Science.gov

Sample records for bar code scanner

  1. Multidirectional Holographic Scanner For Point-Of-Sale Bar-Code Symbol Reader

    NASA Astrophysics Data System (ADS)

    Nishi, Kazuro; Kurahashi, Koichiro; Kubo, Takahiro

    1984-12-01

    A multidirectional laser beam scanning method using holographic zone plates is described. To increase the number of scanning directions, not only is a hologram disk rotated at fixed speed (col ), but a laser beam incident on the disk is reversely rotated at another speed (w2). The focus of the laser beam diffracted by the hologram disk draws multidirectional scanning lines. The number of scanning directions (n) is equal to (w1 /c02) + 1. Experimentally, the effectiveness of this method is demonstrated for nineteen scanning directions. This scan method is applied to a point-of-sale (POS) scanner to read a non-moving bar-code symbol.

  2. Quality assessment in radiology: value of a portable bar-code scanner integrated with a computer workstation.

    PubMed

    Frank, M S; Gillespy, T; Mann, F A

    1993-10-01

    Radiographs are typically processed by several employees of a radiology department before being interpreted by a radiologist. A technologist acquires and labels the radiograph(s), and file room employees match the radiograph(s) with prior examinations and prepare them for interpretation by the radiologist. Every radiologist has encountered radiologic examinations in which the image quality, presentation, or associated clinical or technical information is suboptimal. In small departments, the process of immediately tracking the problem to its source and correcting it might be straightforward, albeit an annoying interruption to the radiologist's focus on clinical care. However, in larger departments, trends of human error or machine malfunction may be overlooked or untraceable because no effective method exists to track the quality of images and associated information. A feedback loop from radiologists to the department's ancillary personnel can result in a cycle of continuous quality improvement that enhances the quality of radiographic examinations and also decreases waste. To achieve this, we designed and implemented a computerized process that involves a portable bar-code scanner, a personal computer workstation, and our existing radiology information system. PMID:8372780

  3. Bar Codes for Libraries.

    ERIC Educational Resources Information Center

    Rahn, Erwin

    1984-01-01

    Discusses the evolution of standards for bar codes (series of printed lines and spaces that represent numbers, symbols, and/or letters of alphabet) and describes the two types most frequently adopted by libraries--Code-A-Bar and CODE 39. Format of the codes is illustrated. Six references and definitions of terminology are appended. (EJS)

  4. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  5. Optical System Design For High Speed Bar Code Scanning

    NASA Astrophysics Data System (ADS)

    Hellekson, Ronald; Reddersen, Brad; Campbell, Scott

    1987-04-01

    Spectra-Physics recently introduced the Model 750 SL scanner for use in the European point-of-sale market, to meet the European requirement for a scanner of less than 13 cm height. The model 750 SL uses a higher density computer designed scan pattern with a retrodirective collection system to scan and detect UPC, EAN, and JAN bar codes. The scanner "reads" these bar codes in such a way that the user need not precisely align the bar code symbol with respect to the window in the scanner even at package speeds up to 100 inches per second. By using a unique geometrical arrangement of mirrors, a polygonal mirror assembly, and a custom-designed plastic bifocal lens, a design was developed to meet these requirements. This paper describes the design of this new low cost scanner, the use of computer-aided design in the development of this scanner, and some observations on the future of bar code scanning.

  6. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  7. Bar-Code-Scribing Tool

    NASA Technical Reports Server (NTRS)

    Badinger, Michael A.; Drouant, George J.

    1991-01-01

    Proposed hand-held tool applies indelible bar code to small parts. Possible to identify parts for management of inventory without tags or labels. Microprocessor supplies bar-code data to impact-printer-like device. Device drives replaceable scribe, which cuts bar code on surface of part. Used to mark serially controlled parts for military and aerospace equipment. Also adapts for discrete marking of bulk items used in food and pharmaceutical processing.

  8. Property Control through Bar Coding.

    ERIC Educational Resources Information Center

    Kingma, Gerben J.

    1984-01-01

    A public utility company uses laser wands to read bar-coded labels on furniture and equipment. The system allows an 80 percent savings of the time required to create reports for inventory control. (MLF)

  9. A Pilot Study of Bar Codes in a Canadian Hospital

    PubMed Central

    Brisseau, Lionel; Chiveri, Andrei; Lebel, Denis; Bussières, Jean-François

    2011-01-01

    Background: In 2004, the US Food and Drug Administration issued a new rule requiring most prescription and some over-the-counter pharmaceutical products to carry bar codes down to the level of individual doses, with the intent of reducing the number of medication errors. Despite these regulatory changes in the United States, Health Canada has not yet adopted any mandatory bar-coding of drugs. Objective: To evaluate the feasibility of using commercial bar codes for receipt and preparation of drug products and to evaluate the readability of the bar codes printed on various levels of drug packaging. Methods: This cross-sectional observational pilot study was conducted in the Pharmacy Department of a Canadian mother–child university hospital centre in July 2010. For the purposes of the study, research drugs and cytotoxic drugs in various storage areas, as well as locally compounded medications with bar codes generated in house, were excluded. For all other drug products, the presence or absence of bar codes was documented for each level of packaging, along with the trade and generic names, content (i.e., drug product), quantity of doses or level of packaging, therapeutic class (if applicable), type of bar code (1- or 2-dimensional symbology), alphanumeric value contained in the bar code, standard of reference used to generate the alphanumeric value (Universal Product Code [UPC], Global Trade Item Number [GTIN], or unknown), and readability of the bar codes by 2 scanners. Results: Only 33 (1.9%) of the 1734 products evaluated had no bar codes on any level of packaging. Of the 2875 levels of packaging evaluated, 2021 (70.3%) had at least one bar code. Of the 2384 bar codes evaluated, 2353 (98.7%) were linear (1-dimensional) and 31 (1.3%) were 2-dimensional. Well over three-quarters (2112 or 88.6%) of the evaluated bar codes were readable by at least 1 of the 2 scanners used in the study. Conclusions: On the basis of these results, bar-coding could be used for receipt of 80.9% of the drug products at this Canadian hospital and for the preparation and dispensing of 70.1% of the products. PMID:22479068

  10. Bar code instrumentation for nuclear safeguards

    SciTech Connect

    Bieber, A.M. Jr.

    1984-01-01

    This paper presents a brief overview of the basic principles of bar codes and the equipment used to make and to read bar code labels, and a summary of some of the more important factors that need to be considered in integrating bar codes into an information system.

  11. Bar Coding and Tracking in Pathology.

    PubMed

    Hanna, Matthew G; Pantanowitz, Liron

    2016-03-01

    Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. PMID:26851661

  12. Bar Coding and Tracking in Pathology.

    PubMed

    Hanna, Matthew G; Pantanowitz, Liron

    2015-06-01

    Bar coding and specimen tracking are intricately linked to pathology workflow and efficiency. In the pathology laboratory, bar coding facilitates many laboratory practices, including specimen tracking, automation, and quality management. Data obtained from bar coding can be used to identify, locate, standardize, and audit specimens to achieve maximal laboratory efficiency and patient safety. Variables that need to be considered when implementing and maintaining a bar coding and tracking system include assets to be labeled, bar code symbologies, hardware, software, workflow, and laboratory and information technology infrastructure as well as interoperability with the laboratory information system. This article addresses these issues, primarily focusing on surgical pathology. PMID:26065787

  13. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner. PMID:15143655

  14. Bar-code automated waste tracking system

    SciTech Connect

    Hull, T.E.

    1994-10-01

    The Bar-Code Automated Waste Tracking System was designed to be a site-Specific program with a general purpose application for transportability to other facilities. The system is user-friendly, totally automated, and incorporates the use of a drive-up window that is close to the areas dealing in container preparation, delivery, pickup, and disposal. The system features ``stop-and-go`` operation rather than a long, tedious, error-prone manual entry. The system is designed for automation but allows operators to concentrate on proper handling of waste while maintaining manual entry of data as a backup. A large wall plaque filled with bar-code labels is used to input specific details about any movement of waste.

  15. Bar codes in the U.K.

    PubMed

    Carter, D

    1989-03-01

    In summary, by the simple addition of a bar code label to individual items of bed linen or garments the following information becomes available: a total number of items in circulation; a breakdown of individual items and quantity; an average length of stay within locations, i.e., turnaround period; a complete record of all condemned items and costs; a record of overdue items by location; an immediate identification of users with above-average retention periods; quality control of purchases; total cash value of stock. Bar codes are a tremendous security device that has already saved the National Health Service in the U.K. an enormous sum. Perhaps they can help your operation, too. PMID:10292314

  16. Bar-Code System Tracks Test Equipment

    NASA Technical Reports Server (NTRS)

    Rogers, Jacob R.; Benton, Lesa M.; Perry, Roberta A.

    1990-01-01

    Administration of complicated system speeded and simplified. Computer system uses bar codes to keep track of more than 2,200 items of test equipment. BETUS (Barcode Equipment Tracking and Utilization System), maintains data base on what items borrowed, who is using them and where, and when calibrated. Keeps records on tools and small electronic components. Saves on equipment purchases and recovers missing equipment more quickly. Cuts check-in and checkout time by 90 percent.

  17. A new high density magnetic bar code system

    NASA Astrophysics Data System (ADS)

    Watanabe, Naoyuki; Sasada, Ichiro; Asuke, Naoshi

    1999-04-01

    Magnetic bar codes can be used in dirty environments instead of optical bar codes or as invisible codes in order to enhance the security of prepaid cards. In this article, we propose a high density magnetic bar code system in which the existence or nonexistence of a bar element is detected by a magnetic bridge. A micro head constituting a magnetic bridge is fabricated with thin amorphous cores and thin copper wire coils. The magnetic bar elements are printed with magnetic ink. The basic characteristics, such as signal separation from neighboring bar elements, are discussed in terms of the element width and the space between two adjacent elements.

  18. Practical guide to bar coding for patient medication safety.

    PubMed

    Neuenschwander, Mark; Cohen, Michael R; Vaida, Allen J; Patchett, Jeffrey A; Kelly, Jamie; Trohimovich, Barbara

    2003-04-15

    Bar coding for the medication administration step of the drug-use process is discussed. FDA will propose a rule in 2003 that would require bar-code labels on all human drugs and biologicals. Even with an FDA mandate, manufacturer procrastination and possible shifts in product availability are likely to slow progress. Such delays should not preclude health systems from adopting bar-code-enabled point-of-care (BPOC) systems to achieve gains in patient safety. Bar-code technology is a replacement for traditional keyboard data entry. The elements of bar coding are content, which determines the meaning; data format, which refers to the embedded data and symbology, which describes the "font" in which the machine-readable code is written. For a BPOC system to deliver an acceptable level of patient protection, the hospital must first establish reliable processes for a patient identification band, caregiver badge, and medication bar coding. Medications can have either drug-specific or patient-specific bar codes. Both varieties result in the desired code that supports patient's five rights of drug administration. When medications are not available from the manufacturer in immediate-container bar-coded packaging, other means of applying the bar code must be devised, including the use of repackaging equipment, overwrapping, manual bar coding, and outsourcing. Virtually all medications should be bar coded, the bar code on the label should be easily readable, and appropriate policies, procedures, and checks should be in place. Bar coding has the potential to be not only cost-effective but to produce a return on investment. By bar coding patient identification tags, caregiver badges, and immediate-container medications, health systems can substantially increase patient safety during medication administration. PMID:12749163

  19. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  20. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  1. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  2. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  3. 21 CFR 610.67 - Bar code label requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Bar code label requirements. 610.67 Section 610.67 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) BIOLOGICS GENERAL BIOLOGICAL PRODUCTS STANDARDS Labeling Standards § 610.67 Bar code label...

  4. Bar-Code System for a Microbiological Laboratory

    NASA Technical Reports Server (NTRS)

    Law, Jennifer; Kirschner, Larry

    2007-01-01

    A bar-code system has been assembled for a microbiological laboratory that must examine a large number of samples. The system includes a commercial bar-code reader, computer hardware and software components, plus custom-designed database software. The software generates a user-friendly, menu-driven interface.

  5. An Innovative Class Registration Method Based on Bar Code Input.

    ERIC Educational Resources Information Center

    Freeman, Raoul J.

    1983-01-01

    Describes system of computerized class registration utilizing bar code input which is part of the Student Data System, developed by Management Information Division of the Los Angeles Unified School District. An explanation of the system notes the hardware used, printing of bar code labels, registration procedures, and operational aspects. (EJS)

  6. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... alternative regulatory program or method of product use renders the bar code unnecessary for patient safety... human prescription drug product or an over-the-counter (OTC) drug product that is regulated under the... following drug products are subject to the bar code label requirements: (1) Prescription drug...

  7. Objectivity in Grading: The Promise of Bar Codes

    ERIC Educational Resources Information Center

    Jae, Haeran; Cowling, John

    2009-01-01

    This article proposes the use of a new technology to assure student anonymity and reduce bias hazards: identifying students by using bar codes. The limited finding suggests that the use of bar codes for assuring student anonymity could potentially cause students to perceive that grades are assigned more fairly and reassure teachers that they are…

  8. Using bar codes for material control and accounting

    SciTech Connect

    Weil, B.

    1997-04-01

    Modern computers have become an important part of almost all business operations, including nuclear material control and accountability (NMC&A). However the effectiveness of any computer hardware/software system is a function of the input data provided to it. To maximize the benefit from a computer, timely (ideally, real-time) and accurate data are required. This paper presents the benefits of using automatic data collection, and more specifically bar code technology. Bar coding is a simple and cost effective keyless data entry solution that has been widely adopted in world commerce and government agencies. Since its introduction to the first MINATOM facility in 1995, bar code activities at other facilities have increased. Tasks to integrate bar code technology with computerized MC&A, equipment, and training workshops have been an important part of the USDOE/MINATOM collaboration.

  9. Machine-vision-based bar code scanning for long-range applications

    NASA Astrophysics Data System (ADS)

    Banta, Larry E.; Pertl, Franz A.; Rosenecker, Charles; Rosenberry-Friend, Kimberly A.

    1998-10-01

    Bar code labeling of products has become almost universal in most industries. However, in the steel industry, problems with high temperatures, harsh physical environments and the large sizes of the products and material handling equipment have slowed implementation of bar code based systems in the hot end of the mill. Typical laser-based bar code scanners have maximum scan distances of only 15 feet or so. Longer distance models have been developed which require the use of retro reflective paper labels, but the labels must be very large, are expensive, and cannot stand the heat and physical abuse of the steel mill environment. Furthermore, it is often difficult to accurately point a hand held scanner at targets in bright sunlight or at long distances. An automated product tag reading system based on CCD cameras and computer image processing has been developed by West Virginia University, and demonstrated at the Weirton Steel Corporation. The system performs both the pointing and reading functions. A video camera is mounted on a pan/tilt head, and connected to a personal computer through a frame grabber board. The computer analyzes the images, and can identify product ID tags in a wide-angle scene. It controls the camera to point at each tag and zoom for a closeup picture. The closeups are analyzed and the program need both a barcode and the corresponding alphanumeric code on the tag. This paper describes the camera pointing and bar-code reading functions of the algorithm. A companion paper describes the OCR functions.

  10. Bar Coding Platforms for Nucleic Acid and Protein Detection

    NASA Astrophysics Data System (ADS)

    Müller, Uwe R.

    A variety of novel bar coding systems has been developed as multiplex testing platforms for applications in biological, chemical, and biomedical diagnostics. Instead of identifying a target through capture at a specific locus on an array, target analytes are captured by a bar coded tag, which then uniquely identifies the target, akin to putting a UPC bar code on a product. This requires an appropriate surface functionalization to ensure that the correct target is captured with high efficiency. Moreover the tag, or bar code, has to be readable with minimal error and at high speed, typically by flow analysis. For quantitative assays the target may be labeled separately, or the tag may also serve as the label. A great variety of materials and physicochemical principles has been exploited to generate this plethora of novel bar coding platforms. Their advantages compared to microarray-based assay platforms include in-solution binding kinetics, flexibility in assay design, compatibility with microplate-based assay automation, high sample throughput, and with some assay formats, increased sensitivity.

  11. Denture bar-coding: An innovative technique in forensic dentistry.

    PubMed

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J; Anuradha, R; Mary, Gold Pealin; Pradeep, R; Senthileagappan, A R

    2015-08-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  12. Denture bar-coding: An innovative technique in forensic dentistry

    PubMed Central

    Dineshshankar, Janardhanam; Venkateshwaran, Rajendran; Vidhya, J.; Anuradha, R.; Mary, Gold Pealin; Pradeep, R.; Senthileagappan, A. R.

    2015-01-01

    Denture markers play an important role in forensic odontology and also in identifying a person. A number of methods are there for identifying dentures from a less expensive technique to a more expensive technique. Out of different denture markers, the bar-coding system is a way of collecting data from the mobile. Even a huge amount of data can be stored in that. It can be easily incorporated during acrylization of the denture and thus could be helpful in identification. This article reviews the strengths of bar-coding and how easily it can be used in the routine procedure. PMID:26538876

  13. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Bar code label requirements. 201.25 Section 201.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... appear on the drug's label as defined by section 201(k) of the Federal Food, Drug, and Cosmetic Act....

  14. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Bar code label requirements. 201.25 Section 201.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... appear on the drug's label as defined by section 201(k) of the Federal Food, Drug, and Cosmetic Act....

  15. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Bar code label requirements. 201.25 Section 201.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... appear on the drug's label as defined by section 201(k) of the Federal Food, Drug, and Cosmetic Act....

  16. 21 CFR 201.25 - Bar code label requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Bar code label requirements. 201.25 Section 201.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DRUGS... appear on the drug's label as defined by section 201(k) of the Federal Food, Drug, and Cosmetic Act....

  17. Automation, bar coding bring patient account management down to size.

    PubMed

    Kelly, M

    1993-01-01

    By combining bar code scanning technology with computer-assisted record retrieval technology, St. Vincent Hospital and Healthcare Center in Indianapolis, Ind., has automated its patient financial records management operation. In the process, the hospital has not only streamlined its account management process, but has also reduced labor and storage costs and improved access to patient information. PMID:10123734

  18. Enabling Handicapped Nonreaders to Independently Obtain Information: Initial Development of an Inexpensive Bar Code Reader System.

    ERIC Educational Resources Information Center

    VanBiervliet, Alan

    A project to develop and evaluate a bar code reader system as a self-directed information and instructional aid for handicapped nonreaders is described. The bar code technology involves passing a light sensitive pen or laser over a printed code with bars which correspond to coded numbers. A system would consist of a portable device which could…

  19. Improving radiopharmaceutical supply chain safety by implementing bar code technology.

    PubMed

    Matanza, David; Hallouard, François; Rioufol, Catherine; Fessi, Hatem; Fraysse, Marc

    2014-11-01

    The aim of this study was to describe and evaluate an approach for improving radiopharmaceutical supply chain safety by implementing bar code technology. We first evaluated the current situation of our radiopharmaceutical supply chain and, by means of the ALARM protocol, analysed two dispensing errors that occurred in our department. Thereafter, we implemented a bar code system to secure selected key stages of the radiopharmaceutical supply chain. Finally, we evaluated the cost of this implementation, from overtime, to overheads, to additional radiation exposure to workers. An analysis of the events that occurred revealed a lack of identification of prepared or dispensed drugs. Moreover, the evaluation of the current radiopharmaceutical supply chain showed that the dispensation and injection steps needed to be further secured. The bar code system was used to reinforce product identification at three selected key stages: at usable stock entry; at preparation-dispensation; and during administration, allowing to check conformity between the labelling of the delivered product (identity and activity) and the prescription. The extra time needed for all these steps had no impact on the number and successful conduct of examinations. The investment cost was reduced (2600 euros for new material and 30 euros a year for additional supplies) because of pre-existing computing equipment. With regard to the radiation exposure to workers there was an insignificant overexposure for hands with this new organization because of the labelling and scanning processes of radiolabelled preparation vials. Implementation of bar code technology is now an essential part of a global securing approach towards optimum patient management. PMID:25144560

  20. Bar Coding MS(2) Spectra for Metabolite Identification.

    PubMed

    Spalding, Jonathan L; Cho, Kevin; Mahieu, Nathaniel G; Nikolskiy, Igor; Llufrio, Elizabeth M; Johnson, Stephen L; Patti, Gary J

    2016-03-01

    Metabolite identifications are most frequently achieved in untargeted metabolomics by matching precursor mass and full, high-resolution MS(2) spectra to metabolite databases and standards. Here we considered an alternative approach for establishing metabolite identifications that does not rely on full, high-resolution MS(2) spectra. First, we select mass-to-charge regions containing the most informative metabolite fragments and designate them as bins. We then translate each metabolite fragmentation pattern into a binary code by assigning 1's to bins containing fragments and 0's to bins without fragments. With 20 bins, this binary-code system is capable of distinguishing 96% of the compounds in the METLIN MS(2) library. A major advantage of the approach is that it extends untargeted metabolomics to low-resolution triple quadrupole (QqQ) instruments, which are typically less expensive and more robust than other types of mass spectrometers. We demonstrate a method of acquiring MS(2) data in which the third quadrupole of a QqQ instrument cycles over 20 wide isolation windows (coinciding with the location and width of our bins) for each precursor mass selected by the first quadrupole. Operating the QqQ instrument in this mode yields diagnostic bar codes for each precursor mass that can be matched to the bar codes of metabolite standards. Furthermore, our data suggest that using low-resolution bar codes enables QqQ instruments to make MS(2)-based identifications in untargeted metabolomics with a specificity and sensitivity that is competitive to high-resolution time-of-flight technologies. PMID:26837423

  1. Identifying Objects via Encased X-Ray-Fluorescent Materials - the Bar Code Inside

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Systems for identifying objects by means of x-ray fluorescence (XRF) of encased labeling elements have been developed. The XRF spectra of objects so labeled would be analogous to the external bar code labels now used to track objects in everyday commerce. In conjunction with computer-based tracking systems, databases, and labeling conventions, the XRF labels could be used in essentially the same manner as that of bar codes to track inventories and to record and process commercial transactions. In addition, as summarized briefly below, embedded XRF labels could be used to verify the authenticity of products, thereby helping to deter counterfeiting and fraud. A system, as described above, is called an encased core product identification and authentication system (ECPIAS). The ECPIAS concept is a modified version of that of a related recently initiated commercial development of handheld XRF spectral scanners that would identify alloys or detect labeling elements deposited on the surfaces of objects. In contrast, an ECPIAS would utilize labeling elements encased within the objects of interest. The basic ECPIAS concept is best illustrated by means of an example of one of several potential applications: labeling of cultured pearls by labeling the seed particles implanted in oysters to grow the pearls. Each pearl farmer would be assigned a unique mixture of labeling elements that could be distinguished from the corresponding mixtures of other farmers. The mixture would be either incorporated into or applied to the surfaces of the seed prior to implantation in the oyster. If necessary, the labeled seed would be further coated to make it nontoxic to the oyster. After implantation, the growth of layers of mother of pearl on the seed would encase the XRF labels, making these labels integral, permanent parts of the pearls that could not be removed without destroying the pearls themselves. The XRF labels would be read by use of XRF scanners, the spectral data outputs of which would be converted to alphanumeric data in a digital equivalent data system (DEDS), which is the subject of the previous article. These alphanumeric data would be used to track the pearls through all stages of commerce, from the farmer to the retail customer.

  2. Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm

    NASA Astrophysics Data System (ADS)

    Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong

    2008-03-01

    Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.

  3. 19 CFR 142.45 - Use of bar code by entry filer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 2 2011-04-01 2011-04-01 false Use of bar code by entry filer. 142.45 Section 142.45 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY (CONTINUED) ENTRY PROCESS Line Release § 142.45 Use of bar code by entry filer. (a) Printing of C-4 Code. Upon receipt of an...

  4. Vision-based reading system for color-coded bar codes

    NASA Astrophysics Data System (ADS)

    Schubert, Erhard; Schroeder, Axel

    1996-02-01

    Barcode systems are used to mark commodities, articles and products with price and article numbers. The advantage of the barcode systems is the safe and rapid availability of the information about the product. The size of the barcode depends on the used barcode system and the resolution of the barcode scanner. Nevertheless, there is a strong correlation between the information content and the length of the barcode. To increase the information content, new 2D-barcode systems like CodaBlock or PDF-417 are introduced. In this paper we present a different way to increase the information content of a barcode and we would like to introduce the color coded barcode. The new color coded barcode is created by offset printing of the three colored barcodes, each barcode with different information. Therefore, three times more information content can be accommodated in the area of a black printed barcode. This kind of color coding is usable in case of the standard 1D- and 2D-barcodes. We developed two reading devices for the color coded barcodes. First, there is a vision based system, consisting of a standard color camera and a PC-based color frame grabber. Omnidirectional barcode decoding is possible with this reading device. Second, a bi-directional handscanner was developed. Both systems use a color separation process to separate the color image of the barcodes into three independent grayscale images. In the case of the handscanner the image consists of one line only. After the color separation the three grayscale barcodes can be decoded with standard image processing methods. In principle, the color coded barcode can be used everywhere instead of the standard barcode. Typical applications with the color coded barcodes are found in the medicine technique, stock running and identification of electronic modules.

  5. Accuracy and time requirements of a bar-code inventory system for medical supplies.

    PubMed

    Hanson, L B; Weinswig, M H; De Muth, J E

    1988-02-01

    The effects of implementing a bar-code system for issuing medical supplies to nursing units at a university teaching hospital were evaluated. Data on the time required to issue medical supplies to three nursing units at a 480-bed, tertiary-care teaching hospital were collected (1) before the bar-code system was implemented (i.e., when the manual system was in use), (2) one month after implementation, and (3) four months after implementation. At the same times, the accuracy of the central supply perpetual inventory was monitored using 15 selected items. One-way analysis of variance tests were done to determine any significant differences between the bar-code and manual systems. Using the bar-code system took longer than using the manual system because of a significant difference in the time required for order entry into the computer. Multiple-use requirements of the central supply computer system made entering bar-code data a much slower process. There was, however, a significant improvement in the accuracy of the perpetual inventory. Using the bar-code system for issuing medical supplies to the nursing units takes longer than using the manual system. However, the accuracy of the perpetual inventory was significantly improved with the implementation of the bar-code system. PMID:3364433

  6. Multiplexed Detection of Cytokines Based on Dual Bar-Code Strategy and Single-Molecule Counting.

    PubMed

    Li, Wei; Jiang, Wei; Dai, Shuang; Wang, Lei

    2016-02-01

    Cytokines play important roles in the immune system and have been regarded as biomarkers. While single cytokine is not specific and accurate enough to meet the strict diagnosis in practice, in this work, we constructed a multiplexed detection method for cytokines based on dual bar-code strategy and single-molecule counting. Taking interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) as model analytes, first, the magnetic nanobead was functionalized with the second antibody and primary bar-code strands, forming a magnetic nanoprobe. Then, through the specific reaction of the second antibody and the antigen that fixed by the primary antibody, sandwich-type immunocomplex was formed on the substrate. Next, the primary bar-code strands as amplification units triggered multibranched hybridization chain reaction (mHCR), producing nicked double-stranded polymers with multiple branched arms, which were served as secondary bar-code strands. Finally, the secondary bar-code strands hybridized with the multimolecule labeled fluorescence probes, generating enhanced fluorescence signals. The numbers of fluorescence dots were counted one by one for quantification with epi-fluorescence microscope. By integrating the primary and secondary bar-code-based amplification strategy and the multimolecule labeled fluorescence probes, this method displayed an excellent sensitivity with the detection limits were both 5 fM. Unlike the typical bar-code assay that the bar-code strands should be released and identified on a microarray, this method is more direct. Moreover, because of the selective immune reaction and the dual bar-code mechanism, the resulting method could detect the two targets simultaneously. Multiple analysis in human serum was also performed, suggesting that our strategy was reliable and had a great potential application in early clinical diagnosis. PMID:26721199

  7. The study of watermark bar code recognition with light transmission theory

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Liu, Tiegen; Zhang, Lianxiang; Zhang, Xiaojun

    2004-10-01

    Watermark bar code is one of the latest anti-counterfeiting technologies, which is applicable to a series of security documents, especially banknotes. With watermark bar codes embedded euro banknotes as an example, a system is designed for watermark bar code detection and recognition based on light transmission theory. We obtain light transmission curves of different denominations along different sampling lines which are paralleled to the latitudinal axis of the banknote. By calculating the correlation coefficient between different light transmission curves, the system can not only distinguish the reference banknote from either the counterfeit ones or other denominations, but also demonstrates high consistency and repeatability.

  8. A new magnetic bar code system based on a magnetic anisotropy detection (abstract)

    NASA Astrophysics Data System (ADS)

    Sasada, I.; Watanabe, N.

    1996-04-01

    Magnetic bar codes can be used in unclean environments, where widely used optical bar code systems cannot be applied. Readout system for magnetic bar codes can also be made much simpler than optical ones. A new magnetic bar code system is proposed, in which binary information is coded in the sign of tilted angles of magnetic strips from a given standard direction. This scheme is unique compared to the conventional optical bar code, where width or space of the parallel pattern carries information, or an already reported magnetic bar code, where cross sectional shapes of pattern engraved in a ferromagnetic body carries information. Each of the magnetic strips brings about magnetic anisotropy due to its shape effect, hence angular dependent permeability in the proximity of the strip. The sign of the tilted angle of each magnetic strip is detected inductively through the angular dependent permeability by using a magnetic pickup head with a pair of cross-coupled figure-eight coils, where the sign of mutual inductance between the primary and the secondary figure-eight coil has one to one relationship to the sign of the tilted angle. Because the detection of the tilted angle is independent of scanning speed, variation in the scanning speed of the readout head does not affect the performance. In our preliminary study, the proposed magnetic bar code system was examined using pickup head consisting of a pair of cross-coupled 10-turn figure-eight coils which was embedded in a rectangular ferrite rod with cross-shape groove on the top surface of 6.5×3 mm dimension. The head was made thinner in the scanning direction to allow dense alignment of the pattern. Two kinds of pattern were made: the one was by aligning short amorphous wires (5 mm in length and 120 μm in diameter) on the plastic film and the other by using a thin (10 μm in thickness) copper film with tilted slits backed by an amorphous ribbon. These samples of magnetic bar code patterns were scanned with lift-off of 1 mm under the operating condition of 120 kHz and 200 mA. Amplitudes of the positive and the negative peak of the output voltage well exceeded 10 mV. Density of the pattern in the preliminary study was 7 bits for the bar code length of 2.6 cm. We will discuss several factors to make density of the pattern higher. Because the pickup coils can be assembled with planar coils and because the magnetic bar code itself is thin, the total system of this bar code scheme can be realized in thin form.

  9. Let's go bananas: revisiting the endocytic BAR code

    PubMed Central

    Qualmann, Britta; Koch, Dennis; Kessels, Michael Manfred

    2011-01-01

    Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved. PMID:21878992

  10. High-beamforming power-code-multiplexed optical scanner for three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil A.; Riza, Nabeel A.

    2003-11-01

    Three dimensional (3-D) displays play an important role in the field of entertainment. Today, research is being conducted to produce 3-D displays to meet the complex needs of high-functionality full motion 3D displays at reasonable cost, but without glasses, complicated viewing arrangements or restricted fields of view. Other applications for 3-D displays include but are not limited to CAD/Design simulation, advanced data representation, displaying complex 3-D information for automotive design, medical imaging, advanced navigation displays, scientific visualization, and advertising. The key element in all these applications is an optical beam scanner that can display 3-D images for large viewing angles. Our proposed Code Multiplexed Optical Scanner (C-MOS) can fulfill all these requirements with its high beamforming power capabilities. Our proposed experiment demonstrates three dimensional (3-D) beam scanning with large angles (e.g., > 160°), large centimeter size aperture, and scanning speed of <300 ?sec. The robust construction and simple operation of the C-MOS makes it very useful and attractive for deployment in the field of entertainment, defense and medical imaging. Here we report the application of the C-MOS for three dimensional (3-D) displays.

  11. Machine readable identification systems: An overview. [Bar code and other labeling methods

    SciTech Connect

    Smith, F.J.; Cantor, S.

    1987-09-01

    The application of automated identification of an item by the use of machine readable methods is improving the accuracy and speed of data capture. Bar codes, optical character recognition, magnetic strips, and magnetic-ink recognition are all current machine readable methods which are used for data collection. Bar code data collection is the most used technology for real time inventory control, tracking, and point of sale applications. Magnetic strip coding is used for highly compact data identification on ID cards and on tags. Optical character recognition is generally used today to capture documents for computer storage and recall. Magnetic-ink character recognition, though used widely in banking, has limited applications elsewhere. Bar code methods are currently experiencing a faster rate of growth than the other technologies. Emphasis of this paper is on bar coding because of its popularity. The fundamentals of bar coding are discussed and labeling and scanning techniques are presented. New, automatic data-collection techniques are being developed, utilizing microcircuits and compact-disk memory media. The greatly increased memory capacity of these systems will likely lead to identification in terms of definitive characteristics of the item.

  12. Side scanner for supermarkets: a new scanner design standard

    NASA Astrophysics Data System (ADS)

    Cheng, Charles K.; Cheng, J. K.

    1996-09-01

    High speed UPC bar code has become a standard mode of data capture for supermarkets in the US, Europe, and Japan. The influence of the ergonomics community on the design of the scanner is evident. During the past decade the ergonomic issues of cashier in check-outs has led to occupational hand-wrist cumulative trauma disorders, in most cases causing carpal tunnel syndrome, a permanent hand injury. In this paper, the design of a side scanner to resolve the issues is discussed. The complex optical module and the sensor for aforesaid side scanner is described. The ergonomic advantages offer the old counter mounted vertical scanner has been experimentally proved by the industrial funded study at an independent university.

  13. Integrating bar-code devices with computerized MC and A systems

    SciTech Connect

    Anderson, L.K.; Boor, M.G.; Hurford, J.M.

    1998-12-31

    Over the past seven years, Los Alamos National Laboratory developed several generations of computerized nuclear materials control and accountability (MC and A) systems for tracking and reporting the storage, movement, and management of nuclear materials at domestic and international facilities. During the same period, Oak Ridge National Laboratory was involved with automated data acquisition (ADA) equipment, including installation of numerous bar-code scanning stations at various facilities to serve as input devices to computerized systems. Bar-code readers, as well as other ADA devices, reduce input errors, provide faster input, and allow the capture of data in remote areas where workstations do not exist. Los Alamos National Laboratory and Oak Ridge National Laboratory teamed together to implement the integration of bar-code hardware technology with computerized MC and A systems. With the expertise of both sites, the two technologies were successfully merged with little difficulty. Bar-code input is now available with several functions of the MC and A systems: material movements within material balance areas (MBAs), material movements between MBAs, and physical inventory verification. This paper describes the various components required for the integration of these MC and A systems with the installed bar-code reader devices and the future directions for these technologies.

  14. Verification of Advective Bar Elements Implemented in the Aria Thermal Response Code.

    SciTech Connect

    Mills, Brantley

    2016-01-01

    A verification effort was undertaken to evaluate the implementation of the new advective bar capability in the Aria thermal response code. Several approaches to the verification process were taken : a mesh refinement study to demonstrate solution convergence in the fluid and the solid, visually examining the mapping of the advective bar element nodes to the surrounding surfaces, and a comparison of solutions produced using the advective bars for simple geometries with solutions from commercial CFD software . The mesh refinement study has shown solution convergence for simple pipe flow in both temperature and velocity . Guidelines were provided to achieve appropriate meshes between the advective bar elements and the surrounding volume. Simulations of pipe flow using advective bars elements in Aria have been compared to simulations using the commercial CFD software ANSYS Fluent (r) and provided comparable solutions in temperature and velocity supporting proper implementation of the new capability. Verification of Advective Bar Elements iv Acknowledgements A special thanks goes to Dean Dobranich for his guidance and expertise through all stages of this effort . His advice and feedback was instrumental to its completion. Thanks also goes to Sam Subia and Tolu Okusanya for helping to plan many of the verification activities performed in this document. Thank you to Sam, Justin Lamb and Victor Brunini for their assistance in resolving issues encountered with running the advective bar element model. Finally, thanks goes to Dean, Sam, and Adam Hetzler for reviewing the document and providing very valuable comments.

  15. Sound Synthesis and Bar-Code Technology to Develop Learning Environments for Blind Children.

    ERIC Educational Resources Information Center

    Burger, D.; And Others

    1990-01-01

    An interactive, computerized sound machine was designed, incorporating bar-code technology in the user interface. The system was used in a classroom of nine blind elementary level children to teach sound awareness, logic, metalinguistics, and technological literacy and was found to have pedagogical relevance. (Author/JDD)

  16. 19 CFR 142.45 - Use of bar code by entry filer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... preprinted invoices also shall state the name of the shipper or manufacturer of the product and the name of... filer and a product description below the bar code. (b) Multiple commodity processing. Multiple commodity processing allows more than one product to be released under one entry number. The...

  17. The Impact of Bar Code Medication Administration Technology on Reported Medication Errors

    ERIC Educational Resources Information Center

    Holecek, Andrea

    2011-01-01

    The use of bar-code medication administration technology is on the rise in acute care facilities in the United States. The technology is purported to decrease medication errors that occur at the point of administration. How significantly this technology affects actual rate and severity of error is unknown. This descriptive, longitudinal research…

  18. 76 FR 12847 - Change of Address; Requests for Exemption From the Bar Code Label Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ...The Food and Drug Administration (FDA) is amending its regulations to update the address for submitting bar code exemption requests to the Center for Drug Evaluation and Research (CDER). This action is being taken to ensure accuracy and clarity in the Agency's...

  19. Bar coding in a Paris hospital laundry saves money, doubles production.

    PubMed

    Caffrey, C

    1989-03-01

    To an American, the French may seem far behind in their acceptance of 65/35 polycotton blend uniforms. A Frenchman, on the other hand, may find it curious that Americans are so slow to come to bar coding laundered work garments. PMID:10292315

  20. 76 FR 49772 - Guidance for Industry: Bar Code Label Requirements-Questions and Answers; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-11

    ...The Food and Drug Administration (FDA) is announcing the availability of a document entitled ``Guidance for Industry: Bar Code Label Requirements--Questions and Answers'' dated August 2011. The guidance announced in this notice amends the October 2006 guidance document of the same title by incorporating a revised response to question 12 (Q12). The revised response concerns the ability of......

  1. 76 FR 66235 - Bar Code Technologies for Drugs and Biological Products; Retrospective Review Under Executive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ...'' (76 FR 3821). One of the provisions in the new Executive order is the affirmation of retrospective... technology (68 FR 12500 at 12508). Given the complexity of the issues, FDA requested in the Bar Code Proposed... published a notice in the Federal Register on April 27, 2011 (76 FR 23520), entitled ``Periodic Review...

  2. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE PAGESBeta

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; et al

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.« less

  3. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    SciTech Connect

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; Deutschbauer, Adam

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are too laborious to be applied to hundreds of experimental conditions across multiple bacteria. Here, we describe an approach, random bar code transposon-site sequencing (RB-TnSeq), which greatly simplifies the measurement of gene fitness by using bar code sequencing (BarSeq) to monitor the abundance of mutants. We performed 387 genome-wide fitness assays across five bacteria and identified phenotypes for over 5,000 genes. RB-TnSeq can be applied to diverse bacteria and is a powerful tool to annotate uncharacterized genes using phenotype data.

  4. Semiquantitative, bar code version of immunochromatographic assay system for human serum albumin as model analyte.

    PubMed

    Cho, J H; Paek, S H

    2001-12-20

    An immunochromatographic assay system was devised that can express the concentration ranges of analyte (e.g., urinary human serum albumin) as distinct numbers of the ladder bar (bar coding) for semiquantitation. We constructed a model system consisting of five membrane pad strips partially superimposed in a length. Upon wicking of sample from the bottom, the medium dissolved two different biotinylated species, antibody to the analyte and conjugates of the antibody with colloidal gold, and antigen-antibody reactions took place in the hollow space of the glass fiber membrane. After eliminating unreacted biotinylated molecules at the next strip with an immobilized albumin, the immune complexes were transferred to the pad with streptavidin immobilized in a ladder bar pattern. Analytical conditions here were set for competition between the two biotinylated species for the streptavidin binding sites. The degree of such competition was proportional to the analyte concentration and, consequently, the bar signal number was elevated as the concentration increased. Under optimal conditions for sensitivity, the analytical system responded to the analyte doses at between 30 and 120 mg/dL by producing different bar codes within 5 min. PMID:11745151

  5. Laser bar code applied in computer aided design of power fittings

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohong; Yang, Fan

    2010-10-01

    A computer aided process planning system is developed based on laser bar code technology to automatize and standardize processing-paper making. The system sorts fittings by analyzing their types, structures, dimensions, materials, and technics characteristics, groups and encodes the fittings with similar technology characteristics base on the theory of Group Technology (GT). The system produces standard technology procedures using integrative-parts method and stores them into technics databases. To work out the technology procedure of fittings, the only thing for users need to do is to scan the bar code of fittings with a laser code reader. The system can produce process-paper using decision trees method and then print the process-cards automatically. The software has already been applied in some power stations and is praised by the users.

  6. Rapid Quantification of Mutant Fitness in Diverse Bacteria by Sequencing Randomly Bar-Coded Transposons

    PubMed Central

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth

    2015-01-01

    ABSTRACT Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative d-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. PMID:25968644

  7. Signature-tagged mutagenesis to characterize genes through competitive selection of bar-coded genome libraries.

    PubMed

    Oh, Julia; Nislow, Corey

    2011-01-01

    The availability of collections of genome-wide deletion mutants greatly accelerates systematic analyses of gene function. However, each of the thousands of genes that comprise a genome must be phenotyped individually unless they can be assayed in parallel and subsequently deconvolved. To this end, unique molecular identifiers have been developed for a variety of microbes. Specifically, the addition of DNA "tags," or "bar codes," to each mutant allows all mutants in a collection to be pooled and phenotyped in parallel, greatly increasing experimental throughput. In this chapter, we provide an overview of current methodologies used to create such tagged mutant collections and outline how they can be applied to understand gene function, gene-gene interactions, and drug-gene interactions. Finally, we present a methodology that uses universal TagModules, capable of bar coding a wide range of microorganisms, and demonstrate its reduction to practice by creating tagged mutant collections in the pathogenic yeast Candida albicans. PMID:21815096

  8. Signature-tagged mutagenesis to characterize genes through competitive selection of bar-coded genome libraries.

    TOXLINE Toxicology Bibliographic Information

    Oh J; Nislow C

    2011-01-01

    The availability of collections of genome-wide deletion mutants greatly accelerates systematic analyses of gene function. However, each of the thousands of genes that comprise a genome must be phenotyped individually unless they can be assayed in parallel and subsequently deconvolved. To this end, unique molecular identifiers have been developed for a variety of microbes. Specifically, the addition of DNA "tags," or "bar codes," to each mutant allows all mutants in a collection to be pooled and phenotyped in parallel, greatly increasing experimental throughput. In this chapter, we provide an overview of current methodologies used to create such tagged mutant collections and outline how they can be applied to understand gene function, gene-gene interactions, and drug-gene interactions. Finally, we present a methodology that uses universal TagModules, capable of bar coding a wide range of microorganisms, and demonstrate its reduction to practice by creating tagged mutant collections in the pathogenic yeast Candida albicans.

  9. Laser Scanner For Automatic Storage

    NASA Astrophysics Data System (ADS)

    Carvalho, Fernando D.; Correia, Bento A.; Rebordao, Jose M.; Rodrigues, F. Carvalho

    1989-01-01

    The automated magazines are beeing used at industry more and more. One of the problems related with the automation of a Store House is the identification of the products envolved. Already used for stock management, the Bar Codes allows an easy way to identify one product. Applied to automated magazines, the bar codes allows a great variety of items in a small code. In order to be used by the national producers of automated magazines, a devoted laser scanner has been develloped. The Prototype uses an He-Ne laser whose beam scans a field angle of 75 degrees at 16 Hz. The scene reflectivity is transduced by a photodiode into an electrical signal, which is then binarized. This digital signal is the input of the decodifying program. The machine is able to see barcodes and to decode the information. A parallel interface allows the comunication with the central unit, which is responsible for the management of automated magazine.

  10. Bar-coded hydrogel microparticles for protein detection: synthesis, assay and scanning.

    PubMed

    Appleyard, David C; Chapin, Stephen C; Srinivas, Rathi L; Doyle, Patrick S

    2011-11-01

    This protocol describes the core methodology for the fabrication of bar-coded hydrogel microparticles, the capture and labeling of protein targets and the rapid microfluidic scanning of particles for multiplexed detection. Multifunctional hydrogel particles made from poly(ethylene glycol) serve as a sensitive, nonfouling and bio-inert suspension array for the multiplexed measurement of proteins. Each particle type bears a distinctive graphical code consisting of unpolymerized holes in the wafer structure of the microparticle; this code serves to identify the antibody probe covalently incorporated throughout a separate probe region of the particle. The protocol for protein detection can be separated into three steps: (i) synthesis of particles via microfluidic flow lithography at a rate of 16,000 particles per hour; (ii) a 3-4-h assay in which protein targets are captured and labeled within particles using an antibody sandwich technique; and (iii) a flow scanning procedure to detect bar codes and quantify corresponding targets at rates of 25 particles per s. By using the techniques described, single- or multiple-probe particles can be reproducibly synthesized and used in customizable multiplexed panels to measure protein targets over a three-log range and at concentrations as low as 1 pg ml(-1). PMID:22015846

  11. A critical evaluation of grid-by-number sediment sampling using laser scanner derived clast population statistics across a gravel bar

    NASA Astrophysics Data System (ADS)

    Milan, D. J.; Heritage, G. L.

    2007-12-01

    Water flow level in river channels is moderated by the interaction with the roughness of the surface over which it flows. The interaction is highly complex and remains poorly understood despite its economic and social importance in flood level forecasting. The empirical and semi-rational nature of approaches used to estimate hydraulic roughness makes them very difficult to apply and much of the hydraulic resistance has been attributed to grain roughness using various forms of the Colebrook-White equation where the grain diameter is modified by a multiplier to account for the non-uniform nature of gravel-bed surfaces. Fundamental to the accuracy of the particle size approaches is the sampling of river-bed gravels where sample size, operator bias, particle shape and surface heterogeneity can greatly affect the result. Despite these problems a standard surface sample of the intermediate axis of 100 clasts remains the accepted method for grain-size characterisation amongst scientists and engineers concerned with channel hydraulics. Surface roughness has also been measured using a random field of spatial elevation data. The success of this approach has been tempered by the lack of high-resolution topographic data covering all roughness scales, however, improved data-point resolution is now achievable using terrestrial laser scanning technology. The aim here is to reliably quantify the population grain-size distribution of a natural gravel surface using random field terrestrial laser scanner x,y,z data and by direct comparison to demonstrate the errors inherent in the conventional particle-size approach. Application of the random field approach, using a terrestrial laser scanner, across a gravel bar surface on the River South Tyne at Lambley, UK, generated an effective sample of 120,000 clasts yielding a D84 for use in the Colebrook White equation of 0.110m. Monte Carlo sampling within the 12000 measured clasts from the bar surface generated 560 simulated grid-by-number D84 estimates. Grain-size D84 values ranged from 0.100m to 0.195m with a median value of 0.130m. This represents an average 18% and a maximum 77% over-estimation of the grain-size value in the flow resistance equation. Such potential errors, inherent with the conventional grid-by-number sampling technique, impact significantly on flood level estimation options.

  12. Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags.

    PubMed

    Lin, Dajie; Wu, Jie; Yan, Feng; Deng, Shengyuan; Ju, Huangxian

    2011-07-01

    A hemin bio-bar-coded nanoparticle probe labeled antibody was designed by the assembly of antibody and alkylthiol-capped bar-code G-quadruplex DNA on gold nanoparticles and the interaction of hemin with the DNA to form a G-quadruplex/hemin bio-bar-code. An ultrasensitive immunoassay method was developed by combining the labeled antibody with an electrochemiluminescent (ECL) immunosensor for protein. The ECL immunosensor was constructed by a layer-by-layer modification of carbon nanotubes, CdS quantum dots (QDs), and capture antibody on a glassy carbon electrode. In air-saturated pH 8.0 PBS the immunosensor showed a carbon-nanotube-enhanced cathodic ECL emission of QDs. Upon the formation of immunocomplex, the ECL intensity decreased owing to the consumption of ECL coreactant in bio-bar-code electrocatalyzed reduction of dissolved oxygen. Using ?-fetoprotein as model analyte, the quenched ECL could be used for immunoassay with a linear range of 0.01 pg mL(-1) to 1 ng mL(-1) and a detection limit of 1.0 fg mL(-1). The wide detection range and high sensitivity resulted from the enhanced ECL emission and highly efficient catalysis of the bio-bar-code. The immunosensor exhibited good stability and acceptable fabrication reproducibility and accuracy, showing great promise for clinical application. PMID:21599023

  13. 75 FR 54347 - Draft Guidance for Industry: Bar Code Label Requirements-Questions and Answers (Question 12...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... Guidance (October 5, 2006, 71 FR 58739). In this guidance, FDA is proposing to amend our response to...-- Questions and Answers (Question 12 Update); Availability AGENCY: Food and Drug Administration, HHS. ACTION... document entitled ``Guidance for Industry: Bar Code Label Requirements--Questions and Answers (Question...

  14. Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins

    NASA Astrophysics Data System (ADS)

    Nam, Jwa-Min; Shad Thaxton, C.; Mirkin, Chad A.

    2003-09-01

    An ultrasensitive method for detecting protein analytes has been developed. The system relies on magnetic microparticle probes with antibodies that specifically bind a target of interest [prostate-specific antigen (PSA) in this case] and nanoparticle probes that are encoded with DNA that is unique to the protein target of interest and antibodies that can sandwich the target captured by the microparticle probes. Magnetic separation of the complexed probes and target followed by dehybridization of the oligonucleotides on the nanoparticle probe surface allows the determination of the presence of the target protein by identifying the oligonucleotide sequence released from the nanoparticle probe. Because the nanoparticle probe carries with it a large number of oligonucleotides per protein binding event, there is substantial amplification and PSA can be detected at 30 attomolar concentration. Alternatively, a polymerase chain reaction on the oligonucleotide bar codes can boost the sensitivity to 3 attomolar. Comparable clinically accepted conventional assays for detecting the same target have sensitivity limits of ~3 picomdar, six orders of magnitude less sensitive than what is observed with this method.

  15. Differential G-protein-coupled receptor phosphorylation provides evidence for a signaling bar code.

    PubMed

    Butcher, Adrian J; Prihandoko, Rudi; Kong, Kok Choi; McWilliams, Phillip; Edwards, Jennifer M; Bottrill, Andrew; Mistry, Sharad; Tobin, Andrew B

    2011-04-01

    G-protein-coupled receptors are hyper-phosphorylated in a process that controls receptor coupling to downstream signaling pathways. The pattern of receptor phosphorylation has been proposed to generate a "bar code" that can be varied in a tissue-specific manner to direct physiologically relevant receptor signaling. If such a mechanism existed, receptors would be expected to be phosphorylated in a cell/tissue-specific manner. Using tryptic phosphopeptide maps, mass spectrometry, and phospho-specific antibodies, it was determined here that the prototypical G(q/11)-coupled M(3)-muscarinic receptor was indeed differentially phosphorylated in various cell and tissue types supporting a role for differential receptor phosphorylation in directing tissue-specific signaling. Furthermore, the phosphorylation profile of the M(3)-muscarinic receptor was also dependent on the stimulus. Full and partial agonists to the M(3)-muscarinic receptor were observed to direct phosphorylation preferentially to specific sites. This hitherto unappreciated property of ligands raises the possibility that one mechanism underlying ligand bias/functional selectivity, a process where ligands direct receptors to preferred signaling pathways, may be centered on the capacity of ligands to promote receptor phosphorylation at specific sites. PMID:21177246

  16. Wide Host Ranges of Herbivorous Beetles? Insights from DNA Bar Coding

    PubMed Central

    Kishimoto-Yamada, Keiko; Kamiya, Koichi; Meleng, Paulus; Diway, Bibian; Kaliang, Het; Chong, Lucy; Itioka, Takao; Sakai, Shoko; Ito, Motomi

    2013-01-01

    There are very few studies that have investigated host-specificity among tropical herbivorous insects. Indeed, most of the trophic interactions of herbivorous insects in Southeast Asian tropical rainforests remain unknown, and whether polyphagous feeding is common in the herbivores of this ecosystem has not been determined. The present study employed DNA bar coding to reveal the trophic associations of adult leaf-chewing chrysomelid beetles in a Bornean rainforest. Plant material ingested by the adults was retrieved from the bodies of the insects, and a portion of the chloroplast rbcL sequence was then amplified from this material. The plants were identified at the family level using an existing reference database of chloroplast DNA. Our DNA-based diet analysis of eleven chrysomelid species successfully identified their host plant families and indicated that five beetle species fed on more than two families within the angiosperms, and four species fed on several families of gymnosperms and/or ferns together with multiple angiosperm families. These findings suggest that generalist chrysomelid beetles associated with ecologically and taxonomically distant plants constitute a part of the plant-insect network of the Bornean rainforest. PMID:24073210

  17. Improving Patient Safety by Identifying Side Effects from Introducing Bar Coding in Medication Administration

    PubMed Central

    Patterson, Emily S.; Cook, Richard I.; Render, Marta L.

    2002-01-01

    Objective. In addition to providing new capabilities, the introduction of technology in complex, sociotechnical systems, such as health care and aviation, can have unanticipated side effects on technical, social, and organizational dimensions. To identify potential accidents in the making, the authors looked for side effects from a natural experiment, the implementation of bar code medication administration (BCMA), a technology designed to reduce adverse drug events (ADEs). Design. Cross-sectional observational study of medication passes before (21 hours of observation of 7 nurses at 1 hospital) and after (60 hours of observation of 26 nurses at 3 hospitals) BCMA implementation. Measurements. Detailed, handwritten field notes of targeted ethnographic observations of in situ nurse–BCMA interactions were iteratively analyzed using process tracing and five conceptual frameworks. Results. Ethnographic observations distilled into 67 nurse–BCMA interactions were classified into 12 categories. We identified five negative side effects after BCMA implementation: (1) nurses confused by automated removal of medications by BCMA, (2) degraded coordination between nurses and physicians, (3) nurses dropping activities to reduce workload during busy periods, (4) increased prioritization of monitored activities during goal conflicts, and (5) decreased ability to deviate from routine sequences. Conclusion. These side effects might create new paths to ADEs. We recommend design revisions, modification of organizational policies, and “best practices” training that could potentially minimize or eliminate these side effects before they contribute to adverse outcomes. PMID:12223506

  18. Chandra Reads the Cosmic Bar Code of Gas Around a Black Hole

    NASA Astrophysics Data System (ADS)

    2000-02-01

    An international team of astronomers has used NASA's Chandra X-ray Observatory to make an energy bar code of hot gas in the vicinity of a giant black hole. These measurements, the most precise of their kind ever made with an X-ray telescope, demonstrate the existence of a blanket of warm gas that is expanding rapidly away from the black hole. The team consists of Jelle Kaastra, Rolf Mewe and Albert Brinkman of Space Research Organization Netherlands (SRON) in Utrecht, Duane Liedahl of Lawrence Livermore National Laboratory in Livermore, Calif., and Stefanie Komossa of Max Planck Institute in Garching, Germany. A report of their findings will be published in the March issue of the European journal Astronomy & Astrophysics. Kaastra and colleagues used the Low Energy Transmission Grating in conjunction with the High Resolution Camera to measure the number of X rays present at each energy. With this information they constructed an X-ray spectrum of the source. Their target was the central region, or nucleus of the galaxy NGC 5548, which they observed for 24 hours. This galaxy is one of a class of galaxies known to have unusually bright nuclei that are associated with gas flowing around and into giant black holes. This inflow produces an enormous outpouring of energy that blows some of the matter away from the black hole. Astronomers have used optical, ultraviolet, and X-ray telescopes in an effort to disentangle the complex nature of inflowing and outflowing gas at different distances from the black hole in NGC 5548. X-ray observations provide a ringside seat to the action around the black hole. By using the Low Energy Transmission Grating, the Dutch-US-German team concentrated on gas that forms a warm blanket that partially covers the innermost region where the highest energy X-rays are produced. As the high-energy X rays stream away from the vicinity of the black hole, they heat the blanketing gas to temperatures of a few million degrees, and the blanket absorbs some of the X rays from the central source. This produces dark stripes, or absorption lines in the X-ray spectrum. Bright stripes or emission lines due to emission from the blanketing gas are also present. Since each element has its own unique structure, these lines can be read like a cosmic bar code to take inventory of the gas. The team was able to determine what atoms the gas contains and how many, the number of electrons each atom has retained in the hostile environment of the black hole, and how the gas is moving there. They found lines from eight different elements including carbon, nitrogen, oxygen, and iron. The amount of this gas was found to be about 100 times greater than that found with optical and ultraviolet observations. The Low Energy Transmission Grating was built by the SRON. and the Max Planck Institute under the direction of Albert Brinkman. The High Resolution Camera was built by the Smithsonian Astrophysical Observatory in Cambridge, Mass. under the direction of Stephen Murray. To follow Chandra's progress or download images visit the Chandra sites at: http://chandra.harvard.edu/photo/2000/0170/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray spectrum (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu

  19. Modeling nurses' acceptance of bar coded medication administration technology at a pediatric hospital

    PubMed Central

    Brown, Roger L; Scanlon, Matthew C; Karsh, Ben-Tzion

    2012-01-01

    Objective To identify predictors of nurses' acceptance of bar coded medication administration (BCMA). Design Cross-sectional survey of registered nurses (N=83) at an academic pediatric hospital that recently implemented BCMA. Methods Surveys assessed seven BCMA-related perceptions: ease of use; usefulness for the job; social influence from non-specific others to use BCMA; training; technical support; usefulness for patient care; and social influence from patients/families. An all possible subset regression procedure with five goodness-of-fit indicators was used to identify which set of perceptions best predicted BCMA acceptance (intention to use, satisfaction). Results Nurses reported a moderate perceived ease of use and low perceived usefulness of BCMA. Nurses perceived moderate-or-higher social influence to use BCMA and had moderately positive perceptions of BCMA-related training and technical support. Behavioral intention to use BCMA was high, but satisfaction was low. Behavioral intention to use was best predicted by perceived ease of use, perceived social influence from non-specific others, and perceived usefulness for patient care (56% of variance explained). Satisfaction was best predicted by perceived ease of use, perceived usefulness for patient care, and perceived social influence from patients/families (76% of variance explained). Discussion Variation in and low scores on ease of use and usefulness are concerning, especially as these variables often correlate with acceptance, as found in this study. Predicting acceptance benefited from using a broad set of perceptions and adapting variables to the healthcare context. Conclusion Success with BCMA and other technologies can benefit from assessing end-user acceptance and elucidating the factors promoting acceptance and use. PMID:22661559

  20. Nucleic acid quantification using nicking-displacement, rolling circle amplification and bio-bar-code mediated triple-amplification.

    PubMed

    Li, Xue-Mei; Luo, Jie; Zhang, Ning-Bo; Wei, Qing-Li

    2015-06-30

    In the present study, an inductively-coupled plasma-mass spectrometry (ICP-MS)-based triple-amplification system, by combination of nicking-displacement, rolling circle amplification (RCA) and bio-bar-code probes, was fabricated for the detection of DNA target. By using this system, hepatitis B virus (HBV) DNA target down to 3.2×10(-17)M was detected by DNA probes labeled with Au nanoparticles (AuNPs). Single nucleotide polymorphisms in genes can also be effectively discriminated. In addition, we proved that this strategy is capable of detecting the target in complicated biological samples and holds great potential application in biomedical research. PMID:26041527

  1. Creating a Culture of Safety Around Bar-Code Medication Administration: An Evidence-Based Evaluation Framework.

    PubMed

    Kelly, Kandace; Harrington, Linda; Matos, Pat; Turner, Barbara; Johnson, Constance

    2016-01-01

    Bar-code medication administration (BCMA) effectiveness is contingent upon compliance with best-practice protocols. We developed a 4-phased BCMA evaluation program to evaluate the degree of integration of current evidence into BCMA policies, procedures, and practices; identify barriers to best-practice BCMA use; and modify BCMA practice in concert with changes to the practice environment. This program provides an infrastructure for frontline nurses to partner with hospital leaders to continually evaluate and improve BCMA using a systematic process. PMID:26641468

  2. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  3. Scanner Art

    ERIC Educational Resources Information Center

    Jaworski, Joy; Murphy, Kris

    2009-01-01

    In this article, the authors describe how they incorporated environmental awareness into their art curriculum. Here, they describe a digital photography project in which their students used flatbed scanners as cameras. Their students composed their objects directly on the scanner. The lesson enabled students to realize that artists have voices…

  4. Towards a spectrum-based bar code for identification of weakly fluorescent microparticles

    NASA Astrophysics Data System (ADS)

    Petrášek, Zden?k; Wiedemann, Jens; Schwille, Petra

    2014-03-01

    Spectrally resolved detection of fluorescent probes can be used to identify multiple labeled target molecules in an unknown mixture. We study how the spectral shape, the experimental noise, and the number of spectral detection channels affect the success of identification of weakly fluorescent beads on basis of their emission spectra. The proposed formalism allows to estimate the performance of the spectral identification procedure with a given set of spectral codes on the basis of the reference spectra only. We constructed a simple prism-based setup for spectral detection and demonstrate that seven distinct but overlapping spectral codes realized by combining up to three fluorescent dyes bound to a single bead in a barcode-based manner can be reliably identified. The procedure allows correct identification even in the presence of known autofluorescence background stronger than the actual signal.

  5. A Simple X-Y Scanner.

    ERIC Educational Resources Information Center

    Halse, M. R.; Hudson, W. J.

    1986-01-01

    Describes an X-Y scanner used to create acoustic holograms. Scanner is computer controlled and can be adapted to digitize pictures. Scanner geometry is discussed. An appendix gives equipment details. The control program in ATOM BASIC and 6502 machine code is available from the authors. (JM)

  6. Cylindrical Scanner

    Energy Science and Technology Software Center (ESTSC)

    1999-04-29

    The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less

  7. Identification of Internal Transcribed Spacer Sequence Motifs in Truffles: a First Step toward Their DNA Bar Coding? †

    PubMed Central

    El Karkouri, Khalid; Murat, Claude; Zampieri, Elisa; Bonfante, Paola

    2007-01-01

    This work presents DNA sequence motifs from the internal transcribed spacer (ITS) of the nuclear rRNA repeat unit which are useful for the identification of five European and Asiatic truffles (Tuber magnatum, T. melanosporum, T. indicum, T. aestivum, and T. mesentericum). Truffles are edible mycorrhizal ascomycetes that show similar morphological characteristics but that have distinct organoleptic and economic values. A total of 36 out of 46 ITS1 or ITS2 sequence motifs have allowed an accurate in silico distinction of the five truffles to be made (i.e., by pattern matching and/or BLAST analysis on downloaded GenBank sequences and directly against GenBank databases). The motifs considered the intraspecific genetic variability of each species, including rare haplotypes, and assigned their respective species from either the ascocarps or ectomycorrhizas. The data indicate that short ITS1 or ITS2 motifs (?50 bp in size) can be considered promising tools for truffle species identification. A dot blot hybridization analysis of T. magnatum and T. melanosporum compared with other close relatives or distant lineages allowed at least one highly specific motif to be identified for each species. These results were confirmed in a blind test which included new field isolates. The current work has provided a reliable new tool for a truffle oligonucleotide bar code and identification in ecological and evolutionary studies. PMID:17601808

  8. Automation and adaptation: Nurses’ problem-solving behavior following the implementation of bar coded medication administration technology

    PubMed Central

    Holden, Richard J.; Rivera-Rodriguez, A. Joy; Faye, Héléne; Scanlon, Matthew C.; Karsh, Ben-Tzion

    2012-01-01

    The most common change facing nurses today is new technology, particularly bar coded medication administration technology (BCMA). However, there is a dearth of knowledge on how BCMA alters nursing work. This study investigated how BCMA technology affected nursing work, particularly nurses’ operational problem-solving behavior. Cognitive systems engineering observations and interviews were conducted after the implementation of BCMA in three nursing units of a freestanding pediatric hospital. Problem-solving behavior, associated problems, and goals, were specifically defined and extracted from observed episodes of care. Three broad themes regarding BCMA’s impact on problem solving were identified. First, BCMA allowed nurses to invent new problem-solving behavior to deal with pre-existing problems. Second, BCMA made it difficult or impossible to apply some problem-solving behaviors that were commonly used pre-BCMA, often requiring nurses to use potentially risky workarounds to achieve their goals. Third, BCMA created new problems that nurses were either able to solve using familiar or novel problem-solving behaviors, or unable to solve effectively. Results from this study shed light on hidden hazards and suggest three critical design needs: (1) ecologically valid design; (2) anticipatory control; and (3) basic usability. Principled studies of the actual nature of clinicians’ work, including problem solving, are necessary to uncover hidden hazards and to inform health information technology design and redesign. PMID:24443642

  9. Development of a magnetic electrochemical bar code array for point mutation detection in the H5N1 neuraminidase gene.

    PubMed

    Krejcova, Ludmila; Hynek, David; Kopel, Pavel; Rodrigo, Miguel Angel Merlos; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Trnkova, Libuse; Kizek, Rene

    2013-07-01

    Since its first official detection in the Guangdong province of China in 1996, the highly pathogenic avian influenza virus of H5N1 subtype (HPAI H5N1) has reportedly been the cause of outbreaks in birds in more than 60 countries, 24 of which were European. The main issue is still to develop effective antiviral drugs. In this case, single point mutation in the neuraminidase gene, which causes resistance to antiviral drug and is, therefore, subjected to many studies including ours, was observed. In this study, we developed magnetic electrochemical bar code array for detection of single point mutations (mismatches in up to four nucleotides) in H5N1 neuraminidase gene. Paramagnetic particles Dynabeads® with covalently bound oligo (dT)₂₅ were used as a tool for isolation of complementary H5N1 chains (H5N1 Zhejin, China and Aichi). For detection of H5N1 chains, oligonucleotide chains of lengths of 12 (+5 adenine) or 28 (+5 adenine) bp labeled with quantum dots (CdS, ZnS and/or PbS) were used. Individual probes hybridized to target molecules specifically with efficiency higher than 60%. The obtained signals identified mutations present in the sequence. Suggested experimental procedure allows obtaining further information from the redox signals of nucleic acids. Moreover, the used biosensor exhibits sequence specificity and low limits of detection of subnanogram quantities of target nucleic acids. PMID:23860384

  10. Development of a Magnetic Electrochemical Bar Code Array for Point Mutation Detection in the H5N1 Neuraminidase Gene

    PubMed Central

    Krejcova, Ludmila; Hynek, David; Kopel, Pavel; Merlos Rodrigo, Miguel Angel; Adam, Vojtech; Hubalek, Jaromir; Babula, Petr; Trnkova, Libuse; Kizek, Rene

    2013-01-01

    Since its first official detection in the Guangdong province of China in 1996, the highly pathogenic avian influenza virus of H5N1 subtype (HPAI H5N1) has reportedly been the cause of outbreaks in birds in more than 60 countries, 24 of which were European. The main issue is still to develop effective antiviral drugs. In this case, single point mutation in the neuraminidase gene, which causes resistance to antiviral drug and is, therefore, subjected to many studies including ours, was observed. In this study, we developed magnetic electrochemical bar code array for detection of single point mutations (mismatches in up to four nucleotides) in H5N1 neuraminidase gene. Paramagnetic particles Dynabeads® with covalently bound oligo (dT)25 were used as a tool for isolation of complementary H5N1 chains (H5N1 Zhejin, China and Aichi). For detection of H5N1 chains, oligonucleotide chains of lengths of 12 (+5 adenine) or 28 (+5 adenine) bp labeled with quantum dots (CdS, ZnS and/or PbS) were used. Individual probes hybridized to target molecules specifically with efficiency higher than 60%. The obtained signals identified mutations present in the sequence. Suggested experimental procedure allows obtaining further information from the redox signals of nucleic acids. Moreover, the used biosensor exhibits sequence specificity and low limits of detection of subnanogram quantities of target nucleic acids. PMID:23860384

  11. Identification of internal transcribed spacer sequence motifs in truffles: a first step toward their DNA bar coding.

    PubMed

    El Karkouri, Khalid; Murat, Claude; Zampieri, Elisa; Bonfante, Paola

    2007-08-01

    This work presents DNA sequence motifs from the internal transcribed spacer (ITS) of the nuclear rRNA repeat unit which are useful for the identification of five European and Asiatic truffles (Tuber magnatum, T. melanosporum, T. indicum, T. aestivum, and T. mesentericum). Truffles are edible mycorrhizal ascomycetes that show similar morphological characteristics but that have distinct organoleptic and economic values. A total of 36 out of 46 ITS1 or ITS2 sequence motifs have allowed an accurate in silico distinction of the five truffles to be made (i.e., by pattern matching and/or BLAST analysis on downloaded GenBank sequences and directly against GenBank databases). The motifs considered the intraspecific genetic variability of each species, including rare haplotypes, and assigned their respective species from either the ascocarps or ectomycorrhizas. The data indicate that short ITS1 or ITS2 motifs (< or = 50 bp in size) can be considered promising tools for truffle species identification. A dot blot hybridization analysis of T. magnatum and T. melanosporum compared with other close relatives or distant lineages allowed at least one highly specific motif to be identified for each species. These results were confirmed in a blind test which included new field isolates. The current work has provided a reliable new tool for a truffle oligonucleotide bar code and identification in ecological and evolutionary studies. PMID:17601808

  12. Bar codes and intrinsic-surface-roughness tag: Accurate and low-cost accountability for CFE. [Conventional force equipment (CFE)

    SciTech Connect

    DeVolpi, A.; Palm, R.

    1990-01-01

    CFE poses a number of verification challenges that could be met in part by an accurate and low-cost means of aiding in accountability of treaty-limited equipment. Although the treaty as signed does not explicitly call for the use of tags, there is a provision for recording serial numbers'' and placing special marks'' on equipment subject to reduction. There are approximately 150,000 residual items to be tracked for CFE-I, about half for each alliance of state parties. These highly mobile items are subject to complex treaty limitations: deployment limits and zones, ceilings subceilings, holdings and allowances. There are controls and requirements for storage, conversion, and reduction. In addition, there are national security concerns regarding modernization and mobilization capability. As written into the treaty, a heavy reliance has been placed on human inspectors for CFE verification. Inspectors will mostly make visual observations and photographs as the means of monitoring compliance; these observations can be recorded by handwriting or keyed into a laptop computer. CFE is now less a treaty between two alliances than a treaty among 22 state parties, with inspection data an reports to be shared with each party in the official languages designated by CSCE. One of the potential roles for bar-coded tags would be to provide a universal, exchangable, computer-compatible language for tracking TLE. 10 figs.

  13. Digital Data Matrix Scanner Developnent At Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Research at NASA's Marshall Space Flight Center has resulted in a system for reading hidden identification codes using a hand-held magnetic scanner. It's an invention that could help businesses improve inventory management, enhance safety, improve security, and aid in recall efforts if defects are discovered. Two-dimensional Data Matrix symbols consisting of letters and numbers permanently etched on items for identification and resembling a small checkerboard pattern are more efficient and reliable than traditional bar codes, and can store up to 100 times more information. A team led by Fred Schramm of the Marshall Center's Technology Transfer Department, in partnership with PRI,Torrance, California, has developed a hand-held device that can read this special type of coded symbols, even if covered by up to six layers of paint. Before this new technology was available, matrix symbols were read with optical scanners, and only if the codes were visible. This latest improvement in digital Data Matrix technologies offers greater flexibility for businesses and industries already using the marking system. Paint, inks, and pastes containing magnetic properties are applied in matrix symbol patterns to objects with two-dimensional codes, and the codes are read by a magnetic scanner, even after being covered with paint or other coatings. The ability to read hidden matrix symbols promises a wide range of benefits in a number of fields, including airlines, electronics, healthcare, and the automotive industry. Many industries would like to hide information on a part, so it can be read only by the party who put it there. For instance, the automotive industry uses direct parts marking for inventory control, but for aesthetic purposes the marks often need to be invisible. Symbols have been applied to a variety of materials, including metal, plastic, glass, paper, fabric and foam, on everything from electronic parts to pharmaceuticals to livestock. The portability of the hand-held scanner makes work faster and easier. It reads marks in darkness, under bright light that might interfere with optical reading of visible marks, and can detect symbols obscured by discoloration or contamination. Through a license with NASA, another partner, Robotic Vision Systems, Inc., of Nashua, New Hampshire, will sell the scanner on the commercial market. NASA continues to seek additional companies to license the product. Joint efforts by Marshall researchers and industry partners are aimed at improving dentification technology as part of NASA's program to better life on Earth through technology designed for the space program. In this photo, Don Roxby, Robotic Vision Systems, Inc., (left)demonstrates the magnetic handheld scanner for Fred Schramm, (Right) MSFC Technology Transfer Department.

  14. BAR-CODE BASED WEIGHT MEASUREMENT STATION FOR PHYSICAL INVENTORY TAKING OF PLUTONIUM OXIDE CONTAINERS AT THE MINING AND CHEMICAL COMBINE RADIOCHEMICAL REPROCESSING PLANT NEAR KRASNOYARSK, SIBERIA.

    SciTech Connect

    SUDA,S.

    1999-09-20

    This paper describes the technical tasks being implemented to computerize the physical inventory taking (PIT) at the Mining and Chemical Combine (Gorno-Khimichesky Kombinat, GKhK) radiochemical plant under the US/Russian cooperative nuclear material protection, control, and accounting (MPC and A) program. Under the MPC and A program, Lab-to-Lab task agreements with GKhK were negotiated that involved computerized equipment for item verification and confirmatory measurement of the Pu containers. Tasks under Phase I cover the work for demonstrating the plan and procedures for carrying out the comparison of the Pu container identification on the container with the computerized inventory records. In addition to the records validation, the verification procedures include the application of bar codes and bar coded TIDs to the Pu containers. Phase II involves the verification of the Pu content. A plan and procedures are being written for carrying out confirmatory measurements on the Pu containers.

  15. Optical scanner

    NASA Technical Reports Server (NTRS)

    Finkel, Mitchell W. (inventor)

    1987-01-01

    An optical scanner for imaging lines in an object plane onto a linear array in a focal plane either continuously or discretely is described. The scanner consists of a set of four mutually perpendicularly oriented plane corner mirrors which provide a reflecting path that describes a parallelogram. In addition, there is a plane parallel scanning mirror with a front and back reflecting surface located midway between the first and fourth corner mirrors. It is oriented so that in the mid-scan position it is parallel to the first corner mirror, and therefore perpendicular to the fourth corner mirror. As the scan mirror rotates, rays incident from a plurality of lines in the object plane are selectively directed through the optical system arriving at a common intersection on the back surface of the scanning mirror where the rays are colinearly directed toward a lens and then imaged onto the linear array in the focal plane. A set of compensating mirrors may be introduced just before the imaging lens to compensate for a small and generally negligible path difference delta sub l between the axial and marginal rays.

  16. Breaking the code. When bill barring genetic discrimination is signed into law, 'fear of repercussions' will dissipate among patients: expert.

    PubMed

    Vesely, Rebecca

    2008-05-12

    Legislation barring genetic discrimination holds the promise of greatly expanding the use of genetic testing, along with spurring more research into individualized medicine. The bill "removes one of the major challenges by allowing people to participate in the research without fear of repercussions," according to Susannah Baruch, left, of the Genetics & Public Policy Center at Johns Hopkins University. PMID:18543820

  17. Coastal Zone Color Scanner (CZCS): Imagery of near-surface phytoplankton pigment concentrations from the first coastal ocean dynamics experiment (CODE-1), March - July 1981

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.; Zion, P. M.

    1984-01-01

    As part of the first Coastal Ocean Dynamics Experiment, images of ocean color were collected from late March until late July, 1981, by the Coastal Zone Color Scanner aboard Nimbus-7. Images that had sufficient cloud-free area to be of interest were processed to yield near-surface phytoplankton pigment concentrations. These images were then remapped to a fixed equal-area grid. This report contains photographs of the digital images and a brief description of the processing methods.

  18. Application of DNA Bar Codes for Screening of Industrially Important Fungi: the Haplotype of Trichoderma harzianum Sensu Stricto Indicates Superior Chitinase Formation?

    PubMed Central

    Nagy, Viviana; Seidl, Verena; Szakacs, George; Komo?-Zelazowska, Monika; Kubicek, Christian P.; Druzhinina, Irina S.

    2007-01-01

    Selection of suitable strains for biotechnological purposes is frequently a random process supported by high-throughput methods. Using chitinase production by Hypocrea lixii/Trichoderma harzianum as a model, we tested whether fungal strains with superior enzyme formation may be diagnosed by DNA bar codes. We analyzed sequences of two phylogenetic marker loci, internal transcribed spacer 1 (ITS1) and ITS2 of the rRNA-encoding gene cluster and the large intron of the elongation factor 1-alpha gene, tef1, from 50 isolates of H. lixii/T. harzianum, which were also tested to determine their ability to produce chitinases in solid-state fermentation (SSF). Statistically supported superior chitinase production was obtained for strains carrying one of the observed ITS1 and ITS2 and tef1 alleles corresponding to an allele of T. harzianum type strain CBS 226.95. A tef1-based DNA bar code tool, TrichoCHIT, for rapid identification of these strains was developed. The geographic origin of the strains was irrelevant for chitinase production. The improved chitinase production by strains containing this haplotype was not due to better growth on N-acetyl-?-d-glucosamine or glucosamine. Isoenzyme electrophoresis showed that neither the isoenzyme profile of N-acetyl-?-glucosaminidases or the endochitinases nor the intensity of staining of individual chitinase bands correlated with total chitinase in the culture filtrate. The superior chitinase producers did not exhibit similarly increased cellulase formation. Biolog Phenotype MicroArray analysis identified lack of N-acetyl-?-d-mannosamine utilization as a specific trait of strains with the chitinase-overproducing haplotype. This observation was used to develop a plate screening assay for rapid microbiological identification of the strains. The data illustrate that desired industrial properties may be an attribute of certain populations within a species, and screening procedures should thus include a balanced mixture of all genotypes of a given species. PMID:17827332

  19. A novel photoelectrochemical sensor based on photocathode of PbS quantum dots utilizing catalase mimetics of bio-bar-coded platinum nanoparticles/G-quadruplex/hemin for signal amplification.

    PubMed

    Wang, Guang-Li; Liu, Kang-Li; Shu, Jun-Xian; Gu, Tian-Tian; Wu, Xiu-Ming; Dong, Yu-Ming; Li, Zai-Jun

    2015-07-15

    Photocathode based on p-type PbS quantum dots (QDs) combing a novel signal amplification strategy utilizing catalase (CAT) mimetics was designed and utilized for sensitive photoelectrochemical (PEC) detection of DNA. The bio-bar-coded Pt nanoparticles (NPs)/G-quadruplex/hemin exhibited high CAT-like activity following the Michaelis-Menten model for decomposing H2O2 to water and oxygen, whose activity even slightly exceeded that of natural CAT. The bio-bar-code as a catalytic label was conjugated onto the surface of PbS QDs modified electrodes through the formed sandwich-type structure due to DNA hybridization. Oxygen in situ generated by the CAT mimetics of the bio-bar-code of Pt NPs/G-quadruplex/hemin acted as an efficient electron acceptor of illuminated PbS QDs, promoting charge separation and enhancing cathodic photocurrent. Under optimal conditions, the developed PEC biosensor for target DNA exhibited a dynamic range of 0.2pmol/L to 1.0nmol/L with a low detection limit of 0.08pmol/L. The high sensitivity of the method was resulted from the sensitive response of PbS QDs to oxygen and the highly efficient CAT-like catalytic activity of the bio-bar-coded Pt NPs/G-quadruplex/hemin. PMID:25723768

  20. A foreign invader or a reclusive native? DNA bar coding reveals a distinct European lineage of the zoonotic parasite Schistosoma turkestanicum (syn. Orientobilharzia turkestanicum ()).

    PubMed

    Lawton, Scott P; Majoros, Gábor

    2013-03-01

    Natural foci of Schistosoma turkestanicum (syn. Orientobilharzia turkestanicum) has been identified in the Gemenc Forest regions of Hungary utilising red deer as the definitive host. In order to identify the origins of this parasite in Europe standard DNA bar coding techniques were employed to sequence fragments of the cytochrome oxidase 1 (cox1) and the nuclear ribosomal internal transcribed region (ITS) from 10 individual adult male worms. Phylogenetic reconstruction using maximum likelihood phylogenetic reconstruction and haplotype networks of the cox1 showed all the worms to be of a distinct unique Hungarian lineage although some ITS haplotypes were shared with worms from populations in China and Iran. Molecular clock analysis suggests an early divergence event around 270,000years before present (YBP) between all S. turkestanicum populations giving rise to the Chinese, Iranian and Hungarian lineages. However, divergence of the sequences within the Hungarian population appears to have occurred approximately 63,000 YBP suggesting a long established population of S. turkestanicum in Europe. This suggests that the Hungarian population of S. turkestanicum has been native since the Ice Age and probably established itself during the last interglacial period as red deer moved into Europe from North Africa and the Middle East. This may also indicate that the parasite may have unknown populations established in several other countries in Eastern, Central and Southern Europe. PMID:23220360

  1. Monte Carlo simulation for PET scanners and shields.

    PubMed

    Hasegawa, Tomoyuki; Michel, Christian; Murayama, Hideo; Yamaya, Taiga; Matsuura, Hajime; Tanada, Syuuji

    2001-01-01

    A Monte Carlo simulation code was developed for simulating PET scanners with the Monte Carlo program package GEANT. The present simulation code can handle not only conventional types of PET scanners, but also any complex detector systems with arbitrary geometrical configuration. All the relevant interactions of photons and electrons are taken into account in all the defined objects while optical tracking in the scintillation crystals is approximated by simple analytical simulation. In addition to basic PET scanner performance factors, such as sensitivity and scatter fraction, valuable but un-measurable information, such as photon trajectories and interaction position distribution, can be obtained and represented graphically in various ways. This simulation code has proved useful in analyzing the physics characteristics of existing commercial PET scanners and related shields, and in design studies of new PET scanners. PMID:12766303

  2. Bar-Coded Pyrosequencing Reveals Shared Bacterial Community Properties along the Temperature Gradients of Two Alkaline Hot Springs in Yellowstone National Park? †

    PubMed Central

    Miller, Scott R.; Strong, Aaron L.; Jones, Kenneth L.; Ungerer, Mark C.

    2009-01-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for ?70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s). PMID:19429553

  3. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park.

    PubMed

    Miller, Scott R; Strong, Aaron L; Jones, Kenneth L; Ungerer, Mark C

    2009-07-01

    An understanding of how communities are organized is a fundamental goal of ecology but one which has historically been elusive for microbial systems. We used a bar-coded pyrosequencing approach targeting the V3 region of the bacterial small-subunit rRNA gene to address the factors that structure communities along the thermal gradients of two alkaline hot springs in the Lower Geyser Basin of Yellowstone National Park. The filtered data set included a total of nearly 34,000 sequences from 39 environmental samples. Each was assigned to one of 391 operational taxonomic units (OTUs) identified by their unique V3 sequence signatures. Although the two hot springs differed in their OTU compositions, community resemblance and diversity changed with strikingly similar dynamics along the two outflow channels. Two lines of evidence suggest that these community properties are controlled primarily by environmental temperature. First, community resemblance decayed exponentially with increasing differences in temperature between samples but was only weakly correlated with physical distance. Second, diversity decreased with increasing temperature at the same rate along both gradients but was uncorrelated with other measured environmental variables. This study also provides novel insights into the nature of the ecological interactions among important taxa in these communities. A strong negative association was observed between cyanobacteria and the Chloroflexi, which together accounted for approximately 70% of the sequences sampled. This pattern contradicts the longstanding hypothesis that coadapted lineages of these bacteria maintain tightly cooccurring distributions along these gradients as a result of a producer-consumer relationship. We propose that they instead compete for some limiting resource(s). PMID:19429553

  4. That’s nice, but what does IT do? Evaluating the impact of bar coded medication administration by measuring changes in the process of care

    PubMed Central

    Holden, Richard J.; Brown, Roger L.; Alper, Samuel J.; Scanlon, Matthew C.; Patel, Neal R.; Karsh, Ben-Tzion

    2011-01-01

    Health information technology (IT) is widely endorsed as a way to improve key health care outcomes, particularly patient safety. Applying a human factors approach, this paper models more explicitly how health IT might improve or worsen outcomes. The human factors model specifies that health IT transforms the work system, which transforms the process of care, which in turn transforms the outcome of care. This study reports on transformations of the medication administration process that resulted from the implementation of one type of IT: bar coded medication administration (BCMA). Registered nurses at two large pediatric hospitals in the US participated in a survey administered before and after one of the hospitals implemented BCMA. Nurses’ perceptions of the administration process changed at the hospital that implemented BCMA, whereas perceptions of nurses at the control hospital did not. BCMA appeared to improve the safety of the processes of matching medications to the medication administration record and checking patient identification. The accuracy, usefulness, and consistency of checking patient identification improved as well. In contrast, nurses’ perceptions of the usefulness, time efficiency, and ease of the documentation process decreased post-BCMA. Discussion of survey findings is supplemented by observations and interviews at the hospital that implemented BCMA. By considering the way that IT transforms the work system and the work process a practitioner can better predict the kind of outcomes that the IT might produce. More importantly, the practitioner can achieve or prevent outcomes of interest by using design and redesign aimed at controlling work system and process transformations. PMID:21686318

  5. Investigation of Holographic Scanners

    NASA Astrophysics Data System (ADS)

    Xiang, Lian Qin

    Holographic scanners are capable of challenging both the speed and resolution of polygon scanners. This work investigates, in detail, the design and operation of a holographic scanner with an aspherical reflector. The characteristics of this holographic scanner are presented through theoretical analyses and computer simulation. The calculated data and the experimental results show that this system has excellent scan line straightness and scan linearity. The influence of the eccentricity and wobble of the hologram on the quality of the scan lines can be minimized by proper choice of system parameters. This unique system can readily perform 1-D, 2 -D, 3-D and selective scans. These features make suitable applications for robot vision, part inspection, high speed printing, and input/output devices for computers. If the hologram is operating in the reflective mode, there are no transmissive components in this scanner. It can be used with acoustic waves and electromagnetic waves with longer wavelengths, such as infrared, microwaves, millimeter waves. Since it is difficult to find a suitable recording material for these waves, a technique for making computer -generated holograms has also been developed here. The practical considerations for making quality holograms are summarized. An improved coating process for photoresist and a novel anti-reflection setup for the hologram plate are developed. The detailed experimental processes are included. The planar grating scanner for one dimensional, two-dimensional and cross-scanning patterns is analyzed and demonstrated. A comparison is made with two other two-dimensional scanners.

  6. Compound Holographic Scanners

    NASA Astrophysics Data System (ADS)

    Ih, C. S.; Xiang, Lian-Qin

    1984-11-01

    A high resolution and high speed 2-D holorgaphic scanner is described. In addition to straight scan lines and good linearity, the scanner can be designed to be insensitive to mechanical eccentricity and wobble. This scanner can be readily extended for high resolution 3-D and double-raster scans. The latter has a large field of view (with lower resolution) and at the same time a high resolution in a small central area. This is similar to human's eyes and thus can be explored for robot's vision

  7. A novel Si micromachined moving-coil induction actuated mm-sized resonant scanner

    NASA Astrophysics Data System (ADS)

    Oliveira, L. C. M.; Barbaroto, P. R.; Ferreira, L. O. S.; Doi, I.

    2006-01-01

    A novel silicon micromachined moving-coil scanner with electromagnetic induction actuation principle is presented. It was manufactured by the Si-LIG process, silicon-lithography-electroforming (Galvanoformung, from German), where its mechanical structure was made by bulk silicon micromachining of 200 µm thick (1 0 0) silicon substrate, and its armature was patterned by deep UV lithography and Au electroplating. The monolithic mechanical structure is a 12 × 24 mm2 rectangular frame connected by 4.5 mm long torsion bars to a 4 × 10 mm2 rectangular rotor. On one face of the rotor is the armature, a 70 µm thick, single turn, electroplated Au coil with 3.3 m? electrical resistance. The other face of the rotor was mirrored by a 1480 Å thick Al film. An external magnetic circuit generated a constant 0.115 T magnetic field parallel to the coil plane and a 0.01 T (peak value) field normal to the coil plane. A maximum mechanical deflection angle of 9.0° pp at the 1311.5 Hz resonance frequency was measured, and a quality factor, Q, of 347 was achieved in air. A mathematical model for the device was derived and a dimensioning procedure was developed. The results show that electromagnetic induction actuation is adequate for mm-sized systems and capable of producing resonant scanners with performance compatible with applications such as bar code readers.

  8. Scanning properties of a resonant fiber-optic piezoelectric scanner.

    PubMed

    Li, Zhi; Yang, Zhe; Fu, Ling

    2011-12-01

    We develop a resonant fiber-optic scanner using four piezoelectric elements arranged as a square tube, which is efficient to manufacture and drive. Using coupled-field model based on finite element method, scanning properties of the scanner, including vibration mode, resonant frequency, and scanning range, are numerically studied. We also physically measure the effects of geometry sizes and drive signals on the scanning properties, thus providing a foundation for general purpose designs. A scanner adopted in a prototype of imaging system, with a diameter of ~2 mm and driven by a voltage of 10 V (peak to peak), demonstrates the scanning performance by obtaining an image of resolution target bars. The proposed fiber-optic scanner can be applied to micro-endoscopy that requires two-dimensional scanning of fibers. PMID:22225224

  9. Portable biochip scanner device

    DOEpatents

    Perov, Alexander (Troitsk, RU); Sharonov, Alexei (Moscow, RU); Mirzabekov, Andrei D. (Darien, IL)

    2002-01-01

    A portable biochip scanner device used to detect and acquire fluorescence signal data from biological microchips (biochips) is provided. The portable biochip scanner device employs a laser for emitting an excitation beam. An optical fiber delivers the laser beam to a portable biochip scanner. A lens collimates the laser beam, the collimated laser beam is deflected by a dichroic mirror and focused by an objective lens onto a biochip. The fluorescence light from the biochip is collected and collimated by the objective lens. The fluorescence light is delivered to a photomultiplier tube (PMT) via an emission filter and a focusing lens. The focusing lens focuses the fluorescence light into a pinhole. A signal output of the PMT is processed and displayed.

  10. Biochip scanner device

    DOEpatents

    Perov, Alexander (Troitsk, RU); Belgovskiy, Alexander I. (Mayfield Heights, OH); Mirzabekov, Andrei D. (Darien, IL)

    2001-01-01

    A biochip scanner device used to detect and acquire fluorescence signal data from biological microchips or biochips and method of use are provided. The biochip scanner device includes a laser for emitting a laser beam. A modulator, such as an optical chopper modulates the laser beam. A scanning head receives the modulated laser beam and a scanning mechanics coupled to the scanning head moves the scanning head relative to the biochip. An optical fiber delivers the modulated laser beam to the scanning head. The scanning head collects the fluorescence light from the biochip, launches it into the same optical fiber, which delivers the fluorescence into a photodetector, such as a photodiode. The biochip scanner device is used in a row scanning method to scan selected rows of the biochip with the laser beam size matching the size of the immobilization site.

  11. Optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L. (Richland, WA); Powers, Hurshal G. (Richland, WA)

    1983-01-01

    An optical scanner for indicia arranged in a focal plane at a cylindrical outside surface by use of an optical system including a rotatable dove prism. The dove prism transmits a rotating image of an encircled cylindrical surface area to a stationary photodiode array.

  12. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  13. Freestanding Complex Optical Scanners.

    ERIC Educational Resources Information Center

    Frisbie, David A.

    A complex freestanding optical mark recognition (OMR) scanner is one which is not on-line to an external processor; it has intelligence stemming from an internal processor located within the unit or system. The advantages and disadvantages of a complex OMR can best be assessed after identifying the scanning needs and constraints of the potential…

  14. Scanners, optical character readers, Cyrillic alphabet and Russian translations

    NASA Technical Reports Server (NTRS)

    Johnson, Gordon G.

    1995-01-01

    The writing of code for capture, in a uniform format, of bit maps of words and characters from scanner PICT files is presented. The coding of Dynamic Pattern Matched for the identification of the characters, words and sentences in preparation for translation is discussed.

  15. LIGA Scanner Control Software

    Energy Science and Technology Software Center (ESTSC)

    1999-02-01

    The LIGA Scanner Software is a graphical user interface package that facilitates controlling the scanning operation of x-rays from a synchrotron and sample manipulation for making LIGA parts. The process requires scanning of the LIGA mask and the PMMA resist through a stationary x-ray beam to provide an evenly distributed x-ray exposure over the wafer. This software package has been written specifically to interface with Aerotech motor controllers.

  16. High throughput optical scanner

    DOEpatents

    Basiji, David A. (Seattle, WA); van den Engh, Gerrit J. (Seattle, WA)

    2001-01-01

    A scanning apparatus is provided to obtain automated, rapid and sensitive scanning of substrate fluorescence, optical density or phosphorescence. The scanner uses a constant path length optical train, which enables the combination of a moving beam for high speed scanning with phase-sensitive detection for noise reduction, comprising a light source, a scanning mirror to receive light from the light source and sweep it across a steering mirror, a steering mirror to receive light from the scanning mirror and reflect it to the substrate, whereby it is swept across the substrate along a scan arc, and a photodetector to receive emitted or scattered light from the substrate, wherein the optical path length from the light source to the photodetector is substantially constant throughout the sweep across the substrate. The optical train can further include a waveguide or mirror to collect emitted or scattered light from the substrate and direct it to the photodetector. For phase-sensitive detection the light source is intensity modulated and the detector is connected to phase-sensitive detection electronics. A scanner using a substrate translator is also provided. For two dimensional imaging the substrate is translated in one dimension while the scanning mirror scans the beam in a second dimension. For a high throughput scanner, stacks of substrates are loaded onto a conveyor belt from a tray feeder.

  17. QR Codes 101

    ERIC Educational Resources Information Center

    Crompton, Helen; LaFrance, Jason; van 't Hooft, Mark

    2012-01-01

    A QR (quick-response) code is a two-dimensional scannable code, similar in function to a traditional bar code that one might find on a product at the supermarket. The main difference between the two is that, while a traditional bar code can hold a maximum of only 20 digits, a QR code can hold up to 7,089 characters, so it can contain much more…

  18. ARL Explosive Blast Bar Gauge Response Simulation

    NASA Astrophysics Data System (ADS)

    Sutherland, Gerrit; Boyle, Vincent; Benjamin, Richard

    2013-06-01

    Simulations allow us to optimize the design of a bar gauge. The incident blast wave imparts a wave that travels down the metal bar. Strain gauges positioned along the bar measure the strain produced by the bar wave, allowing determination of pressure and impulse at the bar face. The measured pressure history depends on the arrangement of the bar gauge. If a large metal plate surrounds the bar face, a reflected blast pressure is measured. If a metal fixture that forms a nozzle surrounds the bar face, the initial pressure will be the same as above. In time, release waves emanating from the nozzle edge will decrease the pressure at the bar face. The bar diameter and size of strain gauges control the time response or gauge bandwidth. CTH hydrocode simulations allow optimization of bar gauge features for various size explosive charges. The simulations predicted the response of the metal plate arrangement to a blast from a spherical composition C4 charge. The simulations predicted the proper metal plate diameter for a reflected pressure measurement. Other simulations compared the response of the bar gauge for both configurations (nozzle or plate surround) when subjected to the same blast loading. Pressure histories from simulations were compared to those from experiment and those predicted by the CONWEP blast code. The initial experimental and CONWEP pressures were in reasonable agreement.

  19. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  1. Multispectral scanner optical system

    NASA Technical Reports Server (NTRS)

    Stokes, R. C.; Koch, N. G. (inventors)

    1980-01-01

    An optical system for use in a multispectral scanner of the type used in video imaging devices is disclosed. Electromagnetic radiation reflected by a rotating scan mirror is focused by a concave primary telescope mirror and collimated by a second concave mirror. The collimated beam is split by a dichroic filter which transmits radiant energy in the infrared spectrum and reflects visible and near infrared energy. The long wavelength beam is filtered and focused on an infrared detector positioned in a cryogenic environment. The short wavelength beam is dispersed by a pair of prisms, then projected on an array of detectors also mounted in a cryogenic environment and oriented at an angle relative to the optical path of the dispersed short wavelength beam.

  2. Laser Scanner Demonstration

    SciTech Connect

    Fuss, B.

    2005-09-06

    In the Summer of 2004 a request for proposals went out to potential vendors to offer a three-dimensional laser scanner for a number of unique metrology tasks at the Stanford Linear Accelerator Center (SLAC). Specifications were established including range, accuracy, scan density, resolution and field of view in consideration of anticipated department requirements. Four vendors visited the site to present their system and they were asked to perform three unique tests with their system on a two day visit to SLAC. Two of the three tests were created to emulate real-world applications at SLAC while the third was an accuracy and resolution series of experiments. The scope of these tests is presented and some of the vendor's results are included.

  3. Space-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10 degrees) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 x 900 distinguishable beams in a 10 degrees (elevation) x 10 degrees (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29 degrees total scan range, and 1.5-dB optical insertion loss. PMID:15130010

  4. Space-Multiplexed Optical Scanner

    NASA Astrophysics Data System (ADS)

    Riza, Nabeel A.; Yaqoob, Zahid

    2004-05-01

    A low-loss two-dimensional optical beam scanner that is capable of delivering large (e.g., > 10°) angular scans along the elevation as well as the azimuthal direction is presented. The proposed scanner is based on a space-switched parallel-serial architecture that employs a coarse-scanner module and a fine-scanner module that produce an ultrahigh scan space-fill factor, e.g., 900 × 900 distinguishable beams in a 10° (elevation) × 10° (azimuth) scan space. The experimentally demonstrated one-dimensional version of the proposed scanner has a supercontinuous scan, 100 distinguishable beam spots in a 2.29° total scan range, and 1.5-dB optical insertion loss.

  5. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  6. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  7. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  8. Medical facial surface scanner

    NASA Astrophysics Data System (ADS)

    Vannier, Michael W.; Bhatia, Gulab H.; Commean, Paul K.; Pilgram, Thomas K.; Brunsden, Barry S.

    1992-05-01

    Optical, non-contact three-dimensional range surface digitizers are employed in the 360-degree examination of object surfaces, especially the heads and faces of individuals. The resultant 3- D surface data is suitable for computer graphics display and manipulation, for numerically controlled object replications, or for further processing such as surface measurement extraction. We employed a scanner with a basic active sensor element consisting of a synchronized pattern projector employing flashtubes that illuminate a surface, with a CID camera to detect, digitize, and transmit the sequence of 24 images (per camera) to a digital image processor for surface triangulation, calibration, and fusion into a single surface description of the headform. A major feature of this unit is its use of multiple (typically 6) stationary active sensor elements, with efficient calibration algorithms that achieve nearly seamless superposition of overlapping surface segments seen by individual cameras. The result is accurate and complete coverage of complex contoured surfaces. Application of this system to digitization of the human head in the planning and evaluation of facial plastic surgery is presented.

  9. MSS D Multispectral Scanner System

    NASA Technical Reports Server (NTRS)

    Lauletta, A. M.; Johnson, R. L.; Brinkman, K. L. (Principal Investigator)

    1982-01-01

    The development and acceptance testing of the 4-band Multispectral Scanners to be flown on LANDSAT D and LANDSAT D Earth resources satellites are summarized. Emphasis is placed on the acceptance test phase of the program. Test history and acceptance test algorithms are discussed. Trend data of all the key performance parameters are included and discussed separately for each of the two multispectral scanner instruments. Anomalies encountered and their resolutions are included.

  10. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  11. The Bar Revue.

    ERIC Educational Resources Information Center

    Student Lawyer, 1980

    1980-01-01

    Listed are six organizations that offer bar review courses, and the addresses of state bar examiners and other pertinent information (application filing, exam dates and locations, and fees and residency requirements) for taking examinations. Available Law Student Division, American Bar Association, 1155 E. 60th St., Chicago, IL 60637; $1.00. (MSE)

  12. Multispectral Scanner for Monitoring Plants

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    2004-01-01

    A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.

  13. Microlithographically fabricated bar-coded microarrays

    NASA Astrophysics Data System (ADS)

    Ivanova, Elena P.; Pham, Duy K.; Alekseeva, Yulia V.; Filipponi, Luisa; Nicolau, Dan V.

    2004-06-01

    The adsorption of five proteins with very different molecular characteristics, i.e. ?-chymotrypsin, human serum albumin, human immunoglobulin, lysozyme, and myoglobin, has been characterized using quantitative fluorescence measurements and atomic force microscopy. It has been found that the 'combinatorial' nature of the micro/nano-channels surface allows for the increased adsorption of molecularly different proteins, comparing with the adsorption on flat surfaces. This amplification increases for proteins with lower molecular surface that can capitalize better on the newly created surface and nano-environments. Importantly, the adsorption on micro/nano-fabricated structures appears to be less dependent on the local molecular descriptors, i.e. hydrophobicity and charges, due to the combinatorialization of the nano-areas presented to the proteins. The amplification of adsorption is important, ranging from 3- to 10-fold, with a higher amplification for smaller, globular proteins.

  14. Choosing a Scanner: Points To Consider before Buying a Scanner.

    ERIC Educational Resources Information Center

    Raby, Chris

    1998-01-01

    Outlines ten factors to consider before buying a scanner: size of document; type of document; color; speed and volume; resolution; image enhancement; image compression; optical character recognition; scanning subsystem; and the option to use a commercial bureau service. The importance of careful analysis of requirements is emphasized. (AEF)

  15. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  16. Advances in animal PET scanners.

    PubMed

    Del Guerra, A; Belcari, N

    2002-03-01

    Nowadays, a growing number of research groups shows a great interest for the application of PET and SPECT techniques to the development of new drugs. Preliminary studies on small animals require high performance dedicated scanners with a higher spatial resolution and sensitivity than those of clinical systems. In this paper the potential applications of such innovative instruments are shown together with a brief review of the dedicated PET and SPECT tomographs developed worldwide. Most of the scanners have been built as research prototypes. Only two are commercially available: micro-PET(R), designed and developed at UCLA, Los Angeles as a research prototype, and now produced and distributed by Concorde Microsystems Inc. (USA) and HIDAC PET produced by Oxford Positron Systems Ltd. (UK). Also in Italy, a high performance tomograph, YAP-(S) PET able to perform both PET and SPECT studies, has been developed at the University of Ferrara. The technical characteristics and performance of this scanner are described. Tomographs with combined imaging techniques, such as PET/CT or SPECT/CT, are now under study in various international research centers. The advantages of this new generation of animal scanners will be briefly outlined. PMID:12072844

  17. Scanner as a Fine Art

    ERIC Educational Resources Information Center

    Fontes, Kris

    2008-01-01

    Not every art department is fortunate enough to have access to digital cameras and image-editing software, but if a scanner, computer, and printer are available, students can create some imaginative and surreal work. This high-school level lesson begins with a discussion of self-portraits, and then moves to students creating images by scanning…

  18. Improvements to Existing Jefferson Lab Wire Scanners

    SciTech Connect

    McCaughan, Michael D.; Tiefenback, Michael G.; Turner, Dennis L.

    2013-06-01

    This poster will detail the augmentation of selected existing CEBAF wire scanners with commercially available hardware, PMTs, and self created software in order to improve the scanners both in function and utility.

  19. Composite carrier bar device

    SciTech Connect

    Felder, D.W.

    1981-09-01

    A composite carrier bar is disclosed for oil well pumping units that utilize sucker rod to operate bottom hole pumps. The bar includes a recessed cavity for receiving a hydraulic ram to operate as a polish rod jack and also a secondary carrier bar for receiving a secondary polish rod clamp for use in respacing bottom hole pumps and serve as a safety clamp during operation.

  20. Interactive WSN-Bar

    NASA Astrophysics Data System (ADS)

    Lin, Jiun-Shian; Hsu, Su-Chu; Chen, Ying-Chung

    Based on the concept of ambient intelligence, we utilized wireless sensor network (WSN) and vision-based tracking technologies to create an interactive WSN-Bar. WSN-Bar is an interactive and innovative creation which has two modules: Garden of Light and Vivacious Bushes. It refers the variety of natural environmental factors and focuses on the relationship between human and nature. WSN-Bar can also detect the changes of brightness, temperature, CO2 density outdoors and the movement of people inside the building. Besides, WSN-Bar is an interactive installation art which creates the opportunity to reduce the estranged gape among the participants.

  1. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1220 Fluorescent scanner. (a) Identification. A fluorescent scanner is a device intended...

  2. Simulation of LANDSAT multispectral scanner spatial resolution with airborne scanner data

    NASA Technical Reports Server (NTRS)

    Hlavka, C. A.

    1986-01-01

    A technique for simulation of low spatial resolution satellite imagery by using high resolution scanner data is described. The scanner data is convolved with the approximate point spread function of the low resolution data and then resampled to emulate low resolution imagery. The technique was successfully applied to Daedalus airborne scanner data to simulate a portion of a LANDSAT multispectra scanner scene.

  3. The Bar Revue.

    ERIC Educational Resources Information Center

    Student Lawyer, 1981

    1981-01-01

    Major companies that offer streamlined, standardized bar review courses available in various media are listed, and state bar associations and licensing procedures are outlined for each state. (Journal availability: 1155 E. 60th St., Chicago, IL 60637, $1.00.) (MSE)

  4. Optical scanner. [laser doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Rhodes, D. B. (Inventor)

    1977-01-01

    An optical scanner that sequentially focuses optical energy (light) at selected points in space is described. The essential component is a scanning wheel including several glass windows with each window having a different thickness. Due to this difference in thickness, the displacement of the emerging light from the incident light is different for each window. The scanner transmits optical energy to a point in space while at the same time receiving any optical energy generated at that point and then moves on to the next selected point and repeats this transmit and receive operation. It fills the need for a system that permits a laser velocimeter to rapidly scan across a constantly changing flow field in an aerodynamic test facility.

  5. Vacuum Attachment for XRF Scanner

    NASA Technical Reports Server (NTRS)

    Schramm, Harry F.; Kaiser, Bruce

    2005-01-01

    Vacuum apparatuses have been developed for increasing the range of elements that can be identified by use of x-ray fluorescent (XRF) scanners of the type mentioned in the two immediately preceding articles. As a consequence of the underlying physical principles, in the presence of air, such an XRF scanner is limited to analysis of chlorine and elements of greater atomic number. When the XRF scanner is operated in a vacuum, it extends the range of analysis to lower atomic numbers - even as far as aluminum and sodium. Hence, more elements will be available for use in XRF labeling of objects as discussed in the two preceding articles. The added benefits of the extended capabilities also have other uses for NASA. Detection of elements of low atomic number is of high interest to the aerospace community. High-strength aluminum alloys will be easily analyzed for composition. Silicon, a major contaminant in certain processes, will be detectable before the process is begun, possibly eliminating weld or adhesion problems. Exotic alloys will be evaluated for composition prior to being placed in service where lives depend on them. And in the less glamorous applications, such as bolts and fasteners, substandard products and counterfeit items will be evaluated at the receiving function and never allowed to enter the operation

  6. Robust scanner identification based on noise features

    NASA Astrophysics Data System (ADS)

    Gou, Hongmei; Swaminathan, Ashwin; Wu, Min

    2007-02-01

    A large portion of digital image data available today is acquired using digital cameras or scanners. While cameras allow digital reproduction of natural scenes, scanners are often used to capture hardcopy art in more controlled scenarios. This paper proposes a new technique for non-intrusive scanner model identification, which can be further extended to perform tampering detection on scanned images. Using only scanned image samples that contain arbitrary content, we construct a robust scanner identifier to determine the brand/model of the scanner used to capture each scanned image. The proposed scanner identifier is based on statistical features of scanning noise. We first analyze scanning noise from several angles, including through image de-noising, wavelet analysis, and neighborhood prediction, and then obtain statistical features from each characterization. Experimental results demonstrate that the proposed method can effectively identify the correct scanner brands/models with high accuracy.

  7. Error-Detecting Identification Codes for Algebra Students.

    ERIC Educational Resources Information Center

    Sutherland, David C.

    1990-01-01

    Discusses common error-detecting identification codes using linear algebra terminology to provide an interesting application of algebra. Presents examples from the International Standard Book Number, the Universal Product Code, bank identification numbers, and the ZIP code bar code. (YP)

  8. Nearshore oblique sand bars

    NASA Astrophysics Data System (ADS)

    Ribas, F.; FalquéS, A.; Montoto, A.

    2003-04-01

    The coupling between hydrodynamics and the evolving topography in the surf zone has been theoretically examined for oblique wave incidence. It is shown that positive feedback can lead to the initial growth of several types of rhythmic systems of sand bars. The bars can be down-current oriented or up-current oriented, which means that the offshore end of the bar is shifted down-current or up-current with respect to the shore attachment. In the limit of strong current compared to wave orbital motion, very oblique down-current oriented b ars are obtained with a spacing of several times the surf zone width. When wave orbital motions are dominant, systems of up-current oriented bars and crescentic/down-current oriented bars appear with spacings of the order of the surf zone width. The latter feature consists of alternating shoals and troughs at both sides of the break line with the inner shoals being bar-shaped and oblique to the coast. The growth (e-folding) time of the bars ranges from a few hours to a few days and it is favored by constant wave conditions. The range of model parameters leading to growth corresponds to intermediate beach states in between the fully dissipative and the fully reflective situations. Preliminary comparison with field observations shows qualitative agreement.

  9. Deconvolution in line scanners using a priori information

    NASA Astrophysics Data System (ADS)

    Wirnitzer, Bernhard; Spraggon-Hernandez, Tadeo

    2002-12-01

    In a digital camera the MTF of the optical system must comprise a low-pass filter in order to avoid aliasing. The MTF of incoherent imaging usually and in principle is far from an ideal low-pass. Theoretically a digital ARMA-Filter can be used to compensate for this drawback. In praxis such deconvolution filters suffer from instability because of time-variant noise and space-variance of the MTF. In addition in a line scanner the MTF in scan direction slightly differs in each scanned image. Therefore inverse filtering will not operate satisfactory in an unknown environment. A new concept is presented which solves both problems using a-priori information about an object, e.g. that parts of it are known to be binary. This information is enough to achieve a stable space and time-variant ARMA-deconvolution filter. Best results are achieved using non linear filtering and pattern feedback. The new method was used to improve the bit-error-rate (BER) of a high-density matrix-code scanner by more than one order of magnitude. An audio scanner will be demonstrated, which reads 12 seconds of music in CD-quality from an audio coded image of 18mmÚ55mm size.

  10. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  11. Changes in Smoking-Related Norms in Bars Resulting from California's Smoke-Free Workplace Act

    ERIC Educational Resources Information Center

    Satterlund, Travis D.; Lee, Juliet P.; Moore, Roland S.

    2012-01-01

    California's Smoke-Free Workplace Act--CA Labor Code Sec. 6404.5(a)--was extended to bars in 1998. This article analyzes changes in normative beliefs and behaviors related to bar smoking in the decade following the adoption of the Act. In a series of studies evaluating the smoke-free workplace law in bars, researchers conducted extensive…

  12. Changes in Smoking-Related Norms in Bars Resulting from California's Smoke-Free Workplace Act

    ERIC Educational Resources Information Center

    Satterlund, Travis D.; Lee, Juliet P.; Moore, Roland S.

    2012-01-01

    California's Smoke-Free Workplace Act--CA Labor Code Sec. 6404.5(a)--was extended to bars in 1998. This article analyzes changes in normative beliefs and behaviors related to bar smoking in the decade following the adoption of the Act. In a series of studies evaluating the smoke-free workplace law in bars, researchers conducted extensive…

  13. Monogon laser scanner with no line wobble

    NASA Astrophysics Data System (ADS)

    Beiser, Leo

    1991-02-01

    A new optical scanner is described which serves as a monogon, or single-facet device, providing one scan per shaft rotation. It cancels cross-scan line placement errors automatically, yielding scan lines which are spaced precisely, independent of drive shaft wobble. This scanner is configured for simple fabrication, of low mass and size, allowing convenient dynamic balance for high-speed operation. This new scanner is identified as an open-mirror monogon.

  14. Bars and Dark Matter Halo Cores

    NASA Astrophysics Data System (ADS)

    Sellwood, J. A.

    2003-04-01

    Self-consistent bars that form in galaxies embedded within cuspy halos are unable to flatten the cusp. Short bars form in models with quasi-flat rotation curves. They lose angular momentum to the halo through dynamical friction, but the continuous concentration of mass within the disk as the bar grows actually compresses the halo further, overwhelming any density reduction due to the modest angular momentum transfer to the halo. Thus, the Weinberg-Katz proposed solution to the nonexistence of the predicted cuspy halos from cold dark matter simulations would seem to be unworkable. I also find that the concerns over the performance of N-body codes raised by these authors do not apply to the methods used here.

  15. X-ray microtomographic scanners

    NASA Astrophysics Data System (ADS)

    Syryamkin, V. I.; Klestov, S. A.

    2015-11-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  16. Combined PET/MRI scanner

    DOEpatents

    Schlyer, David (Bellport, NY); Woody, Craig L. (Setauket, NY); Rooney, William (Miller Place, NY); Vaska, Paul (Sound Beach, NY); Stoll, Sean (Wading River, NY); Pratte, Jean-Francois (Stony Brook, NY); O'Connor, Paul (Bellport, NY)

    2007-10-23

    A combined PET/MRI scanner generally includes a magnet for producing a magnetic field suitable for magnetic resonance imaging, a radiofrequency (RF) coil disposed within the magnetic field produced by the magnet and a ring tomograph disposed within the magnetic field produced by the magnet. The ring tomograph includes a scintillator layer for outputting at least one photon in response to an annihilation event, a detection array coupled to the scintillator layer for detecting the at least one photon outputted by the scintillator layer and for outputting a detection signal in response to the detected photon and a front-end electronic array coupled to the detection array for receiving the detection signal, wherein the front-end array has a preamplifier and a shaper network for conditioning the detection signal.

  17. Scanner Art and Links to Physics

    ERIC Educational Resources Information Center

    Russell, David

    2005-01-01

    A photocopier or scanner can be used to produce not only the standard motion graphs of physics, but a variety of other graphs that resemble gravitational and electrical fields. This article presents a starting point for exploring scanner graphics, which brings together investigation in art and design, physics, mathematics, and information…

  18. Two-dimensional, computer-controlled film scanner: quantitation of fluorescence from ethidium bromide-stained DNA gels

    SciTech Connect

    Sutherland, J.C.; Monteleone, D.C.; Trunk, J.; Ciarrocchi, G.

    1984-01-01

    A two-dimensional scanner based on a digital plotter is described. The device is used to analyze photographic negatives of ethidium bromide-stained DNA-agarose gels. Scanning is controlled by and photometric data transferred to a computer for processing, storage, display, and analysis such as integration of the areas under bands and determination of the mean distances of migration of polydisperse samples. An integral light source and detector module designed for reading optical bar-codes is mounted in place of the pen of the plotter. Spatial resolution and reproducibility are about 0.2 and 0.005 mm, respectively. Photometric precision as good as one part per thousand is achieved by sinusoidal modulation of the intensity of the light source and synchronous, phase-sensitive detection of the signal from the detector by a lock-in amplifier. No part of the sensor assembly touches the surface of the negative. In contrast to a densitometer, the computer transforms photometric data to values directly proportional to the amount of DNA at given points on the original gel. The ability to move the sensor in two dimensions over the negative allows for the integration across the width of a lane correctly allowing for the nonuniform distribution of the DNA.

  19. Toll Bar on Sea

    ERIC Educational Resources Information Center

    Hunter, Dave

    2008-01-01

    In the summer of 2007 the United Kingdom experienced some of the heaviest rainfall since records began. Toll Bar in South Yorkshire featured prominently in media coverage as the village and the homes surrounding it began to flood. Many people lost everything: their homes, their furniture, their possessions. In an effort to come to terms with what…

  20. Toll Bar on Sea

    ERIC Educational Resources Information Center

    Hunter, Dave

    2008-01-01

    In the summer of 2007 the United Kingdom experienced some of the heaviest rainfall since records began. Toll Bar in South Yorkshire featured prominently in media coverage as the village and the homes surrounding it began to flood. Many people lost everything: their homes, their furniture, their possessions. In an effort to come to terms with what…

  1. Multiple bars and secular evolution

    NASA Astrophysics Data System (ADS)

    Shen, Juntai

    2015-03-01

    Bars are the most important driver of secular evolution. A significant fraction of barred galaxies also harbor small secondary bars. Secondary bars are visible even in near-infrared images, so they are not just dusty and blue, but stellar features (Erwin & Sparke 2002). Since they are quite common, secondary bars are probably long-lived stellar features. The random relative orientation of the two bars indicates that they are dynamically decoupled with different pattern speeds (Buta & Crocker 1993). Corsini et al. (2003) presented conclusive direct kinematic evidence for a decoupled secondary bar in NGC 2950. Dynamically decoupled secondary bars have long been hypothesized to be a mechanism to drive gas past the ILR of primary bars to feed active galactic nuclei (Shlosman et al. 1989). However, the dynamics of secondary bars are still not well understood, and it is still unclear what role secondary bars play in the AGN fueling process. Numerical simulations offer the best approach to understanding double-barred systems. Decoupled secondary bar in the earlier gaseous simulations only last a short time (< 1 Gyr, e.g. Friedli & Martinet 1993). Orbital studies of double-barred systems discovered a family of loop orbits that may be building blocks of long-lived nuclear stellar bars (Maciejewski & Sparke 1997, 2000). To complement orbital studies, which are not fully self-consistent, N-body simulations are preferred to further our understanding of double-barred systems. Debattista & Shen (2007) and Shen & Debattista (2009) managed to form long-lived double-barred systems with purely collisionless simulations, where a pre-existing rotating pseudo-bulge is introduced initially. The shape and size of secondary bars in the models are comparable to observed ones. They found that the rotation of the two bars is not rigid. The amplitude and pattern speed of the secondary bars oscillate as they rotate through their primary counterparts. Although the secondary bar rotates faster than the primary bar in this model, the stellar velocity field in the central region only shows a weakly twisted kinematic minor axis. Recently more simulations of double-barred galaxies with simpler initial conditions are explored (Du, Shen & Debattista 2014). We expect that the new models can be used to cross-check with the kinematic properties of double-barred galaxies from IFU observations such as SAURON and Atlas3D.

  2. Resonances in barred galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, D.; Klypin, A.

    2007-08-01

    The inner parts of many spiral galaxies are dominated by bars. These are strong non-axisymmetric features which significantly affect orbits of stars and dark matter particles. One of the main effects is the dynamical resonances between galactic material and the bar. We detect and characterize these resonances in N-body models of barred galaxies by measuring angular and radial frequencies of individual orbits. We found narrow peaks in the distribution of orbital frequencies with each peak corresponding to a specific resonance. We found five different resonances in the stellar disc and two in the dark matter. The corotation resonance (CR) and the inner and outer Lindblad resonances are the most populated. The spatial distributions of particles near resonances are wide. For example, the inner Lindblad resonance is not localized at a given radius. Particles near this resonance are mainly distributed along the bar and span a wide range of radii. On the other hand, particles near the CR are distributed in two broad areas around the two stable Lagrange points. The distribution resembles a wide ring at the corotation radius. Resonances capture disc and halo material in near-resonant orbits. Our analysis of orbits in both N-body simulations and simple analytical models indicates that resonances tend to prevent the dynamical evolution of this trapped material. Only if the bar evolves as a whole, resonances drift through the phase space. In this case particles anchored near resonant orbits track the resonance shift and evolve. The criteria to ensure a correct resonant behaviour discussed by Weinberg and Katz can be achieved with few millions particles because the regions of trapped orbits near resonances are large and evolving.

  3. A comparison of film and phosphor scanners

    SciTech Connect

    Chancellor, T.; Morris, R.A.

    1993-10-01

    Signal-to-noise ratios (SNRs) and spatial distortions have been measured for three types of scanners: the Molecular Dynamics (MD) and DuPont film scanners and the MD phosphor scanner. The MD film scanner is a deployable and compact scanner that gives a peak SNR of 110 for low (< 2.0) optical densities (ODs), but the spatial distortions across the digitized film plane are significant. The authors compare this with the DuPont film scanner, which has equally good SNRs at low ODs, but very low spatial distortions. The DuPont also allows the user to define an OD range and contains a prescan function to find the suitable range if the user cannot input such a value; its scan times are quick, and the hardware allows for internal data averaging before being stored to disk. The MD phosphor imager has excellent low-dose capability, producing usable images at a 10-{mu}rad dose (from a 150-pkeV source) but its SNRs are low compared to the film scanner, but they can be increased by adjusting the photomultiplier tube voltage and laser radius across the scan arc.

  4. Use of different bath grab bar configurations following a balance perturbation.

    PubMed

    Guitard, Paulette; Sveistrup, Heidi; Edwards, Nancy; Lockett, Donna

    2011-01-01

    Although commonly prescribed, little research exists on bath grab bars. This study examined the use of bath grab bars following an experimentally induced balance perturbation, the influence of the task on grab bar use, and the influence of balance loss on acceptance of grab bars. A mixed design documented the use of four different grab bar configurations: (a) no bars, (b) vertical/horizontal combination, (c) L-shaped bar, and (d) vertical/angled combination following balance loss. Eighty adults were randomly assigned to three groups. Each group tried the "no bar" configuration and one of the other grab bar configurations. In 25% of the trials for each configuration, balance perturbation was induced. Older adults used grab bars 59.4% of time to regain balance, compared to 13.6% for younger adults. The vertical bar on the side wall was favored by both groups of participants during both bathtub entry and exit. To promote safety in the home, existing building codes must be revised to recommend minimally a vertical grab bar on the side wall. Additional bars may be needed to ensure safety during stand-to-sit and sit-to-stand phases of bath transfers. Initiatives must be taken to decrease the prejudice associated with grab bars. PMID:22256669

  5. Eddy current X-Y scanner system

    NASA Technical Reports Server (NTRS)

    Kurtz, G. W.

    1983-01-01

    The Nondestructive Evaluation Branch of the Materials and Processes Laboratory became aware of a need for a miniature, portable X-Y scanner capable of performing eddy current or other nondestructive testing scanning operations such as ultrasonic, or small areas of flat plate. The technical description and operational theory of the X-Y scanner system designed and built to fulfill this need are covered. The scanner was given limited testing and performs according to its design intent, which is to scan flat plate areas of approximately 412 sq cm (64 sq in) during each complete cycle of scanning.

  6. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  7. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  8. Quantitative comparison of FBP, EM, and Bayesian reconstruction algorithms for the IndyPET scanner.

    PubMed

    Frese, Thomas; Rouze, Ned C; Bouman, Charles A; Sauer, Ken; Hutchins, Gary D

    2003-02-01

    We quantitatively compare filtered backprojection (FBP), expectation-maximization (EM), and Bayesian reconstruction algorithms as applied to the IndyPET scanner--a dedicated research scanner which has been developed for small and intermediate field of view imaging applications. In contrast to previous approaches that rely on Monte Carlo simulations, a key feature of our investigation is the use of an empirical system kernel determined from scans of line source phantoms. This kernel is incorporated into the forward model of the EM and Bayesian algorithms to achieve resolution recovery. Three data sets are used, data collected on the IndyPET scanner using a bar phantom and a Hoffman three-dimensional brain phantom, and simulated data containing a hot lesion added to a uniform background. Reconstruction quality is analyzed quantitatively in terms of bias-variance measures (bar phantom) and mean square error (lesion phantom). We observe that without use of the empirical system kernel, the FBP, EM, and Bayesian algorithms give similar performance. However, with the inclusion of the empirical kernel, the iterative algorithms provide superior reconstructions compared with FBP, both in terms of visual quality and quantitative measures. Furthermore, Bayesian methods outperform EM. We conclude that significant improvements in reconstruction quality can be realized by combining accurate models of the system response with Bayesian reconstruction algorithms. PMID:12716002

  9. Breaking through the Bar

    ERIC Educational Resources Information Center

    Gray, Katti

    2011-01-01

    Howard University School of Law had a problem, and school officials knew it. Over a 20-year period, 40 percent of its graduates who took the Maryland bar exam failed it on their first try. During the next 24 months--the time frame required to determine its "eventual pass rate"--almost 90 percent of the students did pass. What they did not know was…

  10. Breaking through the Bar

    ERIC Educational Resources Information Center

    Gray, Katti

    2011-01-01

    Howard University School of Law had a problem, and school officials knew it. Over a 20-year period, 40 percent of its graduates who took the Maryland bar exam failed it on their first try. During the next 24 months--the time frame required to determine its "eventual pass rate"--almost 90 percent of the students did pass. What they did not know was…

  11. Active chatter control system for long-overhang boring bars

    NASA Astrophysics Data System (ADS)

    Browning, Douglas R.; Golioto, Igor; Thompson, Norman B.

    1997-05-01

    Some machining processes, such as boring, have been historically limited by excessive bar vibration, often resulting in poor surface finish and reduced tool life. A unique boring bar system has been developed to suppress bar vibration, or chatter, during machining using active control technology. Metal cutting test programs have shown proven, repeatable performance on hard-to-cut, aircraft industry high-temperature nickel alloys as well as more easily cut carbon steels. Critical bar length-to-diameter (L/D) ratios, depths-of-cuts, feed rates and cutting speeds far exceed those attainable from the best available passively-damped boring bars. This industry-ready system consists of three principle subsystems: active clamp, instrumented bar, and control electronics. The active clamp is a lathe-mountable body capable of supporting bars of varying sizes and articulating them in orthogonal directions from the base of the bar shank. The instrumented bar consists of a steel shank, standard insert head and imbedded accelerometers. Wire harnesses from both the bar and clamp connect to control electronics comprised of highly-efficient switched- capacitor amplifiers that drive the piezoelectric actuators, sensor signal conditioning, a PC-based program manager and two 32-bit floating-point DSPs. The program manager code runs on the host PC and distributes system identification and control functions to the two DSPs. All real-time signal processing is based on the principles of adaptive filter minimization. For the described system, cutting performance has extended existing chatter thresholds (cutting parameter combinations) for nickel alloys by as much as 400% while maintaining precision surface finish on the machined part. Bar L/D ratios as high as 11 have enabled deep boring operations on nickel workpieces that otherwise could not be performed free of chatter.

  12. Gas inflow in barred galaxies - effects of secondary bars

    NASA Astrophysics Data System (ADS)

    Maciejewski, Witold; Teuben, Peter J.; Sparke, Linda S.; Stone, James M.

    2002-01-01

    We report results of high-resolution hydrodynamical simulations of gas flows in barred galaxies, with a focus on gas dynamics in the central kiloparsec. In a single bar with an inner Lindblad resonance, we find either near-circular motion of gas in the nuclear ring, or a spiral shock extending towards the galaxy centre, depending on the sound speed in the gas. From a simple model of a dynamically possible doubly barred galaxy with resonant coupling, we infer that the secondary bar is likely to end well inside its corotation. Such a bar cannot create shocks in the gas flow, and therefore will not reveal itself in colour maps through straight dust lanes: the gas flows induced by it are different from those caused by the rapidly rotating main bars. In particular, we find that secondary stellar bars are unlikely to increase the mass inflow rate into the galactic nucleus.

  13. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, T.L.; Powers, H.G.

    1980-12-07

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  14. Airport scanner firm bags engineering prize

    NASA Astrophysics Data System (ADS)

    Lavender, Gemma

    2014-08-01

    The firm behind a scanner that could see airports relax their ban on liquids in hand luggage has been awarded the prestigious 2014 MacRobert Award for engineering innovation from the Royal Academy of Engineering.

  15. Information extraction techniques for multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Malila, W. A.; Crane, R. B.; Turner, R. E.

    1972-01-01

    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions.

  16. Hand-held optical fuel pin scanner

    DOEpatents

    Kirchner, Tommy L. (Richland, WA); Powers, Hurshal G. (Richland, WA)

    1987-01-01

    An optical scanner for indicia arranged in a focal plane perpendicular to an optical system including a rotatable dove prism. The dove prism transmits a rotating image to a stationary photodiode array.

  17. How flatbed scanners upset accurate film dosimetry.

    PubMed

    van Battum, L J; Huizenga, H; Verdaasdonk, R M; Heukelom, S

    2016-01-21

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2-2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner's transmission mode, with red-green-blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner's optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film. PMID:26689962

  18. Implementation of a Low Cost Structured Light Scanner

    NASA Astrophysics Data System (ADS)

    Pashaei, M.; Mousavi, S. M.

    2013-07-01

    In this paper, a practical 3D scanner based on coded structured light principle is reported. The system integrates the technology of close range photogrammetry and Gray code structured light together with multi-line shift processing methodology. This 3D acquisition device allows bulding highly dense and accurate models of real world in a cost- and time-effective manner. The configuration consists of a digital multimedia projector and two digital cameras. One advantage of this configuration is, that the projection device can, but is not required to be stable over time nor it does have to be calibrated. Given a point on left image, the correspondent point on right image is the intersection of coded light stripes with the same code and epipolar line. Then, the depth is estimated by triangulation. The experimental restults have showen that, the proposed solution for essential matrix derivation and applying it to find correspondent points throughout Grey coded multi-line data sets yields high accuracy and density surface reconstruction with the lowest percentage of mismatch or blunder even for semi-complex objects. Some other advantages of this system lie in its design simplicity, low cost and the potential for fast and robust implementation.

  19. A procedure for automated land use mapping using remotely sensed multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Whitley, S. L.

    1975-01-01

    A system of processing remotely sensed multispectral scanner data by computer programs to produce color-coded land use maps for large areas is described. The procedure is explained, the software and the hardware are described, and an analogous example of the procedure is presented. Detailed descriptions of the multispectral scanners currently in use are provided together with a summary of the background of current land use mapping techniques. The data analysis system used in the procedure and the pattern recognition software used are functionally described. Current efforts by the NASA Earth Resources Laboratory to evaluate operationally a less complex and less costly system are discussed in a separate section.

  20. MEMS temperature scanner: principles, advances, and applications

    NASA Astrophysics Data System (ADS)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  1. Trophic classification of Colorado lakes utilizing contact data, Landsat and aircraft-acquired multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Boland, D. H. P.; Blackwell, R. J.

    1978-01-01

    Multispectral scanner data, acquired over several Colorado lakes using Landsat-1 and aircraft, were used in conjunction with National Eutrophication Survey contact-sensed data to determine the feasibility of assessing lacustrine trophic levels. A trophic state index was developed using contact-sensed data for several trophic indicators (chlorophyll a, inverse of Secchi disk transparency, conductivity, total phosphorous, total organic nitrogen, algal assay yield). Relationships between the digitally processed multispectral scanner data, several trophic indicators, and the trophic index were examined using a supervised multispectral classification technique and regression techniques. Statistically significant correlations exist between spectral bands, several of the trophic indicators (chlorophyll a, Secchi disk transparency, total organic nitrogen), and the trophic state index. Color-coded photomaps were generated which depict the spectral aspects of trophic state. Multispectral scanner data acquired from satellite and aircraft platforms can be used to advantage in lake monitoring and survey programs.

  2. Bar piezoelectric ceramic transformers.

    PubMed

    Erhart, Ji?í; Pulpan, P?lpán; Rusin, Luboš

    2013-07-01

    Bar-shaped piezoelectric ceramic transformers (PTs) working in the longitudinal vibration mode (k31 mode) were studied. Two types of the transformer were designed--one with the electrode divided into two segments of different length, and one with the electrodes divided into three symmetrical segments. Parameters of studied transformers such as efficiency, transformation ratio, and input and output impedances were measured. An analytical model was developed for PT parameter calculation for both two- and three-segment PTs. Neither type of bar PT exhibited very high efficiency (maximum 72% for three-segment PT design) at a relatively high transformation ratio (it is 4 for two-segment PT and 2 for three-segment PT at the fundamental resonance mode). The optimum resistive loads were 20 and 10 k? for two- and three-segment PT designs for the fundamental resonance, respectively, and about one order of magnitude smaller for the higher overtone (i.e., 2 k? and 500 ?, respectively). The no-load transformation ratio was less than 27 (maximum for two-segment electrode PT design). The optimum input electrode aspect ratios (0.48 for three-segment PT and 0.63 for two-segment PT) were calculated numerically under no-load conditions. PMID:25004515

  3. Beyond Hopkinson's bar.

    PubMed

    Pierron, F; Zhu, H; Siviour, C

    2014-08-28

    In order to perform experimental identification of high strain rate material models, engineers have only a very limited toolbox based on test procedures developed decades ago. The best example is the so-called split Hopkinson pressure bar based on the bar concept introduced 100 years ago by Bertram Hopkinson to measure blast pulses. The recent advent of full-field deformation measurements using imaging techniques has allowed novel approaches to be developed and exciting new testing procedures to be imagined for the first time. One can use this full-field information in conjunction with efficient numerical inverse identification tools such as the virtual fields method (VFM) to identify material parameters at high rates. The underpinning novelty is to exploit the inertial effects developed in high strain rate loading. This paper presents results from a new inertial impact test to obtain stress-strain curves at high strain rates (here, up to 3000?s(-1)). A quasi-isotropic composite specimen is equipped with a grid and images are recorded with the new HPV-X camera from Shimadzu at 5?Mfps and the SIMX16 camera from Specialised Imaging at 1?Mfps. Deformation, strain and acceleration fields are then input into the VFM to identify the stiffness parameters with unprecedented quality. PMID:25071232

  4. Cognition for robot scanner based remote welding

    NASA Astrophysics Data System (ADS)

    Thombansen, U.; Ungers, Michael

    2014-02-01

    The effort for reduced cycle times in manufacturing has supported the development of remote welding systems which use a combination of scanners for beam delivery and robots for scanner positioning. Herein, close coupling of both motions requires a precise command of the robot trajectory and the scanner positioning to end up with a combined beam delivery. Especially the path precision of the robot plays a vital role in this kinematic chain. In this paper, a sensor system is being presented which allows tracking the motion of the laser beam against the work piece. It is based on a camera system which is coaxially connected to the scanner thus observing the relative motion of the laser beam relative to the work piece. The acquired images are processed with computer vision algorithms from the field of motion detection. The suitability of the algorithms is being demonstrated with a motion tracking tool which visualizes the homogeneity of the tracking result. The reported solution adds cognitive capabilities to manufacturing systems for robot scanner based materials processing. It allows evaluation of the relative motion between work piece and the laser beam. Moreover, the system can be used to adapt system programming during set-up of a manufacturing task or to evaluate the functionality of a manufacturing system during production. The presented sensor system will assist in optimizing manufacturing processes.

  5. LANSCE-R WIRE-SCANNER SYSTEM

    SciTech Connect

    Gruchalla, Michael E.

    2011-01-01

    The National Instruments cRIO platform is used for the new LANSCE-R wire-scanner systems. All wire-scanner electronics are integrated into a single BiRa BiRIO 4U cRIO chassis specifically designed for the cRIO crate and all interface electronics. The BiRIO chassis, actuator and LabVIEW VIs provide a complete wire-scanner system integrated with EPICS. The new wire-scanner chassis includes an 8-slot cRIO crate with Virtex-5 LX 110 FPGA and Power-PC real-time controller, the LANL-developed cRIO 2-axis wire-sensor analog interface module (AFE), NI9222 cRIO 4-channel 16-bit digitizer, cRIO resolver demodulator, cRIO event receiver, front-panel touch panel display, motor driver, and all necessary software, interface wiring, connectors and ancillary components. This wirescanner system provides a complete, turn-key, 2-axis wire-scanner system including 2-channel low-noise sensewire interface with variable DC wire bias and wireintegrity monitor, 16-bit signal digitizers, actuator motor drive and control, actuator position sensing, limit-switch interfaces, event receiver, LabVIEW and EPICS interface, and both remote operation and full stand-alone operation using the touch panel.

  6. Precise Indoor Localization for Mobile Laser Scanner

    NASA Astrophysics Data System (ADS)

    Kaijaluoto, R.; Hyyppä, A.

    2015-05-01

    Accurate 3D data is of high importance for indoor modeling for various applications in construction, engineering and cultural heritage documentation. For the lack of GNSS signals hampers use of kinematic platforms indoors, TLS is currently the most accurate and precise method for collecting such a data. Due to its static single view point data collection, excessive time and data redundancy are needed for integrity and coverage of data. However, localization methods with affordable scanners are used for solving mobile platform pose problem. The aim of this study was to investigate what level of trajectory accuracies can be achieved with high quality sensors and freely available state of the art planar SLAM algorithms, and how well this trajectory translates to a point cloud collected with a secondary scanner. In this study high precision laser scanners were used with a novel way to combine the strengths of two SLAM algorithms into functional method for precise localization. We collected five datasets using Slammer platform with two laser scanners, and processed them with altogether 20 different parameter sets. The results were validated against TLS reference. The results show increasing scan frequency improves the trajectory, reaching 20 mm RMSE levels for the best performing parameter sets. Further analysis of the 3D point cloud showed good agreement with TLS reference with 17 mm positional RMSE. With precision scanners the obtained point cloud allows for high level of detail data for indoor modeling with accuracies close to TLS at best with vastly improved data collection efficiency.

  7. Bars in a cosmological context

    NASA Astrophysics Data System (ADS)

    Martig, Marie; Kraljic, Katarina; Bournaud, Frédéric

    2015-03-01

    We study the properties of bars in a series of zoom cosmological simulations (Martig et al. 2012, Kraljic et al. 2012). We find that bars are almost absent from galaxies at z>1, and if they form they tend to be quickly destroyed by mergers and instabilities. On the contrary, at z<1 bars are long-lived, and the fraction of barred galaxies rises steadily. Bars are eventually found in ~ 80% of z=0 spiral galaxies. This redshift evolution is quantitatively consistent with existing data from the COSMOS survey (Sheth et al. 2008), although the detectability of bars is presently limited to z<0.8 because of band-shifting and resolution effects. We predict later bar formation in lower-mass galaxies, also in agreement with existing data (e.g., Sheth et al. 2012). We actually find that the characteristic epoch of bar formation is the epoch of massive thin disk formation, corresponding to the transition between an early violent phase at z > 1 and a later secular phase. Bar formation thus traces the emergence of the disk-dominated morphology of today's spirals.

  8. CT densitometry of the lungs: Scanner performance

    SciTech Connect

    Kemerink, G.J.; Lamers, R.J.S.; Thelissen, G.R.P.; Engelshoven, J.M.A. van

    1996-01-01

    Our goal was to establish the reproducibility and accuracy of the CT scanner in densitometry of the lungs. Scanner stability was assessed by analysis of daily quality checks. Studies using a humanoid phantom and polyethylene foams for lung were performed to measure reproducibility and accuracy. The dependence of the CT-estimated density on reconstruction filter, zoom factor, slice thickness, table height, data truncation, and objects outside the scan field was determined. Stability of the system at air density was within {approx}1 HU and at water density within {approx}2 HU. Reproducibility and accuracy for densities found for lung were within 2-3%. Dependence on the acquisition and reconstruction parameters was neglible, with the exceptions of the ultra high resolution reconstruction algorithm in the case of emphysema, and objects outside the scan field. The performance of the CT scanner tested is quite adequate for densitometry of the lungs. 26 refs., 5 figs., 4 tabs.

  9. Laser scanners: from industrial to biomedical applications

    NASA Astrophysics Data System (ADS)

    Duma, Virgil-Florin

    2013-11-01

    We present a brief overview of our contributions in the field of laser scanning technologies, applied for a variety of applications, from industrial, dimensional measurements to high-end biomedical imaging, such as Optical Coherence Tomography (OCT). Polygon Mirror (PM) scanners are presented, as applied from optical micrometers to laser sources scanned in frequency for Swept Sources (SSs) OCT. Galvanometer-based scanners (GSs) are approached to determine the optimal scanning function in order to obtain the highest possible duty cycle. We demonstrated that this optimal scanning function is linear plus parabolic, and not linear plus sinusoidal, as it has been previously considered in the literature. Risley prisms (rotational double wedges) scanners are pointed out, with our exact approach to determine and simulate their scan patterns in order to optimize their use in several types of applications, including OCT. A discussion on the perspectives of scanning in biomedical imaging, with a focus on OCT concludes the study.

  10. How flatbed scanners upset accurate film dosimetry

    NASA Astrophysics Data System (ADS)

    van Battum, L. J.; Huizenga, H.; Verdaasdonk, R. M.; Heukelom, S.

    2016-01-01

    Film is an excellent dosimeter for verification of dose distributions due to its high spatial resolution. Irradiated film can be digitized with low-cost, transmission, flatbed scanners. However, a disadvantage is their lateral scan effect (LSE): a scanner readout change over its lateral scan axis. Although anisotropic light scattering was presented as the origin of the LSE, this paper presents an alternative cause. Hereto, LSE for two flatbed scanners (Epson 1680 Expression Pro and Epson 10000XL), and Gafchromic film (EBT, EBT2, EBT3) was investigated, focused on three effects: cross talk, optical path length and polarization. Cross talk was examined using triangular sheets of various optical densities. The optical path length effect was studied using absorptive and reflective neutral density filters with well-defined optical characteristics (OD range 0.2–2.0). Linear polarizer sheets were used to investigate light polarization on the CCD signal in absence and presence of (un)irradiated Gafchromic film. Film dose values ranged between 0.2 to 9 Gy, i.e. an optical density range between 0.25 to 1.1. Measurements were performed in the scanner’s transmission mode, with red–green–blue channels. LSE was found to depend on scanner construction and film type. Its magnitude depends on dose: for 9 Gy increasing up to 14% at maximum lateral position. Cross talk was only significant in high contrast regions, up to 2% for very small fields. The optical path length effect introduced by film on the scanner causes 3% for pixels in the extreme lateral position. Light polarization due to film and the scanner’s optical mirror system is the main contributor, different in magnitude for the red, green and blue channel. We concluded that any Gafchromic EBT type film scanned with a flatbed scanner will face these optical effects. Accurate dosimetry requires correction of LSE, therefore, determination of the LSE per color channel and dose delivered to the film.

  11. D0-bar D0 mixing at BaBar

    NASA Astrophysics Data System (ADS)

    Coleman, J.

    2008-05-01

    This article reviews the recent measurement of D0-bar D0 mixing with the D0 ? K? decay channel from the BaBar experiment at the PEP-II B-Factory. Averages from the Heavy Flavor Averaging Group between this result and a previous result from BELLE are also presented.

  12. Multispectral scanner imagery for plant community classification.

    NASA Technical Reports Server (NTRS)

    Driscoll, R. S.; Spencer, M. M.

    1973-01-01

    Optimum channel selection among 12 channels of multispectral scanner imagery identified six as providing the best information for computerized classification of 11 plant communities and two nonvegetation classes. Intensive preprocessing of the spectral data was required to eliminate bidirectional reflectance effects of the spectral imagery caused by scanner view angle and varying geometry of the plant canopy. Generalized plant community types - forest, grassland, and hydrophytic systems - were acceptably classified based on ecological analysis. Serious, but soluble, errors occurred with attempts to classify specific community types within the grassland system. However, special clustering analyses provided for improved classification of specific grassland communities.

  13. LANSCE Wire Scanner System Prototype: Switchyard Test

    SciTech Connect

    Sedillo, James D

    2012-04-11

    On November 19, 2011, the beam diagnostics team of Los Alamos National Laboratory's LANSCE accelerator facility conducted a test of a prototype wire scanner system for future deployment within the accelerator's switchyard area. The primary focus of this test was to demonstrate the wire scanner control system's ability to extend its functionality beyond acquiring lower energy linac beam profile measurements to acquiring data in the switchyard. This study summarizes the features and performance characteristics of the electronic and mechanical implementation of this system with details focusing on the test results.

  14. Infrared scanner concept verification test report

    NASA Technical Reports Server (NTRS)

    Bachtel, F. D.

    1980-01-01

    The test results from a concept verification test conducted to assess the use of an infrared scanner as a remote temperature sensing device for the space shuttle program are presented. The temperature and geometric resolution limits, atmospheric attenuation effects including conditions with fog and rain, and the problem of surface emissivity variations are included. It is concluded that the basic concept of using an infrared scanner to determine near freezing surface temperatures is feasible. The major problem identified is concerned with infrared reflections which result in significant errors if not controlled. Action taken to manage these errors result in design and operational constraints to control the viewing angle and surface emissivity.

  15. Miniature rotating transmissive optical drum scanner

    NASA Technical Reports Server (NTRS)

    Lewis, Robert (Inventor); Parrington, Lawrence (Inventor); Rutberg, Michael (Inventor)

    2013-01-01

    A miniature rotating transmissive optical scanner system employs a drum of small size having an interior defined by a circumferential wall rotatable on a drum axis, an optical element positioned within the interior of the drum, and a light-transmissive lens aperture provided at an angular position in the circumferential wall of the drum for scanning a light beam to or from the optical element in the drum along a beam azimuth angle as the drum is rotated. The miniature optical drum scanner configuration obtains a wide scanning field-of-view (FOV) and large effective aperture is achieved within a physically small size.

  16. The conical scanner evaluation system design

    NASA Technical Reports Server (NTRS)

    Cumella, K. E.; Bilanow, S.; Kulikov, I. B.

    1982-01-01

    The software design for the conical scanner evaluation system is presented. The purpose of this system is to support the performance analysis of the LANDSAT-D conical scanners, which are infrared horizon detection attitude sensors designed for improved accuracy. The system consists of six functionally independent subsystems and five interface data bases. The system structure and interfaces of each of the subsystems is described and the content, format, and file structure of each of the data bases is specified. For each subsystem, the functional logic, the control parameters, the baseline structure, and each of the subroutines are described. The subroutine descriptions include a procedure definition and the input and output parameters.

  17. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar regions, magnetic fields reduce density compression in the dust-lane shocks, while removing angular momentum further from the gas at the shocks. This evidently results in a smaller and more distributed ring, and a larger mass inflows rate to the galaxy center in models with stronger magnetic fields. In the outer regions, an MHD dynamo due to the combined action of the bar potential and background shear operates, amplifying magnetic fields near the corotation resonance. In the absence of spiral arms, the amplified fields naturally shape into trailing magnetic arms with strong fields and low density. The reader is refereed to Kim & Stone (2012) for a detailed presentation of the simulation outcomes.

  18. Deriving debris-flow characteristics from vertical laser profile scanners

    NASA Astrophysics Data System (ADS)

    Jacquemart, Mylène; Felix, Morsdorf; Graf, Christoph

    2015-04-01

    Two well-known debris-flow channels in the Swiss Alps, the Dorfbach, in the community of Randa, canton of Valais and the Spreitgraben (community of Guttannen, BE) were fitted with a setup of two laser profile scanners each. Since 2011 (Randa site) and 2012 (Spreitgraben site), these devices have been scanning the passing debris flows at rates of 50 Hz or 75 Hz, recording several million across bed profiles with point densities of roughly 20 points per meter during debris-flow events. In order to comprehend the vast possibilities this extraordinary data set offers, a preliminary evaluation has been undertaken, writing code that allows for a semi-automatic extraction of the main debris-flow characteristics maximum flow height, peak discharge, total discharge as well as spatially distributed flow velocity. The analysis of 13 events, of which 12 took place at the Dorfbach site, and one took place at the Spreitgraben site, revealed that a large-scale Particle Image Velocimetry (PIV) approach can be used to derive flow velocities, and these in turn can be used to compute discharge curves for all of the recorded events. Total automation has proven to be unrealistic, because the choice of the bed geometry greatly influences discharge results. Also, excluding outlying velocity values is necessary, in order to find reliable peak discharge values. Nevertheless, we find that the laser scanners offer distinct advantages over the 'established' setup consisting of geophones and a radar gauge because the scanners catch the debris flow as it changes its flow path and offer much higher resolution in terms of distributed flow height measurements. Furthermore, the single profiles of the recorded debris flows were analyzed with regard to their surface geometry by fitting fourth order polynomials to find the points of inflection along the profiles. From this, we have been able to estimate the amount of flow height that debris flows gain by building their well-known convex fronts, and have found that this can add up to 10 % of their width in height and 100 % of the 'regular' flow height in the channel. The possibilities these datasets offer have by no means been explored to their full extent. The scanners also offer reflectance values that have hardly been taken into account so far, as well as the possibilities to study bed changes and the building of lateral levées, which are clearly visible in some of the datasets. We hope that by providing this preliminary analysis, and a first version of a toolbox that allows working with these kinds of datasets, future studies will yield results that can benefit efforts to improve debris-flow monitoring, modeling and understanding.

  19. Use of ocean color scanner data in water quality mapping

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  20. MRI Scanners Guide Therapy to Tumors.

    PubMed

    2015-11-01

    A new study shows that MRI scanners can direct magnetically labeled macrophages bearing an oncolytic virus toward primary and metastatic tumors in mice. Researchers hope this approach, called magnetic resonance targeting, can be scaled for use in humans, to improve the delivery of cell-based cancer therapy. PMID:26370155

  1. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the body to certain x-rays or low-energy gamma rays. This generic type of device may include...

  2. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the body to certain x-rays or low-energy gamma rays. This generic type of device may include...

  3. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the body to certain x-rays or low-energy gamma rays. This generic type of device may include...

  4. 21 CFR 892.1220 - Fluorescent scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fluorescent scanner. 892.1220 Section 892.1220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... the body to certain x-rays or low-energy gamma rays. This generic type of device may include...

  5. Ultrasonic Scanner Control and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Hemann, John

    2002-01-01

    The research accomplishments under this grant were very extensive in the areas of ULTRASONIC SCANNER CONTROL AND DATA ACQUISITION. Rather than try to summarize all this research I have enclosed research papers and reports which were completed with the hnding provided by the grant. These papers and reports are listed below:

  6. Miniature 'Wearable' PET Scanner Ready for Use

    ScienceCinema

    Paul Vaska

    2013-07-22

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  7. Miniature 'Wearable' PET Scanner Ready for Use

    SciTech Connect

    Paul Vaska

    2011-03-09

    Scientists from BNL, Stony Brook University, and collaborators have demonstrated the efficacy of a "wearable," portable PET scanner they've developed for rats. The device will give neuroscientists a new tool for simultaneously studying brain function and behavior in fully awake, moving animals.

  8. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  9. Biomedical Imaging and Sensing using Flatbed Scanners

    PubMed Central

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  10. Learning and Teaching with a Computer Scanner

    ERIC Educational Resources Information Center

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  11. Biomedical imaging and sensing using flatbed scanners.

    PubMed

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-09-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600-700 cm(2)) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features of flatbed scanners also highlighting the key parameters for designing scientific experiments using these devices, followed by a discussion of some of the significant examples, where scanner-based systems were constructed to conduct various biomedical imaging and/or sensing experiments. Along with mobile phones and other emerging consumer electronics devices, flatbed scanners and their use in advanced imaging and sensing experiments might help us transform current practices of medicine, engineering and sciences through democratization of measurement science and empowerment of citizen scientists, science educators and researchers in resource limited settings. PMID:24965011

  12. Wire scanner software and firmware issues

    SciTech Connect

    Gilpatrick, John Doug

    2008-01-01

    The Los Alamos Neutron Science Center facility presently has 110 slow wire scanning profile measurement instruments located along its various beam lines. These wire scanners were developed and have been operating for at least 30 years. While the wire scanners solved many problems to operate and have served the facility well they have increasingly suffered from several problems or limitations, such as maintenance and reliability problems, antiquated components, slow data acquisition, and etc. In order to refurbish these devices, these wire scanners will be replaced with newer versions. The replacement will consist of a completely new beam line actuator, new cables, new electronics and brand new software and firmware. This note describes the functions and modes of operation that LabVIEW VI software on the real time controller and FPGA LabVIEW firmware will be required. It will be especially interesting to understand the overall architecture of these LabVIEW VIs. While this note will endeavor to describe all of the requirements and issues for the wire scanners, undoubtedly, there will be missing details that will be added as time progresses.

  13. Galaxy Zoo: CANDELS barred discs and bar fractions

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Melvin, Thomas; Lintott, Chris; Masters, Karen L.; Willett, Kyle W.; Keel, William C.; Smethurst, R. J.; Cheung, Edmond; Nichol, Robert C.; Schawinski, Kevin; Rutkowski, Michael; Kartaltepe, Jeyhan S.; Bell, Eric F.; Casteels, Kevin R. V.; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; McIntosh, Daniel H.; Mortlock, Alice; Newman, Jeffrey A.; Ownsworth, Jamie; Bamford, Steven; Dahlen, Tomas; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grogin, N. A.; Grützbauch, Ruth; Guo, Yicheng; Häußler, Boris; Jek, Kian J.; Kaviraj, Sugata; Lucas, Ray A.; Peth, Michael; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2014-12-01

    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ˜ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ˜ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 ( f_{bar} = 10.7^{+6.3}_{-3.5} per cent after correcting for incompleteness) does not significantly evolve. We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion years.

  14. 31. SITE BUILDING 002 SCANNER BUILDING AT INTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. SITE BUILDING 002 - SCANNER BUILDING AT INTERIOR - BACK OF POWER SUPPLY UNITS 3045-17 AND 3046-29. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  15. 24. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER -- MWOC IN OPEARATION AT 1924 ZULU TIME. 26 OCTOBER, 1999. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. Occurrence and characteristics of mutual interference between LIDAR scanners

    NASA Astrophysics Data System (ADS)

    Kim, Gunzung; Eom, Jeongsook; Park, Seonghyeon; Park, Yongwan

    2015-05-01

    The LIDAR scanner is at the heart of object detection of the self-driving car. Mutual interference between LIDAR scanners has not been regarded as a problem because the percentage of vehicles equipped with LIDAR scanners was very rare. With the growing number of autonomous vehicle equipped with LIDAR scanner operated close to each other at the same time, the LIDAR scanner may receive laser pulses from other LIDAR scanners. In this paper, three types of experiments and their results are shown, according to the arrangement of two LIDAR scanners. We will show the probability that any LIDAR scanner will interfere mutually by considering spatial and temporal overlaps. It will present some typical mutual interference scenario and report an analysis of the interference mechanism.

  17. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  18. 11. SITE BUILDING 002 SCANNER BUILDING EVAPORATIVE COOLING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SITE BUILDING 002 - SCANNER BUILDING - EVAPORATIVE COOLING TOWER SYSTEM IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 'Light bar' attitude indicator

    NASA Technical Reports Server (NTRS)

    Enevoldson, E. K.; Horton, V. W.

    1982-01-01

    The development and evaluation of a light bar attitude indicator to help maintain proper aircraft attitude during high altitude night flying is described. A standard four-inch ADI was modified to project an artificial horizon across the instrument panel for pitch and roll information. A light bulb was put in the center of the ADI and a thin slit cut on the horizon, resulting in a thin horizontal sheet of light projecting from the instrument. The intensity of the projected beam is such that it can only be seen in a darkened room or at night. The beam on the instrument panel of the T-37 jet trainer is shown, depicting various attitudes. The favorable comments of about 50 pilots who evaluated the instrument are summarized, including recommendations for improving the instrument. Possible uses for the instrument to ease the pilot task are listed. Two potential problems in using the device are the development of pilot complacency and an upright-inverted ambiguity in the instrument.

  20. Calibration and equivalency analysis of image plate scanners

    SciTech Connect

    Williams, G. Jackson Maddox, Brian R.; Chen, Hui; Kojima, Sadaoki; Millecchia, Matthew

    2014-11-15

    A universal procedure was developed to calibrate image plate scanners using radioisotope sources. Techniques to calibrate scanners and sources, as well as cross-calibrate scanner models, are described to convert image plate dosage into physical units. This allows for the direct comparison of quantitative data between any facility and scanner. An empirical relation was also derived to establish sensitivity response settings for arbitrary gain settings. In practice, these methods may be extended to any image plate scanning system.

  1. Applying Schwarzschild's orbit superposition method to barred or non-barred disc galaxies

    NASA Astrophysics Data System (ADS)

    Vasiliev, Eugene; Athanassoula, E.

    2015-07-01

    We present an implementation of the Schwarzschild orbit superposition method, which can be used for constructing self-consistent equilibrium models of barred or non-barred disc galaxies, or of elliptical galaxies with figure rotation. This is a further development of the publicly available code SMILE; its main improvements include a new efficient representation of an arbitrary gravitational potential using two-dimensional spline interpolation of Fourier coefficients in the meridional plane, as well as the ability to deal with rotation of the density profile and with multicomponent mass models. We compare several published methods for constructing composite axisymmetric disc-bulge-halo models and demonstrate that our code produces the models that are closest to equilibrium. We also apply it to create models of triaxial elliptical galaxies with cuspy density profiles and figure rotation, and find that such models can be found and are stable over many dynamical times in a wide range of pattern speeds and angular momenta, covering both slow- and fast-rotator classes. We then attempt to create models of strongly barred disc galaxies, using an analytic three-component potential, and find that it is not possible to make a stable dynamically self-consistent model for this density profile. Finally, we take snapshots of two N-body simulations of barred disc galaxies embedded in nearly-spherical haloes, and construct equilibrium models using only information on the density profile of the snapshots. We demonstrate that such reconstructed models are in near-stationary state, in contrast with the original N-body simulations, one of which displayed significant secular evolution.

  2. Can technology help to reduce underage drinking? Evidence from the false ID laws with scanner provision*

    PubMed Central

    Yörük, Barış K.

    2014-01-01

    Underage drinkers often use false identification to purchase alcohol or gain access into bars. In recent years, several states have introduced laws that provide incentives to retailers and bar owners who use electronic scanners to ensure that the customer is 21 years or older and uses a valid identification to purchase alcohol. This paper is the first to investigate the effects of these laws using confidential data from the National Longitudinal Survey of Youth, 1997 Cohort (NLSY97). Using a difference-in-differences methodology, I find that the false ID laws with scanner provision significantly reduce underage drinking, including up to a 0.22 drink decrease in the average number of drinks consumed by underage youth per day. This effect is observed particularly in the short-run and more pronounced for non-college students and those who are relatively younger. These results are also robust under alternative model specifications. The findings of this paper highlight the importance of false ID laws in reducing alcohol consumption among underage youth. PMID:24732386

  3. Can technology help to reduce underage drinking? Evidence from the false ID laws with scanner provision.

    PubMed

    Yörük, Barış K

    2014-07-01

    Underage drinkers often use false identification to purchase alcohol or gain access into bars. In recent years, several states have introduced laws that provide incentives to retailers and bar owners who use electronic scanners to ensure that the customer is 21 years or older and uses a valid identification to purchase alcohol. This paper is the first to investigate the effects of these laws using confidential data from the National Longitudinal Survey of Youth, 1997 Cohort (NLSY97). Using a difference-in-differences methodology, I find that the false ID laws with scanner provision significantly reduce underage drinking, including up to a 0.22 drink decrease in the average number of drinks consumed by underage youth per day. This effect is observed particularly in the short-run and more pronounced for non-college students and those who are relatively younger. These results are also robust under alternative model specifications. The findings of this paper highlight the importance of false ID laws in reducing alcohol consumption among underage youth. PMID:24732386

  4. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  5. 21 CFR 882.1925 - Ultrasonic scanner calibration test block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic scanner calibration test block. 882... Ultrasonic scanner calibration test block. (a) Identification. An ultrasonic scanner calibration test block is a block of material with known properties used to calibrate ultrasonic scanning devices (e.g.,...

  6. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  7. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  8. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  9. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  10. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  11. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  12. 21 CFR 892.1300 - Nuclear rectilinear scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear rectilinear scanner. 892.1300 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1300 Nuclear rectilinear scanner. (a) Identification. A nuclear rectilinear scanner is a device intended to image the distribution of radionuclides...

  13. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  14. Applications of Optical Scanners in an Academic Center.

    ERIC Educational Resources Information Center

    Molinari, Carol; Tannenbaum, Robert S.

    1995-01-01

    Describes optical scanners, including how the technology works; applications in data management and research; development of instructional materials; and providing community services. Discussion includes the three basic types of optical scanners: optical character recognition (OCR), optical mark readers (OMR), and graphic scanners. A sidebar…

  15. X-ray modulation transfer functions of photostimulable phosphor image plates and scanners

    SciTech Connect

    Seely, John F.; Holland, Glenn E.; Hudson, Lawrence T.; Henins, Albert

    2008-11-01

    The modulation transfer functions of two types of photostimulable phosphor image plates were determined in the 10 keV to 50 keV x-ray energy range using a resolution test pattern with up to 10 line pairs per mm (LP/mm) and a wavelength dispersive x-ray spectrometer. Techniques were developed for correcting for the partial transmittance of the high energy x rays through the lead bars of the resolution test pattern, and the modulation transfer function (MTF) was determined from the measured change in contrast with LP/mm values. The MTF was convolved with the slit function of the image plate scanner, and the resulting point spread functions (PSFs) were in good agreement with the observed shapes and widths of x-ray spectral lines and with the PSF derived from edge spread functions. The shapes and the full width at half-maximum (FWHM) values of the PSF curves of the Fuji Superior Resolution (SR) and Fuji Maximum Sensitivity (MS) image plate detectors, consisting of the image plate and the scanner, determined by the three methods gave consistent results: The SR PSF is Gaussian with 0.13 mm FWHM, and the MS PSF is Lorentzian with 0.19 mm FWHM. These techniques result in the accurate determination of the spatial resolution achievable using image plate and scanner combinations and enable the optimization of spatial resolution for x-ray spectroscopy and radiography.

  16. Ceramic Magnets Pass the Bar.

    ERIC Educational Resources Information Center

    Barrow, Lloyd H.

    1990-01-01

    Described is the use of ordinary ceramic magnets to replace the more expensive bar magnets commonly used. Suggestions for 11 task cards to help introduce children to the uses and principles of magnetism are provided. (CW)

  17. The BaBar Mini

    SciTech Connect

    Brown, David N.

    2003-07-11

    BaBar has recently deployed a new event data format referred to as the Mini. The mini uses efficient packing and aggressive noise suppression to represent the average reconstructed BaBar event in under 7 KBytes. The Mini packs detector information into simple transient data objects, which are then aggregated into roughly 10 composite persistent objects per event. The Mini currently uses Objectivity persistence, and it is being ported to use Root persistence. The Mini contains enough information to support detailed detector studies, while remaining small and fast enough to be used directly in physics analysis. Mini output is customizable, allowing users to both truncate unnecessary content or add content, depending on their needs. The Mini has now replaced three older formats as the primary output of BaBar event reconstruction. A reduced form of the Mini will soon replace the physics analysis format as well, giving BaBar a single, flexible event data format covering all its needs.

  18. Application of a color scanner for 60Co high dose rate brachytherapy dosimetry with EBT radiochromic film

    PubMed Central

    Ghorbani, Mahdi; Toossi, Mohammad Taghi Bahreyni; Mowlavi, Ali Asghar; Roodi, Shahram Bayani; Meigooni, Ali Soleimani

    2012-01-01

    Background. The aim of this study is to evaluate the performance of a color scanner as a radiochromic film reader in two dimensional dosimetry around a high dose rate brachytherapy source. Materials and methods A Microtek ScanMaker 1000XL film scanner was utilized for the measurement of dose distribution around a high dose rate GZP6 60Co brachytherapy source with GafChromic® EBT radiochromic films. In these investigations, the non-uniformity of the film and scanner response, combined, as well as the films sensitivity to scanner’s light source was evaluated using multiple samples of films, prior to the source dosimetry. The results of these measurements were compared with the Monte Carlo simulated data using MCNPX code. In addition, isodose curves acquired by radiochromic films and Monte Carlo simulation were compared with those provided by the GZP6 treatment planning system. Results Scanning of samples of uniformly irradiated films demonstrated approximately 2.85% and 4.97% nonuniformity of the response, respectively in the longitudinal and transverse directions of the film. Our findings have also indicated that the film response is not affected by the exposure to the scanner’s light source, particularly in multiple scanning of film. The results of radiochromic film measurements are in good agreement with the Monte Carlo calculations (4%) and the corresponding dose values presented by the GZP6 treatment planning system (5%). Conclusions The results of these investigations indicate that the Microtek ScanMaker 1000XL color scanner in conjunction with GafChromic EBT film is a reliable system for dosimetric evaluation of a high dose rate brachytherapy source. PMID:23411947

  19. Analysis of proteomes using the molecular scanner.

    PubMed

    Déon, Catherine; Bienvenut, Willy; Sanchez, Jean-Charles; Hochstrasser, Denis F; Müller, Markus; Gras, Robin; Appel, Ron D

    2007-01-01

    INTRODUCTIONThe molecular scanner offers a flexible and powerful visualization tool that can create a fully annotated 2D gel electrophoresis map. Proteins separated by 2D gel electrophoresis are simultaneously digested while undergoing electrotransfer from the gel to a membrane. The peptides are subjected to peptide mass fingerprint (PMF) analysis to identify proteins directly from the PVDF membranes by MALDI-TOF-MS scanning. An ensemble of dedicated tools is then used to create, analyze, and visualize a proteome as a multidimensional image. The molecular scanner method reduces to a minimum the sample handling prior to mass analysis and decreases the sample size to a few tens of micrometers, that is, the size of the MALDI-TOF-MS laser beam impact. The process can be divided into four parts: separation and digestion of proteins, acquisition of PMF data, processing of the MS data and protein identification, and creation of multidimensional proteome maps. PMID:21357015

  20. The Galileo star scanner observations at Amalthea

    NASA Astrophysics Data System (ADS)

    Fieseler, Paul D.; Adams, Olen W.; Vandermey, Nancy; Theilig, E. E.; Schimmels, Kathryn A.; Lewis, George D.; Ardalan, Shadan M.; Alexander, Claudia J.

    2004-06-01

    In November of 2002, the Galileo spacecraft passed within 250 km of Jupiter's moon Amalthea. An onboard telescope, the star scanner, observed a series of bright flashes near the moon. It is believed that these flashes represent sunlight reflected from 7 to 9 small moonlets located within about 3000 km of Amalthea. From star scanner geometry considerations and other arguments, we can constrain the diameter of the observed bodies to be between 0.5 m to several tens of kilometers. In September of 2003, while crossing Amalthea's orbit just prior to Galileo's destruction in the jovian atmosphere, a single additional body seems to have been observed. It is suspected that these bodies are part of a discrete rocky ring embedded within Jupiter's Gossamer ring system.

  1. Ghost signals in Allison emittance scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge /Tennessee U.

    2004-12-01

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  2. Ghost Signals In Allison Emittance Scanners

    SciTech Connect

    Stockli, Martin P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R. F.

    2005-03-15

    For over 20 years, Allison scanners have been used to measure emittances of low-energy ion beams. We show that scanning large trajectory angles produces ghost signals caused by the sampled beamlet impacting on an electric deflection plate. The ghost signal strength is proportional to the amount of beam entering the scanner. Depending on the ions, and their velocity, the ghost signals can have the opposite or the same polarity as the main beam signals. The ghost signals cause significant errors in the emittance estimates because they appear at large trajectory angles. These ghost signals often go undetected because they partly overlap with the real signals, are mostly below the 1% level, and often hide in the noise. A simple deflection plate modification is shown to reduce the ghost signal strength by over 99%.

  3. Compact conscious animal positron emission tomography scanner

    DOEpatents

    Schyler, David J. (Bellport, NY); O'Connor, Paul (Bellport, NY); Woody, Craig (Setauket, NY); Junnarkar, Sachin Shrirang (Sound Beach, NY); Radeka, Veljko (Bellport, NY); Vaska, Paul (Sound Beach, NY); Pratte, Jean-Francois (Stony Brook, NY); Volkow, Nora (Chevy Chase, MD)

    2006-10-24

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal for an event, generating an address signal representing a detecting channel, generating a detector channel signal including the time and address signals, and generating a composite signal including the channel signal and similarly generated signals. The composite signal includes events from detectors in a block and is serially output. An apparatus that serially transfers annihilation information from a block includes time signal generators for detectors in a block and an address and channel signal generator. The PET scanner includes a ring tomograph that mounts onto a portion of an animal, which includes opposing block pairs. Each of the blocks in a block pair includes a scintillator layer, detection array, front-end array, and a serial encoder. The serial encoder includes time signal generators and an address signal and channel signal generator.

  4. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 ?m x 558 ?m under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications. PMID:26907043

  5. Detector Position Estimation for PET Scanners.

    PubMed

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-06-11

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks. PMID:22505789

  6. Detector Position Estimation for PET Scanners

    PubMed Central

    Pierce, Larry; Miyaoka, Robert; Lewellen, Tom; Alessio, Adam; Kinahan, Paul

    2012-01-01

    Physical positioning of scintillation crystal detector blocks in Positron Emission Tomography (PET) scanners is not always exact. We test a proof of concept methodology for the determination of the six degrees of freedom for detector block positioning errors by utilizing a rotating point source over stepped axial intervals. To test our method, we created computer simulations of seven Micro Crystal Element Scanner (MiCES) PET systems with randomized positioning errors. The computer simulations show that our positioning algorithm can estimate the positions of the block detectors to an average of one-seventh of the crystal pitch tangentially, and one-third of the crystal pitch axially. Virtual acquisitions of a point source grid and a distributed phantom show that our algorithm improves both the quantitative and qualitative accuracy of the reconstructed objects. We believe this estimation algorithm is a practical and accurate method for determining the spatial positions of scintillation detector blocks. PMID:22505789

  7. Triple bar, high efficiency mechanical sealer

    DOEpatents

    Pak, Donald J.; Hawkins, Samantha A.; Young, John E.

    2013-03-19

    A clamp with a bottom clamp bar that has a planar upper surface is provided. The clamp may also include a top clamp bar connected to the bottom clamp bar, and a pressure distribution bar between the top clamp bar and the bottom clamp bar. The pressure distribution bar may have a planar lower surface in facing relation to the upper surface of the bottom clamp bar. An object is capable of being disposed in a clamping region between the upper surface and the lower surface. The width of the planar lower surface may be less than the width of the upper surface within the clamping region. Also, the pressure distribution bar may be capable of being urged away from the top clamp bar and towards the bottom clamp bar.

  8. Learning and teaching with a computer scanner

    NASA Astrophysics Data System (ADS)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-09-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like scientists. They will conduct simple experiments, construct different explanations for their observations, test their explanations in new experiments and represent their ideas in multiple ways.

  9. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ≳ 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ∼5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  10. Optical scanner characterization methods using bilevel scans

    NASA Astrophysics Data System (ADS)

    Barney Smith, Elisa Hope

    Text documents are printed, then may be photocopied and FAXed multiple times before they are scanned to generate pixel maps used by Optical Character Recognition (OCR) programs to create the ASCII text files. OCR systems perform well on text that is of high quality, but image quality can be degraded through the process of printing, photocopying, FAXing and scanning. OCR performance is significantly decreased well before the legibility is affected. This thesis focuses on the degradations that occur during scanning. Scans made in bilevel mode (no grey scale) from high contrast source patterns are the input to the estimation processes. Using models of the scanning process and bilevel source patterns four methods of estimating scanner system parameters from bilevel scans have been developed. One procedure estimates the amount of displacement of a scanned edge and the other three estimate the scanner's point spread function (PSF) width and the binarization threshold by using different features of the scanned images. These estimation algorithms were tested in simulation and with scanned test patterns. The resulting estimates are close in value to what is expected based on grey-level analysis. The results of estimation are used to produce synthetically scanned characters that in most cases bear a strong resemblance to the characters scanned on the scanner at the same settings as the test pattern used for estimation.

  11. MEMS scanners for display and imaging applications

    NASA Astrophysics Data System (ADS)

    Urey, Hakan

    2004-10-01

    Dynamic display and imagin applications demand high performance scanners, which has high frequency (exceeding 10KHz), large scan-angle-mirror-size product (>+/-10deg.mm), good optical surface quality (scanner actuation, we present two compact scanner actuation mechanisms: out-of-plane comb actuator and novel two-coil electromagnetic actuator.

  12. Assessing forest stand attributes by laser scanner

    NASA Astrophysics Data System (ADS)

    Hyyppae, Juha M.; Hyyppae, Hannu; Samberg, Andre

    1999-05-01

    The stem volume, basal area And mean height of Norway spruce and Scots pine stands and individual trees were derived using canopy height metrics by means of a laser scanner TopoSys-1. Due to the high pulse rate of the laser scanner, individual tree statistics could be obtained. Methods to generate DTM and tree crown map from laser data were reported. Stand-wise and tree-wise field inventory data was regressed against laser-derived features. The coefficients of determination were in the range between 0.84 and 0.88 for the stem volume, basal area and mean height. The obtained accuracy was equivalent to conventional stand-wise forest inventory implying that the described approach can be used operationally. Further, it was shown that the tree height estimation accuracy of single and dominant trees was 1.5 m using the laser scanner. The accuracy of conventional clinometer measurements is typically better than 0.5 m but the time spent for height measurements is enormous. With the laser, the height of all dominant trees could be assessed within a fraction of time.

  13. Biomedical applications of a real-time terahertz color scanner

    PubMed Central

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner’s potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  14. Telescope with a wide field of view internal optical scanner

    NASA Technical Reports Server (NTRS)

    Degnan, III, John James (Inventor); Zheng, Yunhui (Inventor)

    2012-01-01

    A telescope with internal scanner utilizing either a single optical wedge scanner or a dual optical wedge scanner and a controller arranged to control a synchronous rotation of the first and/or second optical wedges, the wedges constructed and arranged to scan light redirected by topological surfaces and/or volumetric scatterers. The telescope with internal scanner further incorporates a first converging optical element that receives the redirected light and transmits the redirected light to the scanner, and a second converging optical element within the light path between the first optical element and the scanner arranged to reduce an area of impact on the scanner of the beam collected by the first optical element.

  15. Changes in smoking-related norms in bars resulting from California's Smoke-Free Workplace Act.

    PubMed

    Satterlund, Travis D; Lee, Juliet P; Moore, Roland S

    2012-01-01

    California's Smoke-Free Workplace Act--CA Labor Code Sec. 6404.5(a)--was extended to bars in 1998. This article analyzes changes in normative beliefs and behaviors related to bar smoking in the decade following the adoption of the Act. In a series of studies evaluating the smoke-free workplace law in bars, researchers conducted extensive observations and interviews with bar staff and patrons, health officials, and law enforcement personnel in three California counties. Smoking outside became a normal pause in the social environment and created a new type of bar socializing for outside smokers. Although some bar owners and staff reported initially resenting the responsibility to uphold the law, once norms regarding cigarettes and smoking began changing, bar workers experienced less conflict in upholding the law. Non-smoking behavior within bars also became the normative behavior for bar patrons. California's Smoke-Free Workplace Act has both reflected and encouraged normative beliefs and behaviors related to smoking in bars. The findings indicate that such shifts are possible even in contexts where smoking behaviors and attitudes supporting smoking were deeply entrenched. Recommendations include attending to the synergistic effect of education and policy in effective tobacco control programs. PMID:23705511

  16. Monte Carlo simulation and scatter correction of the GE advance PET scanner with SimSET and Geant4.

    PubMed

    Barret, Olivier; Carpenter, T Adrian; Clark, John C; Ansorge, Richard E; Fryer, Tim D

    2005-10-21

    For Monte Carlo simulations to be used as an alternative solution to perform scatter correction, accurate modelling of the scanner as well as speed is paramount. General-purpose Monte Carlo packages (Geant4, EGS, MCNP) allow a detailed description of the scanner but are not efficient at simulating voxel-based geometries (patient images). On the other hand, dedicated codes (SimSET, PETSIM) will perform well for voxel-based objects but will be poor in their capacity of simulating complex geometries such as a PET scanner. The approach adopted in this work was to couple a dedicated code (SimSET) with a general-purpose package (Geant4) to have the efficiency of the former and the capabilities of the latter. The combined SimSET+Geant4 code (SimG4) was assessed on the GE Advance PET scanner and compared to the use of SimSET only. A better description of the resolution and sensitivity of the scanner and of the scatter fraction was obtained with SimG4. The accuracy of scatter correction performed with SimG4 and SimSET was also assessed from data acquired with the 20 cm NEMA phantom. SimG4 was found to outperform SimSET and to give slightly better results than the GE scatter correction methods installed on the Advance scanner (curve fitting and scatter modelling for the 300-650 keV and 375-650 keV energy windows, respectively). In the presence of a hot source close to the edge of the field of view (as found in oxygen scans), the GE curve-fitting method was found to fail whereas SimG4 maintained its performance. PMID:16204875

  17. Design and control of a nanoprecision XY Theta scanner.

    PubMed

    Choi, Young-Man; Kim, Jung Jae; Kim, Jinwoo; Gweon, Dae-Gab

    2008-04-01

    This paper describes the design and control of a nanoprecision XY Theta scanner consisting of voice coil motors and air bearing guides. The proposed scanner can be installed on a conventional XY stage with long strokes to improve the positioning accuracy and settling performance. Major design considerations in developing a high precision scanner are sensor accuracy, actuator properties, structural stability, guide friction, and thermal expansion. Considering these factors, the proposed scanner is made of invar, which has a small thermal expansion coefficient and good structural stiffness. Four voice coil motors drive the scanner, which is suspended by four air bearing pads, in the x, y, and theta directions. The scanner's position is measured by three laser interferometers which decouple the scanner from the conventional stage. The mirror blocks reflecting the laser beams are fixed using viscoelastic sheets, ensuring that the scanner has a well-damped structural mode. A time delay control algorithm is implemented on the real-time controller to control the scanner. The effectiveness of the proposed scanner is verified experimentally. PMID:18447554

  18. /bar p/p collider physics

    SciTech Connect

    Green, D.

    1989-03-01

    This note encompasses a set of six lectures given at the summer school held at Campos Do Jordao in January of 1989 near Sao Paulo, Brazil. The intent of the lectures was to describe the physics of /bar p/p at CERN and Fermilab. Particular attention has been paid to making a self contained presentation to a prospective audience of graduate students. Since large Monte Carlo codes might not be available to all members of this audience, great reliance was placed on ''back of the envelope estimates.'' Emphasis was also placed on experimental data rather than theoretical speculation, since predictions for, for example, supersymmetric particle production are easily obtained by transcription of formulae already obtained. 9 refs., 67 figs., 2 tabs.

  19. Bar coding for chemical tracking in compliance software

    SciTech Connect

    Nakamura, J.

    1995-12-31

    The Environmental Management System includes a comprehensive system to utilize barcodes for inventory tracking and control. Barcoding technology and its ease of use in maintaining chemical inventories is not new to EMS. This technology was introduced in the 1970s to simplify inventory management in broad industry segments and EMS has taken the technology into the laboratory. Since its introduction the popularity of barcoding plus the ever increasing demand of regulatory/management requirements for chemical inventories and waste streams makes the use of barcode a necessity for a large majority of the business community. Couple the barcoding of chemical inventories and waste streams with EMS (Environmental Management Systems) and the result is a completely integrated environmental management software tool. This state-of-the-art, cradle-to-grave tracking system is designed to meet today`s stringent and complex regulatory reporting requirements in the most cost efficient method available today.

  20. Fast wire scanner for intense electron beams

    NASA Astrophysics Data System (ADS)

    Moore, T.; Agladze, N. I.; Bazarov, I. V.; Bartnik, A.; Dobbins, J.; Dunham, B.; Full, S.; Li, Y.; Liu, X.; Savino, J.; Smolenski, K.

    2014-02-01

    We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20 m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell's high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  1. Initial coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1980-01-01

    The characteristics of the Nimbus-7 Coastal Zone Color Scanner are presented and the atmospheric correction and bio-optical algorithms are reviewed. Comparison of imagery before and after atmospheric correction shows that water features such as color fronts and small scale eddies can be retrieved even through a hazy and horizontally inhomogeneous atmosphere. Imagery is also presented to show that features revealed in color are sometimes completely absent from simultaneous thermal imagery implying that color and thermal imagery can provide complementary rather than redundant information.

  2. A laser scanner for 35mm film

    NASA Technical Reports Server (NTRS)

    Callen, W. R.; Weaver, J. E.

    1977-01-01

    The design, construction, and testing of a laser scanning system is described. The scanner was designed to deliver a scanned beam over a 2.54 cm by 2.54 cm or a 5.08 cm by 5.08 cm format. In order to achieve a scan resolution and rate comparable to that of standard television, an acousto-optic deflector was used for one axis of the scan, and a light deflecting galvanometer for deflection along the other axis. The acoustic optic deflector has the capability of random access scan controlled by a digital computer.

  3. LAPR: An experimental aircraft pushbroom scanner

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Irons, J. I.; Heugel, F.

    1980-01-01

    A three band Linear Array Pushbroom Radiometer (LAPR) was built and flown on an experimental basis by NASA at the Goddard Space Flight Center. The functional characteristics of the instrument and the methods used to preprocess the data, including radiometric correction, are described. The radiometric sensitivity of the instrument was tested and compared to that of the Thematic Mapper and the Multispectral Scanner. The radiometric correction procedure was evaluated quantitatively, using laboratory testing, and qualitatively, via visual examination of the LAPR test flight imagery. Although effective radiometric correction could not yet be demonstrated via laboratory testing, radiometric distortion did not preclude the visual interpretation or parallel piped classification of the test imagery.

  4. GPU-based real-time structured light 3D scanner at 500 fps

    NASA Astrophysics Data System (ADS)

    Gao, Hao; Takaki, Takeshi; Ishii, Idaku

    2012-06-01

    In this study, we develop a real-time, structured light 3D scanner that can output 3D video of 512×512 pixels at 500 fps using a GPU-based, high-speed vision system synchronized with a high-speed DLP projector. Our 3D scanner projects eight pairs of positive and negative image patterns with 8-bit gray code on the measurement objects at 1000 fps. Synchronized with the high-speed vision platform, these images are simultaneously captured at 1000 fps and processed in real time for 3D image generation at 500 fps by introducing parallel pixel processing on a NVIDIA Tesla 1060 GPU board. Several experiments are performed for high-speed 3D objects that undergo sudden 3D shape deformation.

  5. Biomedical applications of a real-time terahertz color scanner.

    PubMed

    Schirmer, Markus; Fujio, Makoto; Minami, Masaaki; Miura, Jiro; Araki, Tsutomu; Yasui, Takeshi

    2010-01-01

    A real-time THz color scanner has the potential to further expand the application scope of THz spectral imaging based on its rapid image acquisition rate. We demonstrated three possible applications of a THz color scanner in the biomedical field: imaging of pharmaceutical tablets, human teeth, and human hair. The first application showed the scanner's potential in total inspection for rapid quality control of pharmaceutical tablets moving on a conveyor belt. The second application demonstrated that the scanner can be used to identify a potential indicator for crystallinity of dental tissue. In the third application, the scanner was successfully used to visualize the drying process of wet hairs. These demonstrations indicated the high potential of the THz color scanner for practical applications in the biomedical field. PMID:21258472

  6. Integrated Electro-optical Laser-Beam Scanners

    NASA Technical Reports Server (NTRS)

    Boord, Warren T.

    1990-01-01

    Scanners using solid-state devices compact, consume little power, and have no moving parts. Integrated electro-optical laser scanner, in conjunction with external lens, points outgoing beam of light in any number of different directions, depending on number of upper electrodes. Offers beam-deflection angles larger than those of acousto-optic scanners. Proposed for such diverse applications as nonimpact laser printing, color imaging, ranging, barcode reading, and robotic vision.

  7. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. Pyramid image codes

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1990-01-01

    All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.

  9. An empirical study of scanner system parameters

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.; Biehl, L.; Simmons, W.

    1976-01-01

    The selection of the current combination of parametric values (instantaneous field of view, number and location of spectral bands, signal-to-noise ratio, etc.) of a multispectral scanner is a complex problem due to the strong interrelationship these parameters have with one another. The study was done with the proposed scanner known as Thematic Mapper in mind. Since an adequate theoretical procedure for this problem has apparently not yet been devised, an empirical simulation approach was used with candidate parameter values selected by the heuristic means. The results obtained using a conventional maximum likelihood pixel classifier suggest that although the classification accuracy declines slightly as the IFOV is decreased this is more than made up by an improved mensuration accuracy. Further, the use of a classifier involving both spatial and spectral features shows a very substantial tendency to resist degradation as the signal-to-noise ratio is decreased. And finally, further evidence is provided of the importance of having at least one spectral band in each of the major available portions of the optical spectrum.

  10. Interferometric Laser Scanner for Direction Determination.

    PubMed

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5-10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  11. Antenna Near-Field Probe Station Scanner

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J. (Inventor); Lee, Richard Q. (Inventor); Darby, William G. (Inventor); Barr, Philip J. (Inventor); Lambert, Kevin M (Inventor); Miranda, Felix A. (Inventor)

    2011-01-01

    A miniaturized antenna system is characterized non-destructively through the use of a scanner that measures its near-field radiated power performance. When taking measurements, the scanner can be moved linearly along the x, y and z axis, as well as rotationally relative to the antenna. The data obtained from the characterization are processed to determine the far-field properties of the system and to optimize the system. Each antenna is excited using a probe station system while a scanning probe scans the space above the antenna to measure the near field signals. Upon completion of the scan, the near-field patterns are transformed into far-field patterns. Along with taking data, this system also allows for extensive graphing and analysis of both the near-field and far-field data. The details of the probe station as well as the procedures for setting up a test, conducting a test, and analyzing the resulting data are also described.

  12. Quest for an open MRI scanner.

    PubMed

    Bertora, Franco; Borceto, Alice; Viale, Andrea; Sandini, Giulio

    2014-01-01

    A study of the motor cortex during the programming, execution and mental representation of voluntary movement is of great relevance; its evaluation in conditions close to reality is necessary, given the close integration of the visuomotor, sensory feedback and proprioceptive systems, as of yet, a functional Magnetic Resonance Imaging (fMRI) scanner allowing a human subject to maintain erect stance, observe the surroundings and conserve limb freedom is still a dream. The need for high field suggests a solenoid magnet geometry that forces an unnatural posture that affects the results, particularly when the motor cortex is investigated. In contrast in a motor functional study, the scanner should allow the subject to sit or stand, with unobstructed sight and unimpeded movement. Two approaches are presented here to solve this problem. In the first approach, an increased field intensity in an open magnet is obtained lining the "back wall" of the cavity with a sheet of current: this boosts the field intensity at the cost of the introduction of a gradient, which has to be canceled by the introduction of an opposite gradient; The second approach is an adaptation of the "double doughnut" architecture, in which the cavity widens at the center to provide additional room for the subject. The detailed design of this kind of structure has proven the feasibility of the solution. PMID:25227008

  13. Elastic registration for airborne multispectral line scanners

    NASA Astrophysics Data System (ADS)

    Li, Feng; Li, ChuanRong; Tang, LingLi; Guo, Yi

    2014-01-01

    The multispectral line scanner is one of the most popular payloads for aerial remote sensing (RS) applications. Scanners with large field of view (FOV) improve efficiency in Earth observation. Small-volume instruments with a short focal length and a large FOV, however, may bring a problem: different nonlinear warping and local transformation exist between bands. Alignment accuracy of bands is a criterion impacting product quality in RS. A band-to-band elastic image registration method is proposed for solving the problem. Rather than ignoring the intensity variation and carrying out an intensity-based registration between bands straightforwardly, we construct feature images and use them to conduct an intensity-based elastic image registration. In this method, the idea of the inverse compositional algorithm is employed and expanded when dealing with local warping, and a smoothness constraint is also added in this procedure. Experimental results show that the proposed band-to-band registration method works well both visually and quantitatively. The outstanding performance of the method also encourages potential applications for other new types of airborne multispectral imagers.

  14. Interferometric Laser Scanner for Direction Determination

    PubMed Central

    Kaloshin, Gennady; Lukin, Igor

    2016-01-01

    In this paper, we explore the potential capabilities of new laser scanning-based method for direction determination. The method for fully coherent beams is extended to the case when interference pattern is produced in the turbulent atmosphere by two partially coherent sources. The performed theoretical analysis identified the conditions under which stable pattern may form on extended paths of 0.5–10 km in length. We describe a method for selecting laser scanner parameters, ensuring the necessary operability range in the atmosphere for any possible turbulence characteristics. The method is based on analysis of the mean intensity of interference pattern, formed by two partially coherent sources of optical radiation. Visibility of interference pattern is estimated as a function of propagation pathlength, structure parameter of atmospheric turbulence, and spacing of radiation sources, producing the interference pattern. It is shown that, when atmospheric turbulences are moderately strong, the contrast of interference pattern of laser scanner may ensure its applicability at ranges up to 10 km. PMID:26805841

  15. A 3D airborne ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Capineri, L.; Masotti, L.; Rocchi, S.

    1998-06-01

    This work investigates the feasibility of an ultrasound scanner designed to reconstruct three-dimensional profiles of objects in air. There are many industrial applications in which it is important to obtain quickly and accurately the digital reconstruction of solid objects with contactless methods. The final aim of this project was the profile reconstruction of shoe lasts in order to eliminate the mechanical tracers from the reproduction process of shoe prototypes. The feasibility of an ultrasonic scanner was investigated in laboratory conditions on wooden test objects with axial symmetry. A bistatic system based on five airborne polyvinylidenedifluoride (PVDF) transducers was mechanically moved to emulate a cylindrical array transducer that can host objects of maximum width and height 20 cm and 40 cm respectively. The object reconstruction was based on a simplified version of the synthetic aperture focusing technique (SAFT): the time of flight (TOF) of the first in time echo for each receiving transducer was taken into account, a coarse spatial sampling of the ultrasonic field reflected on the array transducer was delivered and the reconstruction algorithm was based on the ellipsoidal backprojection. Measurements on a wooden cone section provided submillimetre accuracy in a controlled environment.

  16. Scanner effects on directed self-assembly patterning

    NASA Astrophysics Data System (ADS)

    Renwick, Stephen P.

    2014-03-01

    Directed self-assembly (DSA) of various polymers is a potential next-generation lithography component. Lithographers can use an ArF scanner to print guide structures with pitches accessible with current technology. The DSA materials, in a non-exposure step, perform pitch multiplication of 1-D and 2-D guide structures. While research has investigated defects inherent to the DSA material, ArF scanner effects have received little attention. This work uses DSA models and scanner models to assess requirements for ArF immersion scanners for DSA complimentary lithography.

  17. Precision pointing using a dual-wedge scanner

    NASA Technical Reports Server (NTRS)

    Amirault, C. T.; Dimarzio, C. A.

    1985-01-01

    A system was developed for calibrating and precisely pointing a germanium dual-wedge scanner for a CO2 Doppler lidar from an airborne platform. The equations implemented in pointing the scanner and those in the iterative calibration program, which combines available data with estimated parameters of the scanner orientation relative to the axes of the aircraft's inertial navigation system to arrive at corrected scanner parameters are described. The effect of specific error conditions on program performance and the results of the program when used on 1981 test data are investigated.

  18. Swinging around the High Bar.

    ERIC Educational Resources Information Center

    Hiley, M. J.; Yeadon, M. R.

    2001-01-01

    Models the motion of a gymnast around the high bar first as swinging around a rigid rod, then more accurately when the rod is considered to be elastic. Also considers how the gymnast should best move his hips. (Author/ASK)

  19. Temporal analysis of multispectral scanner data.

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Wiegand, C. L.; Torline, R. J.

    1973-01-01

    Multispectral scanner reflectance data were sampled for bare soil, cotton, sorghum, corn, and citrus at four dates during a growing season (April, May, June, and July 1969) to develop a time-dependent signature for crop and soil discrimination. Discrimination tests were conducted for single-date and multidate formats using training and test data sets. For classifications containing several crops, the multidate or temporal approach improved discrimination compared with the single-date approach. The multidate approach also preserved recognition accuracy better in going from training fields to test fields than the single-date analysis. The spectral distinctiveness of bare soil versus vegetation resulted in essentially equal discrimination using single-date versus multidate data for those two categories.

  20. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  1. Wetlands mapping with spot multispectral scanner data

    SciTech Connect

    Mackey, H.E. Jr. ); Jensen, J.R. . Dept. of Geography)

    1989-01-01

    Government facilities such as the US Department of Energy's Savannah River Plant (SRP) near Aiken, South Carolina, often use remote sensing data to assist in environmental management. Airborne multispectral scanner (MSS) data have been acquired at SRP since 1981. Various types of remote sensing data have been used to map and characterize wetlands. Regional Landsat MSS and TM satellite data have been used for wetlands mapping by various government agencies and private organizations. Furthermore, SPOT MSS data are becoming available and provide opportunities for increased spacial resolution and temporal coverage for wetlands mapping. This paper summarizes the initial results from using five dates of SPOT MSS data from April through October, 1987, as a means to monitor seasonal wetland changes in freshwater wetlands of the SRP. 11 refs., 4 figs.

  2. Clinical coding. Code breakers.

    PubMed

    Mathieson, Steve

    2005-02-24

    --The advent of payment by results has seen the role of the clinical coder pushed to the fore in England. --Examinations for a clinical coding qualification began in 1999. In 2004, approximately 200 people took the qualification. --Trusts are attracting people to the role by offering training from scratch or through modern apprenticeships. PMID:15768716

  3. Quantitative Assay for Starch by Colorimetry Using a Desktop Scanner

    ERIC Educational Resources Information Center

    Matthews, Kurt R.; Landmark, James D.; Stickle, Douglas F.

    2004-01-01

    The procedure to produce standard curve for starch concentration measurement by image analysis using a color scanner and computer for data acquisition and color analysis is described. Color analysis is performed by a Visual Basic program that measures red, green, and blue (RGB) color intensities for pixels within the scanner image.

  4. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 27. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC MONITOR NO. 4 IN OPERATION AT 2002 ZULU, OCTOBER 26, 1999 CAPE COD, AS PAVE PAWS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, R.A.; Peck, K.

    1992-02-25

    A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.

  7. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. Thermionic scanner pinpoints work function of emitter surfaces

    NASA Technical Reports Server (NTRS)

    Rasor, N. S.

    1966-01-01

    In the electron tube testing, a thermionic scanner makes accurate spatial resolution measurements of the metallic surface work functions of emitters. The scanner determines the emitter function and its local departures from the mean value on a point-by-point basis for display on an oscilloscope.

  9. 34. SITE BUILDING 002 SCANNER BUILDING ROOM 105 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. SITE BUILDING 002 - SCANNER BUILDING - ROOM 105 - CHILLER ROOM, SHOWING SINGLE COMPRESSOR, LIQUID CHILLERS AND "CHILLED WATER RETURN", COOLING TOWER 'TOWER WATER RETURN" AND 'TOWER WATER SUPPLY" LINES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 21. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT DISC STORAGE SYSTEMS A AND B (A OR B ARE REDUNDANT SYSTEMS), ONE MAINFRAME COMPUTER ON LINE, ONE ON STANDBY WITH STORAGE TAPE, ONE ON STANDBY WITHOUT TAPE INSTALLED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. 10. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT SOUTHWEST CORNER "B" FACE AND "C" FACE ON WEST AND EVAPORATIVE COOLING TOWER AT NORTH. VIEW IS LOOKING NORTH 45° EAST. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  13. 26. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1945 ZULU TIME, 26 OCTOBER, 1999. "SPACE TRACK BOARD" DATA SHOWING ITEMS #16609 MIR (RUSSIA) AND #25544 ISS (INTERNATIONAL SPACE STATION) BEING TRACKED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner....

  15. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner....

  16. Adventures of a tidally induced bar

    NASA Astrophysics Data System (ADS)

    ?okas, E. L.; Athanassoula, E.; Debattista, V. P.; Valluri, M.; Pino, A. del; Semczuk, M.; Gajda, G.; Kowalczyk, K.

    2014-12-01

    Using N-body simulations, we study the properties of a bar induced in a discy dwarf galaxy as a result of tidal interaction with the Milky Way. The bar forms at the first pericentre passage and survives until the end of the evolution at 10 Gyr. Fourier decomposition of the bar reveals that only even modes are significant and preserve a hierarchy so that the bar mode is always the strongest. They show a characteristic profile with a maximum, similar to simulated bars forming in isolated galaxies and observed bars in real galaxies. We adopt the maximum of the bar mode as a measure of the bar strength and we estimate the bar length by comparing the density profiles along the bar and perpendicular to it. The bar strength and the bar length decrease with time, mainly at pericentres, as a result of tidal torques acting at those times and not to secular evolution. The pattern speed of the bar varies significantly on a time-scale of 1 Gyr and is controlled by the orientation of the tidal torque from the Milky Way. The bar is never tidally locked, but we discover a hint of a 5/2 orbital resonance between the third and fourth pericentre passage. The speed of the bar decreases in the long run so that the bar changes from initially rather fast to slow in the later stages. The boxy/peanut shape is present for some time and its occurrence is preceded by a short period of buckling instability.

  17. Bars and Cold Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Colín, Pedro; Valenzuela, O.; Klypin, A.

    2006-06-01

    The central part of a dark matter halo reacts to the presence and evolution of a bar. Not only does the halo absorb angular momentum from the disk, it can also be compressed and have its shape modified. We study these issues in a series of cosmologically motivated, highly resolved N-body simulations of barred galaxies run under different initial conditions. In all models we find that the inner halo's central density increases. We model this density increase using the standard adiabatic approximation and the modified formula by Gnedin et al., and we find that halo mass profiles are better reproduced by the latter. In models with a strong bar, the dark matter in the central region forms a barlike structure (``dark matter bar''), which rotates together with the normal bar formed by the stellar component (``stellar bar''). The minor-to-major axial ratio of a halo bar changes with radius with a typical value 0.7 in the central disk region. Dark matter bar amplitude is mostly a function of the stellar bar strength. For models in which the bar amplitude increases or stays roughly constant with time, initially large (40°-60°) misalignment between the halo and disk bars quickly decreases with time as the bar grows. The halo bar is nearly aligned with the stellar bar (~10° lag for the halo) after ~2 Gyr. The torque, which the halo bar exerts on the stellar bar, can serve as a mechanism to regulate the angular momentum transfer from the disk to the halo.

  18. Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness

    PubMed Central

    Surti, S; Werner, M E; Karp, J S

    2013-01-01

    The aim of this study is to understand the trade-off between crystal thickness and scanner axial FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20–25 mm thick crystals and 16–22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with > 22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and NEC, as well image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 liters of LSO and 17.1 liters of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC/cm in a 35 cm diameter×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm while for LaBr3 scanners, the highest NEC/cm is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show best lesion detection performance is achieved in scanners with long AFOV (? 36 cm) and using thin crystals (? 10 mm of LSO and ? 20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners requires improved timing resolution and longer scan times in order to achieve lesion detectability similar to that achieved in an LSO scanner with similar NEC/cm. PMID:23685783

  19. Observations of gravel beach dynamics during high energy wave conditions using a laser scanner

    NASA Astrophysics Data System (ADS)

    Almeida, L. P.; Masselink, G.; Russell, P. E.; Davidson, M. A.

    2015-01-01

    A 2D laser-scanner was deployed at the high tide runup limit of a pure gravel beach (Loe Bar, Cornwall, England) to measure high-frequency (2.5 Hz) swash hydrodynamics and topographic changes during an energetic wave event. Measurements performed with the laser-scanner were corrected to compensate for levelling and orientation errors, and a variance threshold was applied to separate the beach topography from the water motions. Laser measurements were used to characterise the swash hydrodynamics and morphological changes during one tidal cycle through the calculation of several parameters, such as the 2% exceedence of the runup maxima (R2%), swash flow velocity skewness (< u3>), runup spectra and cumulative topographic changes. Results indicate that despite the small net morphological changes over the tide cycle, significant sediment mobilization occurs. A clear asymmetrical morphological response was found during the different tidal phases: the rising tide is dominated by accretion whilst the falling tide is dominated by erosion. The main factor controlling this asymmetrical morphological response is the step migration that, depending on the tide phase, controls the wave breaking point and consequently the dominant sediment transport direction. During the rising tide, step development decreases the shoreface slope and reduces the runup energy, whilst during the falling tide the step remobilization increases the shoreface slope and energy on the runup.

  20. Electro-optic scanner for optical disk fine tracking system

    NASA Astrophysics Data System (ADS)

    Zhai, Jinhui; Schroeck, Steve; Huang, Yuhong; Messner, William C.; Stancil, Daniel D.; Schlesinger, Tuviah E.

    1999-07-01

    Electro-optic (EO) scanners can be used as fine tracking actuators to improve the servo bandwidth in future high density/high data-rate optical disk drives. In this paper we report on the use of an EO scanner in a new optical tracking system. Track following has been accomplished with a servo bandwidth of 200 kHz and we have demonstrated track switching between nine tracks using only an EO scanner. A fine tracking experiment using an EO scanner has been demonstrated in parallel with a voice-coil actuated lens to expand the fine tracking range. Significant improvement in track switching speed and track following are demonstrated with the scanner/lens actuators as compared to tracking with the lens actuator alone.

  1. Ultra-Miniature Lidar Scanner for Launch Range Data Collection

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2012-01-01

    The most critical component in lidar is its laser scanner, which delivers pulsed or CW laser to target with desirable field of view (FOV). Most existing lidars use a rotating or oscillating mirror for scanning, resulting in several drawbacks. A lidar scanning technology was developed that could achieve very high scanning speed, with an ultra-miniature size and much lighter weight. This technology promises at least a 10x performance improvement in these areas over existing lidar scanners. Features of the proposed ultra-miniature lidar scanner include the ability to make the entire scanner <2 mm in diameter; very high scanning speed (e.g. 5 - 20 kHz, in contrast to several hundred Hz in existing scanners); structure design to meet stringent requirements on size, weight, power, and compactness for various applications; and the scanning speed and FOV can be altered for obtaining high image resolutions of targeted areas and for diversified uses.

  2. Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.

    PubMed

    Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood

    2016-01-01

    Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry. PMID:26205316

  3. Bar-holding prosthetic limb

    NASA Technical Reports Server (NTRS)

    Vest, Thomas W. (Inventor); Norton, William E. (Inventor); Belcher, Jewell G. (Inventor); Carden, James R. (Inventor)

    1992-01-01

    A prosthetic device for below-the-elbow amputees is disclosed. The device has a removable effector, which is attached to the end of an arm cuff. The effector is comprised of a pair of C-shaped members that are oriented so as to face each other. Working in concert, the C-shaped members are able to hold a bar such as a chainsaw handle. A flat spring is fitted around the C-shaped members to hold them together.

  4. A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; James, Mark W.; Smith, Matthew R.; Atkinson, Robert J.

    1991-01-01

    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software.

  5. Design Optimization of a TOF, Breast PET Scanner.

    PubMed

    Lee, Eunsin; Werner, Matthew E; Karp, Joel S; Surti, Suleman

    2013-06-01

    A dedicated breast positron emission tomography (PET) scanner with limited angle geometry can provide flexibility in detector placement around the patient as well as the ability to combine it with other imaging modalities. A primary challenge of a stationary limited angle scanner is the reduced image quality due to artifacts present in the reconstructed image leading to a loss in quantitative information. Previously it has been shown that using time-of-flight (TOF) information in image reconstruction can help reduce these image artifacts arising due to missing angular projections. Our goal in this work is to optimize the TOF, breast scanner design by performing studies for estimating image uniformity and lesion activity uptake as a function of system timing resolution, scanner angular coverage and shape. Our results show that (i) 1.5 × 1.5 × 15 mm(3) lutetium oxy-orthosilicate (LSO) crystals provide a high spatial resolution and system sensitivity relative to clinical scanners, (ii) 2/3 angular coverage scanner design with TOF timing resolution less than 600 ps is appropriate for providing a tomographic image with fewer artifacts and good lesion uptake estimation relative to other partial ring designs studied in this work, (iii) a flat scanner design with 2/3 angular coverage is affected more by larger parallax error than a curved scanner geometry with the same angular coverage, but provides more uniform lesion contrast estimate over the imaging field-of-view (FOV), (iv) 2/3 angular coverage, flat, 300 ps TOF scanner design (for short, practical scan times of ≤ 5 mins per breast) provides similar precision of contrast recovery coefficient (CRC) values to a full curved, non-TOF scanner, and (v) employing depth-of-interaction (DOI) measuring detector and/or implementing resolution modeling (RM) in image reconstruction lead to improved and more uniform spatial resolution and lesion contrast over the whole FOV. PMID:24078744

  6. Color accuracy and reproducibility in whole slide imaging scanners

    PubMed Central

    Shrestha, Prarthana; Hulsken, Bas

    2014-01-01

    Abstract We propose a workflow for color reproduction in whole slide imaging (WSI) scanners, such that the colors in the scanned images match to the actual slide color and the inter-scanner variation is minimum. We describe a new method of preparation and verification of the color phantom slide, consisting of a standard IT8-target transmissive film, which is used in color calibrating and profiling the WSI scanner. We explore several International Color Consortium (ICC) compliant techniques in color calibration/profiling and rendering intents for translating the scanner specific colors to the standard display (sRGB) color space. Based on the quality of the color reproduction in histopathology slides, we propose the matrix-based calibration/profiling and absolute colorimetric rendering approach. The main advantage of the proposed workflow is that it is compliant to the ICC standard, applicable to color management systems in different platforms, and involves no external color measurement devices. We quantify color difference using the CIE-DeltaE2000 metric, where DeltaE values below 1 are considered imperceptible. Our evaluation on 14 phantom slides, manufactured according to the proposed method, shows an average inter-slide color difference below 1 DeltaE. The proposed workflow is implemented and evaluated in 35 WSI scanners developed at Philips, called the Ultra Fast Scanners (UFS). The color accuracy, measured as DeltaE between the scanner reproduced colors and the reference colorimetric values of the phantom patches, is improved on average to 3.5 DeltaE in calibrated scanners from 10 DeltaE in uncalibrated scanners. The average inter-scanner color difference is found to be 1.2 DeltaE. The improvement in color performance upon using the proposed method is apparent with the visual color quality of the tissue scans. PMID:26158041

  7. ORBITAL SUPPORT OF FAST AND SLOW INNER BARS IN DOUBLE-BARRED GALAXIES

    SciTech Connect

    Maciejewski, Witold; Small, Emma E.

    2010-08-10

    We analyze how the orbital support of the inner bar in a double-barred galaxy (nested bars) depends on the angular velocity (i.e., pattern speed) of this bar. We study orbits in seven models of double bars using the method of invariant loops. The range of pattern speed is covered exhaustively. We find that not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below a certain minimum pattern speed orbital support for the inner bar abruptly disappears, while at high values of this speed the orbits indicate an increasingly round bar that looks more like a twist in the nuclear isophotes than a dynamically independent component. For values between these two extremes, orbits supporting the inner bar extend further out as the bar's pattern speed decreases, their corresponding loops become more eccentric, pulsate more, and their rotation becomes increasingly non-uniform, as they speed up and slow down in their motion. Lower pattern speeds also lead to a less coherent bar, as the pulsation and acceleration increasingly varies among the loops supporting the inner bar. The morphologies of fast and slow inner bars expected from the orbital structure studied here have been recently recovered observationally by decomposition of double-barred galaxies. Our findings allow us to link the observed morphology to the dynamics of the inner bar.

  8. Galaxy Zoo: Observing secular evolution through bars

    SciTech Connect

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  9. Basic Business and Economics: Understanding the Uses of the Universal Product Code

    ERIC Educational Resources Information Center

    Blockhus, Wanda

    1977-01-01

    Describes the Universal Product Code (UPC), the two-part food labeling and packaging code which is both human- and electronic scanner-readable. Discusses how it affects both consumer and business, and suggests how to teach the UPC code to business education students. (HD)

  10. Determination of Roughness Angles of Surfaces Using Laser Scanners

    NASA Astrophysics Data System (ADS)

    Avsar, O.; Bozkurtoglu, E.; Aydar, U.; Yucel, U.; Kaya, S.; Seker, D. Z.

    2012-12-01

    Today, terrestrial laser scanners help us to provide 3D geometry of object fast and high accuracy. Terrestrial laser scanners are faster to other methods for obtaining 3D geometry of the object and terrestrial laser scanners have more accurate result to other techniques. Laser scanners are used in this study because of these features. In this study, it is aimed to measure and define mathematically the roughness degree of the surfaces of rock pieces that are obtained as the result of under load test. To achieve this aim; Nextengine 3D Desktop Laser Scanner was used in this study because of low cost scanning system which provides high precision with fast measuring ability. It is a triangulation based scanner. Matlab also used in this study for all mathematical processing. The objects that were used in this study are two pieces of a rock which was broken under load test. Each piece of rock was scanned with Nextengine 3D Desktop Laser Scanner. Surface models were created using triangulated irregular network for each surface. New points and Opposed Cross sections were created on these surfaces. For each cross section curve equations were generated by using Matlab Curve Fitting Toolbox. After fitting, slopes for certain intervals were calculated on these curves. Roughness angles were calculated from these slope values. After all these steps; maximum, minimum and average values of negative and positive angles were calculated and roughness degree of the surfaces of rock pieces was determined.

  11. Changes in Smoking-Related Norms in Bars Resulting from California’s Smoke-Free Workplace Act*

    PubMed Central

    Satterlund, Travis D.; Lee, Juliet P.; Moore, Roland S.

    2013-01-01

    California’s Smoke-Free Workplace Act— CA Labor Code Sec. 6404.5(a)—was extended to bars in 1998. This paper analyzes changes in normative beliefs and behaviors related to bar smoking in the decade following the adoption of the Act. In a series of studies evaluating the smoke-free workplace law in bars, researchers conducted extensive observations and interviews with bar staff and patrons, health officials, and law enforcement personnel in three California counties. Smoking outside became a normal pause in the social environment and created a new type of bar socializing for outside smokers. Although some bar owners and staff reported initially resenting the responsibility to uphold the law, once norms regarding cigarettes and smoking began changing, bar workers experienced less conflict in upholding the law. Non-smoking behavior within bars also became the normative behavior for bar patrons. California’s Smoke-Free Workplace Act has both reflected and encouraged normative beliefs and behaviors related to smoking in bars. The findings indicate that such shifts are possible even in contexts where smoking behaviors and attitudes supporting smoking were deeply entrenched. Recommendations include attending to the synergistic effect of education and policy in effective tobacco control programs. PMID:23705511

  12. A general solution for the registration of optical multispectral scanners

    NASA Technical Reports Server (NTRS)

    Rader, M. L.

    1974-01-01

    The paper documents a general theory for registration (mapping) of data sets gathered by optical scanners such as the ERTS satellite MSS and the Skylab S-192 MSS. This solution is generally applicable to scanners which have rotating optics. Navigation data and ground control points are used in a statistically weighted adjustment based on a mathematical model of the dynamics of the spacecraft and the scanner system. This adjustment is very similar to the well known photogrammetric adjustments used in aerial mapping. Actual tests have been completed on NASA aircraft 24 channel MSS data, and the results are very encouraging.

  13. Straight-line scanning analysis of an all holographic scanner.

    PubMed

    Hasegawa, S Y; Yamagishi, F; Ikeda, H; Inagaki, T

    1989-12-15

    The all holographic straight-line scanner we developed for laser diode printers consists of only a holographic disk and a holographic lens. This simple scanner meets all scanning requirements for printers such as straight-line scanning, low scan line placement error, and beam focusing. It also overcomes the deterioration in scanning characteristics caused by the individual wavelength variations among laser diodes. We extensively analyzed how to obtain straight-line scanning based on different wavelengths and the generalized concept of virtual wavelength ratio enabling flexible scanner design. PMID:20556048

  14. Component based normalization method for rotating dual head PET scanner

    NASA Astrophysics Data System (ADS)

    Efthimiou, N.; Loudos, G.; Panayiotakis, G. S.

    2015-09-01

    Component based normalization is a well-established method to calculate correction factors for unbiased and reliable PET reconstruction. Several methods have been studied and validated for cylindrical PET scanners. In this work we adapted a method already presented for cylindrical scanners to rotating dual head PET scanners. The model included corrections for detector efficiency, axial and transaxial geometric effects, crystal interference and attenuation corrections. Results from a simulated realistic dual head PET showed that the adaptation is valid. The images are significantly improved in terms of homogeneity, resolution and background contribution.

  15. Design study for Thermal Infrared Multispectral Scanner (TIMS)

    NASA Technical Reports Server (NTRS)

    Stanich, C. G.; Osterwisch, F. G.; Szeles, D. M.; Houtman, W. H.

    1981-01-01

    The feasibility of dividing the 8-12 micrometer thermal infrared wavelength region into six spectral bands by an airborne line scanner system was investigated. By combining an existing scanner design with a 6 band spectrometer, a system for the remote sensing of Earth resources was developed. The elements in the spectrometer include an off axis reflective collimator, a reflective diffraction grating, a triplet germanium imaging lens, a photoconductive mercury cadmium telluride sensor array, and the mechanical assembly to hold these parts and maintain their optical alignment across a broad temperature range. The existing scanner design was modified to accept the new spectrometer and two field filling thermal reference sources.

  16. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  17. LANDSAT-4 horizon scanner performance evaluation

    NASA Technical Reports Server (NTRS)

    Bilanow, S.; Chen, L. C.; Davis, W. M.; Stanley, J. P.

    1984-01-01

    Representative data spans covering a little more than a year since the LANDSAT-4 launch were analyzed to evaluate the flight performance of the satellite's horizon scanner. High frequency noise was filtered out by 128-point averaging. The effects of Earth oblateness and spacecraft altitude variations are modeled, and residual systematic errors are analyzed. A model for the predicted radiance effects is compared with the flight data and deficiencies in the radiance effects modeling are noted. Correction coefficients are provided for a finite Fourier series representation of the systematic errors in the data. Analysis of the seasonal dependence of the coefficients indicates the effects of some early mission problems with the reference attitudes which were computed by the onboard computer using star trackers and gyro data. The effects of sun and moon interference, unexplained anomalies in the data, and sensor noise characteristics and their power spectrum are described. The variability of full orbit data averages is shown. Plots of the sensor data for all the available data spans are included.

  18. Design of a multisensor optical surface scanner

    NASA Astrophysics Data System (ADS)

    Bhatia, Gulab H.; Smith, Kirk E.; Commean, Paul K.; Whitestone, Jennifer J.; Vannier, Michael W.

    1994-10-01

    A reconfigurable, optical, 3D scanning system with sub-second acquisition of human body surface data was designed and simulated. Sensor elements (digital cameras/light beam projectors) that meet resolution, accuracy, and speed requirements are included in the system design. The sensors are interfaced to video frame grabber(s) under computer control resulting in a modular, low cost system. System operation and data processing are performed using a desktop graphics workstation. Surface data collected with this system can be oversampled to improve resolution and accuracy (viewed by overlapping camera/projector pairs). Multi- resolution data can be collected for different surfaces simultaneously or separately. Modeling and calibration of this reconfigurable system are achieved via a robust optimal estimation technique. Reconstruction software that allows seamless merging of a range data from multiple sensors has been implemented. Laser scanners that acquire body surface range data using one or two sensors require several seconds for data collection. Surface digitization of inaminate objects is feasible with such devices, but their use in human surface metrology is limited due to motion artifacts and occluded surfaces. Use of multiple, independent active sensors providing rapid collection and multi-resolution data enable sampling of complex human surface morphology not otherwise practical. 3D facial surface data has provided accurate measurements used in facial/craniofacial plastic surgery and modern personal protective equipment systems. Whole body data obtained with this new system is applicable to human factors research, medical diagnosis/treatment, and industrial design.

  19. Fingerprint scanner using digital interference holography

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, Myung K.

    2009-05-01

    We present three-dimensional imaging of artificial fingerprints using the Digital Interference Holography (DIH) scanner. DIH is based on a multiwavelength optical sensing technique that can be used to build holographically the three dimensional structure of the fingerprints. Many holograms (~50) were acquired by a CCD camera by scanning a range of wavelengths. Each hologram was numerically reconstructed and then superposed yielding tomographic images which represented the artificial fingerprint structure. The axial resolution is a parameter that depends on the wavelength scanning range and is about 5 ?m. The light source was a solid state pumped dye laser with a tunable wavelength range of 550 nm to 600 nm. Holograms were captured by a monochrome CCD camera (Sony XC-ST50, with 780 × 640 pixels and a pixel size of ~ 9 ?m). An image acquisition board (NI IMAQ PCI-1407) digitized the image with 8 bit resolution. All software was developed in house with the NI LabView. We used a Michelson interferometer in a backscattering geometry and the reconstruction of the optical field was done using the angular spectrum algorithm. Our goal is to identify and quantify, Level 1 (pattern), Level 2 (minutia points), and Level 3 (ridge contours) features from the amplitude images, using the DIH technique and fingerprints recognition. The results could be used in the two fingerprint matching phases, identification and verification.

  20. Wobble Error Correction For Laser Scanners

    NASA Astrophysics Data System (ADS)

    Wu, Jingshown; Chu, Ming-Her

    1986-12-01

    The laser scanning technology was developed rapidly in recent years to fulfill the great needs of high speed, high quality image and documentation transmission and retrieval especially for facsimile and computer input/output applications. The main components of a laser scanner include a laser source, modulator, and a deflector. Recently,semiconductor lasers which can be directly modulated become popular. The modulator used externally thus can be eliminated. Among several different deflection devices, the rotating polygon mirror is used most popularly because it has high speed, large deflection angle, and low cost. Ideally, each facet of a polygon mirror should be parallel to the rotating axis to produce uniform scanning lines. However due to the fabrication limitation, it is very difficult to have perfect parallelism of each facet. The tilt of the facet will displace the scanning lines to yield a periodical pattern to which the human eyes are very sensitive. Many researchers reported several methods such as tightening the tolerance of the polygon mirror, using cylindrical lens, and employing optical-acoustic device to eliminate the wobble error. This paper will report a new method which employs a piezo-electric device to achieve the above mentioned purpose. We use an optical sensor to detect the displacement of the dislocated scanning line and feed the information to a piezo-electric device with a mirror to compensate the wobble error. This paper will describe the method briefly and present the theoretical calculation and experimental results.

  1. [Nutritional characteristics of cereal and peanut bars].

    PubMed

    Escobar, B; Estévez, A M; Tepper, A; Aguayo, M

    1998-06-01

    Snack with good nutritional value could play an important role in the physical and mental development of children and teenagers since they show a great preference for them. The tendency is increasing their nutritional value by supplying proteins, carbohydrates, fiber, vitamins and minerals in a balanced form. The purpose of this research was to evaluate the chemical, sensorial and nutritional quality of cereal and peanut bars. Three types of bars using different ratios of oat, wheat germ, peanut, toasted and expanded amaranthus and wheat extrudate were prepared. Bars proximate composition was determined according the AOAC methods, and their acceptability according Hedonic Scale. In the biological assays, rats fed with 10% protein diets, were used to obtain the Protein Efficiency Ratio (PER) Net Protein Ratio (NPR) and Apparent Digestibility (AD). Corrected PER, relative PER, relative AD, PER and NPR values did not showed difference between bars CM1 and CM2 (PER: 2.59-2.57; NPR: 3.99-3.95 respectively); CM3 bar showed a lower quality. There were not differences among bars in relation to AD. CM1 and CM2 bars had a better biological quality of the protein being CM3 bar of lower quality. From a chemical and sensorial point of view CM1 bar shows the highest protein content (14.23%) and acceptability (6.8) and CM2 bar shows a high raw fiber content (2.27%). PMID:9830492

  2. Quantifying the Bias in the Masses of Supermassive Black Holes in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2014-10-01

    Recent studies of simulations of barred galaxies with supermassive black holes {BH} show that a bar can cause an increase in the central line-of-sight velocity dispersion {sigma} of about 7-12% - an increase that is consistent with the average offset observed for barred galaxies relative to unbarred ones. A more serious consequence of the presence of a bar is that its unique orbital structure {the combination of the radially biased bar orbits and the high bar pattern speed}, results in a high central velocity dispersion but negative 4th Gauss-Hermite parameters, even in the vicinity of the BH. This unique combination of kinematical parameters can result in a systematic over-estimate of the BH mass - if the bar is modelled as axisymmetric. Although nearly 60% of spiral/SO galaxies with existing stellar dynamically BH masses are in barred galaxies, their masses have been derived using axisymmetric models! An overestimate of BH mass in barred disks would erase morphological differences between the BH scaling relations of disks and ellipticals, which could be crucial to understanding the co-evolution of BHs and their host galaxies. In this theory proposal we will use N-body simulations to generate mock kinematic datasets {STIS, FOS and ground based IFU} for barred disk galaxies, model them with an axisymmetric orbit superposition code, and thereby quantify the magnitude of the bias in existing BH mass measurements. This analysis will provide crucial input for developing new and accurate methods for determining BH masses in galaxies of different morphological types, thereby revealing the true extent of intrinsic differences in the supermassive BH scaling relationships.

  3. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  4. A diffractive barcode using diffusion-dot lines to form intersected bright bars with different orientations

    NASA Astrophysics Data System (ADS)

    Lih Yeh, Sheng; Lin, Shyh Tsong; Wu, Ming Wei

    2010-11-01

    Conventional barcodes can perform well for the data management of commercial products, but they cannot be used for anti-counterfeiting. Therefore, this paper will propose a new barcode with macro- and micro-anti-counterfeiting features. A barcode image for a conventional barcode is composed of parallel bars with different widths, whereas a barcode image for the new barcode is composed of intersected bars with different orientations. Codes for the proposed barcode are composed of bright bars along four possible orientations only. The proposed barcode pattern possesses many parallel diffusion-dot lines. Because diffusion-dot lines can diffract a laser beam to form different bright bar arrangements corresponding to different codes, the proposed barcode is called a 'diffractive barcode' here. There are brightness and length differences between the bars in a bright bar image and the differences are difficult to counterfeit, so the macrofeatures can be used for anti-counterfeiting. On the other hand, because the appearances of the diffusion dots are special and they cannot be reproduced, the microfeatures can be used for anti-counterfeiting. Moreover, both the encoding and decoding work of the diffractive barcode are easy.

  5. Compact implementation of dynamic receive apodization in ultrasound scanners

    NASA Astrophysics Data System (ADS)

    Tomov, Borislav G.; Jensen, Jørgen A.

    2004-04-01

    The image quality in medical ultrasound scanners is determined by several factors, one of which is the ability of the receive beamformer to change the aperture weighting function with depth and beam angle. In digital beamformers, precise dynamic apodization can be achieved by representing that function by numeric sequences. For a 15 cm scan depth and 100 lines per image, a 64-channel, 40 MHz ultrasound beamformer may need almost 50 million coefficients. A more coarse representation of the aperture relieves the memory requirements but does not enable compact and precise beamforming. Previously, the authors have developed a compact beamformer architecture which utilizes sigma-delta A/D conversion, recursive delay generation and sparse sample reconstruction using FIR filters. The channel weights were here fixed. In this paper, a compact implementation of dynamic receive apodization is presented. It allows precise weighting coefficient generation and utilizes a recursive algorithm which shares its starting parameters with the recursive delay generation logic. Thus, only a separate calculation block, consisting of 5 adders and 5 registers, is necessary. A VHDL implementation in a Xilinx XCV2000E-7 FPGA has been made for the whole receive beamformer for assessing the necessary hardware resources and the achievable performance for that platform. The code implements dynamic apodization with an expanding aperture for either linear or phased array imaging. A complete 32-channel beamformer can operate at 129.82 MHz and occupies 1.28 million gates. Simulated in Matlab, a 64-channel beamformer provides gray scale image with around 55 dB dynamic range. The beamformed data can also be used for flow estimation.

  6. Boric Acid Reclamation System (BARS)

    SciTech Connect

    Kniazewycz, B.G.; Markind, J.

    1986-03-01

    KLM Technologies' personnel have identified a Boric Acid Reclamation System (BARS) utilizing reverse osmosis and ultrafiltration to produce a recyclable grade of otherwise waste boric acid at PWRs, thus reducing a major source of low-level radwaste. The design of a prototype BARS as a compact volume reduction system was the result of KLM's Phase 1 Program, and based upon a preliminary feasibility program, which assessed the applicability of membrane technology to refurbish and recycle waste boric acid from floor and equipment drain streams. The analysis of the overall program indicated a substantial savings regarding off-site disposal costs. Today's economic scenario indicates that optimization of volume reduction operation procedures could significantly reduce waste management costs, especially where burial penalties have become more severe. As a reaction to the economic burden imposed by final disposal, many nuclear plants are currently modifying their design and operating philosophies concerning liquid radwaste processing systems to meet stricter environmental regulations, and to derive potential economic benefits by reducing the ever-increasing volumes of wastes that are produced. To effect these changes, innovative practices in waste management and more efficient processing technologies are being successfully implemented.

  7. Agricultural Applications and Requirements for Thermal Infrared Scanners

    NASA Technical Reports Server (NTRS)

    Wiegand, C. L.

    1971-01-01

    Some of the applications of thermal scanner data in agriculture are presented along with illustrations of some of the factors affecting the temperature of plants, soil, and water. Examples of thermal imagery are included.

  8. Ultrasonic recording scanner used for nondestructive weld inspection

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Portable ultrasonic recording scanner is used for nondestructive inspection of welds. It is adaptable to continuous operation in one direction while maintaining oscillatory motion at a right angle to this direction. The scanning speed and oscillation frequency are independently adjustable.

  9. Geometric theory of horizon scanners. [onboard spacecraft for attitude determination

    NASA Technical Reports Server (NTRS)

    Fang, B. T.

    1975-01-01

    The note presents a general geometrical theory of spacecraft horizon scanners for the purpose of actual attitude determination, as opposed to just attitude stabilization. Analysis is carried out in terms of the scanning angles and three sets of auxiliary axes: the scanner axes, the nonscanning axes, and the orbital axes. Euler angles (yaw, pitch, and roll) transform the orbital axes to the nonscanning axes, and spacecraft attitude is determined directly from the attitude of the nonscanning axes relative to the orbital axes. In most applications the scanning speed is fast, so that it can be assumed that the attitude of the spacecraft does not change during a scan; however, a perturbation analysis is provided for errors committed by neglecting attitude changes. The analysis is valid for all types of scanners; in addition, the case where two scanners with different half-cone angles are used is considered.

  10. High-performance horizontal side scanner using holographic technology

    NASA Astrophysics Data System (ADS)

    Cheng, Charles C. K.

    1998-06-01

    A new holographic technique has been used to make a compact, accurate and reliable POS scanner. The holo-window technology permits compact POS scanner optical scanning in horizontal plan while maintaining excellent performance in changing the scan direction, equalizing the scan velocity and collecting the signal light. The holo-window design and fabrication in the holographic optical element (HOE) for such a compact POS scanner are described in this paper. Additionally this new horizontal side scanning possesses large depth of field (greater than 10 inches), allows the grocery items to be scanned horizontally thus eliminating the commonly experienced carpal tunnel syndrome (CTS) hand injuries of the checkers. This newly designed POS scanner has been recognized by industry as the standard for the future POS scanning configuration.

  11. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    NASA Technical Reports Server (NTRS)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  12. The WISE telescope and scanner: design choices and hardware results

    NASA Astrophysics Data System (ADS)

    Sampath, Deepak; Akerstrom, Alan; Barry, Mark; Guregian, Jim; Schwalm, Mark; Ugolini, Virginia

    2010-08-01

    L-3 Integrated Optical Systems/SSG designed and built the telescope, aft imager, and scanner for the Widefield Infrared Survey Explorer (WISE) under subcontract to Utah State University/Space Dynamics Laboratory. The WISE mission and collection scheme imparted several driving requirements on the telescope and scanner, including the need for low cost implementation, <11 Kelvin operation, and the need to back-scan by half a degree during detector integration in order to freeze the line of sight on the sky as the spacecraft pitched in orbit. These requirements led to several unique design and implementation choices for the telescope and scanner. In this paper we highlight several of those design choices as well as lessons learned from the telescope and scanner design, fabrication, and test. WISE, a NASA MIDEX mission within the Explorers program, was managed by the Jet Propulsion Laboratory. WISE launched on December 14, 2009 and is currently operating successfully.

  13. A secularly evolved model for the Milky Way bar and bulge

    NASA Astrophysics Data System (ADS)

    Martinez-Valpuesta, Inma; Gerhard, Ortwin

    2015-03-01

    Bars are strong drivers of secular evolution in disk galaxies. Bars themselves can evolve secularly through angular momentum transport, producing different boxy/peanut and X-shaped bulges. Our Milky Way is an example of a barred galaxy with a boxy bulge. We present a self-consistent N-body simulation of a barred galaxy which matches remarkably well the structure of the inner Milky Way deduced from star counts. In particular, features taken as signatures of a second ``long bar`` can be explained by the interaction between the bar and the spiral arms of the galaxy (Martinez-Valpuesta & Gerhard 2011). Furthermore the structural change in the bulge inside l = 4° measured recently from VVV data can be explained by the high-density near-axisymmetric part of the inner boxy bulge (Gerhard & Martinez-Valpuesta 2012). We also compare this model with kinematic data from recent spectroscopic surveys. We use a modified version of the NMAGIC code (de Lorenzi et al. 2007) to study the properties of the Milky Way bar, obtaining an upper limit for the pattern speed of ~ 42 km/sec/kpc. See Fig. 1 for a comparison of one of our best models with BRAVA data (Kunder et al. 2012).

  14. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  15. Character Recognition And Optical Characteristics Of Image Scanners

    NASA Astrophysics Data System (ADS)

    Sziranyi, Tamas; Boroczki, Agoston; Kovacs, Tamas

    1990-01-01

    A method is shown in this paper to calculate the possible character recognition error rate, which is originated from the optical transfer functions and sampling performance of the scanner. The increase of the possible reading error is the result of the image degradation through the optical transfer, and can be measured by the so-called similarity error. Theoretical and experimental results are in a good accordance. The different character types, scanners and printer outputs can be characterized by this method, as well.

  16. Spectra of clinical CT scanners using a portable Compton spectrometer

    SciTech Connect

    Duisterwinkel, H. A.; Abbema, J. K. van; Kawachimaru, R.; Paganini, L.; Graaf, E. R. van der; Brandenburg, S.; Goethem, M. J. van

    2015-04-15

    Purpose: Spectral information of the output of x-ray tubes in (dual source) computer tomography (CT) scanners can be used to improve the conversion of CT numbers to proton stopping power and can be used to advantage in CT scanner quality assurance. The purpose of this study is to design, validate, and apply a compact portable Compton spectrometer that was constructed to accurately measure x-ray spectra of CT scanners. Methods: In the design of the Compton spectrometer, the shielding materials were carefully chosen and positioned to reduce background by x-ray fluorescence from the materials used. The spectrum of Compton scattered x-rays alters from the original source spectrum due to various physical processes. Reconstruction of the original x-ray spectrum from the Compton scattered spectrum is based on Monte Carlo simulations of the processes involved. This reconstruction is validated by comparing directly and indirectly measured spectra of a mobile x-ray tube. The Compton spectrometer is assessed in a clinical setting by measuring x-ray spectra at various tube voltages of three different medical CT scanner x-ray tubes. Results: The directly and indirectly measured spectra are in good agreement (their ratio being 0.99) thereby validating the reconstruction method. The measured spectra of the medical CT scanners are consistent with theoretical spectra and spectra obtained from the x-ray tube manufacturer. Conclusions: A Compton spectrometer has been successfully designed, constructed, validated, and applied in the measurement of x-ray spectra of CT scanners. These measurements show that our compact Compton spectrometer can be rapidly set-up using the alignment lasers of the CT scanner, thereby enabling its use in commissioning, troubleshooting, and, e.g., annual performance check-ups of CT scanners.

  17. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. P{bar P} collider physics

    SciTech Connect

    Demarteau, M.

    1992-04-01

    A brief introduction to {bar p}p collider physics is given. Selected results from the collider experiments at the CERN S{bar p}pS and the Tevatron collider are described. The emphasis is on experimental aspects of {bar p}p collisions. Minimum bias physics and the production of jets, Intermediate Vector Bosons and heavy flavors is reviewed. The outlook for physics at hadron colliders for the near future is briefly discussed.

  19. DO BARS DRIVE SPIRAL DENSITY WAVES?

    SciTech Connect

    Buta, Ronald J.; Knapen, Johan H.; Elmegreen, Bruce G.; Salo, Heikki; Laurikainen, Eija; Elmegreen, Debra Meloy; Puerari, Ivanio; Block, David L. E-mail: jhk@iac.es E-mail: hsalo@sun3.oulu.fi E-mail: elmegreen@vassar.edu E-mail: David.Block@wits.ac.za

    2009-05-15

    We present deep near-infrared K{sub s} -band Anglo-Australian Telescope Infrared Imager and Spectrograph observations of a selected sample of nearby barred spiral galaxies, including some with the strongest known bars. The sample covers a range of Hubble types from SB0{sup -} to SBc. The goal is to determine if the torque strengths of the spirals correlate with those of the bars, which might be expected if the bars actually drive the spirals as has been predicted by theoretical studies. This issue has implications for interpreting bar and spiral fractions at high redshift. Analysis of previous samples suggested that such a correlation exists in the near-infrared, where effects of extinction and star formation are less important. However, the earlier samples had only a few excessively strong bars. Our new sample largely confirms our previous studies, but still any correlation is relatively weak. We find two galaxies, NGC 7513 and UGC 10862, where there is only a weak spiral in the presence of a very strong bar. We suggest that some spirals probably are driven by their bars at the same pattern speed, but that this may be only when the bar is growing or if there is abundant gas and dissipation.

  20. TESTING THEORIES IN BARRED-SPIRAL GALAXIES

    SciTech Connect

    Martinez-Garcia, Eric E.

    2012-01-10

    According to one version of the recently proposed 'manifold' theory that explains the origin of spirals and rings in relation to chaotic orbits, galaxies with stronger bars should have a higher spiral arms pitch angle when compared to galaxies with weaker bars. A subsample of barred-spiral galaxies in the Ohio State University Bright Galaxy Survey was used to analyze the spiral arms pitch angle. These were compared with bar strengths taken from the literature. It was found that the galaxies in which the spiral arms maintain a logarithmic shape for more than 70 Degree-Sign seem to corroborate the predicted trend.

  1. {bar d}/{bar u} asymmetry and the origin of the nucleon sea

    SciTech Connect

    Bush, J.D.; Isenhower, L.D.; Sadler, M.E.; Towell, R.S.; Willis, J.L.; Wise, D.K.; Geesaman, D.F.; Kaufman, S.B.; Makins, N.; Mueller, B.A.; Brown, C.N.; Cooper, W.E.; He, X.C.; Lee, W.M.; Petitt, G.; Kaplan, D.M.; Peng, J.C.; Garvey, G.T.; Brooks, M.L.; Carey, T.A.; Lee, D.M.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Park, B.K.; Reimer, P.E.; Sondheim, W.E.; Thompson, T.N.; Kirk, P.N.; Wang, Y.C.; Wang, Z.F.; Beddo, M.E.; Chang, T.H.; Kyle, G.; Papavassiliou, V.; Webb, J.C.; Awes, T.C.; Stankus, P.W.; Young, G.R.; Gagliardi, C.A.; Hawker, E.A.; Tribble, R.E.; Vasiliev, M.A.; Koetke, D.D.; Nord, P.M.

    1998-11-01

    The Drell-Yan cross section ratios, {sigma}(p+d)/{sigma}(p+p), measured in Fermilab E866, have led to the first determination of {bar d}(x)/{bar u}(x), {bar d}(x){minus}{bar u}(x), and the integral of {bar d}(x){minus}{bar u}(x) for the proton over the range 0.02{le}x{le}0.345. The E866 results are compared with predictions based on parton distribution functions and various theoretical models. The relationship between the E866 results and the NMC measurement of the Gottfried integral is discussed. The agreement between the E866 results and models employing virtual mesons indicates that these non-perturbative processes play an important role in the origin of the {bar d},{bar u} asymmetry in the nucleon sea. {copyright} {ital 1998} {ital The American Physical Society}

  2. Halo evolution in the presence of a disc bar

    NASA Astrophysics Data System (ADS)

    McMillan, Paul J.; Dehnen, Walter

    2005-11-01

    Angular momentum transfer from a rotating stellar bar has been proposed by Weinberg & Katz as a mechanism to destroy dark matter cusps in a few rotation periods. The N-body simulations performed by these authors in support of their claim employed spherical harmonics for the force computation and were, as shown by Sellwood, very sensitive to inclusion of asymmetric terms (odd l, m). In order to disentangle possible numerical artefacts due to the usage of spherical harmonics from genuine stellar dynamical effects, we performed similar experiments using a tree code and find that significant cusp destruction requires substantially more angular momentum than is realistically available. However, we find that the simplified model (a N-body halo torqued by a rotating bar pinned to the origin) undergoes an instability in which the cusp moves away from the origin. In presence of this off-centring, spherical density profiles centred on the origin display an apparent cusp removal. We strongly suspect that it is this effect which Weinberg & Katz observed. When suppressing the artificial instability, cusp removal is very slow and requires much more angular momentum to be transferred to the halo than a realistic stellar bar possibly possesses.

  3. DO BARS TRIGGER ACTIVITY IN GALACTIC NUCLEI?

    SciTech Connect

    Lee, Gwang-Ho; Woo, Jong-Hak; Lee, Myung Gyoon; Lee, Jong Chul; Sohn, Jubee; Lee, Jong Hwan; Hwang, Ho Seong E-mail: woo@astro.snu.ac.kr E-mail: jbsohn@astro.snu.ac.kr E-mail: hhwang@cfa.harvard.edu

    2012-05-10

    We investigate the connection between the presence of bars and active galactic nucleus (AGN) activity, using a volume-limited sample of {approx}9000 late-type galaxies with axis ratio b/a > 0.6 and M{sub r} < -19.5 + 5 log h at low redshift (0.02 {<=} z {approx}< 0.055), selected from Sloan Digital Sky Survey Data Release 7. We find that the bar fraction in AGN-host galaxies (42.6%) is {approx}2.5 times higher than in non-AGN galaxies (15.6%), and that the AGN fraction is a factor of two higher in strong-barred galaxies (34.5%) than in non-barred galaxies (15.0%). However, these trends are simply caused by the fact that AGN-host galaxies are on average more massive and redder than non-AGN galaxies because the fraction of strong-barred galaxies (f{sub SB}) increases with u - r color and stellar velocity dispersion. When u - r color and velocity dispersion (or stellar mass) are fixed, both the excess of f{sub SB} in AGN-host galaxies and the enhanced AGN fraction in strong-barred galaxies disappears. Among AGN-host galaxies we find no strong difference of the Eddington ratio distributions between barred and non-barred systems. These results indicate that AGN activity is not dominated by the presence of bars, and that AGN power is not enhanced by bars. In conclusion, we do not find clear evidence that bars trigger AGN activity.

  4. Too Much Bar and Not Enough Mitzvah? A Proposed Research Agenda on Bar/Bat Mitzvah

    ERIC Educational Resources Information Center

    Schoenfeld, Stuart

    2010-01-01

    Jewish educators are understandably interested in research on how bar/bat mitzvah affect Jewish education or research on what Jewish schools have done to avoid the distortions of a focus on bar/bat mitzvah. Research might also focus on the somewhat different and more ambitious topic of the role that bar/bat mitzvah play in contemporary Jewish…

  5. Too Much Bar and Not Enough Mitzvah? A Proposed Research Agenda on Bar/Bat Mitzvah

    ERIC Educational Resources Information Center

    Schoenfeld, Stuart

    2010-01-01

    Jewish educators are understandably interested in research on how bar/bat mitzvah affect Jewish education or research on what Jewish schools have done to avoid the distortions of a focus on bar/bat mitzvah. Research might also focus on the somewhat different and more ambitious topic of the role that bar/bat mitzvah play in contemporary Jewish…

  6. On the offset of barred galaxies from the black hole M {sub BH}-? relationship

    SciTech Connect

    Brown, Jonathan S.; Valluri, Monica; Shen, Juntai; Debattista, Victor P. E-mail: mvalluri@umich.edu

    2013-12-01

    We use collisionless N-body simulations to determine how the growth of a supermassive black hole (SMBH) influences the nuclear kinematics in both barred and unbarred galaxies. In the presence of a bar, the increase in the velocity dispersion ? (within the effective radius) due to the growth of an SMBH is on average ? 10%, whereas the increase is only ? 4% in an unbarred galaxy. In a barred galaxy, the increase results from a combination of three separate factors: (1) orientation and inclination effects; (2) angular momentum transport by the bar that results in an increase in the central mass density; and (3) an increase in the vertical and radial velocity anisotropy of stars in the vicinity of the SMBH. In contrast, the growth of the SMBH in an unbarred galaxy causes the velocity distribution in the inner part of the nucleus to become less radially anisotropic. The increase in ? following the growth of the SMBH is insensitive to a variation of a factor of 10 in the final mass of the SMBH, showing that it is the growth process rather than the actual SMBH mass that alters bar evolution in a way that increases ?. We argue that using an axisymmetric stellar dynamical modeling code to measure SMBH masses in barred galaxies could result in a slight overestimate of the derived M {sub BH}, especially if a constant M/L ratio is assumed. We conclude that the growth of a black hole in the presence of a bar could result in an increase in ? that is roughly 4%-8% larger than the increase that occurs in an axisymmetric system. While the increase in ? due to SMBH growth in a barred galaxy might partially account for the claimed offset of barred galaxies and pseudo bulges from the M {sub BH}-? relation obtained for elliptical galaxies and classical bulges in unbarred galaxies, it is inadequate to account for all of the offset.

  7. CT scanner x-ray spectrum estimation from transmission measurements

    PubMed Central

    Duan, Xinhui; Wang, Jia; Yu, Lifeng; Leng, Shuai; McCollough, Cynthia H.

    2011-01-01

    Purpose: In diagnostic CT imaging, multiple important applications depend on the knowledge of the x-ray spectrum, including Monte Carlo dose calculations and dual-energy material decomposition analysis. Due to the high photon flux involved, it is difficult to directly measure spectra from the x-ray tube of a CT scanner. One potential method for indirect measurement involves estimating the spectrum from transmission measurements. The expectation maximization (EM) method is an accurate and robust method to solve this problem. In this article, this method was evaluated in a commercial CT scanner. Methods: Two step-wedges (polycarbonate and aluminum) were used to produce different attenuation levels. Transmission measurements were performed on the scanner and the measured data from the scanner were exported to an external computer to calculate the spectra. The EM method was applied to solve the equations that represent the attenuation processes of polychromatic x-ray photons. Estimated spectra were compared to the spectra simulated using a software provided by the manufacturer of the scanner. To test the accuracy of the spectra, a verification experiment was performed using a phantom containing different depths of water. The measured transmission data were compared to the transmission values calculated using the estimated spectra. Results: Spectra of 80, 100, 120, and 140 kVp from a dual-source CT scanner were estimated. The estimated and simulated spectra were well matched. The differences of mean energies were less than 1 keV. In the verification experiment, the measured and calculated transmission values were in excellent agreement. Conclusions: Spectrum estimation using transmission data and the EM method is a quantitatively accurate and robust technique to estimate the spectrum of a CT system. This method could benefit studies relying on accurate knowledge of the x-ray spectra from CT scanner. PMID:21452736

  8. Impact induced fracture of glass bars

    NASA Astrophysics Data System (ADS)

    Bless, Stephen J.; Brar, N. S.

    1994-07-01

    Soda lime and pyrex glass bars are impacted with glass bars at impact velocities to 300 m/sec. Manganin gauges are embedded 10 diameters away from the impact face to measure stress-time profile. An Imacon camera, at a framing rate of 105 f/s, is used to monitor the impact induced frature front in the bar. Glass bars fail through a fracture or failure front propagating across the cross section of the bar. The speed of the fracture front in pyrex bar is a function of the impactor velocity. The speed increases from 2.3 mm/?s, corresponding to impact velocity of 125 m/s, to 5.2 mm/?s for impact velocity of 330 m/s1. In two experiments a 1.6 mm thick round aluminium disk was glued on the impact face of the target bar. In the experiment on soda lime glass bar target in this configuration we observed two fracture fronts, one originating at the impact face and the other originating about 30 ?s after the impact, from the gauge interface 10 diameters away, where the manganin gauge is embedded.

  9. Hoag's object, remnant of a vanished bar?

    NASA Astrophysics Data System (ADS)

    Freeman, Tarsh; Howard, Sethanne; Byrd, Gene G.

    2010-09-01

    The beautiful ringed Hoag’s object, named after its discoverer, is an interesting galaxy. Because of the roundness of its ring-like structure, it has been proposed to be a collisional ring galaxy; however, there is no obvious nearby culprit galaxy that could have collided with it. Considering an alternative, much gentler hypothesis, we study the development of the observed structure via a turning, bar perturbation in the disk potential. However, there is currently no obvious bar present, and rings produced by bars are typically oval. On the basis of much recent work improving our understanding of bar evolution, we assume the bar grows and then vanishes. In simulations of a disk of particles, under such a bar turning in the disk plane, we obtain a bulge core, empty void, and circular ring in the disk that mimic the observations of Hoag’s object. We conclude the inner edge of the ring is just beyond the outer Lindblad resonance (OLR) with the bar pattern speed. We estimate the amount of gas mass in the bulge core to be twice that of the ring. Our simulations indicate that the Hoag Object ring could survive at least 6 billion years after the bar vanishes.

  10. Bar Study Stories. Issues in Prevention

    ERIC Educational Resources Information Center

    Higher Education Center for Alcohol, Drug Abuse, and Violence Prevention, 2012

    2012-01-01

    This issue of "Issues in Prevention" focuses on the impact of the availability of drinks in licensed establishments, such as bars and taverns on student drinking. This issue contains the following articles: (1) Cheap Drinks at College Bars Can Escalate Student Drinking (John D. Clapp); (2) High Alcohol Outlet Density: A Problem for Campuses and…

  11. [Development of cereal bar with pineapple skin].

    PubMed

    Fonseca, Renata Siqueira; Del Santo, Victor Rogério; Souza, Gilberto Batista de; Pereira, Cíntia Alessandra Matiucci

    2011-06-01

    The cereal bars are multi-component products consisting of cereals, dried fruit and syrup binder and may be added to the consumable parts of fruits and vegetables which usually are not exploited and have high nutritional value, thereby reducing food waste. It was developed a jam with pineapple skin, which it was utilized in 13.5% in the cereal bar formulation. The cereal bar was sensorial evaluated and had its centesimal and mineral composition determined. The new product achieved average of 8.3 for global impression using 9 points hedonic scale, 91% of acceptance rate and 67% of purchase intent. In this first use of pineapple skin jam as food ingredient it can be concluded that its aggregation in the cereal bar formula is feasible, making an accepted product with fibers, proteins and minerals, as an alternative to traditional cereal bars. PMID:22308949

  12. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ∼3%. With the torso landmarked at the xiphoid, human adult whole‑body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.

  13. An RF dosimeter for independent SAR measurement in MRI scanners

    PubMed Central

    Qian, Di; El-Sharkawy, AbdEl-Monem M.; Bottomley, Paul A.; Edelstein, William A.

    2013-01-01

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B1) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ?3%. With the torso landmarked at the xiphoid, human adult whole?body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing. PMID:24320534

  14. An RF dosimeter for independent SAR measurement in MRI scanners

    SciTech Connect

    Qian, Di; Bottomley, Paul A.; El-Sharkawy, AbdEl-Monem M.; Edelstein, William A.

    2013-12-15

    Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists. However, at present there are no scanner-independent SAR dosimeters. Methods: An SAR dosimeter with an RF transducer comprises two orthogonal, rectangular copper loops and a spherical MRI phantom. The transducer is placed in the magnet bore and calibrated to approximate the resistive loading of the scanner's whole-body birdcage RF coil for human subjects in Philips, GE and Siemens 3 tesla (3T) MRI scanners. The transducer loop reactances are adjusted to minimize interference with the transmit RF field (B{sub 1}) at the MRI frequency. Power from the RF transducer is sampled with a high dynamic range power monitor and recorded on a computer. The deposited power is calibrated and tested on eight different MRI scanners. Whole-body absorbed power vs weight and body mass index (BMI) is measured directly on 26 subjects. Results: A single linear calibration curve sufficed for RF dosimetry at 127.8 MHz on three different Philips and three GE 3T MRI scanners. An RF dosimeter operating at 123.2 MHz on two Siemens 3T scanners required a separate transducer and a slightly different calibration curve. Measurement accuracy was ?3%. With the torso landmarked at the xiphoid, human adult whole?body absorbed power varied approximately linearly with patient weight and BMI. This indicates that whole-body torso SAR is on average independent of the imaging subject, albeit with fluctuations. Conclusions: Our 3T RF dosimeter and transducers accurately measure RF exposure in body-equivalent loads and provide scanner-independent assessments of whole-body RF power deposition for establishing safety compliance useful for MRI sequence and device testing.

  15. Regulation of X-Ray Security Scanners in Michigan.

    PubMed

    Parry, Donald E

    2016-02-01

    In January of 2013 the Transportation Security Administration (TSA) ordered the removal of x-ray security scanners from airports by June of 2013. Since that time several of these scanners have been purchased at a reduced cost by various state and county governments for use in screening individuals entering or leaving their facilities. To address this issue the Radiation Safety Section of the State of Michigan drafted a set of registration conditions for facilities to follow when using these security scanners. Inspection procedures and measurement protocols were developed to estimate the dose to screened individuals. Inspections were performed on nine of the 16 registered backscatter scanners in the state and the one transmission scanner. The average estimated effective dose to screened individuals was ∼11 nSv for a two view scan from a backscatter system. The effective dose was 0.446 μSv, 0.330 μSv, and 0.150 μSv for a transmission system operated in the high, medium, and low dose modes, respectively. The limit suggested in the new registration condition is 0.25 μSv for a general use system and 10 μSv for a limited use system. PMID:26710165

  16. Moths on the Flatbed Scanner: The Art of Joseph Scheer

    PubMed Central

    Buchmann, Stephen L.

    2011-01-01

    During the past decade a few artists and even fewer entomologists discovered flatbed scanning technology, using extreme resolution graphical arts scanners for acquiring high magnification digital images of plants, animals and inanimate objects. They are not just for trip receipts anymore. The special attributes of certain scanners, to image thick objects is discussed along with the technical features of the scanners including magnification, color depth and shadow detail. The work of pioneering scanner artist, Joseph Scheer from New York's Alfred University is highlighted. Representative flatbed-scanned images of moths are illustrated along with techniques to produce them. Collecting and preparing moths, and other objects, for scanning are described. Highlights of the Fulbright sabbatical year of professor Scheer in Arizona and Sonora, Mexico are presented, along with comments on moths in science, folklore, art and pop culture. The use of flatbed scanners is offered as a relatively new method for visualizing small objects while acquiring large files for creating archival inkjet prints for display and sale. PMID:26467835

  17. Compact Handheld Fringe Projection Based Underwater 3D-SCANNER

    NASA Astrophysics Data System (ADS)

    Bräuer-Burchardt, C.; Heinze, M.; Schmidt, I.; Kühmstedt, P.; Notni, G.

    2015-04-01

    A new, fringe projection based compact handheld 3D scanner for the surface reconstruction of measurement objects under water is introduced. The weight of the scanner is about 10 kg and can be used in a water depth of maximal 40 metres. A measurement field of about 250 mm x 200 mm is covered under water, and the lateral resolution of the measured object points is about 150 ?m. Larger measurement objects can be digitized in a unique geometric model by merging subsequently recorded datasets. The recording time for one 3D scan is a third of a second. The projection unit for the structured illumination of the scene as well as the computer for device control and measurement data analysis are included into the scanners housing. A display on the backside of the device realizes the graphical presentation of the current measurement data. It allows the user to evaluate the quality of the measurement result in real-time already during the recording of the measurement under water. For the calibration of the underwater scanner a combined method of air- and water-calibration was developed which needs only a few recorded underwater images of a plane surface and an object with known lengths. First measurement results obtained with the new scanner are presented.

  18. Multispectral data compression through transform coding and block quantization

    NASA Technical Reports Server (NTRS)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  19. Astrometric properties of the Tautenburg Plate Scanner

    NASA Astrophysics Data System (ADS)

    Brunzendorf, Jens; Meusinger, Helmut

    The Tautenburg Plate Scanner (TPS) is an advanced plate-measuring machine run by the Thüringer Landessternwarte Tautenburg (Karl Schwarzschild Observatory), where the machine is housed. It is capable of digitising photographic plates up to 30 cm × 30 cm in size. In our poster, we reported on tests and preliminary results of its astrometric properties. The essential components of the TPS consist of an x-y table movable between an illumination system and a direct imaging system. A telecentric lens images the light transmitted through the photographic emulsion onto a CCD line of 6000 pixels of 10 µm square size each. All components are mounted on a massive air-bearing table. Scanning is performed in lanes of up to 55 mm width by moving the x-y table in a continuous drift-scan mode perpendicular to the CCD line. The analogue output from the CCD is digitised to 12 bit with a total signal/noise ratio of 1000 : 1, corresponding to a photographic density range of three. The pixel map is produced as a series of optionally overlapping lane scans. The pixel data are stored onto CD-ROM or DAT. A Tautenburg Schmidt plate 24 cm × 24 cm in size is digitised within 2.5 hours resulting in 1.3 GB of data. Subsequent high-level data processing is performed off-line on other computers. During the scanning process, the geometry of the optical components is kept fixed. The optimal focussing of the optics is performed prior to the scan. Due to the telecentric lens refocussing is not required. Therefore, the main source of astrometric errors (beside the emulsion itself) are mechanical imperfections in the drive system, which have to be divided into random and systematic ones. The r.m.s. repeatability over the whole plate as measured by repeated scans of the same plate is about 0.5 µm for each axis. The mean plate-to-plate accuracy of the object positions on two plates with the same epoch and the same plate centre has been determined to be about 1 µm. This accuracy is comparable to results obtained with established measuring machines used for astrometric purposes and is mainly limited by the emulsion itself. The mechanical design of the x-y table introduces low-frequency systematic errors of up to 5 µm on both axes. Because of the high stability of the machine it is expected that these deviations from a perfectly uniform coordinate system will remain systematic on a long timescale. Such systematic errors can be corrected either directly once they have been determined or in the course of the general astrometric reduction process. The TPS is well suited for accurate relative measurements like proper motions on plates with the same scale and plate centre. The systematic errors of the x-y table can be determined by interferometric means, and there are plans for this in the next future.

  20. Improved Scanners for Microscopic Hyperspectral Imaging

    NASA Technical Reports Server (NTRS)

    Mao, Chengye

    2009-01-01

    Improved scanners to be incorporated into hyperspectral microscope-based imaging systems have been invented. Heretofore, in microscopic imaging, including spectral imaging, it has been customary to either move the specimen relative to the optical assembly that includes the microscope or else move the entire assembly relative to the specimen. It becomes extremely difficult to control such scanning when submicron translation increments are required, because the high magnification of the microscope enlarges all movements in the specimen image on the focal plane. To overcome this difficulty, in a system based on this invention, no attempt would be made to move either the specimen or the optical assembly. Instead, an objective lens would be moved within the assembly so as to cause translation of the image at the focal plane: the effect would be equivalent to scanning in the focal plane. The upper part of the figure depicts a generic proposed microscope-based hyperspectral imaging system incorporating the invention. The optical assembly of this system would include an objective lens (normally, a microscope objective lens) and a charge-coupled-device (CCD) camera. The objective lens would be mounted on a servomotor-driven translation stage, which would be capable of moving the lens in precisely controlled increments, relative to the camera, parallel to the focal-plane scan axis. The output of the CCD camera would be digitized and fed to a frame grabber in a computer. The computer would store the frame-grabber output for subsequent viewing and/or processing of images. The computer would contain a position-control interface board, through which it would control the servomotor. There are several versions of the invention. An essential feature common to all versions is that the stationary optical subassembly containing the camera would also contain a spatial window, at the focal plane of the objective lens, that would pass only a selected portion of the image. In one version, the window would be a slit, the CCD would contain a one-dimensional array of pixels, and the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion. The image built up by scanning in this case would be an ordinary (non-spectral) image. In another version, the optics of which are depicted in the lower part of the figure, the spatial window would be a slit, the CCD would contain a two-dimensional array of pixels, the slit image would be refocused onto the CCD by a relay-lens pair consisting of a collimating and a focusing lens, and a prism-gratingprism optical spectrometer would be placed between the collimating and focusing lenses. Consequently, the image on the CCD would be spatially resolved along the slit axis and spectrally resolved along the axis perpendicular to the slit. As in the first-mentioned version, the objective lens would be moved along an axis perpendicular to the slit to spatially scan the image of the specimen in pushbroom fashion.

  1. Snowmelt monitoring with Terrestrial Laser Scanner Measurements

    NASA Astrophysics Data System (ADS)

    Anttila, Kati; Kaasalainen, Sanna; Kaartinen, Harri; Krooks, Anssi; Manninen, Terhikki; Lahtinen, Panu; Riihelä, Aku; Siljamo, Niilo; Thölix, Laura; Karjalainen, Tuure

    2010-05-01

    The increasing use of satellite data has caused an increasing need for validation data. Terrestrial laser scanning (TLS) and Mobile Mapping Systems (MMS) are potential methods of gaining information on vast areas at remote locations. We have investigated the snowmelt 2009 using stationary and mobile TLS during the SNORTEX -campaign (Snow Reflectance Transition Experiment) in several locations in Finnish Lapland during 2008-2009. The SNORTEX is a 3-years investigation (started in 2008) piloted by Météo-France and FMI (Finnish Meteorological Institute). The key objectives of SNORTEX are to improve the characterization of snow-melting patterns in boreal regions using a multiscale approach supported by multi-angular and multi-spectral remote sensing information, and to build an integrated database for snow variables (albedo, fraction, water equivalent) in a forested environment for the validation of the SAF (Satellite Application Facilities) snow-related products. Validation data for EUMETSAT Land, Climate and Hydrological SAFs will be gathered in the campaign. The focus of the 2009 campaign was on the melting season. The field work was scheduled to include different snow/weather conditions and to include a time period with fractional snow cover. There will be one more field measurement period in spring 2010. The field survey took place at Sodankylä in Finnish Lapland. The existing facilities of FMI-ARC (The Arctic Research Center of the Finnish Meteorological Institutes) (67.4 °N 26.6 °E) were used. The studied area was chosen for this campaign because it is located far from the coasts, which makes the climate continental. The winters are long and cold during which the snow usually does not completely melt and several layers form in the snow pack. The area is partially forested which makes it possible to observe how the forests affect snow, snow cover and albedo. In addition to this the topography of the area is relatively plain which makes the area ideal for gathering validation data for satellite products. The results of the ground measurements of the SNORTEX campaign will be used to SAF product validations and to support the aerial data collected during the campaign. The TLS measurements during the campaign were made in several different locations at different stages of snowmelt. These measurements were georeferenced and normalized so that they could be compared. The results were compared to different ground measurements, e.g. snow depth, water equivalent etc., made by the Finnish Meteorological Institute. The results were used to estimate the usability of the point cloud and intensity data of the scanner in measuring different snow properties. The results show that TLS data is applicable in profiling seasonal snow conditions and the intensity data helps the classifying of the snow cover. The laser backscatter from snow surface is not directly related to any of the snow cover properties measured during the campaign but the snow structure has a clear effect on the TLS intensity. A MMS method for snow profiling was also developed during the campaign and the results show potential for MMS-based surface roughness profiling and change detection.

  2. Undertow over a barred beach

    NASA Astrophysics Data System (ADS)

    Faria, A. F. Garcez; Thornton, E. B.; Lippmann, T. C.; Stanton, T. P.

    2000-07-01

    The spatial distribution of the mean cross-shore flow (undertow) over a barred beach is examined with field data obtained on three energetic wave days during the Duck94 experiment. The vertical structure of the undertow is modeled using a turbulent eddy viscosity closure and includes the important effects of wave breaking (described using the roller concept) and convective acceleration of the current. Other than a more realistic description of observed turbulence variations, a depth-dependent eddy viscosity (compared with a constant) does not improve the agreement between predicted and observed undertow profiles. The effect of using different boundary conditions is investigated by extending the formulations of Stive and Wind [1986] and Svendsen et al. [1987] to include random waves by ensemble averaging over the wave height distribution. The contribution of breaking wave rollers to the surface mass flux can be of the same order or greater than the contribution associated with the organized wave motion. The largest discrepancies between model predictions and observations occur over the sandbar, where the mass transport of the breaking waves appears to be underestimated.

  3. Cam-controlled boring bar

    DOEpatents

    Glatthorn, Raymond H. (St. Petersburg, FL)

    1986-01-01

    A cam-controlled boring bar system (100) includes a first housing (152) which is rotatable about its longitudinal axis (154), and a second housing in the form of a cam-controlled slide (158) which is also rotatable about the axis (154) as well as being translatable therealong. A tool-holder (180) is mounted within the slide (158) for holding a single point cutting tool. Slide (158) has a rectangular configuration and is disposed within a rectangularly configured portion of the first housing (152). Arcuate cam slots (192) are defined within a side plate (172) of the housing (152), while cam followers (194) are mounted upon the cam slide (158) for cooperative engagement with the cam slots (192). In this manner, as the housing (152) and slide (158) rotate, and as the slide (158) also translates, a through-bore (14) having an hourglass configuration will be formed within a workpiece (16) which may be, for example, a nuclear reactor steam generator tube support plate.

  4. Determining density of maize canopy. 2: Airborne multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Stoner, E. R.; Baumgardner, M. F.; Cipra, J. E.

    1971-01-01

    Multispectral scanner data were collected in two flights over a light colored soil background cover plot at an altitude of 305 m. Energy in eleven reflective wavelength band from 0.45 to 2.6 microns was recorded. Four growth stages of maize (Zea mays L.) gave a wide range of canopy densities for each flight date. Leaf area index measurements were taken from the twelve subplots and were used as a measure of canopy density. Ratio techniques were used to relate uncalibrated scanner response to leaf area index. The ratios of scanner data values for the 0.72 to 0.92 micron wavelength band over the 0.61 to 0.70 micron wavelength band were calculated for each plot. The ratios related very well to leaf area index for a given flight date. The results indicated that spectral data from maize canopies could be of value in determining canopy density.

  5. Fast resonant target vibrating wire scanner for photon beam

    NASA Astrophysics Data System (ADS)

    Arutunian, S. G.; Chung, M.; Harutyunyan, G. S.; Margaryan, A. V.; Lazareva, E. G.; Lazarev, L. M.; Shahinyan, L. A.

    2016-02-01

    We propose a new type of wire scanner for beam profile measurements, based on the use of a vibrating wire as a scattering target. Synchronous measurements with the wire oscillation allow to detect only the signal coming from the scattering of the beam on the wire. This resonant method enables fast beam profiling in the presence of a high level of background. The developed wire scanner, called resonant target vibrating wire scanner, is applied to photon beam profiling, in which the photons reflected on the wire are measured by a fast photodiode. In addition, the proposed measurement principle is expected to monitor other types of beams as well, such as neutrons, protons, electrons, and ions.

  6. Fast resonant target vibrating wire scanner for photon beam.

    PubMed

    Arutunian, S G; Chung, M; Harutyunyan, G S; Margaryan, A V; Lazareva, E G; Lazarev, L M; Shahinyan, L A

    2016-02-01

    We propose a new type of wire scanner for beam profile measurements, based on the use of a vibrating wire as a scattering target. Synchronous measurements with the wire oscillation allow to detect only the signal coming from the scattering of the beam on the wire. This resonant method enables fast beam profiling in the presence of a high level of background. The developed wire scanner, called resonant target vibrating wire scanner, is applied to photon beam profiling, in which the photons reflected on the wire are measured by a fast photodiode. In addition, the proposed measurement principle is expected to monitor other types of beams as well, such as neutrons, protons, electrons, and ions. PMID:26931835

  7. Incorporation of a two metre long PET scanner in STIR

    NASA Astrophysics Data System (ADS)

    Tsoumpas, C.; Brain, C.; Dyke, T.; Gold, D.

    2015-09-01

    The Explorer project aims to investigate the potential benefits of a total-body 2 metre long PET scanner. The following investigation incorporates this scanner in STIR library and demonstrates the capabilities and weaknesses of existing reconstruction (FBP and OSEM) and single scatter simulation algorithms. It was found that sensible images are reconstructed but at the expense of high memory and processing time demands. FBP requires 4 hours on a core; OSEM: 2 hours per iteration if ran in parallel on 15-cores of a high performance computer. The single scatter simulation algorithm shows that on a short scale, up to a fifth of the scanner length, the assumption that the scatter between direct rings is similar to the scatter between the oblique rings is approximately valid. However, for more extreme cases this assumption is not longer valid, which illustrates that consideration of the oblique rings within the single scatter simulation will be necessary, if this scatter correction is the method of choice.

  8. Comparative cut-bar thermal conductivity apparatus.

    NASA Technical Reports Server (NTRS)

    Gaal, P. S.; Span, R. M.

    1972-01-01

    Construction details, error analysis, and typical data for a rapid comparative device for thermal conductivity measurements are presented. The apparatus consists of a comparative cut-bar arrangement contained in a bell-jar. The cylinder shaped specimen is placed between two ARMCO-iron meter bars of the same diameter. The upper bar is equipped with a heater, while the lower one is terminated in a heat sink. The temperature gradient along the bars is measured with a series of copper/constantan microthermocouples, spot welded to them. The assembly is held together by loading the bars to a desired pressure, via a pneumatic cylinder. Contact resistance at the boundaries between the specimen and the meter bars is minimized by using a Hg/In/Ga alloy film at the interface and sufficient loading force. The gradients determined for the meter bars then may be extrapolated to the boundaries yielding the temperature drop along the specimen. Using two different length specimens, the magnitude of the temperature drop across the interface can be computed, or the true gradient along the specimen can be obtained from the difference in overall temperature drops and lengths.

  9. A newly developed Kolsky tension bar.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Antoun, Bonnie R.; Connelly, Kevin; Korellis, John S.

    2010-03-01

    Investigation of damage and failure of materials under impact loading relies on reliable dynamic tensile experiments. A precise Kolsky tension bar is highly desirable. Based on the template of the Kolsky compression bar that we recently developed and presented at 2009 SEM conference, a new Kolsky tension bar apparatus was completed at Sandia National Laboratories, California. It is secured to the same optical table. Linear bearings with interior Frelon coating were employed to support the whole tension bar system including the bars and gun barrel. The same laser based alignment system was used to efficiently facilitate highly precise alignment of the bar system. However, the gun part was completely re-designed. One end of the gun barrel, as a part of loading device, was directly jointed to the bar system. A solid cylindrical striker is launched inside the gun barrel and then impacts on a flange attached to the other end of the gun barrel to facilitate a sudden tensile loading on the whole system. This design improves the quality of impact to easily produce a perfect stress wave and is convenient to utilize pulse shaping technique. A calibration and dynamic characterization of an aluminum specimen are presented.

  10. 15. VIEW LOOKING SOUTHWEST INSIDE OF THE 22' BAR MILL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW LOOKING SOUTHWEST INSIDE OF THE 22' BAR MILL SHIPPING BUILDING No. 1 AT THE 10' SUTTON BAR STRAIGHTENER. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA

  11. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  12. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  13. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  14. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  15. 33 CFR 13.01-40 - Miniature medals and bars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL DECORATIONS, MEDALS, RIBBONS AND SIMILAR DEVICES Gold and Silver Lifesaving Medals, Bars, and Miniatures § 13.01-40 Miniature medals and bars. (a) Miniature Gold and Silver Lifesaving Medals and bars...

  16. Combination of B-mode imaging and acousto-photonic sensing using a commercial ultrasound scanner

    NASA Astrophysics Data System (ADS)

    Bossy, Emmanuel; Sui, Lei; Murray, Todd W.; Roy, Ronald A.

    2001-05-01

    The acousto-photonic imaging (API) of a turbid medium is based on the interaction of multiply scattered coherent laser light with an ultrasonic field. The two waves mix and the photons emanating from the interaction region are phase modulated at the ultrasound frequency. This technique yields information on the optical and acoustical properties of the medium, with the interaction region defined by the dimension of the ultrasonic beam. We investigated the feasibility of combining conventional B-mode ultrasound imaging and API in vitro, using a commercial medical scanner (Analogic AN2300). The AN2300 was used to both generate the B-mode images and excite API signals. Gel-based acousto-optic phantoms were fabricated; these contained imbedded targets possessing acoustical and/or optical contrast. Analogous to power Doppler measurements, B-mode images were first acquired and then used to select regions of interest within which API signals were generated. API information was then color-coded and superimposed on top of the frozen B-mode image. Preliminary results show that API signals can be excited using a commercial scanner, and serve to augment conventional B-mode images with information related to the opto-acoustic properties of the medium. [Work supported by the Center for Subsurface Sensing and Imaging Systems via NSF ERC Award Number EEC-9986821.

  17. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    NASA Astrophysics Data System (ADS)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  18. Free-space wavelength-multiplexed optical scanner.

    PubMed

    Yaqoob, Z; Rizvi, A A; Riza, N A

    2001-12-10

    A wavelength-multiplexed optical scanning scheme is proposed for deflecting a free-space optical beam by selection of the wavelength of the light incident on a wavelength-dispersive optical element. With fast tunable lasers or optical filters, this scanner features microsecond domain scan setting speeds and large- diameter apertures of several centimeters or more for subdegree angular scans. Analysis performed indicates an optimum scan range for a given diffraction order and grating period. Limitations include beam-spreading effects based on the varying scanner aperture sizes and the instantaneous information bandwidth of the data-carrying laser beam. PMID:18364951

  19. Impact of lighting and attire on 3D scanner performance

    NASA Astrophysics Data System (ADS)

    Ajjimaporn, Pann; Feist, Dakota; Straub, Jeremy; Kerlin, Scott

    2015-05-01

    This paper considers the impact of lighting and attire on the performance of a previously created low-cost 3D scanning system. It considers the effect of adjusting the lighting configuration and of the subject's clothing on the quality of the scans and the number and types of objects that can be scanned. The experimentation performed tested different types (colors and textures) of clothing to assess which produced the best scans and multiple lighting configurations. This paper presents the results from this experimentation and, from this, make generalizations about optimizing visible light scanner performance before concluding with a discussion of scanner efficacy.

  20. D Super-Resolution Approach for Sparse Laser Scanner Data

    NASA Astrophysics Data System (ADS)

    Hosseinyalamdary, S.; Yilmaz, A.

    2015-08-01

    Laser scanner point cloud has been emerging in Photogrammetry and computer vision to achieve high level tasks such as object tracking, object recognition and scene understanding. However, low cost laser scanners are noisy, sparse and prone to systematic errors. This paper proposes a novel 3D super resolution approach to reconstruct surface of the objects in the scene. This method works on sparse, unorganized point clouds and has superior performance over other surface recovery approaches. Since the proposed approach uses anisotropic diffusion equation, it does not deteriorate the object boundaries and it preserves topology of the object.

  1. Satellite orientation and position for geometric correction of scanner imagery.

    USGS Publications Warehouse

    Salamonowicz, P.H.

    1986-01-01

    The USGS Mini Image Processing System currently relies on a polynomial method for geometric correction of Landsat multispectral scanner (MSS) data. A large number of ground control points are required because polynomials do not model the sources of error. In order to reduce the number of necessary points, a set of mathematical equations modeling the Landsat satellite motions and MSS scanner has been derived and programmed. A best fit to the equations is obtained by using a least-squares technique that permits computation of the satellite orientation and position parameters based on only a few control points.-from Author

  2. 30. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) INTERIOR BETWEEN GRIDS 17-A1 AND 18-A1, SHOWING REAR OF RADAR EMITTER ELECTRONIC INTERFACE TERMINAL NO. 3147-20, "RECEIVER TRANSMITTER RADAR" MODULE. VIEW IS ALSO SHOWING BUILDING FIRE STOP MATERIAL AT BOTTOM OF FLOOR. NOTE: WALL SLOPES BOTTOM TO TOP INWARD; STRUCTURAL ELEMENT IN FOREGROUND. VIEW ALSO SHOWS PIPING GRID OF CHILLED WATER LINES FOR ELECTRONIC SYSTEMS COOLING. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. A prototype quantitative film scanner for radiochromic film dosimetry

    SciTech Connect

    Ranade, Manisha K.; Li, Jonathan G.; Dubose, Ryan S.; Kozelka, Jakub; Simon, William E.; Dempsey, James F.

    2008-02-15

    We have developed a high resolution, quantitative, two-dimensional optical film scanner for use with a commercial high sensitivity radiochromic film (RCF) for measuring single fraction external-beam radiotherapy dose distributions. The film scanner was designed to eliminate artifacts commonly observed in RCF dosimetry. The scanner employed a stationary light source and detector with a moving antireflective glass film platen attached to a high precision computerized X-Y translation stage. An ultrabright red light emitting diode (LED) with a peak output at 633 nm and full width at half maximum (FWHM) of 16 nm was selected as the scanner light source to match the RCF absorption peak. A dual detector system was created using two silicon photodiode detectors to simultaneously measure incident and transmitted light. The LED light output was focused to a submillimeter (FWHM 0.67 mm) spot size, which was determined from a scanning knife-edge technique for measuring Gaussian optical beams. Data acquisition was performed with a 16-bit A/D card in conjunction with commercial software. The linearity of the measured densities on the scanner was tested using a calibrated neutral-density step filter. Sensitometric curves and three IMRT field scans were acquired with a spatial resolution of 1 mm for both radiographic film and RCF. The results were compared with measurements taken with a commercial diode array under identical delivery conditions. The RCF was rotated by 90 deg. and rescanned to study orientation effects. Comparison between the RCF and the diode array measurements using percent dose difference and distance-to-agreement criteria produced average passing rates of 99.0% using 3%/3 mm criteria and 96.7% using 2%/2 mm criteria. The same comparison between the radiographic film and diode array measurements resulted in average passing rates 96.6% and 91.6% for the above two criteria, respectively. No measurable light-scatter or interference scanner artifacts were observed. The RCF rotated by 90 deg. showed no measurable orientation effect. A scan of a 15x15 cm{sup 2} area with 1 mm resolution required 22 min to acquire. The LED densitometer provides an accurate film dosimetry system with 1 mm or better resolution. The scanner eliminates the orientation dependence of RCF dosimetry that was previously reported with commercial flatbed scanners.

  4. Earth Radiation Budget Experiment (ERBE) scanner instrument anomaly investigation

    NASA Technical Reports Server (NTRS)

    Watson, N. D.; Miller, J. B.; Taylor, L. V.; Lovell, J. B.; Cox, J. W.; Fedors, J. C.; Kopia, L. P.; Holloway, R. M.; Bradley, O. H.

    1985-01-01

    The results of an ad-hoc committee investigation of in-Earth orbit operational anomalies noted on two identical Earth Radiation Budget Experiment (ERBE) Scanner instruments on two different spacecraft busses is presented. The anomalies are attributed to the bearings and the lubrication scheme for the bearings. A detailed discussion of the pertinent instrument operations, the approach of the investigation team and the current status of the instruments now in Earth orbit is included. The team considered operational changes for these instruments, rework possibilities for the one instrument which is waiting to be launched, and preferable lubrication considerations for specific space operational requirements similar to those for the ERBE scanner bearings.

  5. Apparatus Measures Thicknesses Of Ice On Bars

    NASA Technical Reports Server (NTRS)

    Gibson, Theresa L.; Dearmon, John M.

    1996-01-01

    Semiautomated apparatus measures diameters, at selected lengthwise positions, of nine vertical ice-coated bars in icing-research wind tunnel. Includes measuring head that travels on rails parallel to bar, driven by ball screw actuated by stepping motor. Position of measuring head along bar measured by string potentiometer, providing position feedback for closed-loop control circuit. Circuit provides for smooth motion of measuring head, and used to select various programmed sequences of motions and measurements. Measurements needed to determine degree of uniformity of icing conditions for experiments on aircraft models.

  6. Structural Behavior of Concrete Beams Reinforced with Basalt Fiber Reinforced Polymer (BFRP) Bars

    NASA Astrophysics Data System (ADS)

    Ovitigala, Thilan

    The main challenge for civil engineers is to provide sustainable, environmentally friendly and financially feasible structures to the society. Finding new materials such as fiber reinforced polymer (FRP) material that can fulfill the above requirements is a must. FRP material was expensive and it was limited to niche markets such as space shuttles and air industry in the 1960s. Over the time, it became cheaper and spread to other industries such as sporting goods in the 1980-1990, and then towards the infrastructure industry. Design and construction guidelines are available for carbon fiber reinforced polymer (CFRP), aramid fiber reinforced polymer (AFRP) and glass fiber reinforced polymer (GFRP) and they are currently used in structural applications. Since FRP is linear elastic brittle material, design guidelines for the steel reinforcement are not valid for FRP materials. Corrosion of steel reinforcement affects the durability of the concrete structures. FRP reinforcement is identified as an alternative to steel reinforcement in corrosive environments. Although basalt fiber reinforced polymer (BFRP) has many advantages over other FRP materials, but limited studies have been done. These studies didn't include larger BFRP bar diameters that are mostly used in practice. Therefore, larger beam sizes with larger BFRP reinforcement bar diameters are needed to investigate the flexural and shear behavior of BFRP reinforced concrete beams. Also, shear behavior of BFRP reinforced concrete beams was not yet studied. Experimental testing of mechanical properties and bond strength of BFRP bars and flexural and shear behavior of BFRP reinforced concrete beams are needed to include BFRP reinforcement bars in the design codes. This study mainly focuses on the use of BFRP bars as internal reinforcement. The test results of the mechanical properties of BFRP reinforcement bars, the bond strength of BFRP reinforcement bars, and the flexural and shear behavior of concrete beams reinforced with BFRP reinforcement bars are presented and verified with other research studies, existing design codes and guidelines provided for other FRP bars. Based on the experimental testing results, analytical equations were developed and existing equations were modified to predict the actual structural behavior of FRP bar reinforced concrete beams with reasonable accuracy.

  7. The BaBar electromagnetic calorimeter

    SciTech Connect

    Stahl, A.

    1997-07-01

    The progress on the design and construction of the BaBar electromagnetic calorimeter including its mechanical structure, the readout system, the mechanical and optical properties of the crystals, and the schedule for the final assembly and testing is summarized.

  8. BAR domain competition during directional cellular migration

    PubMed Central

    Quiñones, Gabriel A

    2010-01-01

    While directed cellular migration facilitates the coordinated movement of cells during development and tissue repair, the precise mechanisms regulating the interplay between the extracellular environment, the actin cytoskeleton and the overlying plasma membrane remain inadequately understood. The BAR domain family of lipid binding, actin cytoskeletal regulators are gaining greater appreciation for their role in these critical processes. BAR domain proteins are involved as both positive and negative regulators of endocytosis, membrane plasticity and directional cell migration. This review focuses on the functional relationship between different classes of BAR domain proteins and their role in guiding cell migration through regulation of the endocytic machinery. Competition for key signaling substrates by positive and negative BAR domain endocytic regulators appears to mediate control of directional cell migration, and may have wider applicability to other trafficking functions associated with development and carcinogenesis. PMID:20581461

  9. BAR domain competition during directional cellular migration.

    PubMed

    Quiñones, Gabriel A; Oro, Anthony E

    2010-07-01

    While directed cellular migration facilitates the coordinated movement of cells during development and tissue repair, the precise mechanisms regulating the interplay between the extracellular environment, the actin cytoskeleton, and the overlying plasma membrane remain inadequately understood. The BAR domain family of lipid binding, actin cytoskeletal regulators are gaining greater appreciation for their role in these critical processes. BAR domain proteins are involved as both positive and negative regulators of endocytosis, membrane plasticity, and directional cell migration. This review focuses on the functional relationship between different classes of BAR domain proteins and their role in guiding cell migration through regulation of the endocytic machinery. Competition for key signaling substrates by positive and negative BAR domain endocytic regulators appears to mediate control of directional cell migration, and may have wider applicability to other trafficking functions associated with development and carcinogenesis. PMID:20581461

  10. The Semileptonic Decay Modes {bar{B} ? D? bar{?}} and {bar{B}s ? Ds ? bar{?}} : A New Analysis in Potential Model

    NASA Astrophysics Data System (ADS)

    Hassanabadi, H.; Rahmani, S.; Zarrinkamar, S.

    2015-12-01

    We consider the Schrödinger equation with a combination of Deng-Fan-type and harmonic terms. To solve the corresponding differential equation, we split the equation to two parts: the parent and the perturbation terms. We use the Nikiforov-Uvarov technique to solve the parent part. For the perturbation part, we apply the series expansion method. Next, using the calculated wave function, we investigate some bottom and charm mesons within the Isgur-Wise function formalism. We present especially semileptonic {bar{B} ? D? bar{?}} and {bar{B}s ? D_s ? bar{? }} decay widths, branching ratios and {|V_{cb}|} (element of the CKM matrix). Masses of some pseudoscalar mesons are also indicated. Comparisons of our results with experimental values and other approaches are included.

  11. Theory of twisted nonuniformly heated bars

    NASA Technical Reports Server (NTRS)

    Shorr, B. F.

    1980-01-01

    Nonlineary distributed stresses in twisted nonuniformly heated bars of arbitrary cross section are calculated taking into account various elasticity parameters. The approximate theory is shown to be sufficiently general and accurate by comparison with experimental data.

  12. Transient axisymmetric motions of a conical bar.

    NASA Technical Reports Server (NTRS)

    Mortimer, R. W.; Rose, J. L.; Schaller, R. J.

    1972-01-01

    Three bar of revolution theories are developed. The most inclusive theory is equivalent to the Mindlin-McNiven theory for circular bars in that it includes radial, axial shear, and longitudinal modes. By removing the axial shear mode in the foregoing, a theory equivalent to the Mindlin-Herrmann theory for circular bars is obtained. Finally, by eliminating all the radial effects in this latter theory, a simple theory incorporating only longitudinal effects is obtained. Each of these three theories is then specialized for a conical geometry and solved by the method of characteristics for the case of a longitudinal impact. The solutions for each of these theories are then compared to published surface meridional strain and internal strain data. In addition, the importance of impact pulse duration in establishing the validity of the approximate bar theories for impact problems is analytically indicated.

  13. Immediate loading and implant-bar overdenture.

    PubMed

    Chang, John; Millstein, Philip

    2014-10-01

    Immediate loaded implants may be used with an implant-bar overdenture to provide fixed splinting. This is a relatively new system that provides for immediate implant placement and restoration. PMID:24787132

  14. Experimental evaluation of photoacoustic coded excitation using unipolar golay codes.

    PubMed

    Mienkina, Martin P; Friedrich, Claus-Stefan; Gerhardt, Nils C; Wilkening, Wilko G; Hofmann, Martin R; Schmitz, Georg

    2010-07-01

    Q-switched Nd:YAG lasers are commonly used as light sources for photoacoustic imaging. However, laser diodes are attractive as an alternative to Nd:YAG lasers because they are less expensive and more compact. Although laser diodes deliver about three orders of magnitude less light pulse energy than Nd:YAG lasers (tens of microjoules compared with tens of millijoules), their pulse repetition frequency (PRF) is four to five orders of magnitude higher (up to 1 MHz compared with tens of hertz); this enables the use of averaging to improve SNR without compromising the image acquisition rate. In photoacoustic imaging, the PRF is limited by the maximum acoustic time-of-flight. This limit can be overcome by using coded excitation schemes in which the coding eliminates ambiguities between echoes induced by subsequent pulses. To evaluate the benefits of photoacoustic coded excitation (PACE), the performance of unipolar Golay codes is investigated analytically and validated experimentally. PACE imaging of a copper slab using laser diodes at a PRF of 1 MHz and a modified clinical ultrasound scanner is successfully demonstrated. Considering laser safety regulations and taking into account a comparison between a laser diode system and Nd:YAG systems with respect to SNR, we conclude that PACE is feasible for small animal imaging. PMID:20639152

  15. BAR Domains as Sensors of Membrane Curvature: The Amphiphysin BAR Structure

    NASA Astrophysics Data System (ADS)

    Peter, Brian J.; Kent, Helen M.; Mills, Ian G.; Vallis, Yvonne; Butler, P. Jonathan G.; Evans, Philip R.; McMahon, Harvey T.

    2004-01-01

    The BAR (Bin/amphiphysin/Rvs) domain is the most conserved feature in amphiphysins from yeast to human and is also found in endophilins and nadrins. We solved the structure of the Drosophila amphiphysin BAR domain. It is a crescent-shaped dimer that binds preferentially to highly curved negatively charged membranes. With its N-terminal amphipathic helix and BAR domain (N-BAR), amphiphysin can drive membrane curvature in vitro and in vivo. The structure is similar to that of arfaptin2, which we find also binds and tubulates membranes. From this, we predict that BAR domains are in many protein families, including sorting nexins, centaurins, and oligophrenins. The universal and minimal BAR domain is a dimerization, membrane-binding, and curvature-sensing module.

  16. ${{\\bar{d}} - {\\bar{u}}}$ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    SciTech Connect

    Salamu, Y.; Ji, Cheung-Ryong; Melnitchouk, Wally; Wang, P.

    2015-09-01

    The ${\\bar d - \\bar u}$ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. The calculation includes both nucleon and Δ intermediate states, and uses both the fully relativistic and heavy baryon frameworks. The x dependence of ${\\bar d - \\bar u}$ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of ${\\bar d-\\bar u}$ .

  17. The BaBar silicon vertex tracker

    NASA Astrophysics Data System (ADS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B. K.; Breon, A. B.; Clark, A. R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L. T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N. A.; Zizka, G.; Roberts, D.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P. F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Di Girolamo, B.; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Della Ricca, G.; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E. P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A. M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2000-10-01

    The BaBar Silicon Vertex Tracker (SVT) is designed to provide the high-precision vertexing necessary for making measurements of CP violation at the SLAC B-Factory PEP-II. The instrument consists of five layers of double-sided silicon strip detectors and has been installed in the BaBar experiment and taking colliding beam data since May 1999. An overview of the design as well as performance and experience from the initial running will be presented.

  18. Intelligent Bar Chart Plagiarism Detection in Documents

    PubMed Central

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Alkawaz, Mohammed Hazim; Saba, Tanzila; Al-Rodhaan, Mznah; Al-Dhelaan, Abdullah

    2014-01-01

    This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts. PMID:25309952

  19. BARS DO DRIVE SPIRAL DENSITY WAVES

    SciTech Connect

    Salo, H.; Laurikainen, E.; Knapen, J. H.

    2010-05-20

    Recently, Buta et al. examined the question 'Do Bars Drive Spiral Density Waves?', an idea supported by theoretical studies and also from a preliminary observational analysis. They estimated maximum bar strengths Q{sub b} , maximum spiral strengths Q{sub s} , and maximum m = 2 arm contrasts A {sub 2s} for 23 galaxies with deep Anglo-Australian Telescope (AAT) K{sub s} -band images. These were combined with previously published Q{sub b} and Q{sub s} values for 147 galaxies from the Ohio State University Bright Spiral Galaxy Survey (OSUBSGS) sample and with the 12 galaxies from Block et al. Weak correlation between Q{sub b} and Q{sub s} was confirmed for the combined sample, whereas the AAT subset alone showed no significant correlations between Q{sub b} and Q{sub s} , nor between Q{sub b} and A {sub 2s}. A similar negative result was obtained in Durbala et al. for 46 galaxies. Based on these studies, the answer to the above question remains uncertain. Here we use a novel approach, and show that although the correlation between the maximum bar and spiral parameters is weak, these parameters do correlate when compared locally. For the OSUBSGS sample, a statistically significant correlation is found between the local spiral amplitude, and the forcing due to the bar's potential at the same distance, out to {approx}1.6 bar radii (the typical bar perturbation is then of the order of a few percent). Also for the sample of 23 AAT galaxies of Buta et al., we find a significant correlation between local parameters out to {approx}1.4 bar radii. Our new results confirm that, at least in a statistical sense, bars do indeed drive spiral density waves.

  20. The DIRC detector at BaBar

    NASA Astrophysics Data System (ADS)

    Adam, I.; Aleksan, R.; Aston, D.; Bailly, P.; Beigbeder, C.; Benayoun, M.; Benkebil, M.; Bonneaud, G.; Breton, D.; Briand, H.; Brown, D.; Bourgeois, Ph.; Chauveau, J.; Cizeron, R.; Cohen-Tanugi, J.; Convery, M.; Dardin, S.; David, P.; De Domenico, G.; de la Vaissiere, C.; de Lesquen, A.; Del Buono, L.; Doser, M.; Emery, S.; Fouque, G.; Gaidot, A.; Gastaldi, F.; Genat, J.-F.; Geld, T.; Gosset, L.; Hale, D.; Hamel de Monchenault, G.; Hamon, O.; Hoecker, A.; Imbault, D.; Kadel, R. W.; Kadyk, J.; Kalelkar, M.; Karolak, M.; Kawahara, H.; Krueger, H.; Le Diberder, F.; Lebbolo, H.; Leruste, P. H.; London, G.; Long, M.; Lory, J.; Lu, A.; Lutz, A.-M.; Lynch, G.; Mancinelli, G.; McCulloch, M.; McShurley, D.; Malchow, R.; Matricon, P.; Mayer, B.; Meadows, B.; Micout, P.; Muller, D.; Narjoux, J.-L.; Noppe, J.-M.; Oshatz, D.; Oxoby, G.; Plano, R.; Plaszczynski, S.; Pripstein, M.; Rasson, J.; Ratcliff, B.; Reif, R.; Renard, C.; Roos, L.; Roussot, E.; Salnikov, A.; Sarazin, X.; Schune, M.-H.; Schwiening, J.; Sen, S.; Shelkov, V.; Sokoloff, M.; Staengle, H.; Spanier, S.; Stiles, P.; Stone, R.; Thiebaux, Ch.; Truong, K.; Toki, W.; Valassi, A.; Vasileiadis, G.; Vasseur, G.; Va'vra, J.; Verderi, M.; Versille, S.; Warner, D.; Weber, T.; Weber, T. F.; Wenzel, W.; Wilson, R.; Wormser, G.; Yèche, Ch.; Yellin, S.; Zhang, B.; Zito, M.

    1999-08-01

    A dedicated particle identification system based on the Detection of Internally Reflected Cherenkov (DIRC) light will be used in the BaBar detector. We provide an overview of the DIRC concept, design, and expected performance of the production device and a status report on its construction and commissioning. The DIRC is expected to be operating in the BaBar detector on beam line at the PEP-II B Factory in late spring 1999.

  1. Results of Processing of Astronegatives with Commercial Scanner

    NASA Astrophysics Data System (ADS)

    Protsyuk, Yu. I.; Kovylianska, O. E.; Protsyuk, S. V.; Andruk, V. M.

    Astrometric errors depending on the method of scanning with different spatial resolutions were studied with commercial scanner such as Epson Perfection V750 Pro. Accuracy, time of processing, volume of storage were tested using software package described in (Protsyuk, 2014). The best results of scanning were obtained with a resolution of 1200 - 1600 dpi.

  2. Free-space wavelength-multiplexed optical scanner demonstration.

    PubMed

    Yaqoob, Zahid; Riza, Nabeel A

    2002-09-10

    Experimental demonstration of a no-moving-parts free-space wavelength-multiplexed optical scanner (W-MOS) is presented. With fast tunable lasers or optical filters and planar wavelength dispersive elements such as diffraction gratings, this microsecond-speed scanner enables large several-centimeter apertures for subdegree angular scans. The proposed W-MOS design incorporates a unique optical amplifier and variable optical attenuator combination that enables the calibration and modulation of the scanner response, leading to any desired scanned laser beam power shaping. The experimental setup uses a tunable laser centered at 1560 nm and a 600-grooves/mm blazed reflection grating to accomplish an angular scan of 12.92 degrees as the source is tuned over an 80-nm bandwidth. The values for calculated maximum optical beam divergance, required wavelength resolution, beam-pointing accuracy, and measured scanner insertion loss are 1.076 mrad, 0.172 nm, 0.06 mrad, and 4.88 dB, respectively. PMID:12224780

  3. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  4. Phosphor Scanner For Imaging X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C.; Hecht, Diana L.; Witherow, William K.

    1992-01-01

    Improved optoelectronic scanning apparatus generates digitized image of x-ray image recorded in phosphor. Scanning fiber-optic probe supplies laser light stimulating luminescence in areas of phosphor exposed to x rays. Luminescence passes through probe and fiber to integrating sphere and photomultiplier. Sensitivity and resolution exceed previously available scanners. Intended for use in x-ray crystallography, medical radiography, and molecular biology.

  5. Liquid-explosives scanners stand trial in airports

    SciTech Connect

    Matthews, Jermey N. A.

    2010-07-15

    Air passengers may once more be allowed to pack beverages, lotions, and hair spray in their carry-on luggage, if imaging technologies to detect liquid explosives can prove their worth. Several competing systems, including multi-energy x-ray systems and a low-field magnetic resonance imaging (MRI) scanner, are undergoing field tests at some airports worldwide.

  6. A novel cone beam breast CT scanner: preliminary system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Conover, David; Yu, Yong; Zhang, Yan; Cai, Weixing; Lu, Xianghua; Betancourt-Benitez, Richardo

    2006-03-01

    The clinical goal of breast imaging is to detect tumor masses when they are as small as possible, preferably less than 10 mm in diameter. Conventional screen-film mammography is the most effective tool for the early detection of breast cancer currently available. However, conventional mammography has relatively low sensitivity for the detection of small breast cancers (under several millimeters). Specificity and the positive predictive value of mammography remain limited owing to an overlap in the appearance of benign and malignant lesions, and surrounding structure. We propose to address the limitations accompanying conventional mammography by incorporating a cone beam CT reconstruction technique with a recently developed flat panel detector (FPD). We have performed a computer simulation study and preliminary phantom studies to prove the feasibility of developing an FPD-based cone beam CT breast imaging technique for a small size normal breast phantom. In this study, we report the design and construction of a novel FPD-based cone beam breast CT scanner prototype. In addition, we present the results of phantom studies performed on our current FPD-based cone beam CT scanner prototype, which uses the same flat panel detector proposed for the cone beam breast CT scanner prototype, to predict the image performance of the novel cone beam breast CT scanner, while we are completing the construction of the system.

  7. First Test Results of the New LANSCE Wire Scanner

    SciTech Connect

    Sedillo, James Daniel

    2011-01-01

    The Beam Diagnostics and Instrumentation Team (BDIT) at Los Alamos National Laboratory's LANSCE facility is presently developing a new and improved wire scanner diagnostics system controlled by National Instrument's cRIO platform. This paper describes the current state of development of the control system along with the results gathered from the latest actuator motion performance and accelerator-beam data acquisition tests.

  8. A microarray scanner for the real-time quantitative detection

    NASA Astrophysics Data System (ADS)

    Liu, Quanjun; Zhuang, Ying; Wu, Lingwei; Wu, Zhongwei; Hu, Song; Lu, Zuhong

    2007-05-01

    The real-time and quantitative detection assay is important for the gene detection. With the TaqMan probes for the detection based polymerase chain reaction (PCR), four targets could be checked in a single process in solution assay. A new method is developed to immobilize the TaqMan probes on a microarray, which could be used to the multi-target gene fragment quantitative detection with PCR. A new type microarray scanner is designed for the assay. A thermocycler system was built into the scanner platform. A new type of the vessel sealed with the gene amplification solution which could perform the thermo-cycling and scanning. To decrease the background intensity a confocal system was used as the fluorescent intensity detection in the scanner. To calculate the gene quantity, a standard liner graph was draw with the fluorescent intensity versus the cycles. From the standard liner, the quantity of the original gene fragment could be calculated in time with the cycles. This scanner offers the great advantage of real-time quantitative detection of DNA targets in a microarray.

  9. Speech Perception in MRI Scanner Noise by Persons with Aphasia

    ERIC Educational Resources Information Center

    Healy, Eric W.; Moser, Dana C.; Morrow-Odom, K. Leigh; Hall, Deborah A.; Fridriksson, Julius

    2007-01-01

    Purpose: To examine reductions in performance on auditory tasks by aphasic and neurologically intact individuals as a result of concomitant magnetic resonance imaging (MRI) scanner noise. Method: Four tasks together forming a continuum of linguistic complexity were developed. They included complex-tone pitch discrimination, same-different…

  10. Laser excited confocal microscope fluorescence scanner and method

    DOEpatents

    Mathies, Richard A. (Contra Costa, CA); Peck, Konan (Contra Costa, CA)

    1992-01-01

    A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.

  11. COMPUTER PROCESSING OF MULTISPECTRAL SCANNER DATA OVER COAL STRIP MINES

    EPA Science Inventory

    There is little doubt that remote sensing techniques can be effectively applied to the task of monitoring coal strip mine progress and reclamation work. Aircraft multispectral scanner data acquired over six coal strip mines in the states of Wyoming, Montana, Colorado, and Arizona...

  12. LANSCE wire scanner AFE: analysis, design, and fabrication

    SciTech Connect

    Gruchalla, Mike; Chacon, Phillip; Gilpatrick, John D; Martinez, Derwin; Power, John F; Smith, Brian

    2010-01-01

    The goal of the design LANSCE-R Wire-Scanner Analog Front-end Electronics is to develop a high-performance, dual-axis wire-scanner analog front-end system implemented in a single cRIO module. This new design accommodates macropulse widths as wide as 700 {mu}s at a maximum pulse rate of 120Hz. A lossey integrator is utilized as the integration element to eliminate the requirement for providing gating signals to each wire scanner. The long macropulse and the high repetition rate present conflicting requirements for the design of the integrator. The long macropulse requires a long integration time constant to assure minimum integrator droop for accurate charge integration, and the high repetition rate requires a short time constant to assure adequate integrator reset between macropulses. Also, grounding is a serious concern due to the small signal levels. This paper reviews the basic Wire Scanner AFE system design implemented in the cRIO-module form factor to capture the charge information from the wire sensors and the grounding topology to assure minimum noise contamination of the wire signals.

  13. Teach Your Computer to Read: Scanners and Optical Character Recognition.

    ERIC Educational Resources Information Center

    Marsden, Jim

    1993-01-01

    Desktop scanners can be used with a software technology called optical character recognition (OCR) to convert the text on virtually any paper document into an electronic form. OCR offers educators new flexibility in incorporating text into tests, lesson plans, and other materials. (MLF)

  14. OCR Scanners Facilitate WP Training in Business Schools and Colleges.

    ERIC Educational Resources Information Center

    School Business Affairs, 1983

    1983-01-01

    Optical Character Recognition Scanners (OCR) scan typed text and feed it directly into word processing systems, saving input time. OCRs are valuable in word processing training programs because they allow more students access to classes and more time for skill training. (MD)

  15. Aerial thermal scanner data for monitoring rooftop temperatures

    NASA Technical Reports Server (NTRS)

    Bjorkland, J.; Schmer, F. A.; Isakson, R. E.

    1975-01-01

    Four Nebraska communities and one South Dakota community were surveyed. Thermal scanner data were converted to a film format and the resultant imagery was successfully employed to monitor rooftop temperatures. The program places emphasis on heat losses resulting from inadequate home insulation, offers CENGAS customers the opportunity to observe a thermogram of their rooftop, and assists homeowners in evaluating insulation needs.

  16. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  17. 21. View from south to southerly face of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View from south to southerly face of scanner building 104 showing building radius. Radius of building face matches radius of DR antenna systems. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. 10. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of back side of radar scanner building no. 104 showing passageway links to other building to east and DR 1 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. 20. View from northeast to southwest side of scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View from northeast to southwest side of scanner building 104 showing two waveguide termination faces (fiberglass light bands on left of photograph). - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. 9. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of back side of radar scanner building no. 106 showing passageway links to other buildings east and west, and DR 3 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Engineering evaluation of 24 channel multispectral scanner. [from flight tests

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.

    1973-01-01

    The results of flight tests to evaluate the performance of the 24 channel multispectral scanner are reported. The flight plan and test site are described along with the time response and channel registration. The gain and offset drift, and moire patterns are discussed. Aerial photographs of the test site are included.

  2. Impact of topographic mask models on scanner matching solutions

    NASA Astrophysics Data System (ADS)

    Tyminski, Jacek K.; Pomplun, Jan; Renwick, Stephen P.

    2014-03-01

    Of keen interest to the IC industry are advanced computational lithography applications such as Optical Proximity Correction of IC layouts (OPC), scanner matching by optical proximity effect matching (OPEM), and Source Optimization (SO) and Source-Mask Optimization (SMO) used as advanced reticle enhancement techniques. The success of these tasks is strongly dependent on the integrity of the lithographic simulators used in computational lithography (CL) optimizers. Lithographic mask models used by these simulators are key drivers impacting the accuracy of the image predications, and as a consequence, determine the validity of these CL solutions. Much of the CL work involves Kirchhoff mask models, a.k.a. thin masks approximation, simplifying the treatment of the mask near-field images. On the other hand, imaging models for hyper-NA scanner require that the interactions of the illumination fields with the mask topography be rigorously accounted for, by numerically solving Maxwell's Equations. The simulators used to predict the image formation in the hyper-NA scanners must rigorously treat the masks topography and its interaction with the scanner illuminators. Such imaging models come at a high computational cost and pose challenging accuracy vs. compute time tradeoffs. Additional complication comes from the fact that the performance metrics used in computational lithography tasks show highly non-linear response to the optimization parameters. Finally, the number of patterns used for tasks such as OPC, OPEM, SO, or SMO range from tens to hundreds. These requirements determine the complexity and the workload of the lithography optimization tasks. The tools to build rigorous imaging optimizers based on first-principles governing imaging in scanners are available, but the quantifiable benefits they might provide are not very well understood. To quantify the performance of OPE matching solutions, we have compared the results of various imaging optimization trials obtained with Kirchhoff mask models to those obtained with rigorous models involving solutions of Maxwell's Equations. In both sets of trials, we used sets of large numbers of patterns, with specifications representative of CL tasks commonly encountered in hyper-NA imaging. In this report we present OPEM solutions based on various mask models and discuss the models' impact on hyper- NA scanner matching accuracy. We draw conclusions on the accuracy of results obtained with thin mask models vs. the topographic OPEM solutions. We present various examples representative of the scanner image matching for patterns representative of the current generation of IC designs.

  3. A preliminary measurement of the u-bar/d-bar asymmetry in the proton sea

    SciTech Connect

    Reimer, P. E.; Carey, T. A.; Garvey, G. T.; Lee, D. M.; Leitch, M. J.; McGaughey, P. L.; Moss, J. M.; Park, B. K.; Peng, J. C.; Sondheim, W. E.; Thompson, T. N.; Awes, T. C.; Stankus, P. W.; Young, G. R.; Beddo, M. E.; Chang, T. H.; Kyle, G.; Papavassiliou, V.; Selden, J.; Webb, J. C.

    1997-05-20

    The NuSea (E866) experiment at Fermilab has been using Drell-Yan scattering to study the u-bar/d-bar quark content of the proton by comparing of the yield between liquid hydrogen and liquid deuterium targets. A preliminary ratio of Drell-Yan yields, {sigma}{sup pd}/2{sigma}{sup pp} as a function of x is shown. This data confirms the previous indications from the NMC and NA51 experiments that u-bar{ne}d-bar.

  4. A preliminary measurement of the {bar u}/{bar d} asymmetry in the proton sea

    SciTech Connect

    Wise, D.; Willis, J.L.; Towell, R.S.; Sadler, M.E.; Isenhower, L.D.; Bush, J.D.; Kaufman, S.B.; Makins, N.; Zeidman, B.; Cooper, W.E.; Lee, W.M.; He, X.C. Kaplan, D.M.; Carey, T.A.; Garvey, G.T.; Lee, D.M.; Leitch, M.J.; McGaughey, P.L.; Moss, J.M.; Park, B.K.; Peng, J.C.; Sondheim, W.E.; Thompson, T.N.; Wang, Y.C.; Wang, Z.F.; Selden, J.; Papavassiliou, V.; Kyle, G.; Chang, T.H.; Beddo, M.E.; Stankus, P.W.; Awes, T.C.; Hawker, E.A.; Tribble, R.E.; Vasiliev, M.A.; Nord, P.M.

    1997-05-01

    The NuSea (E866) experiment at Fermilab has been using Drell-Yan scattering to study the {bar u}/{bar d} quark content of the proton by comparing of the yield between liquid hydrogen and liquid deuterium targets. A preliminary ratio of Drell-Yan yields, {sigma}{sup pd}/2{sigma}{sup pp} as a function of x is shown. This data confirms the previous indications from the NMC and NA51 experiments that {bar u}{ne}{bar d}. {copyright} {ital 1997 American Institute of Physics.}

  5. $\\bar d - \\bar u$ asymmetry in the proton in chiral effective theory

    SciTech Connect

    Salamu, Yusupujiang; Ji, Chueng -Ryong; Melnitchouk, W.; Wang, P.

    2015-03-25

    We compute the $\\bar d - \\bar u$ asymmetry in the proton in chiral effective theory, including both nucleon and ? degrees of freedom, within both relativistic and heavy baryon frameworks. In addition to the distribution at $x>0$, we estimate the correction to the integrated asymmetry arising from zero momentum contributions from pion rainbow and bubble diagrams at $x=0$, which have not been accounted for in previous analyses. In conclusion, we find that the empirical $x$ dependence of $\\bar d - \\bar u$ as well as the integrated asymmetry can be well reproduced in terms of a transverse momentum cutoff parameter.

  6. Possible Signatures of New Physics in e+e- and bar bar{p}p Collisions

    NASA Astrophysics Data System (ADS)

    Senju, H.

    1998-12-01

    A preon model with preonic charge predicts many unique new particles. Among them, several are expected to be relatively light, including the fermion lS, which is a stable WIMP, bosons U0 and U+ and the lepto-quark fermion q'. The production of these particles in e+e- and bar{p}p collisions is discussed, focusing on e+e- --> UlS(e) and bar{p}p --> bar{q}'q' + X. A signature of the latter is dilepton + 2 charm jets + missing energy. A discussion on reported unusual events in the dilepton + jets sample is made based on bar{q}'q' production.

  7. Digital Image Analysis for DETCHIP(®) Code Determination.

    PubMed

    Lyon, Marcus; Wilson, Mark V; Rouhier, Kerry A; Symonsbergen, David J; Bastola, Kiran; Thapa, Ishwor; Holmes, Andrea E; Sikich, Sharmin M; Jackson, Abby

    2012-08-01

    DETECHIP(®) is a molecular sensing array used for identification of a large variety of substances. Previous methodology for the analysis of DETECHIP(®) used human vision to distinguish color changes induced by the presence of the analyte of interest. This paper describes several analysis techniques using digital images of DETECHIP(®). Both a digital camera and flatbed desktop photo scanner were used to obtain Jpeg images. Color information within these digital images was obtained through the measurement of red-green-blue (RGB) values using software such as GIMP, Photoshop and ImageJ. Several different techniques were used to evaluate these color changes. It was determined that the flatbed scanner produced in the clearest and more reproducible images. Furthermore, codes obtained using a macro written for use within ImageJ showed improved consistency versus pervious methods. PMID:25267940

  8. A micron resolution optical scanner for characterization of silicon detectors

    SciTech Connect

    Shukla, R. A.; Dugad, S. R. Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.; Garde, C. S.

    2014-02-15

    The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  9. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  10. A micron resolution optical scanner for characterization of silicon detectors

    NASA Astrophysics Data System (ADS)

    Shukla, R. A.; Dugad, S. R.; Garde, C. S.; Gopal, A. V.; Gupta, S. K.; Prabhu, S. S.

    2014-02-01

    The emergence of high position resolution (˜10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fast timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 - σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.

  11. A COST EFFECTIVE MULTI-SPECTRAL SCANNER FOR NATURAL GAS DETECTION

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan

    2004-10-25

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at En'Urga Inc. The multi-spectral scanner was also evaluated using a blind DoE study at RMOTC. The performance of the scanner was inconsistent during the blind DoE study. However, most of the leaks were outside the view of the multi-spectral scanner. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, a rugged prototype scanner will be developed and evaluated, both at En'Urga Inc. and any potential field sites.

  12. FormScanner: Open-Source Solution for Grading Multiple-Choice Exams

    NASA Astrophysics Data System (ADS)

    Young, Chadwick; Lo, Glenn; Young, Kaisa; Borsetta, Alberto

    2016-01-01

    The multiple-choice exam remains a staple for many introductory physics courses. In the past, people have graded these by hand or even flaming needles. Today, one usually grades the exams with a form scanner that utilizes optical mark recognition (OMR). Several companies provide these scanners and particular forms, such as the eponymous "Scantron." OMR scanners combine hardware and software—a scanner and OMR program—to read and grade student-filled forms.

  13. Image coding.

    PubMed

    Kunt, M

    1988-01-01

    The digital representation of an image requires a very large number of bits. The goal of image coding is to reduce this number, as much as possible, and reconstruct a faithful duplicate of the original picture. Early efforts in image coding, solely guided by information theory, led to a plethora of methods. The compression ratio reached a saturation level around 10:1 a couple of years ago. Recent progress in the study of the brain mechanism of vision and scene analysis has opened new vistas in picture coding. Directional sensitivity of the neurones in the visual pathway combined with the separate processing of contours and textures has led to a new class of coding methods capable of achieving compression ratios as high as 100:1. PMID:3072645

  14. Cultural Factors Related to Smoking in San Francisco's Irish Bars

    ERIC Educational Resources Information Center

    Satterlund, Travis D.; Antin, Tamar M. J.; Lee, Juliet P.; Moore, Roland S.

    2009-01-01

    California's Smoke-Free Workplace Act was extended to include bars in 1998. While the majority of bars in the state have become smoke free, in many bars patrons and staff continue to smoke despite the law. The authors present findings from a study which assessed cultural factors related to continued smoking in bars in the city of San Francisco. In…

  15. On the morphology of dust lanes in galactic bars

    NASA Astrophysics Data System (ADS)

    Sánchez-Menguiano, L.; Pérez, I.; Zurita, A.; Martínez-Valpuesta, I.; Aguerri, J. A. L.; Sánchez, S. F.; Comerón, S.; Díaz-García, S.

    2015-07-01

    The aim of our study is to use dynamical simulations to explore the influence of two important dynamical bar parameters, bar strength and bar pattern speed on the shape of the bar dust lanes. To quantify the shape of the dust lanes we have developed a new systematic method to measure the dust lane curvature. Previous numerical simulations have compared the curvature of bar dust lanes with the bar strength, predicting a relation between both parameters which has been supported by observational studies but with a large spread. We take into account the bar pattern speed to explore, simultaneously, the effect of both parameters on the dust lane shape. To that end, we separate our galactic bars in fast bars (1 < {R} < 1.4 ) and slow bars ({R} > 1.4 ), obtaining, as previous simulations, an inverse relation between the dust lane curvature and the bar strength for fast bars. For the first time, we extend the study to slow bars, finding a constant curvature as a function of the bar strength. As a result, we conclude that weak bars with straight dust lanes are candidates for slow bars. Finally, we have analysed a pilot sample of 10 S4G galaxies, obtaining dust lane curvatures lying within the range covered by the simulations.

  16. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  17. Social Organization in Bars: Implications for Tobacco Control Policy

    PubMed Central

    Lee, Juliet P.; Antin, Tamar M.J.; Moore, Roland S.

    2011-01-01

    This paper considers social roles and relationships of the patrons, staff and owners of bars as critical factors determining adherence to public health policies, and specifically California’s smokefree workplace law. Specific elements of social organization in bars affecting health policy include the community within which the bar is set, the unique identity the bar creates, the bar staff and patrons who enact this identity, and their bar society. These elements were found to contribute to the development of power relations within the bar and solidarity against the outside world, resulting in either resistance to or compliance with smokefree workplace policy. PMID:22522904

  18. MetaBar - a tool for consistent contextual data acquisition and standards compliant submission

    PubMed Central

    2010-01-01

    Background Environmental sequence datasets are increasing at an exponential rate; however, the vast majority of them lack appropriate descriptors like sampling location, time and depth/altitude: generally referred to as metadata or contextual data. The consistent capture and structured submission of these data is crucial for integrated data analysis and ecosystems modeling. The application MetaBar has been developed, to support consistent contextual data acquisition. Results MetaBar is a spreadsheet and web-based software tool designed to assist users in the consistent acquisition, electronic storage, and submission of contextual data associated to their samples. A preconfigured Microsoft® Excel® spreadsheet is used to initiate structured contextual data storage in the field or laboratory. Each sample is given a unique identifier and at any stage the sheets can be uploaded to the MetaBar database server. To label samples, identifiers can be printed as barcodes. An intuitive web interface provides quick access to the contextual data in the MetaBar database as well as user and project management capabilities. Export functions facilitate contextual and sequence data submission to the International Nucleotide Sequence Database Collaboration (INSDC), comprising of the DNA DataBase of Japan (DDBJ), the European Molecular Biology Laboratory database (EMBL) and GenBank. MetaBar requests and stores contextual data in compliance to the Genomic Standards Consortium specifications. The MetaBar open source code base for local installation is available under the GNU General Public License version 3 (GNU GPL3). Conclusion The MetaBar software supports the typical workflow from data acquisition and field-sampling to contextual data enriched sequence submission to an INSDC database. The integration with the megx.net marine Ecological Genomics database and portal facilitates georeferenced data integration and metadata-based comparisons of sampling sites as well as interactive data visualization. The ample export functionalities and the INSDC submission support enable exchange of data across disciplines and safeguarding contextual data. PMID:20591175

  19. Measurement of B0bar -> D(*)0 K(*)0bar BranchingFractions

    SciTech Connect

    Aubert, B.

    2006-04-10

    The authors present a study of the decays {bar B}{sup 0} {yields} D{sup (*)0}{bar K}{sup (*)0} using a sample of 226 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at SLAC. They report evidence for the decay of B{sup 0} and {bar B}{sup 0} mesons to the D*{sup 0}K{sub S}{sup 0} final state with an average branching fraction {Beta}({bar B}{sup 0} {yields} D*{sup 0} {bar K}{sup 0}) {triple_bond} {Beta}({bar B}{sup 0} {yields} D*{sup 0} {bar K}{sup 0}) + {Beta}(B{sup 0} {yields} D*{sup 0}K{sup 0})/2 = (3.6 {+-} 1.2 {+-} 0.3) x 10{sup -5}.

  20. Warp evidence in precessing galactic bar models

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, P.; Romero-Gómez, M.; Masdemont, J. J.

    2016-04-01

    Most galaxies have a warped shape when they are seen edge-on. The reason for this curious form is not completely known so far, so in this work we apply dynamical system tools to contribute to its explanation. Starting from a simple, but realistic model formed by a bar and a disc, we study the effect of a small misalignment between the angular momentum of the system and its angular velocity. To this end, a precession model was developed and considered, assuming that the bar behaves like a rigid body. After checking that the periodic orbits inside the bar continue to be the skeleton of the inner system even after inflicting a precession to the potential, we computed the invariant manifolds of the unstable periodic orbits departing from the equilibrium points at the ends of the bar to find evidence of their warped shapes. As is well known, the invariant manifolds associated with these periodic orbits drive the arms and rings of barred galaxies and constitute the skeleton of these building blocks. Looking at them from a side-on viewpoint, we find that these manifolds present warped shapes like those recognised in observations. Lastly, test particle simulations have been performed to determine how the stars are affected by the applied precession, this way confirming the theoretical results.

  1. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, C.P.; Booth, D.B.; Burges, S.J.; Montgomery, D.R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress ??*0 of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to ??*0 with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root-mean-square error of 0.09). Variation in partial entrainment for a given ??*0 demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < ??*0 < 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  2. Dynamical evolution of two associated galactic bars

    NASA Astrophysics Data System (ADS)

    Garzón, F.; López-Corredoira, M.

    2014-10-01

    We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and experience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non-deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios.

  3. Speech coding

    SciTech Connect

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  4. ON THE GALACTIC SPIN OF BARRED DISK GALAXIES

    SciTech Connect

    Cervantes-Sodi, Bernardo; Li, Cheng; Wang, Lixin; Park, Changbom

    2013-09-20

    We present a study of the connection between the galactic spin parameter (?{sub d}) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest ?{sub d} values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate ?{sub d} values for the case of long bars, while the maximum for short bars is at high ?{sub d}. This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of ?{sub d}, within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  5. Split Hopkinson bar experiments of preloaded interfaces.

    SciTech Connect

    Foley, Jason R.; Luk, Vincent K.; Falbo, Gregory L.; McKinion, Curtis M.; Dodson, Jacob C.

    2010-10-01

    Preloads are routinely applied to stiffen structural members in many applications. However, the preloaded structural members have been observed to lose a significant portion of the imposed load due to internal relaxation mechanisms during impulsive impact events. This paper describes the design and initial experiments for a novel Hopkinson bar configuration designed to investigate the effect of preloads on the stress wave propagation across interfaces between the incident and transmission bars. Dynamic responses are measured by a variety of sensors, including accelerometers, strain gages, and a laser vibrometer. The transmissibility of a titanium incident bar is measured to establish the baseline frequency response between the input and the test interface. Wave transmission across an titanium-aluminum interface is also examined by analyzing the frequency response function, transmission efficiency, and transmissibility between the incident and transmitted waves. The presence of vacuum grease is shown to strongly influence the dynamic behavior of the system.

  6. Evidence for B+ -> K*0bar K*+

    SciTech Connect

    Aubert, B.; Bona, M.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Karlsruhe U., EKP /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-06-19

    We present measurements of the branching fraction and fraction of longitudinal polarization for the decay B{sup +} {yields} {bar K}*{sup 0} K*{sup +} with a sample of 467 {+-} 5 million B{bar B} pairs collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} collider at the SLAC National Accelerator Laboratory. We obtain the branching fraction {Beta}(B{sup +} {yields} {bar K}*{sup 0} K*{sup +}) = (1.2 {+-} 0.5 {+-} 0.1) x 10{sup ?6} with a significance of 3.7 standard deviations including systematic uncertainties. We measure the fraction of longitudinal polarization f{sub L} = 0.75{sub -0.26}{sup +0.16} {+-} 0.03. The first error quoted is statistical and the second is systematic.

  7. Remembering lesbian bars: Montreal, 1955-1975.

    PubMed

    Chamberland, L

    1993-01-01

    This essay retraces the development of lesbian bars in Montreal between 1955 and 1975. It analyzes this process as a form of appropriation of urban public space which reveals the repressive elements confronting lesbians in their pursuit of the right to exist socially, and examines the key-role played by working-class lesbians in struggling against them. It also describes class-related divisions in the way these places are remembered, which may be paralleled to the opposite positions in the current debate about the role of bars in the development of a lesbian culture. Finally, it suggests explanations for class-related differences in bar-going habits and ways of expressing lesbian identity. PMID:8301088

  8. Beam Dumping Ghost Signals in Electric Sweep Scanners

    SciTech Connect

    Stockli, M.P.; Leitner, M.; Keller, R.; Moehs, D.P.; Welton, R.F.

    2005-04-06

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates.

  9. Beam dumping ghost signals in electric sweep scanners

    SciTech Connect

    Stockli, M.P.; Leitner, M.; Moehs, D.P.; Keller, R.; Welton, R.F.; /SNS Project, Oak Ridge

    2004-12-01

    Over the last 20 years many labs started to use Allison scanners to measure low-energy ion beam emittances. We show that large trajectory angles produce ghost signals due to the impact of the beamlet on the electric deflection plates. The strength of the ghost signal is proportional to the amount of beam entering the scanner. Depending on the ions and their velocity, ghost signals can have the opposite polarity as the main beam signals or the same polarity. These ghost signals are easily overlooked because they partly overlap the real signals, they are mostly below the 1% level, and they are often hidden in the noise. However, they cause significant errors in emittance estimates because they are associated with large trajectory angles. The strength of ghost signals, and the associated errors, can be drastically reduced with a simple modification of the deflection plates.

  10. Development of a Head Scanner for Proton CT

    PubMed Central

    Sadrozinski, H. F.-W.; Johnson, R. P.; Macafee, S.; Plumb, A.; Steinberg, D.; Zatserklyaniy, A.; Hurley, V. Bashkirov, F.; Schulte, R.

    2012-01-01

    We describe a new head scanner developed for Proton Computed Tomography (pCT) in support of proton therapy treatment planning, aiming at reconstructing an accurate map of the stopping power (S.P.) in a phantom and, in the future, in patients. The system consists of two silicon telescopes which track the proton before and after the phantom/patient, and an energy detector which measures the residual energy or range of the proton to reconstruct the Water Equivalent Path Length (WEPL) in the phantom. Based on the experience of the existing prototype and extensive Geant4 simulations and CT reconstructions, the new pCT scanner will support clinically useful proton fluxes. PMID:23264711

  11. Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development

    SciTech Connect

    Gilpatrick, John D.; Batygin, Yuri K.; Gonzales, Fermin; Gruchalla, Michael E.; Kutac, Vincent G.; Martinez, Derwin; Sedillo, James Daniel; Pillai, Chandra; Rodriguez Esparza, Sergio; Smith, Brian G.

    2012-05-15

    The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

  12. Percutaneous renal transplant biopsy under CAT scanner guidance.

    PubMed

    Rao, K V

    1984-01-01

    The guidance of a computerized axial tomography scanner was used to locate the biopsy site in 10 instances where a previous attempt had failed to yield a satisfactory specimen. 4 of these patients were grossly obese, and the renal allograft could not be outlined by manual palpation. The scanner has facilitated the placement of the needle tip within the renal cortex, while avoiding injury to the renal pelvis, major blood vessels, and other intra-abdominal organs. Adequate tissue was obtained in each instance. There were no complications associated with this procedure. Proper use of this technique should enhance the success rate of needle biopsies and eliminate the need for open surgical biopsies in renal transplant recipients. PMID:6392914

  13. Description of a transmission X-ray computed tomography scanner

    NASA Astrophysics Data System (ADS)

    Hamideen, M. S.; Sharaf, J.; Al-Saleh, K. A.; Shaderma, M.

    2011-11-01

    A new prototype X-ray computed tomography scanner has been designed, constructed and tested locally. The major system employs an X-ray tube, a semiconductor detector, data logger and a three-dimensional sample position controller driven by three stepping motors, which allow two linear translations in addition to the rotational motion. The image resolution is determined by the step size and the diameter of the X-ray beam, which is controlled by the pinhole collimator. The scanner is designed to reconstruct two- and three-dimensional images mapping the internal structures of the object with the aid of the computer. This system, due to the semiconductor detector used, presents the novelty of being potentially able to acquire both in CT (transmission) mode and in SPECT (emission) mode. The imaging system performance is inspected for different phantoms, and some typical reconstructed images are presented.

  14. Robust Object Segmentation Using a Multi-Layer Laser Scanner

    PubMed Central

    Kim, Beomseong; Choi, Baehoon; Yoo, Minkyun; Kim, Hyunju; Kim, Euntai

    2014-01-01

    The major problem in an advanced driver assistance system (ADAS) is the proper use of sensor measurements and recognition of the surrounding environment. To this end, there are several types of sensors to consider, one of which is the laser scanner. In this paper, we propose a method to segment the measurement of the surrounding environment as obtained by a multi-layer laser scanner. In the segmentation, a full set of measurements is decomposed into several segments, each representing a single object. Sometimes a ghost is detected due to the ground or fog, and the ghost has to be eliminated to ensure the stability of the system. The proposed method is implemented on a real vehicle, and its performance is tested in a real-world environment. The experiments show that the proposed method demonstrates good performance in many real-life situations. PMID:25356645

  15. Three-dimensional profilometry system incorporating a MEMS scanner

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Wakayama, Toshitaka

    2009-08-01

    To improve difficulties inherent to the conventional three-dimensional profiling system based on pattern projection method, we propose incorporating a recent digital device such as a MEMS scanner into projection optics. Due to this revision, first of all, a compact measurement system is easily attainable, and, when we adjust the scanner to produce the original pattern with non-equal periodical structure, the projected pattern is so formed as to be equal in period on the reference plane. In addition, the pattern becomes sharp over the whole field of measurement when the Scheimpflug condition is satisfied in optical arrangement. This brings easier analysis of the captured pattern and attains the threedimensional profilometry system with deeper range of focus, wider field of measurement and higher accuracy of measurement.

  16. Subsurface Flow in Gravel River Bars

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Dunne, T.

    2014-12-01

    The geomorphic and hydraulic characteristics of gravel bars control the direction, magnitude and spatial patterns of infiltration and exfiltration between rivers and their immediate subsurface environments. Bed undulation, water-surface gradient, alluvial depth, and the spatial variation of hydraulic conductivity (both deterministic trends and stochastic variability) affect the hydrologically-driven groundwater-surface water exchange. In this paper, we use a set of field measurements of morphological and hydrological characteristics along two reaches of the San Joaquin River, California to motivate a systematic analysis of the factors that affect paths and residence times of flow through gravel bars under an observed range of streamflow values. In the field investigation, it is shown that asymmetry of bar morphology is a first-order control on the extent and magnitude of infiltration, which is often represented to produce approximately equal areas of infiltration and seepage under the assumption of sinusoidal bedforms. Infiltration over the length of a bar is shown to be greater at low flow than at high flow because of the effect of water-surface gradient. Hydraulic conductivity (ksat) varies by orders of magnitude and systematic downstream coarsening arises related to the process of bar evolution. The lowest values of ksat were observed where the difference between the topographic gradient and the water-surface gradient is at a maximum and thus where the infiltration would be greatest into a uniform bar of homogeneous gravel. Morphology and fine sediment accumulation in recharge zones exert an important control over the mechanisms driving subsurface fluid exchange. Simulations from a numerical groundwater flow model that isolate the signatures of morphology and streambed sediment patterns on subsurface flow corroborate our interpretation that the infiltration patterns and rates are primarily controlled by bed morphology, with ksat playing a secondary role.

  17. Kinematics and dynamics of barred galaxies

    NASA Astrophysics Data System (ADS)

    Long, Kevin

    Methods of interpreting observations of velocity fields are investigated. If streamlines in a bar have the same symmetry as the bar, the velocity field can be recovered. This inversion is singular when the line of nodes of projection corresponds to one of the axes of symmetry of the bar. Near these viewing geometries, the velocity field cannot be inverted; it is important to select target galaxies far from these singular points. Fitting to circular motion alone can lead to large systematic errors (approximately 50 percent or more) in the rotation curve. Formulae for estimating forces from a noncircular velocity field are derived. These methods were tested on synthesized observations of a N-body bar. Williams' Fabry-Perot observations of the projected velocity field for NGC 1832 were analyzed. The bar is near a singular point of projection, yet there are large asymmetries in the projected field. The velocity field can more reasonably be explained by a combination of barlike streaming motion (approximately vc/2) and a slight (approximately 10-20 deg) warp. A method for computing analytical approximations to the potentials of nearly spherical galaxies is presented. The accuracy and the effect on orbital structure were tested. For the models tested, the approximations were accurate for axis ratios less than approx.= 1.4, and surfaces of section were not significantly altered. A computer program for automatic computation of these approximate formulae is presented. A self consistent field method for the calculation of equilibrium models of rotating bars is presented. The closed orbits in a potential are integrated and each response density is calculated. A new density model is computed. This model is then used to generate a new potential, and the process is iterated until convergence.

  18. Experimental characterization of the Clear-PEM scanner spectrometric performance

    NASA Astrophysics Data System (ADS)

    Bugalho, R.; Carriço, B.; Ferreira, C. S.; Frade, M.; Ferreira, M.; Moura, R.; Ortigão, C.; Pinheiro, J. F.; Rodrigues, P.; Rolo, I.; Silva, J. C.; Trindade, A.; Varela, J.

    2009-10-01

    In the framework of the Clear-PEM project for the construction of a high-resolution and high-specificity scanner for breast cancer imaging, a Positron Emission Mammography tomograph has been developed and installed at the Instituto Português de Oncologia do Porto hospital. The Clear-PEM scanner is mainly composed by two planar detector heads attached to a robotic arm, trigger/data acquisition electronics system and computing servers. The detector heads hold crystal matrices built from 2 × 2 × 20 mm3 LYSO:Ce crystals readout by Hamamatsu S8550 APD arrays. The APDs are optically coupled to both ends of the 6144 crystals in order to extract the DOI information for each detected event. Each one of 12288 APD's pixels is read and controlled by Application Specific Integrated Circuits water-cooled by an external cooling unit. The Clear-PEM frontend boards innovative design results in a unprecedented integration of the crystal matrices, APDs and ASICs, making Clear-PEM the PET scanner with the highest number of APD pixels ever integrated so far. In this paper, the scanner's main technical characteristics, calibration strategies and the first spectrometric performance evaluation in a clinical environment are presented. The first commissioning results show 99.7% active channels, which, after calibration, have inter-pixel and absolute gain distributions with dispersions of, respectively, 12.2% and 15.3%, demonstrating that despite the large number of channels, the system is uniform. The mean energy resolution at 511 keV is of 15.9%, with a 8.8% dispersion, and the mean CDOI-1 is 5.9%/mm, with a 7.8% dispersion. The coincidence time resolution, at 511 keV, for a energy window between 400 and 600 keV, is 5.2 ns FWHM.

  19. 94. View of scanner building no. 105 overall view of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    94. View of scanner building no. 105 overall view of upper (upper left) and lower (lower left) DR switches and waveguide arrangement, access catwalks, ships ladder stairs, and structural support system. Official photograph BMEWS Project by unknown photographer, 25 April 1961, clear as negative no. A-2343. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. SNS LINAC Wire Scanner System : Signal Levels and Accuracy.

    SciTech Connect

    Plum, M. A.; Christensen, W.; Myer, R. E.; Rose, C. R.

    2002-01-01

    The linac wire scanner system for the Spallation Neutron Source (SNS) at Oak Ridge, TN, USA, calls for 5 units in the medium energy beam transport (MEBT), 5 in the drift tube linac (DTL), and 10 in the coupled cavity linac (CCL). In this paper we present expected signal levels and an analysis of the error in the beam size measurement as functions of wire position and electrical signal errors.

  1. ADP of multispectral scanner data for land use mapping

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1971-01-01

    The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.

  2. 11. View of south side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of south side of radar scanner building no. 104 showing personnel exit door at side building, showing DR 1 antenna from oblique angle on foundation berm with DR 2 and DR 3 antennae in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. 90. View of scanner building no. 104 showing emplacement process ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    90. View of scanner building no. 104 showing emplacement process for one-half of upper radar switch housing body. RCA Services Company 6 September, 1960, official photograph BMEWS Project by unknown photograph, Photographic Services, Riverton, NJ, BMEWS, clear as negative no. a-1163. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  4. The BaBar Silicon Vertex Tracker

    NASA Astrophysics Data System (ADS)

    Bozzi, C.; Carassiti, V.; Ramusino, A. Cotta; Dittongo, S.; Folegani, M.; Piemontese, L.; Abbott, B. K.; Breon, A. B.; Clark, A. R.; Dow, S.; Fan, Q.; Goozen, F.; Hernikl, C.; Karcher, A.; Kerth, L. T.; Kipnis, I.; Kluth, S.; Lynch, G.; Levi, M.; Luft, P.; Luo, L.; Nyman, M.; Pedrali-Noy, M.; Roe, N. A.; Zizka, G.; Roberts, D.; Schieck, J.; Barni, D.; Brenna, E.; Defendi, I.; Forti, A.; Giugni, D.; Lanni, F.; Palombo, F.; Vaniev, V.; Leona, A.; Mandelli, E.; Manfredi, P. F.; Perazzo, A.; Re, V.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bosi, F.; Calderini, G.; Carpinelli, M.; Dutra, F.; Forti, F.; Gagliardi, D.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Morganti, M.; Morsani, F.; Paoloni, E.; Profeti, A.; Rama, M.; Rampino, G.; Rizzo, G.; Sandrelli, F.; Simi, G.; Triggiani, G.; Tritto, S.; Vitale, R.; Burchat, P.; Cheng, C.; Kirkby, D.; Meyer, T.; Roat, C.; Bona, M.; Bianchi, F.; Daudo, F.; Di Girolamo, B.; Gamba, D.; Giraudo, G.; Grosso, P.; Romero, A.; Smol, A.; Trapani, P.; Zanin, D.; Bosisio, L.; Della Ricca, G.; Lanceri, L.; Pompili, A.; Poropat, P.; Prest, M.; Rastelli, C.; Vallazza, E.; Vuagnin, G.; Hast, C.; Potter, E. P.; Sharma, V.; Burke, S.; Callahan, D.; Campagnari, C.; Dahmes, B.; Eppich, A.; Hale, D.; Hall, K.; Hart, P.; Kuznetsova, N.; Kyre, S.; Levy, S.; Long, O.; May, J.; Richman, J.; Verkerke, W.; Witherell, M.; Beringer, J.; Eisner, A. M.; Frey, A.; Grillo, A.; Grothe, M.; Johnson, R.; Kroeger, W.; Lockman, W.; Pulliam, T.; Rowe, W.; Schmitz, R.; Seiden, A.; Spencer, E.; Turri, M.; Wilder, M.; Charles, E.; Elmer, P.; Nielsen, J.; Orejudos, W.; Scott, I.; Walsh, J.; Zobernig, H.

    2001-04-01

    The BaBar Silicon Vertex Tracker (SVT) is a five layer device, made from double-sided silicon strip detectors and read out via a custom time-over-threshold circuit, the AToM chip. The SVT is an essential part of the physics program of BaBar, and is able to reconstruct B meson decay vertices with a precision sufficient to measure time-dependent CP violating asymmetries at the PEP-II asymmetric e +e - collider. This report will give an overview of the SVT, with particular focus on the performance of the SVT, which has been taking colliding beam data since May 1999.

  5. Sine-Bar Attachment For Machine Tools

    NASA Technical Reports Server (NTRS)

    Mann, Franklin D.

    1988-01-01

    Sine-bar attachment for collets, spindles, and chucks helps machinists set up quickly for precise angular cuts that require greater precision than provided by graduations of machine tools. Machinist uses attachment to index head, carriage of milling machine or lathe relative to table or turning axis of tool. Attachment accurate to 1 minute or arc depending on length of sine bar and precision of gauge blocks in setup. Attachment installs quickly and easily on almost any type of lathe or mill. Requires no special clamps or fixtures, and eliminates many trial-and-error measurements. More stable than improvised setups and not jarred out of position readily.

  6. B Counting at BaBar

    SciTech Connect

    McGregor, Grant Duncan

    2008-12-16

    In this thesis we examine the method of counting B{bar B} events produced in the BABAR experiment. The original method was proposed in 2000, but improvements to track reconstruction and our understanding of the detector since that date make it appropriate to revisit the B Counting method. We propose a new set of cuts designed to minimize the sensitivity to time-varying backgrounds. We find the new method counts B{bar B} events with an associated systematic uncertainty of {+-} 0.6%.

  7. Simultaneous sensing and actuation with a piezoelectric tube scanner.

    PubMed

    Moheimani, S O Reza; Yong, Yuen K

    2008-07-01

    Piezoelectric tube scanners with quartered external electrodes are the most widely used nanopositioning technology in modern scanning probe microscopes. There has been increasing interest in utilizing feedback control techniques to improve bandwidth and accuracy of these nanopositioners. The use of feedback requires a sensor to be incorporated into the nanopositioning device. Noncontact displacement sensors, e.g., capacitive and inductive sensors, have been used for this purpose. However, their measurements contain a significant noise component if operated over large bandwidths. The piezoelectric voltage induced in a tube nanopositioner has been proposed recently as an alternative measure of displacement with a much improved noise figure, up to three orders of magnitude better than capacitive sensors. In this arrangement, an electrode is used to actuate the tube, while the opposite electrode is used as a sensor. This approach has two drawbacks: (i) the operating range of the tube is reduced to half and (ii) the tube is not driven symmetrically, thus the opposite sides of the tube experience asymmetric stresses, i.e., in this mode of operation, the scanner is not a perfectly collocated system. In this paper, we present a new electrode pattern for piezoelectric tube scanners which addresses the above problems and allows simultaneous sensing and actuation of the tube in an efficient way. PMID:18681703

  8. Handheld optical coherence tomography scanner for primary care diagnostics.

    PubMed

    Jung, Woonggyu; Kim, Jeehyun; Jeon, Mansik; Chaney, Eric J; Stewart, Charles N; Boppart, Stephen A

    2011-03-01

    The goal of this study is to develop an advanced point-of-care diagnostic instrument for use in a primary care office using handheld optical coherence tomography (OCT). This system has the potential to enable earlier detection of diseases and accurate image-based diagnostics. Our system was designed to be compact, portable, user-friendly, and fast, making it well suited for the primary care office setting. The unique feature of our system is a versatile handheld OCT imaging scanner which consists of a pair of computer-controlled galvanometer-mounted mirrors, interchangeable lens mounts, and miniaturized video camera. This handheld scanner has the capability to guide the physician in real time for finding suspicious regions to be imaged by OCT. In order to evaluate the performance and use of the handheld OCT scanner, the anterior chamber of a rat eye and in vivo human retina, cornea, skin, and tympanic membrane were imaged. Based on this feasibility study, we believe that this new type of handheld OCT device and system has the potential to be an efficient point-of-care imaging tool in primary care medicine. PMID:21134801

  9. Electro-optic and Acousto-optic Laser Beam Scanners

    NASA Astrophysics Data System (ADS)

    Römer, G. R. B. E.; Bechtold, P.

    Optical solid state de?ectors rely on the electro-optical or acousto-optic effect. These Electro-Optical De?ectors (EODs) and Acousto-Optical De?ectors (AODs) do not contain moving parts and therefore exhibit high de?ection velocities and are free of drawbacks associated with mechanical scanners. A description of the principles of operation of EODs and AODs is presented. In addition, characteristics, properties and the (dis)advantages of EODs and AODs, when compared to mirror based mechanical de?ectors, is discussed. De?ection angles, speed and accuracy are discussed in terms of resolvable spots and related quantities. Also, response time, damage threshold, efficiency and the type and magnitude of beam distortions is addressed. Optical de?ectors are characterized by high angular de?ection velocities, but small de?ection angles. Whereas mechanical mechanical scanners are characterized by relatively small de?ection velocities, but large de?ection angles. Arranging an optical de?ector and a mechanical scanner in series allows to take advantage of the best of both worlds.

  10. Scanner correction capabilities aware CMP lithography hotspot analysis

    NASA Astrophysics Data System (ADS)

    Katakamsetty, Ushasree; Colin, Hui; Yeo, Sky; Valerio, Perez; Qing, Yang; Fong, Quek Shyue; Aravind, Narayana Samy; Matthias, Ruhm; Roberto, Schiwon

    2014-03-01

    CMP effects on manufacturability are becoming more prominent as we move towards advanced process nodes, 28nm and below. It is well known that dishing and erosion occur during CMP process, and they strongly depend on pattern density, line spacing and line width [1]. Excessive thickness or topography variations can lead to shrinkage of process windows, causing potential yield problems such as resist lifting or printability issues. When critical patterns fall into regions with extreme topography variations, they would be more sensitive to defects and could potentially become yield limiters or killers. Scanner tools compensate and correct topography variations by following the given profile [2]. However the scanner exposure window size is wider compared to local topography variations in design. This difference would generate new lithography focus sensitive weak points which may be missed. Experiments have been conducted as shown in Fig 1. Design under manufacturing has been subjected to scanner tool topography focus corrections. Despite of the corrections, Site B topography height has worsened while site A and C shown some improvements. As a result, additional improvements need to be done to meet manufacturability requirements.

  11. NEMA NU 2 performance tests for scanners with intrinsic radioactivity.

    PubMed

    Watson, Charles C; Casey, Michael E; Eriksson, Lars; Mulnix, Tim; Adams, Doug; Bendriem, Bernard

    2004-05-01

    Performance tests on lutetium oxyorthosilicate (LSO)-based PET scanners cannot be conducted strictly according to the National Electrical Manufacturers Association (NEMA) NU 2 standards because of the presence of intrinsic radioactivity within the LSO crystal scintillator material. This background radiation gives rise mainly to random coincidence events but also to a small number of true coincidences, which cannot be eliminated from measurements on such scanners and must therefore be corrected for in the data analysis. The current NU 2 standards do not take account of these backgrounds and hence can lead to erroneous results on LSO-based machines. Nevertheless, the intent of the standards can be met with appropriate modifications to the acquisition and processing procedures. In this paper, we propose certain changes to the NEMA specifications to accommodate this class of scanners. These changes affect mainly the estimation of sensitivity, scatter, randoms, and count losses. Using these modified procedures, the NU 2 performance of LSO-based systems can accurately be measured. PMID:15136632

  12. Portable wide-field hand-held NIR scanner

    NASA Astrophysics Data System (ADS)

    Jung, Young-Jin; Roman, Manuela; Carrasquilla, Jennifer; Erickson, Sarah J.; Godavarty, Anuradha

    2013-03-01

    Near-infrared (NIR) optical imaging modality is one of the widely used medical imaging techniques for breast cancer imaging, functional brain mapping, and many other applications. However, conventional NIR imaging systems are bulky and expensive, thereby limiting their accelerated clinical translation. Herein a new compact (6 × 7 × 12 cm3), cost-effective, and wide-field NIR scanner has been developed towards contact as well as no-contact based real-time imaging in both reflectance and transmission mode. The scanner mainly consists of an NIR source light (between 700- 900 nm), an NIR sensitive CCD camera, and a custom-developed image acquisition and processing software to image an area of 12 cm2. Phantom experiments have been conducted to estimate the feasibility of diffuse optical imaging by using Indian-Ink as absorption-based contrast agents. As a result, the developed NIR system measured the light intensity change in absorption-contrasted target up to 4 cm depth under transillumination mode. Preliminary in-vivo studies demonstrated the feasibility of real-time monitoring of blood flow changes. Currently, extensive in-vivo studies are carried out using the ultra-portable NIR scanner in order to assess the potential of the imager towards breast imaging..

  13. Comparison of Cyberware PX and PS 3D human head scanners

    NASA Astrophysics Data System (ADS)

    Carson, Jeremy; Corner, Brian D.; Crockett, Eric; Li, Peng; Paquette, Steven

    2008-02-01

    A common limitation of laser line three-Dimensional (3D) scanners is the inability to scan objects with surfaces that are either parallel to the laser line or that self-occlude. Filling in missing areas adds some unwanted inaccuracy to the 3D model. Capturing the human head with a Cyberware PS Head Scanner is an example of obtaining a model where the incomplete areas are difficult to fill accurately. The PS scanner uses a single vertical laser line to illuminate the head and is unable to capture data at top of the head, where the line of sight is tangent to the surface, and under the chin, an area occluded by the chin when the subject looks straight forward. The Cyberware PX Scanner was developed to obtain this missing 3D head data. The PX scanner uses two cameras offset at different angles to provide a more detailed head scan that captures surfaces missed by the PS scanner. The PX scanner cameras also use new technology to obtain color maps that are of higher resolution than the PS Scanner. The two scanners were compared in terms of amount of surface captured (surface area and volume) and the quality of head measurements when compared to direct measurements obtained through standard anthropometry methods. Relative to the PS scanner, the PX head scans were more complete and provided the full set of head measurements, but actual measurement values, when available from both scanners, were about the same.

  14. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    SciTech Connect

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and field demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind DoE study at RMOTC. The performance of the scanner was inconsistent during the blind DoE study. However, most of the leaks were outside the view of the multi-spectral scanner. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. Electronic and mechanical design of the scanner to make it a self standing sensor was completed during the last six months of the project. The prototype scanner was tested with methane leaks at 15 feet and 30 feet, at a flow rate of 25 SCFH. The prototype scanner successfully detected the leaks. This concluded the project.

  15. Efficient system modeling for a small animal PET scanner with tapered DOI detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-01

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement.

  16. Performance of an improved first generation optical CT scanner for 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Adamovics, John; Wuu, Cheng-Shie

    2013-12-01

    Performance analysis of a modified 3D dosimetry optical scanner based on the first generation optical CT scanner OCTOPUS is presented. The system consists of PRESAGE™ dosimeters, the modified 3D scanner, and a new developed in-house user control panel written in Labview program which provides more flexibility to optimize mechanical control and data acquisition technique. The total scanning time has been significantly reduced from initial 8 h to ∼2 h by using the modified scanner. The functional performance of the modified scanner has been evaluated in terms of the mechanical integrity uncertainty of the data acquisition process. Optical density distribution comparison between the modified scanner, OCTOPUS and the treatment plan system has been studied. It has been demonstrated that the agreement between the modified scanner and treatment plans is comparable with that between the OCTOPUS and treatment plans.

  17. Efficient system modeling for a small animal PET scanner with tapered DOI detectors.

    PubMed

    Zhang, Mengxi; Zhou, Jian; Yang, Yongfeng; Rodríguez-Villafuerte, Mercedes; Qi, Jinyi

    2016-01-21

    A prototype small animal positron emission tomography (PET) scanner for mouse brain imaging has been developed at UC Davis. The new scanner uses tapered detector arrays with depth of interaction (DOI) measurement. In this paper, we present an efficient system model for the tapered PET scanner using matrix factorization and a virtual scanner geometry. The factored system matrix mainly consists of two components: a sinogram blurring matrix and a geometrical matrix. The geometric matrix is based on a virtual scanner geometry. The sinogram blurring matrix is estimated by matrix factorization. We investigate the performance of different virtual scanner geometries. Both simulation study and real data experiments are performed in the fully 3D mode to study the image quality under different system models. The results indicate that the proposed matrix factorization can maintain image quality while substantially reduce the image reconstruction time and system matrix storage cost. The proposed method can be also applied to other PET scanners with DOI measurement. PMID:26682623

  18. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  19. Uplink Coding

    NASA Technical Reports Server (NTRS)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the objectives, meeting goals and overall NASA goals for the NASA Data Standards Working Group. The presentation includes information on the technical progress surrounding the objective, short LDPC codes, and the general results on the Pu-Pw tradeoff.

  20. QR Codes

    ERIC Educational Resources Information Center

    Lai, Hsin-Chih; Chang, Chun-Yen; Li, Wen-Shiane; Fan, Yu-Lin; Wu, Ying-Tien

    2013-01-01

    This study presents an m-learning method that incorporates Integrated Quick Response (QR) codes. This learning method not only achieves the objectives of outdoor education, but it also increases applications of Cognitive Theory of Multimedia Learning (CTML) (Mayer, 2001) in m-learning for practical use in a diverse range of outdoor locations. When…

  1. Multispectral scanner system for ERTS: Four band scanner system. Volume 2: Engineering model panoramic pictures and engineering tests

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This document is Volume 2 of three volumes of the Final Report for the four band Multispectral Scanner System (MSS). The results are contained of an analysis of pictures of actual outdoor scenes imaged by the engineering model MSS for spectral response, resolution, noise, and video correction. Also included are the results of engineering tests on the MSS for reflectance and saturation from clouds. Finally, two panoramic pictures of Yosemite National Park are provided.

  2. Divorce and Bar Mitzvah: A First Look.

    ERIC Educational Resources Information Center

    Geffen, Michael; Kaplan, Earl

    After an introductory discussion and review of literature on divorce among Jewish families, this document presents and analyzes two case studies which show the adverse effect of divorce and child-custody battles on the children of Jewish families who subsequently plan a B'nai Mitzvah (Bar or Bat Mitzvah) ceremony--a joyous ritual of initiation…

  3. My Bar Graph Tells a Story

    ERIC Educational Resources Information Center

    McMillen, Sue; McMillen, Beth

    2010-01-01

    Connecting stories to qualitative coordinate graphs has been suggested as an effective instructional strategy. Even students who are able to "create" bar graphs may struggle to correctly "interpret" them. Giving children opportunities to work with qualitative graphs can help them develop the skills to interpret, describe, and compare information…

  4. Barring Teachers: The New Vetting Arrangements

    ERIC Educational Resources Information Center

    Gillespie, Alisdair A.

    2007-01-01

    This article forms the second part of an examination of the law relating to the vetting and barring system for teachers and those who have access to children. It was seen in the first article (Gillespie, 2006, Education and the Law, 18(1), 19-30) that controversy had erupted when it was disclosed that some teachers were allowed to remain in the…

  5. Stellar Populations of Barred Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Conroy, Charlie; Athanassoula, E.; Bell, Eric F.; Bosma, A.; Cardamone, Carolin N.; Faber, S. M.; Koo, David C.; Lintott, Chris; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke; Willett, Kyle W.

    2015-07-01

    Selecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise ratio (≳ 100 Å-1) stacked spectra with minimal emission-line contamination, we accurately and precisely model the central stellar populations of barred and unbarred quiescent disk galaxies. By splitting our sample by redshift, we can use the fixed size of the SDSS fiber to model the stellar populations at different radii within galaxies. At 0.02\\lt z\\lt 0.04, the SDSS fiber radius corresponds to ≈1 kpc, which is the typical half-light radii of both classical bulges and disky pseudobulges. Assuming that the SDSS fiber primarily covers the bulges at these redshifts, our analysis shows that there are no significant differences in the stellar populations, i.e., stellar age, [Fe/H], [Mg/Fe], and [N/Fe], of the bulges of barred versus unbarred quiescent disk galaxies. Modeling the stellar populations at different redshift intervals from z = 0.020 to z = 0.085 at fixed stellar masses produces an estimate of the stellar population gradients out to about half the typical effective radius of our sample, assuming null evolution over this ≈1 Gyr epoch. We find that there are no noticeable differences in the slopes of the azimuthally averaged gradients of barred versus unbarred quiescent disk galaxies. These results suggest that bars are not a strong influence on the chemical evolution of quiescent disk galaxies.

  6. Star formation properties in barred galaxies. III. Statistical study of bar-driven secular evolution using a sample of nearby barred spirals

    SciTech Connect

    Zhou, Zhi-Min; Wu, Hong; Cao, Chen E-mail: hwu@bao.ac.cn

    2015-01-01

    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges toward stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of the bar-driven physical process, while future work is needed because of the uncertainties.

  7. Nourishment of a Barred Nearshore: Jerba, Tunisia

    NASA Astrophysics Data System (ADS)

    Boczar-Karakiewicz, B.; Romanczyk, W.; Long, B.; Bona, J. L.

    2001-12-01

    A project to reconstruct 9~km of sandy beaches located in the north-eastern part of Jerba Island (Tunisia) is presented. The beaches face the Mediterranean Sea, and multiple offshore sand bars are a common feature in this area. The visible and underwater parts of the beaches have been eroded by sand losses, shoreline retreats, recurrent flooding, steepened nearshore profiles and continuosly decreased volume of offshore sand bars. Erosion and degradation of the coastal dunes have resulted from recreational developments in the area. Earlier `hard' protection measures implemented, such as seawalls, ripraps, etc., failed. Our project proposes a `soft' protection method that involves supplying the lacking sediment to 'strategic' places in the nearshore zones for the restoration of their wave-dominated dynamic equilibrium. Our recommendations for the project are based on historical data, observations, field measurements and numerical simulations, using a mathematical model of wave-seabed interactions (Boczar-Karakiewicz et al. 1987), with initial data provided by field measurements of waves, currents and morphology. The model predicts the formation of longshore bars and their site-specific dynamics in response to sequences of storm events in the local wave climate, while reproducing the observed quasi-periodicity of beach erosion and recovery. The conclusions of the project recommend the nourishment of two offshore bars and reconstruction of the beaches to a width of some 70 m (their pre-erosion state). The increased volume of the nourished bars will assure protection and stable conditions for the reconstructed beaches and prevent flooding. Boczar-Karakiewicz B., Bona J.L. and Cohen D.L., 1987. Interaction of shallow-water waves and bottom topography. In: Dynamical problems in continuum physics, mathematics and its application, J.L. Bona, C. Dafermos, J. Erickson & D. Kinderlehrer, editors, Springer-Verlag, New York, IMA Series in Mathematics and its Applications, 4, 131-176.

  8. 50 CFR Figures 14a and 14b to Part... - Maximum Angle of Deflector Bars With Straight Bars Attached to the Bottom of the Frame and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Maximum Angle of Deflector Bars With Straight Bars Attached to the Bottom of the Frame and Maximum Angle of Deflector Bars With Bent Bars... Angle of Deflector Bars With Bent Bars Attached to the Bottom of the Frame ER19DE96.002...

  9. 2-D stationary gas dynamics in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.

    2015-06-01

    A code for solving the 2-D isothermal Euler equations of gas dynamics in a rotating disc is presented. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretisation of the equations for a steady-state solution, using a consistent linearisation and a direct solver. Successive grid refinement, starting from a finite-volume grid with 8 by 8 cells, is applied to find solutions on subsequently finer meshes. On coarser meshes, a first-order spatial discretisation is used. The method obtains quadratic convergence once the solution approaches the steady state. The initial search is quick with the first-order scheme and slower with the second-order discretisation, up to 256 by 256 cells. Beyond, with 512 by 512 cells, the number of iterations becomes too large to be of practical use. Potential causes are discussed. The code can be applied as a tool for generating flow models if used on not too fine meshes.

  10. Dynamical study of ud\\bar{s}\\bar{s} in the chiral constituent quark model

    NASA Astrophysics Data System (ADS)

    Gao, Qin-Xiang; Yang, You-Chang; Ping, Jialun

    2012-04-01

    Using the chiral quark model, the ud\\bar{s}\\bar{s} system is studied by the Gaussian expansion method. Two configurations, i.e. diquark-antidiquark and molecular structures, are employed in the calculation. In the pure diquark-antidiquark or the molecular structure configuration, no bound state is found. However, the energy of the state ud\\bar{s}\\bar{s} with I(JP) = 0(1+) is found to be lower than the corresponding threshold M_K+M_{K^*} after taking into account the mixture of the two configurations. Future experimental research of this state is needed to check the validity of the channel coupling effect of the different color structures and the applicability of the chiral quark model to a multi-quark system directly.

  11. Evaluation of scanners for C-scan imaging in nondestructive inspection of aircraft

    SciTech Connect

    Gieske, J.H.

    1994-04-01

    The goal of this project was to produce a document that contains information on the usability and performance of commercially available, fieldable, and portable scanner systems as they apply to aircraft NDI inspections. In particular, the scanners are used to generate images of eddy current, ultrasonic, or bond tester inspection data. The scanner designs include manual scanners, semiautomated scanners, and fully automated scanners. A brief description of the functionality of each scanner type, a sketch, and a fist of the companies that support the particular design are provided. Vendors of each scanner type provided hands-on demonstrations of their equipment on real aircraft samples in the FAA Aging Aircraft Nondestructive Inspection Validation Center (AANC) in Albuquerque, NM. From evaluations recorded during the demonstrations, a matrix of scanner features and factors and ranking of the capabilities and limitations of the design, portability, articulation, performance, usability, and computer hardware/software was constructed to provide a quick reference for comparing the different scanner types. Illustrations of C-scan images obtained during the demonstration are shown.

  12. Some Comments on the Branching Ratios for n-bar p Annihilation into pipi, KK-bar , and pieta Channels

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. E.

    2000-11-01

    We give some remarks on the $\\bar n p$-partial branching ratios in flight at low momenta of antineutron, measured by OBELIX collaboration. The comparison is made to the known branching ratios from the $p \\bar p$-atomic states. The branching ratio for the reaction $\\bar n p \\to \\pi^+\\pi^0$ is found to be suppressed in comparison to what follows from the $ p \\bar p$-data. It is also shown, that there is no so called dynamic I=0-amplitude suppression for the process $N\\bar N \\to K\\bar K$.

  13. Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner.

    PubMed

    Mullinger, Karen J; Havenhand, Jade; Bowtell, Richard

    2013-05-01

    EEG recordings made during concurrent fMRI are confounded by the pulse artefact (PA), which although smaller than the gradient artefact is often more problematic because of its variability over multiple cardiac cycles. A better understanding of the PA is needed in order to generate improved methods for reducing its effect in EEG-fMRI experiments. Here we performed a study aimed at identifying the relative contributions of three putative sources of the PA (cardiac-pulse-driven head rotation, the Hall effect due to pulsatile blood flow and pulse-driven expansion of the scalp) to its amplitude and variability. EEG recordings were made from 6 subjects lying in a 3T scanner. Accelerometers were fixed on the forehead and temple to monitor head motion. A bite-bar and vacuum cushion were used to restrain the head, thus greatly attenuating the contribution of cardiac-driven head rotation to the PA, while an insulating layer placed between the head and the EEG electrodes was used to eliminate the Hall voltage contribution. Using the root mean square (RMS) amplitude of the PA averaged over leads and time as a measure of the PA amplitude, we found that head restraint and insulating layer reduced the PA by 61% and 42%, respectively, when compared with the PA induced with the subject relaxed, indicating that cardiac-pulse-driven head rotation is the dominant source of the PA. With both the insulating layer and head restraint in place, the PA was reduced in RMS amplitude by 78% compared with the relaxed condition, the remaining PA contribution resulting from scalp expansion or residual head motion. The variance of the PA across cardiac cycles was more strongly reduced by the insulating layer than the head restraint, indicating that the flow-induced Hall voltage makes a larger contribution than pulse-driven head rotation to the variability of the PA. PMID:23313417

  14. Temperature dependence of APD-based PET scanners

    SciTech Connect

    Keereman, Vincent; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian

    2013-09-15

    Purpose: Solid state detectors such as avalanche photodiodes (APDs) are increasingly being used in PET detectors. One of the disadvantages of APDs is the strong decrease of their gain factor with increasing ambient temperature. The light yield of most scintillation crystals also decreases when ambient temperature is increased. Both effects lead to considerable temperature dependence of the performance of APD-based PET scanners. In this paper, the authors propose a model for this dependence and the performance of the LabPET8 APD-based small animal PET scanner is evaluated at different temperatures.Methods: The model proposes that the effect of increasing temperature on the energy histogram of an APD-based PET scanner is a compression of the histogram along the energy axis. The energy histogram of the LabPET system was acquired at 21 °C and 25 °C to verify the validity of this model. Using the proposed model, the effect of temperature on system sensitivity was simulated for different detector temperature coefficients and temperatures. Subsequently, the effect of short term and long term temperature changes on the peak sensitivity of the LabPET system was measured. The axial sensitivity profile was measured at 21 °C and 24 °C following the NEMA NU 4-2008 standard. System spatial resolution was also evaluated. Furthermore, scatter fraction, count losses and random coincidences were evaluated at different temperatures. Image quality was also investigated.Results: As predicted by the model, the photopeak energy at 25 °C is lower than at 21 °C with a shift of approximately 6% per °C. Simulations showed that this results in an approximately linear decrease of sensitivity when temperature is increased from 21 °C to 24 °C and energy thresholds are constant. Experimental evaluation of the peak sensitivity at different temperatures showed a strong linear correlation for short term (2.32 kcps/MBq/°C = 12%/°C, R = ?0.95) and long term (1.92 kcps/MBq/°C = 10%/°C , R = ?0.96) temperature changes. Count rate evaluation showed that although the total count rate is consistently higher at 21 °C than at 24 °C for different source activity concentrations, this is mainly due to an increase in scattered and random coincidences. The peak total count rate is 400 kcps at both temperatures but is reached at lower activity at 21 °C. The peak true count rate is 138 kcps (at 100 MBq) at 21 °C and 180 kcps (at 125 MBq) at 24 °C. The peak noise equivalent count rate is also lower at 21 °C (70 kcps at 70 MBq) than at 24 °C (100 kcps at 100 MBq). At realistic activity levels, the scatter fraction is lower at higher temperatures, but at the cost of a strong decrease in true count rate.Conclusions: A model was proposed for the temperature dependence of APD-based PET scanners and evaluated using the LabPET small animal PET scanner. System sensitivity and count rate performance are strongly dependent on ambient temperature while system resolution is not. The authors’ results indicate that it is important to assure stable ambient temperature to obtain reproducible results in imaging studies with APD-based PET scanners.

  15. The feasibility of a scanner-independent technique to estimate organ dose from MDCT scans: Using CTDI{sub vol} to account for differences between scanners

    SciTech Connect

    Turner, Adam C.; Zankl, Maria; DeMarco, John J.; Cagnon, Chris H.; Zhang Di; Angel, Erin; Cody, Dianna D.; Stevens, Donna M.; McCollough, Cynthia H.; McNitt-Gray, Michael F.

    2010-04-15

    Purpose: Monte Carlo radiation transport techniques have made it possible to accurately estimate the radiation dose to radiosensitive organs in patient models from scans performed with modern multidetector row computed tomography (MDCT) scanners. However, there is considerable variation in organ doses across scanners, even when similar acquisition conditions are used. The purpose of this study was to investigate the feasibility of a technique to estimate organ doses that would be scanner independent. This was accomplished by assessing the ability of CTDI{sub vol} measurements to account for differences in MDCT scanners that lead to organ dose differences. Methods: Monte Carlo simulations of 64-slice MDCT scanners from each of the four major manufacturers were performed. An adult female patient model from the GSF family of voxelized phantoms was used in which all ICRP Publication 103 radiosensitive organs were identified. A 120 kVp, full-body helical scan with a pitch of 1 was simulated for each scanner using similar scan protocols across scanners. From each simulated scan, the radiation dose to each organ was obtained on a per mA s basis (mGy/mA s). In addition, CTDI{sub vol} values were obtained from each scanner for the selected scan parameters. Then, to demonstrate the feasibility of generating organ dose estimates from scanner-independent coefficients, the simulated organ dose values resulting from each scanner were normalized by the CTDI{sub vol} value for those acquisition conditions. Results: CTDI{sub vol} values across scanners showed considerable variation as the coefficient of variation (CoV) across scanners was 34.1%. The simulated patient scans also demonstrated considerable differences in organ dose values, which varied by up to a factor of approximately 2 between some of the scanners. The CoV across scanners for the simulated organ doses ranged from 26.7% (for the adrenals) to 37.7% (for the thyroid), with a mean CoV of 31.5% across all organs. However, when organ doses are normalized by CTDI{sub vol} values, the differences across scanners become very small. For the CTDI{sub vol}, normalized dose values the CoVs across scanners for different organs ranged from a minimum of 2.4% (for skin tissue) to a maximum of 8.5% (for the adrenals) with a mean of 5.2%. Conclusions: This work has revealed that there is considerable variation among modern MDCT scanners in both CTDI{sub vol} and organ dose values. Because these variations are similar, CTDI{sub vol} can be used as a normalization factor with excellent results. This demonstrates the feasibility of establishing scanner-independent organ dose estimates by using CTDI{sub vol} to account for the differences between scanners.

  16. 14. VIEW LOOKING NORTHEAST INSIDE OF THE 22' BAR STOCKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW LOOKING NORTHEAST INSIDE OF THE 22' BAR STOCKING AND FINISHING BUILDING AT THE PICKLING VATS. - U.S. Steel Duquesne Works, 22-Inch Bar Mill, Along Monongahela River, Duquesne, Allegheny County, PA

  17. Bars in Starbursts and AGNs - A Quantitative Reexamination

    NASA Astrophysics Data System (ADS)

    Hao, L.; Jogee, S.; Barazza, F. D.; Marinova, I.; Shen, J.

    2009-12-01

    Galactic bars are the most important driver of secular evolution in galaxies. They can efficiently drive gas into the central kiloparsec of galaxies, thus feed circumnuclear starbursts, and possibly help to fuel AGN. The connection between bars and AGN activities has been actively debated in the past two decades. Previous work used fairly small samples and often lacked a proper control sample. They reported conflicting results on the correlation between bars and AGN activity. Here we revisit the bar-AGN and bar-starburst connections using the analysis of bars in a large sample of about 2000 SDSS disk galaxies (Barazza, Jogee, & Marinova 2008). We find that AGN and star-forming galaxies have similar optical bar fractions, 47% and 50%, respectively. Both bar fractions are higher than that in inactive galaxies (29%). We discuss the implications of the study on the relationship between host galaxies and their central activities.

  18. Energy Drinks and Food Bars: Power or Hype?

    MedlinePLUS

    ... How Can I Help a Friend Who Cuts? Energy Drinks and Food Bars: Power or Hype? KidsHealth > ... nutritivas: ¿Energía o mera exageración? The Buzz on Energy Foods Energy drinks and nutrition bars often make ...

  19. Acquiring tomographic images from panoramic X-ray scanners

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Giang; Lee, Soo-Jin

    2014-03-01

    We propose a new method to acquire three-dimensional tomographic images of a large object from a dental panoramic X-ray scanner which was originally designed to produce a panoramic image of the teeth and jaws on a single frame. The method consists of two processes; (i) a new acquisition scheme to acquire the tomographic projection data using a narrow detector, and (ii) a dedicated model-based iterative technique to reconstruct images from the acquired projection data. In conventional panoramic X-ray scanners, the suspension arm that holds the X-ray source and the narrow detector has two moving axes of the angular movement and the linear movement. To acquire the projection data of a large object, we develop a new data acquisition scheme that can emulate an acquisition of the projectional view in a large detector by stitching narrow projection images, each of which is formed by a narrow detector, and design a trajectory to move the suspension arm accordingly. To reconstruct images from the acquired projection data, an accelerated model-based iterative reconstruction method derived from the ordered subset convex maximum-likelihood expectation-maximization algorithm is used. In this method each subset of the projection data is constructed by collecting narrow projection images to form emulated tomographic projectional views in a large detector. To validate the performance of the proposed method, we tested with a real dental panoramic X-ray system. The experimental results demonstrate that the new method has great potential to enable existing panoramic X-ray scanners to have an additional CT's function of providing useful tomographic images.

  20. Agricultural applications for thermal infrared multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Pelletier, R. E.; Ochoa, M. C.; Hajek, B. F.

    1985-01-01

    The use of the Thermal Infrared Multispectral Scanner (TIMS) data in agricultural landscapes is discussed. The TIMS allows for narrow-band analysis in the 8.2-11.6 micron range at spatial resolutions down to 5 meters in cell size. A coastal plain region in SE Alabama was studied using the TIMS. The crop/plant vigor, canopy density, and thermal response changes for soils obtained from thermal imagery are examined. The application of TIMS data to hydrologic and topographic issues, inventory and conservation monitoring, and the enhancement and extraction of cartographic features is described.