Science.gov

Sample records for barium copper iron

  1. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported. PMID:23660963

  2. Molecular Mediators Governing Iron-Copper Interactions

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2015-01-01

    Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states. PMID:24995690

  3. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  4. Short-term effects of intratracheal installations of yttrium barium copper oxide

    SciTech Connect

    London, J.E.; Newkirk, L.R.; Lehnert, B.E.

    1990-12-01

    Inhalation exposures to the new high-temperature ({Tc}) superconductor (SC) materials can occur during manufacturing and fabrication processes. In this exploratory study, we examined the pulmonary response to the deposition of an yttrium barium copper oxide SC powder. Groups of Sprague-Dawley rats were intratracheally instilled with either 10 mg or 20 mg of SC in phosphate-buffered saline (PBS) or with PBS only. The animals were sacrificed 60 days later for histopathologic assessments of their lungs. Lung lesions in the 10-mg SC group were found mainly in alveolar ducts and proximal alveoli. The lesions consisted of variably sized foci of interstitial thickening involving accumulations of macrophages. These interstitial aggregates were often times centered around one or more extracellular crystals, which, presumably, were retained SC product. Trichome stains also demonstrated the presence of fibrosis in the walls of alveoli surrounding the granulomas. Similar interstitial-macrophage accumulations and fibrosis were observed in rats instilled with 20 mg of SC. However, alveolus like structures lined by ciliated cuboidal epithelium near interstitial granulomas were additionally found in the lungs of some of the animals in this latter group. These results suggest SC material of the yttrium barium copper oxide type may represent a potential exposure hazard to the lung.

  5. Iron versus Copper II. Principles and Applications in Bioinorganic Chemistry.

    ERIC Educational Resources Information Center

    Ochiai, Ei-Ichiro

    1986-01-01

    Discusses the differences between iron and copper. Describes various aspects of the behaviors of these two elements, including those of biological and environmental significance. Addresses the evolution of the atmosphere and sedimentary ore formation, the phylogeny of iron and copper, and some anthropological notes regarding the use of the metals.…

  6. Old iron, young copper: from Mars to Venus.

    PubMed

    Crichton, R R; Pierre, J L

    2001-06-01

    Iron and copper are metals which play an important role in the living world. From a brief consideration of their chemistry and biochemistry we conclude that the early chemistry of life used water soluble ferrous iron while copper was in the water-insoluble Cu(I) state as highly insoluble sulphides. The advent of oxygen was a catastrophic event for most living organisms, and can be considered to be the first general irreversible pollution of the earth. In contrast to the oxidation of iron and its loss of bioavailability as insoluble Fe(III), the oxidation of insoluble Cu(I) led to soluble Cu(II). A new iron biochemistry became possible after the advent of oxygen, with the development of chelators of Fe(III), which rendered iron once again accessible, and with the control of the potential toxicity of iron by its storage in a water soluble, non-toxic, bio-available storage protein (ferritin). Biology also discovered that whereas enzymes involved in anaerobic metabolism were designed to operate in the lower portion of the redox spectrum, the arrival of dioxygen created the need for a new redox active metal which could attain higher redox potentials. Copper, now bioavailable, was ideally suited to exploit the oxidizing power of dioxygen. The arrival of copper also coincided with the development of multicellular organisms which had extracellular cross-linked matrices capable of resisting attack by oxygen free radicals. After the initial 'iron age' subsequent evolution moved, not towards a 'copper age', but rather to an 'iron-copper' age. In the second part of the review, this symbiosis of iron and copper is examined in yeast. We then briefly consider iron and copper metabolism in mammals, before looking at iron-copper interactions in mammals, particularly man, and conclude with the reflection that, as in Greek and Roman mythology, a better understanding of the potentially positive interactions between Mars (iron) and Venus (copper) can only be to the advantage of our

  7. Synthesis and characterization of rare earth doped barium fluoride nanoparticles and derivatized copper phthalocyanine nanoparticles

    NASA Astrophysics Data System (ADS)

    Bender, Christopher Mark

    1998-12-01

    Nanoparticles of neodymium doped barium fluoride (Nd:BaFsb2) were synthesized for use as the inorganic component of an optical amplifier composite. Microemulsions were used to maintain domain size in the nano-regime (˜100 nm), and decreasing the volume fraction of the aqueous content, while simultaneously increasing the volume fraction of the cosurfactant (methanol), gave a linear relationship between decreasing domain size and increasing volume fraction of alcohol. As Nd was added to the BaFsb2 host, direct incorporation was observed at low dopant levels (0-10 mol-%), a two-phase mixture was observed at intermediate dopant levels (10-50 mol-%), and a nearly amorphous product resulted with very high Nd-dopant levels (>50 mol-%). Fluorescence measurements of the solids showed that concentration quenching was delayed until unusually high levels, probably as a result of the lost crystallinity. Praseodymium and ytterbium codoped barium fluoride (Pr,Yb:BaFsb2) were also synthesized in microemulsions. Though as-prepared powders did not fluoresce, treatment with high temperatures (900sp°C) and dynamic vacuum resulted in products which would fluoresce at 1.3 mum. Lower temperature treatments (500-750sp°C) were used to decrease sintering, however this resulted in Ybsp{3+} products in which Ybsp{3+} fluorescence was quenched by exposure to air. Contamination due to water and hydroxide is believed to be the reason. Ethanolic microemulsions were used to make copper phthalocyanine (CuPc), which was modified with either zinc phthalocyanine (ZnPc) or copper phthalcyaninesulfonic acid by means of a flow system. The sulfonic acid derivative was lost upon aqueous washing. The zinc derivatized product gave a dispersion in n-hexylamine, which was stable for seven days. The mole ratio of Cu:Zn was 1:1 for the solids dispersed in n-hexylamine, and was 6:1 for the solids that were not dispersed. Because underivatized CuPc formed by the same method did not result in a dispersed product

  8. Effect of zinc on copper and iron bioavailability as influenced by dietary copper and fat source

    SciTech Connect

    Magee, A.C.; Jones, B.P.; Lin, F.; Sinthusek, G.; Frimpong, N.A.; Wu, S.

    1986-03-05

    In a number of experiments, they have observed that liver copper levels of young male rats fed low zinc diets were essentially the same as liver copper levels of rats fed adequate zinc. Liver iron levels of rats fed low zinc diets, however, tended to be markedly higher than liver iron levels of rats fed adequate zinc. Increases in dietary zinc (up to 200 ppm) were generally associated with decreases in liver iron deposition, but had little effect on liver copper deposition. Iron bioavailability appeared to be enhanced when fat sources high in saturated fatty acids were used, and there was evidence that the type of dietary fat influenced the effect of zinc on iron bioavailability. Liver copper deposition, however, did not appear to be markedly affected by the type of dietary fat suggesting that copper bioavailability is less affected by fat source. Increases in dietary copper were associated with increases in liver copper levels and decreases in liver iron levels of rats fed increasing levels of zinc. These data suggest that potential interrelationships between dietary factors not being considered as experimental variables could have significant effects on results and on the interrelationships between dietary variables which are being studied.

  9. Cooled and uncooled infrared detectors based on yttrium barium copper oxide

    NASA Astrophysics Data System (ADS)

    Sobolewski, Roman; Butler, Donald P.; Celik-Butler, Zeynep

    2001-03-01

    We review performance and physical characteristics of yttrium barium copper oxide (YBCO) compound as an infrared (IR) photodetector. YBCO has been used as the IR detector material in both superconducting (oxygen-rich) and semiconducting (oxygen-depleted) phases. YBCO in its crystalline, Yba2Cu3O6+x phase with x>0.95 is a high-temperature superconducting material with the superconducting transition Tcapproximately equals 90K. The superconducting YBCOIR detectors operate as either nonequilibrium (quantum) or bolometric (thermal) devices. The nonequilibrium devices are characterized by very short, single-picosecond photoresponse times and are expected to find applications in optoelectronics and imaging, as well as ultrafast optical-to-electrical transducers for digital input applications. The bolometric mechanism results in relatively slow but very sensitive detectors with possible applications in astronomy. In addition to superconducting IR sensors, interest in uncooled YBCO devices is growing very rapidly. Despite somewhat lower sensitivity and significantly reduced speed of response, as compared to the superconducting counterpartners, the uncooled IR detectors are characterized by much lower operating cost and weight due to lack of cooling cryogens and are compatible with existing silicon-based processing and fabrication. The last point is of paramount importance if the IR-sensitive pixels are to be integrated with CMOS read-out circuitry for monolithic focal plane arrays and infrared cameras. Amorphous uncooled YBCO photodetectors operate as either photoconductive bolometers of unbiased pyroelectric devices.

  10. Static and dynamic photoinduced magnetic effects in yttrium-iron garnet lightly doped with barium ions

    SciTech Connect

    Vorob'eva, N. V. Khalilov, R. Z.

    2012-04-15

    In yttrium-iron garnet lightly doped with barium, direct measurements of the photoinduced changes in magnetostrictive strains disagree with those in magnetostriction constants at 78-100 K. This is attributed to a considerable photoinduced modification of the initial state in this sample due to a redistribution of the charge (during illumination) between cations of the ferromagnetic octahedral sublattice. In the same sample, the temperature dependence of the photoinduced disaccomodation of magnetic permeability characterizing the initial demagnetized state is measured and calculated. A change in the electron mechanism of the phenomenon during the transition to room temperature is shown. The conclusion about the promising prospects for using such samples for remagnetization by light is advanced.

  11. The effect of copper on iron reduction and its application to the determination of total iron content in iron and copper ores by potassium dichromate titration.

    PubMed

    Hu, Hanjun; Tang, Yang; Ying, Haisong; Wang, Minghai; Wan, Pingyu; Jin Yang, X

    2014-07-01

    The International Standard Organization (ISO) specifies two titrimetric methods for the determination of total iron content in iron ores using potassium dichromate as titrant after reduction of the iron(III) by tin(II) chloride and/or titanium(III) chloride. These two ISO methods (ISO2597-1 and ISO2597-2) require nearly boiling-point temperature for iron(III) reduction and suffer from copper interference and/or mercury pollution. In this study, potassium borohydride was used for reduction of iron(III) catalyzed by copper ions at ambient temperatures. In the absence of copper, iron(III) reduction by potassium borohydride was sluggish while a trace amount of copper significantly accelerated the reduction and reduced potassium borohydride consumption. The catalytic mechanism of iron(III) reduction in sulfuric acid and hydrochloric acid was investigated. Potassium borohydride in sodium hydroxide solution was stable without a significant degradation within 24h at ambient conditions and the use of potassium borohydride prepared in sodium hydroxide solution was safe and convenient in routine applications. The applicability of potassium borohydride reduction for the determination of total iron content by potassium dichromate titration was demonstrated by comparing with the ISO standard method using iron and copper ore reference materials and iron ore samples. PMID:24840467

  12. Effect of oxygen, methyl mercaptan, and methyl chloride on friction behavior of copper-iron contacts

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with an iron rider on a copper disk and a copper rider on an iron disk. The sputter cleaned iron and copper disk surfaces were saturated with oxygen, methyl mercaptan, and methyl chloride at atmospheric pressure. Auger emission spectroscopy was used to monitor the surfaces. Lower friction was obtained in all experiments with the copper rider sliding on the iron disk than when the couple was reversed. For both iron and copper disks, methyl mercaptan gave the best surface coverage and was most effective in reducing friction. For both iron and copper disks, methyl chloride was the least effective in reducing friction. With sliding, copper transferred to iron and iron to copper.

  13. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver

    PubMed Central

    Aigner, Elmar; Weiss, Günter; Datz, Christian

    2015-01-01

    Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the “dysmetabolic iron overload syndrome”. Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications. PMID:25729473

  14. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver.

    PubMed

    Aigner, Elmar; Weiss, Günter; Datz, Christian

    2015-02-27

    Elevated iron stores as indicated by hyperferritinemia with normal or mildly elevated transferrin saturation and mostly mild hepatic iron deposition are a characteristic finding in subjects with non-alcoholic fatty liver disease (NAFLD). Excess iron is observed in approximately one third of NAFLD patients and is commonly referred to as the "dysmetabolic iron overload syndrome". Clinical evidence suggests that elevated body iron stores aggravate the clinical course of NAFLD with regard to liver-related and extrahepatic disease complications which relates to the fact that excess iron catalyses the formation of toxic hydroxyl-radicals subsequently resulting in cellular damage. Iron removal improves insulin sensitivity, delays the onset of type 2 diabetes mellitus, improves pathologic liver function tests and likewise ameliorates NAFLD histology. Several mechanisms contribute to pathologic iron accumulation in NAFLD. These include impaired iron export from hepatocytes and mesenchymal Kupffer cells as a consequence of imbalances in the concentrations of iron regulatory factors, such as hepcidin, cytokines, copper or other dietary factors. This review summarizes the knowledge about iron homeostasis in NAFLD and the rationale for its therapeutic implications. PMID:25729473

  15. SERUM LEVELS OF COPPER AND IRON IN DENGUE FEVER.

    PubMed

    Soundravally, Rajendiran; Sherin, Jacob; Agieshkumar, Balakrishna Pillai; Daisy, Mariya Samadanam; Cleetus, Cherupanakkal; Narayanan, Parameswaran; Kadhiravan, Tamilarasu; Sujatha, Sistla; Harichandrakumar, Kottyen Thazhath

    2015-01-01

    The role of trace elements in dengue virulence is not yet known. The present study assessed the serum levels of two micronutrients, copper and iron, in cases of dengue fever. The study involved 96 patients of whom 48 had either severe or non-severe forms of dengue (with and without warning signs), and the remaining 48 were patients with other febrile illnesses (OFI), used as controls. Serum levels of copper and iron were evaluated at admission and by the time of defervescence using commercially available kits. At admission, no difference in the level of serum copper was observed between cases and controls. In the group of dengue cases, the copper level was found to be significantly decreased in severe and non-severe cases with warning signs, compared to non-severe cases without warning signs. In contrast, by the time of defervescence the copper level was found to be increased in all dengue cases compared to OFI controls, but no difference was observed among dengue cases. Unlike OFI controls, dengue cases showed an increasing pattern of copper levels from admission until defervescence. On the other hand, no such significant differences were observed in the serum level of iron in the clinical groups, except for a decreased iron level found in severe cases, compared to non-severe dengue without warning signs. The results show that copper is associated with dengue severity and this finding emphasizes the need to investigate the involvement of trace elements in disease severity so as to improve the prognosis of dengue. PMID:26422155

  16. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-08-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  17. Iron may play a role in pancreatic atrophy in copper deficiency

    SciTech Connect

    Fields, M.; Lewis, C.G.; Lure, M.D. Dept. of Agriculture, Beltsville, MD Univ. of Maryland, College Park )

    1991-03-15

    The present study was undertaken to determine if pancreatic atrophy in copper deficient rats fed fructose is associated with excessive iron deposition. Weanling male and female rats were fed a copper deficient or copper adequate diet containing 62% carbohydrate as either fructose or starch. Another group of weanling rats consumed a copper deficient diet containing fructose that was low in iron. After consuming their respective diets for five weeks, the highest pancreatic iron concentration was seen in male rats consuming the copper deficient diet containing fructose. These animals also exhibited pancreatic atrophy. In contrast, neither copper deficient female rats fed fructose nor males fed starch exhibited pancreatic atrophy and their pancreata did not contain high levels of iron. In addition, reducing the availability of dietary iron in copper deficient rats fed fructose decreased pancreatic iron concentration and ameliorated the pathology. The data suggest that pancreatic atrophy in copper deficiency may be related to iron deposition in that tissue.

  18. Retronasal smell and detection thresholds of iron and copper salts.

    PubMed

    Epke, Effie M; Lawless, Harry T

    2007-10-22

    Iron and copper salts, when placed in the mouth, may give rise to odorous compounds which complicate their functioning as chemical stimuli. The contribution of retronasal smell to perception of these metal salts at threshold has not been determined. Detection thresholds of the sulfate and chloride salts of ferrous iron and copper, and sodium chloride (as a control) were determined using a modified forced-choice ascending method of limits, with and without nasal occlusion. Threshold values were calculated from geometric means of individual estimates, and from interpolation on logistic regression and percent correct plots. Nasal occlusion raised thresholds for iron salts and copper but not sodium. The geometric mean detection thresholds with the nose open were 30, 64, 7.8, and 8.2 microM for FeSO(4), FeCl(2), CuSO(4), CuCl(2), respectively but rose to 160, 227, 24.6 and 15.6 with the nose closed. Metal salts of both iron and copper create a retronasally perceived olfactory stimulus at low concentration levels, probably arising from lipid oxidation products generated in the mouth. PMID:17532013

  19. Retronasal Smell and Detection Thresholds of Iron and Copper Salts

    PubMed Central

    Epke, Effie M.; Lawless, Harry T.

    2016-01-01

    Iron and copper salts, when placed in the mouth, may give rise to odorous compounds which complicate their functioning as chemical stimuli. The contribution of retronasal smell to perception of these metal salts at threshold has not been determined. Detection thresholds of the sulfate and chloride salts of ferrous iron and copper, and sodium chloride (as a control) were determined using a modified forced-choice ascending method of limits, with and without nasal occlusion. Threshold values were calculated from geometric means of individual estimates, and from interpolation on logistic regression and percent correct plots. Nasal occlusion raised thresholds for iron salts and copper but not sodium. The geometric mean detection thresholds with the nose open were 30, 64, 7.8, and 8.2 μM for FeSO4, FeCl2, CuSO4, CuCl2, respectively but rose to 160, 227, 24.6 and 15.6 with the nose closed. Metal salts of both iron and copper create a retronasally perceived olfactory stimulus at low concentration levels, probably arising from lipid oxidation products generated in the mouth. PMID:17532013

  20. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  1. Regional Distribution of Copper, Zinc and Iron in Brain of Wistar Rat Model for Non-Wilsonian Brain Copper Toxicosis.

    PubMed

    Pal, Amit; Prasad, Rajendra

    2016-03-01

    In previous studies, we have reported first in vivo evidence of copper deposition in the choroid plexus, cognitive impairments, astrocytes swelling (Alzheimer type II cells) and astrogliosis (increase in number of astrocytes), and degenerated neurons coupled with significant increase in the hippocampus copper and zinc content in copper-intoxicated Wistar rats. Nonetheless, hippocampus iron levels were not affected by chronic copper-intoxication. Notwithstanding information on distribution of copper, zinc and iron status in different regions of brain due to chronic copper exposure remains fragmentary. In continuation with our previous study, the aim of this study was to investigate the effects of intraperitoneally injected copper lactate (0.15 mg Cu/100 g body weight) daily for 90 days on copper, zinc and iron levels in different regions of the brain using atomic absorption spectrophotometry. Copper-intoxicated group showed significantly increased cortex, cerebellum and striatum copper content (76, 46.8 and 80.7 % increase, respectively) compared to control group. However, non-significant changes were observed for the zinc and iron content in cortex, cerebellum and striatum due to chronic copper exposure. In conclusion, the current study demonstrates that chronic copper toxicity causes differential copper buildup in cortex, cerebellum and striatum region of central nervous system of male Wistar rats; signifying the critical requirement to discretely evaluate the effect of copper neurotoxicity in different brain regions, and ensuing neuropathological and cognitive dysfunctions. PMID:26855494

  2. Ultrasound-enhanced copper removal by hydrous iron oxide adsorption

    SciTech Connect

    Campos, H.R.; Wheat, P.E.

    1996-12-31

    A model system to investigate ultrasound-enhanced removal of metallic ions from aqueous solution by hydrous ferric oxide (HFO) adsorption has been conducted. The experimental data indicate that ultrasonic treatment of pre-formed HFO flocs can lead to enhanced removal of metallic ions from aqueous solution and that the level of enhancement is strongly correlated with the solution pH. Ultrasonic treatment has been shown to be effective at lowering the final solution concentration of copper species in the pH range 7.5--9.5 at copper to iron molar concentration ratios of 10 and 30%.

  3. Methods for making a supported iron-copper catalyst

    DOEpatents

    Dyer, Paul N.; Pierantozzi, Ronald

    1986-01-01

    A catalyst is described for the synthesis of hydrocarbons from CO+H.sub.2 utilizing a porous Al.sub.2 O.sub.3 support impregnated with iron and copper and optionally promoted with an alkali metal. The use of an Al.sub.2 O.sub.3 support results in the suppression of heavy waxes (C.sub.26 + hydrocarbons), particularly in slurry phase operation, when compared to unsupported or co-precipitated catalysts.

  4. Some interferences in atomic-absorption spectrometry and extraction of iron and copper.

    PubMed

    Yanagisawa, M; Kihara, H; Suzuki, M; Takeuchi, T

    1970-09-01

    The effect of complexing agents on the atomic-absorption spectrometry of iron and copper extracts was investigated Thiocyanate complexes gave a marked depression of absorption by iron and copper, especially in fuel-rich flames. Chloride, diethyldithiocarbamate and hydroxyquinoline complexes of iron behaved alike, but differently from the thiocyanate complex. PMID:18960816

  5. Iron and copper catalysis of PCDD/F formation.

    PubMed

    Liao, Junhong; Buekens, Alfons; Olie, Kees; Yang, Jie; Chen, Tong; Li, Xiaodong

    2016-02-01

    The formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) was explored during de novo tests designed to compare the catalytic activity of copper (II) chloride (CuCl2) with that of iron (III) oxide (Fe2O3) and to test some synergistic effect between these two catalytic compounds. Both copper chloride (CuCl2) and iron oxide (Fe2O3) were earlier proposed as catalysts to explain the PCDD/F emissions from, e.g. municipal solid waste incineration (MSWI). In addition, haematite (Fe2O3) is the main iron ore and could be responsible for the typical iron ore sintering plant fingerprint. A total of nine model fly ash (MFA) samples were prepared by mixing and grinding of sodium chloride (NaCl), activated carbon and a powder matrix of silica (SiO2) with the selected metal compound(s). The conditions of these de novo tests were 1 h in duration, 350 °C in a flow of synthetic combustion gas (10 vol.% oxygen in nitrogen). The effect of Fe-Cu catalyst concentration on yield and distribution pattern of PCDD/F was systematically explored; three strongly differing ratios of [Fe]:[Cu] were considered (1:1, 10:1 and 100:1) to study the potential interactions of Fe2O3 and CuCl2 suggested earlier. The results show some slight rise of PCDD/F formed with raising iron concentration from 0 to 10.1 wt% (no Cu added; 0.1 wt% Cu), as well as strong surging of both amount and average chlorination level of PCDD/F when rising amounts of copper (0 to 1.1 wt%) are introduced. The resulting fingerprints are compared with those from sintering and from MSWI. PMID:26416123

  6. Nuclear magnetic resonance of iron and copper disease states

    SciTech Connect

    Runge, V.M.; Clanton, J.A.; Smith, F.W.; Hutchison, J.; Mallard, J.; Partain, C.L.; James, A.E. Jr.

    1983-11-01

    The tissue levels of paramagnetic ions are an important factor in the determination of T/sub 1/ values as observed by nuclear magnetic resonance (NMR) imaging. The increased levels of iron present in human disease states such as hemochromatosis lead to decreased T/sub 1/ values. The mean liver T/sub 1/ of three patients with iron storage disease was determined to be 130 msec, significantly different from the value of 154 msec, the mean for 14 normal controls. Whether NMR will be able to detect the increased copper levels in liver and brain in Wilson disease remains for further clinical trials to evaluate. NMR imaging, however, does serve as a noninvasive method for the diagnosis of states of iron overload and as a technique to follow progression of disease or response to medical therapy.

  7. Role of intensive milling in the processing of barium ferrite/magnetite/iron hybrid magnetic nano-composites via partial reduction of barium ferrite

    SciTech Connect

    Molaei, M.J.; Ataie, A.; Raygan, S.; Picken, S.J.

    2015-03-15

    In this research a mixture of barium ferrite and graphite was milled for different periods of time and then heat treated at different temperatures. The effects of milling time and heat treatment temperature on the phase composition, thermal behavior, morphology and magnetic properties of the samples have been investigated using X-ray diffraction, differential thermal analysis, high resolution transmission electron microscopy and vibrating sample magnetometer techniques, respectively. X-ray diffraction results revealed that BaFe{sub 12}O{sub 19}/Fe{sub 3}O{sub 4} nanocomposites form after a 20 h milling due to the partial reduction of BaFe{sub 12}O{sub 19}. High resolution transmission electron microscope images of a 40 h milled sample showed agglomerated structure consisting of nanoparticles with a mean particle size of 30 nm. Thermal analysis of the samples via differential thermal analysis indicated that for un-milled samples, heat treatment up to 900 °C did not result in α-Fe formation, while for a 20 h milled sample heat treatment at 700 °C resulted in reduction process progress to the formation of α-Fe. Wustite was disappeared in an X-ray diffraction pattern of a heat treated sample at 850 °C, by increasing the milling time from 20 to 40 h. By increasing the milling time, the structure of heat treated samples becomes magnetically softer due to an increase in saturation magnetization and a decrease in coercivity. Saturation magnetization and coercivity of a sample milled for 20 h and heat treated at 850 °C were 126.3 emu/g and 149.5 Oe which by increasing the milling time to 40 h, alter to 169.1 emu/g and 24.3 Oe, respectively. High coercivity values of milled and heat treated samples were attributed to the nano-scale formed iron particles. - Graphical abstract: Display Omitted - Highlights: • Barium ferrite and graphite were treated mechano-thermally. • Increasing milling time increases reduction progress after heat treatment. • Composites

  8. Promotion of atherogenesis by copper or iron-Which is more likely?

    SciTech Connect

    Rajendran, Reshmi; Ren, Minqin; Ning, Pan; Tan Kwong Huat, Benny; Halliwell, Barry . E-mail: bchbh@nus.edu.sg; Watt, Frank

    2007-02-02

    Iron levels increase in atherosclerotic lesions in cholesterol fed-rabbits and play a role in atherosclerosis. We investigated whether copper also rises. Male New Zealand White rabbits were fed high-cholesterol diets for 8 weeks. After sacrifice, lesion sizes were determined, and elemental analyses of the lesion and unaffected artery wall performed using nuclear microscopy. Unlike iron, lesion copper is decreased by about half compared with the unaffected artery wall, and much less copper than iron is present. Our data suggest that iron may be more likely to play a role in the promotion of atherosclerosis than copper.

  9. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  10. Isoflavones Reduce Copper with Minimal Impact on Iron In Vitro

    PubMed Central

    Karlíčková, Jana; Macáková, Kateřina; Říha, Michal; Pinheiro, Liliane Maria Teixeira; Filipský, Tomáš; Horňasová, Veronika; Hrdina, Radomír; Mladěnka, Přemysl

    2015-01-01

    Isoflavones are commonly consumed in many Asian countries and have potentially positive effects on human being. Only a few and rather controversial data on their interactions with copper and iron are available to date. 13 structurally related isoflavones were tested in the competitive manner for their Cu/Fe-chelating/reducing properties. Notwithstanding the 5-hydroxy-4-keto chelation site was associated with ferric, ferrous, and cupric chelation, the chelation potential of isoflavones was low and no cuprous chelation was observed. None of isoflavones was able to substantially reduce ferric ions, but the vast majority reduced cupric ions. The most important feature for cupric reduction was the presence of an unsubstituted 4′-hydroxyl; contrarily the presence of a free 5-hydroxyl decreased or abolished the reduction due to chelation of cupric ions. The results from this study may enable additional experiments which might clarify the effects of isoflavones on human being and/or mechanisms of copper absorption. PMID:26273421

  11. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  12. Iron supplementation does not affect copper and zinc absorption in breastfed infants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron supplements are commonly recommended for infants but were suggested to inhibit zinc and copper absorption. The objective of this study was to investigate potential effects of iron supplementation, infant age, and mineral status on zinc and copper absorption in infants at 6 and 9 mo of age. Twen...

  13. VAPOR PHASE MERCURY SORPTION BY ORGANIC-SULFIDE COATED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Tetra sulfide silane coated iron-copper nano-particle aggregates are found to be potentially very high capacity sorbents for vapor phase mercury capture. High equilibrium capacities were obtained for the silane coated iron copper nano-aggregate sorbent at 70 oC and 120 oC. Even a...

  14. Interface driven magnetic interactions in nanostructured thin films of iron nanocrystallites embedded in a copper matrix

    SciTech Connect

    Desautels, R. D. Lierop, J. van; Shueh, C.; Lin, K.-W.; Freeland, J. W.

    2015-05-07

    We have fabricated thin films of iron nanocrystallites embedded in a copper matrix using a dual ion beam assisted deposition technique. A secondary End-Hall ion beam bombarded the iron atoms during deposition altering significantly the morphology of the films and allowing for control of the intermixing between iron and copper components. Cross-sectional transmission electron microscopy and x-ray reflectometry experiments indicated that the morphology of the films was that of iron nanocrystallites embedded in a copper matrix. Rietveld refinements of the diffraction pattern identified fcc-copper and amorphous iron. An increased amount of disorder was observed with a reduction in the amount of deposited iron from a 1:1 Fe:Cu ratio to 0.25:0.75 Fe:Cu ratio. Interfacial copper-iron alloys were identified by DC susceptibility experiments through their reduced T{sub C,Alloy} (370, 310, and 280 K) compared with that of bulk iron (∼1000 K). Element specific x-ray absorption and x-ray magnetic circular dichroism experiments were performed to identify the contributions to the magnetism from the iron and the copper-iron alloy.

  15. Brillouin light scattering study of transverse mode coupling in confined yttrium iron garnet/barium strontium titanate multiferroic

    SciTech Connect

    Sadovnikov, A. V. Nikitov, S. A.; Beginin, E. N.; Bublikov, K. V.; Grishin, S. V.; Sheshukova, S. E.; Sharaevskii, Yu. P.

    2015-11-28

    Using the space-resolved Brillouin light scattering spectroscopy we study the transformation of dynamic magnetization patterns in a bilayer multiferroic structure. We show that in the comparison with a single yttrium iron garnet (YIG) film magnetization distribution is transformed in the bilayer structure due to the coupling of waves propagating both in an YIG film (magnetic layer) and in a barium strontium titanate slab (ferroelectric layer). We present a simple electrodynamic model using the numerical finite element method to show the transformation of eigenmode spectrum of confined multiferroic. In particular, we demonstrate that the control over the dynamic magnetization and the transformation of spatial profiles of transverse modes in magnetic film of the bilayer structure can be performed by the tuning of the wavevectors of transverse modes. The studied confined multiferroic stripe can be utilized for fabrication of integrated dual tunable functional devices for magnonic applications.

  16. Analysis of Yttrium-Barium-Copper-Oxide by x ray diffraction and mechanical characterization

    NASA Technical Reports Server (NTRS)

    Arsenovic, Petar

    1992-01-01

    The efforts in developing high-temperature superconductor (HTSC) YBa2Cu3O7 electrical leads are to benefit future NASA missions that will carry payloads with sensitive instruments operating at cryogenic temperatures. Present-day leads made of copper or magnesium are responsible for as much as 50 percent of the parasitic heat load on cryogenic systems. A reduction of this load could be achieved by replacing the conventional materials with HTSC ceramic electrical leads. Superconductor quality has become a concern in the industry, as has the development of effective evaluation methods. The factors that need to be examined for these materials include material purity, mechanical properties, and superconducting ability below the critical temperature. We applied several methods to study these factors: thermogravimetric analysis, x-ray diffraction, tensile testing, and laser-generated ultrasound. Our objectives were to determine the average tensile strength and Young's modulus of the HTSC material and to compare them to those values for copper and manganin.

  17. [Effect of iron-containing supplements on the level of iron, copper, and manganese in young sportsmen].

    PubMed

    Zaĭtseva, I P

    2010-01-01

    In was defined that 2-week intake by senior school pupils of iron-containing supplements combined with an ascorbic acid was followed by a significant increase of iron concentration in plasma and formal blood elements, hemoglobin and erythrocytes level, increase of vitamin C provision and physical performance efficiency at simultaneous decrease of copper and manganese content in blood plasma. PMID:20968011

  18. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes

    NASA Astrophysics Data System (ADS)

    Shaw, D. R.; Dreisinger, D. B.; Lancaster, T.; Richmond, G. D.; Tomlinson, M.

    2004-07-01

    The FENIX Hydromet Iron Control System was installed at Western Metals Copper Ltd.’s Mt. Gordon Operations in Queensland, Australia. The system uses a novel and patented ion-exchange resin to selectively remove iron from copper electrolyte at the solvent extraction/electrowinning plant. At Mt. Gordon, the system delivered significant savings in reagent consumption (acid and cobalt sulfate for electrowinning and lime for neutralization of the raffinate bleed) and has the potential to deliver higher current efficiencies in copper electrowinning, leading to increased copper production.

  19. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys.

    PubMed

    Paßlack, Nadine; Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Neumann, Konrad; Zentek, Jürgen

    2014-01-01

    The concentrations of specific elements in the equine liver and kidneys are of practical relevance since horses are not only food-producing animals, but also partially serve as an indicator for the environmental pollution, as the basic feed includes plants like grass, grain and fruits. In this study, the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) were measured in the liver, renal cortex and renal medulla of 21 horses (8 male; 13 female; aged between 5 months-28 years), using inductively coupled plasma mass spectrometry. Comparable Cu and Zn concentrations were detected in the liver and renal cortex, while approximately 50% lower concentrations were measured in the renal medulla. The lowest Sr, Cd and Se, but the highest Mn, Sb and Pb concentrations were measured in the liver. The Ba concentrations were comparable in the renal cortex and medulla, but lower in the liver of the horses. Gender-related differences were observed for Cd, Mn and Cr, with higher Cd concentrations in the liver, but lower Mn concentrations in the renal cortex and lower Cr concentrations in the renal medulla of female horses. Age-related differences were detected for most measured elements, however, the animal number per age-group was only low. In conclusion, the present study provides important reference data for the storage of Sr, Ba, Cd, Cu, Zn, Mn, Cr, Sb, Se and Pb in the liver and kidneys of horses, which are of practical relevance for an evaluation of the exposure of horses to these elements, either via feed or the environment. PMID:25061551

  20. Liver and kidney concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in cats

    PubMed Central

    2014-01-01

    Background In order to provide new knowledge on the storage of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se) and lead (Pb) in the feline organism, we measured the concentrations of these elements in the liver, renal cortex and renal medulla, evaluating also the impact of age, sex or the occurrence of a chronic kidney disease (CKD). The element concentrations in the tissues of 47 cats (22 male; 25 female; aged between 2 months and 18 years) were measured using inductively coupled plasma mass spectrometry. Results Cu, Zn and Mn were the highest in the liver, followed by the renal cortex and the renal medulla. The Cd concentrations were lower in the renal medulla compared to the renal cortex and the liver, and Sr was higher in the renal medulla compared to the liver. The Se concentrations in the cortex of the kidneys were higher than in the medulla of the kidneys and in the liver. Higher Cd concentrations were measured in the renal cortex of female cats, while no further gender-related differences were observed. Except for Cr, Sb and Se, age-dependencies were detected for the storage of all elements. The occurrence of a CKD also affected the storage of the elements, with lower concentrations of Ba (renal medulla), Zn (renal cortex; renal medulla) and Mn (liver; renal medulla), but higher Cd concentrations (liver; renal cortex) in diseased cats. Conclusions In conclusion, the present results provide new information on the accumulation of specific elements in the feline liver and kidneys, demonstrating a dependency on age and an impaired kidney function, but not on the sex of the animals. PMID:25030305

  1. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats

    PubMed Central

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R.; Collins, James F.

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  2. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats.

    PubMed

    Ha, Jung-Heun; Doguer, Caglar; Wang, Xiaoyu; Flores, Shireen R; Collins, James F

    2016-01-01

    Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 6-11/group) AIN-93G-based diets containing high (~8800 ppm), adequate (~80) or low (~11) iron in combination with high (~183), adequate (~8) or low (~0.9) copper for 5 weeks. Subsequently, the iron- and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype. PMID:27537180

  3. Preparation, characterization, and manipulation of iron platinum, barium titanate, and vanadium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Morris, William Homer, III

    2008-12-01

    New synthesis strategies for preparation of FePt, BaTiO 3, VO2, V2O3, V2O5 , and V6O13 nanoparticles are presented in this thesis. Electron microscopy, diffraction, elemental analysis, and physical property measurement studies confirm the composition and structure of the synthesized material. Also reported is size-selection of ferromagnetic nanoparticles by binding PEG (2000 MW) ligand to particle surfaces and fractionally precipitating more narrowed size cuts. Large (30--100 nm) ferromagnetic nanoparticles are prepared by employing vesicle templates. Barium titanate nanoparticles with an average diameter of 3.8 nm have been synthesized within inverse micelles. A variety of vanadium oxide compositions within the nanometer size regime have been prepared using sol-gel chemistry.

  4. Overlap of copper and iron uptake systems in mitochondria in Saccharomyces cerevisiae

    PubMed Central

    Wang, Jing; Gammon, Micah G.; Maynard, Margaret K.; White, Olivia L.; Cobine, Jai A.; Mahone, Wilkerson K.

    2016-01-01

    In Saccharomyces cerevisiae, the mitochondrial carrier family protein Pic2 imports copper into the matrix. Deletion of PIC2 causes defects in mitochondrial copper uptake and copper-dependent growth phenotypes owing to decreased cytochrome c oxidase activity. However, copper import is not completely eliminated in this mutant, so alternative transport systems must exist. Deletion of MRS3, a component of the iron import machinery, also causes a copper-dependent growth defect on non-fermentable carbon. Deletion of both PIC2 and MRS3 led to a more severe respiratory growth defect than either individual mutant. In addition, MRS3 expressed from a high copy number vector was able to suppress the oxygen consumption and copper uptake defects of a strain lacking PIC2. When expressed in Lactococcus lactis, Mrs3 mediated copper and iron import. Finally, a PIC2 and MRS3 double mutant prevented the copper-dependent activation of a heterologously expressed copper sensor in the mitochondrial intermembrane space. Taken together, these data support a role for the iron transporter Mrs3 in copper import into the mitochondrial matrix. PMID:26763345

  5. Barium enema

    MedlinePlus

    ... series; Colorectal cancer - lower GI series; Colorectal cancer - barium enema; Crohn disease - lower GI series; Crohn disease - barium enema; Intestinal blockage - lower GI series; Intestinal blockage - ...

  6. Role of copper promotion in precipitated iron Fischer-Tropsch catalysts

    SciTech Connect

    O`Brien, R.J.; Xu, L.; Davis, B.H.

    1996-10-01

    Slurry phase Fischer-Tropsch synthesis was conducted on precipitated iron-silicon catalysts. The affect of copper promotion on the activity and selectivity of carbon monoxide, hydrogen and syngas activated catalysts is presented. High activity and stability have been obtained for potassium promoted catalysts when operating at 270{degrees}C; however, it has been found that promotion with potassium and copper is essential to obtaining good activity in a wax producing mode at 230{degrees}C. Promotion with copper is critical to achieving good activity when pretreating catalysts with hydrogen or with syngas at high pressure. XRD and Mossbauer data indicate that copper facilitates the reduction of iron oxide to metallic iron and iron carbides during hydrogen and syngas pretreatments.

  7. [The serum copper/serum iron ratio in malignant tumors of the female genitalia].

    PubMed

    Maas, D H; Hinckers, H J

    1975-08-01

    Copper and iron in blood of 83 women with maligne tumors of the genitalia were regulary controled before, during and till 69 weeks after therapy. The relation between the copper/iron-ratio and the expansion and histology of the tumors, the success of the therapy and the incidence of a recurrence was checked for any significancy. Our results show the improtance of the ratio in the diagnosis and differentialdiagnosis of the ovarian-cancer and the corpus-uteri-cancer, and in the success-controll during tumor-therapy. In the group of the patients with collum-uteri-cancer we found a significant difference in the copper/iron-ratio of the patients with and without a recurrence during the controllperiod after therapy, which emphasizes the importance of this copper/iron-ratio. PMID:1175904

  8. Copper binding in IscA inhibits iron-sulfur cluster assembly in Escherichia coli

    PubMed Central

    Tan, Guoqiang; Cheng, Zishuo; Pang, Yilin; Landry, Aaron P.; Li, Jianghui; Lu, Jianxin; Ding, Huangen

    2014-01-01

    Among the iron-sulfur cluster assembly proteins encoded by gene cluster iscSUA-hscBA-fdx in Escherichia coli, IscA has a unique and strong iron binding activity and can provide iron for iron-sulfur cluster assembly in proteins in vitro. Deletion of IscA and its paralogue SufA results in an E. coli mutant that fails to assemble [4Fe-4S] clusters in proteins under aerobic conditions, suggesting that IscA has a crucial role for iron-sulfur cluster biogenesis. Here we report that among the iron-sulfur cluster assembly proteins, IscA also has a strong and specific binding activity for Cu(I) in vivo and in vitro. The Cu(I) center in IscA is stable and resistant to oxidation under aerobic conditions. Mutation of the conserved cysteine residues that are essential for the iron binding in IscA abolishes the copper binding activity, indicating that copper and iron may share the same binding site in the protein. Additional studies reveal that copper can compete with iron for the metal binding site in IscA and effectively inhibits the IscA-mediated [4Fe-4S] cluster assembly in E. coli cells. The results suggest that copper may not only attack the [4Fe-4S] clusters in dehydratases, but also block the [4Fe-4S] cluster assembly in proteins by targeting IscA in cells. PMID:24946160

  9. Iron, Manganese and Copper Release from Synthetic Hydroxyapatite

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Hossner, L. R.; Ming, Douglas W.

    1999-01-01

    Kinetic stir-flow dissolution experiments were performed on iron- (Fe-SHA), manganese- (Mn-SHA), and copper- (Cu-SHA) containing synthetic hydroxyapatites. Solution treatments consisted of de-ionized water, citric acid and DTPA. Initially, Mn concentrations were higher than Cu concentrations and Fe concentrations were the lowest in all treatments. At later times Mn and Cu concentrations dropped in the DTPA treatment while Fe rose to the concentration similar to Mn and Cu. At all times, metal release concentrations in the water and citric acid treatments followed the trend of Mn>Cu>Fe. Rietveld analysis of x-ray diffraction data and ^31P NMR indicated that the metals substituted for Ca in the SHA structure. However, EPR data suggested that a metal (hydr)oxide phase existed either on the SHA surface or between the SHA crystallites. The metal concentration trend of Mn>Cu>Fe suggested that the initial solution metal concentrations are dependent on the dissolution of (hydr)oxides from SHA surfaces or between SHA crystallites. Similar metal concentrations at later times in the DTPA experiments suggests that metal concentrations were controlled by the release of Mn, Cu, or Fe from the SHA structure.

  10. Methane monooxygenase: functionalizing methane at iron and copper.

    PubMed

    Sazinsky, Matthew H; Lippard, Stephen J

    2015-01-01

    Methane monooxygenases (MMOs) catalyze the conversion of methane to methanol as the first committed step in the assimilation of this hydrocarbon into biomass and energy by methanotrophs, thus playing a significant role in the biogeochemistry of this potent greenhouse gas. Two distinct enzymes, a copper-dependent membrane protein, particulate methane monooxygenase (pMMO), and an iron-dependent cytosolic protein, soluble methane monooxygenase (sMMO), carry out this transformation using large protein scaffolds that help to facilitate the timely transport of hydrocarbon, O₂, proton, and electron substrates to buried dimetallic active sites. For both enzymes, reaction of the reduced metal centers with O₂leads to intermediates that activate the relatively inert C-H bonds of hydrocarbons to yield oxidized products. Among synthetic and biological catalysts, MMOs are unique because they are the only ones known to hydroxylate methane at ambient temperatures. As a need for new industrial catalysts and green chemical transformations increases, understanding how the different MMO metal centers efficiently accomplish this challenging chemistry has become the focus of intense study. This chapter examines current understanding of the sMMO and pMMO protein structures, their methods for substrate channeling, and mechanisms for the dimetallic activation of O₂and C-H bonds. PMID:25707469

  11. Biochemical Evolution of Iron and Copper Proteins, Substances Vital to Life

    ERIC Educational Resources Information Center

    Frieden, Earl

    1974-01-01

    Summarizes studies in the area of biochemical evolution of iron, copper, and heme proteins to provide an historical outline. Included are lists of major kinds of proteins and enzymes and charts illustrating electron flow in a cytochrome electron transport system and interconversion of jerrous to ferric ion in iron metabolism. (CC)

  12. Investigation for surface resistance of yttrium-barium-copper-oxide thin films on various substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Yao, Hongjun

    High temperature superconducting (HTS) materials such as YBCO (Yttrium-Barium-Copper-Oxide) are very attractive in microwave applications because of their extremely low surface resistance. In the proposed all-HTS tunable filter, a layer of HTS thin film on a very thin substrate (100 mum) is needed to act as the toractor that can be rotated to tune the frequency. In order to provide more substrate candidates that meet both electrical and mechanical requirements for this special application, surface resistance of YBCO thin films on various substrates was measured using microstrip ring resonator method. For alumina polycrystalline substrate, a layer of YSZ (Yttrium stabilized Zirconia) was deposited using IBAD (ion beam assisted deposition) method prior to YBCO deposition. The surface resistance of the YBCO thin film on alumina was found to be 22 mO due to high-angle grain boundary problem caused by the mixed in-plane orientations and large FWHM (full width at half maximum) of the thin film. For YBCO thin films on a YSZ single crystal substrate, the surface resistance showed even higher value of 30 mO because of the mixed in-plane orientation problem. However, by annealing the substrate in 200 Torr oxygen at 730°C prior to deposition, the in-plane orientation of YBCO thin films can be greatly improved. Therefore, the surface resistance decreased to 1.4 mO, which is still more than an order higher than the reported best value. The YBCO thin films grown on LaAlO3 single crystal substrate showed perfect in-plane orientation with FWHM less 1°. The surface resistance was as low as 0.032 mO. A tunable spiral resonator made of YBCO thin film on LaAlO3 single crystal substrate demonstrated that the resonant frequency can be tuned in a rang as large as 500 MHz by changing the gap between toractor and substrate. The Q-factor was more than 12,000, which ensured the extraordinarily high sensitivity for the proposed all-HTS tunable filter.

  13. Bovine hemoglobin as the sole source of dietary iron does not support adequate iron status in copper-adequate or copper-deficient rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was designed to determine whether hemoglobin as the sole source of dietary iron (Fe) could sustain normal Fe status in growing rats. Because adequate copper (Cu) status is required for efficient Fe absorption in the rat, we also determined the effects of Cu deficiency on Fe status of...

  14. IN-HOUSE CORROSION RESEARCH EMPHASIZING LEAD, COPPER AND IRON

    EPA Science Inventory

    Lead and copper are directly regulated via the "Lead and Copper Rule;" however, water suppliers must balance all water treatment processes in order to simultaneously comply with all regulations. Specific research needs for copper and lead chemistry still exist, as applications o...

  15. A thermodynamic study of silica-saturated iron silicate slags in equilibrium with liquid copper

    NASA Astrophysics Data System (ADS)

    Oishi, Toshio; Kamuo, Morinori; Ono, Katsutoshi; Moriyama, Joichiro

    1983-03-01

    The thermodynamic properties of silica-saturated iron silicate slags in equilibrium with liquid copper have been studied from oxygen partial pressure measurements in the temperature range from 1490 to 1580 K by means of a solid electrolyte galvanic cell. The following cells were used: Pt, Ni-NiO/O=/slag-Cu(l), Cr2O3, Pt; Pt, Fe-FeO/O=/slag-Cu(Fe sat.), Fe. A strong correlation was found between oxygen pressure and the copper content of the slag; the copper content increased from less than 1 pct near iron saturation to about 4 pct at an oxygen partial pressure of 7.2 x 10-3 Pa. A similar correlation was found between the ferric iron/total iron ratio and the oxygen pressure. The oxygen content in liquid copper decreased with increasing iron content in liquid copper and increased slightly near iron saturation. This behavior could be explained qualitatively by using the standard free energy of formation of FeO and the activities of components.

  16. Iron, copper and zinc isotopic fractionation up mammal trophic chains

    NASA Astrophysics Data System (ADS)

    Jaouen, Klervia; Pons, Marie-Laure; Balter, Vincent

    2013-07-01

    There is a growing body of evidence that some non-traditional elements exhibit stable isotope compositions that are distinct in botanical and animal products, providing potential new tracers for diet reconstructions. Here, we present data for iron (Fe), copper (Cu) and zinc (Zn) stable isotope compositions in plants and bones of herbivores and carnivores. The samples come from trophic chains located in the Western Cape area and in the Kruger National Park in South Africa. The Fe, Cu and Zn isotope systematics are similar in both parks. However, local Cu, and possibly Zn, isotopic values of soils influence that of plants and of higher trophic levels. Between plants and bones of herbivores, the Zn isotope compositions are 66Zn-enriched by about 0.8‰ whereas no significant trophic enrichment is observed for Fe and Cu. Between bones of herbivores and bones of carnivores, the Fe isotope compositions are 56Fe-depleted by about 0.6‰, the Cu isotope compositions are 65Cu-enriched by about 1.0‰, and the Zn isotope compositions are slightly 66Zn-depleted by about 0.2‰. The isotopic distributions of the metals in the body partly explain the observed trophic isotopic systematics. However, it is also necessary to invoke differential intestinal metal absorption between herbivores and carnivores to account for the observed results. Further studies are necessary to fully understand how the Fe, Cu and Zn isotope values are regulated within the ecosystem's trophic levels, but the data already suggests significant potential as new paleodietary and paleoecological proxies.

  17. Evolution of Microstructures During Austempering of Ductile Irons Alloyed with Manganese and Copper

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar

    2013-03-01

    The influences of relatively high manganese (0.45 through 1.0 wt pct) and copper (0.56 through 1.13 wt pct) contents on microstructure development and phase transformation in three austempered ductile irons have been studied. The experimental ductile irons alloyed with copper and manganese are found to be practically free from intercellular manganese segregation. This suggests that the positive segregation of manganese is largely neutralized by the negative segregation of copper when these alloying elements are added in appropriate proportions. The drop in unreacted austenite volume (UAV) with increasing austempering temperature and time is quite significant in irons alloyed with copper and manganese. The ausferrite morphology also undergoes a transition from lenticular to feathery appearance of increasing coarseness with the increasing austempering temperature and time. SEM micrographs of the austempered samples from the base alloy containing manganese only, as well as copper plus manganese-alloyed irons, clearly reveal the presence of some martensite along with retained austenite and ferrite. X-ray diffraction analysis also confirms the presence of these phases. SEM examination further reveals the presence of twinned martensite in the copper plus manganese-alloyed samples. The possibility of strain-induced transformation of austenite to martensite during austempering heat treatment is suggested.

  18. The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity.

    PubMed

    Macomber, Lee; Imlay, James A

    2009-05-19

    Excess copper is poisonous to all forms of life, and copper overloading is responsible for several human pathologic processes. The primary mechanisms of toxicity are unknown. In this study, mutants of Escherichia coli that lack copper homeostatic systems (copA cueO cus) were used to identify intracellular targets and to test the hypothesis that toxicity involves the action of reactive oxygen species. Low micromolar levels of copper were sufficient to inhibit the growth of both WT and mutant strains. The addition of branched-chain amino acids restored growth, indicating that copper blocks their biosynthesis. Indeed, copper treatment rapidly inactivated isopropylmalate dehydratase, an iron-sulfur cluster enzyme in this pathway. Other enzymes in this iron-sulfur dehydratase family were similarly affected. Inactivation did not require oxygen, in vivo or with purified enzyme. Damage occurred concomitant with the displacement of iron atoms from the solvent-exposed cluster, suggesting that Cu(I) damages these proteins by liganding to the coordinating sulfur atoms. Copper efflux by dedicated export systems, chelation by glutathione, and cluster repair by assembly systems all enhance the resistance of cells to this metal. PMID:19416816

  19. Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure

    NASA Astrophysics Data System (ADS)

    Leach, J. H.; Liu, H.; Avrutin, V.; Rowe, E.; Özgür, Ü.; Morkoç, H.; Song, Y.-Y.; Wu, M.

    2010-09-01

    We report on the tuning of permittivity and permeability of a ferroelectric/ferromagnetic bilayer structure which can be used as a microwave phase shifter with two degrees of tuning freedom. The structure was prepared by the growth of a yttrium iron garnet (YIG) layer on a gadolinium gallium garnet substrate by liquid phase epitaxy, the growth of a barium strontium titanate (BST) layer on the YIG layer through pulsed laser deposition, and then the fabrication of a coplanar waveguide on the top of BST through e-beam evaporation and trilayer liftoff techniques. The phase shifters exhibit a differential phase shift of 38°/cm at 6 GHz through permittivity tuning under an applied electric field of ˜75 kV/cm and a static magnetic field of 1700 Oe. By tuning the permeability through the applied magnetic field we increase the differential phase shift to 52°/cm and simultaneously obtain a better match to the zero applied electric field condition, resulting in an improvement in the return loss from 22.4 to 24.9 dB. Additionally, we demonstrate the use of a lead magnesium niobate-lead titanate (PMN-PT) layer to tune the permeability of the YIG layer. This tuning relies on the piezoelectric and magnetostrictive effects of PMN-PT and YIG, respectively. Tuning of the ferromagnetic response through strain and magnetostriction as opposed to applied magnetic field can potentially pave the way for low power consumption, continuously and rapidly tunable, impedance matched phase shifters.

  20. Arsenic-75 and cobalt-59 NMR study of the electron doped barium iron cobalt arsenide

    NASA Astrophysics Data System (ADS)

    Ning, Fanlong

    We report a systematic investigation of the local electronic, magnetic, and superconducting properties of the new iron-based high temperature superconductor Ba(Fe1-xCox) 2As2 (x = 0, 0.02, 0.04, 0.082) through the measurement of 75As and 59Co NMR (Nuclear Magnetic Resonance) lineshapes, Knight shift (K), and spin-lattice relaxation rate (1/T1). The 75As NMR lineshape of the undoped parent compound splits into two sets due to discrete values of hyperfine magnetic field Bchf = +/- 1.32 Tesla below the magnetic ordering temperature to the SDW (Spin Density Wave) state, TSDW. In contrast, for lightly Co doped samples with x = 0.02 and 0.04, the 75As and 59Co lineshapes become broad and featureless below TSDW, indicating that the ground state is no longer the commensurate SDW ordered state. The observed lineshape is consistent with an incommensurate SDW ordered state, or a commensurate state with large distribution of hyperfine field Bhf. In the optimally doped superconductor with x = 0.082 (T c = 22 K), we observe two types of As sites and three types of Co sites, respectively, as expected from a binomial distribution of Co dopants. We found no evidence for induced localized moments in the vicinity of Co dopants. This finding is in remarkable contrast with the case of Zn or Ni doped high Tc cuprates, and suggests that the fundamental physics of iron-based superconductors is different from that of cuprates. The temperature dependences of 75,59K and 75,59(1/ T1T) at both 75As and 59Co sites show that Ba(Fe1-xCo x)2As2 exhibits spin pseudo-gap like behavior down to ˜ 100 K for a broad Co concentration range. Below ˜ 100 K, we observe the enhancement of residual antiferromagnetic spin fluctuations associated with inter-band spin excitations between the hole and electron Fermi surfaces even for x = 0.082. This effect is suppressed in the overdoped sample with x = 0.099, and T c decreases. Therefore, we suggest that antiferromagnetic spin fluctuations play a crucial role

  1. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite.

    PubMed

    Primc, D; Makovec, D

    2015-02-14

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe(3+)/Fe(2+) ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe(3+) ions from the nitrate complex with urea ([Fe((H2N)2C=O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system. PMID:25583312

  2. Microwave absorption properties of double-layer absorber based on carbonyl iron/barium hexaferrite composites

    NASA Astrophysics Data System (ADS)

    Ren, Xiaohu; Fan, Huiqing; Cheng, Yankui

    2016-05-01

    The microwave absorption properties of BaCo0.4Zn1.6Fe16O27 ferrite and carbonyl iron powder with single-layer and double-layer composite absorbers were investigated based on the electromagnetic transmission line theory in the frequency range from 1 to 14 GHz. XRD was used to characterize the structure of prepared absorbing particles. SEM was used to examine the micromorphology of the particles and composites. The complex permittivity and permeability of composites were measured by using a vector network analyzer. The reflection loss of the single-layer and double-layer absorbers with different thicknesses and orders was investigated. The results show that double-layer absorbers have better microwave absorption properties than single-layer absorbers. The microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the matching and absorption layers. As the pure ferrite used as matching layer and the composite of BF-5CI used as absorption, the minimum RL of absorber can achieve to -55.4 dB and the bandwidth of RL <-10 dB ranged from 5.6 to 10.8 GHz when the thicknesses of matching layer and absorption layer were 0.9 and 1.4 mm, respectively.

  3. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  4. Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler, Illinois

    USGS Publications Warehouse

    Kay, R.T.; Groschen, G.E.; Cygan, G.; Dupre, David H.

    2011-01-01

    Diel variations in the concentrations of a number of constituents have the potential to substantially affect the appropriate sampling regimen in acidic streams. Samples taken once during the course of the day cannot adequately reflect diel variations in water quality and may result in an inaccurate understanding of biogeochemical processes, ecological conditions, and of the threat posed by the water to human health and the associated wildlife. Surface water and groundwater affected by acid drainage were sampled every 60 to 90. min over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, near Hegeler, Illinois. Diel variations related to water quality in the aquifer were not observed in groundwater. Diel variations were observed in the temperature, pH, and concentration of dissolved oxygen, nitrite, barium, iron, lead, vanadium, and possibly uranium in surface water. Temperature, dissolved oxygen, nitrite, barium, lead, and uranium generally attained maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally attained minimum values during the afternoon and maximum values during the night. Concentrations of dissolved oxygen were affected by the intensity of photosynthetic activity and respiration, which are dependent upon insolation. Nitrite, an intermediary in many nitrogen reactions, may have been formed by the oxidation of ammonium by dissolved oxygen and converted to other nitrogen species as part of the decomposition of organic matter. The timing of the pH cycles was distinctly different from the cycles found in Midwestern alkaline streams and likely was the result of the photoreduction of Fe3+ to Fe 2+ and variations in the intensity of precipitation of hydrous ferric oxide minerals. Diel cycles of iron and vanadium also were primarily the result of variations in the intensity of precipitation of hydrous ferric oxide minerals. The diel variation in the concentrations of lead, uranium

  5. Iron and copper in progressive demyelination--New lessons from Skogholt's disease.

    PubMed

    Aspli, Klaus Thanke; Flaten, Trond Peder; Roos, Per M; Holmøy, Trygve; Skogholt, Jon H; Aaseth, Jan

    2015-01-01

    The pathophysiological mechanisms of progressive demyelinating disorders including multiple sclerosis are incompletely understood. Increasing evidence indicates a role for trace metals in the progression of several neurodegenerative disorders. The study of Skogholt disease, a recently discovered demyelinating disease affecting both the central and peripheral nervous system, might shed some light on the mechanisms underlying demyelination. Cerebrospinal fluid iron and copper concentrations are about four times higher in Skogholt patients than in controls. The transit into cerebrospinal fluid of these elements from blood probably occurs in protein bound form. We hypothesize that exchangeable fractions of iron and copper are further transferred from cerebrospinal fluid into myelin, thereby contributing to the pathogenesis of demyelination. Free or weakly bound iron and copper ions may exert their toxic action on myelin by catalyzing production of oxygen radicals. Similarities to demyelinating processes in multiple sclerosis and other myelinopathies are discussed. PMID:25563774

  6. Removal of copper from carbon-saturated iron with an aluminum sulfide ferrous sulfide flux.

    SciTech Connect

    Cohen, A.; Blander, M.; Energy Technology

    1998-04-01

    Scrap iron and steel have long been considered as resources in the steelmaking industry, and their value is largely determined by the impurity content. Copper is a particularly troublesome impurity because of its role in causing hot shortness and should be kept below ==0.1 wt pct. A method for reducing copper content in steel to <0.1 wt pct could lead to increased use of lower-quality scrap.

  7. Some new chromogens for iron, cobalt, and copper Substituted hydrazidines and 1,2,4-triazines containing the ferroin group.

    PubMed

    Schilt, A A

    1966-07-01

    The spectral characteristics and solution conditions requisite for formation of the iron(II), cobalt(II), and copper(I) complexes of some newly synthesised compounds containing the ferroin functional grouping have been determined. These properties are useful for evaluation of the possible analytical effectiveness of the compounds as spectrophotometric reagents for the determination of iron, cobalt, and copper. PMID:18959951

  8. Phormidium autumnale growth and anatoxin-a production under iron and copper stress.

    PubMed

    Harland, Francine M J; Wood, Susanna A; Moltchanova, Elena; Williamson, Wendy M; Gaw, Sally

    2013-12-01

    Studies on planktonic cyanobacteria have shown variability in cyanotoxin production, in response to changes in growth phase and environmental factors. Few studies have investigated cyanotoxin regulation in benthic mat-forming species, despite increasing reports on poisoning events caused by ingestion of these organisms. In this study, a method was developed to investigate changes in cyanotoxin quota in liquid cultures of benthic mat-forming cyanobacteria. Iron and copper are important in cellular processes and are well known to affect growth and selected metabolite production in cyanobacteria and algae. The effect of iron (40-4000 μg L(-1)) and copper (2.5-250 μg L(-1)) on growth and anatoxin-a quota in Phormidium autumnale was investigated in batch culture. These concentrations were chosen to span those found in freshwater, as well as those previously reported to be toxic to cyanobacteria. Anatoxin-a concentrations varied throughout the growth curve, with a maximum quota of between 0.49 and 0.55 pg cell(-1) measured within the first two weeks of growth. Growth rates were significantly affected by copper and iron concentrations (P < 0.0001); however, no statistically significant difference between anatoxin-a quota maxima was observed. When the iron concentrations were 800 and 4000 μg L(-1), the P. autumnale cultures did not firmly attach to the substratum. At 250 μg L(-1) copper or either 40 or 4000 μg L(-1) iron, growth was suppressed. PMID:24351714

  9. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption.

    PubMed

    Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C

    2016-07-15

    Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact. PMID:26948636

  10. Response of zinc, iron and copper status parameters to supplementation with zinc or zinc and iron in women

    SciTech Connect

    Yadrick, K.; Kenney, M.A.; Winterfeldt, E.

    1986-03-05

    Supplementation with zinc at levels available over-the-counter may compromise iron or copper status. This study examined the effects of zinc(50mg/day) or zinc and iron(50 mg each/day) on 18 women aged 25-40. Subjects were matched on initial levels of serum ferritin(SF) and erythrocyte superoxide dismutase(ESOD) and randomly assigned to Group Z (zinc) or F-Z (iron and zinc). The following were measured pretreatment and after 6 and 10 weeks treatment: serum zinc (BZ), salivary sediment zinc (SSZ), hemoglobin (Hgb), hematocrit (Hct), SF, serum ceruloplasmin (Cp) and ESOD. Effects of treatment and weeks of treatment on changes from initial blood and saliva levels were analyzed using AOV. BZ increased (P=0.0144) and ESOD decreased (P=0.0001) with weeks of treatment. Differences due to treatment are presented. No effects were noted on Hgb, Hct or Cp. Intakes of zinc supplements at about 4X RDA appear to decrease copper(ESOD) and iron(SF) status. Use of iron w/zinc may be protective for FE but not Cu, and may compromise zinc (SSZ) status.

  11. VAPOR PHASE MERCURY SORPTION BY ORGANIC SULFIDE MODIFIED BIMETALLIC IRON-COPPER NANOPARTICLE AGGREGATES

    EPA Science Inventory

    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  12. Microelectrodes Based investigation of the Impacts of Water Chemistry on Copper and Iron Corrosion

    EPA Science Inventory

    The effect of bulk drinking water quality on copper and iron pipe corrosion has been extensively studied. Despite past research, many have argued that bulk water quality does not necessarily reflect water quality near the water-metal interface and that such knowledge is necessary...

  13. The Structure and Properties of Cast Iron Alloyed with Copper

    NASA Astrophysics Data System (ADS)

    Razumakov, A. A.; Stepanova, N. V.; Bataev, I. A.; Lenivtseva, O. G.; Riapolova, Iu Iu; Emurlaev, K. I.

    2016-04-01

    Cast iron with 3 wt. % Cu was prepared by induction melting and casting in sand molds. The structure of the samples was studied using light microscopy (LM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The addition of Cu promoted formation of pearlite and slightiy decreased the volume fraction of graphite. No Cu inclusions were found by LM and SEM. The nanoprecipitations of ε-Cu in lamellar pearlite were observed by TEM. The properties of the Cu-alloyed cast iron were compared with the properties of cast iron not alloyed with Cu. The hardness of cast iron after alloying with Cu increased and the friction coefficient decreased in comparison with the reference sample.

  14. Repletion of copper-deficient rats with dietary copper restores duodenal hephaestin protein and iron absorption.

    PubMed

    Reeves, Philip G; Demars, Lana C S

    2005-05-01

    Copper (Cu) deficiency in rats reduces the relative concentration of duodenal hephaestin (Hp), reduces iron (Fe) absorption, and causes anemia. An experiment was conducted to determine whether these effects could be reversed by dietary Cu repletion. Five groups of eight weanling male rats each were used. Group 1 was fed a Cu-adequate diet (5.0 mg Cu/kg; CuA) and Group 2 was fed a Cu-deficient diet (0.25 mg Cu/kg; CuD) for 28 days. The rats were fed 1.0 g each of their respective diets labeled with 59Fe (37 kBq/g), and the amount of label retained was measured one week later by whole-body-counting (WBC). Group 3 was fed a CuA diet and Groups 4 and 5 were fed a CuD diet for 28 days. Group 5 was then fed the CuA diet for another week while Groups 3 and 4 continued on their previous regimens. Rats in Groups 3, 4, and 5 were fed 1.0 g of diet labeled with 59Fe, and the amount of label retained was measured by WBC one week later. Rats were killed and duodenal enterocytes isolated for Hp protein analysis, whole blood was analyzed for hematological parameters, and various organs for 59Fe content. CuD rats absorbed less (P<0.05) Fe than CuA rats, the relative amount of duodenal Hp was less (P<0.05) in CuD rats, and the CuD rats developed anemia. After the CuD rats had been repleted with Cu for one week, Fe retention rose to values even higher (P<0.05) than those in CuA rats. After two weeks, the relative amount of duodenal Hp was higher (P<0.05) than normal, and most signs of anemia were reversed. Liver 59Fe was elevated in CuD rats, but was restored to normal upon Cu repletion. These findings suggest a strong association between duodenal Hp abundance and Fe absorption in the CuD rat, and that reduced Fe absorption is an important factor in the cause of anemia. PMID:15855298

  15. MD description of damage production in displacement cascades in copper and α-iron.

    SciTech Connect

    Bacon, David J; Osetskiy, Yury N; Stoller, Roger E; Voskoboinikov, Roman E

    2003-01-01

    Molecular dynamics computer simulation was applied for an extensive study of primary damage creation in displacement cascades in copper and {alpha}-iron. Primary knock-on atom energy, E{sub p}, of up to 25 keV in copper and 100 keV in iron was considered for irradiation temperatures in the range 100-900 K. Special attention was paid to comprehensive statistical treatment of the number and type of defects created in cascades by conducting multiple simulations for each value of energy and temperature. The total number of point defects per cascade is significantly lower than that predicted by the NRT model and rather similar in the two metals. The fraction of self-interstitial atoms (SIAs) and vacancies that agglomerate in clusters in the cascade process was analysed in detail. The clustered fraction of SIAs increases with temperature increase and is larger in copper than iron. SIA clusters have a variety of forms in both metals and, although most are glissile clusters of parallel crowdions, a significant fraction are sessile. The latter include Frank dislocation loops in copper. Tightly packed arrangements of vacancies do not form in iron, and so the fraction of clustered vacancies depends strongly on the range within which point defects are defined to be near-neighbours. Arrangements of vacancies in first-neighbour sites are common in copper. Most are irregular stacking fault tetrahedra (SFTs). In 53 simulations of cascades with E{sub p} = 25 keV at 100 K, the largest cluster formed contained 89 vacancies. The size spectrum of SFT-like clusters is similar to that found experimentally in neutron-irradiated copper, suggesting that the SFTs observed in experiment are formed directly in the cascade process.

  16. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins.

    PubMed

    Reeder, Nancy L; Kaplan, Jerry; Xu, Jun; Youngquist, R Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D; Schwartz, James R; Grant, Raymond A; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P; Mills, Tim; Steinke, Mark; Wang, Shuo L; Saunders, Charles W

    2011-12-01

    Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398

  17. Effects of dietary carbohydrate on iron metabolism and cytochrome oxidase activity in copper-deficient rats

    SciTech Connect

    Johnson, M.A.; Henderson, J.

    1986-03-01

    The effects of dietary carbohydrate on the metabolism of iron and the activity of cytochrome oxidase were examined in Cu-deficient and Cu-adequate rats. Male rats (n = 36) were fed one of six diets which varied in copper level (Cu-: < 0.6 ppm or Cu+: 8.2 ppm) and carbohydrate type (cornstarch, sucrose or fructose). After 31 days, Cu- rats had 50% more iron in the liver and 38, 30 and 18% less iron in the tibia, spleen and kidneys, respectively, than Cu+ rats. The activity of cytochrome oxidase in the bone marrow, heart, and liver were 59%, 51%, and 43%, respectively, of the levels in Cu/sup +/ rats. The type of dietary carbohydrate significantly affected the development of anemia during copper deficiency. Cu-rats fed cornstarch, sucrose or fructose had hematocrit levels which were 92, 83 or 73%, respectively, of Cu+ rats. Similarly, the levels of iron in the tibias of Cu- rats fed cornstarch, sucrose or fructose were 69, 66 or 54%, respectively, of Cu+ rats. The hematocrit levels of Cu- rats were positively correlated to both tibia iron levels (r = 0.64, p < 0.005) and liver cytochrome oxidase activities (r = 0.50, p < 0.05). Thus, it appears that changes in the metabolism of iron may be involved with the development of anemia in Cu- rats fed fructose or sucrose.

  18. Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease.

    PubMed

    Robert, Anne; Liu, Yan; Nguyen, Michel; Meunier, Bernard

    2015-05-19

    With the increase of life expectancy of humans in more than two-thirds of the countries in the World, aging diseases are becoming the frontline health problems. Alzheimer's disease (AD) is now one of the major challenges in drug discovery, since, with the exception of memantine in 2003, all clinical trials with drug candidates failed over the past decade. If we consider that the loss of neurons is due to a high level of oxidative stress produced by nonregulated redox active metal ions like copper linked to amyloids of different sizes, regulation of metal homeostasis is a key target. The difficulty for large copper-carrier proteins to directly extract copper ions from metalated amyloids might be considered as being at the origin of the rupture of the copper homeostasis regulation in AD brains. So, there is an urgent need for new specific metal chelators that should be able to regulate the homeostasis of metal ions, specially copper and iron, in AD brains. As a consequence of that concept, chelators promoting metal excretion from brain are not desired. One should favor ligands able to extract copper ions from sinks (amyloids being the major one) and to transfer these redox-active metal ions to copper-carrier proteins or copper-containing enzymes. Obviously, the affinity of these chelators for the metal ion should not be a sufficient criterion, but the metal specificity and the ability of the chelators to release the metal under specific biological conditions should be considered. Such an approach is still largely unexplored. The requirements for the chelators are very high (ability to cross the brain-blood barrier, lack of toxicity, etc.), few chemical series were proposed, and, among them, biochemical or biological data are scarce. As a matter of fact, the bioinorganic pharmacology of AD represents less than 1% of all articles dedicated to AD drug research. The major part of these articles deals with an old and rather toxic drug, clioquinol and related analogs, that

  19. Effect of Cerebral Amyloid Angiopathy on Brain Iron, Copper, and Zinc in Alzheimer’s Disease

    PubMed Central

    Schrag, Matthew; Crofton, Andrew; Zabel, Matthew; Jiffry, Arshad; Kirsch, David; Dickson, April; Mao, Xiao Wen; Vinters, Harry V.; Domaille, Dylan W.; Chang, Christopher J.; Kirsch, Wolff

    2015-01-01

    Cerebral amyloid angiopathy (CAA) is a vascular lesion associated with Alzheimer’s disease (AD) present in up to 95% of AD patients and produces MRI-detectable microbleeds in many of these patients. It is possible that CAA-related microbleeding is a source of pathological iron in the AD brain. Because the homeostasis of copper, iron, and zinc are so intimately linked, we determined whether CAA contributes to changes in the brain levels of these metals. We obtained brain tissue from AD patients with severe CAA to compare to AD patients without evidence of vascular amyloid-β. Patients with severe CAA had significantly higher non-heme iron levels. Histologically, iron was deposited in the walls of large CAA-affected vessels. Zinc levels were significantly elevated in grey matter in both the CAA and non-CAA AD tissue, but no vascular staining was noted in CAA cases. Copper levels were decreased in both CAA and non-CAA AD tissues and copper was found to be prominently deposited on the vasculature in CAA. Together, these findings demonstrate that CAA is a significant variable affecting transition metals in AD. PMID:21187585

  20. Effects of iron and copper overload on the human liver: an ultrastructural study.

    PubMed

    Fanni, D; Fanos, V; Gerosa, C; Piras, M; Dessi, A; Atzei, A; Van, Eyken P; Gibo, Y; Faa, G

    2014-01-01

    Iron and copper ions play important roles in many physiological functions of our body, even though the exact mechanisms regulating their absorption, distribution and excretion are not fully understood. Metal-related human pathology may be observed in two different clinical settings: deficiency or overload. The overload in liver cells of both trace elements leads to multiple cellular lesions. Here we report the main pathological changes observed at transmission electron microscopy in the liver of subjects affected by Beta-thalassemia and by Wilson's disease. The hepatic iron overload in beta-thalassemia patients is associated with haemosiderin storage both in Kupffer cells and in the cytoplasm of hepatocytes. Haemosiderin granules are grouped inside voluminous lysosomes, also called siderosomes. Other ultrastructural changes are fat droplets, proliferation of the smooth endoplasmic reticulum and fibrosis. Apoptosis of hepatocytes and infiltration of sinusoids by polymorphonucleates is also detected in beta-thalassemia. Ultrastructural changes in liver biopsies from Wilson's disease patients are characterized by severe mitochondrial changes, associated with an increased number of perossisomes, cytoplasmic lipid droplets and the presence of lipolysosomes, characteristic cytoplasmic bodies formed by lipid vacuoles surrounded by electron-dense lysosomes. In patients affected by Wilson's disease, nuclei are frequently involved, with disorganization of the nucleoplasm and with glycogen inclusions. On the contrary, no significant changes are detected in Kupffer cells. Our data show that iron and copper, even though are both transition metals, are responsible of different pathological changes at ultrastructural level. In particular, copper overload is associated with mitochondrial damage, whereas iron overload only rarely may cause severe mitochondrial changes. These differences underlay the need for further studies in which biochemical analyses should be associated with

  1. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy.

    PubMed

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I; Xu, J J

    2009-02-18

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 microm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 microm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique. PMID:19417426

  2. Fabrication of a nanocomposite from in situ iron nanoparticle reinforced copper alloy

    NASA Astrophysics Data System (ADS)

    Wang, Zidong; Wang, Xuewen; Wang, Qiangsong; Shih, I.; Xu, J. J.

    2009-02-01

    In situ iron nanoparticle reinforced Cu-3Sn-8Zn-6Pb alloy has been fabricated by centrifugal casting in a vacuum chamber with a medium frequency electrical furnace. The microstructure of this alloy was analyzed with a scanning electron microscope (SEM) and a high-resolution transmission electron microscope (HRTEM), and the results show that the grains of Cu-3Sn-8Zn-6Pb alloy without iron have a typical dendrite structure with dimensions from 500 to 1500 µm, and the grains of the alloy with the addition of 1% iron are small and equiaxed, with dimensions from 20 to 60 µm. Then, the relatively uniform dispersed particles in the copper matrix were identified with the HRTEM to be pure iron with dimensions in the order of 2-20 nm. The mechanical properties of the alloys were measured and the results show a significant increase in the tensile strength of the alloy with iron nanoparticles and a slight increase of the elongation compared to that without iron. The mechanism of formation of the iron nanoparticles was analyzed by thermodynamic and dynamic theories, and the results indicate that the in situ iron nanoparticles of Cu-3Sn-8Zn-6Pb alloy can reasonably form during solidification in the centrifugal casting technique.

  3. Copper, nickel, and iron in plumage of three upland gamebird species from non-contaminated environments

    SciTech Connect

    Parker, G.H.

    1985-12-01

    High levels of atmospheric contamination and particulate fallout characterizing the Industrial Basin of the copper-nickel smelting operations at Sudbury, Ontario, were shown to be reflected in the feather chemistry of resident ruffed grouse populations. Of considerable concern, however, is the paucity of information on background concentrations of elemental metals that could be considered normal for non-contaminated environments. The present report examines concentrations of copper, nickel and iron in the plumage of three tetraonid species collected from remote and undisturbed areas in Northern Ontario and Quebec.

  4. Nanostructures design by plasma afterglow-assisted oxidation of iron-copper thin films

    NASA Astrophysics Data System (ADS)

    Imam, A.; Boileau, A.; Gries, T.; Ghanbaja, J.; Mangin, D.; Hussein, K.; Sezen, H.; Amati, M.; Belmonte, T.

    2016-05-01

    Oxidizing thin films made of Fe-Cu alloy with an Ar-O2 micro-afterglow operated at atmospheric pressure shows remarkable growth processes. The presence of iron in copper up to about 50% leads to the synthesis of CuO nanostructures (nanowalls, nanotowers and nanowires). Nanotowers show the presence of an amorphous phase trapped between crystalline domains. Beyond 50%, Fe2O3 iron nanoblades are also found. CuO nanowires as small as 5 nm in diameter can be synthesized. Thanks to the presence of patterned domains induced by buckling, it was possible to show that the stress level decreases when the iron content in the alloy increases. Iron blades grow from the inner Fe2O3 layer through the overlying CuO if it is thin enough.

  5. Relation between anemia and blood levels of lead, copper, zinc and iron among children

    PubMed Central

    2010-01-01

    Background Anemia is a health problem among infants and children. It is often associated with a decrease in some trace elements (iron, zinc, copper) and an increase in heavy metals as lead. This study was done to determine the association of blood lead level > 10 μg/dl, with the increased risk to anemia, also, to investigate the relationship between anemia and changes in blood iron, zinc and copper levels, and measure lead level in drinking water. The study is a cross-sectional performed on 60 children. Venous blood samples were taken from the studied population for estimating hematological parameters as well as iron and ferritin levels. The concentrations of zinc, copper, and lead were measured. The studied population was divided into anemic and non-anemic (control) groups. The anemic group was further classified into mild, moderate and severe anemia. The study subjects were also categorized into low and high blood lead level groups. Findings Approximately 63.33% of children had blood lead levels ≥ 10 μg/dl. At the blood lead level range of 10-20 μg/dl, a significant association was found for mild and severe anemia. The blood level of iron and ferritin was found to be significantly lower in high blood lead level and anemic groups than those of the low blood lead level and control groups. Lead level in drinking water was higher than the permissible limit. Conclusion Lead level ≥ 10 μg/dl was significantly associated with anemia, decreased iron absorption and hematological parameters affection. High blood lead levels were associated with low serum iron and ferritin. Lead level in drinking water was found to be higher than the permissible limits. PMID:20459857

  6. The influence of selected antihypertensive drugs on zinc, copper, and iron status in spontaneously hypertensive rats.

    PubMed

    Suliburska, Joanna; Bogdanski, Paweł; Jakubowski, Hieronim

    2014-09-01

    Mineral homeostasis in hypertensive patients may be affected by hypotensive drugs. The aim of this study was to assess the influence of selected antihypertensive drugs on mineral homeostasis in a rat model of hypertension. Eight-week-old male spontaneously hypertensive rats (SHRs) were treated with perindopril, metoprolol, indapamide, amlodipine, or no drug for 45 days. In another experiment, the SHRs were treated with indapamide or amlodipine in the presence of zinc and copper gluconate supplement. Lipids, glucose, and insulin levels along with superoxide dismutase and catalase activities were assayed in serum. Iron, zinc, and copper concentrations in serum, erythrocytes, and tissues were determined using the flame atomic absorption spectrometry. Blood pressure was measured using a tail-cuff plethysmograph. Treatment with indapamide and amlodipine was found to significantly lower zinc levels in serum, erythrocytes, livers, and spleens of the SHRs, as well as copper levels in the kidneys, compared with the control no-drug group. A markedly higher concentration of glucose was found in the indapamide-treated rats. Supplementing the indapamide-treated SHRs with zinc and copper gluconate resulted in a significant decrease in both systolic and diastolic blood pressure, and also lowered serum glucose and triglyceride concentrations and HOMA (homeostasis model assessment-insulin resistance) values. The results show that indapamide and amlodipine disturb zinc and copper homeostasis in SHRs. Supplementation with zinc and copper restores mineral homeostasis in SHRs treated with indapamide and amlodipine, and also corrects metabolic imbalances while improving the antihypertensive efficiency of indapamide. PMID:24927993

  7. Content of total iron, copper and manganese in liver of animals during hypokinesia, muscle activity and process of recovery

    NASA Technical Reports Server (NTRS)

    Potapovich, G. M.; Taneyeva, G. V.; Uteshev, A. B.

    1980-01-01

    It is shown that the content of total iron, copper and manganese in the liver of animals is altered depending on the intensity and duration of their swimming. Hypodynamia for 7 days does not alter the concentration of iron, but sufficiently increases the content of copper and manganese. The barometric factor effectively influences the maintenance of constancy in the content of microelements accumulated in the liver after intensive muscle activity.

  8. Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and Copper Catalysis: Two Metals, Two Mechanisms

    PubMed Central

    2011-01-01

    A highly facile, straightforward synthesis of 1-(3-indolyl)-tetrahydroisoquinolines was developed using either simple copper or iron catalysts. N-protected and unprotected tetrahydroisoquinolines (THIQ) could be used as starting materials. Extension of the substrate scope of the pronucleophile from indoles to pyrroles and electron-rich arenes was realized. Additionally, methoxyphenylation is not limited to THIQ but can be carried out on isochroman as well, again employing iron and copper catalysis. PMID:21902275

  9. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    1991-01-01

    The purpose of this dissertation was the following: (1) to characterize the effect of pore fraction on a comprehensive set of electrical and magnetic properties for the yttrium-barium-copper-oxide (YBCO) high temperature ceramic superconductor; and (2) to determine the viability of using a room-temperature, nondestructive characterization method to aid in the prediction of superconducting (cryogenic) properties. The latter involved correlating ultrasonic velocity measurements at room temperature with property-affecting pore fraction and oxygen content variations. The use of ultrasonic velocity for estimating pore fraction in YBCO is presented, and other polycrystalline materials are reviewed, modeled, and statistically analyzed. This provides the basis for using ultrasonic velocity to interrogate microstructure. The effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples was characterized. Spatial (within-sample) variations in microstructure and superconductor properties were investigated, and the effect of oxygen content on elastic behavior was examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristics. An ultrasonic velocity image constructed from measurements at 1mm increments across a YBCO sample revealed microstructural variations that correlated with variations in magnetic shielding and a.c. loss behavior. Destructive examination using quantitative image analysis revealed pore fraction to be the varying microstructural feature.

  10. A Study of the Density of Unfilled States in Yttrium Barium Copper Oxide by means of Soft X-ray Continuum Isochromats

    NASA Astrophysics Data System (ADS)

    Rajaram, Ramya; Liefeld, Robert

    2002-10-01

    The New Mexico State University two-crystal X-ray spectrometer is designed for spectroscopy in the soft X-ray region. It has a demountable ultra-high vacuum X-ray tube and is equipped with Potassium Acid Phthalate (KAP) crystals and a flowing gas proportional counter. The KAP crystals provide a unique and sensitive spectral window at a photon energy of 530 eV. The high signal to background available makes it possible to record continuum limit spectra as continuum isochromats. We intend to obtain continuum isochromats at 530 eV from Yttrium Barium Copper Oxide, a high temperature superconductor. Such spectra are convolutions of the energy spectrum of the incident electrons in the target with the product of the density of unfilled states and a matrix element for the transition. The spectrum of initially mono-energetic electrons in the target can be derived from equivalent photoemission experiments and used to obtain a representation of the density of unfilled states above the Fermi level of the target material from the isochromat spectra.

  11. Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake

    PubMed Central

    Ranganathan, Perungavur N.; Lu, Yan; Jiang, Lingli; Kim, Changae

    2011-01-01

    Increases in serum and liver copper content are noted during iron deficiency in mammals, suggesting that copper-dependent processes participate during iron deprivation. One point of intersection between the 2 metals is the liver-derived, multicopper ferroxidase ceruloplasmin (Cp) that is important for iron release from certain tissues. The current study sought to explore Cp expression and activity during physiologic states in which hepatic copper loading occurs (eg, iron deficiency). Weanling rats were fed control or low iron diets containing low, normal, or high copper for ∼ 5 weeks, and parameters of iron homeostasis were measured. Liver copper increased in control and iron-deficient rats fed extra copper. Hepatic Cp mRNA levels did not change; however, serum Cp protein was higher during iron deprivation and with higher copper consumption. In-gel and spectrophotometric ferroxidase and amine oxidase assays demonstrated that Cp activity was enhanced when hepatic copper loading occurred. Interestingly, liver copper levels strongly correlated with Cp protein expression and activity. These observations support the possibility that liver copper loading increases metallation of the Cp protein, leading to increased production of the holo enzyme. Moreover, this phenomenon may play an important role in the compensatory response to maintain iron homeostasis during iron deficiency. PMID:21768302

  12. Ion-exchanger colorimetry-I Micro determination of chromium, iron, copper and cobalt in water.

    PubMed

    Yoshimura, K; Waki, H; Ohashi, S

    1976-06-01

    A new sensitive, colorimetric method based on the direct measurement of light-absorption by an ion-exchange resin phase, which has sorbed the sample complex species, has been developed. Determinations ofchromium(VI) with diphenylearbazide, iron(II) with 1,10-phenanthroline, copper with Zincon and cobalt with thiocyanate have more than ten times the sensitivity obtainable with conventional solution colorimetry. The present method can be applied to natural water samples containing very low levels of these metals. PMID:18961894

  13. Toxicological characterization of bio-active drugs on basis of Iron Fe, Co, and Copper Cu nanopowders

    NASA Astrophysics Data System (ADS)

    Polishuk, S.; Nazarova, A.; Stepanova, I.

    2015-11-01

    The article presents investigations of toxicological parameters (acute and chronic toxicity, cumulative coefficient) of iron, cobalt, copper and copper oxide nanoparticles with white rats in labs. We have estimated the optimal concentrations of the above mentioned substances with rabbits. We have also studied morphological, physiological and biochemical parameters of the animals when adding the optimal doses to the diet for a long term.

  14. Effects of Copper and Malleablizing Time on Mechanical Properties of Austempered Malleable Iron

    NASA Astrophysics Data System (ADS)

    Hsu, Cheng-Hsun; Lu, Jung-Kai; Chen, Fan-Shiong

    2007-10-01

    In this study, both the unalloyed and 1 wt pct copper alloyed white irons were successively treated with a duplex heating process consisting of malleablizing and austempering, and then the effects of copper and processing variables on microstructure and mechanical properties of the austempered malleable iron (AMI) were investigated. The results showed that AMI could effectively shorten malleablizing time to obtain the constituents of irregular graphite, acicular ferrite, and retained austenite in the microstructure. Moreover, 1 pct Cu-AMI had a higher retained austenite content than unalloyed AMI. This is because copper is an austenite stabilizer and acts to delay the start of the transformation into ausferrite. In the case of mechanical properties, AMI increased tensile strength (1083 to 1190 MPa) and impact toughness (16 to 22 J) by 2 to 3 times after 930 °C 20 hours malleablizing treatment as compared to as-cast (572 to 580 MPa and 5 to 6 J). In particular, 1 pct Cu-AMI had better performance than unalloyed AMI except for hardness. In comparison with conventional malleable irons, AMI was found to possess better tensile and impact properties.

  15. Influence of orange juice in the levels and in the genotoxicity of iron and copper.

    PubMed

    Franke, Silvia Isabel Rech; Prá, Daniel; Giulian, Raquel; Dias, Johnny Ferraz; Yoneama, Maria Lúcia; da Silva, Juliana; Erdtmann, Bernardo; Henriques, João Antonio Pêgas

    2006-03-01

    World consumption of natural juices is increasing as a consequence of the human search for a healthier life. The juice production industry, especially for orange juice, is expanding in several countries and particularly in Brazil. Despite scientific data reporting beneficial properties derived from juice consumption, some components of juices have been identified as mutagenic or carcinogenic. Carcinogenic or genotoxic effects may be mediated by the interaction of juice components with transition metals or by sub-products of juice auto-oxidation. In this study, the mutagenic potential of orange juice and two metallic agents used in dietary supplementation, FeSO(4) and CuSO(4), were investigated using the comet assay in mouse blood cells (in vivo). Both metal compounds were genotoxic for eukaryotic cells after 24h treatment at the doses used. Significant damage repair was observed after 48h of treatment with the same compounds. Orange juice had a modulating effect on the action of metallic sulfates. In the case of iron treatment, the presence of the orange juice had a preventive, but not restorative, effect. On the other hand, in the case of copper treatment, the effects were both preventive and restorative. PIXE (particle induced X-ray emission) analysis indicated a positive correlation between DNA damage and the hepatic levels of iron and a negative correlation between whole blood copper and DNA damage. A negative correlation between hepatic iron and whole blood copper content was also seen in the treatment with both ferrous and cupric sulfates. PMID:16263202

  16. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes. [Electronic structure

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-01-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm the authors previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 18 references, 8 figures.

  17. In situ laser Raman spectra of iron phthalocyanine adsorbed on copper and gold electrodes

    SciTech Connect

    Melendres, C.A.; Rios, C.B.; Feng, X.; McMasters, R.

    1983-09-01

    Raman spectra of iron phthalocyanine (FePc) and its tetrasulfonated derivative (FeTSPc) adsorbed on copper and gold electrodes have been observed in situ in 0.05 M H/sub 2/SO/sub 4/ solution. Results confirm our previous finding on the coordination of FePc to water molecules to solution. Evidence suggests that the iron phthalocyanines are probably oriented with their planes parallel to the electrode surface even in immersed electrodes. A decrease in intensity and broadening of some vibrational bands are observed on increasing cathodic polarization; these are attributed to a lifting of the degeneracy of the vibrational modes due to a change in symmetry of the adsorbed molecules brought about by polarization induced by the double-layer field. The effect of carbon on the Raman spectra is discussed. The iron phthalocyanines appear to be stable at potentials close to hydrogen evolution in the absence of oxygen. 8 figures.

  18. Effect of acute administration of cadmium on the disposition of copper, zinc, and iron in the rat

    SciTech Connect

    Ashby, S.L.; King, L.J.; Parke, D.V.W.

    1980-02-01

    Acute administration of subcutaneous doses of cadmium (0.1 to 1.5 mg/kg) to male rats results in high plasma concentrations of copper 24 hr after treatment. In contrast, plasma zinc and iron levels were markedly reduced. The magnitude and significance of the changes in plasma metal ion concentrations were dependent upon the dose of cadmium administered. Liver copper levels were slightly but not significantly increased, but circulating ceruloplasmin levels increased as the total plasma copper increased. Biliary excretion of copper was markedly inhibited after cadmium administration (subcutaneous and oral) and the degree of inhibition was directly related to the dose. Simultaneous parenteral administration of zinc did not counteract this effect. These results suggest that cadmium blocks the excretion of copper into the bile leading to an accumulation of copper in the liver, which in turn, stimulates the synthesis of ceruloplasmin. The mechanisms by which cadmium may inhibit biliary copper excretion are discussed.

  19. Influence of diet on iron, copper, and zinc status in children under 24 months of age.

    PubMed

    Taylor, Andrew; Redworth, Edward Wallis; Morgan, Jane B

    2004-03-01

    The objective of the study was to determine whether iron and micronutrient status is improved with an increased amount of meat in the diet. To this end, a longitudinal prospective study with infants recruited at 4 mo and followed until 24 mo of age was undertaken. One hundred ninety-eight infants formed the original study cohort; 48 withdrew before the end of the study. Subjects were classified as nonmeat eaters or as mixed (red and white)-meat eaters subgrouped into tertiles depending on the meat content reported in diet diaries. Seven-day weighed food records were recorded at 4, 8, 12, 16, 20, and 24 mo. Blood samples taken at 4, 12, and 24 mo were analyzed for parameters of iron and micronutrient status. Iron intake increased during the first year, thereafter remaining constant. The percentages of subjects with hemoglobin values below 110 g/L were 34.1, 23.1, and 13.4 at 4, 12, and 24 mo, respectively. For parameters of iron status, the number of results below the reference range was determined for each diet group and a significant negative relationship between serum iron and meat intake at 12 mo of age was seen (p<0.023). There was a trend for hemoglobin concentrations to be inversely related to the meat intake, at the same age (p<0.068). No effects on zinc or copper status were seen. We conclude that a weak association between dietary meat and iron/Hb suggests a positive role for red meat. There was no disadvantage to the nonmeat-eating infants with respect to zinc or copper. PMID:14997021

  20. Assessing of plasma levels of iron, zinc and copper in Iranian Parkinson's disease

    PubMed Central

    Meamar, Rokhsareh; Nikyar, Hamidreza; Dehghani, Leila; Basiri, Keivan; Ghazvini, Mohammad Reza Aghaye

    2016-01-01

    Background: Trace elements have long been suspected to be involved in Parkinson's disease (PD) pathogenesis, but their exact roles have been remained controversial. In this study, we assessed the levels of copper (Cu), iron (Fe) and zinc (Zn) in different stage of PD patients. Materials and Methods: Serum concentrations of iron, copper and zinc were measured in 109 patients with PD by colorimetric methods. Staging of the disease was evaluated according to Hoehn and Yahr (H and Y) and Unified PD Rating Scale III (UPDRS). Results: Severity values of PD measured by UPRDSIII and HY stages with mean ± SD were 22.9 ± 1.81 and 1.8 ± 1.1, respectively. Mean ± SD values of iron, zinc and copper are 100.7 ± 289.2, 68.3 ± 5.32, and 196.8 ± 162.1 μg/dl, respectively. Serum iron level in most of the patients was normal (76.6%). Whereas zinc concentration in most participants was below the normal range (64.5%) and serum Cu in the majority of patients had a high normal concentration (42.7%) and did not significantly differ among various PD stages. Conclusion: The result of this study does not confirm strong correlation between PD stages and serum levels of tested trace elements. The actual correlations between these elements and PD and whether modulating of these agents levels could be an effective approach in the treatment of this disease remain to be elucidated. PMID:27099844

  1. An on-site colorimetric technique for routine determination of chromium, iron and copper in bath solutions for chromium(III) conversion coating.

    PubMed

    Kawakubo, Susumu; Shimada, Katsuhisa; Suzuki, Yasutada; Hattori, Kazuya

    2011-01-01

    An on-site colorimetric technique was developed for the routine determination of chromium, iron and copper in bath solutions for the chromium(III) conversion coating. A portable colorimeter with a red-green-blue light emitting diode was used for the absorbance measurements. Iron and copper were determined as Fe(III)-thiocyanate and Cu(I)-bathocuproindisulfonate, respectively. Chromium(III) was determined simultaneously with iron or copper using green and blue light. A correction method of the matrix effect was proposed and its applicability was demonstrated. Analytical errors were within 500, 5 and 0.3 mg L(-1) for chromium(III), iron and copper, respectively. PMID:21415522

  2. Zebrafish in the sea of mineral (iron, zinc, and copper) metabolism

    PubMed Central

    Zhao, Lu; Xia, Zhidan; Wang, Fudi

    2014-01-01

    Iron, copper, zinc, and eight other minerals are classified as essential trace elements because they present in minute in vivo quantities and are essential for life. Because either excess or insufficient levels of trace elements can be detrimental to life (causing human diseases such as iron-deficiency anemia, hemochromatosis, Menkes syndrome and Wilson's disease), the endogenous levels of trace minerals must be tightly regulated. Many studies have demonstrated the existence of systems that maintain trace element homeostasis, and these systems are highly conserved in multiple species ranging from yeast to mice. As a model for studying trace mineral metabolism, the zebrafish is indispensable to researchers. Several large-scale mutagenesis screens have been performed in zebrafish, and these screens led to the identification of a series of metal transporters and the generation of several mutagenesis lines, providing an in-depth functional analysis at the system level. Moreover, because of their developmental advantages, zebrafish have also been used in mineral metabolism-related chemical screens and toxicology studies. Here, we systematically review the major findings of trace element homeostasis studies using the zebrafish model, with a focus on iron, zinc, copper, selenium, manganese, and iodine. We also provide a homology analysis of trace mineral transporters in fish, mice and humans. Finally, we discuss the evidence that zebrafish is an ideal experimental tool for uncovering novel mechanisms of trace mineral metabolism and for improving approaches to treat mineral imbalance-related diseases. PMID:24639652

  3. The copper-iron connection in biology: Structure of the metallo-oxidase Fet3p

    SciTech Connect

    Taylor, A. B.; Stoj, C. S.; Ziegler, L.; Kosman, D. J.; Hart, P. J.

    2005-10-17

    Fet3p is a multicopper-containing glycoprotein localized to the yeast plasma membrane that catalyzes the oxidation of Fe(II) to Fe(III). This ferrous iron oxidation is coupled to the reduction of O2 to H2O and is termed the ferroxidase reaction. Fet3p-produced Fe(III) is transferred to the permease Ftr1p for import into the cytosol. The posttranslational insertion of four copper ions into Fet3p is essential for its activity, thus linking copper and iron homeostasis. The mammalian ferroxidases ceruloplasmin and hephaestin are homologs of Fet3p. Loss of the Fe(II) oxidation catalyzed by these proteins results in a spectrum of pathological states, including death. Here, we present the structure of the Fet3p extracellular ferroxidase domain and compare it with that of human ceruloplasmin and other multicopper oxidases that are devoid of ferroxidase activity. The Fet3p structure delineates features that underlie the unique reactivity of this and homologous multicopper oxidases that support the essential trafficking of iron in diverse eukaryotic organisms. The findings are correlated with biochemical and physiological data to cross-validate the elements of Fet3p that define it as both a ferroxidase and cuprous oxidase.

  4. Fundamental mechanisms of oxidation of alkaline earth-bearing metal precursors: yttrium-barium-copper-silver-palladium and silver bariate

    NASA Astrophysics Data System (ADS)

    Sitaraman, Vilayannur R.

    Noble-metal-bearing metallic precursors can be selectively oxidized to yield oxide/noble metal composites. This processing method is investigated for producing 123/Ag-Pd laminates from a solid metallic Y-Ba-Cu-Ag-Pd precursor. A unique feature heretofore unnoticed is the external oxidation mechanism of Ba. The extent of external oxidation at 840C in a 3%H2-Ar atmosphere (PO2 ˜ 10-19 atm.) as measured by a segregation factor, is higher for Ba than for Y. Combined with the fact that Ba does not have significant solid solubility in Ag, Cu or Pd, this means that a short circuit transport path is possible for transport of Ba through such metals as described in chapter 1. Since diffusion through grain boundaries, is fast, the effective permeability of Ba can be relatively high even though its solubility is low. This proposed mechanism is proven using a model system, the Ag5Ba intermetallic compound. Both internal and external oxidation has been demonstrated in this material. Grain boundary diffusion is demonstrated using Ag clad Ag 5Ba. Due to a change in the mechanism from external to internal oxidation of Y in Y-Ba-Cu-Ag-Pd alloys, the imbalance in the surface stoichiometry caused by Ba segregation is not easily removed. A mechanism proposed by Meijering for copper oxide dissolution, Cu migration and Cu reoxidation at the outer surface is also consistent with the microstructural observations in oxidized Y-Ba-Cu-Ag-Pd specimens.

  5. Copper, iron and zinc absorption, retention and status of young women fed vitamin B-6 deficient diets

    SciTech Connect

    Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.; Betschart, A.A.; Kretsch, M.J.; Sauberlich, H.E. Western Regional Research Center, Albany, CA )

    1991-03-11

    A study was conducted in young women to determine the effect of vitamin B-6 deficient diets on copper, iron and zinc metabolism. Young women were confined to a metabolic research unit for 84 and 98 days. They were fed a vitamin B-6 deficient formula diet initially, followed by food diet containing four increasing levels of vitamin B-6. Copper, iron and zinc absorption, retention and status were determined at intervals throughout the study. Absorption was determined using the stable isotopes {sup 65}Cu, {sup 54}Fe, and {sup 67}Zn. Status was based on serum copper and zinc, hemoglobin, hematocrit and mean corpuscular volume. Copper absorption averaged 18 {plus minus} 1% during vitamin B-6 depletion, significantly lower than 24 {plus minus} 1% during repletion, but serum copper was not affected and balance was positive. Iron absorption was not impaired significantly by vitamin B-6 deficient diets, but status declined during the depletion period. Zinc absorption averaged 40 {plus minus} 2% during depletion and 27 {plus minus} 2% during repletion. Zinc absorption and retention were significantly greater during vitamin B-6 depletion, but serum zinc declined suggesting the absorbed zinc was not available for utilization. The results suggest that vitamin B-6 depletion of young women may inhibit copper absorption, affect iron status and alter zinc metabolism. The effects of vitamin B-6 depletion differ markedly among these elements.

  6. A chemical potentiator of copper-accumulation used to investigate the iron-regulons of Saccharomyces cerevisiae

    PubMed Central

    Foster, Andrew W; Dainty, Samantha J; Patterson, Carl J; Pohl, Ehmke; Blackburn, Hannah; Wilson, Clare; Hess, Corinna R; Rutherford, Julian C; Quaranta, Laura; Corran, Andy; Robinson, Nigel J

    2014-01-01

    The extreme resistance of Saccharomyces cerevisiae to copper is overcome by 2-(6-benzyl-2-pyridyl)quinazoline (BPQ), providing a chemical-biology tool which has been exploited in two lines of discovery. First, BPQ is shown to form a red (BPQ)2Cu(I) complex and promote Ctr1-independent copper-accumulation in whole cells and in mitochondria isolated from treated cells. Multiple phenotypes, including loss of aconitase activity, are consistent with copper-BPQ mediated damage to mitochondrial iron–sulphur clusters. Thus, a biochemical basis of copper-toxicity in S. cerevisiae is analogous to other organisms. Second, iron regulons controlled by Aft1/2, Cth2 and Yap5 that respond to mitochondrial iron–sulphur cluster status are modulated by copper-BPQ causing iron hyper-accumulation via upregulated iron-import. Comparison of copper-BPQ treated, untreated and copper-only treated wild-type and fra2Δ by RNA-seq has uncovered a new candidate Aft1 target-gene (LSO1) and paralogous non-target (LSO2), plus nine putative Cth2 target-transcripts. Two lines of evidence confirm that Fra2 dominates basal repression of the Aft1/2 regulons in iron-replete cultures. Fra2-independent control of these regulons is also observed but CTH2 itself appears to be atypically Fra2-dependent. However, control of Cth2-target transcripts which is independent of CTH2 transcript abundance or of Fra2, is also quantified. Use of copper-BPQ supports a substantial contribution of metabolite repression to iron-regulation. PMID:24895027

  7. Determination of copper, scandium, molybdenum, tin, lead, and iron group elements in lunar surface materials

    NASA Technical Reports Server (NTRS)

    Pavlenko, L. I.; Simonova, L. V.; Karyakin, A. V.

    1974-01-01

    Distribution regularities of copper, scandium, molybdenum, tin, lead, and iron group elements were investigated in basaltoid rocks of lunar and terrestrial origin. Samples of various regolith zones taken in the area of the Sea of Fertility were analyzed, along with samples of basic and ultrabasic rocks of the East African Rift for their content of the trace admixtures listed. Data obtained on the abundance of copper, scandium, molybdenum, tin, lead, cobalt, nickel, chromium, and vanadium in Luna 16 lunar surface material were compared with the abundance of these elements in samples of lunar rocks returned by Apollo 11, Apollo 12, and Apollo 14, with the exception of scandium; its content in the latter samples was considerably higher.

  8. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    SciTech Connect

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen.

  9. Osmotically induced changes in copper and iron concentrations in three euryhaline crustacean species

    NASA Astrophysics Data System (ADS)

    Spaargaren, D. H.

    Marine crustaceans strongly accumulate copper and iron. Internal concentrations of both elements are usually found to be very variable; in whole animal homogenates of Palaemon serratus and Penaeus japonicus high levels were found at moderate salinities and high temperature; towards extreme salinities and at a lower temperatures the concentrations of Cu and Fe fall. Blood concentrations of Cu and Fe in Carcinus maenas show a reversed pattern. This suggest mobilization from tissue stores ( e.g. the hepatopancreas) but increased copper levels in the blood under salinity stress are accompanied by reduced blood Fe levels, suggesting increased uptake of Fe by the tissues ( e.g. by ceruloplasmin). The results show that Cu and Fe distribution is closely related to osmotic conditions.

  10. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE PAGESBeta

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic formmore » and thereby activates hydrogen.« less

  11. Corrosion of iron, aluminum and copper-base alloys in glycols under simulated solar collector conditions

    SciTech Connect

    Beavers, J.A.; Diegle, R.B.

    1981-10-01

    The corrosion behavior of iron, aluminum and copperbase alloys was studied in uninhibited glycol solutions under conditions that simulate those found in non-concentrating solar collectors. It was found that only Type 444 stainless steel exhibited adequate corrosion resistance; there was no evidence of pitting, crevice corrosion, or galvanic attack, and general corrosion rates were low. The general corrosion rate of CDA 122 copper was high (greater than 200 ..mu..m/y) under some test conditions, but copper was resistant to pitting and crevice attack. General corrosion rates of the aluminum alloys (1100, 3003 and 6061) were low, but these alloys were susceptible to pitting and crevice attack. The propensity for pitting was greatest in the presence of chlorides but it also was severe in the absence of chlorides following long exposures. The onset of pitting of the aluminum alloys in chloride-free solutions was attributed to degradation of the glycols.

  12. Iron and Copper Act Synergistically To Delay Anaerobic Growth of Bacteria

    PubMed Central

    Bird, Lina J.; Coleman, Maureen L.

    2013-01-01

    Transition metals are known to cause toxic effects through their interaction with oxygen, but toxicity under anoxic conditions is poorly understood. Here we investigated the effects of iron (Fe) and copper (Cu) on the anaerobic growth and gene expression of the purple phototrophic bacterium Rhodopseudomonas palustris TIE-1. We found that Fe(II) and Cu(II) act synergistically to delay anaerobic growth at environmentally relevant metal concentrations. Cu(I) and Cu(II) had similar effects both alone and in the presence of ascorbate, a Cu(II) reductant, indicating that reduction of Cu(II) to Cu(I) by Fe(II) is not sufficient to explain the growth inhibition. Addition of Cu(II) increased the toxicity of Co(II) and Ni(II); in contrast, Ni(II) toxicity was diminished in the presence of Fe(II). The synergistic anaerobic toxicity of Fe(II) and Cu(II) was also observed for Escherichia coli MG1655, Shewanella oneidensis MR-1, and Rhodobacter capsulatus SB1003. Gene expression analyses for R. palustris identified three regulatory genes that respond to Cu(II) and not to Fe(II): homologs of cueR and cusR, two known proteobacterial copper homeostasis regulators, and csoR, a copper regulator recently identified in Mycobacterium tuberculosis. Two P-type ATPase efflux pumps, along with an FoF1 ATP synthase, were also upregulated by Cu(II) but not by Fe(II). An Escherichia coli mutant deficient in copA, cus, and cueO showed a smaller synergistic effect, indicating that iron might interfere with one or more of the copper homeostasis systems. Our results suggest that interactive effects of transition metals on microbial physiology may be widespread under anoxic conditions, although the molecular mechanisms remain to be more fully elucidated. PMID:23563938

  13. Relationship between Paratuberculosis and the microelements Copper, Zinc, Iron, Selenium and Molybdenum in Beef Cattle

    PubMed Central

    Paolicchi, F.; Perea, J.; Cseh, S.; Morsella, C.

    2013-01-01

    To study the deficiency of minerals and its relationship with Paratuberculosis, blood, serum, and fecal samples were obtained from 75 adult bovines without clinical symptoms of the disease and from two bovines with clinical symptoms of the disease, from two beef herds with a previous history of Paratuberculosis in the Province of Buenos Aires, Argentina. Serum samples were processed by ELISA and feces were cultured in Herrolds medium. Copper, zinc and iron in serum were quantified by spectrophotometry and selenium was measured by the activity of glutathione peroxidase. We also determined copper, zinc, iron and molybdenum concentrations in pastures and the concentration of sulfate in water. Mycobacterium avium subsp paratuberculosis (Map) was isolated from 17.3% of fecal samples of asymptomatic animals and from the fecal samples from the two animals with clinical symptoms. All the Map-positive animals were also ELISA-positive or suspect, and among them, 84.6% presented low or marginal values of selenium and 69.2% presented low or marginal values of copper. The two animals with clinical symptoms, and isolation of Map from feces and organs were selenium-deficient and had the lowest activity of glutathione peroxidase of all the animals from both herds. All the animals negative to Map in feces and negative to ELISA had normal values of Se, while 13.8% of animals with positive ELISA or suspect and culture negative presented low levels of Se. Half of the animals that were negative both for ELISA and culture in feces were deficient in copper but none of them presented low values of selenium. The content of molybdenum and iron in pasture was high, 2.5 ppm and 1.13 ppm in one herd and 2.5 ppm and 2.02 ppm in the other, respectively, whereas the copper:molybdenum ratio was 1.5 and 5.2, respectively. These results do not confirm an interaction between imbalances of the micronutrients and clinical Paratuberculosis, but show evidence of the relationship between selenium

  14. Effect of adsorbed chlorine and oxygen on shear strength of iron and copper junctions

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.

    1975-01-01

    Static friction experiments were performed in ultrahigh vacuum at room temperature on copper, iron, and steel contacts selectively contaminated with oxygen and chlorine in submonolayer amounts. The concentration of the adsorbates was determined with Auger electron spectroscopy and was measured relative to the saturation concentration of oxygen on iron (concentration 1.0). The coefficient of static friction decreased with increasing adsorbate concentration. It was independent of the metal and the adsorbate. The results compared satisfactorily with an extension of the junction growth theory to heterogeneous interfaces. The reduction in interfacial shear strength was measured by the ratio sub a/sub m where sub a is the shear strength of the interface with an adsorbate concentration of 1.0, and sub m is the strength of the clean metal interface. This ratio was 0.835 + or - 0.012 for all the systems tested.

  15. Age-associated changes of brain copper, iron, and zinc in Alzheimer's disease and dementia with Lewy bodies.

    PubMed

    Graham, Stewart F; Nasaruddin, Muhammad Bin; Carey, Manus; Holscher, Christian; McGuinness, Bernadette; Kehoe, Patrick G; Love, Seth; Passmore, Peter; Elliott, Christopher T; Meharg, Andrew A; Green, Brian D

    2014-01-01

    Disease-, age-, and gender-associated changes in brain copper, iron, and zinc were assessed in postmortem neocortical tissue (Brodmann area 7) from patients with moderate Alzheimer's disease (AD) (n = 14), severe AD (n = 28), dementia with Lewy bodies (n = 15), and normal age-matched control subjects (n = 26). Copper was lower (20%; p < 0.001) and iron higher (10-16%; p < 0.001) in severe AD compared with controls. Intriguingly significant Group*Age interactions were observed for both copper and iron, suggesting gradual age-associated decline of these metals in healthy non-cognitively impaired individuals. Zinc was unaffected in any disease pathologies and no age-associated changes were apparent. Age-associated changes in brain elements warrant further investigation. PMID:25024342

  16. Barium cyanide

    Integrated Risk Information System (IRIS)

    Barium cyanide ; CASRN 542 - 62 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  17. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers

    PubMed Central

    Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  18. Association of Maternal Diet With Zinc, Copper, and Iron Concentrations in Transitional Human Milk Produced by Korean Mothers.

    PubMed

    Choi, Yun Kyung; Kim, Ji-Myung; Lee, Ji-Eun; Cho, Mi Sook; Kang, Bong Soo; Choi, Hyeon; Kim, Yuri

    2016-01-01

    The aims of this study were to evaluate zinc, copper, and iron concentrations in the transitory milk of Korean lactating mothers and to investigate the relationship between these concentrations and maternal diet. Human milk samples were collected between 5 and 15 days postpartum from 96 healthy, lactating mothers in postpartum care centers in Seoul, Korea. Dietary intake during lactation was determined based on a 3-day dietary record. The mean zinc, copper, and iron concentrations in the human milk samples collected were 3.88 ± 1.74 mg/L, 0.69 ± 0.25 mg/L, and 5.85 ± 8.53 mg/L, respectively. The mothers who consumed alcoholic beverages during pregnancy had tended to have lower concentrations of zinc and copper, as well as significantly lower concentrations of iron, in their milk (p < 0.047). In contrast, the mothers who took daily supplements had much higher iron concentrations in their milk (p = 0.002). Dietary intakes of zinc, copper, and iron during lactation did not affect the concentrations of zinc, copper, and iron in the milk samples analyzed. Intakes of vitamin C, selenium, and iodine were associated with the concentration of copper in the milk samples analyzed, and consumption of food categorized as 'meat and meat products' was positively associated with the concentration of zinc. Consumption of rice was the top contributor to the concentrations of all three minerals. In conclusion, associations between maternal diet and nutrient concentrations in transitory human milk can provide useful information, particularly in regard to infant growth. PMID:26839873

  19. 77 FR 59158 - Migratory Bird Hunting; Application for Approval of Copper-Clad Iron Shot and Fluoropolymer Shot...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... cladding up to 44.1 of the shot mass. Tungsten-bronze 51.1 tungsten, 44.4 copper, Rare Earth Magnet. 3.9........... 40-76 tungsten, 10-37 iron, Hot Shot or Rare Earth Magnet. 9-16 copper, and 5-7 nickel. Tungsten.... Tungsten-tin-bismuth any proportions of Rare Earth Magnet. tungsten, tin, and bismuth....

  20. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  1. The Application of Copper/Iron Cocatalysis in Cross-Coupling Reactions.

    PubMed

    Mao, Jincheng; Yan, Hong; Rong, Guangwei; He, Yue; Zhang, Guoqi

    2016-06-01

    For conventional cross-couplings in organic chemistry, precious metal (such as Pd or Rh) complexes have been the preferable choices as catalysts. However, their high cost, toxicity, and potential contamination of products limit their massive applications on some occasions, particularly in the pharmaceutical industry, where close monitoring of the metal contamination of products is required. Therefore, the use of metals that are less expensive and less toxic than Pd or Rh can be greatly advantageous and earth abundant metal (such Fe or Cu) catalysts have shown promise for replacing the precious metals. Interestingly, a certain copper catalyst combined with an iron catalyst displays higher catalytic efficiency than itself in various coupling reactions. Notably, ligand-free conditions make such protocols more useful and practical in many cases. In this account, we summarize the recent progress made in this increasingly attractive topic by describing successful examples, including our own work in the literature, regarding effective copper/iron cocatalysis. In addition, a few examples involving a magnetic and readily recyclable CuFe2 O4 nanoparticle cocatalyst are also included. PMID:27027733

  2. The Proteome of Copper, Iron, Zinc, and Manganese Micronutrient Deficiency in Chlamydomonas reinhardtii*

    PubMed Central

    Hsieh, Scott I.; Castruita, Madeli; Malasarn, Davin; Urzica, Eugen; Erde, Jonathan; Page, M. Dudley; Yamasaki, Hiroaki; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S.; Loo, Joseph A.

    2013-01-01

    Trace metals such as copper, iron, zinc, and manganese play important roles in several biochemical processes, including respiration and photosynthesis. Using a label-free, quantitative proteomics strategy (MSE), we examined the effect of deficiencies in these micronutrients on the soluble proteome of Chlamydomonas reinhardtii. We quantified >103 proteins with abundances within a dynamic range of 3 to 4 orders of magnitude and demonstrated statistically significant changes in ∼200 proteins in each metal-deficient growth condition relative to nutrient-replete media. Through analysis of Pearson's coefficient, we also examined the correlation between protein abundance and transcript abundance (as determined via RNA-Seq analysis) and found moderate correlations under all nutritional states. Interestingly, in a subset of transcripts known to significantly change in abundance in metal-replete and metal-deficient conditions, the correlation to protein abundance is much stronger. Examples of new discoveries highlighted in this work include the accumulation of O2 labile, anaerobiosis-related enzymes (Hyd1, Pfr1, and Hcp2) in copper-deficient cells; co-variation of Cgl78/Ycf54 and coprogen oxidase; the loss of various stromal and lumenal photosynthesis-related proteins, including plastocyanin, in iron-limited cells; a large accumulation (from undetectable amounts to over 1,000 zmol/cell) of two COG0523 domain-containing proteins in zinc-deficient cells; and the preservation of photosynthesis proteins in manganese-deficient cells despite known losses in photosynthetic function in this condition. PMID:23065468

  3. Determination of uranium, iron, copper, and nickel in rock and water samples by MEKC.

    PubMed

    Mirza, Muhammad Aslam; Khuhawar, Muhammad Yar; Arain, Rafee

    2008-09-01

    A micellar electrokinetic capillary chromatographic (MEKC) procedure has been developed for the separation and determination of dioxouranium (VI), iron(III), copper(II), and nickel(II) using bis(salicylaldehyde)propylenediimine (H2SA2Pn) as chelating reagent with a total run time of <3 min. Sodium dodecyl sulphate (SDS) was used as micellar medium at pH 8.1 with sodium tetraborate buffer (0.1 M). Uncoated fused silica capillary with effective length 38.8 cmx75 microm id was used with an applied voltage of 30 kV and photo-diode array detection at 228 nm. Linear calibrations were established within 0.045-1000 microg/mL of each element with detection limit within 15-122 ng/mL. The method was applied to the analysis of spring water and rock samples. The presence of uranium in rock and spring water samples was established within 1.58-1739.3 microg/g and 0.047-0.712 microg/mL with relative standard deviation within 0.9-2.1% and 1.3-2.6% respectively. Uranium ore and water samples were also assayed by the standard addition technique. Recovery of uranium was >98% with RSD up to 2.7%. Copper, nickel, and iron in their combined matrix were concurrently determined within RSD 0.6-3.6% (n=5) and the results obtained were compared with those of flame AAS. PMID:18785150

  4. Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

    2013-06-01

    Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the

  5. Friction and transfer of copper, silver, and gold to iron in the presence of various adsorbed surface films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with the noble metals copper, silver, and gold and two binary alloys of these metals contacting iron in the presence of various adsorbates including, oxygen, methyl mercaptan, and methyl chloride. A pin on disk specimen configuration was used with a load of 100 grams, sliding velocity of 60 mm/min; at 25 C with the surfaces saturated with the adsorbates. Auger emission spectroscopy was used to monitor surface films. Results of the experiments indicate that friction and transfer characteristics are highly specific with respect to both the noble metal and surface film present. With all three metals and films transfer of the noble metal to iron occurred very rapidly. With all metals and films transfer of the noble metal to iron continuously increased with repeated passes except for silver and copper sliding on iron sulfide.

  6. The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats.

    PubMed

    Mercadante, Courtney J; Herrera, Carolina; Pettiglio, Michael A; Foster, Melanie L; Johnson, Laura C; Dorman, David C; Bartnikas, Thomas B

    2016-06-01

    Manganese is an essential dietary nutrient and trace element with important roles in mammalian development, metabolism, and antioxidant defense. In healthy individuals, gastrointestinal absorption and hepatobiliary excretion are tightly regulated to maintain systemic manganese concentrations at physiologic levels. Interactions of manganese with other essential metals following high dose ingestion are incompletely understood. We previously reported that gavage manganese exposure in rats resulted in higher tissue manganese concentrations when compared with equivalent dietary or drinking water manganese exposures. In this study, we performed follow-up evaluations to determine whether oral manganese exposure perturbs iron, copper, or zinc tissue concentrations. Rats were exposed to a control diet with 10 ppm manganese or dietary, drinking water, or gavage exposure to approximately 11.1 mg manganese/kg body weight/day for 7 or 61 exposure days. While manganese exposure affected levels of all metals, particularly in the frontal cortex and liver, copper levels were most prominently affected. This result suggests an under-appreciated effect of manganese exposure on copper homeostasis which may contribute to our understanding of the pathophysiology of manganese toxicity. PMID:26988220

  7. Acute Copper and Ascorbic Acid Supplementation Inhibits Non-heme Iron Absorption in Humans.

    PubMed

    Olivares, Manuel; Figueroa, Constanza; Pizarro, Fernando

    2016-08-01

    The objective of the study is to determine the effect of copper (Cu) plus the reducing agent ascorbic acid (AA) on the absorption of non-heme iron (Fe). Experimental study with block design in which each subject was his own control. After signing an informed consent, 14 adult women using an effective method of contraception and negative pregnancy test received 0.5 mg Fe, as ferrous sulfate, alone or with Cu, as copper sulfate, plus ascorbic acid (AA/Cu 2/1 molar ratio) at 4/1; 6/1 and 8/1 Cu/Fe molar ratios as an aqueous solution on days 1, 2, 14, and 15 of the study. Fe absorption was assessed by erythrocyte incorporation of iron radioisotopes (55)Fe and (59)Fe. Geometric mean (range ± SD) absorption of Fe at 4/1 and 6/1 Cu/Fe molar ratios (and AA/Cu 2/1 molar ratio) and Fe alone was 57.4 % (35.7-92.1 %), 64.2 % (45.8-89.9 %), and 38.8 % (20.4-73.8 %), respectively (ANOVA for repeated measures p < 0.001; post hoc test Scheffé, p < 0.05). This is attributable to the enhancing effect of AA on non-heme Fe absorption; however, Fe absorption at Cu/Fe 8/1 molar ratio was 47.3 % (27.7-80.8) (p = NS compared with Fe alone). It was expected that Fe absorption would have been equal or greater than at 4/1 and 6/1 molar ratios. Copper in the presence of ascorbic acid inhibits non-heme Fe absorption at Cu/Fe 8/1 molar ratio. PMID:26715577

  8. Micronutrient Status in Female University Students: Iron, Zinc, Copper, Selenium, Vitamin B12 and Folate

    PubMed Central

    Fayet-Moore, Flavia; Petocz, Peter; Samman, Samir

    2014-01-01

    Young women are at an increased risk of micronutrient deficiencies, particularly due to higher micronutrient requirements during childbearing years and multiple food group avoidances. The objective of this study was to investigate biomarkers of particular micronutrients in apparently healthy young women. Female students (n = 308; age range 18–35 year; Body Mass Index 21.5 ± 2.8 kg/m2; mean ± SD) were recruited to participate in a cross-sectional study. Blood samples were obtained from participants in the fasted state and analysed for biomarkers of iron status, vitamin B12, folate, homocysteine, selenium, zinc, and copper. The results show iron deficiency anaemia, unspecified anaemia, and hypoferritinemia in 3%, 7% and 33.9% of participants, respectively. Low vitamin B12 concentrations (<120 pmol/L) were found in 11.3% of participants, while 4.7% showed sub-clinical deficiency based on serum methylmalonic acid concentrations >0.34 μmol/L. Folate concentrations below the reference range were observed in 1.7% (serum) or 1% (erythrocytes) of participants, and 99.7% of the participant had erythrocyte-folate concentrations >300 nmol/L. Serum zinc concentrations <10.7 μmol/L were observed in 2% of participants. Serum copper and selenium concentrations were below the reference range in 23% and 11% of participants, respectively. Micronutrient deficiencies including iron and vitamin B12, and apparent excess of folate are present in educated Australian female students of childbearing age, including those studying nutrition. The effects of dietary behaviours and food choices on markers of micronutrient status require further investigation. PMID:25401503

  9. Haemolysis and Perturbations in the Systemic Iron Metabolism of Suckling, Copper-Deficient Mosaic Mutant Mice – An Animal Model of Menkes Disease

    PubMed Central

    Lenartowicz, Małgorzata; Starzyński, Rafał R.; Krzeptowski, Wojciech; Grzmil, Paweł; Bednarz, Aleksandra; Ogórek, Mateusz; Pierzchała, Olga; Staroń, Robert; Gajowiak, Anna; Lipiński, Paweł

    2014-01-01

    The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism. PMID:25247420

  10. Status and Interrelationship of Zinc, Copper, Iron, Calcium and Selenium in Prostate Cancer.

    PubMed

    Singh, Bhupendra Pal; Dwivedi, Shailendra; Dhakad, Urmila; Murthy, Ramesh Chandra; Choubey, Vimal Kumar; Goel, Apul; Sankhwar, Satya Narayan

    2016-03-01

    Deficiency or excess of certain trace elements has been considered as risk factor for prostate cancer. This study was aimed to detect differential changes and mutual correlations of selected trace elements in prostate cancer tissue versus benign prostatic hyperplasia tissue. Zinc, copper, iron, calcium and selenium were analysed in histologically proven 15 prostate cancer tissues and 15 benign prostatic hyperplasia tissues using atomic absorption spectrophotometer. Unpaired two tailed t test/Mann-Whitney U test and Pearson correlation coefficient were used to compare the level of trace elements, elemental ratios and their interrelations. As compared to benign prostatic tissue, malignant prostatic tissue had significantly lower selenium (p = 0.038) and zinc (p = 0.043) concentrations, a lower zinc/iron ratio (p = 0.04) and positive correlation of selenium with zinc (r = 0.71, p = 0.02) and iron (r = 0.76, p = 0.009). Considerably divergent interrelationship of elements and elemental ratios in prostate cancer versus benign prostatic hyperplasia was noted. Understanding of differential elemental changes and their interdependence may be useful in defining the complex metabolic alterations in prostate carcinogenesis with potential for development of element based newer diagnostic, preventive and therapeutic strategies. Further studies may be needed to elucidate this complex relationship between trace elements and prostate carcinogenesis. PMID:26855488

  11. A simple and efficient procedure of low valent iron- or copper-mediated Reformatsky reaction of aldehydes.

    PubMed

    Chattopadhyay, Angshuman; Dubey, Akhil Kr

    2007-11-23

    An operationally simple and very efficient procedure of Reformatsky reaction of aldehydes has been carried out in THF in the presence of low valent iron or copper which were prepared in situ employing a bimetal redox strategy through reduction of FeCl3 or CuCl2-2H2O with magnesium. PMID:17973426

  12. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    NASA Astrophysics Data System (ADS)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  13. Selective nucleation of iron phthalocyanine crystals on micro-structured copper iodide.

    PubMed

    Rochford, Luke A; Ramadan, Alexandra J; Heutz, Sandrine; Jones, Tim S

    2014-12-14

    Morphological and structural control of organic semiconductors through structural templating is an efficient route by which to tune their physical properties. The preparation and characterisation of iron phthalocyanine (FePc)-copper iodide (CuI) bilayers at elevated substrate temperatures is presented. Thin CuI(111) layers are prepared which are composed of isolated islands rather than continuous films previously employed in device structures. Nucleation in the early stages of FePc growth is observed at the edges of islands rather than on the top (111) faces with the use of field emission scanning electron microscopy (FE-SEM). Structural measurements show two distinct polymorphs of FePc, with CuI islands edges nucleating high aspect ratio FePc crystallites with modified intermolecular spacing. By combining high substrate temperature growth and micro-structuring of the templating CuI(111) layer structural and morphological control of the organic film is demonstrated. PMID:25340949

  14. Correlations between lead, cadmium, copper, zinc, and iron concentrations in frozen tuna fish

    SciTech Connect

    Galindo, L.; Hardisson, A.; Montelongo, F.G.

    1986-04-01

    The presence of metallic pollutants in marine ecosystems has promoted wide research plans in order to evaluate pollution levels in marine organisms. However, little is known concerning environmental and physiological processes that regulate the concentration of trace metals in marine organisms. Even though the toxicity of lead and cadmium is well established, copper, zinc and iron are considered as essential elements for mammals. Little is known about heavy metals, other than mercury, concentrations in fresh and frozen tuna fish. Fifty samples obtained at the entrance of a canning factory in Santa Cruz de Tenerife (Canary Islands), were analyzed by atomic absorption spectrophotometry. Results were treated by applying the Statistical Package for the Social Sciences compiled and linked in the software of a Digital VAX/VMS 11/780 computer.

  15. ESR of copper and iron complexes with antitumor and cytotoxic properties.

    PubMed Central

    Antholine, W E; Kalyanaraman, B; Petering, D H

    1985-01-01

    The relatively few iron and copper metal complexes which have been examined in cells and tissues for their redox properties, radical generation properties, and antitumor activity are discussed for studies which utilized electron spin resonance spectroscopy (ESR). A common property of a number of metal complexes, which include bleomycin, adriamycin, and thiosemicarbazones described in this review, is that they are readily reduced by thiol compounds and oxidized by oxygen or reduced species of oxygen to produce radicals. Structural features of these reactions are identified by ESR spectroscopy in model systems and often in cells. Furthermore, ESR spectroscopy has been most useful to probe the environment of the complexes in cells and to measure the rate of reduction of their oxidized forms. As a result of these studies, it is anticipated that more attention will be given to the exploration of redox-active metal complexes as drugs. PMID:2420582

  16. Photometric and spectrochemical determination of gold in iron pyrites, copper and lead concentrates.

    PubMed

    Jordanov, N; Mareva, S; Krasnobaeva, N; Nedyalkova, N

    1968-09-01

    A photometric and a spectrochemical method have been developed for determining gold in iron pyrites, copper and lead concentrates. In both, the sample is dissolved and gold is extracted from 1M hydrochloric add solution with a mixture of ethyl methyl ketone and chloroform (1:1). Gold was determined photometrically with N,N'-tetramethyl-o-tolidine. Conditions have been found for satisfactorily sensitive and reproducible spectral determination of gold. For this purpose the effect of various collectors and buffers on the evaporation curves of gold has been studied, as well as excitation conditions, form of the electrodes, optimum slit-width, and photographic variables. The sensitivity and precision of both methods have been evaluated. PMID:18960389

  17. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper

    SciTech Connect

    Akyurtlu, A.

    1991-10-01

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. The work done in the fourth quarter can be summarized as follows: (1) Calibration of the gas chromatograph for low and high H{sub 2}S and SO{sub 2} is completed. (2) The determination of surface areas and densities of the promoted sorbents is completed. (3) Preliminary screening of the promoted sorbents in the packed bed reactor has started.

  18. Selenium, copper and iron in veterinary medicine-From clinical implications to scientific models.

    PubMed

    Humann-Ziehank, Esther

    2016-09-01

    Diseases related to copper, selenium or iron overload or deficiency are common and well-described in large animal veterinary medicine. Some of them certainly have the potential to serve as useful animal models for ongoing research in the field of trace elements. Obvious advantages of large animal models compared to laboratory animal models like rats and mice are the option of long-term, consecutive examinations of progressive deficient or toxic stages and the opportunity to collect various, high volume samples for repeated measurements. Nevertheless, close cooperation between scientific disciplines is necessary as scientists using high sophisticated analytical methods and equipment are not regularly in touch with scientists working with large animal diseases. This review will give an introduction into some typical animal diseases related to trace elements and will present approaches where the animal diseases were used already as a model for interdisciplinary research. PMID:27316591

  19. COPPER

    EPA Science Inventory

    The report is a review of current knowledge of the distribution of copper in the environment and living things. Metabolism and the effects of copper in the biosphere are also considered. Copper compounds are common and widely distributed in nature. They are also extensively mined...

  20. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F.

    PubMed

    Clemens, Oliver; Marco, José F; Thomas, Michael F; Forder, Susan D; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A; Slater, Peter R; Berry, Frank J

    2016-09-01

    (57)Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe(3+) state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature. PMID:27355806

  1. Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F

    NASA Astrophysics Data System (ADS)

    Clemens, Oliver; Marco, José F.; Thomas, Michael F.; Forder, Susan D.; Zhang, Hongbin; Cartenet, Simon; Monze, Anais; Bingham, Paul A.; Slater, Peter R.; Berry, Frank J.

    2016-09-01

    57Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe3+ state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature.

  2. Predicting copper-, iron-, and zinc-binding proteins in pathogenic species of the Paracoccidioides genus

    PubMed Central

    Tristão, Gabriel B.; Assunção, Leandro do Prado; dos Santos, Luiz Paulo A.; Borges, Clayton L.; Silva-Bailão, Mirelle Garcia; Soares, Célia M. de Almeida; Cavallaro, Gabriele; Bailão, Alexandre M.

    2015-01-01

    Approximately one-third of all proteins have been estimated to contain at least one metal cofactor, and these proteins are referred to as metalloproteins. These represent one of the most diverse classes of proteins, containing metal ions that bind to specific sites to perform catalytic, regulatory and structural functions. Bioinformatic tools have been developed to predict metalloproteins encoded by an organism based only on its genome sequence. Its function and the type of metal binder can also be predicted via a bioinformatics approach. Paracoccidioides complex includes termodimorphic pathogenic fungi that are found as saprobic mycelia in the environment and as yeast, the parasitic form, in host tissues. They are the etiologic agents of Paracoccidioidomycosis, a prevalent systemic mycosis in Latin America. Many metalloproteins are important for the virulence of several pathogenic microorganisms. Accordingly, the present work aimed to predict the copper, iron and zinc proteins encoded by the genomes of three phylogenetic species of Paracoccidioides (Pb01, Pb03, and Pb18). The metalloproteins were identified using bioinformatics approaches based on structure, annotation and domains. Cu-, Fe-, and Zn-binding proteins represent 7% of the total proteins encoded by Paracoccidioides spp. genomes. Zinc proteins were the most abundant metalloproteins, representing 5.7% of the fungus proteome, whereas copper and iron proteins represent 0.3 and 1.2%, respectively. Functional classification revealed that metalloproteins are related to many cellular processes. Furthermore, it was observed that many of these metalloproteins serve as virulence factors in the biology of the fungus. Thus, it is concluded that the Cu, Fe, and Zn metalloproteomes of the Paracoccidioides spp. are of the utmost importance for the biology and virulence of these particular human pathogens. PMID:25620964

  3. Three histidine residues of amyloid-beta peptide control the redox activity of copper and iron.

    PubMed

    Nakamura, M; Shishido, N; Nunomura, Akihiko; Smith, Mark A; Perry, George; Hayashi, Y; Nakayama, K; Hayashi, T

    2007-11-01

    Zinc, iron and copper are concentrated in senile plaques of Alzheimer disease. Copper and iron catalyze the Fenton-Haber-Weiss reaction, which likely contributes to oxidative stress in neuronal cells. In this study, we found that ascorbate oxidase activity and the intensity of ascorbate radicals measured using ESR spectroscopy, generated by free Cu(II), was decreased in the presence of amyloid-beta (Abeta), the major component of senile plaques. Specifically, the ascorbate oxidase activity was strongly inhibited (85% decrease) in the presence of Abeta1-16 or Abeta1-42, whereas it was only slightly inhibited in the presence of Abeta1-12 or Abeta25-35 (<20% inhibition). Ascorbate-dependent hydroxyl radical generation by free Cu(II) decreased in the presence of Abeta in the identical order of Abeta1-42, Abeta1-16 > Abeta1-12 and was abolished in the presence of 2-fold molar excess glycylhystidyllysine (GHK). Ascorbate oxidase activity and ascorbate-dependent hydroxyl radical generation by free Fe(III) were inhibited by Abeta1-42, Abeta1-16, and Abeta1-12. Although Cu(II)-Abeta shows a significant SOD-like activity, the rate constant for the reaction of superoxide with Cu(II)-Abeta was much slower than that with SOD. Overall, our results suggest that His6, His13, and His14 residues of Abeta1-42 control the redox activity of transition metals present in senile plaques. PMID:17929832

  4. Zinc Pyrithione Inhibits Yeast Growth through Copper Influx and Inactivation of Iron-Sulfur Proteins▿†

    PubMed Central

    Reeder, Nancy L.; Kaplan, Jerry; Xu, Jun; Youngquist, R. Scott; Wallace, Jared; Hu, Ping; Juhlin, Kenton D.; Schwartz, James R.; Grant, Raymond A.; Fieno, Angela; Nemeth, Suzanne; Reichling, Tim; Tiesman, Jay P.; Mills, Tim; Steinke, Mark; Wang, Shuo L.; Saunders, Charles W.

    2011-01-01

    Zinc pyrithione (ZPT) is an antimicrobial material with widespread use in antidandruff shampoos and antifouling paints. Despite decades of commercial use, there is little understanding of its antimicrobial mechanism of action. We used a combination of genome-wide approaches (yeast deletion mutants and microarrays) and traditional methods (gene constructs and atomic emission) to characterize the activity of ZPT against a model yeast, Saccharomyces cerevisiae. ZPT acts through an increase in cellular copper levels that leads to loss of activity of iron-sulfur cluster-containing proteins. ZPT was also found to mediate growth inhibition through an increase in copper in the scalp fungus Malassezia globosa. A model is presented in which pyrithione acts as a copper ionophore, enabling copper to enter cells and distribute across intracellular membranes. This is the first report of a metal-ligand complex that inhibits fungal growth by increasing the cellular level of a different metal. PMID:21947398

  5. Regulation of Brain Iron and Copper Homeostasis by Brain Barrier Systems: Implication in Neurodegenerative Diseases

    PubMed Central

    Zheng, Wei; Monnot, Andrew D.

    2011-01-01

    Iron (Fe) and copper (Cu) are essential to neuronal function; excess or deficiency of either is known to underlie the pathoetiology of several commonly known neurodegenerative disorders. This delicate balance of Fe and Cu in the central milieu is maintained by the brain barrier systems, i.e., the blood-brain barrier (BBB) between the blood and brain interstitial fluid and the blood- cerebrospinal fluid barrier (BCB) between the blood and cerebrospinal fluid (CSF). This review provides a concise description on the structural and functional characteristics of the brain barrier systems. Current understanding of Fe and Cu transport across the brain barriers is thoroughly examined, with major focuses on whether the BBB and BCB coordinate the direction of Fe and Cu fluxes between the blood and brain/CSF. In particular, the mechanism by which pertinent metal transporters in the barriers, such as the transferrin receptor (TfR), divalent metal transporter (DMT1), copper transporter (CTR1), ATP7A/B, and ferroportin (FPN), regulate metal movement across the barriers is explored. Finally, the detrimental consequences of dysfunctional metal transport by brain barriers, as a result of endogenous disorders or exogenous insults, are discussed. Understanding the regulation of Fe and Cu homeostasis in the central nervous system aids in the design of new drugs targeted on the regulatory proteins at the brain barriers for the treatment of metal’s deficiency or overload-related neurological diseases. PMID:22115751

  6. The Homeostasis of Iron, Copper, and Zinc in Paracoccidioides Brasiliensis, Cryptococcus Neoformans Var. Grubii, and Cryptococcus Gattii: A Comparative Analysis

    PubMed Central

    Silva, Mirelle Garcia; Schrank, Augusto; Bailão, Elisa Flávia L.C.; Bailão, Alexandre Melo; Borges, Clayton Luiz; Staats, Charley Christian; Parente, Juliana Alves; Pereira, Maristela; Salem-Izacc, Silvia Maria; Mendes-Giannini, Maria José Soares; Oliveira, Rosely Maria Zancopé; Silva, Lívia Kmetzsch Rosa e; Nosanchuk, Joshua D.; Vainstein, Marilene Henning; de Almeida Soares, Célia Maria

    2011-01-01

    Iron, copper, and zinc are essential for all living organisms. Moreover, the homeostasis of these metals is vital to microorganisms during pathogenic interactions with a host. Most pathogens have developed specific mechanisms for the uptake of micronutrients from their hosts in order to counteract the low availability of essential ions in infected tissues. We report here an analysis of genes potentially involved in iron, copper, and zinc uptake and homeostasis in the fungal pathogens Paracoccidioides brasiliensis, Cryptococcus neoformans var. grubii, and Cryptococcus gattii. Although prior studies have identified certain aspects of metal regulation in Cryptococcus species, little is known regarding the regulation of these elements in P. brasiliensis. We also present amino acid sequences analyses of deduced proteins in order to examine possible conserved domains. The genomic data reveals, for the first time, genes associated to iron, copper, and zinc assimilation and homeostasis in P. brasiliensis. Furthermore, analyses of the three fungal species identified homologs to genes associated with high-affinity uptake systems, vacuolar and mitochondrial iron storage, copper uptake and reduction, and zinc assimilation. However, homologs to genes involved in siderophore production were only found in P. brasiliensis. Interestingly, in silico analysis of the genomes of P. brasiliensis Pb01, Pb03, and Pb18 revealed significant differences in the presence and/or number of genes involved in metal homeostasis, such as in genes related to iron reduction and oxidation. The broad analyses of the genomes of P. brasiliensis, C. neoformans var. grubii, and C. gattii for genes involved in metal homeostasis provide important groundwork for numerous interesting future areas of investigation that are required in order to validate and explore the function of the identified genes and gene pathways. PMID:21833306

  7. Diffusion bonding of iron aluminide Fe{sub 72}Al{sub 28} using a copper interlayer

    SciTech Connect

    Torun, O.; Celikyuerek, I.; Guerler, R.

    2008-07-15

    An Fe{sub 72}Al{sub 28} alloy was diffusion-bonded using a copper interlayer under vacuum at 1075 deg. C for 1 h, 2 h, 4 h and 6 h durations at 3.2 MPa applied pressure. The bond microstructure was found to be composed of the copper rich interlayer, copper rich precipitates and the base metal. SEM-EDS studies indicated major diffusion of aluminium and iron atoms from Fe{sub 72}Al{sub 28} into the copper interlayer and copper atoms from the copper interlayer into the Fe{sub 72}Al{sub 28} matrix. SEM observations of fractured surfaces of the diffusion-bonded samples showed some plastic deformation and signs of good bonding. Cu{sub 3}Al and B{sub 2}-FeAl-based phases were identified by SEM-EDS and X-ray diffraction studies at the bond and on the fracture surfaces of all samples investigated. Good bonding was achieved with a maximum shear strength of 298 MPa which is 65% of the parent material shear strength for a sample diffusion-bonded for 6 h.

  8. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases

  9. Assimilation of zinc, cadmium, lead, copper, and iron by the spider Dysdera crocata, a predator of woodlice

    SciTech Connect

    Hopkin, S.P.; Martin, M.H.

    1985-02-01

    In this paper, an experiment is described on the assimilation of zinc, cadmium, lead, copper and iron by Dysdera crocata collected from a site in central Bristol. The spiders were fed on woodlice from their own site, and on woodlice from a site contaminated by a smelting works which contained much higher levels of zinc, cadmium and lead than the spiders would have been used to in their normal diet.

  10. Assessing the effects of model Maillard compound intake on iron, copper and zinc retention and tissue delivery in adult rats.

    PubMed

    Roncero-Ramos, Irene; Pastoriza, Silvia; Navarro, M Pilar; Delgado-Andrade, Cristina

    2016-01-01

    The behaviour of dietary Maillard reaction compounds (MRP) as metal chelating polymers can alter mineral absorption and/or retention. Our aim in this study was to analyse the long-term effects of the consumption of model MRP from glucose-lysine heated for 90 min at 150 °C (GL) on iron, copper and zinc whole-body retention and tissue delivery. For 88 days, weaning rats were fed a Control diet or one containing 3% GL, until reaching the adult stage. During the experimental period a mineral balance was conducted to investigate the mineral retention. At day 88, the animals were sacrificed, blood was drawn for haemoglobin determination and some organs were removed. Copper and zinc balances were unaffected (Cu: 450 vs. 375 μg; Zn: 6.7 vs. 6.2 mg for Control and GL groups, respectively) and no change was observed in whole-body delivery. Iron retention, too, was unaltered (11.2 mg for Control and GL groups) but due to the tendency toward decreased body weight in the GL group (248 vs. 233 g for the Control and GL groups), whole-body iron concentration was 13% higher in the GL group than in the Control group. Absorbed iron accumulated particularly in the liver (144 vs. 190 μg g(-1) for the Control and GL groups), thus reducing haemoglobin levels. The long-term intake of MRP induced iron accumulation in the body but this did not result in enhanced iron functionality, since the haemoglobin concentration declined. Taking into account the findings of our research group's studies of young and adult rats, we now corroborate the hypothesis that the negative effect of GL MRP consumption on iron functionality takes place regardless of the animals' stage of life. PMID:26593232

  11. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts.

    PubMed

    Lim, H E; Miyata, Y; Nakayama, T; Chen, S; Kitaura, R; Shinohara, H

    2011-09-30

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices. PMID:21891846

  12. Purity-enhanced bulk synthesis of thin single-wall carbon nanotubes using iron-copper catalysts

    NASA Astrophysics Data System (ADS)

    Lim, H. E.; Miyata, Y.; Nakayama, T.; Chen, S.; Kitaura, R.; Shinohara, H.

    2011-09-01

    We report high purity and high yield synthesis of single-wall carbon nanotubes (SWCNTs) of narrow diameter from iron-copper bimetal catalysts. The SWCNTs with diameter of 0.8-1.2 nm are synthesized using the zeolite-supported alcohol chemical vapour deposition method. Single metal and bimetal catalysts are systematically investigated to achieve both the enhancement of SWCNT yield and the suppression of the undesired formation of graphitic impurities. The relative yield and purity of SWCNTs are quantified using optical absorption spectroscopy with an ultracentrifuge-based purification technique. For the single metal catalyst, iron shows the highest catalytic activity compared with the other metals such as cobalt, nickel, molybdenum, copper, and platinum. It has been found that the addition of copper to iron results in the suppression of carbonaceous impurity formation without decreasing the SWCNT yield. The purity-enhanced SWCNT shows fairly low sheet resistance due to the improvement of inter-nanotube contacts. This scalable design of SWCNT synthesis with enhanced purity is therefore a promising tool for shaping future high performance devices.

  13. BARIUM RECOVERY PROCESS

    DOEpatents

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  14. Reactivity of food phenols with iron and copper ions: binding, dioxygen activation and oxidation mechanisms.

    PubMed

    Nkhili, Ezzohra; Loonis, Michèle; Mihai, Simona; El Hajji, Hakima; Dangles, Olivier

    2014-06-01

    In this work, the affinity of common dietary phenols (gallic acid, caffeic acid, catechin, and rutin) for iron and copper ions was quantitatively investigated in neutral phosphate buffer as well as the reactivity of the complexes toward dioxygen. Contrasting behaviors were observed: because of the competing phosphate ions, Fe(III) binding is much slower than Fe(II) binding, which is rapidly followed by autoxidation of Fe(II) into Fe(III). With both ions, O2 consumption and H2O2 production are modest and the phenolic ligands are only slowly oxidized. By contrast, metal-phenol binding is fast with both Cu(I) and Cu(II). With Cu(I), O2 consumption and H2O2 production are very significant and the phenolic ligands are rapidly oxidized into a complex mixture of oligomers. The corresponding mechanism with Cu(II) is hampered by the preliminary rate-determining step of Cu(II) reduction by the phenols. The consequences of these findings for the stability and antioxidant activity of plant phenols are discussed. PMID:24700074

  15. Microstructure and Mechanical Properties of As-Cast Ductile Irons Alloyed with Manganese and Copper

    NASA Astrophysics Data System (ADS)

    Dasgupta, Ranjan Kumar; Mondal, Dipak Kumar; Chakrabarti, Ajit Kumar; Ganguli, Ashis Chandra

    2012-08-01

    The present investigation was carried out to study the effect of manganese and copper addition, singly as well as in combination, on the microstructure, micro-segregation, and mechanical properties of ductile irons. Alloy A (3.18C, 2.64Si, 0.45Mn), alloy B (3.35C, 2.51Si, 0.82Mn), alloy C (3.16C, 2.80Si, 1.08Mn, 0.56Cu), and alloy D (3.18C, 3.00Si, 1.04Mn, 1.13Cu) were melted and cast in the form of Y-block test pieces. The cast microstructures varied from ferrito-pearlitic in alloys A, B, and C to pearlitic in alloy D. However, on XRD analysis and SEM examination, the presence of martensite patches was also detected. There was a marginal decrease in nodule count in alloy B. In alloys C and D, nodule counts were higher, but the proportion of ferrite decreased drastically. Alloy D was found to be the strongest (UTS ≈ 800 MPa, El = 5%) with alloys A and C coming next in strength; while alloy B was weakest of the four. The presence of martensite patches in association with pearlite appears to be responsible for low toughness of these alloys. Microprobe analysis shows some silicon segregation near the graphite nodules and practically little segregation of manganese. Elemental mapping by FE-SEM does not indicate any manganese segregation.

  16. Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants.

    PubMed

    Pinto, A P; Mota, A M; de Varennes, A; Pinto, F C

    2004-06-29

    This article describes an experiment, carried out under controlled environment conditions, to investigate the effects of a fulvic acid fraction of soil organic matter on growth, cadmium (Cd) uptake and redistribution by sorghum. In addition the uptake of copper (Cu), zinc (Zn) and iron (Fe) was also determined. Sorghum was grown in nutrient solutions with 0, 0.1, 1 and 10 mg Cd dm(-3), in the absence and presence of organic matter (32 mg C dm(-3)), for various periods up to 20 days. A decrease in sorghum biomass due to Cd toxicity was observed at 10 mg Cd dm(-3), but for concentrations of 0.1 and 1 mg Cd dm(-3) the biomass was increased compared with control, without visual toxicity symptoms. The presence of organic matter (OM) further increased biomass production. Cadmium was mainly retained in sorghum roots, as usually found in tolerant plants, but Cd accumulation in sorghum was greater than in other Gramineae, or even more tolerant plants such as lettuce. The presence of OM decreased the bioavailability of Cd that was partially retained in solution by the OM ligands. However, OM promoted the translocation of Cd to shoots, an effect that may pose a risk to public health because plant-animal transfer of Cd could be enhanced. The presence of OM decreased the uptake of Cu, Zn and Fe. The presence (vs. absence) of 0.1 mg Cd dm(-3) enhanced the uptake of Fe, both in the absence and presence of OM. PMID:15142779

  17. Phase diagram, thermal stability, and high temperature oxidation of the ternary copper-nickel-iron system

    NASA Astrophysics Data System (ADS)

    Gallino, Isabella

    Due to the aluminum industry demands, a large effort has recently been devoted to the development of special alloys to be used as inert anodes for a newly designed aluminum reduction cell. The implementation of this new technology aims at the replacement of the graphite anodes that have been used for over 100 years in aluminum smelting, which would reduce fossil carbon consumption, and eliminate the emission of carbon dioxide and of perfluorocarbons. Ternary alloys containing copper, nickel, and iron have been the subject of the research activities. The present research focused on the stability of the Cu-Ni-Fe alloys at high temperatures in oxidizing and fluoridating environments. The experimental methods included thermodynamic calculations of the phase diagram (Thermocalc), optical microscopy and microprobe microstructural and chemical investigations (EMPA), small-angle neutron scattering (SANS), differential thermal analysis (DTA), and air-oxidation studies. The results have led to the optimization of the Cu-Ni-Fe ternary phase diagram and to an extensive study of the thermodynamics and kinetics of the spinodal decomposition and discontinuous reactions occurring during ageing as a function of alloy composition. The oxidizing reactions occurring in air at high temperatures at the surface of the alloys have been also discussed in terms of thermodynamic and kinetic laws. The phase formation in a fluorine containing environment as encountered in an aluminum electrolytic cell is predicted using principles of physical chemistry.

  18. Assessing Plasma Levels of Selenium, Copper, Iron and Zinc in Patients of Parkinson’s Disease

    PubMed Central

    Cheng, Xing; Wang, Jian-Yong; Hu, Bei-Lei; Zhang, Yan; Zhang, Xiong; Zhu, Jian-Hong

    2013-01-01

    Trace elements have been recognized to play an important role in the development of Parkinson’s disease (PD). However, it is difficult to precisely identify the relationship between these elements and the progression of PD because of an insufficient number of patients. In this study, quantifications of selenium (Se), copper (Cu), iron (Fe) and zinc (Zn) by atomic absorption spectrophotometry were performed in plasma from 238 PD patients and 302 controls recruited from eastern China, which is so far the largest cohort of PD patients and controls for measuring plasma levels of these elements. We found that plasma Se and Fe concentrations were significantly increased whereas Cu and Zn concentrations decreased in PD patients as compared with controls. Meanwhile, these four elements displayed differential changes with regard to age. Linear and logistic regression analyses revealed that both Fe and Zn were negatively correlated with age in PD patients. Association analysis suggests that lower plasma Se and Fe levels may reduce the risk for PD, whereas lower plasma Zn is probably a PD risk factor. Finally, a model was generated to predict PD patients based on the plasma concentrations of these four trace elements as well as other features such as sex and age, which achieved an accuracy of 80.97±1.34% using 10-fold cross-validation. In summary, our data provide new insights into the roles of Se, Cu, Fe and Zn in PD progression. PMID:24340079

  19. [Reduction Kinetics of Cr (VI) in Chromium Contaminated Soil by Nanoscale Zerovalent Iron-copper Bimetallic].

    PubMed

    Ma, Shao-yun; Zhu, Fang; Shang, Zhi-feng

    2016-05-15

    Nanoscale zerovalent iron-copper bimetallic (nZVI/Cu) was produced by liquid-phase reduction and characterized by SEM and XRD. The remediation of Cr (VI) contaminated soil was conducted with nZVI/Cu, and the affecting factors and reduction kinetics were investigated. The results indicated that nZVI/Cu was effective in the degradation of Cr(VI) in soil at an initial pH of 7 at 30'C.After 10 min of reaction, Cr(VI) in the soil was completely degraded when the. concentration of nZVI/Cu was 2 g · L⁻' and the concentration of Cr(VI) in contaminated soil was 88 mg · kg⁻¹. nZVI/Cu amount, pH value, reaction temperature, and the concentration of humic acid affected the degradation of Cr(VI). The removal efficiency of Cr(VI)--increased with increasing reaction temperature and decreased with increasing initial pH value. Humic acid had a certain impact on the degradation of Cr(W) in soil. The removal of Cr (VI) followed the pseudo first order reduction kinetics model, and the relationship between the reduction rate and the reaction temperature accorded with Arrhenius law, and the reaction activation energy (Ea) was 104.26 kJ · mol⁻¹. PMID:27506053

  20. Iron, copper, and zinc concentrations in normal skin and in various nonmalignant and malignant lesions

    SciTech Connect

    Gorodetsky, R.; Sheskin, J.; Weinreb, A.

    1986-09-01

    The concentrations of zinc (Zn), copper (Cu), and iron (Fe) in the skin have been noninvasively determined in vivo by diagnostic x-ray spectrometry. The skin of healthy controls was divided into two major groups based upon the distribution of the concentrations of these elements. In the face and upper neck, the following wet weight concentrations were recorded: Fe, 14.2 +/- 3.3 ppm; Cu, 1.3 +/- 0.3 ppm; and Zn, 6.7 +/- 1.1 ppm. In the chest, abdomen, arm, axilla, and lower neck, the concentrations of these elements were as follows: Fe, 10.2 +/- 2.5 ppm; Cu, 0.8 +/- 0.3 ppm; and Zn, 4.5 +/- 1.7 ppm. In most lesions of solar dermatitis, solar keratosis, basal and squamous cell carcinomas, variable elevations of Zn and Fe (up to significant levels) were recorded in most of the contralateral, apparently uninvolved skin. In the majority of pigmented nevi and malignant melanomas, the levels of Fe and Zn were elevated. In some of these, the Cu concentration also was increased.

  1. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  2. Barium enema (image)

    MedlinePlus

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  3. The effect of copper(II), iron(II) sulphate, and vitamin C combinations on the weak antimicrobial activity of (+)-catechin against Staphylococcus aureus and other microbes.

    PubMed

    Holloway, Andrew C; Mueller-Harvey, Irene; Gould, Simon W J; Fielder, Mark D; Naughton, Declan P; Kelly, Alison F

    2012-12-01

    Few attempts have been made to improve the activity of plant compounds with low antimicrobial efficacy. (+)-Catechin, a weak antimicrobial tea flavanol, was combined with putative adjuncts and tested against different species of bacteria. Copper(II) sulphate enhanced (+)-catechin activity against Pseudomonas aeruginosa but not Staphylococcus aureus, Proteus mirabilis or Escherichia coli. Attempts to raise the activity of (+)-catechin against two unresponsive species, S. aureus and E. coli, with iron(II) sulphate, iron(III) chloride, and vitamin C, showed that iron(II) enhanced (+)-catechin against S. aureus, but not E. coli; neither iron(III) nor combined iron(II) and copper(II), enhanced (+)-catechin activity against either species. Vitamin C enhanced copper(II) containing combinations against both species in the absence of iron(II). Catalase or EDTA added to active samples removed viability effects suggesting that active mixtures had produced H(2)O(2)via the action of added metal(II) ions. H(2)O(2) generation by (+)-catechin plus copper(II) mixtures and copper(II) alone could account for the principal effect of bacterial growth inhibition following 30 minute exposures as well as the antimicrobial effect of (+)-catechin-iron(II) against S. aureus. These novel findings about a weak antimicrobial flavanol contrast with previous knowledge of more active flavanols with transition metal combinations. Weak antimicrobial compounds like (+)-catechin within enhancement mixtures may therefore be used as efficacious agents. (+)-Catechin may provide a means of lowering copper(II) or iron(II) contents in certain crop protection and other products. PMID:23138340

  4. Fractionation of fulvic acid by iron and aluminum oxides: influence on copper toxicity to Ceriodaphnia dubia

    USGS Publications Warehouse

    Smith, Kathleen S.; James F. Ranville; Emily K. Lesher; Daniel J. Diedrich; Diane M. McKnight; Ruth M. Sofield

    2014-01-01

    This study examines the effect on aquatic copper toxicity of the chemical fractionation of fulvic acid (FA) that results from its association with iron and aluminum oxyhydroxide precipitates. Fractionated and unfractionated FAs obtained from streamwater and suspended sediment were utilized in acute Cu toxicity tests on ,i>Ceriodaphnia dubia. Toxicity test results with equal FA concentrations (6 mg FA/L) show that the fractionated dissolved FA was 3 times less effective at reducing Cu toxicity (EC50 13 ± 0.6 μg Cu/L) than were the unfractionated dissolved FAs (EC50 39 ± 0.4 and 41 ± 1.2 μg Cu/L). The fractionation is a consequence of preferential sorption of molecules having strong metal-binding (more aromatic) moieties to precipitating Fe- and Al-rich oxyhydroxides, causing the remaining dissolved FA to be depleted in these functional groups. As a result, there is more bioavailable dissolved Cu in the water and hence greater potential for Cu toxicity to aquatic organisms. In predicting Cu toxicity, biotic ligand models (BLMs) take into account dissolved organic carbon (DOC) concentration; however, unless DOC characteristics are accounted for, model predictions can underestimate acute Cu toxicity for water containing fractionated dissolved FA. This may have implications for water-quality criteria in systems containing Fe- and Al-rich sediment, and in mined and mineralized areas in particular. Optical measurements, such as specific ultraviolet absorbance at 254 nm (SUVA254), show promise for use as spectral indicators of DOC chemical fractionation and inferred increased Cu toxicity.

  5. Iron and copper accumulation in the brain of coxsackievirus-infected mice exposed to cadmium

    SciTech Connect

    Ilbaeck, N.-G. . E-mail: nils-gunnar.ilback@slv.se; Lindh, U.; Minqin, R.; Friman, G.; Watt, F.

    2006-11-15

    Cadmium (Cd) is a potentially toxic metal widely distributed in the environment and known to cause adverse health effects in humans. During coxsackievirus infection, the concentrations of essential and nonessential trace elements (e.g., iron (Fe), copper (Cu), and Cd) change in different target organs of the infection. Fe and Cu are recognized cofactors in host defence reactions, and Fe is known to be associated with certain pathological conditions of the brain. However, whether nonessential trace elements could influence the balance of essential trace elements in the brain is unknown. In this study the brain Fe, Cu, and Cd contents were measured through inductively coupled plasma mass spectrometry and their distributions determined by nuclear microscopy in the early phase (day 3) of coxsackievirus B3 (CB3) infection in nonexposed and in Cd-exposed female Balb/c mice. In CB3 infection the brain is a well-known target that has not been studied with regard to trace element balance. The brain concentration of Cu compared with that of noninfected control mice was increased by 9% (P<0.05) in infected mice not exposed to Cd and by 10% (not significant) in infected Cd-exposed mice. A similar response was seen for Fe, which in infected Cd-exposed mice, compared to noninfected control mice, tended to increase by 16%. Cu showed an even tissue distribution, whereas Fe was distributed in focal deposits. Changes in Cd concentration in the brain of infected mice were less consistent but evenly distributed. Further studies are needed to define whether the accumulation and distribution of trace elements in the brain have an impact on brain function.

  6. Absorption spectroscopy of mid and neighboring Z plasmas: Iron, nickel,copper and germanium

    NASA Astrophysics Data System (ADS)

    Loisel, G.; Arnault, P.; Bastiani-Ceccotti, S.; Blenski, T.; Caillaud, T.; Fariaut, J.; Fölsner, W.; Gilleron, F.; Pain, J.-C.; Poirier, M.; Reverdin, C.; Silvert, V.; Thais, F.; Turck-Chièze, S.; Villette, B.

    2009-09-01

    Opacities of four medium Z element plasmas (iron, nickel, copper and germanium) have been measured at the LULI-2000 facility in similar conditions: temperatures between 15 and 25 eV and densities between 2 and 10 mg/cm 3, in a wavelength range (8-18 Å) including the strong 2p-3d structures. Two laser beams from the LULI facility were used in the nanosecond-picosecond configuration. The NANO-2000 beam (at λ = 0.53 μm) heated a gold hohlraum with an energy between 30 and 150 J with a duration of 0.6 ns. Samples covering half a hohlraum hole were thus radiatively heated. The picosecond pulse PICO-2000 beam (at λ = 1.053 μm) has been used to produce a short (about 10 ps) X-ray backlighter in order to reduce time variations of temperatures and densities during the measurement. A crystal high-resolution spectrometer was used as the main diagnostic to record at the same time the non-absorbed and the absorbed backlighter spectra. Radiation temperatures were measured using a broadband spectrometer. 1D and 2D simulations have been performed in order to estimate hydrodynamic plasmas parameters. The measured spectra have been compared with theoretical ones obtained using either the superconfiguration code SCO or the detailed term accounting code HULLAC. These comparisons allow us to check the modeling of the statistical broadening and of the spin-orbit splitting of the 2p-3d transitions and related effects such as the interaction between relativistic subconfigurations belonging to the same non-relativistic configuration.

  7. Atomistic study on mixed-mode fracture mechanisms of ferrite iron interacting with coherent copper and nickel nanoclusters

    NASA Astrophysics Data System (ADS)

    Al-Motasem, Ahmed Tamer; Mai, Nghia Trong; Choi, Seung Tae; Posselt, Matthias

    2016-04-01

    The effect of copper and/or nickel nanoclusters, generally formed by neutron irradiation, on fracture mechanisms of ferrite iron was investigated by using molecular statics simulation. The equilibrium configuration of nanoclusters was obtained by using a combination of an on-lattice annealing based on Metropolis Monte Carlo method and an off-lattice relaxation by molecular dynamics simulation. Residual stress distributions near the nanoclusters were also calculated, since compressive or tensile residual stresses may retard or accelerate, respectively, the propagation of a crack running into a nanocluster. One of the nanoclusters was located in front of a straight crack in ferrite iron with a body-centered cubic crystal structure. Two crystallographic directions, of which the crack plane and crack front direction are (010)[001] and (111) [ 1 bar 10 ] , were considered, representing cleavage and non-cleavage orientations in ferrite iron, respectively. Displacements corresponding to pure opening-mode and mixed-mode loadings were imposed on the boundary region and the energy minimization was performed. It was observed that the fracture mechanisms of ferrite iron under the pure opening-mode loading are strongly influenced by the presence of nanoclusters, while under the mixed-mode loading the nanoclusters have no significant effect on the crack propagation behavior of ferrite iron.

  8. The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.

    PubMed Central

    Basu, Piku; Katterle, Bettina; Andersson, K Kristoffer; Dalton, Howard

    2003-01-01

    A protocol has been developed which permits the purification of a membrane-associated methane-oxidizing complex from Methylococcus capsulatus (Bath). This complex has approximately 5 fold higher specific activity than any purified particulate methane mono-oxygenase (pMMO) previously reported from M. capsulatus (Bath). This efficiently functioning methane-oxidizing complex consists of the pMMO hydroxylase (pMMOH) and an unidentified component we have assigned as a potential pMMO reductase (pMMOR). The complex was isolated by solubilizing intracytoplasmic membrane preparations containing the high yields of active membrane-bound pMMO (pMMO(m)), using the non-ionic detergent dodecyl-beta-D-maltoside, to yield solubilized enzyme (pMMO(s)). Further purification gave rise to an active complex (pMMO(c)) that could be resolved (at low levels) by ion-exchange chromatography into two components, the pMMOH (47, 27 and 24 kDa subunits) and the pMMOR (63 and 8 kDa subunits). The purified complex contains two copper atoms and one non-haem iron atom/mol of enzyme. EPR spectra of preparations grown with (63)Cu indicated that the copper ion interacted with three or four nitrogenic ligands. These EPR data, in conjunction with other experimental results, including the oxidation by ferricyanide, EDTA treatment to remove copper and re-addition of copper to the depleted protein, verified the essential role of copper in enzyme catalysis and indicated the implausibility of copper existing as a trinuclear cluster. The EPR measurements also demonstrated the presence of a tightly bound mononuclear Fe(3+) ion in an octahedral environment that may well be exchange-coupled to another paramagnetic species. PMID:12379148

  9. The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.

    PubMed

    Basu, Piku; Katterle, Bettina; Andersson, K Kristoffer; Dalton, Howard

    2003-01-15

    A protocol has been developed which permits the purification of a membrane-associated methane-oxidizing complex from Methylococcus capsulatus (Bath). This complex has approximately 5 fold higher specific activity than any purified particulate methane mono-oxygenase (pMMO) previously reported from M. capsulatus (Bath). This efficiently functioning methane-oxidizing complex consists of the pMMO hydroxylase (pMMOH) and an unidentified component we have assigned as a potential pMMO reductase (pMMOR). The complex was isolated by solubilizing intracytoplasmic membrane preparations containing the high yields of active membrane-bound pMMO (pMMO(m)), using the non-ionic detergent dodecyl-beta-D-maltoside, to yield solubilized enzyme (pMMO(s)). Further purification gave rise to an active complex (pMMO(c)) that could be resolved (at low levels) by ion-exchange chromatography into two components, the pMMOH (47, 27 and 24 kDa subunits) and the pMMOR (63 and 8 kDa subunits). The purified complex contains two copper atoms and one non-haem iron atom/mol of enzyme. EPR spectra of preparations grown with (63)Cu indicated that the copper ion interacted with three or four nitrogenic ligands. These EPR data, in conjunction with other experimental results, including the oxidation by ferricyanide, EDTA treatment to remove copper and re-addition of copper to the depleted protein, verified the essential role of copper in enzyme catalysis and indicated the implausibility of copper existing as a trinuclear cluster. The EPR measurements also demonstrated the presence of a tightly bound mononuclear Fe(3+) ion in an octahedral environment that may well be exchange-coupled to another paramagnetic species. PMID:12379148

  10. Copper

    Integrated Risk Information System (IRIS)

    Copper ; CASRN 7440 - 50 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects )

  11. Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Capote, T.; Marcó, L. M.; Alvarado, J.; Greaves, E. D.

    1999-10-01

    The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, 'layer on layer' internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.

  12. Observed transitions in n = 2 ground configurations of copper, nickel, iron, chromium and germanium in tokamak discharges

    SciTech Connect

    Hinnov, E.; Suckewer, S.; Cohen, S.; Sato, K.

    1981-11-01

    A number of spectrum lines of highly ionized copper, nickel, iron, chromium, and germanium have been observed and the corresponding transitions identified. The element under study is introduced into the discharge of the PLT Tokamak by means of rapid ablation by a laser pulse. The ionization state is generally distinguishable from the time behavior of the emitted light. New identifications of transitions are based on predicted wavelengths (from isoelectronic extrapolation and other data) and on approximate expected intensities. All the transitions pertain to the ground configurations of the respective ions, which are the only states strongly populated at tokamak plasma conditions. These lines are expected to be useful for spectroscopic plasma diagnostics in the 1-3 keV temperature range, and they provide direct measurement of intersystem energy separations from chromium through copper in the oxygen, nitrogen, and carbon isoelectronic sequences.

  13. Zinc, iron, manganese, and magnesium accumulation in crayfish populations near copper-nickel smelters at Sudbury, Ontario, Canada

    SciTech Connect

    Bagatto, G.; Alikhan, M.A.

    1987-06-01

    The Sudbury basin has been subjected to extreme ecological disturbances from logging, mining and smelting activities. Elevated concentrations of copper, cadmium, and nickel have been reported in crayfish populations close to the Sudbury smelting works. The present study compares concentrations of zinc (Zn), iron (Fe), manganese (Mn) and magnesium (Mg) in freshwater crayfish at selected distances of the habitat from the emission source. These metals were selected since they are known to be emitted in moderately high quantities into the Sudbury environment as byproduct of the smelting process. Various tissue concentrations in crayfish were also examined to determined specific tissue sites for these accumulations.

  14. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  15. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  16. Effects of sulfur, zinc, iron, copper, manganese, and boron applications on sunflower yield and plant nutrient concentration

    SciTech Connect

    Hilton, B.R.; Zubriski, J.C.

    1985-01-01

    Sulfur, zinc, iron, copper, manganese, and boron application did not affect the seed yield or oil percentage of sunflower (Helianthus annuus L.) on both dryland and irrigated soils in North Dakota in 1981. Field averages indicated significant Zn, Mn, and B uptake by sunflower at the 12-leaf stage as a result of fertilization with these elements. Increased Zn uptake was also observed in the uppermost mature leaf at anthesis from zinc fertilization. Although sunflower yield from boron fertilization was not significantly different from the check, a trend was observed in which boron fertilization seemed to decrease sunflower yield. Sunflower yields from the boron treatment were the lowest out of seven treatments in three out of four fields. Also, sunflower yield from the boron treatment was significantly lower than both iron and sulfur treatments when all fields were combined.

  17. Auger electron spectroscopy study of surface segregation in the binary alloys copper-1 atomic percent indium, copper-2 atomic percent tin, and iron-6.55 atomic percent silicon

    NASA Technical Reports Server (NTRS)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine surface segregation in the binary alloys copper-1 at. % indium, copper-2 at. % tin and iron-6.55 at. % silicon. The copper-tin and copper-indium alloys were single crystals oriented with the /111/ direction normal to the surface. An iron-6.5 at. % silicon alloy was studied (a single crystal oriented in the /100/ direction for study of a (100) surface). It was found that surface segregation occurred following sputtering in all cases. Only the iron-silicon single crystal alloy exhibited equilibrium segregation (i.e., reversibility of surface concentration with temperature) for which at present we have no explanation. McLean's analysis for equilibrium segregation at grain boundaries did not apply to the present results, despite the successful application to dilute copper-aluminum alloys. The relation of solute atomic size and solubility to surface segregation is discussed. Estimates of the depth of segregation in the copper-tin alloy indicate that it is of the order of a monolayer surface film.

  18. Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium, and lead in the liver and kidneys of dogs according to age, gender, and the occurrence of chronic kidney disease

    PubMed Central

    Mainzer, Barbara; Lahrssen-Wiederholt, Monika; Schafft, Helmut; Palavinskas, Richard; Breithaupt, Angele; Zentek, Jürgen

    2015-01-01

    This study was conducted to measure the concentrations of strontium (Sr), barium (Ba), cadmium (Cd), copper (Cu), zinc (Zn), manganese (Mn), chromium (Cr), antimony (Sb), selenium (Se), and lead (Pb) in canine liver, renal cortex, and renal medulla, and the association of these concentrations with age, gender, and occurrence of chronic kidney disease (CKD). Tissues from 50 dogs were analyzed using inductively coupled plasma mass spectrometry. Cu, Zn, and Mn levels were highest in the liver followed by the renal cortex and renal medulla. The highest Sr, Cd, and Se concentrations were measured in the renal cortex while lower levels were found in the renal medulla and liver. Female dogs had higher tissue concentrations of Sr (liver and renal medulla), Cd (liver), Zn (liver and renal cortex), Cr (liver, renal cortex, and renal medulla), and Pb (liver) than male animals. Except for Mn and Sb, age-dependent variations were observed for all element concentrations in the canine tissues. Hepatic Cd and Cr concentrations were higher in dogs with CKD. In conclusion, the present results provide new knowledge about the storage of specific elements in canine liver and kidneys, and can be considered important reference data for diagnostic methods and further investigations. PMID:25234328

  19. Semifluorinated Alkylphosphonic Acids Form High-Quality Self-Assembled Monolayers on Ag-Coated Yttrium Barium Copper Oxide Tapes and Enable Filamentization of the Tapes by Microcontact Printing.

    PubMed

    Park, Chul Soon; Lee, Han Ju; Lee, Dahye; Jamison, Andrew C; Galstyan, Eduard; Zagozdzon-Wosik, Wanda; Freyhardt, Herbert C; Jacobson, Allan J; Lee, T Randall

    2016-08-30

    A custom-designed semifluorinated phosphonic acid, (9,9,10,10,11,11,12,12,13,13,14,14,15,15,16,16,16-heptadecafluorohexadecyl)phosphonic acid (F8H8PA), and a normal hexadecylphosphonic acid (H16PA) were synthesized and used to generate self-assembled monolayers (SAMs) on commercially available yttrium barium copper oxide (YBCO) tapes. In this study, we wished to evaluate the effectiveness of these monolayer films as coatings for selectively etching YBCO. Initial films formed by solution deposition and manual stamping using a non-patterned polydimethylsiloxane stamp allowed for a comparison of the film-formation characteristics. The resulting monolayers were characterized by X-ray photoelectron spectroscopy (XPS), contact angle goniometry, and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS). To prepare line-patterned (filamentized) YBCO tapes, standard microcontact printing (μ-CP) procedures were used. The stamped patterns on the YBCO tapes were characterized by scanning electron microscopy (SEM) before and after etching to confirm the effectiveness of the patterning process on the YBCO surface and energy-dispersive X-ray spectroscopy (EDX) to obtain the atomic composition of the exposed interface. PMID:27482760

  20. Evaluation of cadmium, copper, zinc, and iron concentrations and tissue distributions in the benthic crab, Dorippe granulata (De Haan, 1841) from Tolo Harbour, Hong Kong.

    PubMed

    Depledge, M H; Forbes, T L; Forbes, V E

    1993-01-01

    The distributions of copper, zinc, iron, and cadmium among the tissues of Dorippe granulata were determined. The highest copper concentrations were found in the haemolymph (c. 53 microg ml(-1)) while the highest iron concentrations occurred in the gills (c. 720 microg g(-1) dry weight) and the highest zinc concentrations in the exoskeleton (c. 200 microg g(-1) dry weight). By comparison, concentrations of the non-essential metal, cadmium, were low in all tissues (mean = 10 microg g(-1) dry weight). The highest value was recorded from the midgut gland of a female crab (18.5 microg Cd g(-1) dry weight). Concentrations of copper, zinc, and iron were positively correlated with tissue-hydration levels. Such a relationship was not found for cadmium. The findings are discussed with regard to trace-metal levels found in temperate and tropical brachyurans from clean and polluted localities. PMID:15091832

  1. New Measurements of the Densities of Copper, Nickel, and Iron Sulfide Liquids

    NASA Astrophysics Data System (ADS)

    Mioduszewski, L.; Kress, V. C.

    2005-12-01

    Density measurements of sulfide liquids in the Fe-Ni-Cu-S-O system were performed from 1150°C-1250°C under controlled oxygen and sulfur fugacities. Measurements were made using the modified single bob (MSB) Archimedean method using zirconia ceramic bobs and crucibles. A 0.005mm resolution micrometer was attached to an elevator, which raised the crucible and melt relative to the free-hanging, stationary bob. A 0.001 g resolution analytical balance connected to a laptop computer continuously recorded the buoyancy as a function of crucible elevation. Densities were calculated by converting elevation to immersed volume and regressing the slope of buoyancy versus volume immersed. log(fO2) in the experiments ranged from -7.8 to -12.6 and log(fS2) ranged from -0.9 to -3.3. 38 successful sulfide liquid density measurements were performed, with values ranging from 3.8 g/cc to 6.6 g/cc. Regression of the resulting data suggests that a simple linear volume mixing model is adequate to represent the compositional dependence of density in copper- and nickel-sulfide liquids. A moderate positive excess mixing volume appears to be justified in iron-sulfide liquids. This result, along with high derived partial molar volumes for oxygen and sulfur components, are qualitatively consistent with the suggestion that increasing pressure will partition oxygen and sulfur out of the sulfide liquid during planetary accretion. The MSB density measurement also provides information on the relative magnitude of gas-zirconia and sulfide-zirconia surface energies. Assuming most of the observed variation results from sulfide chemistry it appears that oxidizing conditions significantly decrease sulfide-zirconia surface energies (increase wetting). If we can extrapolate this result to silicate minerals, this would suggest that oxidizing conditions will decrease wetting angle and thus increase the potential for sulfide segregation during planetary formation. We hope to test this hypothesis soon. Our

  2. [Treating Cr(VI)-containing wastewater by a consortium of sulfate reducing bacteria and copper-iron bimetallic particles].

    PubMed

    He, Qi-Zhi; Chen, Hui; Wang, Dan; Li, Hua; Ding, Xing-Hu; Deng, Le

    2011-07-01

    Copper-iron bimetallic particles were prepared by chemical precipitation technique. Under the help of the particles Cr(VI)-containing wastewater was well treated by a consortium of sulfate reducing bacteria, which were enriched from industrial wastewater and acclimatized to tolerant to high concentrations of Cr(VI). SRB-Cu/Fe system, traditional SRB system and Cu/Fe system were experimented in the batch bioreactor, respectively. It is demonstrated that SRB-Cu/Fe bimetallic system perform much better than traditional SRB system or copper-iron bimetallic. The acclimation period of SRB was significantly reduced and the inhibiting concentration of Cr(VI) of SRB was also greatly increased by approximately 200% (from 100 mg x L(-1) to 300 mg x L(-1)). Under the conditions of Cr(VI) 300 mg x L(-1), Q(Cu)/Fe 7.5%, pH 5.0-8.0, the concentration of total chromium was less than 0.512 mg/L, Cr(VI) less than 0.071 mg, Cu next to zero after 48 h treatment. Having biological, chemical advantages and high efficiency, the novel SRB-Cu/Fe system should have the broad application prospects in industrial wastewater. PMID:21922821

  3. Iron-copper cooperative catalysis in the reactions of alkyl Grignard reagents: exchange reaction with alkenes and carbometalation of alkynes.

    PubMed

    Shirakawa, Eiji; Ikeda, Daiji; Masui, Seiji; Yoshida, Masatoshi; Hayashi, Tamio

    2012-01-11

    Iron-copper cooperative catalysis is shown to be effective for an alkene-Grignard exchange reaction and alkylmagnesiation of alkynes. The Grignard exchange between terminal alkenes (RCH═CH(2)) and cyclopentylmagnesium bromide was catalyzed by FeCl(3) (2.5 mol %) and CuBr (5 mol %) in combination with PBu(3) (10 mol %) to give RCH(2)CH(2)MgBr in high yields. 1-Alkyl Grignard reagents add to alkynes in the presence of a catalyst system consisting of Fe(acac)(3), CuBr, PBu(3), and N,N,N',N'-tetramethylethylenediamine to give β-alkylvinyl Grignard reagents. The exchange reaction and carbometalation take place on iron, whereas copper assists with the exchange of organic groups between organoiron and organomagnesium species through transmetalation with these species. Sequential reactions consisting of the alkene-Grignard exchange and the alkylmagnesiation of alkynes were successfully conducted by adding an alkyne to a mixture of the first reaction. Isomerization of Grignard reagents from 2-alkyl to 1-alkyl catalyzed by Fe-Cu also is applicable as the first 1-alkyl Grignard formation step. PMID:22128888

  4. Barium release system

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1973-01-01

    A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.

  5. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  6. Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary

    SciTech Connect

    Edwards, C.H.; Adkins, J.S.; Harrison, B.

    1986-03-05

    Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 ..mu..g and 19.6 +/- 1.6 ..mu..g, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 ..mu..g to 10.5 +/- 4.8 ..mu..g) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 ..mu..g vs 1661 +/- 471 ..mu..g, respectively, when compared to the control group.

  7. Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles

    NASA Astrophysics Data System (ADS)

    Liu, Sheng-Ao; Teng, Fang-Zhen; Li, Shuguang; Wei, Gang-Jian; Ma, Jing-Long; Li, Dandan

    2014-12-01

    Iron and copper isotopes are useful tools to track redox transformation and biogeochemical cycling in natural environment. To study the relationships of stable Fe and Cu isotopic variations with redox regime and biological processes during weathering and pedogenesis, we carried out Fe and Cu isotope analyses for two sets of basalt weathering profiles (South Carolina, USA and Hainan Island, China), which formed under different climatic conditions (subtropical vs. tropical). Unaltered parent rocks from both profiles have uniform δ56Fe and δ65Cu values close to the average of global basalts. In the South Carolina profile, δ56Fe values of saprolites vary from -0.01‰ to 0.92‰ in the lower (reduced) part and positively correlate with Fe3+/ΣFe (R2 = 0.90), whereas δ65Cu values are almost constant. By contrast, δ56Fe values are less variable and negatively correlate with Fe3+/ΣFe (R2 = 0.88) in the upper (oxidized) part, where large (4.85‰) δ65Cu variation is observed with most samples enriched in heavy isotopes. In the Hainan profile formed by extreme weathering under oxidized condition, δ56Fe values vary little (0.05-0.14‰), whereas δ65Cu values successively decrease from 0.32‰ to -0.12‰ with depth below 3 m and increase from -0.17‰ to 0.02‰ with depth above 3 m. Throughout the whole profile, δ65Cu positively correlate with Cu concentration and negatively correlate with the content of total organic carbon (TOC). Overall, the contrasting Fe isotopic patterns under different redox conditions suggest redox states play the key controls on Fe mobility and isotope fractionation. The negative correlation between δ56Fe and Fe3+/ΣFe in the oxidized part of the South Carolina profile may reflect addition of isotopically light Fe. This is demonstrated by leaching experiments, which show that Fe mineral pools extracted by 0.5 N HCl, representing poorly-crystalline Fe (hydr)-oxides, are enriched in light Fe isotopes. The systematic Cu isotopic variation

  8. Geology of the Fishtie deposit, Central Province, Zambia: iron oxide and copper mineralization in Nguba Group metasedimentary rocks

    NASA Astrophysics Data System (ADS)

    Hendrickson, Michael D.; Hitzman, Murray W.; Wood, David; Humphrey, John D.; Wendlandt, Richard F.

    2015-08-01

    The Fishtie copper deposit, located in the Central Province of Zambia, contains approximately 55 Mt of 1.04 % Cu at a 0.5 % Cu cut-off in oxide, sulfide, and mixed oxide-sulfide ores. The deposit is hosted in Neoproterozoic diamictites and siltstones of the Grand Conglomérat Formation and overlying Kakontwe Limestone Formation of the lower Nguba Group. The Grand Conglomérat Formation at Fishtie directly overlies basement schists and quartzites. Mineralized zones are located adjacent to high-angle normal faults that appear to control thickness variations in the Grand Conglomérat Formation suggesting synsedimentary fault movement. Iron-rich rocks consisting of nearly monomineralic bands of magnetite and ankerite occur within the Grand Conglomérat Formation. The absence of magnetite-rich clasts in overlying diamictites and the presence of disseminated magnetite, ankerite, and apatite in adjacent diamictites suggest this iron-rich rock formed by replacement of siltstone beds. These magnetite-rich rocks thicken towards normal faults suggesting the faults formed conduits for oxidized hydrothermal solutions. The magnetite-ankerite-quartz rock was overprinted by later hydrothermal alteration and sulfide mineralization. Copper sulfide precipitation was associated with growth of both muscovite and chlorite, together with weak silicification. Sulfides are zoned relative to normal faults with bornite more common in proximity to faults and ore stage pyrite most common in an outer zone with chalcopyrite. Copper sulfides display generally heavy sulfur isotopic values, suggesting sulfide derivation from thermochemical reduction of Neoproterozoic seawater sulfate. Copper mineralized zones in the Grand Conglomérat at Fishtie are megascopically similar to those observed in the newly discovered Kamoa deposit in the southern Democratic Republic of Congo. Alteration and mineralization at Fishtie display lateral zoning relative to normal faults unlike the broad vertical zonation

  9. Calculation of binodals and spinodals in multicomponent alloys by different statistical methods with application to iron-copper-manganese alloys

    SciTech Connect

    Vaks, V. G. Zhuravlev, I. A.; Khromov, K. Yu.

    2010-11-15

    A generalization of the pair-cluster (PC) approximation in the theory of disordered systems to multicomponent alloys is proposed. It is shown that phase equilibrium boundaries (binodals) calculated in the mean-field (MF) approximation, which is used in standard calculations of phase diagrams by the CALPHAD method, coincide with the results of rigorous calculations for dilute alloys; however, the application of these methods to calculating the boundaries of the stability region with respect to the decomposition of an alloy (spinodals) leads to large errors. At the same time, in the PC approximation, the description of all statistical properties, including binodals and spinodals, turns out to be exact for dilute alloys. The methods developed are illustrated by an example of iron-copper-manganese ternary alloys.

  10. Copper, iron, zinc, and selenium dietary intake and status of Nepalese lactating women and their breast-fed infants.

    PubMed

    Moser, P B; Reynolds, R D; Acharya, S; Howard, M P; Andon, M B; Lewis, S A

    1988-04-01

    The dietary intake of copper, iron, zinc, and selenium of 26 Nepalese lactating mothers was estimated from chemical analysis of 24-h food and beverage composites. Fasting blood and milk samples were obtained from the mothers and blood samples were obtained from the infants. The Nepalese mothers consumed significantly more Cu, significantly less Fe and Se, and similar amounts of Zn as compared with American lactating women. Blood Fe status indices and plasma concentrations of Cu, Zn, and Se were lower in the Nepalese mothers than in the American mothers. These lower values may in part be related to the high neutral detergent fiber and phytate content of the Nepalese diet, which could make these minerals less available for absorption. The high exposure to infections in Nepal may also depress Fe status indices and plasma Zn concentrations. The lower dietary Se intake of the Nepalese mothers was reflected in lower milk concentrations. PMID:3354498

  11. Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron

    PubMed Central

    Makarova, Anna A.; Grachova, Elena V.; Neudachina, Vera S.; Yashina, Lada V.; Blüher, Anja; Molodtsov, Serguei L.; Mertig, Michael; Ehrlich, Hermann; Adamchuk, Vera K.; Laubschat, Clemens; Vyalikh, Denis V.

    2015-01-01

    The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide. PMID:25736576

  12. Hot gas desulfurization with sorbents containing oxides of zinc, iron, vanadium and copper. Quarterly technical progress report

    SciTech Connect

    Akyurtlu, A.

    1991-10-01

    The main objective of this research is to evaluate the desulfurization performance of novel sorbents consisting of different combinations of zinc, iron, vanadium and copper oxides; and to develop a sorbent which can reduce H{sub 2}S levels to less than 1 ppmv, which can stabilize zinc, making operations above 650{degrees}C possible, and which can produce economically recoverable amounts of elemental sulfur during regeneration. This objective will be accomplished by evaluating the sorbent performance using fixed-bed and TGA experiments supported by sorbent characterization at various reaction extents. The work done in the fourth quarter can be summarized as follows: (1) Calibration of the gas chromatograph for low and high H{sub 2}S and SO{sub 2} is completed. (2) The determination of surface areas and densities of the promoted sorbents is completed. (3) Preliminary screening of the promoted sorbents in the packed bed reactor has started.

  13. Albedo factors of 123, 320, 511, 662 and 1115 keV gamma photons in carbon, aluminium, iron and copper

    NASA Astrophysics Data System (ADS)

    Kiran, K. U.; Ravindraswami, K.; Eshwarappa, K. M.; Somashekarappa, H. M.

    2016-04-01

    Experimental measurements to study the variation of albedo factors in carbon, aluminium, iron and copper are carried out using gamma photons obtained from 57Co, 133Ba, 22Na, 137Cs and 65Zn. The back-scattered photons from the samples are detected by a 3^''× 3^'' NaI(Tl) scintillation detector placed at a backscattering angle of 180°. The variation of number albedo ( AN), energy albedo ( AE) and dose albedo ( AD) as a function of source energy and atomic number ( Z) is studied. The experimentally obtained, response corrected variation of multiple scattered photons as a function of target thickness is compared with the Monte Carlo simulation using MCNP code and are in good agreement.

  14. Insight into Bio-metal Interface Formation in vacuo: Interplay of S-layer Protein with Copper and Iron

    NASA Astrophysics Data System (ADS)

    Makarova, Anna A.; Grachova, Elena V.; Neudachina, Vera S.; Yashina, Lada V.; Blüher, Anja; Molodtsov, Serguei L.; Mertig, Michael; Ehrlich, Hermann; Adamchuk, Vera K.; Laubschat, Clemens; Vyalikh, Denis V.

    2015-03-01

    The mechanisms of interaction between inorganic matter and biomolecules, as well as properties of resulting hybrids, are receiving growing interest due to the rapidly developing field of bionanotechnology. The majority of potential applications for metal-biohybrid structures require stability of these systems under vacuum conditions, where their chemistry is elusive, and may differ dramatically from the interaction between biomolecules and metal ions in vivo. Here we report for the first time a photoemission and X-ray absorption study of the formation of a hybrid metal-protein system, tracing step-by-step the chemical interactions between the protein and metals (Cu and Fe) in vacuo. Our experiments reveal stabilization of the enol form of peptide bonds as the result of protein-metal interactions for both metals. The resulting complex with copper appears to be rather stable. In contrast, the system with iron decomposes to form inorganic species like oxide, carbide, nitride, and cyanide.

  15. Removal of copper and iron by polyurethane foam column in FIA system for the determination of nickel in pierced ring.

    PubMed

    Vongboot, Monnapat; Suesoonthon, Monrudee

    2015-01-01

    Polyurethane foam (PUF) mini-column was used to eliminate copper and iron for the determination of nickel in pierced rings. The PUF mini-column was connected to FIA system for on-line sorption of copper and iron in complexes form of CuSCN(+) and FeSCN(2+). For this season, the acid solution containing a mixture of Ni(II), Fe(III), Cu(II) and SCN(-) ions was firstly flew into the PUF column. Then, the percolated solution which Fe(III) and Cu(II) ions is separated from analysis was injected into FIA system to react with 4-(2-pyridylazo) resorcinol (PAR) reagent in basic condition which this method is called pH gradient technique. The Ni-PAR complexes obtained were measured theirs absorbance at 500 nm by UV visible spectrophotometer. In this study, it was found that Cu(II) and Fe(III) were completely to form complexes with 400 mmol/L KSCN and entirely to eliminate in acidic condition at pH 3.0. In the optimum condition of these experiments, the method provided the linear relationship between absorbance and the concentration of Ni(II) in the range from 5.00 to 30.00 mg/L. Linear equation is y=0.0134x+0.0033 (R(2)=0.9948). Precision, assessed in the term of the relative standard deviation, RSD, and accuracy for multiple determinations obtained in values of 0.77-1.73% and 97.4%, respectively. The level of an average amount of Ni(II) in six piercing rings was evaluated to be 14.78 mg/g. PMID:25281109

  16. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.

    PubMed

    Ribeiro, Thales P; Fernandes, Christiane; Melo, Karen V; Ferreira, Sarah S; Lessa, Josane A; Franco, Roberto W A; Schenk, Gerhard; Pereira, Marcos D; Horn, Adolfo

    2015-03-01

    Due to their aerobic lifestyle, eukaryotic organisms have evolved different strategies to overcome oxidative stress. The recruitment of some specific metalloenzymes such as superoxide dismutases (SODs) and catalases (CATs) is of great importance for eliminating harmful reactive oxygen species (hydrogen peroxide and superoxide anion). Using the ligand HPClNOL {1-[bis(pyridin-2-ylmethyl)amino]-3-chloropropan-2-ol}, we have synthesized three coordination compounds containing iron(III), copper(II), and manganese(II) ions, which are also present in the active site of the above-noted metalloenzymes. These compounds were evaluated as SOD and CAT mimetics. The manganese and iron compounds showed both SOD and CAT activities, while copper showed only SOD activity. The copper and manganese in vitro SOD activities are very similar (IC50~0.4 μmol dm(-3)) and about 70-fold higher than those of iron. The manganese compound showed CAT activity higher than that of the iron species. Analyzing their capacity to protect Saccharomyces cerevisiae cells against oxidative stress (H2O2 and the O2(•-) radical), we observed that all compounds act as antioxidants, increasing the resistance of yeast cells mainly due to a reduction of lipid oxidation. Especially for the iron compound, the data indicate complete protection when wild-type cells were exposed to H2O2 or O2(•-) species. Interestingly, these compounds also compensate for both superoxide dismutase and catalase deficiencies; their antioxidant activity is metal ion dependent, in the order iron(III)>copper(II)>manganese(II). The protection mechanism employed by the complexes proved to be independent of the activation of transcription factors (such as Yap1, Hsf1, Msn2/Msn4) and protein synthesis. There is no direct relation between the in vitro and the in vivo antioxidant activities. PMID:25511255

  17. IRON

    EPA Science Inventory

    The document surveys the effects of organic and inorganic iron that are relevant to humans and their environment. The biology and chemistry of iron are complex and only partially understood. Iron participates in oxidation reduction processes that not only affect its geochemical m...

  18. The determination of aluminum, copper, iron, and lead in glycol formulations by atomic absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Initial screening tests and the results obtained in developing procedures to determine Al, Cu, Fe, and Pb in glycol formulations are described. Atomic absorption completion was selected for Cu, Fe and Pb, and after comparison with emission spectroscopy, was selected for Al also. Before completion, carbon, iron, and lead are extracted with diethyl dithio carbamate (DDC) into methyl isobutyl ketone (MIBK). Aluminum was also extracted into MIBK using 8-hydroxyquinoline as a chelating agent. As little as 0.02 mg/l carbon and 0.06 mg/l lead or iron may be determined in glycol formulations. As little as 0.3 mg/l aluminum may be determined.

  19. Laser-initiated combustion studies of selected aluminum, copper, iron, and nickel alloys

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Clark, A. F.

    1981-01-01

    The results of combustion studies at atmospheric pressure on ten metal alloys are presented. The alloys studied were aluminum alloys 1100, 2219, 6061, and tensile-50; 304, 347 and 21-6-9 stainless steel; inconel 600; beryllium copper and a bronze. It was found that once ignition was achieved all alloys would generally burn to completion. The overall combustion process appears to obey a first order rate process. Preliminary conclusions are presented along with recommendations for future work.

  20. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion

    PubMed Central

    Schrag, Matthew; Mueller, Claudius; Oyoyo, Udochukwu; Kirsch, Wolff M.

    2011-01-01

    Dysfunctional homeostasis of transition metals is believed to play a role in the pathogenesis of Alzheimer’s disease (AD). Although questioned by some, brain copper, zinc, and particularly iron overload are widely accepted features of AD which have led to the hypothesis that oxidative stress generated from aberrant homeostasis of these transition metals might be a pathogenic mechanism behind AD. This meta-analysis compiled and critically assessed available quantitative data on brain iron, zinc and copper levels in AD patients compared to aged controls. The results were very heterogeneous. A series of heavily cited articles from one laboratory reported a large increase in iron in AD neocortex compared to age-matched controls (p<0.0001) while seven laboratories failed to reproduce these findings reporting no significant difference between the groups (p=0.76). A more than three-fold citation bias was found to favor outlier studies reporting increases in iron and this bias was particularly prominent among narrative review articles. Additionally, while zinc was not significantly changed in the neocortex (p=0.29), copper was significantly depleted in AD (p=0.0003). In light of these findings, it will be important to re-evaluate the hypothesis that transition metal overload accounts for oxidative injury noted in AD. PMID:21600264

  1. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  2. Elevated copper in the amyloid plaques and iron in the cortex are observed in mouse models of Alzheimer’s disease that exhibit neurodegeneration

    PubMed Central

    Bourassa, Megan W.; Leskovjan, Andreana C.; Tappero, Ryan V.; Farquhar, Erik R.; Colton, Carol A.; Van Nostrand, William E.; Miller, Lisa M.

    2014-01-01

    BACKGROUND In Alzheimer’s disease (AD), alterations in metal homeostasis, including the accumulation of metal ions in the plaques and an increase of iron in the cortex, have been well documented but the mechanisms involved are poorly understood. OBJECTIVE In this study, we compared the metal content in the plaques and the iron speciation in the cortex of three mouse models, two of which show neurodegeneration (5xFAD and Tg-SwDI/NOS2−/− (CVN) and one that shows very little neurodegeneration (PSAPP). METHODS The Fe, Cu, and Zn contents and speciation were determined using synchrotron X-ray fluorescence microscopy (XFM) and X-ray absorption spectroscopy (XAS), respectively. RESULTS In the mouse models with reported significant neurodegeneration, we found that plaques contained ~25% more copper compared to the PSAPP mice. The iron content in the cortex increased at the late stage of the disease in all mouse models, but iron speciation remains unchanged. CONCLUSIONS The elevation of copper in the plaques and iron in the cortex is associated with AD severity, suggesting that these redox-active metal ions may be inducing oxidative damage and directly influencing neurodegeneration. PMID:24926425

  3. Silencing the Menkes Copper-Transporting ATPase (Atp7a) Gene in Rat Intestinal Epithelial (IEC-6) Cells Increases Iron Flux via Transcriptional Induction of Ferroportin 1 (Fpn1)123

    PubMed Central

    Gulec, Sukru; Collins, James F.

    2014-01-01

    The Menkes copper-transporting ATPase (Atp7a) gene is induced in rat duodenum during iron deficiency, consistent with copper accumulation in the intestinal mucosa and liver. To test the hypothesis that ATP7A influences intestinal iron metabolism, the Atp7a gene was silenced in rat intestinal epithelial (IEC-6) cells using short hairpin RNA (shRNA) technology. Perturbations in intracellular copper homeostasis were noted in knockdown cells, consistent with the dual roles of ATP7A in pumping copper into the trans-Golgi (for cuproenzyme synthesis) and exporting copper from cells. Intracellular iron concentrations were unaffected by Atp7a knockdown. Unexpectedly, however, vectorial iron (59Fe) transport increased (∼33%) in knockdown cells grown in bicameral inserts and increased further (∼70%) by iron deprivation (compared with negative control shRNA-transfected cells). Additional experiments were designed to elucidate the molecular mechanism of increased transepithelial iron flux. Enhanced iron uptake by knockdown cells was associated with increased expression of a ferrireductase (duodenal cytochrome b) and activity of a cell-surface ferrireductase. Increased iron efflux from knockdown cells was likely mediated via transcriptional activation of the ferroportin 1 gene (by an unknown mechanism). Moreover, Atp7a knockdown significantly attenuated expression of an iron oxidase [hephaestin (HEPH); by ∼80%] and membrane ferroxidase activity (by ∼50%). Cytosolic ferroxidase activity, however, was retained in knockdown cells (75% of control cells), perhaps compensating for diminished HEPH activity. This investigation has thus documented alterations in iron homeostasis associated with Atp7a knockdown in enterocyte-like cells. Alterations in copper transport, trafficking, or distribution may underlie the increase in transepithelial iron flux noted when ATP7A activity is diminished. PMID:24174620

  4. Correlation of erythrocyte and plasma levels of zinc, copper, and iron with evidence of metastatic spread in cancer patients

    SciTech Connect

    Gorodetsky, R.; Fuks, Z.; Sulkes, A.; Ginsburg, H.; Weshler, Z.

    1985-02-15

    The level of plasma copper (Cu-Pl) and zinc (Zn-Pl) and the level of erythrocyte iron (Fe-RBC), copper (Cu-RBC), and zinc (Zn-RBC) were determined in the blood of 70 normal donors and 138 patients with various solid tumors by diagnostic x-ray spectrometry (DXS), a technique based on x-ray fluorescence spectrometry analysis. There were no significant changes in the mean values of Zn-Pl, Fe-RBC, and Cu-RBC in the patients when compared with those of normal donors. The mean level of Cu-Pl in the normal donors was 1.34 +/- 0.37 micrograms/ml; it was significantly increased in the patients, ranging between 1.47 +/- 0.34 micrograms/ml for patients without evidence of active cancer (NED) and 1.91 +/- 0.76 micrograms/ml for patients with hepatic metastases. The most significant change observed was an increase in the Zn-RBC found in the patients with clinical evidence of metastatic spread. Whereas the Zn-RBC level in the normal donors was 9.85 +/- 1.47 micrograms/g wet weight, and not significantly elevated in the NED patients, it was elevated to values of 11.37 +/- 1.55 micrograms/g (P less than 0.004) for patients with soft tissue and hepatic metastases and was 12.34 +/- 1.65 micrograms/g (P less than 0.001) for patients with bone metastases. The data suggest a clear correlation between Zn-RBC and metastatic spread in nonlymphomatous human cancer.

  5. Distribution of Precious Metals (Ag, Au, Pd, Pt, and Rh) Between Copper Matte and Iron Silicate Slag

    NASA Astrophysics Data System (ADS)

    Avarmaa, Katri; Johto, Hannu; Taskinen, Pekka

    2016-02-01

    The distributions of precious metals (Ag, Au, Pd, Pt, and Rh) between copper matte and silica-saturated iron silicate slag were determined at 1523 K to 1623 K (1250 °C to 1350 °C), in controlled CO-CO2-SO2-Ar gas mixtures. The experiments were done in silica crucibles and a fixed partial pressure of sulfur dioxide for matte grades of 55, 65, and 75 wt pct Cu. High-temperature equilibration/quenching/electron probe X-ray microanalysis technique was used to obtain compositions of the equilibrated matte and slag. The technique was applied for the first time to the distributions of precious metals in simulated flash smelting conditions. The resolution of electron probe microanalysis became critical as the detection limits were insufficient to measure reliably the precious metals concentrations (except silver) in the slag. The distribution coefficient of silver, L m/s[Ag] = [wt pctAg in matte]/(wt pctAg in slag), was found to be between 200 and 300, which agrees well with the latest studies in the literature. For other precious metals, the minimum values of distribution coefficients were determined according to the detection limits in the slag. The values obtained were for gold and platinum >250, for palladium >1000, and for rhodium >900. The distribution coefficients of palladium, although locating above distribution coefficient of the detection limit, formed a clear dependency with a good repeatability as a function of the matte grade. It increased along with matte grade and was approximately 1000 at 50 pct Cu and 2000 to 3000 at 70 pct Cu. The precious metals replace metal in the matte structure and they are present as sulfides in the copper matte.

  6. Bioaccumulation of lead, copper, iron, and zinc by fish in a transect of the Santa Catarina River in Cadereyta Jimenez, Nuevo Leon, Mexico

    SciTech Connect

    Not Available

    1986-09-01

    Changes have been observed in the ichthyic species community, upriver in the San Juan River in Nuevo Leon, Mexico. A disappearance of Notropis amabilis, Notropis stramineus, Dionda episcopa and Campostoma anomalum and an increased mortality of Astyanax mexicanus, Lepomis macrochirus and Cichlasoma cyanoguttatum have been found. These changes were probably due to industrial and domestic discharges which produced high levels of lead, copper, iron and detergents in the water. The investigation reported here was done in order to detect the possible presence of lead, copper, iron and zinc in the river waters and also, to determine a probable bioaccumulation of these metals in fish species of the Santa Catarina River in the state of Nuevo Leon in northeastern Mexico, since this river transports domestic and industrial wastes of urban and suburban zones.

  7. Copper stable isotopes as tracers of metal-sulphide segregation and fractional crystallisation processes on iron meteorite parent bodies

    NASA Astrophysics Data System (ADS)

    Williams, Helen M.; Archer, Corey

    2011-06-01

    We report high precision Cu isotope data coupled with Cu concentration measurements for metal, troilite and silicate fractions separated from magmatic and non-magmatic iron meteorites, analysed for Fe isotopes (δ 57Fe; permil deviation in 57Fe/ 54Fe relative to the pure iron standard IRMM-014) in an earlier study ( Williams et al., 2006). The Cu isotope compositions (δ 65Cu; permil deviation in 65Cu/ 63Cu relative to the pure copper standard NIST 976) of both metals (δ 65Cu M) and sulphides (δ 65Cu FeS) span much wider ranges (-9.30 to 0.99‰ and -8.90 to 0.63‰, respectively) than reported previously. Metal-troilite fractionation factors (Δ 65Cu M-FeS = δ 65Cu M - δ 65Cu FeS) are variable, ranging from -0.07 to 5.28‰, and cannot be explained by equilibrium stable isotope fractionation coupled with either mixing or reservoir effects, i.e. differences in the relative proportions of metal and sulphide in the meteorites. Strong negative correlations exist between troilite Cu and Fe (δ 57Fe FeS) isotope compositions and between metal-troilite Cu and Fe (Δ 57Fe M-FeS) isotope fractionation factors, for both magmatic and non-magmatic irons, which suggests that similar processes control isotopic variations in both systems. Clear linear arrays between δ 65Cu FeS and δ 57Fe FeS and calculated Cu metal-sulphide partition coefficients (D Cu = [Cu] metal/[Cu] FeS) are also present. A strong negative correlation exists between Δ 57Fe M-FeS and D Cu; a more diffuse positive array is defined by Δ 65Cu M-FeS and D Cu. The value of D Cu can be used to approximate the degree of Cu concentration equilibrium as experimental studies constrain the range of D Cu between Fe metal and FeS at equilibrium to be in the range of 0.05-0.2; D Cu values for the magmatic and non-magmatic irons studied here range from 0.34 to 1.11 and from 0.04 to 0.87, respectively. The irons with low D Cu values (closer to Cu concentration equilibrium) display the largest Δ 57Fe M-FeS and the

  8. Effect of pressure on the behavior of copper-, iron-, and nickel-based oxygen carriers for chemical-looping combustion

    SciTech Connect

    Francisco Garcia-Labiano; Juan Adanez; Luis F. de Diego; Pilar Gayan; Alberto Abad

    2006-02-01

    This work analyzes the main characteristics related to the chemical looping combustion (CLC) process necessary to use the syngas obtained in an integrated gasification combined cycle (IGCC) power plant. The kinetics of reduction with H{sub 2} and CO and oxidation with O{sub 2} of three high-reactivity oxygen carriers used in the CLC system have been determined in a thermogravimetric analyzer at atmospheric pressure. The iron- and nickel-based oxygen carriers were prepared by freeze-granulation, and the copper-based oxygen carrier was prepared by impregnation. The changing grain size model (CGSM) was used for the kinetic determination, assuming spherical grains for the freeze-granulated particles containing iron and nickel and a platelike geometry for the reacting surface of the copper-based impregnated particles. The dependence of the reaction rates on temperature was low, with the activation energy values varying from 14 to 33 kJ mol{sup -1} for the reduction and 7 to 15 kJ mol{sup -1} for the oxidation. The reaction order depended on the reacting gas and oxygen carrier, with values ranging from 0.25 to 1. However, an increase in the operating pressure for the IGCC + CLC system increases the thermal efficiency of the process, and the CO{sub 2} is recovered as a high pressure gas, decreasing the energy demand for further compression. The effect of pressure on the behavior of the oxygen carriers has been analyzed in a pressurized thermogravimetric analyzer at 1073 K and pressures up to 30 atm. It has been found that an increase in total pressure has a negative effect on the reaction rates of all the oxygen carriers. Moreover, the use of the CGSM with the kinetic parameters obtained at atmospheric pressure predicted higher reaction rates than those experimentally obtained at higher pressures, and therefore, the kinetic parameters necessary to design pressurized CLC plants must be determined at the operating pressure. 34 refs., 8 figs., 2 tabs.

  9. Nickel-cobalt-iron-copper sulfides and arsenides in solution-collapse breccia pipes, northwestern Arizona

    SciTech Connect

    Wenrich, K.J. ); Hlava, P.F. )

    1993-04-01

    An extensive suite of Ni-Co-Fe-Cu sulfides and arsenides lies within the matrix of solution-collapse breccias buried deep within the plateaus of the Grand Canyon region. Ceilings over large caverns in the Redwall collapsed, brecciating the overlying sandstone and forming cylindrical breccia pipes up to 300 ft in diameter that extend vertically as much as 3,000 ft. These highly permeable breccias served as a host for the precipitation of a suite of over 100 minerals, including uraninite, sphalerite, galena and various copper phases, in addition to the Ni-Co-bearing-phase discussed here. Intricately zoned crystals of small (<1 mm), euhedral Ni-Co-Fe-As-S minerals were the first to form during the second major episode of mineralization in these pipes. Several of these phases replace minerals, such as barite and anhydrite, from the first episode. Extensive microprobe work has been done on samples from two breccia pipe mines, the Hack 2 and Orphan, which are about 50 miles apart. Mineral compositions are similar except that no copper is found in the Ni-Co-Fe phases from the Hack 2 mine, while pyrites containing 1 wt % Cu are common from the Orphan, which was mined for copper. In some of these pyrites', Cu is dominant and the mineral is actually villamaninite. Pyrites from both mines characteristically contain 0.5 to 3 wt % As. Metal contents in zones pyrite-bravoite-vaesite (M[sub 1]S[sub 2]) crystals at the Hack 2 mine range from Fe[sub 1] to Fe[sub .12], Ni[sub 0] to Ni[sub .86], and Co[sub 0] to Co[sub .10]. The metal content for polydymite-siegenite-violarite averages about (Ni[sub 2.33]Co[sub .39]Fe[sub .23])(S[sub 3.9]As[sub .1]). Orphan mine pyrite-bravoite-vaesite-villamaninite ranges in composition from pure FeS[sub 2] to (Ni[sub .6]Fe[sub .21]Co[sub .17])S[sub 2], and (Cu[sub .46]Ni[sub .27]Fe[sub .21]Co[sub .13])S[sub 2]. Of all the sulfides or arsenides found in these breccia pipes, only nickeline consistently occurs as the pure end member.

  10. Structural features and the reaction mechanism of cytochrome oxidase: iron and copper X-ray absorption fine structure.

    PubMed Central

    Powers, L; Chance, B; Ching, Y; Angiolillo, P

    1981-01-01

    X-ray edge absorption of copper and extended fine structure studies of both copper and iron centers have been made of cytochrome oxidase from beef heart, Paracoccus dentrificans, and HB-8 thermophilic bacteria (1-2.5 mM in heme). The desired redox state (fully oxidized, reduced CO, mixed valence formate and CO) in the x-ray beam was controlled by low temperature (-140 degrees C) and was continuously monitored by simultaneous optical spectroscopy and by electron paramagnetic resonance (EPR) monitoring every 30 min of x-ray exposure. The structure of the active site, a cytochrome a3-copper pair in fully oxidized and in mixed valence formate states where they are spin coupled, contains a sulphur bridge with three ligands 2.60 +/- 0.03 A from Fea3 and 2.18 +/- 0.03 A from Cua3. The distance between Fea3 and Cua3 is 3.75 +/- 0.05 A, making the sulphur bond angle 103 degrees reasonable for sp3 sulphur bonding. The Fea3 first shell has four typical heme nitrogens (2.01 +/- 0.03 A) with a proximal nitrogen at 2.14 +/- 0.03 A. The sixth ligand is the bridging sulphur. The Cua3 first shell is identical to oxidized stellacyanin containing two nitrogens and a bridging sulphur. Upon reduction with CO, the active site is identical to reduced stellacyanin for the Cua3 first shell and contains the sulphur that forms the bridge in fully oxidized and mixed valence formate states. The Fea3 first shell is identical to oxyhemoglobin but has CO instead of O2. The other redox centers, Fea and the other "EPR detectable" Cu are not observed in higher shells of Fea3. Fea has six equidistant nitrogens and Cua has one (or two) nitrogens and three (or two) sulphurs with typical distances; these ligands change only slight on reduction. These structures afford the basis for an oxygen reduction mechanism involving oxy- and peroxy intermediates. Images FIGURE 2 PMID:6264990

  11. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 2: Iron- and Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors arising during wine production are frequently removed by Cu(II) fining. In part 1 of this study ( 10.1021/acs.jafc.6b00641 ), the reaction of H2S and thiols with Cu(II) was examined; however, the interaction of iron and copper is also known to play an important synergistic role in mediating non-enzymatic wine oxidation. The interaction of these two metals in the oxidation of H2S and thiols (cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol) was therefore examined under wine-like conditions. H2S and thiols (300 μM) were reacted with Fe(III) (100 or 200 μM) alone and in combination with Cu(II) (25 or 50 μM), and concentrations of H2S and thiols, oxygen, and acetaldehyde were monitored over time. H2S and thiols were shown to be slowly oxidized in the presence of Fe(III) alone and were not bound to Fe(III) under model wine conditions. However, Cu(II) added to model wine containing Fe(III) was quickly reduced by H2S and thiols to form Cu(I) complexes, which then rapidly reduced Fe(III) to Fe(II). Oxidation of Fe(II) in the presence of oxygen regenerated Fe(III) and completed the iron redox cycle. In addition, sulfur-derived oxidation products were observed, and the formation of organic polysulfanes was demonstrated. PMID:27133088

  12. Fast ultrasound-assisted extraction of copper, iron, manganese and zinc from human hair samples prior to flow injection flame atomic absorption spectrometric detection.

    PubMed

    Yebra-Biurrun, M C; Cespón-Romero, R M

    2007-06-01

    A dynamic ultrasound-assisted extraction procedure utilizing diluted nitric acid was developed for the determination of copper, iron, manganese and zinc in human hair taken from workers in permanent contact with a polluted environment. The extraction unit of the dynamic ultrasound-assisted extraction system contains a minicolumn into which a specified amount of hair (5-50 mg) is placed. Once inserted into the continuous manifold, trace metals were extracted at 3 mL min(-1) with 3 mol L(-1) nitric acid under the action of ultrasound for 2 min for zinc and 3 min for copper, iron and manganese determination, and using an ultrasonic water-bath temperature of 70 degrees C for zinc and 80 degrees C for copper, iron and manganese determination. The system permits the direct analysis of hair and yields concentrations with relative standard deviations of <3% (n = 11). The applicability of the procedure was verified by analysing human hair samples from workers exposed to welding fumes, and its accuracy was assessed through comparison with a conventional sample dissolution procedure and the use of a certified reference material (BCR 397, human hair). PMID:17404713

  13. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  14. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  15. Interference of nickel with copper and iron homeostasis contributes to metal toxicity symptoms in the nickel hyperaccumulator plant Alyssum inflatum.

    PubMed

    Ghasemi, Rasoul; Ghaderian, S Majid; Krämer, Ute

    2009-11-01

    The divalent cations of several transition metal elements have similar chemical properties and, when present in excess, one metal can interfere with the homeostasis of another. To better understand the role of interactions between transition metals in the development of metal toxicity symptoms in plants, the effects of exposure to excess nickel (Ni) on copper (Cu) and iron (Fe) homeostasis in the Ni hyperaccumulator plant Alyssum inflatum were examined. Alyssum inflatum was hypertolerant to Ni, but not to Cu. Exposure to elevated subtoxic Ni concentrations increased Cu sensitivity, associated with enhanced Cu accumulation and enhanced root surface Cu(II)-specific reductase activity. Exposure to elevated Ni concentrations resulted in an inhibition of root-to-shoot translocation of Fe and concentration-dependent progressive Fe accumulation in root pericycle, endodermis and cortex cells of the differentiation zone. Shoot Fe concentrations, chlorophyll concentrations and Fe-dependent antioxidant enzyme activities were decreased in Ni-exposed plants when compared with unexposed controls. Foliar Fe spraying or increased Fe supply to roots ameliorated the chlorosis observed under exposure to high Ni concentrations. These results suggest that Ni interferes with Cu regulation and that the disruption of root-to-shoot Fe translocation is a major cause of nickel toxicity symptoms in A. inflatum. PMID:19691676

  16. Preparation and characterization of iron-copper binary oxide and its effective removal of antimony(III) from aqueous solution.

    PubMed

    Li, Yongchao; Geng, Bing; Hu, Xiaoxian; Ren, Bozhi; Hursthouse, Andrew S

    2016-01-01

    An Fe-Cu binary oxide was fabricated through a simple co-precipitation process, and was used to remove Sb(III) from aqueous solution. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and N2 adsorption-desorption measurements demonstrated that the Fe-Cu binary oxide consisted of poorly ordered ferrihydrite and CuO, and its specific surface area was higher than both iron oxide and copper oxide. A comparative test indicated that Fe/Cu molar ratio of prepared binary oxide greatly influenced Sb(III) removal and the optimum Fe/Cu molar ratio was about 3/1. Moreover, a maximum adsorption capacity of 209.23 mg Sb(III)/g Fe-Cu binary oxide at pH 5.0 was obtained. The removal of Sb(III) by Fe-Cu binary oxide followed the Freundlich adsorption isotherm and the pseudo-second-order kinetics in the batch study. The removal of Sb(III) was not sensitive to solution pH. In addition, the release of Fe and Cu ions to water was very low when the pH was greater than 6.0. X-ray photoelectron spectroscopy analysis confirmed that the Sb(III) adsorbed on the surface was not oxidized to Sb(V). PMID:27438244

  17. Abundance and Significance of Iron, Zinc, Copper, and Calcium in the Hearts of Patients With Friedreich Ataxia

    PubMed Central

    Kruger, Pamela C.; Yang, Karl X.; Parsons, Patrick J.; Becker, Alyssa B.; Feustel, Paul J.; Koeppen, Arnulf H.

    2016-01-01

    Cardiomyopathy is a frequent cause of death in patients with Friedreich ataxia (FA), and a characteristic pathological feature is the focal accumulation of iron (Fe) in cardiomyocytes. This restricted localization of the metal contrasts with the diffuse cardiac Fe overload in hemochromatosis and transfusion siderosis. Nevertheless, heart Fe in FA contributes to cardiomyocyte necrosis, inflammation, and scarring as the disease progresses. A putative mechanism of cardiomyopathy in FA is Fe-mediated oxidative damage. Two other transition metals zinc (Zn) and copper (Cu), are diffusely distributed throughout normal hearts and the hearts of patients with FA. The myocardium in FA is also prone to deposits of calcium in the form of scattered concretions. In this study, heart tissues (left and right ventricular walls and ventricular septum) of 23 patients with genetically confirmed FA and 8 normal controls were obtained at autopsy and analyzed for Fe, Zn, Cu, and calcium. The principal assay methods were inductively coupled plasma optical emission spectrometry and plasma mass spectrometry. Total levels of Fe in bulk extracts were not significantly higher than normal, and the concentrations of Zn also remained in the normal range. Cu levels, however, were significantly lower in FA. In conclusion, the decrease of Cu may be important in consideration of the potential benefit of Cu supplements in FA cardiomyopathy. PMID:27189813

  18. Evaluation of trace trace elements iron, zinc, copper and lead in the diet of female university students.

    PubMed

    Hashim, Z; Abdhamid, R

    1995-03-01

    Food consumption of 50 female students in Universiti Kebangsaan Malaysia was recorded for 7 days. Foods and drinks most frequently consumed were selected for analysis of iron, zinc, copper and lead content. The mean daily intakes of energy, protein, carbohydrate and fat among the students are 6.5±1.4 MJ (1550±335 kcal), 59.8±18.5g, 227.1±54.6 g and 46.0±11.5 g respectively. This diet contributed 19.6-6.4 mg Fe, 7.0-2.0 mg Zn and 1.6-0.6 mg Cu per day which were lower than the Malaysian RDA for Fe and US RDA for Zn, while Cu is within the recommended range. The main sources of these minerals in the student's diet were rice, rice products, meat and animal products. Lead concentration in the diet (134±77 ug/day) is below the acceptable daily intake (ADI) value suggested by Codex Alimentarius Commission (1984). This study indicated concern regarding the low intake of the essential trace elements on long term basis among the students. PMID:22692012

  19. Abundance and Significance of Iron, Zinc, Copper, and Calcium in the Hearts of Patients With Friedreich Ataxia.

    PubMed

    Kruger, Pamela C; Yang, Karl X; Parsons, Patrick J; Becker, Alyssa B; Feustel, Paul J; Koeppen, Arnulf H

    2016-07-01

    Cardiomyopathy is a frequent cause of death in patients with Friedreich ataxia (FA), and a characteristic pathological feature is the focal accumulation of iron (Fe) in cardiomyocytes. This restricted localization of the metal contrasts with the diffuse cardiac Fe overload in hemochromatosis and transfusion siderosis. Nevertheless, heart Fe in FA contributes to cardiomyocyte necrosis, inflammation, and scarring as the disease progresses. A putative mechanism of cardiomyopathy in FA is Fe-mediated oxidative damage. Two other transition metals zinc (Zn) and copper (Cu), are diffusely distributed throughout normal hearts and the hearts of patients with FA. The myocardium in FA is also prone to deposits of calcium in the form of scattered concretions. In this study, heart tissues (left and right ventricular walls and ventricular septum) of 23 patients with genetically confirmed FA and 8 normal controls were obtained at autopsy and analyzed for Fe, Zn, Cu, and calcium. The principal assay methods were inductively coupled plasma optical emission spectrometry and plasma mass spectrometry. Total levels of Fe in bulk extracts were not significantly higher than normal, and the concentrations of Zn also remained in the normal range. Cu levels, however, were significantly lower in FA. In conclusion, the decrease of Cu may be important in consideration of the potential benefit of Cu supplements in FA cardiomyopathy. PMID:27189813

  20. Eichrom`s Diphonix{reg_sign} resin: Production-scale applications in radioactive waste treatment and iron control in copper electrowinning

    SciTech Connect

    Gula, M.J.; Chang, F.; Dreisinger, D.B.; Horwitz, E.P.

    1997-12-31

    Eichrom`s Diphonix{reg_sign} resin has been phased through synthetic scale-up, pilot testing, and production installation in radioactive waste treatment and hydrometallurgical applications. The geminal diphosphonic acid groups of Diphonix resin allow selective retention by cation-exchange and/or chelation. The resin is effective at low pH where sulfonic and carboxylic acid resins are ineffective. Diphonix resin has been used in nuclear facilities to reduce actinide concentrations in radioactive waste effluents and to reduce waste volumes. The high retention of iron(III) by Diphonix resin in acidic sulfate media has led to an installation capable of removing one ton of iron per day from a copper electrowinning stream. This iron control process diminishes cobalt losses in the electrowinning circuit and significantly reduces operating costs. The authors will discuss the development of these Diphonix resin applications.

  1. Microstructural Evolution and Mechanical Properties of Fusion Welds in an Iron-Copper-Based Multicomponent Steel

    NASA Astrophysics Data System (ADS)

    Farren, Jeffrey D.; Hunter, Allen H.; Dupont, John N.; Seidman, David N.; Robino, Charles V.; Kozeschnik, Ernst

    2012-11-01

    NUCu-140 is a copper-precipitation-strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently used materials, the weldability of this material must be determined under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. Microhardness traverses and tensile testing using digital image correlation show local softening in the heat-affected zone (HAZ). Microstructural characterization using light optical microscopy (LOM) revealed very few differences in the softened regions compared with the base metal. Local-electrode atom-probe (LEAP) tomography demonstrates that local softening occurs as a result of dissolution of the Cu-rich precipitates. MatCalc kinetic simulations (Vienna, Austria) were combined with welding heat-flow calculations to model the precipitate evolution within the HAZ. Reasonably good agreement was obtained between the measured and calculated precipitate radii, number density, and volume fraction of the Cu-rich precipitates in the weld. These results were used with a precipitate-strengthening model to understand strength variations within the HAZ.

  2. Flow-injection simultaneous determination of iron(III) and copper(II) and of iron(III) and palladium(II) based on photochemical reactions of thiocyanato-complexes.

    PubMed

    Oguma, Koichi; Yoshioka, Osamu

    2002-12-01

    The flow injection analysis systems have been developed for the simultaneous determination of iron(III) and copper(II) and of iron(III) and palladium(II) based on the photochemical reactions of their thiocyanato-complexes. In the first system, a sample solution was injected in to nitric acid solution and mixed with ammonium thiocyanate solution, followed by spectrophotometric monitoring of the thiocyanato-complexes formed. Another aliquot of the same sample solution was injected and the thiocyanato-complexes formed in the same way were irradiated by UV light before spectrophotometric monitoring. In another system, the absorbance of thiocyanato-complexes formed by each sample injection was monitored with two flow cells aligned with the same optical path before and after UV irradiation. The difference in the extent of photochemical decomposition of the thiocyanato-complexes enabled simultaneous determinations of iron(III) and copper(II) and of iron(III) and palladium(II) at levels of several mugml(-1) to some tens mugml(-1) in their admixtures. Sample throughputs are 40 and 20 h(-1) by the former and latter systems, respectively. PMID:18968842

  3. Iron

    MedlinePlus

    ... organ failure, coma, convulsions, and death. Child-proof packaging and warning labels on iron supplements have greatly ... levodopa that the body absorbs, making it less effective. Levodopa, found in Sinemet® and Stalevo®, is used ...

  4. Barium and Compounds

    Integrated Risk Information System (IRIS)

    Barium and Compounds ; CASRN 7440 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  5. Effect of Copper and Nickel on the Transformation Kinetics of Austempered Ductile Iron

    NASA Astrophysics Data System (ADS)

    Górny, Marcin; Tyrała, Edward; Lopez, Hugo

    2014-10-01

    The kinetics of reaction occurring during the austempering treatment of ductile iron (DI) containing different additions of Cu and Ni was investigated in this work. DI bars were heat treated in an instrumented dilatometer in order to follow the exhibited transformation kinetics. The dilatometric results indicated that the addition of Cu alone did not have a significant effect on the incubation times for the austempering transformation. Also, the addition of both, Cu and Ni resulted in a significant effect on reducing the transformation rates. It was found that the austempering process is characterized by two clearly distinguished transformation stages. In the initial stage, the addition of Cu, and to a greater extent, additions of both Cu and Ni led to reductions in the transformation rates shifting the maximum transformation rate values toward longer times. The outcome of this work indicates that during the first stage of austempering, nucleation of the ferrite plates occurs via a diffusionless mechanism while their growth is diffusion controlled. Moreover, after the maximum in the transformation rate has been reached, the growth of ferrite plates becomes dominant with the rate-limiting step becoming the diffusion of C into the surrounding austenite. A qualitative model for the austempering transformation is proposed in this work to account for the experimental observations.

  6. Inductively coupled plasma atomic fluorescence spectrometric determination of cadmium, copper, iron, lead, manganese and zinc

    USGS Publications Warehouse

    Sanzolone, R.F.

    1986-01-01

    An inductively coupled plasma atomic fluorescence spectrometric method is described for the determination of six elements in a variety of geological materials. Sixteen reference materials are analysed by this technique to demonstrate its use in geochemical exploration. Samples are decomposed with nitric, hydrofluoric and hydrochloric acids, and the residue dissolved in hydrochloric acid and diluted to volume. The elements are determined in two groups based on compatibility of instrument operating conditions and consideration of crustal abundance levels. Cadmium, Cu, Pb and Zn are determined as a group in the 50-ml sample solution under one set of instrument conditions with the use of scatter correction. Limitations of the scatter correction technique used with the fluorescence instrument are discussed. Iron and Mn are determined together using another set of instrumental conditions on a 1-50 dilution of the sample solution without the use of scatter correction. The ranges of concentration (??g g-1) of these elements in the sample that can be determined are: Cd, 0.3-500; Cu, 0.4-500; Fe, 85-250 000; Mn, 45-100 000; Pb, 5-10 000; and Zn, 0.4-300. The precision of the method is usually less than 5% relative standard deviation (RSD) over a wide concentration range and acceptable accuracy is shown by the agreement between values obtained and those recommended for the reference materials.

  7. The long-term effects of copper surface area on menstrual blood loss and iron status in women fitted with an IUD.

    PubMed

    Larsson, G; Milsom, I; Jonasson, K; Lindstedt, G; Rybo, G

    1993-11-01

    The long-term effects of copper surface area on menstrual blood loss (MBL) and iron status (hemoglobin, hematocrit, red cell count and indices, and serum ferritin) were evaluated in 25 healthy women who were observed for a period of 3 years following insertion of an intrauterine device. MBL was determined objectively by the alkaline hematin method. The women (mean age 37.2 +/- 1.6 yr, range 27-46 yr) were fitted with a Multiload intrauterine device (IUD) with a copper surface area of either 250 mm2 (MLCu-250, n = 13) or 375 mm2 (MLCu-375, n = 12). MBL prior to IUD insertion was 55 +/- 8 ml for women subsequently fitted with a MLCu-250 and 59 +/- 9 ml for women fitted with a MLCu-375. An increase in MBL was recorded at all measurement points following IUD insertion (MLCu-250/MLCu-375: 3 months: 55/49%; 6 months: 58/49%; 12 months: 64/41%; 24 months: 55/49%; 36 months: 47/39%, NS). There were no significant differences in iron status parameters before IUD insertion between groups nor were there any significant changes recorded in any of these parameters after IUD insertion. Our findings that the increase in copper surface area from 250 mm2 to 375 mm2 had no effect on MBL were thus substantiated by the hematological findings. Based on the results of the present study, women from developed countries apparently tolerate an increased MBL of approximately 45% without developing anemia. Iron stores were unchanged indicating an adequate adaptive increase in intestinal iron absorption. PMID:8275696

  8. Detection of copper, lead, cadmium and iron in wine using electronic tongue sensor system.

    PubMed

    Simões da Costa, A M; Delgadillo, I; Rudnitskaya, A

    2014-11-01

    An array of 10 potentiometric chemical sensors has been applied to the detection of total Fe, Cu, Pb and Cd content in digested wine. As digestion of organic matter of wine is necessary prior to the trace metal detection using potentiometric sensors, sample preparation procedures have been optimized. Different variants of wet and microwave digestion and dry ashing, 14 conditions in total, have been tested. Decomposition of organic matter was assessed using Fourier transform mid-infrared spectroscopy and total phenolic content. Dry ashing was found to be the most effective method of wine digestion. Measurements with sensors in individual solutions of Fe(III), Cu(II), Pb(II) and Cd(II) prepared on different backgrounds have shown that their detection limits were below typical concentration levels of these metals in wines and, in the case of Cu, Pb and Cd below maximum allowed concentrations. Detection of Fe in digested wine samples was possible using discrete iron-sensitive sensors with chalcogenide glass membranes with RMSEP of 0.05 mmol L(-1) in the concentration range from 0.0786 to 0.472 mmol L(-1). Low concentration levels of Cu, Pb and Cd in wine and cross-sensitivity of respective sensors resulted in the non-linearity of their responses, requiring back-propagation neural network for the calibration. Calibration models have been calculated using measurements in the model mixed solutions containing all three metals and a set of digested wine sample. RMSEP values for Cu, Pb and Cd were 3.9, 39 and 1.2 μmol L(-1) in model solutions and 2, 150 and 1 μmol L(-1) in digested wine samples. PMID:25127565

  9. Solid state 31phosphorus nuclear magnetic resonance of iron-, manganese-, and copper-containing synthetic hydroxyapatites

    NASA Technical Reports Server (NTRS)

    Sutter, B.; Taylor, R. E.; Hossner, L. R.; Ming, D. W.

    2002-01-01

    The incorporation of micronutrients into synthetic hydroxyapatite (SHA) is proposed for slow release of these nutrients to crops in the National Aeronautics and Space Administration's (NASA's) Advanced Life Support (ALS) program for Lunar or Martian outposts. Solid state 31P nuclear magnetic resonance (NMR) was utilized to examine the paramagnetic effects of Fe3+, Mn2+, and Cu2+ to determine if they were incorporated into the SHA structure. Separate Fe3+, Mn2+, and Cu2+ containing SHA materials along with a transition metal free SHA (pure-SHA) were synthesized using a precipitation method. The proximity (<1 nm) of the transition metals to the 31P nuclei of SHA were apparent when comparing the integrated 31P signal intensities of the pure-SHA (87 arbitrary units g-1) with the Fe-, Mn-, and Cu-SHA materials (37-71 arbitrary units g-1). The lower integrated 31P signal intensities of the Fe-, Mn-, and Cu-SHA materials relative to the pure-SHA suggested that Fe3+, Mn2+, and Cu2+ were incorporated in the SHA structure. Further support for Fe3+, Mn2+, and Cu2+ incorporation was demonstrated by the reduced spin-lattice relaxation constants of the Fe-, Mn-, and Cu-SHA materials (T'=0.075-0.434s) relative to pure-SHA (T1=58.4s). Inversion recovery spectra indicated that Fe3+, Mn2+, and Cu2+ were not homogeneously distributed about the 31P nuclei in the SHA structure. Extraction with diethylene-triamine-penta-acetic acid (DTPA) suggested that between 50 and 80% of the total starting metal concentrations were incorporated in the SHA structure. Iron-, Mn-, and Cu-containing SHA are potential slow release sources of Fe, Mn, and Cu in the ALS cropping system.

  10. Dynamic Aeolian Deposition of Glacial Iron to the Open Ocean: 2 Years of Time-Series Observations from Middleton Island and the Copper River Delta

    NASA Astrophysics Data System (ADS)

    Schroth, A. W.; Crusius, J.; Campbell, R. W.; Gasso, S.; Moy, C. M.

    2013-12-01

    ron (Fe) is thought to be a limiting nutrient for phytoplankton in much of the north Pacific and the Gulf of Alaska (GoA) in particular. In the subarctic GoA, we have a limited knowledge of the role of glaciers in driving the supply of iron to marine ecosystem, and in particular, the role that dust derived from glacial flour plays in delivering bioavailable iron to the offshore ecosystems. In order to better understand glacial dust deposition in the GoA and its potential role in marine productivity, we combine time-series satellite, meteorological, and aerosol geochemical data from over 2 years of monitoring at Middleton Island and the Copper River Valley. Middleton Island is located on the edge of the continental shelf and is ideally positioned to monitor the flux of aerosol iron into adjacent Fe-limited waters, while the Copper River Delta and Valley are thought to be the source of much of the glacial dust that reaches Middleton. In fact, widespread dust events have been frequently observed (MODIS imagery) emanating from exposed floodplains within the heavily glacierized Copper River Valley. These events are most common in the fall, when high pressure in the AK interior and low pressure in the central GoA establish a pressure gradient that drives anomalously strong northerly winds capable of entraining the abundant glacial flour that is exposed under low water conditions in the Copper River floodplain. Here we present Fe geochemical data from continuous automated aerosol sampling on Middleton Island from 2011-2013. These time-series geochemical data, when coupled with MODIS and meteorological observations, present a remarkable opportunity to examine the drivers of these dust events and how inter-annual meteorological variability between dust seasons influences the annual flux of soluble Fe associated with these phenomena. The dust season of 2011-12, characterized by early and heavy snows and onshore winds, generated very little dust with minimal and infrequent

  11. Effects of copper, iron and fluoride co-crystallized with sugar on caries development and acid formation in deslivated rats.

    PubMed

    Rosalen, P L; Pearson, S K; Bowen, W H

    1996-11-01

    The purpose was to explore the effects of combinations of copper, iron and fluoride (Cu, Fe and F) incorporated in sucrose by co-crystallization on caries development in the deslivated rat model and to examine acid formation by bacteria in the rat mouth. Ninety-six Sprague-Dawley rats were infected with Streptococcus sobrinus 6715 and desalivated when aged 26 days. Eight groups were placed in a König-Höfer programmed feeder and received 17 meals daily at hourly intervals, and essential nutrition (NCP No. 2) by gavage twice daily for 21 days. The groups received (1) plain sucrose, (2) F (8 parts/10(6)) co-crystallized with sucrose, (3) Fe (88 parts/10(6)) sucrose, (4) Cu (75 parts/10(6)) sucrose, (5) Cu + F sucrose, (6) Cu + L Fe sucrose, (7) F + Fe sucrose, and (8) Cu + Fe + F sucrose. At death the jaws were removed and sonicated in 0.9% saline solution for microbial assessment. In addition, organic acid assays were performed for each animal. Keyes smooth-surface and sulcal caries scores were lowest in the Cu + Fe + F sucrose group, but not statistically significantly different from those of the other Cu groups. The numbers of Strep. sobrinus found in the groups that received Cu, Cu + Fe, Cu + F, F + Fe and Cu + Fe + F sugar were lower than in the control group. Lactic acid was found in lower concentrations in Fe, Cu, Cu + F, Cu + Fe and F + Fe groups than in the other groups. It appears that combinations of Cu; Fe and F co-crystallized with sugar may have an additive effect in reducing the cariogenic potential of sugar by affecting lactic acid formation and reducing bacterial colonization. PMID:9068864

  12. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    PubMed

    Xue, Yanfang; Yue, Shanchao; Zhang, Wei; Liu, Dunyi; Cui, Zhenling; Chen, Xinping; Ye, Youliang; Zou, Chunqin

    2014-01-01

    The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn), iron (Fe), manganese (Mn) and copper (Cu) in maize (Zea mays L.) were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain). Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N) levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively) were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60%) and decreased Zn concentrations in straw (a 56% decrease) and grain (decreased from 16.9 to 12.2 mg kg-1) rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively). The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield. PMID:24705926

  13. [Zinc, copper, iron, calcium, phosphorus and magnesium content of maternal milk during the first 3 weeks of lactation].

    PubMed

    Itriago, A; Carrión, N; Fernández, A; Puig, M; Dini, E

    1997-03-01

    Zinc, Copper, Iron. Calcium Phosphorous and Magnesium contents were determined in early milk samples in 72 mothers from Caracas city. The samples were collected during three different lactation stages: calostro (3 days), transitional (7 days) and mature milk (21 days). The more significant changes in the concentration of the studied elements were observed during the first two weeks, them they stabilize during the third week. The Zn, Cu, Fe, Ca, P and Mg average concentration found in calostro samples were 7.1 +/- 2.5 micrograms/ml; 0.52 +/- 0.15 microgram/ml; 0.49 +/- 0.14 microgram/ml; 214 +/- 62 micrograms/ml, 107 +/- 27 micrograms/ml and 33.3 +/- 7.5 micrograms/ml. respectively. For the transitional milk samples the average concentration found for the studied elements were: 4.0 +/- 1.0 micrograms/ml; 0.50 +/- 0.10 microgram/ml; 0.38 +/- 0.08 microgram/ml, 292 +/- 62 micrograms/ml; 213 +/- 36 micrograms/ml and 30.4 +/- 5.2 micrograms/ml. For the mature milk samples the results were: 2.8 +/- 2.7 micrograms/ml; 0.47 +/- 0.08 microgram/ml; 0.36 +/- 0.09 microgram/ml; 244 +/- 49 micrograms/ml; 175 +/-35 micrograms/ml and 25.2 +/- 3.3 micrograms/ml. The concentration range for all trace elements studied (Cu, Fe and Zn) can be considered normal. For the major elements (Ca, P and Mg) the results obtained in our work are similar to those reported for other countries. These facts allows to conclude that the nutritional state of this mother population is adequate to satisfy the lactate's requirements during their first live stage. PMID:9429635

  14. Iron oxide nanostructured electrodes for detection of copper(II) ions.

    PubMed

    Santos, J G M; Souza, J R; Letti, C J; Soler, M A G; Morais, P C; Pereira-da-Silva, M A; Paterno, L G

    2014-09-01

    Iron oxide nanostructured (ION) electrodes were assembled layer-by-layer onto ITO-coated glass substrates and their structure, morphology, and electrochemical properties were investigated, the latter aiming at the development of a chemical sensor for Cu2+. The electrodes were built by immersing the substrate alternately into an aqueous colloidal suspension of positively charged magnetite nanoparticles (np-Fe3O4, 8 nm) and an aqueous solution of anionic sodium sulfonated polystyrene (PSS). The adsorbed amount of both materials was monitored ex-situ by UV-vis spectroscopy and it was found to increase linearly with the number of deposition cycles. The resulting films feature a densely-packed structure of magnetite nanoparticles, as suggested by AFM and Raman spectroscopy, respectively. Cyclic voltammograms of electrodes immersed in acetate buffer (pH 4.6) displayed three electrochemical events that were tentatively ascribed to the reduction of Fe(III) oxy-hydroxide to magnetite, reduction of maghemite to magnetite, and finally oxidation of magnetite to maghemite. The effect of np-Fe3O4/PSS bilayers on the ION electrode performance was to increase the anodic and cathodic currents produced during electrochemical oxidation-reduction of the Fe(CN)(3-/4-) redox couple. With more bilayers, the ION electrode provided higher anodic/cathodic currents. Moreover, the redox couple exhibited a quasi-reversible behavior at the ION electrode as already observed with other working electrode systems. Fitting of voltammetry data provided the apparent electron transfer constants, which were found to be higher in ION electrodes for both redox couples (Fe(CN)(3-/4-) and Cu(2+/0)). By means of differential pulsed anodic stripping voltammetry, the ION electrodes were found to respond linearly to the presence of Cu2+ in aqueous samples in the range between 1.0 and 8.0 x 10(-6) mol x L(-1) and displayed a limit of detection of 0.3 x 10(-8) mol x L(-1). The sensitivity was - 0.6μA/μmol x L

  15. The effect of administration of copper nanoparticles to chickens in drinking water on estimated intestinal absorption of iron, zinc, and calcium.

    PubMed

    Ognik, Katarzyna; Stępniowska, Anna; Cholewińska, Ewelina; Kozłowski, Krzysztof

    2016-09-01

    Copper nanoparticles used as a dietary supplement for poultry could affect the absorption of mineral elements. Hence the aim of the study was to determine the effect of administration of copper nanoparticles to chickens in drinking water on intestinal absorption of iron, zinc, and calcium. The experiment was carried out on 126 chicks assigned to seven experimental groups of 18 birds each (3 replications of 6 individuals each). The control group (G-C) did not receive copper nanoparticles. Groups: Cu-5(7), Cu-10(7), and Cu-15(7) received gold nanoparticles in their drinking water in the amounts of 5 mg/L for group Cu-5(7), 10 mg/L for group Cu-10(7), and 15 mg/L for group Cu-15(7) during 8 to 14, 22 to 28, and 36 of 42 days of the life of the chicks. The birds in groups Cu-5(3), Cu-10(3), and Cu-15(3) received copper nanoparticles in the same amounts, but only during 8 to 10, 22 to 24, and 36 to 38 days of life. Blood for analysis was collected from the wing vein of all chicks at the age of 42 days. After the rearing period (day 42), six birds from each experimental group with body weight similar to the group average were slaughtered. The carcasses were dissected and samples of the jejunum were collected for analysis of absorption of selected minerals. Mineral absorption was tested using the in vitro gastrointestinal sac technique. Oral administration of copper nanoparticles to chickens in the amount of 5, 10, and 15 mg/L led to accumulation of this element in the intestinal walls. The highest level of copper nanoparticles applied increased Cu content in the blood plasma of the birds. The in vitro study suggests that copper accumulated in the intestines reduces absorption of calcium and zinc, but does not affect iron absorption. PMID:27307476

  16. Copper and Copper Proteins in Parkinson's Disease

    PubMed Central

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  17. Chelatometric determination of calcium and magnesium in iron ores, slags, anorthosite, limestone, copper-nickel-lead-zinc ores and divers materials.

    PubMed

    Hitchen, A; Zechanowitsch, G

    1980-03-01

    Chelatometric methods for the determination of calcium and magnesium in iron ores, slags, anorthosite, copper-nickel-lead-zinc ores and various other materials are described. Potential interfering elements are masked with triethanolamine and potassium cyanide. In one aliquot calcium is titrated at pH > 12, with calcein and thymolphthalein mixed indicator and in another aliquot calcium and magnesium are titrated in ammonia buffer, with o-cresolphthalein complexone screened with Naphthol Green B as indicator. The results compare favourably with certified values for reference materials of diverse nature. PMID:18962661

  18. Simultaneous high performance liquid chromatographic determination of vanadium, nickel, iron and copper in crude petroleum oils using bis(acetylpivalylmethane)ethylenediimine as a complexing reagent.

    PubMed

    Khuhawar, M Y; Lanjwani, S N

    1996-05-01

    A method is described for the simultaneous high performance liquid chromatographic (HPLC) determination of copper, iron, nickel and vanadium, based on complexation of analytes by bis(acetylpivalylmethane)ethylenediimine (H(2)APM(2)en) followed by solvent extraction and HPLC separation on a reversed-phase. C-18, 5 microm column with UV detection at 260 nm. The method has been applied to the determination of metals in crude petroleum oils collected from the South Indus Basin oil fields. The results obtained are compared with those obtained by flame atomic absorption spectrometry. PMID:18966546

  19. Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide-copper-gold deposit, Yorke Peninsula, South Australia

    NASA Astrophysics Data System (ADS)

    Ismail, Roniza; Ciobanu, Cristiana L.; Cook, Nigel J.; Teale, Graham S.; Giles, David; Mumm, Andreas Schmidt; Wade, Benjamin

    2014-01-01

    The Hillside Cu-(Au) deposit, Yorke Peninsula, South Australia, is a recently-discovered ore system within the 1.6 Ga World-class Olympic iron oxide-copper-gold (IOCG) Province. The deposit is characterized by a skarn-style alteration zone. Analyses of feldspar, calcite, skarn minerals (garnet, pyroxene, clinozoisite and actinolite) and accessories (titanite, apatite and allanite), and grain-scale element mapping by laser-ablation inductively-coupled plasma mass spectrometry are used to assess the distributions of rare earth element (REE), incompatible and ore-forming elements in host rocks, prograde and retrograde skarn.

  20. Electron transfer characterization of iron and cobalt porphyrins and copper complexes, and of their metal-carbon and metal-oxygen bond energies

    SciTech Connect

    Qui, Aimin

    1992-12-31

    The electron-transfer and oxidation-reduction chemistry for the alkyl-iron and alkyl-cobalt porphyrins [(Por)M-R] and copper complexes has been investigated on the basis of cyclic voltammetric and controlled-potential-electrolysis measurements. Half-wave potentials for the oxidation and the reduction of (Por)M-R are directly influenced by the nature of the electron-donating or electron-withdrawing groups on the porphyrin ring and the structure of the alkyl groups. The redox potentials for a series of copper complexes are affected by the electron donating ability and the chelate effect of the ligands. Hydrolysis of the copper(II) cations (Cu{sup II}L{sub n}{sup 2+}) occurs in water. The reactivity of copper(I) complexes with dioxygen is directly related to the oxidation potential of the complexes in the solvent. The combination of Cu{sup I}(bpy)2{sup +} and tertiary-butyl hydroperoxide induces O{sub 2} activation to oxygenate methylenic carbon to ketones. Mechanistic schemes have been developed on the basis of electrochemical and spectrophotometric characteristics and reaction-product profiles for copper(II)-bis(bipyridine) [Cu{sup II}(bpy)2{sup 2+}]/base-induced activation of O{sub 2} to dehydrogenate primary alcohols to aldehydes. The free energies of bond formation (-{Delta}G{sub BF}) for the (Por)M-R and copper-ligand (oxygen or nitrogen) bonds have been determined from the redox potentials of the corresponding electrode reactions. The values of -{Delta}G{sub BF} are 14-35 kcal mol{sup {minus}1} for iron porphyrins and 20-38 kcal mol{sup {minus}1} for cobalt porphyrins which depend on the structures of the porphyrins and the alkyl groups. Apparent bond energies are 18-51 kcal mol{sup {minus}1} for the Cu{sup II}-L bonds are 46-78 kcal mol{sup {minus}1} for the Cu{sup I}-L bonds. The free energies of bond formation for the L{sub n}Cu{sup I}-OO bonds are 7-16 kcal mol{sup {minus}1}.

  1. The barium iron ruthenium oxide system

    NASA Technical Reports Server (NTRS)

    Kemmler-Sack, S.; Ehmann, A.

    1986-01-01

    In the system BaFe(1-x)Ru(x)O(3-y), three phases, separated by immiscibility gaps, are present: an Fe-rich phase (x = 0 to 0.75) with hexagonal BaTiO3 structure (6H; sequence (hcc)2), a Ru-rich phase (x = 0.9) of hexagonal 4H-type (sequence (hc)2), and the pure Ru compounds BaRuO3 with rhombohedral 9R structure (sequence (hhc)3). By vibrational spectroscopic investigations in the 6H phase a transition from n-type semiconduction (Fe-rich compounds with complete O lattice) can be detected. The 4H and 9R stacking polytypes are good, metal-like conductors. The lattice parameters are given.

  2. Direct functionalization processes: a journey from palladium to copper to iron to nickel to metal-free coupling reactions.

    PubMed

    Mousseau, James J; Charette, André B

    2013-02-19

    , which led to the first description of a direct copper-catalyzed alkenylation onto an electron-deficient arene. This particular directing group offers two advantages: (1) it can be easily appended and removed to reveal the desired pyridine target, and (2) it can be incorporated in a cascade process in the preparation of pharmacologically relevant 2-pyrazolo[1,5-a]pyridines. This work has solved some of the challenges in the direct arylation of nonheterocyclic arenes, including reversing the reactivity often observed with such transformations. Readily convertible directing groups were applied to facilitate the transformation. We also demonstrated that iron can promote intermolecular arylations effectively and that the omission of any metal still permits intramolecular arylation reactions. Lastly, we recently discovered a nickel-catalyzed intramolecular arylation of sp(3) C-H bonds. Our mechanistic investigations of these processes have elucidated radical pathways, opening new avenues in future direct C-H functionalization reactions. PMID:23098328

  3. Synthesis and structural characterisation of iron(II) and copper(II) diphosphates containing flattened metal oxotetrahedra

    SciTech Connect

    Keates, Adam C.; Wang, Qianlong; Weller, Mark T.

    2014-02-15

    Single crystal and bulk polycrystalline forms of K{sub 2}MP{sub 2}O{sub 7} (M=Fe(II), Cu(II)) have been synthesised and their structures determined from single crystal X-ray diffraction data. Both compounds crystallize in the tetragonal system, space group P-42{sub 1}m. Their structures are formed from infinite sheets of linked oxopolyhedra of the stoichiometry [MP{sub 2}O{sub 7}]{sup 2−} with potassium cations situated between the layers. The MO{sub 4} tetrahedra share oxygen atoms with [P{sub 2}O{sub 7}]{sup 4−} diphosphate groups and the potassium ions have KO{sub 8} square prismatic geometry. In both compounds the M(II) centre has an unusual strongly flattened, tetrahedral coordination to oxygen, as a result of the Jahn–Teller (JT) effect for the high spin d{sup 6} Fe(II) and p-orbital mixing or a second order JT effect for d{sup 9} Cu(II) centres in four fold coordination. The uncommon transition metal ion environments found in these materials are reflected in their optical absorption spectra and magnetism data. - Graphical abstract: The structures of the tetragonal polymorphs of K{sub 2}MP{sub 2}O{sub 7}, M=Cu(II), Fe(II), consist of infinite sheets of stoichiometry [MP{sub 2}O{sub 7}]{sup 2−}, formed from linked pyrophosphate groups and MO{sub 4} tetrahedra, separated by potassium ions. In both compounds the unusual tetrahedral coordination of the M(II) centre is strongly flattened as a result of Jahn–Teller (JT) effects for high spin, d{sup 6} Fe(II) and p-orbital mixing and second-order JT effects for d{sup 9} Cu(II). Display Omitted - Highlights: • Tetrahedral copper and iron(II) coordinated by oxygen. • New layered phosphate structure. • Jahn–Teller and d{sup 10} distorted coordinations.

  4. Iron sulfide attenuates the methanogenic toxicity of elemental copper and zinc oxide nanoparticles and their soluble metal ion analogs.

    PubMed

    Gonzalez-Estrella, Jorge; Gallagher, Sara; Sierra-Alvarez, Reyes; Field, Jim A

    2016-04-01

    Elemental copper (Cu(0)) and zinc oxide (ZnO) nanoparticle (NP) toxicity to methanogens has been attributed to the release of soluble metal ions. Iron sulfide (FeS) partially controls the soluble concentration of heavy metals and their toxicity in aquatic environments. Heavy metals displace the Fe from FeS forming poorly soluble metal sulfides in the FeS matrix. Therefore, FeS may be expected to attenuate the NP toxicity. This work assessed FeS as an attenuator of the methanogenic toxicity of Cu(0) and ZnO NPs and their soluble salt analogs. The toxicity attenuation capacity of fine (25-75μm) and coarse (500 to 1200μm) preparations of FeS (FeS-f and FeS-c respectively) was tested in the presence of highly inhibitory concentrations of CuCl2, ZnCl2 Cu(0) and ZnO NPs. FeS-f attenuated methanogenic toxicity better than FeS-c. The results revealed that 2.5× less FeS-f than FeS-c was required to recover the methanogenic activity to 50% (activity normalized to uninhibited controls). The results also indicated that a molar FeS-f/Cu(0) NP, FeS-f/ZnO NP, FeS-f/ZnCl2, and FeS-f/CuCl2 ratio of 2.14, 2.14, 4.28, and 8.56 respectively, was necessary to recover the methanogenic activity to >75%. Displacement experiments demonstrated that CuCl2 and ZnCl2 partially displaced Fe from FeS. As a whole, the results indicate that not all the sulfide in FeS was readily available to react with the soluble Cu and Zn ions which may explain the need for a large stoichiometric excess of FeS to highly attenuate Cu and Zn toxicity. Overall, this study provides evidence that FeS attenuates the toxicity caused by Cu(0) and ZnO NPs and their soluble ion analogs to methanogens. PMID:26803736

  5. Determination of uranium, iron, copper, and nickel from ore samples by MEKC using N,N'-ethylene bis(salicylaldimine) as complexing reagent.

    PubMed

    Mirza, Muhammed Aslam; Khuhawar, Muhammad Yar; Arain, Rafee

    2008-02-01

    An analytical procedure has been developed for the separation of dioxouranium(VI), iron(III), copper(II), nickel(II), cobalt(II), cobalt(III), palladium(II), and thorium(IV) by MEKC using N,N'-ethylene bis(salicylaldimine) (H(2)SA(2)en) as a complexing reagent with total runtime <4.5 min. SDS was used as micellar medium at pH 8 with sodium tetraborate buffer (0.1 M). An uncoated fused-silica capillary with an effective length of 50 cm x 75 microm id was used with an applied voltage of 30 kV with photodiode array detection at 231 nm. Linear calibrations were obtained within 0.111-1000 microg/mL of each element with LODs within 37-325 ng/mL. The developed method was tested for analysis of uranium ore samples indicating its presence within 103-1789 microg/g with RSD within 0.79-1.87%. Likewise copper, nickel, and iron in their combined matrix were also simultaneously determined with RSD 0.4-1.6% (n = 6). PMID:18186535

  6. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    NASA Astrophysics Data System (ADS)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  7. Barium Peritonitis in Small Animals

    PubMed Central

    KO, Jae Jin; MANN, F. A. (Tony)

    2014-01-01

    ABSTRACT Barium peritonitis is extremely rare, but is difficult to treat and may be life-threatening. Barium suspension leakage from the gastrointestinal tract into the abdominal cavity has a time-dependent and synergistically deleterious effect in patients who have generalized bacterial peritonitis. The severity of barium peritonitis is dependent on the quantity of barium in the abdominal cavity. Barium sulfate leakage results in hypovolemia and hypoproteinemia by worsening the exudation of extracellular fluid and albumin. Abdominal fluid analysis is a useful and efficient method to diagnose barium peritonitis. Serial radiographs may not be a reliable or timely diagnostic technique. Initial aggressive fluid resuscitation and empirical broad-spectrum antibiotic treatment should be instituted promptly, followed quickly by celiotomy. During exploratory surgical intervention, copious irrigation and direct wiping with gauze are employed to remove as much barium as possible. Omentectomy should be considered when needed to expedite barium removal. Despite aggressive medical and surgical treatments, postoperative prognosis is guarded to poor due to complications, such as acute vascular shock, sepsis, diffuse peritonitis, hypoproteninemia, electrolyte imbalance, cardiac arrest, small bowel obstruction related to progression of granulomas and adhesions in the abdominal cavity. Therefore, intensive postoperative monitoring and prompt intervention are necessary to maximize chances for a positive outcome. For those that do survive, small bowel obstruction is a potential consequence due to progression of abdominal adhesions. PMID:24430662

  8. Barium uranyl diphosphonates

    SciTech Connect

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  9. Microstructural Evolution and Mechanical Properties of Fusion Welds and Simulated Heat-Affected Zones in an Iron-Copper Based Multi-Component Steel

    NASA Astrophysics Data System (ADS)

    Farren, Jeffrey David

    NUCu-140 is a copper-precipitation strengthened steel that exhibits excellent mechanical properties with a relatively simple chemical composition and processing schedule. As a result, NUCu-140 is a candidate material for use in many naval and structural applications. Before NUCu-140 can be implemented as a replacement for currently utilized materials, a comprehensive welding strategy must be developed under a wide range of welding conditions. This research represents an initial step toward understanding the microstructural and mechanical property evolution that occurs during fusion welding of NUCu-140. The following dissertation is presented as a series of four chapters. Chapter one is a review of the relevant literature on the iron-copper system including the precipitation of copper in steel, the development of the NUCu family of alloys, and the formation of acicular ferrite in steel weldments. Chapter two is a detailed study of the precipitate, microstructural, and mechanical property evolution of NUCu-140 fusion welds. Microhardness testing, tensile testing, local-electrode atom probe (LEAP) tomography, MatCalc kinetic simulations, and Russell-Brown strengthening results for gas-tungsten and gas-metal arc welds are presented. Chapter three is a thorough study of the microstructural and mechanical property evolution that occurs in the four critical regions of the HAZ. Simulated HAZ specimens were produced and evaluated using microhardness, tensile testing, and charpy impact testing. MatCalc simulations and R-B strengthening calculations were also performed in an effort to model the experimentally observed mechanical property trends. Chapter 4 is a brief investigation into the capabilities of MatCalc and the R-B model to determine if the two techniques could be used as predictive tools for a series of binary iron-copper alloys without the aid of experimentally measured precipitate data. The mechanical property results show that local softening occurs in the heat

  10. Effect of chronic ethanol ingestion on the metabolism of copper, iron, manganese, selenium, and zinc in an animal model of alcoholic cardiomyopathy

    SciTech Connect

    Bogden, J.D.; Al-Rabiai, S.; Gilani, S.H.

    1984-01-01

    Alcoholic cardiomyopathy (AC) is one of the diseases caused by alcohol abuse, and there has been considerable debate about the possibility that nutritional factors may be important in the etiology of AC. In addition, there is evidence that ethanol may affect the metabolism of trace elements. The purpose of this investigation was to determine if chronic ethanol administration produces changes in the metabolism of the essential metals copper, iron, manganese, zinc, and selenium using an animal model of AC. Eighteen male Sprague-Dawley rats were divided into three groups; an ad libitum control group (AL), a pair-fed control group (PF), and an ethanol-dosed group (ETOH). The latter group received gradually increasing concentrations (5-25%) of ethanol in the drinking water for 15 wk. Food intake was monitored and urine and feces collected for a 4-d period during the study to determine ethanol effects on trace-element balance. Growth of both the PF and ETOH animals was inhibited. Ethanol produced substantial increases in liver manganese and decreases in liver copper and zinc. Metal concentrations in heart and concentrations in other tissues studied (spleen, testes, brain, bone, kidney, and muscle) did not differ significantly among the groups, except for testes selenium and kidney zinc. Reduced food intake and ethanol ingestion were associated with a reduced percentage of ingested selenium excreted in the urine. Deficiencies of copper, iron, manganese, selenium, and zinc in myocardial tissue are not likely to be involved in the pathogenesis of AC in the rat. 38 references, 1 figure, 4 tables.