of global tracking support, can be effectively employed to improve various geodetic datums by providing very long and accurate baselines. The C-band data taken on GEOS-C should be employed to improve such geodetic datums as the European-1950 using similar techniques.

  4. On-orbit characterization of a solar diffuser"s bidirectional reflectance factor using spacecraft maneuvers

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Sun, Junqiang; Esposito, Joe; Liu, Xiaojin; Barnes, William L.; Guenther, B.

    2003-11-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS) uses an on-board solar diffuser (SD) panel made of Spectralon for the radiometric calibration of its 20 reflective solar bands (RSB). The spectral wavelengths of the RSB range from 0.41 to 2.1 micrometers. The on-orbit calibration coefficients are determined from the sensor s responses to the diffusely reflected solar illumination from the SD. This method requires an accurate pre-launch characterization of solar diffuser s bi-directional reflectance factors (BRF) that should cover the sensor s spectral range and illumination/viewing angles and accurate on-orbit monitoring of SD degradation over time. The MODIS SD panel s bi-directional reflectance factors were characterized prior to the sensor s final system integration (pre-launch by the instrument vendor using reference samples traceable to the NIST reflectance standards at a number of wavelengths and carefully selected combinations of the illumination/viewing angles. The measured BRF values were fitted into smooth surfaces and then interpolated for each of the MODIS reflective solar bands. In this paper, we describe an approach designed for the MODIS on-orbit characterization and validation of its SD BRF using multiple SD solar observations at several spacecraft yaw angels. This approach has been successfully applied to both the Terra and Aqua MODIS. This paper presents the algorithm used to derive the SD s relative BRF from observations during spacecraft yaws and compares the on-orbit results with corresponding pre-launch values.

  5. ASTER 15 years challenging trail on-orbit operation

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masakuni; Sakuma, Fumihiro; Tatsumi, Kenji; Inada, Hitomi; Itou, Yoshiyuki; Akagi, Shigeki; Ono, Hidehiko

    2015-10-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a high-resolution optical sensor system that can observe in a wide region from the visible and near-infrared, the short wavelength infrared to the thermal infrared with 14 spectral bands on board of NASA's Terra spacecraft for Earth Observing System (EOS) "A mission to planet earth." ASTER achieved 5 years mission success on orbit operation normally which is the specified target after launched on December, 1999. And after through 10 years continuous orbit operation, ASTER has still operating the long life observation of extra success to be 15 years in total on December, 2014. As for ASTER instrument that is composed of 3 radiometers; the Visible and Near Infrared Radiometer (VNIR) with 3 bands, the Short Wavelength Infrared Radiometer (SWIR) with 6 bands, the Thermal Infrared Radiometer (TIR) with 5 bands, overall ASTER long life data taken by 15 years onboard operation has been reviewed from the point of view of the health and safety check by Telemetry (TLM) data trend, the function and performance evaluation by observation data trend, the onboard calibration and verification by periodic Calibration(CAL) data trend. As a result, the radiometric degradation of VNIR and TIR and the temperature rise of SWIR detector were identified as significant challenges. The countermeasure plan towards the end of mission was clarified and also the novel lessons learned was verified.

  6. Initial Stability Assessment of S-NPP VIIRS Reflective Solar Band Calibration Using Invariant Desert and Deep Convective Cloud Targets

    NASA Technical Reports Server (NTRS)

    Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun

    2014-01-01

    The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.

  7. DOMEX-2 Ground-Based Antarctic L-Band Emission Measurements: a Contribution to Smos Calibration

    NASA Astrophysics Data System (ADS)

    Drinkwater, M. R.; Macelloni, G.; Brogioni, M.; Pettinato, S.

    2010-12-01

    In recent years, interest has grown in the remote sensing community for using the Antarctic ice sheet for calibrating and validating data from low-frequency satellite-borne microwave radiometers such as SMOS, Aquarius and SMAP. In particular, the East Antarctic Plateau Dome-C region around the Concordia Station appears to be particularly suited for this purpose. The specific characteristics of this region of interest are its size, structure, spatial homogeneity and thermal stability as well as frequent overpasses of these polar-orbiting satellites. In-situ measurements indicate that the roughness is limited with respect to other Antarctic areas and the temperature of the firn below 10 m remains stable on multiyear timescales. This attribute is particularly interesting for low-frequency microwave radiometers since, due to the low extinction of dry snow, the upper ice sheet layer is almost transparent and the brightness temperature (Tb) variability therefore predicted to be extremely small. At the year-round Italian-French base of Concordia ancillary data such as atmospheric parameters and snow temperature at different depths are routinely acquired as a basis for the analysis and the interpretation of satellite microwave data. Meanwhile, a first pilot experiment, called DOMEX-1 carried out an austral summer Antarctic campaign in November 2004- December 2005 to demonstrate the short-term brightness temperature stability at monthly scale. With the November 2009 launch of the European Space Agency’s SMOS satellite, a corresponding second experiment called DOMEX-2 was initiated in the Austral summer 2008-2009 with the goal to verify the assumption of year-round stability and suitability of the ice sheet as an external calibration reference target. The primary objectives of DOMEX-2 are to provide an independent source of stable reference data for SMOS satellite calibration and in particular: continuous acquisition of a calibrated time series of microwave (L-band) and

  8. ASTER TIR subsystem and calibration

    NASA Technical Reports Server (NTRS)

    Ohmae, Hirokazu

    1992-01-01

    Viewgraphs are given on the purpose of TIR, major functions, characteristics and design of various components, and calibration. The major functions are to acquire image data on the earth's surface in thermal infrared wavelength band, using mercury cadmium telluride (HgCdTe) detectors; to convert the obtained image data into the digital data to meet the Common Signal Processor (CSP) interface, and output the signals; pointing function in cross-track direction to get the wide swath of 232 km; and to calibrate the whole TIR with the blackbody on orbit, then the amplifier and subsequent transmission units are calibrated electrically.

  9. Vicarious calibration of S-NPP/VIIRS day-night band

    NASA Astrophysics Data System (ADS)

    Shao, Xi; Cao, Changyong; Uprety, Sirish

    2013-09-01

    The Day Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite provides imagery of clouds and other Earth features over illumination levels ranging from full sunlight to quarter moon. In order to cover this extremely broad measurement range, the DNB employs four imaging arrays that comprise three gain stages. The low gain stage (LGS) gain values are determined by solar diffuser data. In operation, the medium and high gain stage values are determined by multiplying the LGS gains by the medium gain stage (MGS)/LGS and high gain stage (HGS)/LGS gain ratios, respectively. This paper demonstrates a scheme of using DNB observation of ground vicarious sites under lunar illumination at night to independently verify the radiometric accuracy of HGS of DNB. We performed vicarious calibration of DNB when S-NPP flies above the vicarious site such as Dome C in Antarctic and Greenland in northern hemisphere at night and the moon illuminates the site with lunar phase being more than half moon. Lunar spectral irradiance model as a function of Sun-Earth-Moon distances and lunar phase is used to assist the determination of top-of-atmosphere reflectance at the vicarious site. Analysis of the vicariously-derived reflectance from DNB observations show agreement with the reflectance derived from Hyperion observations of the vicarious sites.

  10. The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.

    2010-01-01

    The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.

  11. Performance of the Thermal Infrared Sensor on-board Landsat 8 over the first year on-orbit

    NASA Astrophysics Data System (ADS)

    Montanaro, Matthew; Barsi, Julia; Lunsford, Allen; Rohrbach, Scott; Markham, Brian

    2014-10-01

    The Thermal Infrared Sensor (TIRS) has completed over one year in Earth orbit following its launch onboard Landsat 8 in February 2013. During that time, TIRS has undergone initial on-orbit checkout and commissioning and has transitioned to an operational Landsat payload obtaining 500+ Earth scenes a day. The instrument was radiometrically calibrated during pre-flight characterization testing. A relative adjustment was made to the calibration during the on-orbit checkout of the instrument based on data from the onboard calibration sources to account for instrument changes that occurred through launch. The accuracy of the relative and absolute radiometric calibration depends in part on the stability of the instrument response over time. To monitor stability, TIRS routinely views its onboard calibration sources, which include a variable temperature blackbody and a port that allows the instrument to view deep space. The onboard calibration is validated by in situ measurements of large water bodies by instrumented buoys. In addition, the spacecraft is periodically slewed to image the moon across the field of view of TIRS. The moon provides a high contrast source which allows for studies of stray light and ghosting to be performed. These on-orbit methods provide the means to characterize the TIRS instrument performance post-launch. Analyses of these datasets over the first year on orbit indicate that while, internally, the instrument itself is far exceeding the noise and stability requirements, both bands were mis-calibrated by at least 2K (@300K) and had higher than expected variability in the in situ validation data. This is likely due to stray light which is also causing banding in Earth scenes. An initial bias correction was made on February 2014 and various approaches are being explored to correct the ghosting issues associated with the stray light.

  12. Characterization of MODIS Solar Diffuser On-Orbit Degradation

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Chen, H.; Wang, Z.; Sun, J.; Angal, A.

    2010-01-01

    MODIS reflective solar bands (RSB) are calibrated using a solar diffuser (SD). The SD on-orbit degradation is determined by a solar diffuser stability monitor (SDSM) at 9 wavelengths from 0.41 to 0.94 microns via alternate observations of its sunlight reflected from the SD (SD view) and direct sunlight through an attenuation screen (Sun view). For each SDSM detector, a time series of ratios of its SD view to its Sun view responses tracks on-orbit changes in the SD bidirectional reflectance factor (BRF) at its wavelength. Due to an SDSM component design error, however, there exist large ripples in its Sun view responses, which have made it extremely difficult to use the original ratio approach for accurate characterization of SD on-orbit degradation. In order to mitigate the impact due to unexpected ripples, MODIS Characterization Support Team (MCST) developed a normalization approach. It relies on the fact that all SDSM detectors (D1 to D9) experience similar ripples and assumes that the SD degradation at its D9 wavelength (0.94 micron) is extremely small and can be ignored. As mission continues, the normalization approach becomes inadequate since the accumulated SD degradation at 0.94[tm can no longer be ignored. This paper presents a new approach to further improve on-orbit characterization of SD degradation. It uses a took-up table (LUT) with parameters derived from D9 observations made over a short period. Compared to other approaches, this approach can significantly reduce the impact due to ripples and that due to accumulated SD degradation at the reference detector wavelength.

  13. A Catalog of 1.5273 um Diffuse Interstellar Bands Based on APOGEE Hot Telluric Calibrators

    NASA Astrophysics Data System (ADS)

    Elyajouri, M.; Monreal-Ibero, A.; Remy, Q.; Lallement, R.

    2016-08-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic interstellar medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight. Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 μm DIB toward a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the H i 21 cm measurements, following a new technique of decomposition of the emission spectra. From ˜16,000 available hot telluric spectra we have extracted ˜6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.

  14. Model atmospheres broad-band colors, bolometric corrections and temperature calibrations for O - M stars

    NASA Astrophysics Data System (ADS)

    Bessell, M. S.; Castelli, F.; Plez, B.

    1998-05-01

    Broad band colors and bolometric corrections in the Johnson-Cousins-Glass system (Bessell, 1990; Bessell & Brett, 1988) have been computed from synthetic spectra from new model atmospheres of Kurucz (1995a), Castelli (1997), Plez, Brett & Nordlund (1992), Plez (1995-97), and Brett (1995a,b). These atmospheres are representative of larger grids that are currently being completed. We discuss differences between the different grids and compare theoretical color-temperature relations and the fundamental color temperature relations derived from: (a) the infrared-flux method (IRFM) for A-K stars (Blackwell & Lynas-Gray 1994; Alonso et al. 1996) and M dwarfs (Tsuji et al. 1996a); (b) lunar occultations (Ridgway et al. 1980) and (c) Michelson interferometry (Di Benedetto & Rabbia 1987; Dyck et al. 1996; Perrin et al. 1997) for K-M giants, and (d) eclipsing binaries for M dwarfs. We also compare color - color relations and color - bolometric correction relations and find good agreement except for a few colors. The more realistic fluxes and spectra of the new model grids should enable accurate population synthesis models to be derived and permit the ready calibration of non-standard photometric passbands. As well, the theoretical bolometric corrections and temperature - color relations will permit reliable transformation from observed color magnitude diagrams to theoretical HR diagrams. Tables 1-6 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  15. A Catalog of 1.5273 um Diffuse Interstellar Bands Based on APOGEE Hot Telluric Calibrators

    NASA Astrophysics Data System (ADS)

    Elyajouri, M.; Monreal-Ibero, A.; Remy, Q.; Lallement, R.

    2016-08-01

    High resolution stellar spectroscopic surveys provide massive amounts of diffuse interstellar bands (DIBs) measurements. Data can be used to study the distribution of the DIB carriers and those environmental conditions that favor their formation. In parallel, recent studies have also proved that DIBs extracted from stellar spectra constitute new tools for building the 3D structure of the Galactic interstellar medium (ISM). The amount of details on the structure depends directly on the quantity of available lines of sight. Therefore there is a need to construct databases of high-quality DIB measurements as large as possible. We aim at providing the community with a catalog of high-quality measurements of the 1.5273 μm DIB toward a large fraction of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) hot stars observed to correct for the telluric absorption and not used for ISM studies so far. This catalog would complement the extensive database recently extracted from the APOGEE observations and used for 3D ISM mapping. We devised a method to fit the stellar continuum of the hot calibration stars and extracted the DIB from the normalized spectrum. Severe selection criteria based on the absorption characteristics are applied to the results. In particular limiting constraints on the DIB widths and Doppler shifts are deduced from the H i 21 cm measurements, following a new technique of decomposition of the emission spectra. From ∼16,000 available hot telluric spectra we have extracted ∼6700 DIB measurements and their associated uncertainties. The statistical properties of the extracted absorptions are examined and our selection criteria are shown to provide a robust dataset. The resulting catalog contains the DIB total equivalent widths, central wavelengths and widths. We briefly illustrate its potential use for the stellar and interstellar communities.

  16. Station to instrumented aircraft L-band telemetry system and RF signal controller for spacecraft simulations and station calibration

    NASA Technical Reports Server (NTRS)

    Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.

    1971-01-01

    An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.

  17. Development of two-band infrared radiometer for irradiance calibration of target simulators

    SciTech Connect

    Yang, Sen; Li, Chengwei

    2015-07-15

    A detector-based spectral radiometer has been developed for the calibration of target simulator. Unlike the conventional spectral irradiance calibration method based on radiance and irradiance, the new radiometer is calibrated using image-space temperature based method. The image-space temperature based method improves the reproducibility in the calibration of radiometer and reduces the uncertainties existing in the conventional calibration methods. The calibrated radiometer is then used to establish the irradiance transfer standard for the target simulator. With the designed radiometer in this paper, a highly accurate irradiance calibration for target simulators of wavelength from 2.05 to 2.55 μm and from 3.7 to 4.8 μm can be performed with an expanded uncertainty (k = 2) of calibration of 2.18%. Last but not least, the infrared radiation of the target simulator was measured by the infrared radiometer, the effectiveness and capability of which are verified through measurement of temperature and irradiance and a comparison with the thermal imaging camera.

  18. Ka-Band Monopulse Antenna Pointing Calibration Using Wideband Radio Sources

    NASA Astrophysics Data System (ADS)

    Buu, C.; Calvo, J.; Cheng, T.-H.; Vazquez, M.

    2010-08-01

    A new method of performing a system end-to-end monopulse antenna calibration using widely available wideband astronomical radio sources is presented as an alternative to the current method of using a spacecraft signal. Current monopulse calibration requires a spacecraft carrier signal to measure amplitude and phase differences in the monopulse feed and low-noise amplifiers (LNAs). The alternative method presented here will allow the ground station to perform monopulse calibrations during maintenance periods instead of spacecraft track time, and provide an end-to-end system check-out capability without requiring a spacecraft signal. In this article, we give an overview of the current calibration approach, describe a new method for calibrating with radio sources, and present results from field testing of this new method.

  19. Calibration

    NASA Astrophysics Data System (ADS)

    Kunze, Hans-Joachim

    Commercial spectrographic systems are usually supplied with some wave-length calibration, but it is essential that the experimenter performs his own calibration for reliable measurements. A number of sources emitting well-known emission lines are available, and the best values of their wavelengths may be taken from data banks accessible on the internet. Data have been critically evaluated for many decades by the National Institute of Standards and Technology (NIST) of the USA [13], see also p. 3. Special data bases have been established by the astronomy and fusion communities (Appendix B).

  20. Relative spectral response corrected calibration inter-comparison of S-NPP VIIRS and Aqua MODIS thermal emissive bands

    NASA Astrophysics Data System (ADS)

    Efremova, Boryana; Wu, Aisheng; Xiong, Xiaoxiong

    2014-09-01

    The S-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is built with strong heritage from EOS MODIS, and has very similar thermal emissive bands (TEB) calibration algorithm and on-board calibrating source - a V-grooved blackbody. The calibration of the two instruments can be assessed by comparing the brightness temperatures retrieved from VIIRS and Aqua MODIS simultaneous nadir observations (SNO) from their spectrally matched TEB. However, even though the VIIRS and MODIS bands are similar there are still relative spectral response (RSR) differences and thus some differences in the retrieved brightness temperatures are expected. The differences depend on both the type and the temperature of the observed scene, and contribute to the bias and the scatter of the comparison. In this paper we use S-NPP Cross-track Infrared Sounder (CrIS) data taken simultaneously with the VIIRS data to derive a correction for the slightly different spectral coverage of VIIRS and MODIS TEB bands. An attempt to correct for RSR differences is also made using MODTRAN models, computed with physical parameters appropriate for each scene, and compared to the value derived from actual CrIS spectra. After applying the CrIS-based correction for RSR differences we see an excellent agreement between the VIIRS and Aqua MODIS measurements in the studied band pairs M13-B23, M15-B31, and M16- B32. The agreement is better than the VIIRS uncertainty at cold scenes, and improves with increasing scene temperature up to about 290K.

  1. Radiometric calibration and processing procedure for reflective bands on LANDSAT-4 protoflight Thematic Mapper

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    The radiometric subsystem of NASA's LANDSAT-4 Thematic Mapper (TM) sensor is described. Special emphasis is placed on the internal calibrator (IC) pulse shapes and timing cycle. The procedures for the absolute radiometric calibration of the TM channels with a 122-centimeter integrating sphere and the transfer of radiometric calibration from the channels to the IC are reviewed. The use of the IC to calibrate TM data in the ground processing system consists of pulse integration, pulse averaging, IC state identification, linear regression analysis, and histogram equalization. An overview of the SCROUNGE-era (before August 1983) method is presented. Procedural differences between SCROUNGE and the TIPS-era (after July 1983) and the implications of these differences are discussed.

  2. InGaAs tunnel diodes for the calibration of semi-classical and quantum mechanical band-to-band tunneling models

    SciTech Connect

    Smets, Quentin; Verreck, Devin; Vandervorst, Wilfried; Groeseneken, Guido; Heyns, Marc M.; Verhulst, Anne S.; Rooyackers, Rita; Merckling, Clément; Simoen, Eddy; Collaert, Nadine; Thean, Voon Y.; Van De Put, Maarten; Sorée, Bart

    2014-05-14

    Promising predictions are made for III-V tunnel-field-effect transistor (FET), but there is still uncertainty on the parameters used in the band-to-band tunneling models. Therefore, two simulators are calibrated in this paper; the first one uses a semi-classical tunneling model based on Kane's formalism, and the second one is a quantum mechanical simulator implemented with an envelope function formalism. The calibration is done for In{sub 0.53}Ga{sub 0.47}As using several p+/intrinsic/n+ diodes with different intrinsic region thicknesses. The dopant profile is determined by SIMS and capacitance-voltage measurements. Error bars are used based on statistical and systematic uncertainties in the measurement techniques. The obtained parameters are in close agreement with theoretically predicted values and validate the semi-classical and quantum mechanical models. Finally, the models are applied to predict the input characteristics of In{sub 0.53}Ga{sub 0.47}As n- and p-lineTFET, with the n-lineTFET showing competitive performance compared to MOSFET.

  3. Status of Terra MODIS Operation, Calibration, and Performance

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Wenny, B.; Wu, A.; Angal, A.; Geng, X.; Chen, H.; Dodd, J.; Link, D.; Madhavan, S.; Chen, N.; Li, Y.; Iacangelo, S.; Barnes, W.; Salomonson, V.

    2014-01-01

    Since launch in December 1999, Terra MODIS has successfully operated for nearly 15 years, making continuous observations. Data products derived from MODIS observations have significantly contributed to a wide range of studies of key geophysical parameters of the earth's eco-system of land, ocean, and atmosphere, and their changes over time. The quality of MODIS data products relies on the dedicated effort to monitor and sustain instrument health and operation, to calibrate and update sensor parameters and properties, and to improve calibration algorithms. MODIS observations are made in 36 spectral bands, covering wavelengths from visible to long-wave infrared. The reflective solar bands (1-19 and 26) are primarily calibrated by a solar diffuser (SD) panel and regularly scheduled lunar observations. The thermal emissive bands (20-25 and 27- 36) calibration is referenced to an on-board blackbody (BB) source. On-orbit changes in the sensor spectral and spatial characteristics are monitored by a spectroradiometric calibration assembly (SRCA). This paper provides an overview of Terra MODIS on-orbit operation and calibration activities and implementation strategies. It presents and summarizes sensor on-orbit performance using nearly 15 years of data from its telemetry, on-board calibrators, and lunar observations. Also discussed in this paper are changes in sensor characteristics, corrections applied to maintain MODIS level 1B (L1B) data quality, and efforts for future improvements.

  4. On-orbit coldwelding

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1991-01-01

    Spacecraft mechanisms are required to operate in the space environment for extended periods of time. A significant concern to the spacecraft designer is the possibility of metal to metal coldwelding or significant increases in friction. Coldwelding can occur between atomically clean metal surfaces when carefully prepared in a vacuum chamber on earth. The question is whether coldwelding occurs in orbit service conditions. The results of the System Special Investigation Group's (SIG's) investigation into whether coldwelding had occurred on any Long Duration Exposure Facility (LDEF) hardware are presented. The results of a literature search into previous ground based anomalies is also presented. Results show that even though there have been no documented on-orbit coldwelding related failures, precautions should be taken to ensure that coldwelding does not occur in the space environment and that seizure does not occur in the prelaunch or launch environment.

  5. COSMICFLOWS-2: I-BAND LUMINOSITY-H I LINEWIDTH CALIBRATION

    SciTech Connect

    Tully, R. Brent; Courtois, Helene M.

    2012-04-10

    In order to measure distances with minimal systematics using the correlation between galaxy luminosities and rotation rates it is necessary to adhere to a strict and tested recipe. We now derive a measure of rotation from a new characterization of the width of a neutral hydrogen line profile. Additionally, new photometry and zero-point calibration data are available. Particularly the introduction of a new linewidth parameter necessitates the reconstruction and absolute calibration of the luminosity-linewidth template. The slope of the new template is set by 267 galaxies in 13 clusters. The zero point is set by 36 galaxies with Cepheid or tip of the red giant branch distances. Tentatively, we determine H{sub 0} {approx} 75 km s{sup -1} Mpc{sup -1}. Distances determined using the luminosity-linewidth calibration will contribute to the distance compendium Cosmicflows-2.

  6. Characterization of MODIS solar diffuser on-orbit degradation

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Xie, X.; Angal, A.; Choi, J.; Sun, J.; Barnes, W. L.

    2007-09-01

    MODIS has 20 reflective solar bands (RSB) that are calibrated on-orbit using a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). The MODIS SD bi-directional reflectance factor (BRF) was characterized pre-launch. Its on-orbit degradation is regularly monitored by the SDSM at wavelengths ranging from 0.41 to 0.94μm. During each SD/SDSM calibration event, the SDSM views alternately the sunlight directly through a fixed attenuation screen and the sunlight diffusely reflected from the SD panel. The time series of SDSM measurements (ratios of the SD view response to the Sun view response) is used to determine the SD BRF degradation at SDSM wavelengths. Since launch Terra MODIS has operated for more than seven years and Aqua for over five years. The SD panel on each MODIS instrument has experienced noticeable degradation with the largest changes observed in the VIS spectral region. This paper provides a brief description of MODIS RSB calibration methodology and SD/SDSM operational activities, and illustrates the SD on-orbit degradation results for both Terra and Aqua MODIS. It also discusses the impact on the SD degradation due to sensor operational activities and SD solar exposure time. Aqua MODIS has been operated under nearly the same condition for more than five years. Its SD annual degradation rate is estimated to be 2.7% at 0.41μm, 1.7% at 0.47μm, and less than 1.0% at wavelengths above 0.53μm. Terra MODIS, on the other hand, has experienced two different SD solar exposure conditions due to an SD door (SDD) operation related anomaly that occurred in May 2003 that had led to a decision to keep the SDD permanently at its "open" position. Prior to this event, Terra MODIS SD degradation rates were very similar to Aqua MODIS. Since then its SD has experienced much faster degradation rates due to more frequent solar exposure.

  7. Evaluation of the L-band scattering characteristics of volcanic terrain in aid of lithologic identification, assessment of SIR-B calibration, and development of planetary geomorphic analogs

    NASA Technical Reports Server (NTRS)

    Kaupp, V. H.; Waite, W. P.; Macdonald, H. C.; Mouginis-Mark, P. J.; Zisk, S. H.

    1984-01-01

    The objectives of the Shuttle Imaging Radar-B (SIR-B) scattering study and calibration investigation of volcanic terrain are to delineate textural and structural features, to evaluate the L-band scattering characteristics, and to assess SIR-B calibration. Specific tasks are outlined and expected results are summarized.

  8. Landsat 8 thermal infrared sensor geometric characterization and calibration

    USGS Publications Warehouse

    Storey, James C.; Choate, Michael J.; Moe, Donald

    2014-01-01

    The Landsat 8 spacecraft was launched on 11 February 2013 carrying two imaging payloads: the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). The TIRS instrument employs a refractive telescope design that is opaque to visible wavelengths making prelaunch geometric characterization challenging. TIRS geometric calibration thus relied heavily on on-orbit measurements. Since the two Landsat 8 payloads are complementary and generate combined Level 1 data products, the TIRS geometric performance requirements emphasize the co-alignment of the OLI and TIRS instrument fields of view and the registration of the OLI reflective bands to the TIRS long-wave infrared emissive bands. The TIRS on-orbit calibration procedures include measuring the TIRS-to-OLI alignment, refining the alignment of the three TIRS sensor chips, and ensuring the alignment of the two TIRS spectral bands. The two key TIRS performance metrics are the OLI reflective to TIRS emissive band registration accuracy, and the registration accuracy between the TIRS thermal bands. The on-orbit calibration campaign conducted during the commissioning period provided an accurate TIRS geometric model that enabled TIRS Level 1 data to meet all geometric accuracy requirements. Seasonal variations in TIRS-to-OLI alignment have led to several small calibration parameter adjustments since commissioning.

  9. Landsat 8: status and on-orbit performance

    NASA Astrophysics Data System (ADS)

    Markham, Brian L.; Barsi, Julia A.; Morfitt, Ron; Choate, Mike; Montanaro, Matthew; Arvidson, Terry; Irons, James R.

    2015-10-01

    Landsat 8 and its two Earth imaging sensors, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) have been operating on-orbit for 2 ½ years. Landsat 8 has been acquiring substantially more images than initially planned, typically around 700 scenes per day versus a 400 scenes per day requirement, acquiring nearly all land scenes. Both the TIRS and OLI instruments are exceeding their SNR requirements by at least a factor of 2 and are very stable, degrading by at most 1% in responsivity over the mission to date. Both instruments have 100% operable detectors covering their cross track field of view using the redundant detectors as necessary. The geometric performance is excellent, meeting or exceeding all performance requirements. One anomaly occurred with the TIRS Scene Select Mirror (SSM) encoder that affected its operation, though by switching to the side B electronics, this was fully recovered. The one challenge is with the TIRS stray light, which affects the flat fielding and absolute calibration of the TIRS data. The error introduced is smaller in TIRS band 10. Band 11 should not currently be used in science applications.

  10. On-orbit stability and performance of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Aqua and Terra Spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2014-09-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments onboard the Terra and Aqua spacecraft are part of the NASA Earth Observing System (EOS) constellation to make long-term observations of the earth. CERES measures the earth-reflected shortwave energy as well as the earth-emitted thermal energy, which are two components of the earth's radiation energy budget. These measurements are made by five instruments- Flight Models (FM) 1 and 2 onboard Terra, FMs 3 and 4 onboard Aqua and FM5 onboard Suomi NPP. Each instrument comprises three sensors that measure the radiances in different wavelength bands- a shortwave sensor that measures in the 0.3 to 5 micron band, a total sensor that measures all the incident energy (0.3-200 microns) and a window sensor that measures the water-vapor window region of 8 to 12 microns. The stability of the sensors is monitored through on-orbit calibration and validation activities. On-orbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for FM1-FM4 incorporate the latest corrections to the sensor responses using the calibration techniques. In this paper, we present the on-orbit performance stability as well as some validation studies used in deriving the CERES Edition-4 data products from all four instruments.

  11. Landsat Data Continuity Mission Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Storey, James C.; Morfitt, Ron; Knight, Ed; Kvaran, Geir; Lee, Kenton

    2008-01-01

    The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.

  12. Spectral band difference effects on radiometric cross-calibration between multiple satellite sensors in the Landsat solar-reflective spectral domain

    NASA Astrophysics Data System (ADS)

    Teillet, Philippe M.; Fedosejevs, Gunar; Thome, Kurtis J.

    2004-11-01

    This paper reports on an investigation of radiometric calibration errors due to differences in spectral response functions between satellite sensors when attempting cross-calibration based on near-simultaneous imaging of common ground targets in analogous spectral bands. Five Earth observation sensors on three satellite platforms were included on the basis of their overpass times being within 45 minutes of each other on the same day (Landsat-7 ETM+; EO-1 ALI; Terra MODIS; Terra ASTER; Terra MISR). The simulation study encompassed spectral band difference effects (SBDE) on cross-calibration between all combinations of the sensors considered, using the Landsat solar reflective spectral domain as a framework. Scene content was simulated using ground target spectra for the calibration test sites at Railroad Valley Playa, Nevada and Niobrara Grassland, Nebraska. Results were obtained as a function of calibration test site, satellite sensor, and spectral region. Overall, in the absence of corrections for SBDE, the Railroad Valley Playa site is a "good" to "very good" ground target for cross-calibration between most but not all satellite sensors considered in most but not all spectral regions investigated. "Good" and "very good" are defined as SBDEs within +/- 3 % and +/- 1 %, respectively. Without SBDE corrections, the Niobrara test site is only "good" for cross-calibration between certain sensor combinations in some spectral regions. The paper includes recommendations for spectral data and tools that would facilitate cross-calibration between multiple satellite sensors.

  13. Characterization of MODIS VIS/NIR spectral band detector-to-detector differences

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Sun, J.; Meister, G.; Kwiatkowska, E.; Barnes, W. L.

    2008-08-01

    MODIS has 36 spectral bands with wavelengths in the visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). It makes observations at three nadir spatial resolutions: 0.25km for bands 1-2 (40 detectors per band), 0.5km for bands 3-7 (20 detectors per band), and 1km for bands 8-36 (10 detectors per band). The VIS, NIR, and SWIR are the reflective solar bands (RSB), which are calibrated on-orbit by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). The bi-directional reflectance factor (BRF) of the SD provides a RSB calibration reference and its on-orbit changes are tracked by the SDSM. In addition, MODIS lunar observations are regularly scheduled and used to track the RSB calibration stability. On-orbit observations show that the changes in detector response are wavelength and scan angle dependent. In this study, we focus on detector-to-detector calibration differences in the MODIS VIS/NIR spectral bands, which are determined using SD and lunar observations, while the calibration performance is evaluated using the Earth view (EV) level 1B (L1B) data products. For Aqua MODIS, the detector calibration differences and their impact are also characterized using standard ocean color data products. The current calibration approach for MODIS RSB carries a band-averaged response versus scan angle (RVS) correction. The results from this study suggest that a detector-based RVS correction should, due to changes in the scan mirror's optical properties, be implemented in order to maintain and improve the current RSB L1B data product quality, particularly, for several VIS bands in Terra MODIS.

  14. An Overview of Lunar Calibration and Characterization for the EOS Terra and Aqua MODIS

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Salomonson, V. V.; Sun, J.; Chiang, K.; Xiong, S.; Humphries, S.; Barnes, W.; Guenther, B.

    2004-01-01

    The Moon can be used as a stable source for Earth-observing sensors on-orbit radiometric and spatial stability monitoring in the VIS and NIR spectral regions. It can also serve as a calibration transfer vehicle among multiple sensors. Nearly identical copies of the Moderate Resolution Imaging Spectroradiometer (MODE) have been operating on-board the NASA's Earth Observing System (EOS) Terra and Aqua satellites since their launches in December 1999 and May 2002, respectively. Terra and Aqua MODIS each make observations in 36 spectral bands covering the spectral range from 0.41 to 14.5 microns and are calibrated on-orbit by a set of on-board calibrations (OBCs) including: 1) a solar diffuser (SD), 2) a solar diffuser stability monitor (SDSM), 3) a blackbody (BB), and 4) a spectro-radiometric calibration assembly (SRCA). In addition to fully utilizing the OBCs, the Moon has been used extensively by both Terra and Aqua MODIS to support their on-orbit calibration and characterization. A 4 This paper provides an overview of applications of lunar calibration and characterization from the MODIS perspective, including monitoring radiometric calibration stability for the reflective solar bands (RSBs), tracking changes of the sensors response versus scan-angle (RVS), examining the sensors spatial performance , and characterizing optical leaks and electronic crosstalk among different spectral bands and detectors. On-orbit calibration consistency between the two MODIS instruments is also addressed. Based on the existing on-orbit time series of the Terra and Aqua MODIS lunar observations, the radiometric difference between the two sensors is less than +/-1% for the RSBs. This method provides a powerful means of performing calibration comparisons among Earth-observing sensors and assures consistent data and science products for the long-term studies of climate and environmental changes.

  15. L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum

    NASA Astrophysics Data System (ADS)

    Cesaroni, Claudio; Spogli, Luca; Alfonsi, Lucilla; De Franceschi, Giorgiana; Ciraolo, Luigi; Francisco Galera Monico, Joao; Scotto, Carlo; Romano, Vincenzo; Aquino, Marcio; Bougard, Bruno

    2015-12-01

    This work presents a contribution to the understanding of the ionospheric triggering of L-band scintillation in the region over São Paulo state in Brazil, under high solar activity. In particular, a climatological analysis of Global Navigation Satellite Systems (GNSS) data acquired in 2012 is presented to highlight the relationship between intensity and variability of the total electron content (TEC) gradients and the occurrence of ionospheric scintillation. The analysis is based on the GNSS data acquired by a dense distribution of receivers and exploits the integration of a dedicated TEC calibration technique into the Ground Based Scintillation Climatology (GBSC), previously developed at the Istituto Nazionale di Geofisica e Vulcanologia. Such integration enables representing the local ionospheric features through climatological maps of calibrated TEC and TEC gradients and of amplitude scintillation occurrence. The disentanglement of the contribution to the TEC variations due to zonal and meridional gradients conveys insight into the relation between the scintillation occurrence and the morphology of the TEC variability. The importance of the information provided by the TEC gradients variability and the role of the meridional TEC gradients in driving scintillation are critically described.

  16. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    PubMed Central

    Bosch-Lluis, Xavier; Camps, Adriano; Ramos-Perez, Isaac; Marchan-Hernandez, Juan Fernando; Rodriguez-Alvarez, Nereida; Valencia, Enric

    2008-01-01

    The Passive Advanced Unit (PAU) for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD) and a GPS reflectometer (PAU-GNSS/R). These instruments in conjunction with an infra-red radiometer (PAU-IR) will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4×4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR). PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR's radiometer calibration algorithms and their performance.

  17. Calibration of SeaWiFS. I. Direct techniques.

    PubMed

    Barnes, R A; Eplee, R E; Schmidt, G M; Patt, F S; McClain, C R

    2001-12-20

    We present an overview of the calibration of the Sea-viewing Wide Field-of View Sensor (SeaWiFS) from its performance verification at the manufacturer's facility to the completion of its third year of on-orbit measurements. These calibration procedures have three principal parts: a prelaunch radiometric calibration that is traceable to the National Institute of Standards and Technology; the Transfer-to-Orbit Experiment, a set of measurements that determine changes in the instrument's calibration from its manufacture to the start of on-orbit operations; and measurements of the sun and the moon to determine radiometric changes on orbit. To our knowledge, SeaWiFS is the only instrument that uses routine lunar measurements to determine changes in its radiometric sensitivity. On the basis of these methods, the overall uncertainty in the SeaWiFS top-of-the-atmosphere radiances is estimated to be 4-5%. We also show the results of comparison campaigns with aircraft- and ground-based measurements, plus the results of an experiment, called the Southern Ocean Band 8 Gain Study. These results are used to check the calibration of the SeaWiFS bands. To date, they have not been used to change the instrument's prelaunch calibration coefficients. In addition to these procedures, SeaWiFS is a vicariously calibrated instrument for ocean-color measurements. In the vicarious calibration of the SeaWiFS visible bands, the calibration coefficients are modified to force agreement with surface truth measurements from the Marine Optical Buoy, which is moored off the Hawaiian Island of Lanai. This vicarious calibration is described in a companion paper. PMID:18364980

  18. Compressively strained SiGe band-to-band tunneling model calibration based on p-i-n diodes and prospect of strained SiGe tunneling field-effect transistors

    SciTech Connect

    Kao, Kuo-Hsing; Meyer, Kristin De; Verhulst, Anne S.; Rooyackers, Rita; Douhard, Bastien; Delmotte, Joris; Bender, Hugo; Richard, Olivier; Vandervorst, Wilfried; Simoen, Eddy; Hikavyy, Andriy; Loo, Roger; Arstila, Kai; Collaert, Nadine; Thean, Aaron; Heyns, Marc M.

    2014-12-07

    Band-to-band tunneling parameters of strained indirect bandgap materials are not well-known, hampering the reliability of performance predictions of tunneling devices based on these materials. The nonlocal band-to-band tunneling model for compressively strained SiGe is calibrated based on a comparison of strained SiGe p-i-n tunneling diode measurements and doping-profile-based diode simulations. Dopant and Ge profiles of the diodes are determined by secondary ion mass spectrometry and capacitance-voltage measurements. Theoretical parameters of the band-to-band tunneling model are calculated based on strain-dependent properties such as bandgap, phonon energy, deformation-potential-based electron-phonon coupling, and hole effective masses of strained SiGe. The latter is determined with a 6-band k·p model. The calibration indicates an underestimation of the theoretical electron-phonon coupling with nearly an order of magnitude. Prospects of compressively strained SiGe tunneling transistors are made by simulations with the calibrated model.

  19. Simulator spectral characterization using balloon calibrated solar cells with narrow band pass filters

    NASA Technical Reports Server (NTRS)

    Goodelle, G. S.; Brooks, G. R.; Seaman, C. H.

    1981-01-01

    The development and implementation of an instrument for spectral measurement of solar simulators for testing solar cell characteristics is reported. The device was constructed for detecting changes in solar simulator behavior and for comparing simulator spectral irradiance to solar AM0 output. It consists of a standard solar cell equipped with a band pass filter narrow enough so that, when flown on a balloon to sufficient altitude along with sufficient numbers of cells, each equipped with filters of different bandpass ratings, the entire spectral response of the standard cell can be determined. Measured short circuit currents from the balloon flights thus produce cell devices which, when exposed to solar simulator light, have a current which does or does not respond as observed under actual AM0 conditions. Improvements of the filtered cells in terms of finer bandpass filter tuning and measurement of temperature coefficients are indicated.

  20. CARTEL: A method to calibrate S-band ranges with geostationary satellites

    NASA Astrophysics Data System (ADS)

    Guitart, A.; Mesnard, R.; Nouel, F.

    1986-12-01

    An intersite tracking campaign was organized, with 4 S-band stations, for a period of 1 wk to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference in order to evaluate what can be achieved with one single station with range and angular measurements (a typical configuration used for stationkeeping of geostationary satellites). Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure as forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. A precision of 10 m is achieved. However, an analysis of the influence of several parameters entering the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (polar motion for example). This reference orbit allows estimation of systematic errors for other tracking antennas.

  1. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit

    USGS Publications Warehouse

    Morfitt, Ron; Barsi, Julia A.; Levy, Raviv; Markham, Brian L.; Micijevic, Esad; Ong, Lawrence; Scaramuzza, Pat; Vanderwerff, Kelly

    2015-01-01

    Expectations of the Operational Land Imager (OLI) radiometric performance onboard Landsat-8 have been met or exceeded. The calibration activities that occurred prior to launch provided calibration parameters that enabled ground processing to produce imagery that met most requirements when data were transmitted to the ground. Since launch, calibration updates have improved the image quality even more, so that all requirements are met. These updates range from detector gain coefficients to reduce striping and banding to alignment parameters to improve the geometric accuracy. This paper concentrates on the on-orbit radiometric performance of the OLI, excepting the radiometric calibration performance. Topics discussed in this paper include: signal-to-noise ratios that are an order of magnitude higher than previous Landsat missions; radiometric uniformity that shows little residual banding and striping, and continues to improve; a dynamic range that limits saturation to extremely high radiance levels; extremely stable detectors; slight nonlinearity that is corrected in ground processing; detectors that are stable and 100% operable; and few image artifacts.

  2. Cross-calibration of the reflective solar bands of Terra MODIS and Landsat 7 Enhanced Thematic Mapper plus over PICS using different approaches

    NASA Astrophysics Data System (ADS)

    Angal, Amit; Brinkmann, Jake; Mishra, Nischal; Link, Daniel; Xiong, Xiaoxiong J.; Helder, Dennis

    2015-10-01

    Both Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper Plus (ETM+) have been successfully operating for over 15 years to collect valuable measurements of the earth's land, ocean, and atmosphere. The land-viewing bands of both sensors are widely used in several scientific products such as surface reflectance, normalized difference vegetation index, enhanced vegetation index etc. A synergistic use of the multi-temporal measurements from both sensors can greatly benefit the science community. Previous effort from the MODIS Characterization Support Team (MCST) was focused on comparing the top-of-atmosphere reflectance of the two sensors over Libya 4 desert target. Uncertainties caused by the site/atmospheric BRDF, spectral response mismatch, and atmospheric water-vapor were also characterized. In parallel, an absolute calibration approach based on empirical observation was also developed for the Libya 4 site by the South Dakota State University's (SDSU) Image Processing Lab. Observations from Terra MODIS and Earth Observing One (EO-1) Hyperion were used to model the Landsat ETM+ TOA reflectance. Recently, there has been an update to the MODIS calibration algorithm, which has resulted in the newly reprocessed Collection 6 Level 1B calibrated products. Similarly, a calibration update to some ETM+ bands has also resulted in long-term improvements of its calibration accuracy. With these updates, calibration differences between the spectrally matching bands of Terra MODIS and L7 ETM+ over the Libya 4 site are evaluated using both approaches.

  3. On-orbit GP-B Operations

    NASA Astrophysics Data System (ADS)

    Muhlfelder, B.; Green, G.; Keiser, G. M.; Smith, M.

    Gravity Probe B (GP-B) is a space-based experiment designed to measure two non-Newtonian precessions of precision gyroscopes in orbit about the Earth. The on-orbit mission is divided into three phases: initialization, science, and post-science calibration. The initialization phase configures the space vehicle for science and spans the first two months of the 18 month on-orbit dewar lifetime. Initialization consists of adjusting the vehicle's 640 km orbit to within 0.003 degrees of a nearly polar orbit, use of an on-board tracking telescope to point the vehicle to a distant fixed reference star, and spinning each of the science gyroscopes to approximately 100 Hz. After initialization, science data are collected for each gyroscope. A London Moment based gyroscope readout system provides a measurement of the precession of the gyroscope spin axis orientation. Following the collection of the science data, the Newtonian drift rates of the gyroscopes are intentionally enhanced. This calibration provides a bound of the amount of Newtonian gyroscope precession present in the science phase, gyroscope data. All vehicle commanding and data collection will be performed using the GP-B ground station. The team is now readying for the planned April 2004 launch.

  4. Degradation of MODIS Optics During the First Year of On-Orbit Operation

    NASA Technical Reports Server (NTRS)

    Guenther, B.; Xiong, X.; Esposito, J.; Pan, C.; Sun, J.; Barnes, William; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor on the NASA EOS (Earth Observing System) Terra spacecraft has completed more than one year of on-orbit operation since the instrument opened its Nadir door for the scene data collection on 24 February 2000. Its 20 reflective solar bands, from VIS (visible) to SWIR (shortwavelength infrared) (0.41 to 2.1 micron), are calibrated on-orbit by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). Degradation in the reflective solar bands has been observed in the reflectance of the on board solar diffuser and for the MODIS optics. Variations in degradation of up to 3% are evident between the two sides of the MODIS scan mirror. Degradation of the SD is tracked with the solar diffuser stability monitor, and degradation of the entire MODIS system is tracked by SD observations, adjusted for SD changes. Overall degradation at the shortest wavelengths (near 400 nm) are up to 3% for SD, and in excess of 10% for the MODIS system. Degradation of the SD and full MODIS system for the sensor's reflective solar bands will be described in this report.

  5. CARTEL: A method to calibrate S-band ranges with geostationary satellites. Results of orbit determination

    NASA Astrophysics Data System (ADS)

    Guitart, A.; Mesnard, B.

    1986-05-01

    A satellite tracking campaign was organized, with 4 S-band stations, for 1 wk. The relative geometry of the network with respect to the satellites was an opportunity to show how the most precise orbit can be computed with the operational software. This precise orbit served as a reference to evaluate what can be achieved with one station with range and angular measurements, a typical configuration used for stationkeeping of geostationary satellites. Orbit computation implied numerical integration with gravitational (Earth, Moon, and Sun) and solar radiation pressure forces acting on the satellite. Arc lengths of 2 days gave initial state vectors which were compared every day. Precision of 10 m is achieved. However, an analysis of the influence of parameters in the orbit computations reveals that the absolute accuracy is of the order of 100 m, since modeling perturbations were neglected in the operational software (e.g., polar motion). In a relative sense, the reference orbit allows estimation of systematic errors for other tracking antennas.

  6. First calibration and visible band observations of Khayyam, a Tunable Spatial Heterodyne Spectroscopy (SHS)

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.; Corliss, J.

    2013-12-01

    We present initial results from observations of wide-field targets using new instrumentation based on an all-reflective spatial heterodyne spectrometer (SHS). SHS instruments are quasi common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~10^5), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. We have constructed both narrow band pass and broadly tunable designs at fixed focal plane facilities on Mt Hamilton and Kitt Peak. This report focuses on the tunable instrument at Mt Hamilton, which is at the focus of the Coudé Auxiliary Telescope (CAT). The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2012 S1 (ISON), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability. Khayyam, The Tunable all-reflective Special Heterodyne Spectrometer (SHS) that has being characterized at the Coudé Auxiliary Telescope (CAT) on Mt. Hamilton.

  7. An Overview of Suomi NPP VIIRS Calibration Maneuvers

    NASA Technical Reports Server (NTRS)

    Butler, James J.; Xiong, Xiaoxiong; Barnes, Robert A.; Patt, Frederick S.; Sun, Junqiang; Chiang, Kwofu

    2012-01-01

    The first Visible Infrared Imager Radiometer Suite (VIIRS) instrument was successfully launched on-board the Suomi National Polar-orbiting Partnership (SNPP) spacecraft on October 28, 2011. Suomi NPP VIIRS observations are made in 22 spectral bands, from the visible (VIS) to the long-wave infrared (LWIR), and are used to produce 22 Environmental Data Records (EDRs) with a broad range of scientific applications. The quality of these VIIRS EDRs strongly depends on the quality of its calibrated and geo-located Sensor Date Records (SDRs). Built with a strong heritage to the NASA's EOS MODerate resolution Imaging Spectroradiometer (MODIS) instrument, the VIIRS is calibrated on-orbit using a similar set of on-board calibrators (OBC), including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the reflective solar bands (RSB) and a blackbody (BB) for the thermal emissive bands (TEB). On-orbit maneuvers of the SNPP spacecraft provide additional calibration and characterization data from the VIIRS instrument which cannot be obtained pre-launch and are required to produce the highest quality SDRs. These include multi-orbit yaw maneuvers for the characterization of SD and SDSM screen transmission, quasi-monthly roll maneuvers to acquire lunar observations to track sensor degradation in the visible through shortwave infrared, and a driven pitch-over maneuver to acquire multiple scans of deep space to determine TEB response versus scan angle (RVS). This paper pro-vides an overview of these three SNPP calibration maneuvers. Discussions are focused on their potential calibration and science benefits, pre-launch planning activities, and on-orbit scheduling and implementation strategies. Results from calibration maneuvers performed during the Intensive Calibration and Validation (ICV) period for the VIIRS sensor are illustrated. Also presented in this paper are lessons learned regarding the implementation of calibration spacecraft maneuvers on follow

  8. Improvement of MODIS RSB calibration by minimizing the Earthshine impact on solar diffuser observations

    NASA Astrophysics Data System (ADS)

    Xie, X.; Xiong, X.; Wolfe, R.; Lyapustin, A.

    2006-08-01

    The MODerate Resolution Imaging Spectroraiometer (MODIS) reflective solar bands (RSB) are calibrated on-orbit using solar illuminations reflected from its onboard solar diffuser (SD) plate. The specified calibration uncertainty requirements for MODIS RSB are +/-2% in reflectance and +/-5% in radiance at their typical top of atmosphere (TOA) radiances. The onboard SD bi-directional reflectance factor (BRF) was characterized pre-launch by the instrument vendor using reference samples traceable to NIST reflectance standard. The SD on-orbit degradation is monitored using a solar diffuser stability monitor (SDSM). One of contributors to the RSB calibration uncertainty is the earthshine (ES) illumination on the SD plate during SD calibration. This effect was estimated pre-launch by the instrument vendor to be of 0.5% for all RSB bands. Analyses of on-orbit observations show that some of the SD calibration data sets have indeed been contaminated due to extra ES illumination and the degree of ES impact on the SD calibration is spectrally dependent and varies with geo-location and atmospheric conditions (ground surface type and cloudiness). This paper illustrates the observed ES impacts on the MODIS RSB calibration quality and compare them with the effects derived from an ES model based on the viewing geometry of MODIS SD aperture door and likelihood atmospheric conditions. It also describes an approach developed to minimize the ES impact on MODIS RSB calibration.

  9. On-Orbit Lunar Modulation Transfer Function Measurements for the Moderate Resolution Imaging Spectroradiometer

    NASA Technical Reports Server (NTRS)

    Choi, Taeyong; Xiong, Xiaoxiong; Wang, Zhipeng

    2013-01-01

    Spatial quality of an imaging sensor can be estimated by evaluating its modulation transfer function (MTF) from many different sources such as a sharp edge, a pulse target, or bar patterns with different spatial frequencies. These well-defined targets are frequently used for prelaunch laboratory tests, providing very reliable and accurate MTF measurements. A laboratory-quality edge input source was included in the spatial-mode operation of the Spectroradiometric Calibration Assembly (SRCA), which is one of the onboard calibrators of the Moderate Resolution Imaging Spectroradiometer (MODIS). Since not all imaging satellites have such an instrument, SRCA MTF estimations can be used as a reference for an on-orbit lunar MTF algorithm and results. In this paper, the prelaunch spatial quality characterization process from the Integrated Alignment Collimator and SRCA is briefly discussed. Based on prelaunch MTF calibration using the SRCA, a lunar MTF algorithm is developed and applied to the lifetime on-orbit Terra and Aqua MODIS lunar collections. In each lunar collection, multiple scan-directionMoon-to-background transition profiles are aligned by the subpixel edge locations from a parametric Fermi function fit. Corresponding accumulated edge profiles are filtered and interpolated to obtain the edge spread function (ESF). The MTF is calculated by applying a Fourier transformation on the line spread function through a simple differentiation of the ESF. The lifetime lunar MTF results are analyzed and filtered by a relationship with the Sun-Earth-MODIS angle. Finally, the filtered lunarMTF values are compared to the SRCA MTF results. This comparison provides the level of accuracy for on-orbit MTF estimations validated through prelaunch SRCA measurements. The lunar MTF values had larger uncertainty than the SRCA MTF results; however, the ratio mean of lunarMTF fit and SRCA MTF values is within 2% in the 250- and 500-m bands. Based on the MTF measurement uncertainty range

  10. MODIS solar reflective calibration traceability

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-08-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify measurement uncertainties, and to establish an absolute measurement scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2μm and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bi-directional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser stability monitor (SDSM). This paper provides details of this calibration chain, from pre-launch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  11. MODIS Solar Reflective Calibration Traceability

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, Jim

    2009-01-01

    Long-term climate data records often consist of observations made by multiple sensors. It is, therefore, extremely important to have instrument overlap, to be able to track instrument stability, to quantify, measurement uncertainties, and to establish absolute scale traceable to the International System of Units (SI). The Moderate Resolution Imaging Spectroradiometer (MODIS) is a key instrument for both the Terra and Aqua missions, which were launched in December 1999 and May 2002, respectively. It has 20 reflective solar bands (RSB) with wavelengths from 0.41 to 2.2 micrometers and observes the Earth at three nadir spatial resolutions: 0.25km, 0.5km, and 1km. MODIS RSB on-orbit calibration is reflectance based with reference to the bidirectional reflectance factor (BRF) of its on-board solar diffuser (SD). The SD BRF characterization was made pre-launch by the instrument vendor using reference samples traceable directly to the National Institute of Standards and Technology (NIST). On-orbit SD reflectance degradation is tracked by an on-board solar diffuser monitor (SDSM). This paper provides details of this calibration chain, from prelaunch to on-orbit operation, and associated uncertainty assessments. Using MODIS as an example, this paper also discusses challenges and key design requirements for future missions developed for accurate climate studies.

  12. Operational Land Imager relative radiometric calibration

    NASA Astrophysics Data System (ADS)

    Barsi, Julia A.; Markham, Brian L.

    2015-09-01

    The Operational Land Imager (OLI), on board the Landsat-8 satellite, is a pushbroom sensor with nearly 7000 detectors per band, divided between 14 separate modules. While rigorously characterized prior to launch, the shear number of individual detectors presents a challenge to maintaining the on-orbit relative calibration, such that stripes, bands and other artifacts are minimized in the final image products. On-orbit relative calibration of the OLI is primarily monitored and corrected by observing an on-board primary solar diffuser panel. The panel is the most uniform target available to the OLI, though as observed but the OLI, it has a slope across the field of view due to view angle effects. Just after launch, parameters were derived using the solar diffuser data, to correct for the angular effects across the 14 modules. The residual discontinuities between arrays and the detector-to-detector uniformity continue to be monitored on a weekly basis. The observed variations in the responses to the diffuser panel since launch are thought to be due to real instrument changes. Since launch, the Coastal/Aerosol (CA) and Blue bands have shown the most variation in relative calibration of the VNIR bands, with as much as 0.14% change (3-sigma) between consecutive relative gain estimates. The other VNIR bands (Green, Red and NIR) initially had detectors showing a slow drift of about 0.2% per year, though this stopped after an instrument power cycle about seven months after launch. The SWIR bands also exhibit variability between collects (0.11% 3-sigma) but the larger changes have been where individual detectors' responses change suddenly by as much as 1.5%. The mechanisms behind these changes are not well understood but in order to minimize impact to the users, the OLI relative calibration is updated on a quarterly basis in order to capture changes over time.

  13. On-orbit spacecraft reliability

    NASA Technical Reports Server (NTRS)

    Bloomquist, C.; Demars, D.; Graham, W.; Henmi, P.

    1978-01-01

    Operational and historic data for 350 spacecraft from 52 U.S. space programs were analyzed for on-orbit reliability. Failure rates estimates are made for on-orbit operation of spacecraft subsystems, components, and piece parts, as well as estimates of failure probability for the same elements during launch. Confidence intervals for both parameters are also given. The results indicate that: (1) the success of spacecraft operation is only slightly affected by most reported incidents of anomalous behavior; (2) the occurrence of the majority of anomalous incidents could have been prevented piror to launch; (3) no detrimental effect of spacecraft dormancy is evident; (4) cycled components in general are not demonstrably less reliable than uncycled components; and (5) application of product assurance elements is conductive to spacecraft success.

  14. Two-tier calibrated electro-optic sensing system for intense field characterization of high-power W-band gyrotron.

    PubMed

    Kim, Seok; Hong, Young-Pyo; Yang, Jong-Won; Lee, Dong-Joon

    2016-05-16

    We present a field-calibrated electro-optic sensing system for measurement of the electric field radiating from a high-power vacuum oscillator at ~95 GHz. The intense electric field is measured in absolute scale via two probe-calibration steps, associated with a photonic heterodyne scheme. First, a micro-electro-optic probe, fabricated to less than one-tenth the oscillation wavelength scale to minimize field-perturbation due to the probe, is placed on the aperture of a field-calculable WR-10 waveguide to calibrate the probe in V/m scale. Then, using this arrangement as a calibrated reference probe at the first-tier position, another probe-bulkier, and thus more robust and sensitive but not accessible to the aperture-is calibrated at the second-tier position away from the waveguide aperture. This two-tier calibrated probe was utilized to diagnose the sub-MV/m scale of intense electric fields and emissions from a high-power W-band gyrotron. The experimental results obtained proved consistent with calculated analytical results-verifying the efficacy of the developed system. PMID:27409877

  15. ACTS Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Acosta, R.; Wright, D.; Mitchell, Kenneth

    1996-01-01

    The Advanced Communications Technology Satellite (ACTS) launched in September 1993 introduces several new technologies including a multibeam antenna (MBA) operating at Ka-band. The MBA with fixed and rapidly reconfigurable spot beams serves users equipped with small aperture terminals within the coverage area. The antenna produces spot beams with approximately 0.3 degrees beamwidth and gains of approximately 50 dBi. A number of MBA performance evaluations have been performed since the ACTS launch. These evaluations were designed to assess MBA performance (e.g., beam pointing stability, beam shape, gain, etc.) in the space environment. The on-orbit measurements found systematic environmental perturbation to the MBA beam pointing. These perturbations were found to be imposed by satellite attitude control system, antenna and spacecraft mechanical alignments, on-orbit thermal effects, etc. As a result, the footprint coverage of the MBA may not exactly cover the intended service area at all times. This report describes the space environment effects on the ACTS MBA performance as a function of time of the day and time of the year and compensation approaches for these effects.

  16. Broad-band calibration of marine seismic sources used by R/V Polarstern for academic research in polar regions

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Boebel, Olaf; El Naggar, Saad; Jokat, Wilfried; Werner, Berthold

    2008-08-01

    Air guns and air-gun arrays of different volumes are used for scientific seismic surveys with R/V Polarstern in polar regions. To assess the potential risk of these research activities on marine mammal populations, knowledge of the sound pressure field of the seismic sources is essential. Therefore, a broad-band (0-80 kHz) calibration study was conducted at the Heggernes Acoustic Range, Norway. A GI (2.4 l), a G (8.5 l) and a Bolt gun (32.8 l) were deployed as single sources, 3 GI (7.4 l), 3 G (25.6 l) and 8 VLF™ Prakla-Seismos air guns (24.0 l) as arrays. Each configuration was fired along a line of 3-4 km length running between two hydrophone chains with receivers in 35, 100, 198 and 263 m depth. Peak-to-peak, zero-to-peak, rms and sound exposure levels (SEL) were analysed as functions of range. They show the typical dipole-like directivity of marine seismic sources with amplitude cancellation close to the sea surface, higher amplitudes in greater depths, and sound pressure levels which continuously decrease with range. Levels recorded during the approach are lower than during the departure indicating a shadowing effect of Polarsterns's hull. Backcalculated zero-to-peak source levels range from 224-240 dB re 1 μPa @ 1 m. Spectral source levels are highest below 100 Hz and amount to 182-194 dB re 1 μPa Hz-1. They drop off continuously with range and frequency. At 1 kHz they are ~30 dB, at 80 kHz ~60 dB lower than the peak level. Above 1 kHz amplitude spectra are dominated by Polarstern's self-noise. From the rms and sound exposure levels of the deepest hydrophone radii for different thresholds are derived. For a 180 dB rms-level threshold radii maximally vary between 200 and 600 m, for a 186 dB SEL threshold between 50 and 300 m.

  17. On-Orbit Software Analysis

    NASA Technical Reports Server (NTRS)

    Moran, Susanne I.

    2004-01-01

    The On-Orbit Software Analysis Research Infusion Project was done by Intrinsyx Technologies Corporation (Intrinsyx) at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC). The Project was a joint collaborative effort between NASA Codes IC and SL, Kestrel Technology (Kestrel), and Intrinsyx. The primary objectives of the Project were: Discovery and verification of software program properties and dependencies, Detection and isolation of software defects across different versions of software, and Compilation of historical data and technical expertise for future applications

  18. OLI Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Morfitt, Ron; Kvaran, Geir; Biggar, Stuart; Leisso, Nathan; Czapla-Myers, Jeff

    2011-01-01

    Goals: (1) Present an overview of the pre-launch radiance, reflectance & uniformity calibration of the Operational Land Imager (OLI) (1a) Transfer to orbit/heliostat (1b) Linearity (2) Discuss on-orbit plans for radiance, reflectance and uniformity calibration of the OLI

  19. Relative radiometric correction of QuickBird imagery using the side-slither technique on-orbit.

    SciTech Connect

    Henderson, B. G.; Krause, Keith S.

    2004-01-01

    The QuickBird commercial imaging satellite is a pushbroom system with four multispectral bands covering the visible through near-infrared region of the spectrum and a panchromatic band. 6972 detectors in each MS band and 27888 detectors in the pan band must be calibrated. In an ideal sensor, a uniform radiance target will produce a uniform image. Unfortunately, raw imagery generated from a pushbroom sensor contains vertical streaks caused by variability in detector response, variability in electronic gain and offset, lens falloff, and particulate contamination on the focal plane. Relative radiometric correction is necessary to account for the detector-to-detector non-uniformity seen in raw imagery. A relative gain is calculated for each detector while looking at a uniform target such as an integrating sphere during ground calibrations, diffuser panel, or large desert target on-orbit. A special maneuver developed for QuickBird called the 'Side-Slither' technique is discussed. This technique improves the statistics of a desert target and achieves superior non-uniformity correction in imagery. The 'Side-Slither' technique is compared to standard techniques for calculation of relative gain and shows a reduction in the streaking seen in imagery.

  20. GOSAT lunar calibration in two year operation

    NASA Astrophysics Data System (ADS)

    Shiomi, K.; Hashiguchi, T.; Kataoka, F.; Higuchi, R.

    2011-12-01

    The Greenhouse Gases Observing Satellite (GOSAT) is a Japanese mission to monitor greenhouse gases such as CO_{2} and CH_{4} from space. The GOSAT carries the Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). The FTS has 3 polarized SWIR narrow bands, which are 0.76, 1.6 and 2.0 microns and TIR wide band from 5.5 to 14.3 microns. The FTS observes globally with grid points of 10 km FOV by separate pointing. The CAI is carried 4 radiometers of 0.38, 0.67, 0.87, and 1.60 microns with high spatial resolution of 0.5-1.5 km and wide swath of 1000 km. The GOSAT observes the full moon for the radiometric calibration of the FTS SWIR bands and the CAI by the lunar calibration operation every year. Bottom of the satellite installed the sensors is oriented to the moon before moon rise of the satellite. The initial lunar calibration on orbit just after the launch was operated on March 11 and April 9, 2009. Every year calibrations were operated on April for continuous annual trend and July for corresponding to the Railroad Valley calibration and validation field campaign. In 3rd year operation, the specification of lunar calibration is optimized to observe in phase angle around 7 degrees to avoid the opposition surge and use the lunar model in good accuracy and brightest target. The FTS observes the moon by 0.6 IFOV. The FTS carries a high-resolution monitoring camera for checking the observation target. The moon position in the FTS IFOV is confirmed by the camera image. The CAI observes the moon by 12 pixels of Band 1-3, by 4 pixels of Band 4. The CAI scans the moon in 2 reciprocations with constant scan speed. This presentation shows the sensitivity study using the GOSAT lunar observation in two year operation.

  1. MODIS In-flight Calibration Methodologies

    NASA Technical Reports Server (NTRS)

    Xiong, X.; Barnes, W.

    2004-01-01

    MODIS is a key instrument for the NASA's Earth Observing System (EOS) currently operating on the Terra spacecraft launched in December 1999 and Aqua spacecraft launched in May 2002. It is a cross-track scanning radiometer, making measurements over a wide field of view in 36 spectral bands with wavelengths from 0.41 to 14.5 micrometers and providing calibrated data products for science and research communities in their studies of the Earth s system of land, oceans, and atmosphere. A complete suite of on-board calibrators (OBC) have been designed for the instruments in-flight calibration and characterization, including a solar diffuser (SD) and solar diffuser stability monitor (SDSM) system for the radiometric calibration of the 20 reflective solar bands (RSB), a blackbody (BB) for the radiometric calibration of the 16 thermal emissive bands (TEB), and a spectro-radiometric calibration assembly (SRCA) for the spatial (all bands) and spectral (RSB only) characterization. This paper discusses MODIS in-flight Cali bration methodologies of using its on-board calibrators. Challenging issues and examples of tracking and correcting instrument on-orbit response changes are presented, including SD degradation (20% at 412nm, 12% at 466nm, and 7% at 530nm over four and a half years) and response versus scan angle changes (10%, 4%, and 1% differences between beginning of the scan and end of the scan at 412nm, 466nm, and 530nm) in the VIS spectral region. Current instrument performance and lessons learned are also provided.

  2. Langley method applied in study of aerosol optical depth in the Brazilian semiarid region using 500, 670 and 870 nm bands for sun photometer calibration

    NASA Astrophysics Data System (ADS)

    Cerqueira, J. G.; Fernandez, J. H.; Hoelzemann, J. J.; Leme, N. M. P.; Sousa, C. T.

    2014-10-01

    Due to the high costs of commercial monitoring instruments, a portable sun photometer was developed at INPE/CRN laboratories, operating in four bands, with two bands in the visible spectrum and two in near infrared. The instrument calibration process is performed by applying the classical Langley method. Application of the Langley’s methodology requires a site with high optical stability during the measurements, which is usually found in high altitudes. However, far from being an ideal site, Harrison et al. (1994) report success with applying the Langley method to some data for a site in Boulder, Colorado. Recently, Liu et al. (2011) show that low elevation sites, far away from urban and industrial centers can provide a stable optical depth, similar to high altitudes. In this study we investigated the feasibility of applying the methodology in the semiarid region of northeastern Brazil, far away from pollution areas with low altitudes, for sun photometer calibration. We investigated optical depth stability using two periods of measurements in the year during dry season in austral summer. The first one was in December when the native vegetation naturally dries, losing all its leaves and the second one was in September in the middle of the dry season when the vegetation is still with leaves. The data were distributed during four days in December 2012 and four days in September 2013 totaling eleven half days of collections between mornings and afternoons and by means of fitted line to the data V0 values were found. Despite the high correlation between the collected data and the fitted line, the study showed a variation between the values of V0 greater than allowed for sun photometer calibration. The lowest V0 variation reached in this experiment with values lower than 3% for the bands 500, 670 and 870 nm are displayed in tables. The results indicate that the site needs to be better characterized with studies in more favorable periods, soon after the rainy season.

  3. Using Dome C for Moderate Resolution Imaging Spectroradiometer Calibration Stability and Consistency

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Wu, Aisheng; Wenny, Brian N.

    2009-01-01

    Currently, there are two nearly identical moderate resolution imaging spectroradiometer (MODIS) instruments operated in space: one on the Terra spacecraft launched in December 1999 and another on the Aqua spacecraft launched in May 2002. MODIS has 36 spectral bands with wavelengths covering from visible (VIS) to long-wave infrared (LWIR). Since launch, M0DIS observations and data products have significantly enabled studies of changes in the Earth system of land, oceans, and atmosphere. In order to maintain its on-orbit calibration and data product quality, MODIS was built with a comprehensive set of on-board calibrators. MODIS reflective solar bands (RSB) are calibrated on-orbit by a system that consists of a solar diffuser (SD) and a solar diffuser stability monitor(SDSM) on a regular basis. Its thermal emissive bands (TEB) calibration is executed on a scan-by-scan basis using an on-board blackbody (BB). The MODIS Characterization Support Team (MCST) at NASA/GSFC has been responsible for supporting sensor calibration and characterization tasks from pre-launch to post launch. In this paper,we describe current MCST efforts and progress made to examine sensor stability and intercalibration consistency using observations over Dome Concordia, Antarctica. Results show that this site can provide useful calibration reference for Earth-observing sensors.

  4. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  5. On-Orbit Compressor Technology Program

    NASA Technical Reports Server (NTRS)

    Deffenbaugh, Danny M.; Svedeman, Steven J.; Schroeder, Edgar C.; Gerlach, C. Richard

    1990-01-01

    A synopsis of the On-Orbit Compressor Technology Program is presented. The objective is the exploration of compressor technology applicable for use by the Space Station Fluid Management System, Space Station Propulsion System, and related on-orbit fluid transfer systems. The approach is to extend the current state-of-the-art in natural gas compressor technology to the unique requirements of high-pressure, low-flow, small, light, and low-power devices for on-orbit applications. This technology is adapted to seven on-orbit conceptual designs and one prototype is developed and tested.

  6. On-orbit coldwelding: Fact or friction?

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Spear, Steve

    1992-01-01

    A study into the potential of on-orbit coldwelding occurring was completed. No instances of cold welding were found during deintegration and subsequent testing and analysis of LDEF hardware. This finding generated wide interest and indicated the need to review previous on-orbit coldwelding experiments and on-orbit spacecraft anomalies to determine whether the absence of coldwelding on LDEF was to be expected. Results show that even though there have been no documented cases of significant on-orbit coldwelding events occurring, precautions should be taken to ensure that neither coldwelding nor galling occurs in the space or prelaunch environment.

  7. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes

    NASA Astrophysics Data System (ADS)

    Meister, H.; Willmeroth, M.; Zhang, D.; Gottwald, A.; Krumrey, M.; Scholze, F.

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  8. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.

    PubMed

    Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels. PMID:24387428

  9. Improvements of VIIRS and MODIS solar diffuser and lunar calibration

    NASA Astrophysics Data System (ADS)

    Xiong, Xiaoxiong; Butler, James; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit

    2013-09-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.

  10. Improvements of VIIRS and MODIS Solar Diffuser and Lunar Calibration

    NASA Technical Reports Server (NTRS)

    Xiong, Xiaoxiong; Butler, James J.; Lei, Ning; Sun, Junqiang; Fulbright, Jon; Wang, Zhipeng; McIntire, Jeff; Angal, Amit Avinash

    2013-01-01

    Both VIIRS and MODIS instruments use solar diffuser (SD) and lunar observations to calibrate their reflective solar bands (RSB). A solar diffuser stability monitor (SDSM) is used to track the SD on-orbit degradation. On-orbit observations have shown similar wavelength-dependent SD degradation (larger at shorter VIS wavelengths) and SDSM detector response degradation (larger at longer NIR wavelengths) for both VIIRS and MODIS instruments. In general, the MODIS scan mirror has experienced more degradation in the VIS spectral region whereas the VIIRS rotating telescope assembly (RTA) mirrors have seen more degradation in the NIR and SWIR spectral region. Because of this wavelength dependent mirror degradation, the sensor's relative spectral response (RSR) needs to be modulated. Due to differences between the solar and lunar spectral irradiance, the modulated RSR could have different effects on the SD and lunar calibration. In this paper, we identify various factors that should be considered for the improvements of VIIRS and MODIS solar and lunar calibration and examine their potential impact. Specifically, we will characterize and assess the calibration impact due to SD and SDSM attenuation screen transmission (uncertainty), SD BRF uncertainty and onorbit degradation, SDSM detector response degradation, and modulated RSR resulting from the sensor's optics degradation. Also illustrated and discussed in this paper are the calibration strategies implemented in the VIIRS and MODIS SD and lunar calibrations and efforts that could be made for future improvements.