Science.gov

Sample records for barium silicate basio3

  1. Investigation Of Dispersive Conductivity And Dielectric Losses In Barium Bismuth Silicate Glasses

    NASA Astrophysics Data System (ADS)

    Ahlawat, Neetu; Sanghi, Sujata; Agarwal, Ashish; Ahlawat, Navneet; Aghamkar, Praveen; Monica

    2011-12-01

    Barium bismuth silicate glasses (BBS glasses) with composition were prepared by normal melt quench technique. The dispersive conductivity and dielectric losses in these glasses were investigated by impedance spectroscopy. The analyses of ac conductivity spectra show a crossover from ion hopping conductivity to nearly constant loss (NCL) contribution in all the glasses. The variations in dielectric constant ɛ*(ω) = ɛ'(ω)-íɛ″(ω) with frequency and temperature indicate an increase in electrode polarization, which reduces the dipolar relaxation effects in these glasses. The increased concentration of BaO in the glass composition reduces the dielectric losses in the present glasses.

  2. Barium silicates as high thermal expansion seals for solid oxide fuel cells studied by high-temperature X-ray diffraction (HT-XRD)

    NASA Astrophysics Data System (ADS)

    Kerstan, Marita; Rüssel, Christian

    Gas-tight seals between metals and ceramics in solid-oxide fuel cells can be fabricated from glasses which enable the crystallization of phases with high thermal expansion coefficients (mostly barium silicates). This article mainly reports on high-temperature X-ray diffraction studies on these silicates. It is shown that all barium silicates exhibit thermal expansion coefficients in the range from 10.5 to 15.4 × 10 -6 K -1 (100-800 °C). The expansions are strongly dependent on the respective crystallographic axis. The ortho- and metasilicates exhibit the largest thermal expansion coefficients. The coefficient of thermal expansion of a sealing glass is attributed to the thermal expansion of the crystalline phases and the residual glassy phase. The phase formation should carefully be controlled also with respect to aging. Crystalline phases with high coefficients of thermal expansion, such as the barium silicates, are advantageous as components in such sealing glasses.

  3. Barium silicates of the Berisal Complex, Switzerland: A study in geochronology and rare-gas release systematics

    NASA Astrophysics Data System (ADS)

    Hetherington, C. J.; Villa, I. M.

    2007-07-01

    Barium silicate minerals such as celsian, ganterite, armenite, as well as Ba-bearing and Ba-free white mica from the Berisal Complex, Simplon Nappe, Swiss Alps, were dated by 39Ar- 40Ar. Ages of Ba-free micas are ca. 17 Ma, while Ba and parentless 40Ar are correlated in Ba silicates, suggesting common inheritance from the Paleozoic orthogneissic protolith. The release pattern of reactor-produced 39Ar (or 37Ar) from hydrated and anhydrous minerals is very similar, with apparent activation energies of ca. 180 kJ/mole and a conspicuous kink around 900 °C. White micas release Ar at higher temperature than the literature determination of their dehydroxylation. In addition to Ar, we studied the degassing of monoisotopic 131Xe produced from Ba during neutron irradiation. Xe is degassed at higher temperature than Ar, and again all analyzed silicates have the same apparent activation energy of ca. 300 kJ/mole. The decoupling of Ar and Xe rules out delamination as the dominant degassing mechanism in mica and implies that recoiled rare gas atoms mostly reside inside the T-O-T layers of the mica structure. The near-identical apparent activation energies in such diverse silicates as tecto-, phyllo- and cyclosilicate requires instead that the in-vacuo gas release kinetics are the same in all three silicates. As the only structural element common to these three silicate families are silica tetrahedra, it is possible that their well-known rotation plays a decisive role for in-vacuo Ar degassing; additional high-temperature in situ structural investigations on feldspars and micas would be needed to help constrain the mechanisms of laboratory Ar release.

  4. Template-Engaged Solid-State Synthesis of Barium Magnesium Silicate Yolk@Shell Particles and Their High Photoluminescence Efficiency.

    PubMed

    Chen, Xuncai; Kim, Woo-Sik

    2016-05-17

    This study presents a new synthetic method for fabricating yolk@shell-structured barium magnesium silicate (BMS) particles through a template-engaged solid-state reaction. First, as the core template, (BaMg)CO3 spherical particles were prepared based on the coprecipitation of Ba(2+) and Mg(2+) . These core particles were then uniformly shelled with silica (SiO2 ) by using CTAB as the structure-directing template to form (BaMg)CO3 @SiO2 particles with a core@shell structure. The (BaMg)CO3 @SiO2 particles were then converted to yolk@shell barium magnesium silicate (BMS) particles by an interfacial solid-state reaction between the (BaMg)CO3 (core) and the SiO2 (shell) at 750 °C. During this interfacial solid-state reaction, Kirkendall diffusion contributed to the formation of yolk@shell BMS particles. Thus, the synthetic temperature for the (BaMg)SiO4 :Eu(3+) phosphor is significantly reduced from 1200 °C with the conventional method to 750 °C with the proposed method. In addition, the photoluminescence intensity of the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor was found to be 9.8 times higher than that of the conventional (BaMg)SiO4 :Eu(3+) phosphor. The higher absorption of excitation light by the structure of the yolk@shell phosphor is induced by multiple light-reflection and -scattering events in the interstitial void between the yolk and the shell. When preparing the yolk@shell (BaMg)SiO4 :Eu(3+) phosphor, a hydrogen environment for the solid-state reaction results in higher photoluminescence efficiency than nitrogen and air environments. The proposed synthetic method can be easily extended to the synthesis of other yolk@shell multicomponent metal silicates. PMID:27059894

  5. Laser emission in Nd3+ doped barium-titanium-silicate microspheres under continuous and chopped wave pumping in a non-coupled pumping scheme

    NASA Astrophysics Data System (ADS)

    Martín, L. L.; Navarro-Urrios, D.; Ferrarese-Lupi, F.; Pérez-Rodríguez, C.; Martín, I. R.; Montserrat, J.; Dominguez, C.; Garrido, B.; Capuj, N.

    2013-07-01

    Laser action using non-coupled excitation and detection of microspheres made of Nd3+ doped barium-titanium-silicate glass has been demonstrated and measured. The microspheres have also been successfully deposited over Si3N4 strip waveguides with a SiO2 separation layer, thus enabling the laser emission extraction onto a CMOS compatible photonic circuit. The dynamics of the lasing wavelength and intensity has been studied as a function of the pump power and interpreted in terms of thermal effects generated through non-radiative recombination of the excited ions.

  6. Structural, Dielectric, and Interface Properties of Crystalline Barium Silicate Films on Si(100): A Robust High-κ Material

    NASA Astrophysics Data System (ADS)

    Islam, S.; Hofmann, K. R.; Feldhoff, A.; Pfnür, H.

    2016-05-01

    The quality and crystallinity of ultrathin dielectric layers depend crucially on the details of interface formation and chemical stability. Using a combination of photoelectron (XPS) and electron-energy-loss spectroscopy, low-energy electron-diffraction, and transmission electron microscopy (TEM), we show that crystalline epitaxial layers of Ba2 SiO4 can be grown on Si(100) substrates from evaporated Ba in oxygen background atmosphere at 650 °C . Since the silicate is chemically by far more stable than the oxides of Si and Ba, an atomically sharp interface with no interface oxide is formed, as confirmed by XPS and TEM. However, the interface is rough on the atomic scale. dc and frequency-dependent electrical measurements reveal a relative dielectric constant of 22.8, low hysteresis in C V measurements, and low leakage currents but still fairly high interface trap densities.

  7. Barium enema

    MedlinePlus

    ... series; Colorectal cancer - lower GI series; Colorectal cancer - barium enema; Crohn disease - lower GI series; Crohn disease - barium enema; Intestinal blockage - lower GI series; Intestinal blockage - ...

  8. Barium Sulfate

    MedlinePlus

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  9. Barium cyanide

    Integrated Risk Information System (IRIS)

    Barium cyanide ; CASRN 542 - 62 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  10. BARIUM RECOVERY PROCESS

    DOEpatents

    Blanco, R.E.

    1959-07-21

    A method of separating barium from nuclear fission products is described. In accordance with the invention, barium may be recovered from an acidic solution of neutron-irradiated fissionable material by carrying ihe barium cut of solution as a sulfate with lead as a carrier and then dissolving the barium-containing precipitate in an aqueous solution of an aliphatic diamine chelating reagent. The barium values together with certain other metallic values present in the diamine solution are then absorbed onto a cation exchange resin and the barium is selectively eluted from the resin bed with concentrated nitric acid.

  11. Barium enema (image)

    MedlinePlus

    A barium enema is performed to examine the walls of the colon. During the procedure, a well lubricated enema tube is inserted gently into the rectum. The barium, a radiopaque (shows up on X-ray) contrast ...

  12. A water-ethanol mixed-solution hydrothermal route to silicates nanowires

    SciTech Connect

    Wang Xun . E-mail: wangxun@mail.tsinghua.edu.cn; Zhuang Jing; Peng Qing; Li Yadong . E-mail: ydli@mail.tsinghua.edu.cn

    2005-07-15

    In this manuscript, series of silicates nanowires, such as calcium silicate, strontium silicate, barium silicate, zinc silicate and cadmium silicate, etc., have been successfully prepared from a water-ethanol mixed solution system through a hydrothermal synthetic way. The formation process of these silicates nanowires has been studied in detail. Due to their rich sources and possible novel properties from reduced dimensionalities, we believe that the synthesis of these silicates nanowires may bring some new opportunity in the solid state chemistry and nanoscience and technology fields, etc.

  13. Eu(2+)-Activated Phase-Pure Oxonitridosilicate Phosphor in a Ba-Si-O-N System via Facile Silicate-Assisted Routes Designed by First-Principles Thermodynamic Simulation.

    PubMed

    Yun, Young Jun; Kim, Jin Kyu; Ju, Ji Young; Choi, Seul Ki; Park, Woon Ik; Jung, Ha-Kyun; Kim, Yongseon; Choi, Sungho

    2016-09-01

    Eu(2+)-activated single phase Ba(2+)-oxonitridosilicate phosphors were prepared under a mild synthetic condition via silicate precursors, and their luminescent properties were investigated. Both the preferred oxonitridosilicate formation as for the available host compounds and thermodynamic stability within the Ba-Si-O-N system were elucidated in detail by the theoretical simulation based on the first-principles density functional theory. Those results can visualize the optimum synthetic conditions for Eu(2+)-activated highly luminescent Ba(2+)-oxonitridosilicates, especially Ba3Si6O12N2, as promising conversion phosphors for white LEDs, including Ba3Si6O9N4 and BaSi2O2N2 phases. To prove the simulated design rule, we synthesized the Ba3Si6O12N2:Eu(2+) phosphor using various silicate precursors, Ba2Si4O10, Ba2Si3O8, and BaSiO3, in a carbothermal reduction ambient and finally succeeded in obtaining a phase of pure highly luminescent oxonitridosilicate phosphor without using any solid-state nitride addition and/or high pressure synthetic procedures. Our study provides useful guidelines for robust synthetic procedures for developing thermally stable rare-earth-ion activated oxonitridosilicate phosphors and an established simulation method that can be effectively applied to other multigas systems. PMID:27518370

  14. Barium release system

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1973-01-01

    A chemical system is described for releasing a good yield of free barium neutral atoms and barium ions in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium. The barium is released in the vapor phase so that it can be ionized by solar radiation and also be excited to emit resonance radiation in the visible range. The ionized luminous cloud of barium becomes a visible indication of magnetic and electrical characteristics in space and allows determination of these properties over relatively large areas at a given time.

  15. Observed Barium Emission Rates

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Wescott, E. M.; Hallinan, T. J.

    1993-01-01

    The barium releases from the CRRES satellite have provided an opportunity for verifying theoretically calculated barium ion and neutral emission rates. Spectra of the five Caribbean releases in the summer of 1991 were taken with a spectrograph on board a U.S. Air Force jet aircraft. Because the line of sight release densities are not known, only relative rates could be obtained. The observed relative rates agree well with the theoretically calculated rates and, together with other observations, confirm the earlier detailed theoretical emission rates. The calculated emission rates can thus with good accuracy be used with photometric observations. It has been postulated that charge exchange between neutral barium and oxygen ions represents a significant source for ionization. If so. it should be associated with emissions at 4957.15 A and 5013.00 A, but these emissions were not detected.

  16. Aspiration of Barium Contrast

    PubMed Central

    Fuentes Santos, Cristina; Steen, Bárbara

    2014-01-01

    The aspiration of barium contrast is a rare complication that may occur during studies of the digestive tract. Barium is an inert material that can cause anywhere from an asymptomatic mechanical obstruction to serious symptoms of respiratory distress that can result in patient death. We present the case of a 79-year-old male patient in whom we observed the presence of contrast medium residue in the lung parenchyma as an incidental finding during hospitalization. When the patient's medical file was reviewed, images were found of a barium swallow study that the patient had undergone months earlier, and we were able to observe the exact moment of the aspiration of the contrast material. The patient had been asymptomatic since the test. PMID:25309769

  17. Barium and Compounds

    Integrated Risk Information System (IRIS)

    Barium and Compounds ; CASRN 7440 - 39 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinog

  18. Barium Peritonitis in Small Animals

    PubMed Central

    KO, Jae Jin; MANN, F. A. (Tony)

    2014-01-01

    ABSTRACT Barium peritonitis is extremely rare, but is difficult to treat and may be life-threatening. Barium suspension leakage from the gastrointestinal tract into the abdominal cavity has a time-dependent and synergistically deleterious effect in patients who have generalized bacterial peritonitis. The severity of barium peritonitis is dependent on the quantity of barium in the abdominal cavity. Barium sulfate leakage results in hypovolemia and hypoproteinemia by worsening the exudation of extracellular fluid and albumin. Abdominal fluid analysis is a useful and efficient method to diagnose barium peritonitis. Serial radiographs may not be a reliable or timely diagnostic technique. Initial aggressive fluid resuscitation and empirical broad-spectrum antibiotic treatment should be instituted promptly, followed quickly by celiotomy. During exploratory surgical intervention, copious irrigation and direct wiping with gauze are employed to remove as much barium as possible. Omentectomy should be considered when needed to expedite barium removal. Despite aggressive medical and surgical treatments, postoperative prognosis is guarded to poor due to complications, such as acute vascular shock, sepsis, diffuse peritonitis, hypoproteninemia, electrolyte imbalance, cardiac arrest, small bowel obstruction related to progression of granulomas and adhesions in the abdominal cavity. Therefore, intensive postoperative monitoring and prompt intervention are necessary to maximize chances for a positive outcome. For those that do survive, small bowel obstruction is a potential consequence due to progression of abdominal adhesions. PMID:24430662

  19. Barium uranyl diphosphonates

    SciTech Connect

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-15

    Three Ba{sup 2+}/UO{sub 2}{sup 2+} methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 Degree-Sign C. These compounds, Ba[UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{center_dot}1.4H{sub 2}O (Ba-1), Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2}F{sub 6}]{center_dot}6H{sub 2}O (Ba-2), and Ba{sub 2}[(UO{sub 2}){sub 2}(CH{sub 2}(PO{sub 3}){sub 2})F{sub 4}]{center_dot}5.75H{sub 2}O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO{sub 5}F{sub 2} pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO{sub 2}[CH{sub 2}(PO{sub 3}){sub 2}]{sup 2-} sheets. The interlayer space of the structures is occupied by Ba{sup 2+}, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance. - Graphical abstract: Illustration of the stacking of the layers in Ba{sub 3}[(UO{sub 2}){sub 4}(CH{sub 2}(PO{sub 3}){sub 2}){sub 2})F{sub 6}]{center_dot}6H{sub 2}O viewed along the c-axis. The structure is constructed from UO{sub 7} pentagonal bipyramidal units, U(1)O{sub 7}=gray, U(2)O{sub 7}=yellow, barium=blue, phosphorus=magenta, fluorine=green, oxygen=red, carbon=black, and hydrogen=light peach. Highlights: Black-Right-Pointing-Pointer The polymerization of the UO{sub 2}{sup 2+} sites to form uranyl dimers leads to structural variations in compounds. Black-Right-Pointing-Pointer Barium cations stitch uranyl diphosphonate anionic layers together, and help mediate structure formation. Black-Right-Pointing-Pointer HF acts as both a

  20. Barium uranyl diphosphonates

    NASA Astrophysics Data System (ADS)

    Nelson, Anna-Gay D.; Alekseev, Evgeny V.; Ewing, Rodney C.; Albrecht-Schmitt, Thomas E.

    2012-08-01

    Three Ba2+/UO22+ methylenediphosphonates have been prepared from mild hydrothermal treatment of uranium trioxide, methylendiphosphonic acid (C1P2) with barium hydroxide octahydrate, barium iodate monohydrate, and small aliquots of HF at 200 °C. These compounds, Ba[UO2[CH2(PO3)2]·1.4H2O (Ba-1), Ba3[(UO2)4(CH2(PO3)2)2F6]·6H2O (Ba-2), and Ba2[(UO2)2(CH2(PO3)2)F4]·5.75H2O (Ba-3) all adopt layered structures based upon linear uranyl groups and disphosphonate molecules. Ba-2 and Ba-3 are similar in that they both have UO5F2 pentagonal bipyramids that are bridged and chelated by the diphosphonate moiety into a two-dimensional zigzag anionic sheet (Ba-2) and a one-dimensional ribbon anionic chain (Ba-3). Ba-1, has a single crystallographically unique uranium metal center where the C1P2 ligand solely bridges to form [UO2[CH2(PO3)2]2- sheets. The interlayer space of the structures is occupied by Ba2+, which, along with the fluoride ion, mediates the structure formed and maintains overall charge balance.

  1. On Barium Oxide Solubility in Barium-Containing Chloride Melts

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Bovet, Andrey L.; Korzun, Iraida V.

    2016-08-01

    Oxide solubility in chloride melts depends on temperature and composition of molten solvent. The solubility of barium oxide in the solvents with barium chloride content is essentially higher than that in molten alkali chlorides. Spectral data demonstrate the existence of oxychloride ionic groupings in such melts. This work presents the results of the BaO solubility in two molten BaCl2-NaCl systems with different barium chloride content. The received data together with earlier published results revealed the main regularities of BaO solubility in molten BaO-BaCl2-MCl systems.

  2. CH Stars and Barium Stars

    NASA Astrophysics Data System (ADS)

    Bond, H.; Sion, E.; Murdin, P.

    2000-11-01

    The classical barium (or `Ba II') stars are RED GIANT STARS whose spectra show strong absorption lines of barium, strontium and certain other heavy elements, as well as strong features due to carbon molecules. Together with the related class of CH stars, the Ba II stars were crucial in establishing the existence of neutron-capture reactions in stellar interiors that are responsible for the synt...

  3. Barium light source method and apparatus

    NASA Technical Reports Server (NTRS)

    Curry, John J. (Inventor); MacDonagh-Dumler, Jeffrey (Inventor); Anderson, Heidi M. (Inventor); Lawler, James E. (Inventor)

    2002-01-01

    Visible light emission is obtained from a plasma containing elemental barium including neutral barium atoms and barium ion species. Neutral barium provides a strong green light emission in the center of the visible spectrum with a highly efficient conversion of electrical energy into visible light. By the selective excitation of barium ionic species, emission of visible light at longer and shorter wavelengths can be obtained simultaneously with the green emission from neutral barium, effectively providing light that is visually perceived as white. A discharge vessel contains the elemental barium and a buffer gas fill therein, and a discharge inducer is utilized to induce a desired discharge temperature and barium vapor pressure therein to produce from the barium vapor a visible light emission. The discharge can be induced utilizing a glow discharge between electrodes in the discharge vessel as well as by inductively or capacitively coupling RF energy into the plasma within the discharge vessel.

  4. Interaction between Barium Oxide and Barium Containing Chloride Melt

    NASA Astrophysics Data System (ADS)

    Nikolaeva, Elena V.; Zakiryanova, Irina D.; Korzun, Iraida V.; Bovet, Andrey L.; Antonov, Boris D.

    2015-05-01

    Thermal analysis was applied to determine the liquidus temperatures in the NaCl-KCl-BaCl2-BaO system, with BaO concentration varied from 0 to 6 mole%. The temperature dependence of the BaO solubility in the NaCl-KCl-BaCl2 eutectic melt was investigated; the thermodynamic parameters of BaO dissolution were calculated. The caloric effects of melting of the NaCl-KCl-BaCl2 eutectic with barium oxide and barium oxychloride additions were studied. The type, morphology, and composition of oxychloride ionic groupings in the melt were determined in situ using Raman spectroscopy.

  5. Silicate volcanism on Io

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1986-01-01

    This paper is mainly concerned with the nature of volcanic eruptions on Io, taking into account questions regarding the presence of silicates or sulfur as principal component. Attention is given to the generation of silicate magma, the viscous dissipation in the melt zone, thermal anomalies at eruption sites, and Ionian volcanism. According to the information available about Io, it appears that its volcanism and hence its surface materials are dominantly silicic. Several percent of volatile materials such as sulfur, but also including sodium- and potassium-rich materials, may also be present. The volatile materials at the surface are continually vaporized and melted as a result of the high rates of silicate volcanism.

  6. The problem of the barium stars

    NASA Technical Reports Server (NTRS)

    Bohm-Vitense, E.; Nemec, J.; Proffitt, C.

    1984-01-01

    Ultraviolet observations of barium stars and other cool stars with peculiar element abundances are reported. Those observations attempted to find hot white dwarf companions. Among six real barium stars studied, only Zeta Cap was found to have a white dwarf companion. Among seven mild, or marginal, barium stars studied, at least three were found to have hot subluminous companions. It is likely that all of them have white dwarf companions.

  7. Silicate Stardust in Meteorites

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2004-06-01

    One of the most exciting discoveries in cosmochemistry during the past 15 years is the presence of presolar grains in meteorites. They are identified by the unusual abundances of isotopes of oxygen, silicon, and other elements. Presolar grains, also called stardust, are exotic compounds such as diamond, graphite, aluminum oxide, and silicon carbide. Why are there no silicates? Spectroscopic observations of young stars show that silicates are abundant. This means that silicates are abundant in molecular clouds like the one in which the solar system formed. Cosmochemists wondered why do we not find silicates in the most primitive extraterrestrial materials: interplanetary dust particles (IDPs) and primitive chondrites. These materials are the least altered since they formed and if any preserved presolar silicate grains, IDPs and chondrites would. Were they all destroyed as the solar system formed? Or was it that we were looking for stardust in all the wrong places? As we reported previously [see PSRD article A New Type of Stardust], Scott Messenger and colleagues have found silicates in IDPs. Now, researchers report finding presolar silicate grains in primitive chondritic meteorites. Ann Nguyen and Ernst Zinner (Washington University in St. Louis) and Kazuhide Nagashima and Hisayoshi Yurimoto (Tokyo Institute of Technology), with Alexander Krot (University of Hawaii) used advanced instrumentation to image the isotopic compositions of small regions of the Acfer 094 carbonaceous chondrite and found several silicate grains with isotopically anomalous oxygen isotopes, a clear indicator of presolar origin. Nagashima and his colleagues also investigated the primitive CR2 carbonaceous chondrite Northwest Africa 530, finding presolar grains in it as well. The grains will shed (star)light on the histories of the stars in which they formed. The relative abundances of presolar silicates in different types of meteorites will help cosmochemists understand the processes of heating

  8. Barium Depletion in Hollow Cathode Emitters

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2009-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the ow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  9. Processing science of barium titanate

    NASA Astrophysics Data System (ADS)

    Aygun, Seymen Murat

    Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties. The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure. This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the

  10. Barium granuloma of the transverse colon.

    PubMed Central

    McKee, P. H.; Cameron, C. H.

    1978-01-01

    A case of barium sulphate granuloma of the transverse colon following gunshot wounds to the abdomen has been described. Scanning electron microscopy with electron probe microanalysis was used to confirm the presence of barium sulphate and the absence of lead or other elements related to the gunshot wounds. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:740599

  11. Calcium silicate insulation structure

    DOEpatents

    Kollie, Thomas G.; Lauf, Robert J.

    1995-01-01

    An insulative structure including a powder-filled evacuated casing utilizes a quantity of finely divided synthetic calcium silicate having a relatively high surface area. The resultant structure-provides superior thermal insulating characteristics over a broad temperature range and is particularly well-suited as a panel for a refrigerator or freezer or the insulative barrier for a cooler or a insulated bottle.

  12. Studies of hexacelsian and celsian barium aluminosilicates

    NASA Astrophysics Data System (ADS)

    Lee, Kuo-Tong

    1998-09-01

    The first part of this work (chapter 3) describes the reaction paths leading to the formation of BaAlsb2Sisb2Osb8 (BAS) from a mixture of gamma-BaCOsb3,\\ alpha-Alsb2Osb3, and amorphous SiOsb2 powders. Heat treatments conducted from 600 to 1200sp°C in air were used to transform the powder mixtures into hexacelsian BAS. The phase evolution to BAS was examined by x-ray diffraction. Several experiments were designed to microscopically reproduce the solid-solid interfaces expected during the synthesis of BAS and enabled the author to describe the different stages of the reaction. There exist two reaction paths in formation of BAS in this study: (1) formation of a series of barium silicates leading to BaO*2SiOsb2 (BSsb2) which then reacts with Alsb2Osb3 to form BAS and (2) formation of BaO*Alsb2Osb3 (BA) which then reacts with SiOsb2 to form BAS. The kinetics of the latter is slower than that of the former because the reaction between BaO*Alsb2Osb3 and SiOsb2 to form BAS includes a bond breaking process. The second part (chapter 4) of this research was undertaken to study the role of additives on the kinetics of the transformation of hexacelsian to celsian. Pre-synthesized hexacelsian powders doped with various additives were heated at temperatures ranging from 850 to 1400sp°C for 4 hrs. Semi-quantitative analysis of XRD was used to determine the extent of the hexacelsian-to-celsian transformation. This work was extended further to investigate the mechanisms involved in the transformation. Defect structures developed in the additive-containing celsian provide insights about the sites occupied by the cations added. Experimental results indicate that the doping of ˜0.99A cations in promoting the conversion of hexacelsian to celsian is by forming an interstitial solid solution in hexacelsian and ˜0.66A cations form a substitutional solid solution. In a kinetic study on the CaO- or MgO-enhanced transformation, values of rate constant, k, and Avlami constant, n, at

  13. Radium/Barium Waste Project

    SciTech Connect

    McDowell, Allen K.; Ellefson, Mark D.; McDonald, Kent M.

    2015-06-25

    The treatment, shipping, and disposal of a highly radioactive radium/barium waste stream have presented a complex set of challenges requiring several years of effort. The project illustrates the difficulty and high cost of managing even small quantities of highly radioactive Resource Conservation and Recovery Act (RCRA)-regulated waste. Pacific Northwest National Laboratory (PNNL) research activities produced a Type B quantity of radium chloride low-level mixed waste (LLMW) in a number of small vials in a facility hot cell. The resulting waste management project involved a mock-up RCRA stabilization treatment, a failed in-cell treatment, a second, alternative RCRA treatment approach, coordinated regulatory variances and authorizations, alternative transportation authorizations, additional disposal facility approvals, and a final radiological stabilization process.

  14. Silicates in Alien Asteroids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This plot of data from NASA's Spitzer Space Telescopes shows that asteroid dust around a dead 'white dwarf' star contains silicates a common mineral on Earth. The data were taken primarily by Spitzer's infrared spectrograph, an instrument that breaks light apart into its basic constituents. The yellow dots show averaged data from the spectrograph, while the orange triangles show older data from Spitzer's infrared array camera. The white dwarf is called GD 40.

  15. Thermochemistry of Silicates

    NASA Technical Reports Server (NTRS)

    Costa, Gustavo; Jacobson, Nathan

    2015-01-01

    The thermodynamic properties of vapor and condensed phases of silicates are crucial in many fields of science. These quantities address fundamental questions on the formation, stability, transformation, and physical properties of silicate minerals and silicate coating compositions. Here the thermodynamic activities of silica and other species in solid solution have been measured by the analysis of the corresponding high temperature vapors using Knudsen Effusion Mass Spectrometry (KEMS). In first set of experiments KEMS has been used to examine the volatility sequence of species (Fe, SiO, Mg, O2 and O) present in the vapor phase during heating of fosterite-rich olivine (Fo93Fa7) up to 2400 C and to measure the Fe, SiO and Mg activities in its solid solution. The data of fosterite-rich olivine are essential for thermochemical equilibrium models to predict the atmospheric and surface composition of hot, rocky exoplanets (Lava Planets). In the second set of experiments the measured thermodynamic activities of the silica in Y2O3-SiO2 and Yb2O3-SiO2 systems are used to assess their reactivity and degradation recession as environmental barrier coatings (EBCs) in combustion environments (e.g. non-moveable parts of gas turbine engine).

  16. Barium Isotopes in Single Presolar Grains

    NASA Technical Reports Server (NTRS)

    Pellin, M. J.; Davis, A. M.; Savina, M. R.; Kashiv, Y.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2001-01-01

    Barium isotopic compositions of single presolar grains were measured by laser ablation laser resonant ionization mass spectrometry and the implications of the data for stellar processes are discussed. Additional information is contained in the original extended abstract.

  17. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  18. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping. PMID:23485244

  19. An assessment of the redistribution of Barium during diagenesis of Marcellus Shale

    NASA Astrophysics Data System (ADS)

    Renock, D.; Symcox, C.; Lanids, J. D.; Sharma, M.

    2012-12-01

    Produced water from the hydrofracturing of Marcellus Shale have been reported to contain barium at concentrations >4000 ppm (Gregory et al, 2011). Understanding the reactions responsible for the leaching of Ba into produced water is important for improving the economic viability of gas extraction and to mitigate environmental concerns. Core samples of Marcellus Shale from New York and Pennsylvania were shown to contain Ba in the range of 400-2200 μg/g. In some of these samples, barite (BaSO4) grains are shown to be partially replaced by pyrite (massive and framboidal varieties) suggesting that Ba is remobilized in the zone of sulfate reduction sometime after sedimentation. Sequential extraction experiments show Ba being released into buffered acetic acid (carbonate fraction), aqua regia (sulfide fraction), and hydrofluoric acid (silicate fraction) extractions despite ~50% of the barium remaining undissolved as barite. Laser ablation ICP-MS showed negligible concentrations of Ba in calcite veins and elevated concentrations in areas of the shale that are predominantly clay + organics. These results suggest that some of the Ba is associated with the clay fraction of the shale (e.g., sorbed to clay surfaces as a result of the anoxic dissolution of barite). These results may inform future strategies for mitigating the release of barium into produced water.

  20. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  1. Chemical abundances and kinematics of barium stars

    NASA Astrophysics Data System (ADS)

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  2. Constraining the oceanic barium cycle with stable barium isotopes

    NASA Astrophysics Data System (ADS)

    Cao, Zhimian; Siebert, Christopher; Hathorne, Ed C.; Dai, Minhan; Frank, Martin

    2016-01-01

    The distribution of barium (Ba) concentrations in seawater resembles that of nutrients and Ba has been widely used as a proxy of paleoproductivity. However, the exact mechanisms controlling the nutrient-like behavior, and thus the fundamentals of Ba chemistry in the ocean, have not been fully resolved. Here we present a set of full water column dissolved Ba (DBa) isotope (δ137BaDBa) profiles from the South China Sea and the East China Sea that receives large freshwater inputs from the Changjiang (Yangtze River). We find pronounced and systematic horizontal and depth dependent δ137BaDBa gradients. Beyond the river influence characterized by generally light signatures (0.0 to + 0.3 ‰), the δ137BaDBa values in the upper water column are significantly higher (+ 0.9 ‰) than those in the deep waters (+ 0.5 ‰). Moreover, δ137BaDBa signatures are essentially constant in the entire upper 100 m, in which dissolved silicon isotopes are fractionated during diatom growth resulting in the heaviest isotopic compositions in the very surface waters. Combined with the decoupling of DBa concentrations and δ137BaDBa from the concentrations of nitrate and phosphate this implies that the apparent nutrient-like fractionation of Ba isotopes in seawater is primarily induced by preferential adsorption of the lighter isotopes onto biogenic particles rather than by biological utilization. The subsurface δ137BaDBa distribution is dominated by water mass mixing. The application of stable Ba isotopes as a proxy for nutrient cycling should therefore be considered with caution and both biological and physical processes need to be considered. Clearly, however, Ba isotopes show great potential as a new tracer for land-sea interactions and ocean mixing processes.

  3. Excess Barium as a Paleoproductivity Proxy: A Reevaluation

    NASA Astrophysics Data System (ADS)

    Eagle, M.; Paytan, A.

    2001-12-01

    Marine barite may serve as a proxy to reconstruct past export production (Dymond, 1992). In most studies sedimentary barite accumulation is not measured directly, instead a parameter termed excess barium (Baexs), also referred to as biogenic barium, is used to estimate the barite content. Baexs is defined as the total Ba concentration in the sediment minus the Ba associated with terrigenous material. Baexs is calculated by normalization to a constant Ba/Al ratio, typically the average shale ratio. This application assumes that (1) all the Ba besides the fraction associated with terrigenous Al is in the form of barite (the phase related to productivity) (2) the Ba/Alshale is constant in space and time (3) all of the Al is associated with terrigenous matter. If these assumptions are invalidated however, this approach lead to significant errors in calculating export production rates. To test the validity of the use of Baexs as a proxy for barite we compared the Baexs in a wide range of core top sediments from different oceanic settings to the barite content in the same cores. We found that Baexs frequently overestimated the Ba fraction associated with barite and in several cases significant Baexs was measured in the cores where no barite was observed. We have also used a sequential leaching protocol (Collier and Edmond 1984) to determine Ba association with organic matter, carbonates, Fe-Mn hydroxides and silicates. While terrigenous Ba remains an important fraction, in our samples 25-95% of non-barite Ba was derived from other fractions, with Fe-Mn oxides contributing the most Ba. In addition we found that the Ba/Al ratio in the silicate fraction of our samples varied considerably from site to site. The above results suggest that at least two of the underlying assumptions for employing Baexs to reconstruct paleoproductivity are not always valid and previously published data from (Murray and Leinen 1993) indicate that the third assumption may also not hold in every

  4. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  5. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  6. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  7. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  8. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium...

  9. 75 FR 19657 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... Commission found that the domestic interested party group response to its notice of institution (74 FR 31757... COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION: Notice of Commission determination to conduct a full five-year review concerning the antidumping duty order on...

  10. 75 FR 20625 - Barium Chloride From China

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... established a schedule for the conduct of this review (74 FR 62587, November 30, 2010). Subsequently, counsel... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Barium Chloride From China AGENCY: United States International Trade Commission. ACTION:...

  11. Analysis of a Sheet Silicate.

    ERIC Educational Resources Information Center

    Adams, J. M.; Evans, S.

    1980-01-01

    Describes a student project in analytical chemistry using sheet silicates. Provides specific information regarding the use of phlogopite in an experiment to analyze samples for silicon, aluminum, magnesium, iron, potassium, and fluoride. (CS)

  12. Ion implantation in silicate glasses

    SciTech Connect

    Arnold, G.W.

    1993-12-01

    This review examines the effects of ion implantation on the physical properties of silicate glasses, the compositional modifications that can be brought about, and the use of metal implants to form colloidal nanosize particles for increasing the nonlinear refractive index.

  13. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  14. 21 CFR 172.410 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be...

  15. THE BIOCOMPATIBILITY OF MESOPOROUS SILICATES

    PubMed Central

    Hudson, Sarah; Padera, Robert F.; Langer, Robert; Kohane, Daniel S.

    2008-01-01

    Micro- and nano- mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes ~ 150 nm, ~ 800 nm and ~ 4 µm and pore sizes of 3 nm, 7 nm and 16 nm respectively are examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over three months, with good biocompatibility on histology at all time points. In contrast, intra peritoneal and intra venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicates that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity could be mitigated by modification of the materials. PMID:18675454

  16. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    PubMed Central

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  17. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates.

    PubMed

    Pustovgar, Elizaveta; Sangodkar, Rahul P; Andreev, Andrey S; Palacios, Marta; Chmelka, Bradley F; Flatt, Robert J; d'Espinose de Lacaillerie, Jean-Baptiste

    2016-01-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of (29)Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured. PMID:27009966

  18. Understanding silicate hydration from quantitative analyses of hydrating tricalcium silicates

    NASA Astrophysics Data System (ADS)

    Pustovgar, Elizaveta; Sangodkar, Rahul P.; Andreev, Andrey S.; Palacios, Marta; Chmelka, Bradley F.; Flatt, Robert J.; D'Espinose de Lacaillerie, Jean-Baptiste

    2016-03-01

    Silicate hydration is prevalent in natural and technological processes, such as, mineral weathering, glass alteration, zeolite syntheses and cement hydration. Tricalcium silicate (Ca3SiO5), the main constituent of Portland cement, is amongst the most reactive silicates in water. Despite its widespread industrial use, the reaction of Ca3SiO5 with water to form calcium-silicate-hydrates (C-S-H) still hosts many open questions. Here, we show that solid-state nuclear magnetic resonance measurements of 29Si-enriched triclinic Ca3SiO5 enable the quantitative monitoring of the hydration process in terms of transient local molecular composition, extent of silicate hydration and polymerization. This provides insights on the relative influence of surface hydroxylation and hydrate precipitation on the hydration rate. When the rate drops, the amount of hydroxylated Ca3SiO5 decreases, thus demonstrating the partial passivation of the surface during the deceleration stage. Moreover, the relative quantities of monomers, dimers, pentamers and octamers in the C-S-H structure are measured.

  19. The formation of cobalt-bearing ferromanganese crusts under fluid destruction of silicate matter

    NASA Astrophysics Data System (ADS)

    Maksimov, S. O.; Safronov, P. P.

    2016-02-01

    The processes of fluid destruction of various silicate rocks under diffusion of flows of compressed gases (mainly carbonaceous) were studied. The gas condensate nature was ascertained for the forming alumoslilicate and ore (cobalt-iron-manganese hydroxide) substances produced under this fluid destruction in the forms of microcrusts and microconcretions. The ore condensates contained in high concentrations the typomorphic elements of oceanic ferromanganese formations (Mn, Co, Ni, Cu, Pb, Ce, and Pt). The elemental composition of the ore oxide substance formed under the destruction of various silicate matrices exhibits a definite degree of endemism with prevalence of the Co-Mn association. The pronounced concentration of barium is related to the substantially carbonaceous composition of the fluid systems. A cerium paradox is revealed: Ce3+ is oxidized into Ce4+ and absorbed by ferromanganese hydrogel and the minimum of cerium appears in rare-earth phosphates.

  20. Comparative pathology of silicate pneumoconiosis.

    PubMed Central

    Brambilla, C.; Abraham, J.; Brambilla, E.; Benirschke, K.; Bloor, C.

    1979-01-01

    A simple pneumoconiosis with lamellar birefringent crystals was observed in animals dying in the San Diego Zoo. We studied 100 autopsies from 11 mammalian and eight avian species. In mammals, mild pulmonary lesions comprised crystal-laden macrophages in alveoli and lymphatics. Interstitial fibrosis was present in 20% of cases. There were no nodules. In birds, dust retention produced large granulomas around tertiary bronchi without fibrosis. Mineralogic analysis using scanning and transmission electron microscopy showed most of the crystals to be silicates. Ninety percent were complex silicates, with aluminum-potassium silicates comprising 70% of the analyzed particles. Electron and x-ray diffraction showed the silicates to be muscovite mica and its hydrothermal degradation product, ie, illite clay. This mica was also present on filtration membranes of atmospheric air samples obtained from the San Diego Zoo. The amount of dust retention was related to the animal's age, anatomic or ecologic variances, and length of stay in the San Diego Zoo. Its semidesert atmosphere is rich in silicates, which are inhaled and deposited in the lungs. Similar mica-induced lesions are found in humans living in this region or the Southwest of the USA. This simple pneumoconiosis is likely to be widespread in human populations living in desert or semidesert climates. Images Figure 9 Figure 10 Figure 7 Figure 8 Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:223447

  1. Stardust silicates from primitive meteorites.

    PubMed

    Nagashima, Kazuhide; Krot, Alexander N; Yurimoto, Hisayoshi

    2004-04-29

    Primitive chondritic meteorites contain material (presolar grains), at the level of a few parts per million, that predates the formation of our Solar System. Astronomical observations and the chemical composition of the Sun both suggest that silicates must have been the dominant solids in the protoplanetary disk from which the planets of the Solar System formed, but no presolar silicates have been identified in chondrites. Here we report the in situ discovery of presolar silicate grains 0.1-1 microm in size in the matrices of two primitive carbonaceous chondrites. These grains are highly enriched in 17O (delta17O(SMOW) > 100-400 per thousand ), but have solar silicon isotopic compositions within analytical uncertainties, suggesting an origin in an oxygen-rich red giant or an asymptotic giant branch star. The estimated abundance of these presolar silicates (3-30 parts per million) is higher than reported for other types of presolar grains in meteorites, consistent with their ubiquity in the early Solar System, but is about two orders of magnitude lower than their abundance in anhydrous interplanetary dust particles. This result is best explained by the destruction of silicates during high-temperature processing in the solar nebula. PMID:15118720

  2. Radioactive Barium Ion Trap Based on Metal-Organic Framework for Efficient and Irreversible Removal of Barium from Nuclear Wastewater.

    PubMed

    Peng, Yaguang; Huang, Hongliang; Liu, Dahuan; Zhong, Chongli

    2016-04-01

    Highly efficient and irreversible capture of radioactive barium from aqueous media remains a serious task for nuclear waste disposal and environmental protection. To address this task, here we propose a concept of barium ion trap based on metal-organic framework (MOF) with a strong barium-chelating group (sulfate and sulfonic acid group) in the pore structures of MOFs. The functionalized MOF-based ion traps can remove >90% of the barium within the first 5 min, and the removal efficiency reaches 99% after equilibrium. Remarkably, the sulfate-group-functionalized ion trap demonstrates a high barium uptake capacity of 131.1 mg g(-1), which surpasses most of the reported sorbents and can selectively capture barium from nuclear wastewater, whereas the sulfonic-acid-group-functionalized ion trap exhibits ultrafast kinetics with a kinetic rate constant k2 of 27.77 g mg(-1) min(-1), which is 1-3 orders of magnitude higher than existing sorbents. Both of the two MOF-based ion traps can capture barium irreversibly. Our work proposes a new strategy to design barium adsorbent materials and provides a new perspective for removing radioactive barium and other radionuclides from nuclear wastewater for environment remediation. Besides, the concrete mechanisms of barium-sorbent interactions are also demonstrated in this contribution. PMID:26999358

  3. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  4. Resonance-fluorescence in barium ion clouds

    NASA Astrophysics Data System (ADS)

    Horak, H. G.; Whitaker, R. W.

    1982-09-01

    The problem of resonant-fluorescent scattering of sunlight by a high altitude, plane-parallel, barium ion cloud is solved numerically. Line strengths and profiles are computed using a modified version of the computer program LINEAR (Auer, Heasley and Milkey, 1972). Hyperfine structure of the spectral lines becomes important for very thick layers and is taken into account. Comparisons are made between coherent and completely noncoherent scattering results, and finally the influence of collisions on the radiation field is estimated.

  5. Nanoparticles of barium induce apoptosis in human phagocytes

    PubMed Central

    Mores, Luana; França, Eduardo Luzia; Silva, Núbia Andrade; Suchara, Eliane Aparecida; Honorio-França, Adenilda Cristina

    2015-01-01

    Purpose Nutrients and immunological factors of breast milk are essential for newborn growth and the development of their immune system, but this secretion can contain organic and inorganic toxins such as barium. Colostrum contamination with barium is an important issue to investigate because this naturally occurring element is also associated with human activity and industrial pollution. The study evaluated the administration of barium nanoparticles to colostrum, assessing the viability and functional activity of colostral mononuclear phagocytes. Methods Colostrum was collected from 24 clinically healthy women (aged 18–35 years). Cell viability, superoxide release, intracellular Ca2+ release, and phagocyte apoptosis were analyzed in the samples. Results Treatment with barium lowered mononuclear phagocyte viability, increased superoxide release, and reduced intracellular calcium release. In addition, barium increased cell death by apoptosis. Conclusion These data suggest that nanoparticles of barium in colostrum are toxic to cells, showing the importance of avoiding exposure to this element. PMID:26451108

  6. Barium Titanate Nanoparticles for Biomarker Applications

    NASA Astrophysics Data System (ADS)

    Matar, O.; Posada, O. M.; Hondow, N. S.; Wälti, C.; Saunders, M.; Murray, C. A.; Brydson, R. M. D.; Milne, S. J.; Brown, A. P.

    2015-10-01

    A tetragonal crystal structure is required for barium titanate nanoparticles to exhibit the nonlinear optical effect of second harmonic light generation (SHG) for use as a biomarker when illuminated by a near-infrared source. Here we use synchrotron XRD to elucidate the tetragonal phase of commercially purchased tetragonal, cubic and hydrothermally prepared barium titanate (BaTiO3) nanoparticles by peak fitting with reference patterns. The local phase of individual nanoparticles is determined by STEM electron energy loss spectroscopy (EELS), measuring the core-loss O K-edge and the Ti L3-edge energy separation of the t2g, eg peaks. The results show a change in energy separation between the t2g and eg peak from the surface and core of the particles, suggesting an intraparticle phase mixture of the barium titanate nanoparticles. HAADF-STEM and bright field TEM-EDX show cellular uptake of the hydrothermally prepared BaTiO3 nanoparticles, highlighting the potential for application as biomarkers.

  7. Suicidal ingestion of barium-sulfide-containing shaving powder.

    PubMed

    Downs, J C; Milling, D; Nichols, C A

    1995-03-01

    Physicians, familiar with the common usage of barium medicinally as the contrast agent barium sulfate, may consider it an innocuous or at most a minimally harmful compound. The barium cation is extremely toxic and produces characteristic gastrointestinal symptoms, periorbital and extremity paresthesia, hypertension, and progressive flaccid muscular paralysis. Profound hypokalemia also may be induced. Overdose may be rapidly fatal unless the ingestion is recognized and appropriate treatment is instituted expediently. PMID:7771386

  8. Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite.

    PubMed

    Elmore, Amy R

    2003-01-01

    This report reviews the safety of Aluminum, Calcium, Lithium Magnesium, Lithium Magnesium Sodium, Magnesium Aluminum, Magnesium, Sodium Magnesium, and Zirconium Silicates, Magnesium Trisilicate, Attapulgite, Bentonite, Fuller's Earth, Hectorite, Kaolin, Montmorillonite, Pyrophyllite, and Zeolite as used in cosmetic formulations. The common aspect of all these claylike ingredients is that they contain silicon, oxygen, and one or more metals. Many silicates occur naturally and are mined; yet others are produced synthetically. Typical cosmetic uses of silicates include abrasive, opacifying agent, viscosity-increasing agent, anticaking agent, emulsion stabilizer, binder, and suspending agent. Clay silicates (silicates containing water in their structure) primarily function as adsorbents, opacifiers, and viscosity-increasing agents. Pyrophyllite is also used as a colorant. The International Agency for Research on Cancer has ruled Attapulgite fibers >5 microm as possibly carcinogenic to humans, but fibers <5 microm were not classified as to their carcinogenicity to humans. Likewise, Clinoptilolite, Phillipsite, Mordenite, Nonfibrous Japanese Zeolite, and synthetic Zeolites were not classified as to their carcinogenicity to humans. These ingredients are not significantly toxic in oral acute or short-term oral or parenteral toxicity studies in animals. Inhalation toxicity, however, is readily demonstrated in animals. Particle size, fibrogenicity, concentration, and mineral composition had the greatest effect on toxicity. Larger particle size and longer and wider fibers cause more adverse effects. Magnesium Aluminum Silicate was a weak primary skin irritant in rabbits and had no cumulative skin irritation in guinea pigs. No gross effects were reported in any of these studies. Sodium Magnesium Silicate had no primary skin irritation in rabbits and had no cumulative skin irritation in guinea pigs. Hectorite was nonirritating to the skin of rabbits in a Draize primary skin

  9. Magnetoelastic coupling in epitaxial cobalt ferrite/barium titanate heterostructures

    NASA Astrophysics Data System (ADS)

    Gräfe, Joachim; Welke, Martin; Bern, Francis; Ziese, Michael; Denecke, Reinhard

    2013-08-01

    Ultra-thin cobalt ferrite films have been synthesised on ferroelectric barium titanate crystals. The cobalt ferrite films exhibit a magnetic response to strain induced by structural changes in the barium titanate substrate, suggesting a pathway to multiferroic coupling. These structural changes are achieved by heating through the phase transition temperatures of barium titanate. In addition the ferromagnetic signal of the substrate itself is taken into account, addressing the influence of impurities or defects in the substrate. The cobalt ferrite/barium titanate heterostructure is a suitable oxidic platform for future magnetoelectric applications with an established ferroelectric substrate and widely tuneable magnetic properties by changing the transition metal in the ferrite film.

  10. Lanthanide doped strontium-barium cesium halide scintillators

    SciTech Connect

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  11. Creating unstable velocity-space distributions with barium injections

    NASA Technical Reports Server (NTRS)

    Pongratz, M. B.

    1983-01-01

    Ion velocity-space distributions resulting from barium injections from orbiting spacecraft and shaped charges are discussed. Active experiments confirm that anomalous ionization processes may operate, but photoionization accounts for the production of the bulk of the barium ions. Pitch-angle diffusion and/or velocity-space diffusion may occur, but observations of barium ions moving upwards against gravity suggests that the ions retain a significant enough fraction of their initial perpendicular velocity to provide a mirror force. The barium ion plasmas should have a range of Alfven Mach numbers and plasma betas. Because the initial conditions can be predicted these active experiments should permit testing plasma instability hypotheses.

  12. Battery components employing a silicate binder

    DOEpatents

    Delnick, Frank M.; Reinhardt, Frederick W.; Odinek, Judy G.

    2011-05-24

    A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

  13. Microwave emission from granular silicates

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1973-01-01

    Experimental finding is that mass absorption coefficient is independent of frequency but highly dependent on moisture content; effective conductivity increases with frequency, and low tangent is independent of frequency. Computed values of electrical properties are in rough numerical agreement with extrapolated laboratory values on other silicate materials.

  14. Circumstellar Crystalline Silicates: Evolved Stars

    NASA Astrophysics Data System (ADS)

    Tartar, Josh; Speck, A. K.

    2008-05-01

    One of the most exciting developments in astronomy in the last 15 years was the discovery of crystalline silicate stardust by the Short Wavelength Spectrometer (SWS) on board of ISO; discovery of the crystalline grains was indeed one of the biggest surprises of the ISO mission. Initially discovered around AGB stars (evolved stars in the range of 0.8 > M/M¤>8) at far-infrared (IR) wavelengths, crystalline silicates have since been seen in many astrophysical environments including young stellar objects (T Tauri and Herbig Ae/Be), comets and Ultra Luminous Infrared Galaxies. Low and intermediate mass stars (LIMS) comprise 95% of the contributors to the ISM, so study of the formation of crystalline silicates is critical to our understanding of the ISM, which is thought to be primarily amorphous (one would expect an almost exact match between the composition of AGB dust shells and the dust in the ISM). Whether the crystalline dust is merely undetectable or amorphized remains a mystery. The FORCAST instrument on SOFIA as well as the PACS instrument on Herschel will provide exciting observing opportunities for the further study of crystalline silicates.

  15. Silicates in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Sirocky, M. M.; Levenson, N. A.; Elitzur, M.; Spoon, H. W. W.; Armus, L.

    2008-05-01

    We analyze the mid-infrared (MIR) spectra of ultraluminous infrared galaxies (ULIRGs) observed with the Spitzer Space Telescope's Infrared Spectrograph. Dust emission dominates the MIR spectra of ULIRGs, and the reprocessed radiation that emerges is independent of the underlying heating spectrum. Instead, the resulting emission depends sensitively on the geometric distribution of the dust, which we diagnose with comparisons of numerical simulations of radiative transfer. Quantifying the silicate emission and absorption features that appear near 10 and 18 μm requires a reliable determination of the continuum, and we demonstrate that including a measurement of the continuum at intermediate wavelength (between the features) produces accurate results at all optical depths. With high-quality spectra, we successfully use the silicate features to constrain the dust chemistry. The observations of the ULIRGs and local sight lines require dust that has a relatively high 18 μm/10 μm absorption ratio of the silicate features (around 0.5). Specifically, the cold dust of Ossenkopf et al. is consistent with the observations, while other dust models are not. We use the silicate feature strengths to identify two families of ULIRGs, in which the dust distributions are fundamentally different. Optical spectral classifications are related to these families. In ULIRGs that harbor an active galactic nucleus, the spectrally broad lines are detected only when the nuclear surroundings are clumpy. In contrast, the sources of lower ionization optical spectra are deeply embedded in smooth distributions of optically thick dust.

  16. Amended Silicated for Mercury Control

    SciTech Connect

    James Butz; Thomas Broderick; Craig Turchi

    2006-12-31

    Amended Silicates{trademark}, a powdered, noncarbon mercury-control sorbent, was tested at Duke Energy's Miami Fort Station, Unit 6 during the first quarter of 2006. Unit 6 is a 175-MW boiler with a cold-side electrostatic precipitator (ESP). The plant burns run-of-the-river eastern bituminous coal with typical ash contents ranging from 8-15% and sulfur contents from 1.6-2.6% on an as-received basis. The performance of the Amended Silicates sorbent was compared with that for powdered activated carbon (PAC). The trial began with a period of baseline monitoring during which no sorbent was injected. Sampling during this and subsequent periods indicated mercury capture by the native fly ash was less than 10%. After the baseline period, Amended Silicates sorbent was injected at several different ratios, followed by a 30-day trial at a fixed injection ratio of 5-6 lb/MMACF. After this period, PAC was injected to provide a comparison. Approximately 40% mercury control was achieved for both the Amended Silicates sorbent and PAC at injection ratios of 5-6 lbs/MMACF. Higher injection ratios did not achieve significantly increased removal. Similar removal efficiencies have been reported for PAC injection trials at other plants with cold-side ESPs, most notably for plants using medium to high sulfur coal. Sorbent injection did not detrimentally impact plant operations and testing confirmed that the use of Amended Silicates sorbent does not degrade fly ash quality (unlike PAC). The cost for mercury control using either PAC or Amended Silicates sorbent was estimated to be equivalent if fly ash sales are not a consideration. However, if the plant did sell fly ash, the effective cost for mercury control could more than double if those sales were no longer possible, due to lost by-product sales and additional cost for waste disposal. Accordingly, the use of Amended Silicates sorbent could reduce the overall cost of mercury control by 50% or more versus PAC for locations where fly

  17. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  18. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  19. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  20. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  1. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  2. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  3. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  4. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  5. 21 CFR 872.6670 - Silicate protector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Silicate protector. 872.6670 Section 872.6670 Food... DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6670 Silicate protector. (a) Identification. A silicate protector is a device made of silicone intended to be applied with an absorbent tipped applicator to...

  6. 21 CFR 582.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 582.2227 Section 582.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  7. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Tricalcium silicate. 582.2906 Section 582.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  8. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tricalcium silicate. 182.2906 Section 182.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  9. 21 CFR 182.2227 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 182.2227 Section 182.2227 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Calcium silicate. (a) Product. Calcium silicate. (b) Tolerance. 2 percent and 5 percent. (c)...

  10. 21 CFR 182.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tricalcium silicate. 182.2906 Section 182.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  11. 21 CFR 582.2906 - Tricalcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Tricalcium silicate. 582.2906 Section 582.2906 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Tricalcium silicate. (a) Product. Tricalcium silicate. (b) Tolerance. 2 percent. (c)...

  12. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  13. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  14. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  15. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  16. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  17. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  18. 21 CFR 582.2437 - Magnesium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Magnesium silicate. 582.2437 Section 582.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Magnesium silicate. (a) Product. Magnesium silicate. (b) Tolerance. 2 percent. (c) Limitations,...

  19. Barium Enhancement in NGC 6819 Blue Stragglers

    NASA Astrophysics Data System (ADS)

    Milliman, Katelyn; Mathieu, Robert D.; Schuler, Simon C.

    2015-01-01

    Possible formation pathways for blue straggler stars include mergers in hierarchical triple systems, stellar collisions during dynamical encounters, and mass transfer from a giant companion. Extensive work on the blue stragglers in the old open cluster NGC 188 (7 Gyr) has led to exciting discoveries including a binary secondary mass distribution peaked at 0.5 MSolar and the detection of three young white dwarf binary companions. These indicate that mass transfer from an asymptotic giant branch star is the dominant mechanism for blue straggler formation in open clusters. Such mass transfer events should pollute the surface abundance of the blue straggler with nucleosynthesis products from the evolved donor. The other formation pathways, mergers and collisions, are predicted to produce no such enhancements. In an effort to move beyond NGC 188 and into other open clusters we present the first results of a surface abundance study of the blue stragglers in the intermediate-aged open cluster NGC 6819 (2.5 Gyr) using the Hydra multi-object spectrograph on the WIYN 3.5 m telescope. This part of our study centers on the s-process element barium as a tracer of formation via mass transfer. We compare the blue straggler surface abundance of barium to that of a sample of main-sequence stars in NGC 6819 and find multiple blue stragglers with anomalous abundances. Surprising, most of the blue stragglers with barium anomalies show no radial-velocity evidence for a companion. We gratefully acknowledge funding from the National Science Foundation under grant AST- 0908082 and the Wisconsin Space Grant Consortium.

  20. BARIUM IN TEETH AS INDICATOR OF BODY BURDEN

    EPA Science Inventory

    A study was conducted to determine the biological availability of naturally occurring barium in a municipal drinking water by the analysis of barium in deciduous teeth of children. The grade school children of two Illinois towns were chosen for the study. The towns were chosen ba...

  1. Effects of ionization on silicate glasses. [Silicate glasses

    SciTech Connect

    Primak, W.

    1982-02-01

    This evaluation of radiation effects in silicate glasses caused by ionization is based on our own investigations, on material collected in our files (reports, articles, and notes), and on a computer literature search through recent issues of Physics Abstracts and Chemical Abstracts (and the apparently pertinent references which appeared). Some of our recent results, available heretofore only in internal correspondence, are presented in some detail. It is concluded that research into the behavior of silicate glasses generally will be required before the specific effects in the radioactive waste storage glasses can be properly understood and evaluated. Two particular neglected areas of investigation are targeted for immediate concern: a kinetic analysis of annealing data and the acquisition of data on effects of irradiation at controlled elevated temperatures.

  2. Barium dithionate as an EPR dosemeter.

    PubMed

    Baran, M P; Bugay, O A; Kolesnik, S P; Maksimenko, V M; Teslenko, V V; Petrenko, T L; Desrosiers, M F

    2006-01-01

    Electron paramagnetic resonance (EPR) dosimetry is growing in popularity and this success has encouraged the search for other dosimetric materials. Previous studies of gamma-irradiated barium dithionate (BaS(2)O(6) x 2H(2)O) have shown promise for its use as a radiation dosemeter. This work studies in greater detail several essential attributes of the system. Special attention has been directed to the study of EPR response dependences on microwave power, irradiation temperature, minimum detectable dose and post-irradiation stability. PMID:16565205

  3. Europium-doped barium bromide iodide

    SciTech Connect

    Gundiah, Gautam; Hanrahan, Stephen M.; Hollander, Fredrick J.; Bourret-Courchesne, Edith D.

    2009-10-21

    Single crystals of Ba0.96Eu0.04BrI (barium europium bromide iodide) were grown by the Bridgman technique. The title compound adopts the ordered PbCl2 structure [Braekken (1932). Z. Kristallogr. 83, 222-282]. All atoms occupy the fourfold special positions (4c, site symmetry m) of the space group Pnma with a statistical distribution of Ba and Eu. They lie on the mirror planes, perpendicular to the b axis at y = +-0.25. Each cation is coordinated by nine anions in a tricapped trigonal prismatic arrangement.

  4. Short-cavity squeezing in barium

    NASA Technical Reports Server (NTRS)

    Hope, D. M.; Bachor, H-A.; Manson, P. J.; Mcclelland, D. E.

    1992-01-01

    Broadband phase sensitive noise and squeezing were experimentally observed in a system of barium atoms interacting with a single mode of a short optical cavity. Squeezing of 13 +/- 3 percent was observed. A maximum possible squeezing of 45 +/- 8 percent could be inferred for out experimental conditions, after correction for measured loss factors. Noise reductions below the quantum limit were found over a range of detection frequencies 60-170 MHz and were best for high cavity transmission and large optical depths. The amount of squeezing observed is consistent with theoretical predictions from a full quantum statistical model of the system.

  5. Vacancy ordering in reduced barium titanate

    NASA Astrophysics Data System (ADS)

    Woodward, David I.; Reaney, Ian M.; Yang, Gaiying Y.; Dickey, Elizabeth C.; Randall, Clive A.

    2004-06-01

    A crystal structure is proposed for reduced barium titanate, BaTiO3-δ, δ≈0.33, formed during the degradation of Ni-BaTiO3 X7R multilayer ceramic capacitors. High-resolution transmission electron microscopy and selected-area electron diffraction have been used in combination with computer simulations to show that oxygen vacancies accrete on every third pseudocubic {111} plane, resulting in a cell with space group P3m1. Additionally, from electron energy loss spectroscopy, it is proposed that Ti4+ is reduced to Ti3+ as a mechanism of charge compensation within oxygen-deficient octahedra.

  6. Barium cardiotoxicity: Relationship between ultrastructural damage and mechanical effects.

    PubMed

    Delfino, G; Amerini, S; Mugelli, A

    1988-01-01

    The ultrastructural damage in guinea-pig ventricular strips caused by barium was analysed. At a concentration of 1 mmol/litre, barium chloride caused a dramatic increase in the developed tension associated with the onset of automaticity. The ultrastructural analysis demonstrated that barium caused notable and consistent alterations which affected most myocyte components. Various degenerative aspects were observed in mitochondria and in the contractile apparatus. Glycogen deposits were completely depleted. Preparations driven at 4 Hz (i.e. the rate of spontaneous firing of barium-treated preparations) showed moderate ultrastructural alterations, thus demonstrating that the increase in the rate of beating is not the only determinant of the observed damage. These results suggest that the myocardial toxicity of barium is due not only to the well-known modifications in membrane permeability, but possibly also to alterations in cell function. PMID:20702358

  7. Emission analysis of a laser-produced barium plasma plume.

    PubMed

    Singh, R K; Joshi, H C; Kumar, Ajai

    2015-09-01

    In the present work we report the characteristic emission features of a laser-produced barium plasma plume. The time-resolved analysis for the different spectral lines of neutral and singly charged ionic barium has been carried out. It has been observed that the temporal evolution of electron temperature and density shows a peculiar behavior which is significantly different from the reported results of laser ablation of materials. The electron density increases with increase in delay time but the temperature does not change to any significant extent. Strong self-reversal in the emission of a resonant singly charged barium ionic line (455.4 nm) with time delay indicates the increase of population of singly charged barium ion with time. The results are explained on the basis of the increased population of barium metastables and subsequent ionization (Penning type). PMID:26368891

  8. Modifying Silicates for Better Dispersion in Nanocomposites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi

    2005-01-01

    An improved chemical modification has been developed to enhance the dispersion of layered silicate particles in the formulation of a polymer/silicate nanocomposite material. The modification involves, among other things, the co-exchange of an alkyl ammonium ion and a monoprotonated diamine with interlayer cations of the silicate. The net overall effects of the improved chemical modification are to improve processability of the nanocomposite and maximize the benefits of dispersing the silicate particles into the polymer. Some background discussion is necessary to give meaning to a description of this development. Polymer/silicate nanocomposites are also denoted polymer/clay composites because the silicate particles in them are typically derived from clay particles. Particles of clay comprise layers of silicate platelets separated by gaps called "galleries." The platelet thickness is 1 nm. The length varies from 30 nm to 1 m, depending on the silicate. In order to fully realize the benefits of polymer/silicate nanocomposites, it is necessary to ensure that the platelets become dispersed in the polymer matrices. Proper dispersion can impart physical and chemical properties that make nanocomposites attractive for a variety of applications. In order to achieve nanometer-level dispersion of a layered silicate into a polymer matrix, it is typically necessary to modify the interlayer silicate surfaces by attaching organic functional groups. This modification can be achieved easily by ion exchange between the interlayer metal cations found naturally in the silicate and protonated organic cations - typically protonated amines. Long-chain alkyl ammonium ions are commonly chosen as the ion-exchange materials because they effectively lower the surface energies of the silicates and ease the incorporation of organic monomers or polymers into the silicate galleries. This completes the background discussion. In the present improved modification of the interlayer silicate surfaces

  9. Proton conductivity of potassium doped barium zirconates

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    2010-01-01

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba 0.95K 0.05Zr 0.85Y 0.11Zn 0.04O 3-δ at 600 °C is 2.2×10 -3 S/cm in wet 5% H 2. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H 2 and 0.31(1), 0.74(3) eV in dry 5% H 2. A power density of 7.7 mW/cm 2 at 718 °C was observed when a 1 mm thick Ba 0.95K 0.05Zr 0.85Y 0.11Zn 0.04O 3-δ pellet was used as electrolyte and platinum electrodes.

  10. Do all barium stars have a white dwarf companion?

    NASA Technical Reports Server (NTRS)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  11. Hygienic importance of increased barium content in some fresh waters.

    PubMed

    Havlík, B; Hanusová, J; Rálková, J

    1980-01-01

    In surface waters of the mining and processing areas of uranium ore there is an increased content of free and bound barium ions due to the use of barium salts for the treatment of waste and mine waters containing radium. In model experiments with the algae Ankistrodesmus falcatus, Chlorella kessleri and Scenedesmus obliquus, we studied the effect of Ba2+ on the accumulation of 226Ra. It was found that the accumulation of radium by algae is negatively influenced with barium concentrations higher than 1 mg.l-1. The accumulation of barium of organisms of primary production was studied using 133BaCl2. At a barium content in the medium of 4.0, 0.46 and 0.04 mu. l-1, the algae accumulated 30-60% of the added amount of barium during an exposure of 15 days. Biochemical analyses showed that barium is bound to the cellular membrane and to other components of the algal cell that cannot be extracted with water or alcohol. PMID:7462608

  12. Photoluminescence of barium titanate and barium zirconate in multilayer disordered thin films at room temperature.

    PubMed

    Moreira, M L; Gurgel, M F C; Mambrini, G P; Leite, E R; Pizani, P S; Varela, J A; Longo, E

    2008-09-25

    The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems. PMID:18593105

  13. Fluorescence properties of Eu3+-doped alumino silicate glasses

    NASA Astrophysics Data System (ADS)

    Herrmann, Andreas; Kuhn, Stefan; Tiegel, Mirko; Rüssel, Christian

    2014-11-01

    Alumino silicate glasses of a very broad range of molar compositions doped with 1 ṡ 1020 Eu3+ cm-3 (about 0.2 mol% Eu2O3) were prepared. As network modifier oxides Li2O, Na2O, K2O, MgO, CaO, SrO, BaO, ZnO, PbO, Y2O3 and La2O3 have been used. All glasses show relatively broad fluorescence excitation and emission spectra. For most glasses only a weak effect of the glass composition on the excitation and emission spectra is observed. Although the glasses should be structurally similar, notable differences are found for the fluorescence lifetimes. These increase steadily with decreasing mean atomic weight, decreasing refractive index and decreasing optical basicity of the glasses, which may be explained by local field effects. An exception from this rule are the strontium, barium and potassium containing glasses, which show significantly increased fluorescence lifetimes despite of their high refractive index, optical basicity and molecular weight. The non mono-exponential fluorescence decay curves as well as the fluorescence spectra indicate a massive change in the local surroundings of the doped rare earth ions for these glasses.

  14. Proton conductivity of potassium doped barium zirconates

    SciTech Connect

    Xu Xiaoxiang; Tao Shanwen; Irvine, John T.S.

    2010-01-15

    Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10%. Introducing extra potassium leads to the formation of second phase or YSZ impurities. The water uptake of barium zirconates was increased even with 5% doping of potassium at the A-site. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. The maximum solubility for yttrium at B-sites is around 15 at% after introducing 1 wt% zinc. The conductivity of Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} at 600 deg. C is 2.2x10{sup -3} S/cm in wet 5% H{sub 2}. The activation energies for bulk and grain boundary are 0.29(2), 0.79(2) eV in wet 5% H{sub 2} and 0.31(1), 0.74(3) eV in dry 5% H{sub 2}. A power density of 7.7 mW/cm{sup 2} at 718 deg. C was observed when a 1 mm thick Ba{sub 0.95}K{sub 0.05}Zr{sub 0.85}Y{sub 0.11}Zn{sub 0.04}O{sub 3-{delta}} pellet was used as electrolyte and platinum electrodes. - Graphical abstract: Potassium doped barium zirconates have been synthesized by solid state reactions. It was found that the solubility limit of potassium on A-sites is between 5% and 10 %. The sintering conditions and conductivity can be improved significantly by adding 1 wt% ZnO during material synthesis. Five percent doping of potassium at A-site can double the total conductivity.

  15. Designed microstructures in textured barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Hovis, David Brian

    It is a fundamental principle of materials science that the microstructure of a material defines its properties and ultimately its performance for a given application. A prime example of this can be found in the large conch shell Strombus gigas, which has an intricate microstructure extending across five distinct length scales. This microstructure gives extraordinary damage tolerance to the shell. The structure of Strombus gigas cannot be replicated in a modern engineering ceramic with any existing processing technique, so new processing techniques must be developed to apply this structure to a model material. Barium hexaferrite was chosen as a model material to create microstructures reminiscent of Strombus gigas and evaluate its structure-property relations. This work describes novel processing methods to produce textured barium hexaferrite with no coupling between the sample geometry and the texture direction. This technique, combining magnetic field-assisted gelcasting with templated grain growth, also allows multilayer samples to be fabricated with different texture directions in adjacent layers. The effects of adding either B2O3 or excess BaCO 3 on the densification and grain growth of barium hexaferrite was studied. The texture produced using this technique was assessed using orientation imaging microscopy (OIM) at Oak Ridge National Laboratory. These measurements showed peak textures as high as 60 MRD and sharp interfaces between layers cast with different texture directions. The effect of oxygen on the quality of gelcasting is also discussed, and it is shown that with proper mold design, it is possible to gelcast multiple layers with differing texture directions without delamination. Monolithic and multilayer samples were produced and tested in four point bending to measure the strength and work of fracture. Modulus measurements, made with the ultrasonic pulse-echo technique, show clear signs of microcracking in both the isotropic and textured samples

  16. Metallurgical Properties and Phase Transformations of Barium-Strontium Modifier

    NASA Astrophysics Data System (ADS)

    Platonov, M. A.; Sulimova, I. S.; Rozhikhina, I. D.; Dmitrienko, V. I.; Horoshun, G. V.

    2016-04-01

    Metallurgical properties and phase transformations of barium-strontium modifier were tested in laboratory conditions resembling steel processing in furnace and ladle. When heating barium-strontium modifier start of melting, kinetics of decomposition, phase and structure transformation were studied. The concentrate under consideration has been revealed to be a complex mineral compound containing barytocalcite, calcite, calciostrontianite, dolomite and siderite. The reaction kinetics of decomposing mineral components of barium-strontium modifier to oxides does not considerably affect slag formation in conditions of out-of-furnace steel processing.

  17. A high-altitude barium radial injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Deehr, C. S.; Romick, G. J.; Olson, J. V.; Roederer, J. G.; Sydora, R.

    1980-01-01

    A rocket launched from Poker Flat, Alaska, carried a new type of high-explosive barium shaped charge to 571 km, where detonation injected a thin disk of barium vapor with high velocity nearly perpendicular to the magnetic field. The TV images of the injection are spectacular, revealing three major regimes of expanding plasma which showed early instabilities in the neutral gas. The most unusual effect of the injection is a peculiar rayed barium-ion structure lying in the injection plane and centered on a 5 km 'black hole' surrounding the injection point. Preliminary electrostatic computer simulations show a similar rayed development.

  18. Adsorption kinetics of silicic acid on akaganeite.

    PubMed

    Naren, Gaowa; Ohashi, Hironori; Okaue, Yoshihiro; Yokoyama, Takushi

    2013-06-01

    As part of a series of studies on the interaction between ferric ions and silicic acid in the hydrosphere, the adsorption of silicic acid on akaganeite was investigated kinetically at various pH values. The adsorption of silicic acid increased with increasing pH over an initial pH range of 4-11.5. In the kinetic experiment, the Cl(-) was released from akaganeite much faster than silicic acid was adsorbed. From this result, we concluded that chloride ions bound on the surface of akaganeite are released and Fe-OH or Fe-O(-) sites are formed, which then acts as an adsorption site for silicic acid. The uptake mechanism of silicic acid by akaganeite is significantly different from that by schwertmannite, despite the presence of the same tunnel structure. PMID:23538050

  19. Barium hexaferrite ferrofluids - preparation and physical properties

    NASA Astrophysics Data System (ADS)

    Müller, R.; Hiergeist, R.; Steinmetz, H.; Ayoub, N.; Fujisaki, M.; Schüppel, W.

    1999-07-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared for the first time using oleic acid as surfactant and Isopar M ® as carrier liquid. The initial susceptibility versus temperature for zero-field cooling of the ferrofluid was obtained by a vibrating sample magnetometer. TEM pictures of the fluid show isolated particles and only small agglomerates and a mean particle diameter of approx. 8 nm. Numerical calculations of the magneto-viscous effect, based on the local-equilibrium magnetic state model, clearly show the benefit for Ba-ferrite ferrofluids resulting from the high uniaxial anisotropy compared to magnetite ferrofluids. Rheological measurements were performed with a rotational-type viscometer with magnetic field perpendicular to the hydrodynamic vortex axis.

  20. Silicate stabilization studies in propylene glycol

    SciTech Connect

    Schwartz, S.A.

    1999-08-01

    In most North American and many European coolant formulations, the corrosion inhibition of heat-rejecting aluminum surfaces is provided by alkali metal silicates. But, their tendency towards polymerization, leading to gelation and/or precipitation, can reduce the effectiveness of a coolant. This paper presents the results of experiments which illustrate formulation-dependent behavior of inorganic silicate in propylene glycol compositions. Specific examples of the effects of glycol matrix, stabilizer type, and hard water on silicate stabilization are provided.

  1. Cumulate Fragments in Silicic Ignimbrites

    NASA Astrophysics Data System (ADS)

    Bachmann, O.; Ellis, B. S.; Wolff, J.

    2014-12-01

    Increasingly, studies are concluding that silicic ignimbrites are the result of the amalgamation of multiple discrete magma batches. Yet the existence of discrete batches presents a conundrum for magma generation and storage; if silicic magma batches are not generated nearly in situ in the upper crust, they must traverse, and reside within, a thermally hostile environment with large temperature gradients, resulting in low survivability in their shallow magmatic hearths. The Snake River Plain (Idaho, USA) is a type example of this 'multi-batch' assembly with ignimbrites containing multiple populations of pyroxene crystals, glass shards, and crystal aggregates. The ubiquitous crystal aggregates hint at a mechanism to facilitate the existence of multiple, relatively small batches of rhyolite in the upper crust. These aggregates contain the same plagioclase, pyroxene, and oxide mineral compositions as single phenocrysts of the same minerals in their host rocks, but they have significantly less silicic bulk compositions and lack quartz and sanidine, which occur as single phenocrysts in the deposits. This implies significant crystallization followed by melt extraction from mushy reservoir margins. The extracted melt then continues to evolve (crystallizing sanidine and quartz) while the melt-depleted margins provide an increasingly rigid and refractory network segregating the crystal-poor batches of magma. The hot, refractory, margins insulate the crystal-poor lenses, allowing (1) extended residence in the upper crust, and (2) preservation of chemical heterogeneities among batches. In contrast, systems that produce cumulates richer in low-temperature phases (quartz, K-feldspars, and/or biotite) favour remelting upon recharge, leading to less segregation of eruptible melt pockets and the formation of gradationally zoned ignimbrites. The occurrence of similar crystal aggregates from a variety of magmatic lineages suggests the generality of this process.

  2. Effect of silicate ions on electrode overvoltage

    NASA Technical Reports Server (NTRS)

    Gras, J. M.; Seite, C.

    1979-01-01

    The influence of the addition of a silicate to a caustic solution (KOH) is studied in order to determine the degree to which silicates inhibit the corrosion of chrysotile under conditions of electrolysis at working temperatures of 100 C and above. In an alkaline solution containing various silicate concentrations, current density was increased and electrode overvoltage was measured. Results show that silicate ion concentrations in the electrolyte increase with temperature without effecting electrochemical performance up to 115 C at 700 MA/sqcm. At this point the concentration is about 0.5 g Si/100 g KOH. Beyond this limit, electrolytic performance rapidly degenerates due to severe oxidation of the electrodes.

  3. Basaltic injections into floored silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Wiebe, R. A.

    Recent studies have provided compelling evidence that many large accumulations of silicic volcanic rocks erupted from long-lasting, floored chambers of silicic magma that were repeatedly injected by basaltic magma. These basaltic infusions are commonly thought to play an important role in the evolution of the silicic systems: they have been proposed as a cause for explosive silicic eruptions [Sparks and Sigurdsson, 1977], compositional variation in ash-flow sheets [Smith, 1979], mafic magmatic inclusions in silicic volcanic rocks [Bacon, 1986], and mixing of mafic and silicic magmas [Anderson, 1976; Eichelberger, 1978]. If, as seems likely, floored silicic magma chambers have frequently been invaded by basalt, then plutonic bodies should provide records of these events. Although plutonic evidence for mixing and commingling of mafic and silicic magmas has been recognized for many years, it has been established only recently that some intrusive complex originated through multiple basaltic injections into floored chambers of silicic magma [e.g., Wiebe, 1974; Michael, 1991; Chapman and Rhodes, 1992].

  4. Phased surgical treatment of barium enema-induced rectal injury and retention of barium in the pelvic floor space

    PubMed Central

    Yang, Xuefei; Xia, Ligang; Huang, Jun; Wang, Jianping

    2014-01-01

    Iatrogenic injuries caused by barium enema are rarely reported. Following a phased surgical protocol for up to one year, we have successfully treated a patient with rectal injury and severe infection of the pelvic floor space complicated with retention of large amounts of barium and vaginal fistula. In this article, the phased surgery planning for the treatment of rectal injury complicated with vaginal fistula is discussed in terms of the pros and cons, and the observed effect and evolution of barium retained in the pelvic floor space are described. PMID:25405155

  5. Upper gastrointestinal barium evaluation of duodenal pathology: A pictorial review

    PubMed Central

    Gupta, Pankaj; Debi, Uma; Sinha, Saroj Kant; Prasad, Kaushal Kishor

    2014-01-01

    Like other parts of the gastrointestinal tract (GIT), duodenum is subject to a variety of lesions both congenital and acquired. However, unlike other parts of the GIT viz. esophagus, rest of the small intestine and large intestine, barium evaluation of duodenal lesions is technically more challenging and hence not frequently reported. With significant advances in computed tomography technology, a thorough evaluation including intraluminal, mural and extramural is feasible in a single non-invasive examination. Notwithstanding, barium evaluation still remains the initial and sometimes the only imaging study in several parts of the world. Hence, a thorough acquaintance with the morphology of various duodenal lesions on upper gastrointestinal barium examination is essential in guiding further evaluation. We reviewed our experience with various common and uncommon barium findings in duodenal abnormalities. PMID:25170399

  6. Calculated emission rates for barium releases in space

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1989-01-01

    The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.

  7. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1983-01-01

    The feasibility of making non-volatile digital memory devices of barium titanate, BaTiO3, that are integrated onto a silicon substrate with the required ferroelectric film produced by processing, compatible with silicon technology was examined.

  8. Synthesis, photoluminescence and magnetic properties of barium vanadate nanoflowers

    SciTech Connect

    Xu, Jing; Hu, Chenguo; Xi, Yi; Peng, Chen; Wan, Buyong; He, Xiaoshan

    2011-06-15

    Graphical abstract: The flower-shaped barium vanadate was obtained for the first time. The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. Research highlights: {yields} In the paper, the flower-shaped barium vanadate were obtained for the first time. The CHM method used here is new and simple for preparation of barium vanadate. {yields} The photoluminescence and magnetic properties of the barium vanadate nanoflowers were investigated at room temperature. The strong bluish-green emission was observed. {yields} The ferromagnetic behavior of the barium vanadate nanoflowers was found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g. {yields} The mechanisms of PL and magnetic property of barium vanadate nanoflowers have been discussed. -- Abstract: The flower-shaped barium vanadate has been obtained by the composite hydroxide mediated (CHM) method from V{sub 2}O{sub 5} and BaCl{sub 2} at 200 {sup o}C for 13 h. XRD and XPS spectrum of the as-synthesized sample indicate it is hexagonal Ba{sub 3}V{sub 2}O{sub 8} with small amount of Ba{sub 3}VO{sub 4.8} coexistence. Scan electron microscope and transmission electron microscope display that the flower-shaped crystals are composed of nanosheets with thickness of {approx}20 nm. The UV-visible spectrum shows that the barium vanadate sample has two optical gaps (3.85 eV and 3.12 eV). Photoluminescence spectrum of the barium vanadate flowers exhibits a visible light emission centered at 492 and 525 nm which might be attributed to VO{sub 4} tetrahedron with T{sub d} symmetry in Ba{sub 3}V{sub 2}O{sub 8}. The ferromagnetic behavior of the barium vanadate nanoflowers has been found with saturation magnetization of about 83.50 x 10{sup -3} emu/g, coercivity of 18.89 Oe and remnant magnetization of 4.63 x 10{sup -3} emu/g, which is mainly due to the presence of a non

  9. Glass transition and crystallization kinetics of a barium borosilicate glass by a non-isothermal method

    SciTech Connect

    Lopes, Andreia A. S.; Soares, Roque S.; Lima, Maria M. A.; Monteiro, Regina C. C.

    2014-01-28

    The glass transition and crystallization kinetics of a glass with a molar composition 60BaO-30B{sub 2}O{sub 3}-10SiO{sub 2} were investigated by differential scanning calorimetry (DSC) under non-isothermal conditions. DSC curves exhibited an endothermic peak associated with the glass transition and two partially overlapped exothermic peaks associated with the crystallization of the glass. The dependence of the glass transition temperature (T{sub g}) and of the maximum crystallization temperature (T{sub p}) on the heating rate was used to determine the activation energy associated with the glass transition (E{sub g}), the activation energy for crystallization (E{sub c}), and the Avrami exponent (n). X-ray diffraction (XRD) revealed that barium borate (β-BaB{sub 2}O{sub 4}) was the first crystalline phase to be formed followed by the formation of barium silicate (Ba{sub 5}Si{sub 8}O{sub 21}). The variations of activation energy for crystallization and of Avrami exponent with the fraction of crystallization (χ) were also examined. When the crystallization fraction (χ) increased from 0.1 to 0.9, the value of local activation energy (E{sub c}(χ)) decreased from 554 to 458 kJ/mol for the first exothermic peak and from 1104 to 831 kJ/mol for the second exothermic peak. The value determined for the Avrami exponent was near 2 indicating a similar one-dimensional crystallization mechanism for both crystalline phases. This was confirmed by the morphological studies performed by scanning electron microscopy (SEM) on glass samples heat-treated at the first and at the second crystallization temperatures.

  10. Silicate Glass Corrosion Mechanism revisited

    NASA Astrophysics Data System (ADS)

    Geisler, Thorsten; Lenting, Christoph; Dohmen, Lars

    2015-04-01

    Understanding the mechanism(s) of aqueous corrosion of nuclear waste borosilicate glasses is essential to predict their long-term aqueous durability in a geologic repository. Several observations have been made with compositionally different silicate glasses that cannot be explained by any of the established glass corrosion models. These models are based on diffusion-controlled ion exchange and subsequent structural reorganisation of a leached, hydrated residual glass, leaving behind a so-called gel layer. In fact, the common observation of lamellar to more complex pattern formation observed in experiment and nature, the porous structure of the corrosion layer, an atomically sharp boundary between the corrosion zone and the underlying pristine glass, as well as results of novel isotope tracer and in situ, real time experiments rather support an interface-coupled glass dissolution-silica reprecipitation model. In this model, the congruent dissolution of the glass is coupled in space and time to the precipitation and growth of amorphous silica at an inwardly moving reaction front. We suggest that these coupled processes have to be considered to realistically model the long-term performance of silicate glasses in aqueous environments.

  11. A search for technetium (Tc II) in barium stars

    NASA Technical Reports Server (NTRS)

    Little-Marenin, Irene R.; Little, Stephen J.

    1987-01-01

    The authors searched without success for the lines of Tc II at 2647.02, 2610.00 and 2543.24 A in IUE spectra of the barium stars HR 5058, Omicron Vir, and Zeta Cap. The lack of Tc II implies that the observed s-process enhancements were produced more than half a million years ago and supports the suggestion that the spectral peculiarities of barium stars are probably related to the binary nature of the stars.

  12. 'Skidding' of the CRRES G-9 barium release

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Mitchell, H. G.; Fedder, J. A.; Bernhardt, P. A.

    1992-01-01

    A simulation study and experimental data of the CRRES G-9 ionospheric barium release are presented. The simulation study is based on a 2D electrostatic code that incorporates time-dependent coupling to the background plasma. It is shown that the densest portion of the barium ion cloud 'skids' about 15 km within the first three seconds following the release, consistent with the optical data analyses.

  13. Solar eclipse sign of intussusception on barium enema.

    PubMed

    Raveenthiran, V

    2002-01-01

    The colographic appearance of intussusception is variously described as a claw sign, pincer defect, shouldering effect, and coiled-spring pattern. This report adds a new radiographic sign to the list. An end-on view of an intussusception on barium enema shows a ring of contrast resembling a solar eclipse. Familiarity with this bizarre appearance is desirable, lest it may be mistaken for spillage of barium due to a colonic perforation. PMID:11793074

  14. Silicate minerals and the interferon system

    SciTech Connect

    Hahon, N.; Booth, J.A.

    1987-08-01

    Natural-occurring minerals representative of six silicate classes were examined for their influence on interferon induction by influenza virus in Rhesus monkey kidney (LLC-MK/sub 2/) cell monolayers. Minerals within the classes nesosilicate, sorosilicate, cyclosilicate, and inosilicate exhibited either little or marked (50% or greater) inhibition of interferon induction. Within the inosilicate class, however, minerals of the pyroxenoid group (wollastonite, pectolite, and rhodonite) all significantly showed a two- to threefold increase in interferon production. Silicate materials in the phyllosilicate and tectosilicate classes all showed inhibitory activity for the induction process. When silicate minerals were coated with the polymer poly(4-vinylpyridine-N-oxide), the inhibitory activity of silicates on viral interferon induction was counteracted. Of nine randomly selected silicate minerals, which inhibited viral interferon induction, none adversely affected the ability of exogenous interferon to confer antiviral cellular resistance. Increased levels of influenza virus multiplication concomitant with decreased levels of interferon occurred in cell monolayers pretreated with silicates. The findings of this study demonstrate the diverse effects of minerals representative of different silicate classes on the interferon system and indicate that certain silicates in comprising the viral interferon induction process may increase susceptibility to viral infection.

  15. 21 CFR 182.2437 - Magnesium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Magnesium silicate. 182.2437 Section 182.2437 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2437 Magnesium silicate. (a) Product....

  16. Mesoporous Silicate Materials in Sensing

    PubMed Central

    Melde, Brian J.; Johnson, Brandy J.; Charles, Paul T.

    2008-01-01

    Mesoporous silicas, especially those exhibiting ordered pore systems and uniform pore diameters, have shown great potential for sensing applications in recent years. Morphological control grants them versatility in the method of deployment whether as bulk powders, monoliths, thin films, or embedded in coatings. High surface areas and pore sizes greater than 2 nm make them effective as adsorbent coatings for humidity sensors. The pore networks also provide the potential for immobilization of enzymes within the materials. Functionalization of materials by silane grafting or through co-condensation of silicate precursors can be used to provide mesoporous materials with a variety of fluorescent probes as well as surface properties that aid in selective detection of specific analytes. This review will illustrate how mesoporous silicas have been applied to sensing changes in relative humidity, changes in pH, metal cations, toxic industrial compounds, volatile organic compounds, small molecules and ions, nitroenergetic compounds, and biologically relevant molecules.

  17. New insights into the early stages of silica-controlled barium carbonate crystallisation

    NASA Astrophysics Data System (ADS)

    Eiblmeier, Josef; Schürmann, Ulrich; Kienle, Lorenz; Gebauer, Denis; Kunz, Werner; Kellermeier, Matthias

    2014-11-01

    Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism.Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures

  18. Coherent control of photoionization of atomic barium

    NASA Astrophysics Data System (ADS)

    Yamazaki, Rekishu

    We present the results of our study on coherent control of photoionization of atomic barium. Our study focused on the understanding of the controllability, especially due to the effect of the coherent interaction between the atomic system and the laser field. The first half of the study investigates the mechanisms of the control behind the previously observed laser phase-insensitive product state control. The controllability of this excitation scheme, two-color two-photon resonantly enhanced excitation, was analyzed from two aspects, the role of ac Stark shift introduced by the strong laser field and the multi-pathway quantum mechanical interferences. We have analyzed the excitation scheme from the analysis of the photoelectron angular distribution measured using the excitation scheme and the monitoring of the intermediate state population. Analysis of the data as well as the numerical simulation showed clear understanding of the role of two mechanisms in the product state control reported. We also investigated the control of the phase lag during the product state control. We conducted the control of the phase lag in the study of asymmetric photoelectron angular distribution, which arises from the concurrent even-odd parity outgoing electron wave excitation. The phase lag was controlled in full range, 2pi, and the results were analyzed in terms of the role of autoionizing resonance structures as well as the nature of outgoing electron waves at different locations of the autoionizing resonances.

  19. Barium Tagging for nEXO

    NASA Astrophysics Data System (ADS)

    Fudenberg, Daniel; Brunner, Thomas; Varentsov, Victor; Devoe, Ralph; Dilling, Jens; Gratta, Giorgio; nEXO Collaboration

    2015-10-01

    nEXO is a next-generation experiment designed to search for 0 νββ -decay of Xe-136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the neutrino to be a Majorana particle In order to greatly reduce background contributions to this search, the collaboration is developing several ``barium tagging'' techniques to recover and identify the decay daughter, Ba-136. ``Tagging'' may be available for a 2nd phase of nEXO and will push the sensitivity beyond the inverted neutrino-mass hierarchy. Tagging methods in testing for this phase include Ba-ion capture on a probe with identification by resonance ionization laser spectroscopy, and Ba capture in solid xenon on a cold probe with identification by fluorescence. In addition, Ba tagging for a gas-phase detector, appropriate for a later stage, is being tested. Here efficient ion extraction from heavy carrier gases is key. Detailed gas-dynamic and ion transport calculations have been performed to optimize for ion extraction. An apparatus to extract Ba ions from up to 10 bar xenon gas into vacuum using an RF-only funnel has been constructed and demonstrates extraction of ions from noble gases. We will present this system's status along with results of this R&D program.

  20. High H- ionic conductivity in barium hydride

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  1. Development of advanced barium ferrite tape media

    NASA Astrophysics Data System (ADS)

    Shimizu, Osamu; Oyanagi, Masahito; Morooka, Atsushi; Mori, Masahiko; Kurihashi, Yuich; Tada, Toshio; Suzuki, Hiroyuki; Harasawa, Takeshi

    2016-02-01

    We developed an advanced particulate magnetic tape using fine barium ferrite (BaFe) particles for magnetic-tape storage systems. The new tape showed a signal-to-noise ratio (SNR) that was 3.5 dB higher than that of the commercially available BaFe tape used for the Linear Tape Open generation 6 tape-storage system, at a linear density of 300 kfci measured with a giant magnetoresistive head with a reader width of 0.45 μm. Such significant increase in SNR was achieved by reducing the magnetic particle volume from 1950 to 1350 nm3, while maintaining a sufficiently high thermal stability, improving the perpendicular squareness ratio from 0.66 to 0.83, and improving the surface roughness from 2.5 to 2.0 nm when measured by atomic force microscopy and from 2.4 to 0.9 nm when measured by optical interferometry. This paper describes the characteristics of the new BaFe particles and media, which are expected to be employed for future high-capacity linear-tape systems.

  2. New insights into the early stages of silica-controlled barium carbonate crystallisation.

    PubMed

    Eiblmeier, Josef; Schürmann, Ulrich; Kienle, Lorenz; Gebauer, Denis; Kunz, Werner; Kellermeier, Matthias

    2014-12-21

    Recent work has demonstrated that the dynamic interplay between silica and carbonate during co-precipitation can result in the self-assembly of unusual, highly complex crystal architectures with morphologies and textures resembling those typically displayed by biogenic minerals. These so-called biomorphs were shown to be composed of uniform elongated carbonate nanoparticles that are arranged according to a specific order over mesoscopic scales. In the present study, we have investigated the circumstances leading to the continuous formation and stabilisation of such well-defined nanometric building units in these inorganic systems. For this purpose, in situ potentiometric titration measurements were carried out in order to monitor and quantify the influence of silica on both the nucleation and early growth stages of barium carbonate crystallisation in alkaline media at constant pH. Complementarily, the nature and composition of particles occurring at different times in samples under various conditions were characterised ex situ by means of high-resolution electron microscopy and elemental analysis. The collected data clearly evidence that added silica affects carbonate crystallisation from the very beginning (i.e. already prior to, during, and shortly after nucleation), eventually arresting growth on the nanoscale by cementation of BaCO3 particles within a siliceous matrix. Our findings thus shed light on the fundamental processes driving bottom-up self-organisation in silica-carbonate materials and, for the first time, provide direct experimental proof that silicate species are responsible for the miniaturisation of carbonate crystals during growth of biomorphs, hence confirming previously discussed theoretical models for their formation mechanism. PMID:25362999

  3. Preparation of barium hexaferrite powders using oxidized steel scales waste

    NASA Astrophysics Data System (ADS)

    Septiani, Ardita; Idayanti, Novrita; Kristiantoro, Tony

    2016-02-01

    Research on preparation of barium hexaferrite powders has been done using Hot Strip Mill scales as raw materials. Hot Strip Mill scales are oxidized steel scales waste from steel industrial process. The method used for preparing the barium hexaferrite powders was solid state reaction method. Oxidized steel scales were milled using ball mill for 10 hours, then screened through a 250 mesh sieve to obtain powders with maximum size of 63 µm. Powders were roasted at 600°C temperature for 4 hours to obtain hematite (Fe2O3) phase. Roasted powders were then mixed with barium carbonate, and were subsequently milled for 16 hours. After mixing, powders were calcined with an increasing rate of 10°C/min and maintained at 1100°C for 3 hours. Calcination process was performed to acquire barium hexaferrite phase. X-ray Diffraction (XRD) characterization in conjunction with RIR analysis showed that 85 wt. % of barium hexaferrite is formed. The magnetic properties of powders were characterized using Permagraph. It is found the value of remanent induction is 1.09 kG, coercivity of 2.043 kOe, and the maximum energy product of 0.25 MGOe.

  4. Acceleration of barium ions near 8000 km above an aurora

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.

    1984-01-01

    A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.

  5. Both barium and calcium activate neuronal potassium currents.

    PubMed Central

    Ribera, A B; Spitzer, N C

    1987-01-01

    Amphibian spinal neurons in culture possess both rapidly inactivating and sustained calcium-dependent potassium current components, similar to those described for other cells. Divalent cation-dependent whole-cell outward currents were isolated by subtracting the voltage-dependent potassium currents recorded from Xenopus laevis neurons in the presence of impermeant cadmium (100-500 microM) from the currents produced without cadmium but in the presence of permeant divalent cations (50-100 microM). These concentrations of permeant ions were low enough to avoid contamination by macroscopic inward currents through calcium channels. Calcium-dependent potassium currents were reduced by 1 microM tetraethylammonium. These currents can also be activated by barium or strontium. Barium as well as calcium activated outward currents in young neurons (6-8 hr) and in relatively mature neurons (19-26 hr in vitro). However, barium influx appeared to suppress the sustained voltage-dependent potassium current in most cells. Barium also activated at least one class of potassium channels observed in excised membrane patches, while blocking others. The blocking action may have masked and hindered detection of the stimulatory action of barium in other systems. PMID:2442762

  6. Alkali Silicate Vehicle Forms Durable, Fireproof Paint

    NASA Technical Reports Server (NTRS)

    Schutt, John B.; Seindenberg, Benjamin

    1964-01-01

    The problem: To develop a paint for use on satellites or space vehicles that exhibits high resistance to cracking, peeling, or flaking when subjected to a wide range of temperatures. Organic coatings will partially meet the required specifications but have the inherent disadvantage of combustibility. Alkali-silicate binders, used in some industrial coatings and adhesives, show evidence of forming a fireproof paint, but the problem of high surface-tension, a characteristic of alkali silicates, has not been resolved. The solution: Use of a suitable non-ionic wetting agent combined with a paint incorporating alkali silicate as the binder.

  7. Optical and microhardness measurement of lead silicate

    NASA Astrophysics Data System (ADS)

    Jogad, Rashmi M.; Kumar, Rakesh; Krishna, P. S. R.; Jogad, M. S.; Kothiyal, G. P.; Mathad, R. D.

    2013-02-01

    Lead silicate glasses, PbO-SiO2, are interesting because these glasses exhibit thermal, optical, and mechanical properties different than other silicate glasses, and they form a thermally and chemically stable glass over a wide composition range. They are also interesting as PbO acts as glass modifier and as glass former depending on the concentration. In the present work we have prepared lead silicate glasses (xPbO-(1-x).SiO2) by melt quenching. We measured UV absorbance, Vickers hardness, and glass transition for these samples. It is found that band gap is proportional to glass transition.

  8. Barium Depletion in the NSTAR Discharge Cathode After 30,000 Hours of Operation

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Capece, Angela M.; Mikellides, Ioannis G.; Katz, Ira

    2010-01-01

    Dispenser hollow cathodes rely on a consumable supply of barium released by impregnant materials in the pores of a tungsten matrix to maintain a low work function surface. Examinations of cathode inserts from long duration ion engine tests show deposits of tungsten at the downstream end that appear to block the flow of barium from the interior. In addition, a numerical model of barium transport in the insert plasma indicates that the barium partial pressure in the insert may exceed the equilibrium vapor pressure of the dominant barium-producing reaction, and it was postulated previously that this would suppress barium loss in the upstream part of the insert. New measurements of the depth of barium depletion from a cathode insert operated for 30,352 hours reveal that barium loss is confined to a narrow region near the downstream end, confirming this hypothesis.

  9. Rocket having barium release system to create ion clouds in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Lewis, B. W.; Stokes, C. S.; Smith, E. W.; Murphy, W. J. (Inventor)

    1974-01-01

    A chemical system for releasing a good yield of free barium atoms and barium ions to create ion clouds in the upper atmosphere and interplanetary space for the study of the geophysical properties of the medium is presented.

  10. Barium Levels in Soils and Centella asiatica

    PubMed Central

    Ong, Ghim Hock; Yap, Chee Kong; Mahmood, Maziah; Tan, Soon Guan; Hamzah, Suhaimi

    2013-01-01

    In this study, Centella asiatica and surface soils were collected from 12 sampling sites in Peninsular Malaysia, and the barium (Ba) concentrations were determined. The Ba concentration [μg/g dry weight (dw)] was 63.72 to 382.01 μg/g in soils while in C. asiatica, Ba concentrations ranged from 5.05 to 21.88 μg/g for roots, 3.31 to 11.22 μg/g for leaves and 2.37 to 6.14 μg/g for stems. In C. asiatica, Ba accumulation was found to be the highest in roots followed by leaves and stems. The correlation coefficients (r) of Ba between plants and soils were found to be significantly positively correlated, with the highest correlation being between roots-soils (r=0.922, p<005), followed by leaves-soils (r=0.890, p<005) and stems-soils (r=0.848, p<005). This indicates that these three parts of C. asiatica are good biomonitors of Ba pollution. For the transplantation study, four sites were selected as unpolluted [(Universiti Putra Malaysia (UPM)], semi-polluted (Seri Kembangan and Balakong) and polluted sites (Juru). Based on the transplantation study under experimental field and laboratory conditions, Ba concentrations in C. asiatica were significantly (p<0.05) higher after three weeks of exposure at Seri Kembangan, Balakong and Juru. Thus, these experimental findings confirm that the leaves, stems and roots of C. asiatica can reflect the Ba levels in the soils where this plant is found. Three weeks after back transplantation to clean soils, the Ba levels in C. asiatica were still higher than the initial Ba level even though Ba elimination occurred. In conclusion, the leaves, stems and roots of C. asiatica are good biomonitors of Ba pollution. PMID:24575242

  11. Barium Aspiration in an Infant: A Case Report and Review of Management

    PubMed Central

    Jackson, M.; Kapur, N.; Goyal, V.; Choo, K.; Sarikwal, A.; Masters, I. B.; Isles, Alan F.

    2014-01-01

    We describe a case of bilateral inhalation of barium in an infant following a barium swallow for investigation of dusky spells associated with feeds. A bronchoscopy subsequently revealed the presence of a mid-tracheal tracheo-esophageal cleft. To date, little has been reported on barium aspiration in children and there is no consensus for management. We review the literature on barium aspiration, its consequences, and make recommendations for management. PMID:24818122

  12. Emission spectrographic determination of barium in sea water using a cation exchange concentration procedure

    USGS Publications Warehouse

    Szabo, B. J.; Joensuu, O.

    1967-01-01

    A concentration technique employing Dowex 50W cation exchange resin is described for the determination of barium in sea water. The separated barium is precipitated as fluoride together with calcium and strontium and measured by emission spectrographic analysis. The vertical distribution of barium in sea water has been measured in the Caribbean Sea and the Atlantic Ocean. The barium content varied between 7 and 23 ??g. per liter; in two profiles, the lowest concentrations were at a depth of about 1000 meters.

  13. Prompt ionization in the CRIT II barium releases

    NASA Astrophysics Data System (ADS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-05-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  14. White dwarf kicks and implications for barium stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Church, R. P.; Dermine, T.

    The barium stars have caused much grief in the field of binary stellar evolution. They are often eccentric when they should be circular and are not found to have periods longer than 104 days even though wind accretion should still be efficient at such separations. We address both these problems by introducing a kick to white dwarfs when they are born, thus solving the eccentricity problem, and imposing strong orbital angular momentum loss to shrink barium-star binaries down to the observed periods. Whilst our angular momentum prescription is hard to justify for the barium stars it shows that strong angular momentum loss is necessary to reproduce the observed period-eccentricity distribution. We are investigating whether this can be obtained from a circumbinary disc.

  15. Barium-borate-flyash glasses: As radiation shielding materials

    NASA Astrophysics Data System (ADS)

    Singh, Sukhpal; Kumar, Ashok; Singh, Devinder; Thind, Kulwant Singh; Mudahar, Gurmel S.

    2008-01-01

    The attenuation coefficients of barium-borate-flyash glasses have been measured for γ-ray photon energies of 356, 662, 1173 and 1332 keV using narrow beam transmission geometry. The photon beam was highly collimated and overall scatter acceptance angle was less than 3°. Our results have an uncertainty of less than 3%. These coefficients were then used to obtain the values of mean free path (mfp), effective atomic number and electron density. Good agreements have been observed between experimental and theoretical values of these parameters. From the studies of the obtained results it is reported here that from the shielding point of view the barium-borate-flyash glasses are better shields to γ-radiations in comparison to the standard radiation shielding concretes and also to the ordinary barium-borate glasses.

  16. Early Contributions To Silicate Magnetism

    NASA Astrophysics Data System (ADS)

    Evans, Ted

    I have been asked to describe the early work concerning the palaeomagnetic signifi- cance of silicates. In his classic papers published half a century ago, Louis Néel put forward an elegant single-domain (SD) theory to explain the strength and enormous stability of remanent magnetization in rocks. The difficulty was that the predicted size for SD behaviour in magnetite was less than the wavelength of light. This led to the application of electron microscopy to this problem, the first images being obtained in 1969. As it happened, these involved tiny inclusions of magnetite in the pyroxene crystals of a Precambrian gabbro. The technique used in these early investigations was a metallurgical one wherein a carbon film replica of the polished and etched surface of the rock sample is prepared. This provides high spatial resolution but not much com- positional information. Furthermore, the experimental procedures involved are suffi- ciently labour-intensive that this type of work never achieved much popularity. Never- theless, Ssilicate inclusionS remanence has been identified in a variety of oceanic and ´ continental igneous rocks involving ShostS crystals of olivine, pyroxene and feldspar. ´ As far as this session is concerned, the so-called Scloudy feldsparsS found in basic ´ dykes are particularly relevant.

  17. Highly silicic compositions on the Moon.

    PubMed

    Glotch, Timothy D; Lucey, Paul G; Bandfield, Joshua L; Greenhagen, Benjamin T; Thomas, Ian R; Elphic, Richard C; Bowles, Neil; Wyatt, Michael B; Allen, Carlton C; Donaldson Hanna, Kerri; Paige, David A

    2010-09-17

    Using data from the Diviner Lunar Radiometer Experiment, we show that four regions of the Moon previously described as "red spots" exhibit mid-infrared spectra best explained by quartz, silica-rich glass, or alkali feldspar. These lithologies are consistent with evolved rocks similar to lunar granites in the Apollo samples. The spectral character of these spots is distinct from surrounding mare and highlands material and from regions composed of pure plagioclase feldspar. The variety of landforms associated with the silicic spectral character suggests that both extrusive and intrusive silicic magmatism occurred on the Moon. Basaltic underplating is the preferred mechanism for silicic magma generation, leading to the formation of extrusive landforms. This mechanism or silicate liquid immiscibility could lead to the formation of intrusive bodies. PMID:20847267

  18. Siliceous microfossil extraction from altered Monterey rocks

    SciTech Connect

    Nelson, C.O.; Casey, R.E.

    1986-04-01

    Samples of altered Monterey rocks of differing lithologies were processed by various methods to develop new techniques for extracting siliceous microfossils. The preliminary use of thin sections made from the same rocks reduced the number of probable samples (samples worth further processing) by about one-third. Most of the siliceous microfossils contained in altered Monterey rocks appear to be highly recrystallized and are extremely fragile; however, some contained silicified and silica-infilled radiolarians and planktonic and benthonic foraminifera, which are very tough. In general the most useful techniques were gently hydrochloric acid, hydrogen peroxide, formic acid, monosodium glutamate, and regular siliceous microfossil extraction techniques. Unsuccessful techniques and a new siliceous microfossil flotation technique are also documented.

  19. Silicate production and availability for mineral carbonation.

    PubMed

    Renforth, P; Washbourne, C-L; Taylder, J; Manning, D A C

    2011-03-15

    Atmospheric carbon dioxide sequestered as carbonates through the accelerated weathering of silicate minerals is proposed as a climate change mitigation technology with the potential to capture billions of tonnes of carbon per year. Although these materials can be mined expressly for carbonation, they are also produced by human activities (cement, iron and steel making, coal combustion, etc.). Despite their potential, there is poor global accounting of silicates produced in this way. This paper presents production estimates (by proxy) of various silicate materials including aggregate and mine waste, cement kiln dust, construction and demolition waste, iron and steel slag, and fuel ash. Approximately 7-17 billion tonnes are produced globally each year with an approximate annual sequestration potential of 190-332 million tonnes C. These estimates provide justification for additional research to accurately quantify the contemporary production of silicate minerals and to determine the location and carbon capture potential of historic material accumulations. PMID:21332128

  20. Compact pulse forming line using barium titanate ceramic material.

    PubMed

    Kumar Sharma, Surender; Deb, P; Shukla, R; Prabaharan, T; Shyam, A

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO(3)) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber. PMID:22129008

  1. Compact pulse forming line using barium titanate ceramic material

    NASA Astrophysics Data System (ADS)

    Kumar Sharma, Surender; Deb, P.; Shukla, R.; Prabaharan, T.; Shyam, A.

    2011-11-01

    Ceramic material has very high relative permittivity, so compact pulse forming line can be made using these materials. Barium titanate (BaTiO3) has a relative permittivity of 1200 so it is used for making compact pulse forming line (PFL). Barium titanate also has piezoelectric effects so it cracks during high voltages discharges due to stresses developed in it. Barium titanate is mixed with rubber which absorbs the piezoelectric stresses when the PFL is charged and regain its original shape after the discharge. A composite mixture of barium titanate with the neoprene rubber is prepared. The relative permittivity of the composite mixture is measured to be 85. A coaxial pulse forming line of inner diameter 120 mm, outer diameter 240 mm, and length 350 mm is made and the composite mixture of barium titanate and neoprene rubber is filled between the inner and outer cylinders. The PFL is charged up to 120 kV and discharged into 5 Ω load. The voltage pulse of 70 kV, 21 ns is measured across the load. The conventional PFL is made up of oil or plastics dielectrics with the relative permittivity of 2-10 [D. R. Linde, CRC Handbook of Chemistry and Physics, 90th ed. (CRC, 2009); Xia et al., Rev. Sci. Instrum. 79, 086113 (2008); Yang et al., Rev. Sci. Instrum. 81, 43303 (2010)], which increases the length of PFL. We have reported the compactness in length achieved due to increase in relative permittivity of composite mixture by adding barium titanate in neoprene rubber.

  2. The adhesiometer: a simple device to measure adherence of barium sulfate to intestinal mucosa.

    PubMed

    Salomonowitz, E; Frick, M P; Cragg, A H; Lund, G

    1984-04-01

    A simple, inexpensive device assessing barium sulfate adherence to alimentary tract mucosa was tested in an animal study using pigs and dogs. Interaction of gastric, intestinal, and colonic mucosal lining with three different barium preparations was studied. In both pigs and dogs, barium adherence to gastric mucosa was significantly stronger when compared with colonic mucosa. PMID:6608230

  3. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  4. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  5. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Tannic acid and barium enema preparations. 201.304... Tannic acid and barium enema preparations. (a) It has become a widespread practice for tannic acid to be added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished...

  6. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  7. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  8. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  9. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  10. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  11. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  12. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Tannic acid and barium enema preparations. 201.304... Tannic acid and barium enema preparations. (a) It has become a widespread practice for tannic acid to be added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished...

  13. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Tannic acid and barium enema preparations. 201.304... Tannic acid and barium enema preparations. (a) It has become a widespread practice for tannic acid to be added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished...

  14. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN...

  15. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Tannic acid and barium enema preparations. 201.304... Tannic acid and barium enema preparations. (a) It has become a widespread practice for tannic acid to be added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished...

  16. 49 CFR 173.182 - Barium azide-50 percent or more water wet.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Barium azide-50 percent or more water wet. 173.182 Section 173.182 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS... Class 1 and Class 7 § 173.182 Barium azide—50 percent or more water wet. Barium azide—50 percent or...

  17. 21 CFR 201.304 - Tannic acid and barium enema preparations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Tannic acid and barium enema preparations. 201.304... Tannic acid and barium enema preparations. (a) It has become a widespread practice for tannic acid to be added to barium enemas to improve X-ray pictures. Tannic acid is capable of causing diminished...

  18. Peralkaline silicic volcanic rocks in northwestern nevada.

    PubMed

    Noble, D C; Chipman, D W; Giles, D L

    1968-06-21

    Late Tertiary silicic ashflow tuffs and lavas peralkaline in chemical character (atomic Na + K greater than Al), mainly comendites, occur over wide areas in northwestern Nevada and appear to be widespread in southeastern Oregon. Such peralkaline rocks-which are not uncommon in the western United States-and other chemically unusual silicic rocks are found near the margins rather than toward the center of the Great Basin. PMID:17800671

  19. Barium-deficient celsian, Ba1-xAl2-2xSi2+2xO8 (x = 0.20 or 0.06).

    PubMed

    Skellern, Matthew G; Howie, R Alan; Lachowski, Eric E; Skakle, Janet M S

    2003-02-01

    Barium-deficient forms of celsian (barium aluminium silicate) with the formula Ba(1-x)Al(2-2x)Si(2+2x)O(8) (x = 0.20 and 0.06) have been identified. In contrast with the celsian-orthoclase solid solutions which have been reported previously, these forms, refined in the space group C2/m, with Ba and one O atom in the 4i sites with m site symmetry, and a further O atom in a 4g site with twofold axial symmetry, suggest a slight solid solution with silica. The serendipitous preparation of the compounds represents a possible hazard associated with solid-state synthesis. PMID:12574637

  20. Barium and antimony distributions on the hands of nonshooters.

    PubMed

    Havakost, D G; Peters, C A; Koons, R D

    1990-09-01

    Barium and antimony levels from selected areas of the left and right hands of 269 nonshooters provide a database for interpretation of gunshot residue swab analysis results. The database represents a variety of activities of individuals sampled by collectors throughout the United States. Nonshooting exposure to barium and antimony can generally be distinguished from firearms-associated exposure by considering the relative levels of the elements, location on the hands, and condition of the swabs. Consistent definition of sampling procedures and accurate analytical results make this database applicable for interpretation of data generated by most gunshot residue swab examiners. PMID:2230685

  1. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1981-01-01

    The photoelectric effect in structures consisting of metal deposited barium titanate film silicon is described. A radio frequency sputtering technique is used to deposit ferroelectric barium titantate films on silicon and quartz. Film properties are measured and correlated with the photoelectric effect characteristics of the films. It was found that to obtain good quality pin hole free films, it is necessary to reduce the substrate temperature during the last part of the deposition. The switching ability of the device with internal applied voltage is improved when applied with a ferroelectric memory device.

  2. Methods for producing monodispersed particles of barium titanate

    DOEpatents

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  3. Ionization and expansion of barium clouds in the ionosphere

    NASA Technical Reports Server (NTRS)

    Ma, T.-Z.; Schunk, R. W.

    1993-01-01

    A recently envelope 3D model is used here to study the motion of the barium clouds released in the ionosphere, including the ionization stage. The ionization and the expansion of the barium clouds and the interaction between the clouds and the background ions are investigated using three simulations: a cloud without a directional velocity, a cloud with an initial velocity of 5 km/s across the B field, and a cloud with initial velocity components of 2 km/s both along and across the B field.

  4. Thermodynamics and Kinetics of Silicate Vaporization

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  5. Silicate complexes of sugars in aqueous solution.

    PubMed

    Lambert, Joseph B; Lu, Gang; Singer, Stephanie R; Kolb, Vera M

    2004-08-11

    Certain sugars react readily with basic silicic acid to form soluble 2/1 (sugar/silicic acid) silicate complexes. Failure of monohydroxy compounds to give soluble products under these conditions indicates that the sugar silicates are chelates: five-membered diolato rings. Only furanose forms react. Pyranose sugars are stable under these conditions. Because all glycosides fail to react with silicic acid under these conditions, reaction appears to involve the anomeric position (C1 in aldoses, C2 in ketoses), which has a more acidic hydroxy group. Reaction is completed only when the anomeric hydroxy group is cis to an adjacent hydroxy group. The appropriate furanose form must have sufficient natural abundance and solubility to provide an observable product, as measured by (29)Si and (13)C NMR spectroscopy. These structural and practical constraints rationalize the successful reaction of the monosaccharides ribose, xylose, lyxose, talose, psicose, fructose, sorbose, and tagatose and the disaccharides lactulose, maltulose, and palatinose. Glucose, mannose, galactose, and sucrose, among others, failed to form complexes. This high selectivity for formation of sugar silicates may have ramifications in prebiotic chemistry. PMID:15291565

  6. Ferroelastic domains in lead-free barium zirconate titanate - barium calcium titanate piezoceramics

    NASA Astrophysics Data System (ADS)

    Ehmke, Matthias Claudius

    Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of most PZT compositions under certain conditions. Piezoelectricity was first discovered by Pierre and Jaque Curie in the year 1880. Nowadays, piezoelectric materials are used in many application such as high voltage generation in gas igniters, actuation in micro-positioning devices, generation and detection of acoustic waves, emitters and receivers for sonar technology, ultrasonic cleaning, ultrasound medical therapy, and micropumps for ink-jet printers. The most commonly used piezoelectric material since the 1950's is the solid solution system lead zirconate titanate (PZT) that offers high piezoelectric performance under a large range of operating conditions. However, the toxicity of lead requires the replacement of PZT. The studied lead-free alternatives are commonly based on potassium sodium niobate (KNN) and bismuth sodium titanate (BNT), and more recently zirconium and calcium substituted barium titanate (BZT-BCT). The BZT-BCT system exhibits large piezoelectric coefficients that can exceed even those of

  7. Chemical abundance analysis of 19 barium stars

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  8. Steps toward interstellar silicate dust mineralogy

    NASA Technical Reports Server (NTRS)

    Dorschner, J.; Guertler, J.; Henning, TH.

    1989-01-01

    One of the most certain facts on interstellar dust is that it contains grains with silicon oxygen tetrahedra (SOT), the internal vibrations of which cause the well known silicate bands at 10 and 18 microns. The broad and almost structureless appearance of them demonstrates lack of translation symmetry in these solids that must be considered amorphous or glassy silicates. There is no direct information on the cations in these interstellar silicates and on the number of bridging oxygens per tetrahedron (NBO). Comparing experimental results gained on amorphous silicates, e.g., silicate glasses, of cosmically most abundant metals (Mg, Fe, Ca, Al) with the observations is the only way to investigate interstellar silicate dust mineralogy (cf, Dorschner and Henning, 1986). At Jena University Observatory IR spectra of submicrometer-sized grains of pyroxene glasses (SSG) were studied. Pyroxenes are common minerals in asteroids, meteorites, interplanetary, and supposedly also cometary dust particles. Pyroxenes consist of linearly connected SOT (NBO=2). In the vitreous state reached by quenching melted minerals, the SOT remain nearly undistorted (Si-O bond length unchanged); the Si-O-Si angles at the bridging oxygens of pyroxenes, however, scatter statistically. Therefore, the original cation oxygen symmetry of the crystal (octahedral and hexahedral coordination by O) is completely lost. The blended bands at 10 and 18 microns lose their diagnostic differences and become broad and structureless. This illustrates best the basic problem of interstellar silicate mineral diagnostics. Optical data of glasses of enstatite, bronzite, hypersthene, diopside, salite, and hedenbergite have been derived. Results of enstatite (E), bronzite (B), and hypersthene (H) show very good agreement with the observed silicate features in the IR spectra of evolutionarily young objects that show P-type silicate signature according to the classification by Gurtler and Henning (1986). Compositional

  9. Yellow green barium lanthanum silicate oxyapatite phosphor, a fluorescent lamp containing the same, and a method thereof

    SciTech Connect

    Sigai, A.G.; Alexander, M.N.

    1988-05-31

    This patent describes a yellow green emitting phosphor exhibiting characteristic emission wavelengths essentially as depicted in FIG. 1 when excited by 254 nm excitation. The phosphor has a composition defined by the general formula: Ba/sub 2/La/sub 8/(SiO/sub 2/)/sub 6/O/sub 2/-:Eu in which Eu is in the divalent state.

  10. Synthesis of phase pure praseodymium barium copper iron oxide.

    PubMed

    Konne, Joshua L; Davis, Sean A; Glatzel, Stefan; Hall, Simon R

    2013-06-18

    The control of crystallization of praseodymium barium copper iron oxide, an intermediate temperature solid oxide fuel cell cathode material, has been demonstrated for the first time using a biotemplated sol-gel synthesis technique. The results obtained showed significant improvement in purity, synthesis time, surface area and simplicity over that previously reported. PMID:23660963

  11. Stabilization of arsenic- and barium-rich glass manufacturing waste

    SciTech Connect

    Fuessle, R.W.; Taylor, M.A.

    2000-03-01

    Effective solidification/stabilization (S/S) of arsenic- and barium-containing D004/D005 waste was accomplished by using a binder of cement with 40% class C fly ash and either ferrous sulfate or ferric sulfate as an additive. Addition of iron salts improves arsenic solidification/stabilization (S/S). Barium may be encapsulated within the stabilized matrix as barium sulfate. Recommended mole ratios for iron/arsenic and barium/sulfate are at least 6 and 1.2, respectively. A binder/waste ratio of 0.15 is volume efficient, but the mix design must be carefully controlled to achieve adequate S/S. In practice, the heterogeneity of waste and large-scale mix operations may preclude close control of reagent dosages, so a binder/waste ratio of 0.40 is preferable. Ferrous sulfate additive is preferable for arsenic S/S because it is effective over a wider range of mix designs and over a long-term curing period. Toxicity characteristic leaching procedure results degraded with long curing time for some mix designs with ferric sulfate additive.

  12. Laser selective excitation of a three-level atom - Barium

    NASA Technical Reports Server (NTRS)

    Carlsten, J. L.

    1974-01-01

    Development of a theory describing the selective excitation of a three-level atom with a tunable laser. The effects of number density, line widths, and laser parameters on the final populations of the levels are discussed. An experiment is described in which a tunable dye laser is used to pump large numbers of barium atoms into a definite excited state.

  13. REMOVING BARIUM AND RADIUM THROUGH CALCIUM CATION EXCHANGE

    EPA Science Inventory

    The removal of barium (Ba) and radium (Ra), which are found in many groundwater sources, was achieved in laboratory studies with an ion exchange process. In the studies, a strong acid resin in the calcium form effectively removed Ba(+2) and Ra (+2) to meet standards. The resin wa...

  14. Effects of light exposure on irradiated barium fluoride crystals

    SciTech Connect

    Wuest, C.R.; Mauger, G.J.

    1993-04-20

    Small barium fluoride crystals have been irradiated using cobalt-60 gamma rays under various illumination conditions to establish the effect of photo-bleaching of the radiation-induced color centers. This paper describes results of a few different experiments conducted at LLNL over the past few weeks.

  15. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOEpatents

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  16. Dynamics of a barium release in the magnetospheric tail

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Swenson, G. R.; Geller, S. P.; Doolittle, J. H.; Haerendel, G.

    1989-01-01

    The late time behavior of the May 13, 1985 magnetotail barium cloud is examined. The bulk dynamics of the cloud are studied based on triangulated data and data from Fabry-Perot Doppler velocity measurements. The changes in cloud morphology in relation to the in situ measurements made by the Ion Release Module satellite are discussed.

  17. PROPOSED ORAL REFERENCE DOSE (RFD) FOR BARIUM AND COMPOUNDS

    EPA Science Inventory

    The Integrated Risk Information System (IRIS) is a database of EPA's consensus opinion of the human health effects that may result from exposure to various substances found in the environment. A Toxicological Review and IRIS Summary were prepared for barium and compounds in 1998 ...

  18. BARIUM AND RADIUM REMOVAL FROM GROUNDWATER BY ION EXCHANGE

    EPA Science Inventory

    The primary objective of this study was to determine the applicability of weak acid exchange resin in the hydrogen form for removal of hardness, barium and radium from groundwater. Weak acid resin in the hydrogen form eliminates the addition of sodium to drinking water. The capac...

  19. Ultra-low temperature processing of barium tellurate dielectrics

    NASA Astrophysics Data System (ADS)

    Kwon, Do-Kyun

    Ceramics, metals and polymers have unique electrical properties that are combined for electronic devices and systems. It necessitates lower processing temperatures for ceramics to be compatible with metal and polymer systems. In this thesis, the synthesis, crystal structure, and dielectric properties of barium tellurate are studied for temperatures between 500 and 900°C. Barium tellurate dielectric ceramics (BaTe4O9, BaTe 2O5, BaTe2O6, BaTeO3, BaTeO 4, and Ba2TeO5) are extensively investigated as new LTCC (Low-Temperature Cofired Ceramics) dielectric systems integrated with low resistivity metal electrodes such as silver and aluminum for microwave application. Studies on the phase formation and crystal structure through thermal analyses (Differential Scanning Calorimetry and Thermogravimetric Analysis, DSC-TGA) and X-ray diffraction phase analysis attest that barium tellurates are formed in the temperature range of 500 ˜ 900°C, through the sequential phase formations from Te-rich to Ba-rich phases. The oxygen coordination of the tellurium ion progresses from TeO4 to TeO6 via TeO 3+1 and TeO3 with increasing barium content as confirmed by structural analysis using infrared spectroscopy. High density barium tellurate ceramics are achieved at temperatures as low as 550°C, which provides the potential to be co-fired with low-melting aluminum metal electrodes in LTCC processing. Dielectric permittivity, loss, and temperature stability of barium tellurate dielectric ceramics were measured from 100 Hz to 13 GHz. Barium tellurate ceramics exhibit excellent microwave dielectric properties with intermediate dielectric permittivities and high quality factors (Q). The dielectric properties at microwave frequencies are epsilonr = 17.5, Qxf = 54700 GHz, TCf = -90 ppm/°C for BaTe4O9, epsilonr = 21, Qxf = 50300 GHz, TCf = -51 ppm/°C for BaTe2O6, epsilonr = 10, Qxf = 34000 GHz, TCf = -54 ppm/°C for BaTeO3, and epsilonr = 17, Qx f = 49600 GHz, TCf = -124 ppm/°C for Ba 2TeO5

  20. Phosphorus Equilibria Among Mafic Silicate Phases

    NASA Technical Reports Server (NTRS)

    Berlin, Jana; Xirouchakis, Dimitris

    2002-01-01

    Phosphorus incorporation in major rock-forming silicate minerals has the following implications: (1) Reactions between phosphorus-hosting major silicates and accessory phosphates, which are also major trace element carriers, may control the stability of the latter and thus may affect the amount of phosphorus and other trace elements released to the coexisting melt or fluid phase. (2) Less of a phosphate mineral is needed to account for the bulk phosphorus of planetaty mantles. (3) During partial melting of mantle mineral assemblages or equilibrium fractional crystallization of basaltic magmas, and in the absence or prior to saturation with a phosphate mineral, silicate melts may become enriched in phosphorus, especially in the geochemically important low melt fraction regime, Although the small differences in the ionic radii of IVp5+, IVSi4+, and IV Al3+ makes phosphoms incorporation into crystalline silicates perhaps unsurprising, isostructural silicate and phosphate crystalline solids do not readily form solutions, e.g., (Fe, Mg)2SiO4 vs. LiMgPO4, SiO)2 VS. AlPO4. Nonetheless, there are reports of, poorly characterized silico-phosphate phases in angrites , 2-4 wt% P2O5 in olivine and pyroxene grains in pallasites and reduced terestrial basalts which are little understood but potentially useful, and up to 17 wt% P2O5 in olivine from ancient slags. However, such enrichments are rare and only underscore the likelihood of phosphoms incorporation in silicate minerals. The mechanisms that allow phosphorus to enter major rock-forming silicate minerals (e.g., Oliv, Px, Gt) remain little understood and the relevant data base is limited. Nonetheless, old and new high-pressure (5-10 GPa) experimental data suggest that P2O5 wt% decreases from silica-poor to silica-rich compositions or from orthosilicate to chain silicate structures (garnet > olivine > orthopyroxene) which implies that phosphorus incorporation in silicates is perhaps more structure-than site-specific. The

  1. Preliminary study of the CRRES magnetospheric barium releases

    NASA Technical Reports Server (NTRS)

    Huba, J. D.; Bernhardt, P. A.; Lyon, J. G.

    1992-01-01

    Preliminary theoretical and computational analyses of the Combined Release and Radiation Effects Satellite (CRRES) magnetospheric barium releases are presented. The focus of the studies is on the evolution of the diamagnetic cavity which is formed by the barium ions as they expand outward, and on the structuring of the density and magnetic field during the expansion phase of the releases. Two sets of simulation studies are discussed. The first set is based upon a 2D ideal MHD code and provides estimates of the time and length scales associated with the formation and collapse of the diamagnetic cavity. The second set uses a nonideal MHD code; specifically, the Hall term is included. This additional term is critical to the dynamics of sub-Alfvenic plasma expansions, such as the CRRES barium releases, because it leads to instability of the expanding plasma. Detailed simulations of the G4 and G10 releases were performed. In both cases the expanding plasma rapidly structured: the G4 release structured at time t less than about 3 s and developed scale sizes of about 1-2 km, while the G10 release structured at time t less than about 22 s and developed scale sizes of about 10-15 km. It is also found that the diamagnetic cavity size is reduced from those obtained from the ideal MHD results because of the structure. On the other hand, the structuring allows the formation of plasma blobs which appear to free stream across the magnetic field; thus, the barium plasma can propagate to larger distances traverse to the magnetic field than the case where no structuring occurs. Finally, a new normal mode of the system was discovered which may be excited at the leading edge of the expanding barium plasma.

  2. Molybdenum Valence in Basaltic Silicate Melts

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.

    2010-01-01

    The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.

  3. Silicic magma generation at Askja volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Sigmarsson, O.

    2009-04-01

    Rate of magma differentiation is an important parameter for hazard assessment at active volcanoes. However, estimates of these rates depend on proper understanding of the underlying magmatic processes and magma generation. Differences in isotope ratios of O, Th and B between silicic and in contemporaneous basaltic magmas have been used to emphasize their origin by partial melting of hydrothermally altered metabasaltic crust in the rift-zones favoured by a strong geothermal gradient. An alternative model for the origin of silicic magmas in the Iceland has been proposed based on U-series results. Young mantle-derived mafic protolith is thought to be metasomatized and partially melted to form the silicic end-member. However, this model underestimates the compositional variations of the hydrothermally-altered basaltic crust. New data on U-Th disequilibria and O-isotopes in basalts and dacites from Askja volcano reveal a strong correlation between (230Th/232Th) and delta 18O. The 1875 AD dacite has the lowest Th- and O isotope ratios (0.94 and -0.24 per mille, respectively) whereas tephra of evolved basaltic composition, erupted 2 months earlier, has significantly higher values (1.03 and 2.8 per mille, respectively). Highest values are observed in the most recent basalts (erupted in 1920 and 1961) inside the Askja caldera complex and out on the associated fissure swarm (Sveinagja basalt). This correlation also holds for older magma such as an early Holocene dacites, which eruption may have been provoked by rapid glacier thinning. Silicic magmas at Askja volcano thus bear geochemical signatures that are best explained by partial melting of extensively hydrothermally altered crust and that the silicic magma source has remained constant during the Holocene at least. Once these silicic magmas are formed they appear to erupt rapidly rather than mixing and mingling with the incoming basalt heat-source that explains lack of icelandites and the bi-modal volcanism at Askja

  4. Core formation in silicate bodies

    NASA Astrophysics Data System (ADS)

    Nimmo, F.; O'Brien, D. P.; Kleine, T.

    2008-12-01

    Differentiation of a body into a metallic core and silicate mantle occurs most efficiently if temperatures are high enough to allow at least the metal to melt [1], and is enhanced if matrix deformation occurs [2]. Elevated temperatures may occur due to either decay of short-lived radio-isotopes, or gravitational energy release during accretion [3]. For bodies smaller than the Moon, core formation happens primarily due to radioactive decay. The Hf-W isotopic system may be used to date core formation; cores in some iron meteorites and the eucrite parent body (probably Vesta) formed within 1 My and 1-4~My of solar system formation, respectively [4]. These formation times are early enough to ensure widespread melting and differentiation by 26Al decay. Incorporation of Fe60 into the core, together with rapid early mantle solidification and cooling, may have driven early dynamo activity on some bodies [5]. Iron meteorites are typically depleted in sulphur relative to chondrites, for unknown reasons [6]. This depletion contrasts with the apparently higher sulphur contents of cores in larger planetary bodies, such as Mars [7], and also has a significant effect on the timing of core solidification. For bodies of Moon-size and larger, gravitational energy released during accretion is probably the primary cause of core formation [3]. The final stages of accretion involve large, stochastic collisions [8] between objects which are already differentiated. During each collision, the metallic cores of the colliding objects merge on timescales of a few hours [9]. Each collision will reset the Hf-W isotopic signature of both mantle and core, depending on the degree to which the impactor core re-equilibrates with the mantle of the target [10]. The re-equilibration efficiency depends mainly on the degree to which the impactor emulsifies [11], which is very uncertain. Results from N-body simulations [8,12] suggest that significant degrees of re- equilibration are required [4,10]. Re

  5. Mafic silicates in the Orgueil carbonaceous meteorite

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Macdougall, J. D.

    1976-01-01

    Iron-bearing olivines and pyroxenes occurring in Orgueil may represent a separate population distinct from the magnesian varieties previously reported. Compositions of these iron-bearing silicates are inconsistent with an origin by direct equilibrium condensation in the nebula. Such an origin is more plausible for the magnesian silicates, but lacks conclusive evidence. An extra-solar system origin for either mafic population is possible, though similarly lacking in evidence. About 15% of the olivines, randomly distributed with respect to iron content, retain particle track evidence of a precompaction irradiation.

  6. Microfabrics in Siliceous Hotsprings: Yellowstone National Park, Wyoming

    NASA Technical Reports Server (NTRS)

    Guidry, S. A.; Chafetz, H. S.; Westall, F.

    2001-01-01

    Microfabrics shed light on the mechanisms governing siliceous sinter precipitation, the profound effects of microorganisms, as well as a conventional facies model for siliceous hotsprings. Additional information is contained in the original extended abstract.

  7. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Astrophysics Data System (ADS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-03-01

    II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions including some chemically strongly fractionated ones. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  8. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    NASA Technical Reports Server (NTRS)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  9. Surface studies of barium and barium oxide on tungsten and its application to understanding the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    Surface studies have been made of multilayer and monolayer films of barium and barium oxide on a tungsten substrate. The purpose of the investigation was to synthesize the surface conditions that exist on an activated impregnated tungsten cathode and obtain a better understanding of the mechanism of operation of such cathodes. The techniques employed in these measurements were Auger spectroscopy and work-function measurements. The results of this study show that the surface of an impregnated cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on oxidized tungsten by evaluating Auger spectra and work-function measurements. Data obtained from desorption studies of barium monolayers on a tungsten substrate in conjunction with Auger and work-function results have been interpreted to show that throughout most of its life an impreganated cathode has a partial monolayer, rather than a monolayer, of barium on its surface.

  10. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  11. Synthesis of non-siliceous mesoporous oxides.

    PubMed

    Gu, Dong; Schüth, Ferdi

    2014-01-01

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed. PMID:23942521

  12. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  13. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  14. 21 CFR 573.260 - Calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Calcium silicate. 573.260 Section 573.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food...

  15. Lithium Manganese Silicate Positive Electrode Material

    NASA Astrophysics Data System (ADS)

    Yang, Qiong

    As the fast development of the electronic portable devices and drastic fading of fossil energy sources. The need for portable secondary energy sources is increasingly urgent. As a result, lithium ion batteries are being investigated intensely to meet the performance requirements. Among various electrode materials, the most expensive and capacity limiting component is the positive materials. Based on this, researches have been mostly focused on the development of novel cathode materials with high capacity and energy density and the lithium transition metal orthosilicates have been identified as possible high performance cathodes. Here in, we report the synthesis of a kind of lithium transition metal orthosilicates electrode lithium manganese silicate. Lithium manganese silicate has the advantage of high theoretical capacity, low cost raw material and safety. In this thesis, lithium manganese silicate are prepared using different silicon sources. The structure of silicon sources preferred are examined. Nonionic block copolymers surfactant, P123, is tried as carbon source and mophology directing agent. Lithium manganese silicate's performances are improved by adding P123.

  16. Chemically bonded phospho-silicate ceramics

    DOEpatents

    Wagh, Arun S.; Jeong, Seung Y.; Lohan, Dirk; Elizabeth, Anne

    2003-01-01

    A chemically bonded phospho-silicate ceramic formed by chemically reacting a monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and a sparsely soluble oxide, with a sparsely soluble silicate in an aqueous solution. The monovalent alkali metal phosphate (or ammonium hydrogen phosphate) and sparsely soluble oxide are both in powder form and combined in a stochiometric molar ratio range of (0.5-1.5):1 to form a binder powder. Similarly, the sparsely soluble silicate is also in powder form and mixed with the binder powder to form a mixture. Water is added to the mixture to form a slurry. The water comprises 50% by weight of the powder mixture in said slurry. The slurry is allowed to harden. The resulting chemically bonded phospho-silicate ceramic exhibits high flexural strength, high compression strength, low porosity and permeability to water, has a definable and bio-compatible chemical composition, and is readily and easily colored to almost any desired shade or hue.

  17. Dielectric function for doped graphene layer with barium titanate

    NASA Astrophysics Data System (ADS)

    Martinez Ramos, Manuel; Garces Garcia, Eric; Magana, Fernado; Vazquez Fonseca, Gerardo Jorge

    2015-03-01

    The aim of our study is to calculate the dielectric function for a system formed with a graphene layer doped with barium titanate. Density functional theory, within the local density approximation, plane-waves and pseudopotentials scheme as implemented in Quantum Espresso suite of programs was used. We considered 128 carbon atoms with a barium titanate cluster of 11 molecules as unit cell with periodic conditions. The geometry optimization is achieved. Optimization of structural configuration is performed by relaxation of all atomic positions to minimize their total energies. Band structure, density of states and linear optical response (the imaginary part of dielectric tensor) were calculated. We thank Dirección General de Asuntos del Personal Académico de la Universidad Nacional Autónoma de México, partial financial support by Grant IN-106514 and we also thank Miztli Super-Computing center the technical assistance.

  18. Particularities of Radiation Defect Formation in Ceramic Barium Cerate

    NASA Astrophysics Data System (ADS)

    Khromushin, I. V.; Aksenova, T. I.; Tuseev, T.; Munasbaeva, K. K.; Ermolaev, Yu V.; Ermolaev, V. N.; Seitov, A. S.

    2015-04-01

    The effects of irradiation with electrons, ions of noble gases (Ne, Ar, Kr) and oxygen on the structure and properties of neodymium-doped barium cerate have been studied using the methods of X-ray diffraction analysis, scanning electron and atomic force microscopy, thermal desorption spectroscopy. It was shown that irradiation by low-energy ions of noble gases stimulates the blistering processes on the sample surface, while the high-energy ions contribute to formation of the structures on the irradiated surface that resemble the various stages of spherulitegrowth. The similar structures were not observed in the case of irradiation with high-energy oxygen ions. According to the data on thermal desorption of water and oxygen molecules from the irradiated barium cerate it was supposed that irradiation by the noble gas ions promotes neodymium oxidation state change. It was noticed that the electron irradiation leads to the formation of the nano-sized acicular structures on the cerate surface.

  19. Absolute Te_2 reference for barium ion at 4554 nm

    NASA Astrophysics Data System (ADS)

    Dutta, Tarun; De Munshi, Debashis; Mukherjee, Manas

    2016-06-01

    Precision atomic spectroscopy is presently the work horse in quantum information technology, metrology, trace analysis and even for fundamental tests in physics. Stable lasers are inherent part of precision spectroscopy which in turn requires absolute wavelength markers suitably placed corresponding to the atomic species being probed. Here we present, new lines of tellurium (Te$_2$) which allows locking of external cavity diode laser (ECDL) for precision spectroscopy of singly charged barium ions. In addition, we have developed an ECDL with over 100 GHz mod-hop-free tuning range using commercially available diode from $\\textit{Nichia}$. These two developments allow nearly drift-free operation of a barium ion trap set-up with one single reference cell thereby reducing the complexity of the experiment.

  20. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine

    NASA Astrophysics Data System (ADS)

    Graziana Genchi, Giada; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-01

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these ‘smart’ nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation.

  1. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  2. The Skylab barium plasma injection experiments. I - Convection observations

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Peek, H. M.

    1976-01-01

    Two barium-plasma injection experiments were carried out during magnetically active periods in conjunction with the Skylab 3 mission. The high-explosive shaped charges were launched near dawn on November 27 and December 4, 1973, UT. In both cases, the AE index was near 400 gammas, and extensive pulsating auroras covered the sky. The first experiment, Skylab Alpha, occurred in the waning phase of a 1000-gamma substorm, and the second, Skylab Beta, occurred in the expansive phase of an 800-gamma substorm. In both, the convection was generally magnetically eastward, with 100-km-level electric fields near 40 mV/m. However, in the Alpha experiment the observed orientation of the barium flux tube fit theoretical field lines having no parallel current, but the Beta flux-tube orientation indicated a substantial upward parallel sheet current.

  3. Observations and theory of the AMPTE magnetotail barium releases

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Roussel-Dupre, R. A.; Pongratz, M. B.; Haerendel, G.; Valenzuela, A.

    1987-01-01

    The barium releases in the magnetotail during the Active Magnetospheric Particle Tracer Explorers (AMPTE) operation were monitored by ground-based imagers and by instruments on the Ion Release Module. After each release, the data show the formation of a structured diamagnetic cavity. The cavity grows until the dynamic pressure of the expanding ions balances the magnetic pressure on its surface. The magnetic field inside the cavity is zero. The barium ions collect on the surface of the cavity, producing a shell. Plasma irregularities form along magnetic field lines draped over the surface of the cavity. The scale size of the irregularities is nearly equal to the thickness of the shell. The evolution and structuring of the diamagnetic cavity are modeled using magnetohydrodynamics theory.

  4. Numerical simulation of a radially injected barium cloud

    NASA Technical Reports Server (NTRS)

    Swift, D. W.; Wescott, E. M.

    1981-01-01

    Electrostatic two-dimensional numerical simulations of a radially symmetric barium injection experiment demonstrate that ions created by solar UV irradiation are electrostatically bound to the electrons which remain tied to the field lines on which they are created. Two possible instabilities are identified, but neither of them causes the barium plasma cloud to polarize in a way that would permit the plasma to keep up with the neutrals. In a second model, the velocity of the neutrals is allowed to be a function of the azimuthal angle. Here, a portion of the cloud does polarize in a way that allows a portion of the plasma to detach and move outward at the approximate speed of the neutrals. No rapid detachment is found when only the density of the neutrals is given an azimuthal asymmetry.

  5. Study of the photovoltaic effect in thin film barium titanate

    NASA Technical Reports Server (NTRS)

    Grannemann, W. W.; Dharmadhikari, V. S.

    1982-01-01

    Ferroelectric films of barium titanate were synthesized on silicon and quartz substrates, and the photoelectric effect in the structure consisting of metal deposited ferroelectric barium titanate film silicon was studied. A photovoltage with polarity that depends on the direction of the remanent polarization was observed. The deposition of BaTiO3 on silicon and fused quartz substrates was accomplished by an rf sputtering technique. A series of experiments to study the growth of ferroelectric BaTiO3 films on single crystal silicon and fused quartz substrates were conducted. The ferroelectric character in these films was found on the basis of evidence from the polarization electric field hysteresis loops, capacitance voltage and capacitance temperature techniques and from X-ray diffraction studies.

  6. Barium titanate nanoparticles: promising multitasking vectors in nanomedicine.

    PubMed

    Genchi, Giada Graziana; Marino, Attilio; Rocca, Antonella; Mattoli, Virgilio; Ciofani, Gianni

    2016-06-10

    Ceramic materials based on perovskite-like oxides have traditionally been the object of intense interest for their applicability in electrical and electronic devices. Due to its high dielectric constant and piezoelectric features, barium titanate (BaTiO3) is probably one of the most studied compounds of this family. Recently, an increasing number of studies have been focused on the exploitation of barium titanate nanoparticles (BTNPs) in the biomedical field, owing to the high biocompatibility of BTNPs and their peculiar non-linear optical properties that have encouraged their use as nanocarriers for drug delivery and as label-free imaging probes. In this review, we summarize all the recent findings about these 'smart' nanoparticles, including the latest, most promising potential as nanotransducers for cell stimulation. PMID:27145888

  7. XANES and micro-Raman spectroscopy study of the barium titanosilicates BaTiSi2O7 and BaTiSi4O11

    NASA Astrophysics Data System (ADS)

    Viani, A.; Pollastri, S.; Macova, P.; Palermo, A.; Peréz-Estébanez, M.; Gualtieri, A. F.

    2016-04-01

    The coordination environment around Ti4+ in the photoluminescent compound BaTiSi2O7 and in BaTiSi4O11 was investigated with X-ray absorption near-edge structure spectroscopy and micro-Raman spectroscopy. The presence of VTi in TiO5 pyramidal units with one short Ti-O bond involving the apical oxygen was detected in both compounds. Interpretation of the vibrational signal from the silicate framework suggested that BaTiSi4O11 is a metasilicate containing building units of SiO4 tetrahedra, which are larger than in other barium titanosilicates. These results confirmed the same structural environment of Ti4+ as recently disclosed by structure refinement of BaTiSi2O7 and provided new insights into the unknown structure of BaTiSi4O11 in the light of the study of its physical properties as potential functional material.

  8. Barium borohydride chlorides: synthesis, crystal structures and thermal properties.

    PubMed

    Grube, Elisabeth; Olesen, Cathrine H; Ravnsbæk, Dorthe B; Jensen, Torben R

    2016-05-10

    Here we report the synthesis, mechanism of formation, characterization and thermal decomposition of new barium borohydride chlorides prepared by mechanochemistry and thermal treatment of MBH4-BaCl2, M = Li, Na or K in ratios 1 : 1 and 1 : 2. Initially, orthorhombic barium chloride, o-BaCl2 transforms into o-Ba(BH4)xCl2-x, x ∼ 0.15. Excess LiBH4 leads to continued anion substitution and a phase transformation into hexagonal barium borohydride chloride h-Ba(BH4)xCl2-x, which accommodates higher amounts of borohydride, possibly x ∼ 0.85 and resembles h-BaCl2. Thus, two solid solutions are in equilibrium during mechano-chemical treatment of LiBH4-BaCl2 (1 : 1) whereas LiBH4-BaCl2 (2 : 1) converts to h-Ba(BH4)0.85Cl1.15. Upon thermal treatment at T > ∼200 °C, h-Ba(BH4)0.85Cl1.15 transforms into another orthorhombic barium borohydride chloride compound, o-Ba(BH4)0.85Cl1.15, which is structurally similar to o-BaBr2. The samples with M = Na and K have lower reactivity and form o-Ba(BH4)xCl2-x, x ∼ 0.1 and a solid solution of sodium chloride dissolved in solid sodium borohydride, Na(BH4)1-xClx, x = 0.07. The new compounds and reaction mechanisms are investigated by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), Fourier transform infrared spectroscopy (FT-IR) and simultaneous thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), mass spectroscopy (MS) and temperature programmed photographic analysis (TPPA). PMID:27109871

  9. Synthesis and characterization of barium ferrite–silica nanocomposites

    SciTech Connect

    Aguilar-González, M.A.; Mendoza-Suárez, G.; Padmasree, K.P.

    2013-10-15

    In this work, we prepared barium ferrite-silica (BaM-SiO{sub 2}) nanocomposites of different molar ratios by high-energy ball milling, followed by heat-treatment at different temperatures. The microstructure, morphology and magnetic properties were characterized for different synthesis conditions by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The results indicate that 15 h of milling was enough to avoid the generation of hematite phase and to get a good dispersion of barium ferrite particles in the ceramic matrix. For milling periods beyond 15 h and heat treatment above 900 °C, the XRD patterns showed the presence of hematite phase caused by the decomposition of BaM. The agglomerate size observed through SEM analysis was around 150 nm with a good BaM dispersion into the SiO{sub 2} matrix. The highest saturation magnetization (Ms) value obtained was 43 emu/g and the corresponding coercivity (Hc) value of 3.4 kOe for the composition 60BaM-40SiO{sub 2} milled for 15 h and heat treated at 900 °C. This coercivity value is acceptable for the application in magnetic recording media. Highlights: • Barium ferrite–silica nanocomposites were prepared by high energy ball milling. • Optimal processing time is 15 h milling and heat treatment at 900 °C. • This is enough to avoid the generation of hematite phase. • Obtain good dispersion of barium ferrite particles in the ceramic matrix • Above this processing time shows the presence of increased amount of hematite.

  10. Layer morphology and growth mechanisms in barium ferrites

    NASA Astrophysics Data System (ADS)

    Turner, G.; Stewart, B.; Baird, T.; Peacock, R. D.; Cairns-Smith, A. G.

    1996-01-01

    Crystals of hexagonal barium ferrites have been grown using a standard flux technique and, as a modification, on platinum tabs removed early from the hot flux. Products have been examined by SEM. Mature crystals often show highly laminated structures. Early crystals may consist of thin, somewhat flexible plates or slabs which overgrow themselves in ways which provide a possible explanation for the long c-axis repeats previously reported in these materials.

  11. Acute barium intoxication following ingestion of soap water solution

    PubMed Central

    Joshi, Nandita; Sharma, Chhavi Sarabpreert; Sai; Sharma, Jai Prakash

    2012-01-01

    We present a rare case in which a young girl ingested a solution of a hair-removing soap. The ingestion resulted in profound hypokalemia and severe acidosis leading to flaccid paralysis, respiratory arrest and ventricular arrhythmias. Ultimately the patient made complete recovery. The soapwas found to contain barium sulfide. The degree of paralysis and acidosis appeared to be directly related to serum potassium levels. PMID:23559738

  12. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  13. 40 CFR 721.10495 - Metal silicate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal silicate (generic). 721.10495... Substances § 721.10495 Metal silicate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as metal silicate (PMN P-05-634) is subject...

  14. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  15. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  16. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  17. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  18. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  19. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  20. 21 CFR 582.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Aluminum calcium silicate. 582.2122 Section 582.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  1. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  2. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Aluminum calcium silicate. 182.2122 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent. (c) Limitations, restrictions, or explanation....

  3. 21 CFR 182.2122 - Aluminum calcium silicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Aluminum calcium silicate. 182.2122 Section 182.2122 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....2122 Aluminum calcium silicate. (a) Product. Aluminum calcium silicate. (b) Tolerance. 2 percent....

  4. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  5. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  6. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  7. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  8. 40 CFR 721.9513 - Modified magnesium silicate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified magnesium silicate polymer... Specific Chemical Substances § 721.9513 Modified magnesium silicate polymer (generic). (a) Chemical... as modified magnesium silicate polymer (PMN P-98-604) is subject to reporting under this section...

  9. Grain Growth and Silicates in Dense Clouds

    NASA Technical Reports Server (NTRS)

    Pendeleton, Yvonne J.; Chiar, J. E.; Ennico, K.; Boogert, A.; Greene, T.; Knez, C.; Lada, C.; Roellig, T.; Tielens, A.; Werner, M.; Whittet, D.

    2006-01-01

    Interstellar silicates are likely to be a part of all grains responsible for visual extinction (Av) in the diffuse interstellar medium (ISM) and dense clouds. A correlation between Av and the depth of the 9.7 micron silicate feature (measured as optical depth, tau(9.7)) is expected if the dust species are well 'mixed. In the di&se ISM, such a correlation is observed for lines of sight in the solar neighborhood. A previous study of the silicate absorption feature in the Taurus dark cloud showed a tendency for the correlation to break down at high Av (Whittet et al. 1988, MNRAS, 233,321), but the scatter was large. We have acquired Spitzer Infrared Spectrograph data of several lines of sight in the IC 5 146, Barnard 68, Chameleon I and Serpens dense clouds. Our data set spans an Av range between 2 and 35 magnitudes. All lines of sight show the 9.7 micron silicate feature. The Serpens data appear to follow the diffuse ISM correlation line whereas the data for the other clouds show a non-linear correlation between the depth of the silicate feature relative to Av, much like the trend observed in the Taurus data. In fact, it appears that for visual extinctions greater than about 10 mag, tau(9.7) begins to level off. This decrease in the growth of the depth of the 9.7 micron feature with increasing Av could indicate the effects of grain growth in dense clouds. In this poster, we explore the possibility that grain growth causes an increase in opacity (Av) without causing a corresponding increase in tau(9.7).

  10. Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Burke, Tom (Technical Monitor)

    2001-01-01

    Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.

  11. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  12. Barium aluminosilicate reinforced in situ with silicon nitride

    SciTech Connect

    Richardson, K.K.; Freitag, D.W.; Hunn, D.L.

    1995-10-01

    Advanced ceramic composite materials that exhibit high strength and toughness with good thermal shock resistance are needed for emerging high-temperature engineering applications. A recently developed in situ reinforced barium aluminosilicate glass-ceramic shows promise of meeting many of the requirements for these types of applications with the added benefit of low-cost fabrication through densification by pressureless sintering. The material is toughened through in situ growth of rodlike {beta}-Si{sub 3}N{sub 4} grains resulting from the {alpha}-{beta} silicon nitride phase transformation. Microstructural development and material properties for temperatures up to 1,400 C are discussed. When compared to monolithic barium aluminosilicate, barium aluminosilicate reinforced with 70% by volume of Si{sub 3}N{sub 4} shows a significant increase in flexural strength (from 80 to 565 MPa) and fracture toughness (from 1.8 to 5.74 MPa {center_dot} m{sup 1/2}) with a high resistance to thermal shock.

  13. Effects of Different Barium Compounds on the Corrosion Resistance of Andalusite-Based Low-Cement Castables in Contact with Molten Al-Alloy

    NASA Astrophysics Data System (ADS)

    Adabifiroozjaei, Esmaeil; Koshy, Pramod; Rastkerdar, Ebad

    2011-08-01

    An experimental study was conducted to investigate the interfacial phenomena between an Al alloy and andalusite low-cement castables (LCCs) containing fixed contents of barium compounds (BaO, BaSO4, and BaCO3) at 1123 K and 1433 K (850 °C and 1160 °C) using the Alcoa cup test. Interfacial reaction products and phases formed during heat treatment of the refractory samples were characterized using scanning electron microscopy (SEM) coupled with energy dispersive spectrometry (EDS) and X-ray diffraction analysis (XRD). The addition of both BaO and BaSO4 led to a significant reduction of alloy penetration into the refractory. Hexa-celsian formation was observed in both these refractories, which drastically increased their corrosion resistance. Barite decomposition was observed at 1373 K (1100 °C) in the presence of alumina and silica, which was the precursor for hexa-celsian formation. Barium silicates were formed in all samples containing additives; however, this did not have any major influence on the corrosion resistance. Solidified eutectics of BaSi2 and α-BaAl2Si2 formed in all these samples, which acted as an interfacial barrier that prevented additional molten aluminum penetration; however, the positive effect of intermetallic formation was offset by glassy phase formation in samples containing BaCO3 as the additive.

  14. Mechanism of action of barium ion on rat aortic smooth muscle.

    PubMed

    Hansen, T R; Dineen, D X; Petrak, R

    1984-03-01

    The mechanism of action of barium ion on the aortic smooth muscle of the normal rat was investigated using in vitro calcium-depleted aortic strips. Aortic strips were depleted of calcium by repeated exposure to norepinephrine in a calcium-free bathing solution. Although calcium depletion abrogated the response of strips to catecholamines and depolarizing agents, the response to barium chloride remained quantitatively intact. The calcium influx blocker D 600 prevented the contractile response to barium but not to catecholamines, whereas phentolamine prevented the response to catecholamines but not barium. The strip response to barium was depressed by a twofold increase in extracellular magnesium concentration whether the strip was intact or calcium depleted. Although increased concentrations of calcium in the extracellular medium inhibited the contractile response to potassium ion, increases in barium merely potentiated the potassium contracture. These findings indicate that barium produces its contractile effect on vascular smooth muscle by a direct intracellular interaction with the contractile or regulatory proteins. Barium enters these cells via calcium influx channels and is probably not sequestered in a physiologically releasable pool. Unlike calcium, barium does not stabilize the smooth muscle sarcolemma when present in high concentration. PMID:6703038

  15. Barium can replace calcium in calmodulin-dependent contractions of skinned renal arteries of the rabbit.

    PubMed

    Kreye, V A; Hofmann, F; Mühleisen, M

    1986-03-01

    Renal arteries of the rabbit were chemically skinned using Triton X-100. In EGTA-buffered solutions containing calmodulin and ATP, small strips of the skinned preparations were found to develop contractile force which was dependent on the concentrations of either free calcium or of free barium. However, a 220 times greater concentration of barium than of calcium was necessary for comparable effects. Quantitatively, the response to barium was dependent on the concentration of calmodulin added to the test solutions. The contractile effect of barium was partly antagonized by the calmodulin antagonist, trifluoperazine. PMID:3960707

  16. Mineralogy of amphiboles and 1:1 layer silicates

    SciTech Connect

    Veblen, D.R.; Wylie, A.G.

    1993-12-31

    This article reviews briefly the ways in which mineralogists and crystal chemist represent complex silicate structures: the basic nomenclature for amphiboles, and the 1:1 layer silicates; the geological occurrences of these minerals; their crystal structures and defect structures; the various morphologies, or habits, of amphibole and 1:1 layer silicate crystals; and the potentially active surface sites and dissolution kinetics of such particles. Also included is a discussion of how 1:1 layer silicates, amphiboles, and other chain silicates related to amphiboles are identified in the laboratory. 225 refs., 28 figs.

  17. Amorphous Silicates in Primitive Meteoritic Materials: Acfer 094 and IDPs

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Nakamura-Messenger, K.; Messenger, S.; Walker, Robert M.

    2009-01-01

    The abundance of presolar grains is one measure of the primitive nature of meteoritic materials. Presolar silicates are abundant in meteorites whose matrices are dominated by amorphous silicates such as the unique carbonaceous chondrite Acfer 094. Presolar silicates are even more abundant in chondritic-porous interplanetary dust particles (CP-IDPs). Amorphous silicates in the form of GEMS (glass with embedded metal and sulfides) grains are a major component of CP IDPs. We are studying amorphous silicates in Acfer 094 matrix in order to determine whether they are related to the GEMS grains in CPIDPs

  18. Characterizing Amorphous Silicates in Extraterrestrial Materials

    NASA Astrophysics Data System (ADS)

    Fu, X.; Wang, A.; Krawczynski, M. J.

    2015-12-01

    Amorphous silicates are common in extraterrestrial materials. They are seen in the matrix of carbonaceous chondrites as well as in planetary materials. Tagish Lake is one of the most primitive carbonaceous meteorites in which TEM and XRD analyses found evidence for poorly crystalline phyllosilicate-like species; Raman spectra revealed amorphous silicates with variable degree of polymerization and low crystallinity. On Mars, CheMin discovered amorphous phases in all analyzed samples, and poorly crystalline smectite in mudstone samples. These discoveries pose questions on the crystallinity of phyllosilicates found by remote sensing on Mars, which is directly relevant to aqueous alteration during geologic history of Mars. Our goal is to use spectroscopy to better characterize amorphous silicates. We use three approaches: (1) using silicate glasses synthesized with controlled chemistry to study the effects of silicate polymerization and (2) using phyllosilicates synthesized with controlled hydrothermal treatment to study the effect of crystallinity on vibrational spectroscopy, finally (3) to use the developed correlations in above two steps to study amorphous phases in meteorites, and those found in future missions to Mars. In the 1st step, silicate glasses were synthesized from pure oxides in a range of NBO/T ratios (from 0 to 4). Depending on the targeted NBO/T and composition of mixed oxides, temperatures for each experiment fell in a range from 1260 to 1520 °C, run for ~ 4 hrs. The melt was quenched in liquid N2 or water. Homogeneity of glass was checked under optical microscopy. Raman spectra were taken over 100 spots on small chips free of bubbles and crystals. We have observed that accompanying an increase of NBO/T, there is a strengthening and a position shift of the Raman peak near 1000 cm-1 (Si-Onon-bridging stretching mode), and the weakening of broad Raman peaks near 500 cm-1 (ring breathing mode) and 700cm-1 (Si-Obridging-Si mode). We are building the

  19. Silicate Feature Variation in LPV Stars

    NASA Astrophysics Data System (ADS)

    Creech-Eakman, M. J.

    1997-08-01

    Silicate dust, found around oxygen-rich stars, produces a hallmark mid-infrared spectral feature resulting from the bend or stretch in the SiO_4 tetrahedron. Long Period Variable (LPV) stars on the Asymptotic Giant Branch produce copious quantities of silicate dust over this short stage of their stellar evolution. A study of 31 oxygen-rich LPVs was conducted over a sixteen month period using the University of Denver's TNTCAM. The study has been supplemented with spectral data from UKIRT CGS3 service observations and IRAS LRS archives. Observations of the silicate features in the circumstellar environment indicate a possible evolutionary sequence for the stars, inferred from the changes of the dust spectra. These new observations suggest a relationship between the dust spectral signature and the stage of the dust formation process. There is evidence that acoustic shocks from the LPV are a catalyst in the dust formation process. Follow-on work is already occuring in the form of ISO SWS data on a selected subgroup of LPVs. To enhance this study, a mid-infrared, cross-dispersed spectrometer, TGIRS, was built. TGIRS covers a wavelength range of 7 to 14 microns at a resolving power of 750. The instrument utilizes a Boeing-Rockwell Si:As BIB HFPA as its detector. It is cooled using a two-stage Gifford-McMahon cryocooler, eliminating the need for liquid cryogens. All of the optics in the system are aluminum, permitting ambient alignment and focusing with a laser. A description of the design and building phases of TGIRS is presented. Brief descriptions concerning the evolution of LPVs, theories of dust formation, and the signatures of the silicate dust are given. Data acquisition and reduction are described, including a new method for removing telluric attenuation from the data. Spectral energy distributions are shown, including graphs of the silicate features with respect to stellar phase. Finally, results of the statistical analysis of the sample and conclusions are drawn

  20. Aggregation of Calcium Silicate Hydrate Nanoplatelets.

    PubMed

    Delhorme, Maxime; Labbez, Christophe; Turesson, Martin; Lesniewska, Eric; Woodward, Cliff E; Jönsson, Bo

    2016-03-01

    We study the aggregation of calcium silicate hydrate nanoplatelets on a surface by means of Monte Carlo and molecular dynamics simulations at thermodynamic equilibrium. Calcium silicate hydrate (C-S-H) is the main component formed in cement and is responsible for the strength of the material. The hydrate is formed in early cement paste and grows to form platelets on the nanoscale, which aggregate either on dissolving cement particles or on auxiliary particles. The general result is that the experimentally observed variations in these dynamic processes generically called growth can be rationalized from interaction free energies, that is, from pure thermodynamic arguments. We further show that the surface charge density of the particles determines the aggregate structures formed by C-S-H and thus their growth modes. PMID:26859614

  1. Conductimetric determination of decomposition of silicate melts

    NASA Technical Reports Server (NTRS)

    Kroeger, C.; Lieck, K.

    1986-01-01

    A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.

  2. Tungsten and barium transport in the internal plasma of hollow cathodes

    NASA Astrophysics Data System (ADS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2009-06-01

    The effect of tungsten erosion, transport, and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from 8200 h and 30 352 h ion engine wear tests. Erosion and subsequent redeposition of tungsten in the electron emission zone at the downstream end of the insert reduce the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushed back to the emitter surface by the electric field and drag from the xenon ion flow. This barium ion flux is sufficient to maintain a barium surface coverage at the downstream end greater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length, so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollow cathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  3. A review of the health impacts of barium from natural and anthropogenic exposure.

    PubMed

    Kravchenko, Julia; Darrah, Thomas H; Miller, Richard K; Lyerly, H Kim; Vengosh, Avner

    2014-08-01

    There is an increasing public awareness of the relatively new and expanded industrial barium uses which are potential sources of human exposure (e.g., a shale gas development that causes an increased awareness of environmental exposures to barium). However, absorption of barium in exposed humans and a full spectrum of its health effects, especially among chronically exposed to moderate and low doses of barium populations, remain unclear. We suggest a systematic literature review (from 1875 to 2014) on environmental distribution of barium, its bioaccumulation, and potential and proven health impacts (in animal models and humans) to provide the information that can be used for optimization of future experimental and epidemiological studies and developing of mitigative and preventive strategies to minimize negative health effects in exposed populations. The potential health effects of barium exposure are largely based on animal studies, while epidemiological data for humans, specifically for chronic low-level exposures, are sparse. The reported health effects include cardiovascular and kidney diseases, metabolic, neurological, and mental disorders. Age, race, dietary patterns, behavioral risks (e.g., smoking), use of medications (those that interfere with absorbed barium in human organism), and specific physiological status (e.g., pregnancy) can modify barium effects on human health. Identifying, evaluating, and predicting the health effects of chronic low-level and moderate-level barium exposures in humans is challenging: Future research is needed to develop an understanding of barium bioaccumulation in order to mitigate its potential health impacts in various exposured populations. Further, while occupationally exposed at-risk populations exist, it is also important to identify potentially vulnerable subgroups among non-occupationally exposed populations (e.g., elderly, pregnant women, children) who are at higher risk of barium exposure from drinking water and food

  4. Structure and properties of ITQ-8: a hydrous layer silicate with microporous silicate layers.

    PubMed

    Marler, Bernd; Müller, Melanie; Gies, Hermann

    2016-06-21

    ITQ-8 is a new hydrous layer silicate (HLS) with a chemical composition of [C4H8(C7H13N)2]8 [Si64O128(OH)16]·48H2O per unit cell. The synthesis of ITQ-8 was first described in 2002 by Díaz-Cabañas et al., the structure of this material, however, remained unsolved at that time. Physico-chemical characterization using solid-state NMR spectroscopy, SEM, TG-DTA, and FTIR spectroscopy confirmed that ITQ-8 is a layer silicate. The XRD powder pattern was indexed in the monoclinic system with lattice parameters of a0 = 35.5168(5) Å, b0 = 13.3989(2) Å, c0 = 16.0351(2) Å, β = 106.74(2)°. The crystal structure was solved by simulated annealing. Rietveld refinement of the structure in space group C2/c converged to residual values of RBragg = 0.023, RF = 0.022 and chi(2) = 2.3 confirming the structure model. The structure of ITQ-8 contains silicate layers with a topology that resembles a (11-1) section of the framework of zeolite levyne. So far, this layer topology is unique among layer silicates. The layer can be regarded as made up of 4-, 6-, double-six and 8-rings which are interconnected to form cup-like "half-cages". Unlike other HLSs, which possess impermeable silicate layers, ITQ-8 contains 8-rings pores with a free diameter of 3.5 Å × 3.4 Å and can be regarded as a "small-pore layer silicate". In the crystal structure, the organic cations, 1,4-diquiniclidiniumbutane, used as structure directing agents during synthesis are intercalated between the silicate layers. Clusters (bands) of water molecules which are hydrogen bonded to each other and to the terminal Si-OH/Si-O(-) groups are located between the organic cations and interconnect the silicate layers. ITQ-8 is a very interesting material as precursor for the synthesis of microporous framework silicates by topotactic condensation or interlayer expansion reactions leading to 3D micro-pore systems which may be useful in applications as e.g. catalysts, catalyst supports and adsorbents of for separation. PMID

  5. Isotopic zonations in silicic magma chambers

    SciTech Connect

    Johnson, C.M. )

    1989-12-01

    Many ash-flow tuffs are zoned in radiogenic isotope ratios, indicating that roofward assimilation of crust occurs in ash-flow magma chambers prior to eruption. Cases where relatively well constrained calculations may be made regarding the percentage of assimilation in the roof zone indicate that the percentage of assimilation often exceeds the percentage of phenocrysts in the tuffs. This relation, in addition to the fact that assimilation gradients are opposite to that of the percentage of phenocrysts, suggests that assimilation and crystallization in the silicic roof zones of crustal magma chambers are separated in time and space, and that these processes are best modeled as two-component mixing; true assimilation-fractional crystallization is probably restricted to the lower mafic parts. Most phenocrysts in the silicic upper parts of magma chambers crystallized after assimilation, providing minimum estimates of time between assimilation and eruption (1-100 yr). Preservation of monotonic isotopic gradients suggests that convection is minor in the upper parts of silicic magma chambers during the late stages of evolution.

  6. Lead-silicate glass optical microbubble resonator

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald; Chormaic, Síle Nic

    2015-02-01

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 105 (single-stem) and 7 × 106 (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  7. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  8. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  9. Anisotropy of Silicate-Hosted Magnetite Inclusions

    NASA Astrophysics Data System (ADS)

    Scott, G. R.; Feinberg, J. M.; Renne, P. R.

    2004-12-01

    Anisotropy of magnetic properties is a hallmark of silicate crystals with oriented iron-oxide inclusions. Strongly magnetic magnetite-bearing silicates (10-1 A m-1) are common components of gabbros and layered intrusions, contributing to local and regional magnetic anomalies. Additionally, these iron-oxide silicates hold the promise of being exceptional paleomagnetic recorders owing to their features of: physical/chemical isolation from altering fluids, chemical equilibrium with their silicate host, and long relaxation times (enhanced coercivity). However, anisotropy of remanence must be understood before these advantageous features can be utilized. Measurements of single crystals of clinopyroxene and plagioclase (10-4 g) show anisotropy in direction and intensity that directly reflect the crystallography of the silicate host. The host controls both the crystallographic orientation of the magnetite (magnetocrystalline anisotropy) and the elongation direction of the magnetite inclusion (shape anisotropy). We have found another source of anisotropy that involves an internal exsolution of ulvöspinel within titanomagnetite inclusions. This also reflects a host control as this second exsolution occurs along the magnetite \\{100\\}. This fixed wall shape anisotropy creates an array of interacting single domain magnetite parallelepipeds, parallel to \\{100\\}. Each of these anisotropies contributes to enhanced coercivity of remanence, which significantly exceeds the IRM saturation magnetization for magnetite (300 mT). The anisotropy of IRM (aIRM@ 1.1 T) of magnetite-bearing clinopyroxene and plagioclase shows clustering of directions, reflecting the mixture of variables that include: inclusion elongation direction and abundance, orientation of magnetite easy axes relative to the applied field, inclusion aspect ratio and diameter, and pre-existing magnetic domain structure. For pyroxene (monoclinic) with two arrays of needle-shaped magnetite inclusions, the aIRM is

  10. Diseases associated with exposure to silica and nonfibrous silicate minerals. Silicosis and Silicate Disease Committee

    SciTech Connect

    Not Available

    1988-07-01

    Silicosis, a disease of historical importance, continues to occur cryptically today. Its pathogenesis is under ongoing study as new concepts of pathobiology evolve. In this article, the gross and microscopic features of the disease in the lungs and the lesions in lymph nodes and other viscera are described. These tissue changes are then discussed in the context of clinical disease and other possible or established complications of silica exposure (ie, scleroderma and rheumatoid arthritis, glomerulonephritis, and bronchogenic carcinoma). Silicates are members of a large family of common minerals, some of which have commercial importance. Silicates are less fibrogenic than silica when inhaled into the lungs, but cause characteristic lesions after heavy prolonged exposure. The features of these disease conditions are described herein. Various aspects of the mineralogy and tissue diagnosis of silicosis and lung disease due to silicates are reviewed. An overview of contemporary regulatory considerations is provided.204 references.

  11. An Evaluation of Ethyl Silicate-Based Grouts for Weathered Silicate Stones

    NASA Astrophysics Data System (ADS)

    Dolph, Brittany Helen

    Culturally significant monuments made of weathered siliceous stone often display sub-surface condition issues such as cracks and voids. These issues require grouts that are ideally compatible with the composition and properties of the substrate. Based on the successful application of ethyl silicates as consolidants in recent literature, this study examines possible formulation pathways for the development of a grout incorporating ethyl silicate. Tetraethylorthosilicate (TEOS), dibutyltin dilaurate (DBTL) as a catalyst, silicone oil (PDMS), various grades of ground quartz, sepiolite, and hollow glass spheres were used in differing concentrations to create samples. These were visually and physically assessed on workability, separation, shrinkage, cracking, strength, and flexibility. Quantitative analysis was performed on selected formulations using UV-Vis-NIR reflectance spectroscopy in coordination with a weight loss experiment to investigate kinetics, dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). Successful formulations tended to include oligomeric TEOS, crushed quartz of mixed grades, sepiolite powder, and PDMS, and show promise for future investigations.

  12. The effect of barium on perceptions of taste intensity and palatability.

    PubMed

    Dietsch, Angela M; Solomon, Nancy Pearl; Steele, Catriona M; Pelletier, Cathy A

    2014-02-01

    Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, nontaster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40 % w/v barium: noncarbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter), and sucrose (sweet). Mixed-model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than nontasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions. PMID:24037100

  13. 75 FR 36629 - Barium Chloride From the People's Republic of China: Continuation of Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... Barium Chloride From China, 75 FR 33824 (June 15, 2010), and Barium Chloride from China (Inv. No. 731-TA... Five-year (``Sunset'') Review, 74 FR 31412 (July 1, 2009). As a result of its review, the Department... China: Final Results of Expedited Third Sunset Review of Antidumping Duty Order, 74 FR 55814 (October...

  14. Description of the barium cloud vectoring systems developed for the PLACES test series

    SciTech Connect

    Finnell, R.T.

    1981-05-01

    The PLACES experiments were conducted to investigate the effects of ionospheric plasmas (created by barium vapor released from rockets) on satellite communications and navigation systems. Launcher setting angles for the rockets were provided by a minicomputer system made up of four subsystems. This report describes the subsystems which determined the barium cloud vectors from TV data alone and from combined radar/TV data.

  15. LACK OF EFFECT OF DRINKING WATER BARIUM ON CARDIOVASCULAR RISK FACTORS

    EPA Science Inventory

    Higher cardiovascular mortality has been associated in a single epidemiological study with higher levels of barium in drinking water. he purpose of this study was to determine whether drinking water barium at levels found in some U.S. communities alters the known risk factors for...

  16. Agglomeration behavior of solid nickel on polycrystalline barium titanate

    SciTech Connect

    Weil, K Scott; Mast, Eric S; Sprenkle, Vince

    2007-11-01

    This letter describes the phenomenon that takes place between nickel/barium titanate couples when heated under conditions employed in multilayer ceramic capacitor manufacturing practice: a 4hr, 1300°C isothermal anneal in 1% H2 – 99% N2. Dense, sputtered nickel films were observed to dewet the titanate and agglomerate into discrete or interconnected islands via a solid-state process. Up to a critical film thickness value of ~1.4 μm, the degree of agglomeration was found to display an exponential dependence on the thickness of the original nickel film.

  17. Defect chemistry and proton conductivity in barium-based perovskites

    NASA Astrophysics Data System (ADS)

    Wu, Jian

    The site incorporation mechanism of M3+ dopats into A 2+B4+O3 perovskites controls the overall defect chemistry and thus their transport properties. For charge balance reasons, incorporation onto the A2+ site would require the creation of negatively charged point defects, such as cation vacancies, whereas incorporation onto the B4+ site is accompanied by the generation of positively charged defects, typically oxygen vacancies. Oxygen vacancy content, in turn, is relevant to proton conducting oxides in which protons are introduced via the dissolution of hydroxyl ions at vacant oxygen sites. This work proposes that, on the basis of X-ray powder diffraction studies, electron microscopy, chemical analysis, thermal gravimetric analysis, AC impedance spectroscopy, extended X-ray fine structure (EXAFS) and atomistic simulation, that nominally B-site doped barium cerate can exhibit dopant partitioning partially as a consequence of barium evaporation at elevated temperatures. Such partitioning and the presence of significant dopant concentrations on the A-site negatively impact proton conductivity. As a consequence of the greater ability of larger cations to exist on the Ba site, the H2O adsorption and proton conductivities of large-cation doped barium cerates are lower than those of small-cation doped analogs. A series of dopats, La, Nd, Sm, Gd and Yb are adopted in doped BaCeO 3 with the composition BaCe0.85M0.15O3-delta . Yb doped BaCeO3 yields the highest proton conductivity among all the doped samples. Compositional non-stoichiometry, which is closely tied to sample processing, is studied in a BaXCe0.85M 0.15O3+/-delta series. It is indicated that low temperature synthesis is beneficial to reduce barium evaporation at elevated temperatures and in turn increase the proton conductivity. The chemical stability of BaCeO 3 is investigated and Zr is used to stabilize BaCeO3 in CO 2-rich atmosphere effectively. This result helps to commercialize doped BaCeO3 as the

  18. The barium ion jet experiments of the Porcupine project

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    1980-06-01

    The injection of a barium plasma from a sounding rocket by the shaped charge technique offers several possibilities that cannot be achieved by conventional releases. This is due to high initial velocities of the atoms of up to 14 km/sec. Most of the the applications are related to the great heights that the ions can reach, but some depend directly on the initial momentum. Typical applications are: tracing at high altitudes, modifications, and alternate Ionization processes. Project Porcupine contributions in this field are summarized.

  19. Radium and barium in the Amazon River system

    SciTech Connect

    Moore, W.S.; Edmond, J.M.

    1984-03-20

    Data for /sup 226/Ra and /sup 228/Ra in the Amazon River system show that the activity of each radium isotope is strongly correlated with barium concentrations. Two trends are apparent, one for rivers which drain shield areas and another for all other rivers. These data suggest that there has been extensive fractionation of U, Th, and Ba during weathering in the Amazon basin. The /sup 226/Ra data fit a flux model for the major ions indicating that /sup 226/Ra behaves conservatively along the main channel of the Amazon River.

  20. Nanodielectric system for cryogenic applications: Barium titanate filled polyvinyl alcohol

    SciTech Connect

    Tuncer, Enis; Sauers, Isidor; James, David Randy; Ellis, Alvin R; Duckworth, Robert C

    2008-01-01

    In the current study the focus is on dielectric properties (as a function of frequency and temperature) of a polymeric composite system composed of polyvinyl alcohol and barium titanate nano powder. In the investigations, the temperature range is between 50-295 K, and the frequency range is between $20\\ \\hertz-1\\ \\mega\\hertz$. Polarization and conduction processes are investigated in the linear regime. Dielectric breakdown strengths of samples are also reported. The materials presented have potential to be implemented in cryogenic capacitor or field grading applications.

  1. Magnetic and structural investigations on barium hexaferrite ferrofluids

    NASA Astrophysics Data System (ADS)

    Müller, R.; Hiergeist, R.; Gawalek, W.; Hoell, A.; Wiedenmann, A.

    2002-11-01

    Barium hexaferrite BaFe 12-2 xTi xCo xO 19 ferrofluids have been prepared using oleic acid as surfactant and Isopar M ® or dodecane as carrier liquid. The ferrite particles were prepared by glass crystallization. Hysteresis parameters, the initial susceptibility versus temperature and the magnetic particle size were obtained by VSM. Ferrofluids with a partly deuterated carrier liquid were investigated by small angle neutron scattering (SANS). SANS curves lead to a bimodal size distribution consisting of single magnetic particles with an organic shell and aggregated particles with an incomplete organic layer.

  2. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    SciTech Connect

    Garten, Lauren M. Trolier-McKinstry, Susan

    2015-03-07

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d{sub 33} piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m{sup −1}. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  3. Strain engineered barium strontium titanate for tunable thin film resonators

    SciTech Connect

    Khassaf, H.; Khakpash, N.; Sun, F.; Sbrockey, N. M.; Tompa, G. S.; Kalkur, T. S.; Alpay, S. P.

    2014-05-19

    Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.

  4. Barium dierbium(III) tetra­sulfide

    PubMed Central

    Mesbah, Adel; Stojko, Wojciech; Ibers, James. A

    2013-01-01

    Barium dierbium(III) tetra­sulfide, BaEr2S4, crystallizes with four formula units in the ortho­rhom­bic space group Pnma in the CaFe2O4 structure type. The asymmetric unit contains two Er, one Ba, and four S atoms, each with .m. site symmetry. The structure consists of channels formed by corner- and edge-sharing ErS6 octa­hedra in which Ba atoms reside. The resultant coordination of Ba is that of a bicapped trigonal prism. PMID:23476480

  5. Novel inorganic ion exchange materials based on silicates; synthesis, structure and analytical applications of magneso-silicate and magnesium alumino-silicate sorbents.

    PubMed

    El-Naggar, Ibrahim M; Abou-Mesalam, Mamdouh M

    2007-11-19

    Two novel inorganic ion exchange materials magneso-silicate and magnesium alumino-silicate have been synthesized under identical conditions. The structure of these materials was established by chemical analysis, X-ray diffraction, thermogravemetric and differential thermal analyses, Fourier transform infrared spectroscopy and X-ray fluorescence analysis. Magneso-silicate and magnesium alumino-silicate were found to have the formulas MgSi(5.59)O(12.18).5.93H(2)O and MgAl(2.32)Si(5.2)O(14.88).18.23H(2)O, respectively. The structure of both sorbents was arranged and predict according to the ChemDraw Ultra program. The ion exchange capacities of these materials for some radionuclides and heavy metals Cs(+), Co(2+), Cd(2+), Zn(2+) and Cu(2+) were investigated and the data obtained showed that magnesium alumino-silicate has a higher capacity for these cations compared to magneso-silicate. Distribution coefficients in nitric acid medium have been evaluated to explore the separation potentiality of magneso-silicate and magnesium alumino-silicate for Cs(+), Co(2+), Cd(2+), Cu(2+), Zn(2+) and Fe(3+) ions. Sorption isotherms for all cations were investigated and the data showed the applicability of Freundlich isotherm for all cases. PMID:17532565

  6. Barium impaction therapy with balloon occlusion for deep colonic diverticular bleeding: a three-case series

    PubMed Central

    Koga, Mikinori; Kusano, Chika; Gotoda, Takuji; Suzuki, Sho; Sato, Takemasa; Fukuzawa, Masakatsu; Itoi, Takao; Moriyasu, Fuminori

    2016-01-01

    Background and aims: In hemostasis for colonic diverticular bleeding, the incidence of recurrent bleeding is higher in deep colonic diverticulum than in shallow. We aimed to improve and evaluate barium impaction therapy using an enteroscopic overtube with balloon. Patients and method: We performed barium impaction therapy in three patients with a diagnosis of deep colonic diverticular bleeding. The tip of the overtube was inserted to reach the cecum using the conventional method. After deflating the colon, the enteroscope was removed. The balloon in the tube was inflated, followed by barium filling via the tube. Sufficient pressure was applied by ensuring no regurgitation into the small intestine side. The entire colon was continuously filled with barium in stages. Results: Post-treatment bleeding was controllable without adverse events in all three patients. Conclusion: This novel barium impaction therapy using an enteroscopic overtube with balloon was effectively performed without adverse events. PMID:27227115

  7. Setting process of lime-based conservation mortars with barium hydroxide

    SciTech Connect

    Karatasios, Ioannis . E-mail: ikarat@ims.demokritos.gr; Kilikoglou, Vassilis; Colston, Belinda; Theoulakis, Panagiotis; Watt, David

    2007-06-15

    This paper presents the effect of barium hydroxide on the setting mechanism of lime-based conservation mortars, when used as an additive material. The study focuses on the monitoring of the setting process and the identification of the mineral phases formed, which are essential for furthering the study of the durability of barium mixtures against chemical degradation. X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and thermal analysis (DTA-TG) were used to monitor the setting processes of these mixtures and identify new phases formed. The results suggest that barium hydroxide is evenly distributed within the lime and produces a homogeneous binding material, consisting of calcite (CaCO{sub 3}), witherite (BaCO{sub 3}) and barium-calcium carbonate [BaCa(CO{sub 3}){sub 2}]. Finally, it was found that barium carbonate can be directly bonded to calcitic aggregates and therefore increases its chemical compatibility with the binding material.

  8. Occultation of the ATS-3 satellite by the AVEFRIA barium ion cloud

    SciTech Connect

    Fitzgerald, T.J.; Simons, D.J.; Pongratz, M.B.; Clynch, J.R.

    1981-01-01

    During the AVEFRIA DOS barium release experiment, sponsored by the Los Alamos National Laboratory and the Defense Nuclear Agency in May 1978, the line of sight from one of the ground observation stations to the ATS-3 satellite was occulted by the barium ion cloud for a period of approximately five minutes. Optical measurements of the structured barium ion cloud were made with intensified cameras using the 455.4-nm wavelength fluorescent ion line. These measurements have been related to barium ion column density. During the occultation, the amplitude scintillations of the 136.47-MHz signal from the ATS-3 satellite were monitored. The optical measurements have been used to correlate the barium column density with the total electron content measurements and to calculate the scintillation index, S/sub 4/, and the two dimensional intensity pattern for comparison with the measured amplitude scintillations.

  9. Tungsten and Barium Transport in the Internal Plasma of Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Polk, James E.; Mikellides, Ioannis G.; Katz, Ira; Capece, Angela M.

    2008-01-01

    The effect of tungsten erosion, transport and redeposition on the operation of dispenser hollow cathodes was investigated in detailed examinations of the discharge cathode inserts from an 8200 hour and a 30,352 hour ion engine wear test. Erosion and subsequent re-deposition of tungsten in the electron emission zone at the downstream end of the insert reduces the porosity of the tungsten matrix, preventing the flow of barium from the interior. This inhibits the interfacial reactions of the barium-calcium-aluminate impregnant with the tungsten in the pores. A numerical model of barium transport in the internal xenon discharge plasma shows that the barium required to reduce the work function in the emission zone can be supplied from upstream through the gas phase. Barium that flows out of the pores of the tungsten insert is rapidly ionized in the xenon discharge and pushedback to the emitter surface by the electric field and drag from the xenon ion flow. Thisbarium ion flux is sufficient to maintain a barium surface coverage at the downstream endgreater than 0.6, even if local barium production at that point is inhibited by tungsten deposits. The model also shows that the neutral barium pressure exceeds the equilibrium vapor pressure of the impregnant decomposition reaction over much of the insert length,so the reactions are suppressed. Only a small region upstream of the zone blocked by tungsten deposits is active and supplies the required barium. These results indicate that hollowcathode failure models based on barium depletion rates in vacuum dispenser cathodes are very conservative.

  10. Endotrophic Calcium, Strontium, and Barium Spores of Bacillus megaterium and Bacillus cereus1

    PubMed Central

    Foerster, Harold F.; Foster, J. W.

    1966-01-01

    Foerster, Harold F. (The University of Texas, Austin), and J. W. Foster. Endotrophic calcium, strontium, and barium spores of Bacillus megaterium and Bacillus cereus. J. Bacteriol. 91:1333–1345. 1966.—Spores were produced by washed vegetative cells suspended in deionized water supplemented with CaCl2, SrCl2, or BaCl2. Normal, refractile spores were produced in each case; a portion of the barium spores lost refractility and darkened. Thin-section electron micrographs revealed no apparent anatomical differences among the three types of spores. Analyses revealed that the different spore types were enriched specifically in the metal to which they were exposed during sporogenesis. The calcium content of the strontium and the barium spores was very small. From binary equimolar mixtures of the metal salts, endotrophic spores accumulated both metals to nearly the same extent. Viability of the barium spores was considerably less than that of the other two types. Strontium and barium spores were heat-resistant; however, calcium was essential for maximal heat resistance. Significant differences existed in the rates of germination; calcium spores germinated fastest, strontium spores were slower, and barium spores were slowest. Calcium-barium and calcium-strontium spores germinated readily. Endotrophic calcium and strontium spores germinated without the prior heat activation essential for growth spores. Chemical germination of the different metal-type spores with n-dodecylamine took place at the same relative rates as physiological germination. Heat-induced release of dipicolinic acid occurred much faster with barium and strontium spores than with calcium spores. The washed “coat fraction” from disrupted spores contained little of the spore calcium but most of the spore barium. The metal in this fraction was released by dilute acid. The demineralized coats reabsorbed calcium and barium at neutral pH. Images PMID:4956334

  11. Dissolution of Barium from Barite in Sewage Sludges and Cultures of Desulfovibrio desulfuricans

    PubMed Central

    Baldi, F.; Pepi, M.; Burrini, D.; Kniewald, G.; Scali, D.; Lanciotti, E.

    1996-01-01

    High concentrations of total barium, ranging from 0.42 to 1.58 mg(middot)g(sup-1) (dry weight) were found in sludges of two sewage treatment plants near Florence, Italy. Barium concentrations in the suspended matter decreased as redox potential values changed from negative to positive. An anoxic sewage sludge sample was aerated, and 30% of the total barium was removed in 24 h. To demonstrate that barium was solubilized from barite by sulfate-reducing bacteria, a strain of Desulfovibrio desulfuricans was used to study the solubilization of barium from barite under laboratory conditions. During cell growth with different concentrations of barite from 0.01 to 0.3 g(middot)liter(sup-1) (the latter is the MIC) as the only source of sulfates in the cultures, the D. desulfuricans strain accumulated barium up to 0.58 (mu)g(middot)mg(sup-1) (dry weight). Three times the quantity of barium was dissolved by bacteria than in the uninoculated medium (control). The unexpectedly low concentration of soluble barium (1.2 mg of Ba(middot)liter(sup-1)) with respect to the quantity expected (109 mg of Ba(middot)liter(sup-1)), calculated on the basis of the free H(inf2)S evolved from the dissimilatory reduction of sulfate from barite, was probably due to the formation of other barium compounds, such as witherite (BaCO(inf3)) and the transient species barium sulfide (BaS). The D. desulfuricans strain, growing on barite, formed visible aggregates. Confocal microscopy analysis showed that aggregates consisted of bacteria and barite. After 3 days of incubation, several autofluorescent crystals surrounded by a dissolution halo were observed. The crystals were identified as BaS by comparison with the commercial compound. PMID:16535353

  12. Adsorption of β-carotene on modified magnesium silicate

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Guo, Ning; Fu, Yongfeng

    2016-02-01

    Modified flocculation magnesium silicate is prepared by a hydrothermal process at 120°C for 18 h after adding Al2(SO4)3 into the magnesium silicate gel. Compared with standard magnesium silicate with 328.116 m2 g-1 surface area, this modified magnesium silicate has a bigger BET surface area of 536.803 m2 g-1 and a lower interlayer water content. Modified magnesium silicate exhibits high β-carotene adsorption with a maximum adsorption capacity of 364.96 mg g-1. It is shown that when suspended in organic solvent, this material can be used effectively for carotenoid separation. Furthermore, our results suggest that modified magnesium silicate may be a promising candidate as an absorbent in the decoloring of oil.

  13. Natural Weathering Rates of Silicate Minerals

    NASA Astrophysics Data System (ADS)

    White, A. F.

    2003-12-01

    Silicates constitute more than 90% of the rocks exposed at Earth's land surface (Garrels and Mackenzie, 1971). Most primary minerals comprising these rocks are thermodynamically unstable at surface pressure/temperature conditions and are therefore susceptible to chemical weathering. Such weathering has long been of interest in the natural sciences. Hartt (1853) correctly attributed chemical weathering to "the efficacy of water containing carbonic acid in promoting the decomposition of igneous rocks." Antecedent to the recent interest in the role of vegetation on chemical weathering, Belt (1874) observed that the most intense weathering of rocks in tropical Nicaragua was confined to forested regions. He attributed this effect to "the percolation through rocks of rain water charged with a little acid from decomposing vegetation." Chamberlin (1899) proposed that the enhanced rates of chemical weathering associated with major mountain building episodes in Earth's history resulted in a drawdown of atmospheric CO2 that led to periods of global cooling. Many of the major characteristics of chemical weathering had been described when Merrill (1906) published the groundbreaking volume Rocks, Rock Weathering, and Soils.The major advances since that time, particularly during the last several decades, have centered on understanding the fundamental chemical, hydrologic, and biologic processes that control weathering and in establishing quantitative weathering rates. This research has been driven by the importance of chemical weathering to a number environmentally and economically important issues. Undoubtedly, the most significant aspect of chemical weathering is the breakdown of rocks to form soils, a process that makes life possible on the surface of the Earth. The availability of many soil macronutrients such as magnesium, calcium, potassium, and PO4 is directly related to the rate at which primary minerals weather. Often such nutrient balances are upset by anthropogenic

  14. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  15. Brillouin function characteristics for La-Co substituted barium hexaferrites

    NASA Astrophysics Data System (ADS)

    Wu, Chuanjian; Yu, Zhong; Yang, Yan; Sun, Ke; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen

    2015-09-01

    La-Co substituted barium hexaferrites with the chemical formula of Ba1-xLaxFe12-xCoxO19 (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f1, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ωbf2, ωkf1, ωaf1, ωkf2, and ωbk of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f1, 4f2, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ωbf2 and ωaf1 decrease constantly, while the molecular-field coefficients ωkf1, ωkf2, and ωbk show a slight change.

  16. Results of magnetospheric barium ion cloud experiment of 1971

    NASA Technical Reports Server (NTRS)

    Adamson, D.; Fricke, C. L.; Long, S. A. T.

    1975-01-01

    The barium ion cloud experiment involved the release of about 2 kg of barium at an altitude of 31 482 km, a latitude of 6.926 N., and a longitude of 74.395 W. Significant erosion of plasma from the main ion core occurred during the initial phase of the ion cloud expansion. From the motion of the outermost striational filaments, the electric field components were determined to be 0.19 mV/m in the westerly direction and 0.68 mV/m in the inward direction. The differences between these components and those measured from balloons flown in the proximity of the extremity of the field line through the release point implied the existence of potential gradients along the magnetic field lines. The deceleration of the main core was greater than theoretically predicted. This was attributed to the formation of a polarization wake, resulting in an increase of the area of interaction and resistive dissipation at ionospheric levels. The actual orientation of the magnetic field line through the release point differed by about 10.5 deg from that predicted by magnetic field models that did not include the effect of ring current.

  17. Plasma waves associated with the first AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Anderson, R. R.; Bernhardt, P. A.; Luehr, H.; Haerendel, G.

    1986-01-01

    Plasma waves observed during the March 21, 1985, AMPTE magnetotail barium release are described. Electron plasma oscillations provided local measurements of the plasma density during both the expansion and decay phases. Immediately after the explosion, the electron density reached a peak of about 400,000/cu cm, and then started decreasing approximately as t to the -2.4 as the cloud expanded. About 6 minutes after the explosion, the electron density suddenly began to increase, reached a secondary peak of about 240/cu cm, and then slowly decayed down to the preevent level over a period of about 15 minutes. The density increase is believed to be caused by the collapse of the ion cloud into the diamagnetic cavity created by the initial expansion. The plasma wave intensities observed during the entire event were quite low. In the diamagnetic cavity, electrostatic emissions were observed near the barium ion plasma frequency, and in another band at lower frequencies. A broadband burst of electrostatic noise was also observed at the boundary of the diamagnetic cavity. Except for electron plasma oscillations, no significant wave activity was observed outside of the diamagnetic cavity.

  18. Experiments of Water Formation on Warm Silicates

    NASA Astrophysics Data System (ADS)

    He, Jiao; Vidali, Gianfranco

    2014-06-01

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H2, and O2 have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O3 layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σH = 1.6 ± 0.27 Å2 and σD = 0.94 ± 0.09 Å2, respectively, are smaller than the size of an O3 molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  19. Experiments of water formation on warm silicates

    SciTech Connect

    He, Jiao; Vidali, Gianfranco

    2014-06-10

    When dust grains have a higher temperature than they would have in dense clouds, and when H, H{sub 2}, and O{sub 2} have a negligible residence time on grains, the formation of water should still be possible via the hydrogenation of OH and Eley-Rideal-type reactions. We determined that the OH desorption energy from an amorphous silicate surface is at least 143 meV (1656 K). This is 400 K higher than the value previously used in chemical models of the interstellar medium and is possibly as high as 410 meV (4760 K). This extends the temperature range for the efficient formation of water on grains from about 30 K to at least 50 K, and possibly over 100 K. We do not find evidence that water molecules leave the surface upon formation. Instead, through a thermal programmed desorption experiment, we find that water formed on the surface of an amorphous silicate desorbs at around 160 K. We also measured the cross-sections for the reaction of H and D with an O{sub 3} layer on an amorphous silicate surface at 50 K. The values of the cross-sections, σ{sub H} = 1.6 ± 0.27 Å{sup 2} and σ{sub D} = 0.94 ± 0.09 Å{sup 2}, respectively, are smaller than the size of an O{sub 3} molecule, suggesting the reaction mechanism is more likely Eley-Rideal than hot-atom. Information obtained through these experiments should help theorists evaluate the relative contribution of water formation on warm grains versus in the gas phase.

  20. Liquid-Phase Processing of Barium Titanate Thin Films

    NASA Astrophysics Data System (ADS)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  1. Lithium metaborate flux in silicate analysis

    USGS Publications Warehouse

    Ingamells, C.O.

    1970-01-01

    Lithium metaborate is an effective flux for silicates and other rock-forming minerals. The glass resulting from fusion is mechanically strong, reasonably nonhygroscopic, and is readily soluble in dilute acids. These characteristics lead to its use in X-ray spectrography and in methods which require whole-rock solutions, such as atomic absorption and emission spectrometry. Difficulties have been encountered in the use of such techniques : a high-quality reagent has been difficult to obtain ; fusion conditions must be rather closely controlled; graphite crucibles used in the fusions need special treatment. Methods for overcoming these difficulties are outlined. Selected procedures for various instrumental methods of analysis are described. ?? 1970.

  2. Determination of chlorine in silicate rocks

    USGS Publications Warehouse

    Peck, L.C.

    1959-01-01

    In a rapid accurate method for the determination of chlorine in silicate rocks, the rock powder is sintered with a sodium carbonate flux containing zinc oxide and magnesium carbonate. The sinter cake is leached with water, the resulting solution is filtered, and the filtrate is acidified with nitric acid. Chlorine is determined by titrating this solution with mercuric nitrate solution using sodium nitroprusside as the indicator. The titration is made in the dark with a beam of light shining through the solution. The end point of the titration is found by visually comparing the intensity of this beam of light with that of a similar beam of light in a reference solution.

  3. Microbial dissolution of silicate materials. Final report

    SciTech Connect

    Schwartzman, D.

    1996-03-26

    The objective of this research was to better understand the role of selected thermophilic bacteria in the colonization and dissolution of silicate minerals, with potential applications to the HDR Project. The demonstration of enhanced dissolution from microbial effects is critically dependent on providing a mineral bait within a media deficient in the critical nutrient found in the mineral (e.g., Fe). Reproducible experimental conditions in batch experiments require agitation to expose mineral powders, as well as nearly similar initial conditions for both inoculated cultures and controls. It is difficult, but not impossible to ensure reproducible conditions with microbes favoring filamentous growth habits.

  4. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  5. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  6. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.

    1982-01-01

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  7. Preparation of reactive beta-dicalcium silicate

    DOEpatents

    Shen, M.S.; Chen, J.M.; Yang, R.T.

    1980-02-28

    This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

  8. Evidence for seismogenic fracture of silicic magma.

    PubMed

    Tuffen, Hugh; Smith, Rosanna; Sammonds, Peter R

    2008-05-22

    It has long been assumed that seismogenic faulting is confined to cool, brittle rocks, with a temperature upper limit of approximately 600 degrees C (ref. 1). This thinking underpins our understanding of volcanic earthquakes, which are assumed to occur in cold rocks surrounding moving magma. However, the recent discovery of abundant brittle-ductile fault textures in silicic lavas has led to the counter-intuitive hypothesis that seismic events may be triggered by fracture and faulting within the erupting magma itself. This hypothesis is supported by recent observations of growing lava domes, where microearthquake swarms have coincided with the emplacement of gouge-covered lava spines, leading to models of seismogenic stick-slip along shallow shear zones in the magma. But can fracturing or faulting in high-temperature, eruptible magma really generate measurable seismic events? Here we deform high-temperature silica-rich magmas under simulated volcanic conditions in order to test the hypothesis that high-temperature magma fracture is seismogenic. The acoustic emissions recorded during experiments show that seismogenic rupture may occur in both crystal-rich and crystal-free silicic magmas at eruptive temperatures, extending the range of known conditions for seismogenic faulting. PMID:18497823

  9. Research drilling in young silicic volcanoes

    SciTech Connect

    Eichelberger, J.C.

    1989-06-30

    Magmatic activity, and particularly silicic magmatic activity, is the fundamental process by which continental crust forms and evolves. The transport of magma from deep crustal reservoirs to the surface is a neglected but important aspect of magmatic phenomena. It encompasses problems of eruptive behavior, hydrothermal circulation, and ore deposition, and must be understood in order to properly interpret deeper processes. Drilling provides a means for determining the relationship of shallow intrusive processes to eruption processes at young volcanoes where eruptions are best understood. Drilling also provides a means for directly observing the processes of heat and mass transfer by which recently emplaced intrusions approach equilibrium with their new environment. Drilling in the Inyo Chain, a 600-year-old chain of volcanic vents in California, has shown the close relationship of silicic eruption to shallow dike emplacement, the control of eruptive style by shallow porous-flow degassing, the origin of obsidian by welding, the development of igneous zonation by viscosity segregation, and the character and size of conduits in relation to well-understood magmatic and phreatic eruptions. 36 refs., 9 figs.

  10. SPM nanolithography of hydroxy-silicates.

    PubMed

    Valdrè, G; Moro, D; Hounsome, C M; Antognozzi, M

    2012-09-28

    Bio-nanopatterning of surfaces is becoming a crucial technique with applications ranging from molecular and cell biology to medicine. Scanning probe microscopy (SPM) is one of the most useful tools for nanopatterning of flat surfaces. However, these patterns are usually built on homogeneous surfaces and require chemical functionalization to ensure specific affinity. Layered magnesium-aluminum hydroxide-silicates have already shown unique self-assembly properties on DNA molecules, due to their peculiar crystal chemistry based on alternating positive and negative crystal layers. However, patterns on these surfaces tend to be randomly organized. Here we show etching and oxidation at the nanometer scale of magnesium-aluminum hydroxide-silicates using the same SPM probe for the creation of organized nanopatterns. In particular, it is possible to produce three-dimensional structures in a reproducible way, with a depth resolution of 0.4 nm, lateral resolution of tens of nm, and a speed of about 10 μm s(-1). We report, as an example, the construction of an atomically flat charged pattern, designed to guide DNA deposition along predetermined directions without the need of any chemical functionalization of the surface. PMID:22948182

  11. Tip-induced nanoreactor for silicate

    PubMed Central

    Gao, Ming; Ma, Liran; Liang, Yong; Gao, Yuan; Luo, Jianbin

    2015-01-01

    Nanoscale scientific issues have attracted an increasing amount of research interest due to their specific size-effect and novel structure-property. From macro to nano, materials present some unique chemical reactivity that bulk materials do not own. Here we introduce a facile method to generate silicate with nanoscale control based on the establishment of a confined space between a meso/nanoscale tungsten tip and a smooth silica/silicon substrate. During the process, local water-like droplets deposition can be obviously observed in the confinement between the Si/SiO2 surfaces and the KOH-modified tungsten tip. By the combination of in-situ optical microscopy and Raman spectroscopy, we were able to take a deep insight of both the product composition and the underlying mechanism of such phenomena. It was indicated that such nanoreactor for silicate could be quite efficient as a result of the local capillarity and electric field effect, with implications at both nano and meso scales. PMID:26364882

  12. Crystalline-amorphous transition in silicate perovskites

    SciTech Connect

    Hemmati, M.; Chizmeshya, A.; Wolf, G.H.; Poole, P.H.; Shao, J.; Angell, C.A.

    1995-06-01

    CaSiO{sub 3} and MgSiO{sub 3} perovskites are known to undergo solid-state crystal to amorphous transitions near ambient pressure when decompressed from their high-pressure stability fields. In order to elucidate the mechanistic aspects of this transition we have performed detailed molecular-dynamics simulations and lattice-dynamical calculations on model silicate perovskite systems using empirical rigid-ion pair potentials. In the simulations at low temperatures, the model perovskite systems transform under tension to a low-density glass composed of corner shared chains of tetrahedral silicon. The amorphization is initiated by a thermally activated step involving a soft polar optic mode in the perovskite phase at the Brillouin zone center. Progression of the system along this reaction coordinate triggers, in succession, multiple barrierless modes of instability ultimately producing a catastrophic decohesion of the lattice. An important intermediary along the reaction path is a crystalline phase where silicon is in a five-coordinate site and the alkaline-earth metal atom is in eightfold coordination. At the onset pressure, this transitory phase is itself dynamically unstable to a number of additional vibrational modes, the most relevant being those which result in transformation to a variety of tetrahedral chain silicate motifs. These results support the conjecture that stress-induced amorphization arises from the near simultaneous accessibility of multiple modes of instability in the highly metastable parent crystalline phase.

  13. Thermochemistry of dense hydrous magnesium silicates

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Burnley, Pamela; Navrotsky, Alexandra

    1994-01-01

    Recent experimental investigations under mantle conditions have identified a suite of dense hydrous magnesium silicate (DHMS) phases that could be conduits to transport water to at least the 660 km discontinuity via mature, relatively cold, subducting slabs. Water released from successive dehydration of these phases during subduction could be responsible for deep focus earthquakes, mantle metasomatism and a host of other physico-chemical processes central to our understanding of the earth's deep interior. In order to construct a thermodynamic data base that can delineate and predict the stability ranges for DHMS phases, reliable thermochemical and thermophysical data are required. One of the major obstacles in calorimetric studies of phases synthesized under high pressure conditions has been limitation due to the small (less than 5 mg) sample mass. Our refinement of calorimeter techniques now allow precise determination of enthalpies of solution of less than 5 mg samples of hydrous magnesium silicates. For example, high temperature solution calorimetry of natural talc (Mg(0.99) Fe(0.01)Si4O10(OH)2), periclase (MgO) and quartz (SiO2) yield enthalpies of drop solution at 1044 K to be 592.2 (2.2), 52.01 (0.12) and 45.76 (0.4) kJ/mol respectively. The corresponding enthalpy of formation from oxides at 298 K for talc is minus 5908.2 kJ/mol agreeing within 0.1 percent to literature values.

  14. The infrared characteristics of circumstellar silicate grains

    NASA Technical Reports Server (NTRS)

    Schutte, W.; Tielens, A. G. G. M.

    1985-01-01

    A theoretical study of the infrared emission from circumstellar shells around late-type giants is made, with the aim of deriving the infrared characteristics of the silicate grains condensing in these shells. A large grid of models has been compared with observations of optically visible Miras, IRC sources and OH/IR stars. From fitting the observed relation between the color temperature and the strength of the 10-micron feature, it is concluded that the ratio of the 3.5 to 10-micron absorption efficiencies of the dust is about 0.25, a factor of 2 less than a previous determination. Detailed modeling of the 2 to 13-micron spectrum of OH 26.5 + 0.6, IRC + 10011 and R Cas yielded a similar ratio. These detailed models also show that the shape of the 10-micron feature, particularly around 8 and 13 microns, varies from source to source. The derived 10-micron feature is narrower for larger dust column densities. These observed differences in the intrinsic shape of the 10-micron feature are not due to differences in size of the condensing particles. Probably they are related to structural or compositional differences in the condensing silicates.

  15. Fabrication and characterization of cerium-doped barium titanate inverse opal by sol-gel method

    SciTech Connect

    Jin Yi; Zhu Yihua Yang Xiaoling; Li Chunzhong; Zhou Jinghong

    2007-01-15

    Cerium-doped barium titanate inverted opal was synthesized from barium acetate contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a polystyrene (PS) opal. This procedure involves infiltration of precursors into the interstices of the PS opal template followed by hydrolytic polycondensation of the precursors to amorphous barium titanate and removal of the PS opal by calcination. The morphologies of opal and inverse opal were characterized by scanning electron microscope (SEM). The pores were characterized by mercury intrusion porosimetry (MIP). X-ray photoelectron spectroscopy (XPS) investigation showed the doping structure of cerium, barium and titanium. And powder X-ray diffraction allows one to observe the influence of doping degree on the grain size. The lattice parameters, crystal size and lattice strain were calculated by the Rietveld refinement method. The synthesis of cerium-doped barium titanate inverted opals provides an opportunity to electrically and optically engineer the photonic band structure and the possibility of developing tunable three-dimensional photonic crystal devices. - Graphical abstract: Cerium-doped barium titanate inverted opal was synthesized from barium acetate acid contained cerous acetate and tetrabutyl titanate in the interstitial spaces of a PS opal, which involves infiltration of precursors into the interstices of the PS opal template and removal of the PS opal by calcination.

  16. Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior.

    PubMed

    Liu, Yun; Zhang, Chuan-Jie; Zhao, Jin-Chao; Guo, Yi; Zhu, Ping; Wang, De-Yi

    2016-03-30

    A bio-based barium alginate film was prepared via a facile ionic exchange and casting approach. Its flammability, thermal degradation and pyrolysis behaviors, thermal degradation mechanism were studied systemically by limiting oxygen index (LOI), vertical burning (UL-94), microscale combustion calorimetry (MCC), thermogravimetric analysis (TGA) coupled with Fourier transform infrared analysis (FTIR) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). It showed that barium alginate film had much higher LOI value (52.0%) than that of sodium alginate film (24.5%). Moreover, barium alginate film passed the UL-94 V-0 rating, while the sodium alginate film showed no classification. Importantly, peak of heat release rate (PHRR) of barium alginate film in MCC test was much lower than that of sodium alginate film, suggested that introduction of barium ion into alginate film significantly decreased release of combustible gases. TG-FTIR and Py-GC-MS results indicated that barium alginate produced much less flammable products than that of sodium alginate in whole thermal degradation procedure. Finally, a possible degradation mechanism of barium alginate had been proposed. PMID:26794953

  17. Carbon Mineralization Using Phosphate and Silicate Ions

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2013-12-01

    Carbon dioxide (CO2) reduction from combustion of fossil fuels has become an urgent concern for the society due to marked increase in weather related natural disasters and other negative consequences of global warming. CO2 is a highly stable molecule which does not readily interact with other neutral molecules. However it is more responsive to ions due to charge versus quadrupole interaction [1-2]. Ions can be created by dissolving a salt in water and then aerosolizing the solution. This approach gives CO2 molecules a chance to interact with the hydrated salt ions over the large surface area of the aerosol. Ion containing aerosols exist in nature, an example being sea spray particles generated by breaking waves. Such particles contain singly and doubly charged salt ions including Na+, Cl-, Mg++ and SO4--. Depending on the proximity of CO2 to the ion, interaction energy can be significantly higher than the thermal energy of the aerosol. For example, an interaction energy of 0.6 eV is obtained with the sulfate (SO4--) ion when CO2 is the nearest neighbor [2]. In this research interaction between CO2 and ions which carry higher charges are investigated. The molecules selected for the study are triply charged phosphate (PO4---) ions and quadruply charged silicate (SiO4----) ions. Examples of salts which contain such molecules are potassium phosphate (K3PO4) and sodium orthosilicate (Na4SiO4). The research has been carried out with first principle quantum mechanical calculations using the Density Functional Theory method with B3LYP functional and Pople type basis sets augmented with polarization and diffuse functions. Atomic models consist of the selected ions surrounded by water and CO2 molecules. Similar to the results obtained with singly and doubly charged ions [1-2], phosphate and silicate ions attract CO2 molecules. Energy of interaction between the ion and CO2 is 1.6 eV for the phosphate ion and 3.3 eV for the silicate ion. Hence one can expect that the selected

  18. Magnetic properties of Ni substituted Y-type barium ferrite

    NASA Astrophysics Data System (ADS)

    Won, Mi Hee; Kim, Chul Sung

    2014-05-01

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba2Co2-xNixFe12O22 (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (Ms) decreases with Ni contents. Ni2+, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co2+ having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba2Co1.5Ni0.5Fe12O22 shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature TC is increased with Ni contents, while TS is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3bVI, 6cIV*, 6cVI, 18hVI, 6cIV, and 3aIV sites at below TC. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe3+ and obtained the isomer shift (δ), magnetic hyperfine field (Hhf), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna applications in UHF band.

  19. Magnetic properties of Ni substituted Y-type barium ferrite

    SciTech Connect

    Won, Mi Hee; Kim, Chul Sung

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirms the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for antenna

  20. An XPS study of the optimum loading of barium on high-silica MFI zeolite

    NASA Astrophysics Data System (ADS)

    Mohamed, M. H.; Abdillahi, M. M.; Abbas, N. M.; Siddiqui, A. B.

    1995-12-01

    X-ray photoelectron spectroscopy (XPS) has been applied to the characterization of barium-impregnated MFI high-silica zeolites which are used for the conversion of methanol to light alkenes. X-ray photoelectron spectroscopy provided information about the degree of the dispersion of the various barium loadings on the silicalite structure, and this information helped in elucidating the observed relationship between the activity/selectivity of the catalysts and the barium loading. The XPS results also helped in predicting that the performance of the catalyst would be optimized at 4 wt% Ba loading which was found to agree with the catalytic conversion of methanol to light alkenes.

  1. SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS

    EPA Science Inventory

    Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...

  2. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    SciTech Connect

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO/sub 2/ from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide (Ba(OH)/sub 2/) or calcium hydroxide (Ca(OH)/sub 2/). Such a process would be applied to scrub /sup 14/CO/sub 2/ from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH)/sub 2/ slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH)/sub 2/. Overall reaction mechanisms are postulated.

  3. Photorefractive properties of cobalt-doped strontium barium niobate crystals

    SciTech Connect

    Bogodaev, N V; Ivleva, Lyudmila I; Lykov, P A; Polozkov, N M; Osiko, Vyacheslav V

    1999-05-31

    The two-wave interaction (at {lambda} = 488 nm) in strontium barium niobate crystals doped with cobalt ions (Co:SBN) was studied. The experimental dependences of the gain coefficient on the grating period and of the grating response time on the writing beam intensity were used to calculate the Debye screening length, the diffusion length, the dark conductivity, and the effective concentration of carrier traps for a series of Co:SBN crystals with different dopant concentrations. The crystals were shown to have high coupling coefficients ({Gamma} = 33 cm{sup -1}) and short optical response times ({tau} = 140 ms for I = 1 W cm{sup -2} ). This, in combination with a high photorefractive sensitivity (S = 39 cm{sup 2} J{sup -1} ), determines the efficiency of their use in the storage of optical information and in laser phase conjugation. (nonlinear optical phenomena)

  4. Synthesis, microstructure and dielectric properties of zirconium doped barium titanate

    NASA Astrophysics Data System (ADS)

    Kumar, Rohtash; Asokan, K.; Patnaik, S.; Birajdar, Balaji

    2016-05-01

    We report on synthesis, microstructural and relaxor ferroelectric properties of Zirconium(Zr) doped Barium Titanate (BT) samples with general formula Ba(Ti1-xZrx)O3 (x=0.20, 0.35). These lead-free ceramics were prepared by solid state reaction route. The phase transition behavior and temperature dependent dielectric properties and composition dependent ferroelectric properties were investigated. XRD analysis at room temperature confirms phase purity of the samples. SEM observations revealed retarded grain growth with increasing Zr mole fraction. Dielectric properties of BZT ceramics is influenced significantly by small addition of Zr mole fraction. With increasing Zr mole fraction, dielectric constant decreases while FWHM and frequency dispersion increases. Polarization vs electric field hysteresis measurements reveal ferroelectric relaxor phase at room temperature. The advantages of such substitution maneuvering towards optimizing ferroelectric properties of BaTiO3 are discussed.

  5. Laser irradiation in Nd3+ doped strontium barium niobate glass

    NASA Astrophysics Data System (ADS)

    Haro-González, P.; Martín, I. R.; Arbelo-Jorge, E.; González-Pérez, S.; Cáceres, J. M.; Núñez, P.

    2008-07-01

    A local nanocrystalline formation in a neodymium doped strontium barium niobate (SBN) glass has been obtained under argon laser irradiation. The intense emission around 880 nm, originated from the F43/2 (F45/2) thermalized level when the glass structure changes to a glass ceramic structure due to the irradiation of the laser beam, has been studied. The intensities and lifetimes change from this level inside and outside the irradiated area made by the laser excitation. They have been analyzed and demonstrated that the desvitrification process has been successfully achieved. These results confirm that nanocrystals of SBN have been created by the laser action confirming that the transition from glass to glass ceramic has been completed. These results are in agreement with the emission properties of nanocrystals of the bulk glass ceramic sample. The present study also suggests that the SBN nanocrystal has a potential application as temperature detector.

  6. The Performance of Barium Sulfate Nanoparticles/polypropylene Hybrid Multifilament

    NASA Astrophysics Data System (ADS)

    Li, Ying; Wang, Xuanjun; Mu, Xiaoxi; Zhang, Shujuan

    2012-01-01

    Nanosize barium sulfate (BaSO4) particles prepared with dodecyl benzene sulfonic acid (DBSA) in ethanol-water reaction system are used to prepare BaSO4/polypropylene (PP) nanocomposites by melt mixing method. It is then made into hybrid fibers by melt spinning and subsequent drawing with different ratios. The hybrid fibers are characterized by rheology, morphology, thermal stability and mechanical properties, respectively. The results indicate that the DBSA-modified BaSO4 can improve the spinnability of BaSO4/PP hybrid multifilament even at high BaSO4 nanoparticles concentration. DBSA can be used as compatibilizer to enhance the interface interaction of BaSO4/PP nanocomposites, because DBSA contains both hydrophobicity long alkyl chain and hydrophilic sulfonic group. Therefore, it can improve the performances of BaSO4/PP hybrid multifilament.

  7. A buffer gas cooled beam of barium monohydride

    NASA Astrophysics Data System (ADS)

    Iwata, Geoffrey; Tarallo, Marco; Zelevinsky, Tanya

    2016-05-01

    Significant advances in direct laser cooling of diatomic molecules have opened up a wide array of molecular species to precision studies spanning many-body physics, quantum collisions and ultracold dissociation. We present a cryogenic beam source of barium monohydride (BaH), and study laser ablation of solid precursor targets as well as helium buffer gas cooling dynamics. Additionally, we cover progress towards a molecular magneto-optical trap, with spectroscopic studies of relevant cooling transitions in the B2 Σ <--X2 Σ manifold in laser ablated molecules, including resolution of hyperfine structure and precision measurements of the vibrational Frank-Condon factors. Finally, we examine the feasibility of photo dissociation of trapped BaH molecules to yield optically accessible samples of ultracold hydrogen.

  8. Study on a flexoelectric microphone using barium strontium titanate

    NASA Astrophysics Data System (ADS)

    Kwon, S. R.; Huang, W. B.; Zhang, S. J.; Yuan, F. G.; Jiang, X. N.

    2016-04-01

    In this study, a flexoelectric microphone was, for the first time, designed and fabricated in a bridge structure using barium strontium titanate (Ba0.65Sr0.35TiO3) ceramic and tested afterwards. The prototyped flexoelectric microphone consists of a 1.5 mm  ×  768 μm  ×  50 μm BST bridge structure and a silicon substrate with a cavity. The sensitivity and resonance frequency were designed to be 0.92 pC/Pa and 98.67 kHz, respectively. The signal to noise ratio was measured to be 74 dB. The results demonstrate that the flexoelectric microphone possesses high sensitivity and a wide working frequency range simultaneously, suggesting that flexoelectricity could be an excellent alternative sensing mechanism for microphone applications.

  9. Barium depletion study on impregnated cathodes and lifetime prediction

    NASA Astrophysics Data System (ADS)

    Roquais, J. M.; Poret, F.; le Doze, R.; Ricaud, J. L.; Monterrin, A.; Steinbrunn, A.

    2003-06-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK).

  10. Influence of Barium Hexaferrite on Magnetic Properties of Hydroxyapatite Ceramics.

    PubMed

    Jarupoom, P; Jaita, P

    2015-11-01

    Hydroxyapatite (HA) powders was derived from natural bovine bone by sequence of thermal processes. The barium hexaferrite (BF) find magnetic powders were added into HA powders in ratio of 1-3 vol.%. The HA-BF ceramics were prepared by a solid state reaction method and sintered at 1250 degrees C for 2 h. Effects of BF additive on structural, physical and magnetic properties of HA ceramics were investigated. X-ray diffraction revealed that all HA-BF samples showed a main phase of high purity hydroxyapatite [Ca10(PO4)6(OH)2] with calcium and phosphate molar ratio of 1.67. The addition of BF into HA inhibited grain growth and caused an improvement of mechanical properties. The M-H hysteresis loops also showed an improvement in magnetic behavior for higher content of BF. Moreover, in vitro bioactivity test indicated that the 2-3 vol.% sample may be suitable for biological applications. PMID:26726671

  11. Gamma radiation induced darkening in barium gallo-germanate glass.

    PubMed

    Chen, Xiaodong; Heng, Xiaobo; Tang, Guowu; Zhu, Tingting; Sun, Min; Shan, Xiujie; Wen, Xin; Guo, Jingyuan; Qian, Qi; Yang, Zhongmin

    2016-05-01

    Barium gallo-germanate (BGG) glass is an important glass matrix material used for mid-infrared transmission and mid-infrared fiber laser. In this study, we investigated the γ-ray irradiation induced darkening effect of BGG glass. Optical transmittance spectra, electron paramagnetic resonance (EPR) and thermoluminescence (TL) spectra were employed to investigate the γ-ray irradiation induced defects. Two kinds of Ge-related defects in the irradiated BGG glass, named Ge-related non-bridging oxygen hole center (Ge-NBOHC) and Ge-related electron centers (GEC), were verified. In addition, the absorption bands of the two defects have been separated and the peak absorptivity of Ge-NBOHC and GEC defects is at 375 nm and 315 nm, respectively. PMID:27137531

  12. Synthesis and optical study of barium magnesium aluminate blue phosphors

    NASA Astrophysics Data System (ADS)

    Jeet, Suninder; Sharma, Manoj; Pandey, O. P.

    2015-05-01

    Europium doped barium magnesium aluminate (BaMgAl10O17:Eu2+) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl10O17(JCPDS 26-0163) along with an additional phase BaAl2O4(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f6 5d → 4f7 transition of Eu2+ which lies in the blue region of the visible spectrum.

  13. Studies on immobilization of thorium in barium borosilicate glass

    NASA Astrophysics Data System (ADS)

    Mishra, R. K.; Sengupta, Pranesh; Kaushik, C. P.; Tyagi, A. K.; Kale, G. B.; Raj, Kanwar

    2007-02-01

    The barium borosilicate glass (BBS) matrix has shown considerable solubility of ThO2 at 1000 °C. As seen by X-ray diffractometry (XRD) and Electron probe micro analysis (EPMA) up to 15.86 wt% of ThO2 could be dissolved in this matrix. The homogeneity of thoria loaded glass was convincingly ascertained by EPMA. Attempts to load more than 16 wt% ThO2 led to the phase separation of crystalline phases identified as major phase of ThO2 and minor percentage of ThSiO4 phase with altogether different morphologies, as seen by XRD. Interestingly, the back scattered images of thorite crystals point towards the presence of chemical zoning. The results being reported in this paper are of interest especially with respect to immobilization of other actinides in borosilicate glass matrix.

  14. Small polarons and point defects in barium cerate

    NASA Astrophysics Data System (ADS)

    Swift, Michael; Janotti, Anderson; Van de Walle, Chris G.

    2015-12-01

    Barium cerate (BaCeO3) is a well-known ionic conductor of both hydrogen and oxygen. In applications, it is frequently doped (for instance with Y) to increase stability and promote diffusion. However, the effects of doping and native defects are not fully understood. Computational studies have been stymied by the nature of the conduction band, which is made up of cerium 4 f states. These states present a challenge to ab initio techniques based on density functional theory within the standard approximations for exchange and correlation. Using a hybrid functional, we investigate the effects of hydrogen impurities and native defects on the electrical and optical properties of BaCeO3. We discuss the tendency of excess electrons or holes to localize in the form of small polarons. We also explore the interactions of polarons with hydrogen impurities and oxygen vacancies, and their impact on luminescence properties.

  15. Ultrasonic de-agglomeration of barium titanate powder.

    PubMed

    Marković, S; Mitrić, M; Starcević, G; Uskoković, D

    2008-01-01

    BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders. PMID:17845864

  16. Synthesis and optical study of barium magnesium aluminate blue phosphors

    SciTech Connect

    Jeet, Suninder Pandey, O. P.; Sharma, Manoj

    2015-05-15

    Europium doped barium magnesium aluminate (BaMgAl{sub 10}O{sub 17}:Eu{sup 2+}) phosphor was prepared via solution combustion method at 550°C using urea as a fuel. Morphological and optical properties of the prepared sample was studied by X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Photoluminescence spectroscopy (PL). XRD result showed the formation of pure phase BaMgAl{sub 10}O{sub 17}(JCPDS 26-0163) along with an additional phase BaAl{sub 2}O{sub 4}(JCPDS 01-082-1350). TEM image indicated the formation of faceted particles with average particle size 40 nm. From PL spectra, a broad emission band obtained at about 450 nm attributes to 4f{sup 6} 5d → 4f{sup 7} transition of Eu{sup 2+} which lies in the blue region of the visible spectrum.

  17. Nonlinear optical properties of calcium barium niobate epitaxial thin films.

    PubMed

    Bancelin, Stéphane; Vigne, Sébastien; Hossain, Nadir; Chaker, Mohammed; Légaré, François

    2016-07-25

    We investigate the potential of epitaxial calcium barium niobate (CBN) thin film grown by pulsed laser deposition for optical frequency conversion. Using second harmonic generation (SHG), we analyze the polarization response of the generated signal to determine the ratios d15 / d32 and d33 / d32 of the three independent components of the second-order nonlinear susceptibility tensor in CBN thin film. In addition, a detailed comparison to the signal intensity obtained in a y-cut quartz allows us to measure the absolute value of these components in CBN thin film: d15 = 5 ± 2 pm / V, d32 = 3.1 ± 0.6 pm / V and d33 = 9 ± 2 pm / V. PMID:27464195

  18. Dynamics of the CRRES barium releases in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Mende, S. B.; Geller, S. P.; Miller, M.; Hoffman, R. A.; Wygant, J. R.; Pongratz, M.; Meredith, N. P.; Anderson, R. R.

    1994-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) G-2, G-3, and G-4 ionized and neutral barium cloud positions are triangulated from ground-based optical data. From the time history of the ionized cloud motion perpendicular to the magnetic field, the late time coupling of the ionized cloud with the collisionless ambient plasma in the magnetosphere is investigated for each of the releases. The coupling of the ionized clouds with the ambient medium is quantitatively consistent with predictions from theory in that the coupling time increases with increasing distance from the Earth. Quantitative comparison with simple theory for the couping time also yields reasonable agreement. Other effects not predicted by the theory are discussed in the context of the observations.

  19. Pulsating aurora induced by upper atmospheric barium releases

    NASA Technical Reports Server (NTRS)

    Deehr, C.; Romick, G.

    1977-01-01

    The paper reports the apparent generation of pulsating aurora by explosive releases of barium vapor near 250 km altitude. This effect occurred only when the explosions were in the path of precipitating electrons associated with the visible aurora. Each explosive charge was a standard 1.5 kg thermite mixture of Ba and CuO with an excess of Ba metal which was vaporized and dispersed by the thermite explosion. Traces of Sr, Na, and Li were added to some of the charges, and monitoring was achieved by ground-based spectrophotometric observations. On March 28, 1976, an increase in emission at 5577 A and at 4278 A was observed in association with the first two bursts, these emissions pulsating with roughly a 10 sec period for approximately 60 to 100 sec after the burst.

  20. Dielectric behavior of barium modified strontium bismuth titanate ceramic

    SciTech Connect

    Nayak, P.; Badapanda, T.; Anwar, S.; Panigrahi, S.

    2014-04-24

    Barium Modified Strontium Bismuth Titanate(SBT) ceramic with general formula Sr1−xBaxBi4Ti4O15 is prepared by solid state reaction route. The structural analysis of the ceramics was done by X-ray diffraction technique. The X-ray patterns show that all the compositions are of single phase with orthorhombic structure. The temperature dependent dielectric behavior shows that the transition temperature decreases with Ba content but the maximum dielectric constant increases. The decreases of the transition with increase in Ba{sup 2+} ion, may be due to the decrease of orthorhombicity by the incorporation of Ba{sup 2+} ion in SBT lattice.

  1. Structural and magnetic properties of barium-gadolinium hexaferrites

    NASA Astrophysics Data System (ADS)

    Litsardakis, G.; Manolakis, I.; Serletis, C.; Efthimiadis, K. G.

    A series of Gd-substituted M-type barium hexaferrites has been prepared by the ceramic route, according to the formula (Ba 1-xGd x)O·5.25Fe 2O 3 ( x=0-0.30). XRD analysis revealed that all the samples present primarily an M-type structure. Samples x=0 and x=0.05 are single-phase. Hematite (Fe 2O 3) and GdFeO 3 were detected in the remaining samples. Coercivity ( Hc) shows remarkably high values, ˜293 kA/m for x=0.20 and 0.30 with a maximum of 322 kA/m for x=0.25. Specific saturation magnetization ( σsat) of the samples presents a small increase up to x=0.10. The microstructure examination indicates that Gd may act as a grain growth inhibitor.

  2. Barium titanate nanocomposite capacitor FY09 year end report.

    SciTech Connect

    Stevens, Tyler E.; DiAntonio, Christopher Brian; Yang, Pin; Chavez, Tom P.; Winter, Michael R.; Monson, Todd C.; Roesler, Alexander William; Fellows, Benjamin D.

    2009-11-01

    This late start RTBF project started the development of barium titanate (BTO)/glass nanocomposite capacitors for future and emerging energy storage applications. The long term goal of this work is to decrease the size, weight, and cost of ceramic capacitors while increasing their reliability. Ceramic-based nanocomposites have the potential to yield materials with enhanced permittivity, breakdown strength (BDS), and reduced strain, which can increase the energy density of capacitors and increase their shot life. Composites of BTO in glass will limit grain growth during device fabrication (preserving nanoparticle grain size and enhanced properties), resulting in devices with improved density, permittivity, BDS, and shot life. BTO will eliminate the issues associated with Pb toxicity and volatility as well as the variation in energy storage vs. temperature of PZT based devices. During the last six months of FY09 this work focused on developing syntheses for BTO nanoparticles and firing profiles for sintering BTO/glass composite capacitors.

  3. The pulse of large silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Schmitt, A. K.

    2008-12-01

    Large silicic volcanic fields (LSVFs) are considered windows into the tops of upper crustal batholiths that are the foundations of the continental crust. The space-time-volume records of volcanism in LSVFs are therefore assumed to mirror the accumulation record of the associated upper crustal batholith. However, key questions about the link between the volcanic and plutonic realms remain to be addressed if this view is to be substantiated. Among these are: 1) What does the surface pattern of volcanism really tell us about the development of the plutonic system below? Do these eruptions represent evacuation from a distinct batch of magma that formed just prior to eruption or do they represent the periodic tapping of a long lived regional magma body? 2) What does the cyclicity of the large caldera systems and the regional concordance of eruptions tell us about the development of the magmatic systems beneath? Does the repose period represent the time scale of development of the next magma batch or does the erupted magma develop in a timescale much shorter than the repose period? 3) What does the self-organization of single batholithic scale magmatic systems, for instance the development of a zoned system, tell us about the dynamics and time scales over which these systems differentiate and evolve? We are addressing some of these questions in the Altiplano-Puna Volcanic Complex of the Central Andes. Here, time scales of assembly and organization of batholith-scale silicic magma systems investigated using 40Ar/39Ar and U-Pb in zircon connote: 1) Supereruptions in the APVC evacuated distinct magma batches that accumulated within a few hundred thousand years prior to eruption 2) The repose period of cyclic supervolcanic systems is considerably longer than the time scale to develop the next eruptible magma batch 3) Batholith scale-silicic magma chambers can develop significant zonations in time scales of a few hundred thousand years. Additionally, our data suggest quasi

  4. On the Filling Process Forming Silicic Segregations

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2001-05-01

    Interdigitating silicic lenses are particularly well developed and well exposed in the Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. Silicic segregations are texturally splotchy, have sharp upper contacts, and diffuse lower contacts that grade into normal dolerite. What is unusual about these 1- 2 m lenses is that the background sill shows very little compositional variation and yet the silicic segregations show wide compositional variation. In particular, silica content varies between 47 and 68%, and thus produces for the sill overall a bimodal composition. We have analyzed over 100 segregation samples in order to investigate the nature of the filling process. Previous work (Zavala & Marsh, 1999) has shown that segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63 % and temperatures between 1135° and 1115° . Additionally, it was noted that the large segregation lenses are not homogeneous and exhibit cyclic variations in silica content. This observation lead to the current study, in which new samples from the Peneplain Sill (235 to 241) show remarkable correlations between segregation texture, stratigraphic position and silica enrichment. Incompatibles like Zr indicate relatively low 35 to 40% concentrations of melt at the point of segregation extraction, which supports the notion that segregations formed by withdrawal of interstitial melt into tears as the solidification front (SF) became gravitationally unstable. The details of the filling process can also be gauged using chemical profiles normalized to segregation thickness. One group shows distinct multiple smaller cycles of silica enrichment versus depth, which suggests successive stages of opening. The other group shows a strong enrichment in silica followed by a steady decay to the base. The general form of this latter pattern measures the gradient in melt composition immediately below the segregation at the time of infilling. From

  5. Optical Properties of Astronomical Silicates in the Far-infrared

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  6. The identification of crystalline olivine in cometary silicates

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Ryan, Eileen V.

    1989-01-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  7. Surface charge and wetting characteristics of layered silicate minerals.

    PubMed

    Yin, Xihui; Gupta, Vishal; Du, Hao; Wang, Xuming; Miller, Jan D

    2012-11-01

    The surface characteristics, including surface charge and wettability, of layered silicates are reviewed based on experimental results and molecular dynamics simulation (MDS) results. The surface charge features of important layered silicates including mica, talc, and kaolinite are described from atomic force microscopy (AFM) measurements, electrophoresis measurements, and/or results from potentiometric titration. In addition, the wetting characteristics of the silica tetrahedral surface which is common to all layered silicates are examined with different experimental techniques and results are discussed. The wettability of trilayer silicates and bilayer silicates is discussed, particularly the wettability of the silica tetrahedral face and alumina octahedral face of kaolinite based on MDS results as well as recent AFM results. PMID:22809732

  8. The identification of crystalline olivine in cometary silicates

    NASA Astrophysics Data System (ADS)

    Campins, H.; Ryan, E. V.

    1989-06-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  9. Silicate Inclusions in the Kodaikanal IIE Iron Meteorite

    NASA Technical Reports Server (NTRS)

    Kurat, G.; Varela, M. E.; Zinner, E.

    2005-01-01

    Silicate inclusions in iron meteorites display an astonishing chemical and mineralogical variety, ranging from chondritic to highly fractionated, silica- and alkali-rich assemblages. In spite of this, their origin is commonly considered to be a simple one: mixing of silicates, fractionated or unfractionated, with metal. The latter had to be liquid in order to accommodate the former in a pore-free way which all models accomplish by assuming shock melting. II-E iron meteorites are particularly interesting because they contain an exotic zoo of silicate inclusions, including some chemically strongly fractionated ones. They also pose a formidable conundrum: young silicates are enclosed by very old metal. This and many other incompatibilities between models and reality forced the formulation of an alternative genetic model for irons. Here we present preliminary findings in our study of Kodaikanal silicate inclusions.

  10. Brillouin function characteristics for La-Co substituted barium hexaferrites

    SciTech Connect

    Wu, Chuanjian E-mail: ksun@uestc.edu.cn; Yu, Zhong; Sun, Ke E-mail: ksun@uestc.edu.cn; Guo, Rongdi; Jiang, Xiaona; Lan, Zhongwen; Yang, Yan

    2015-09-14

    La-Co substituted barium hexaferrites with the chemical formula of Ba{sub 1−x}La{sub x}Fe{sub 12−x}Co{sub x}O{sub 19} (x = 0.0, 0.1, 0.3, and 0.5), prepared by a conventional ceramic method, were systematically investigated by Raman spectra, X-ray photoelectron spectroscopy, Rietveld refinement of X-ray diffraction patterns, and vibrating sample magnetometer. The result manifests that all the compounds are crystallized in magnetoplumbite hexagonal structure. Trivalent cobalt ions prevailingly occupy the 2a, 4f{sub 1}, and 12k sites. According to Néel model of collinear-spin ferrimagnetism, the molecular-field coefficients ω{sub bf2}, ω{sub kf1}, ω{sub af1}, ω{sub kf2}, and ω{sub bk} of La-Co substituted barium hexaferrites have been calculated using the nonlinear fitting method, and the magnetic moment of five sublattices (2a, 2b, 4f{sub 1}, 4f{sub 2}, and 12k) versus temperature T has been also investigated. The fitting results are coincided well with the experimental data. Moreover, with the increase of La-Co substitution amount x, the molecular-field coefficients ω{sub bf2} and ω{sub af1} decrease constantly, while the molecular-field coefficients ω{sub kf1}, ω{sub kf2}, and ω{sub bk} show a slight change.

  11. Ion-implantation damage in silicate glasses

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.

    Ion implantation is a rapid technique for simulating damage induced by alpha recoil nuclei in nuclear waste forms. The simulation has been found to be quite good in TEM comparisons with natural alpha decay damage in minerals, but leach rate differences have been observed in glass studies and were attributed to dose rate differences. The similarities between ion implantation and recoil nuclei as a means of producing damage suggest that insights into the long term behavior of glass waste forms can be obtained by examination of what is known about ion implantation damage in silicate glasses. This paper briefly reviews these effects and shows that leaching results in certain nuclear waste glasses can be understood as resulting from plastic flow and track overlap. Phase separation is also seen to be a possible consequence of damage induced compositional changes.

  12. Raman spectra of rings in silicate material

    SciTech Connect

    Tallant, D.R.; Bunker, B.C.; Brinker, C.J.; Balfe, C.A.

    1986-01-01

    Raman spectroscopic studies on gel-derived silicates have confirmed that narrow bands near 607 cm-1 and 492 cm-1, first observed in the Raman spectrum of fused silica, are associated with three- and four-fold siloxane rings. Using these results, we have identified three- and four-fold siloxane rings in other high-surface-area silica materials, including leached glasses and Cab-O-Sil. This Raman spectroscopic evidence not only shows that small siloxane rings are a common characteristic of a number of silica materials but also suggests that they form preferentially at silica surfaces. This paper reviews the Raman spectroscopic evidence that led to the identification of the vibrational frequencies of the small siloxane rings and presents the results of Raman experiments on high-surface-area silica materials in which the concentration of small siloxane rings is enhanced compared to fused silica.

  13. Organics Synthesized Using Iron-Grain Silicates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Cody, G. D.; Nuth, J. A., III

    2003-01-01

    We use Fischer-Tropsch type (FTT) synthesis to produce hydrocarbons by hydrogenating carbon monoxide via catalytic reactions. The products of these reactions have been studied using 'natural' catalysts and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to the composition of material near three AU. We coat Fe-silicate grains with organic material using FTT synthesis to simulate the chemistry in the early Solar Nebula. In our experimental setup, we roughly model a nebular environment where grains are successively transported from hot to cold regions of the nebula. In other words, the starting gases and FTT products are continuously circulated through the grains at high temperature with intervals of cooling. Organics generated in this manner could represent the carbonaceous material incorporated in comets and meteorites. We analyze the resulting organics and present the results.

  14. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in ablation simulations of the meteoroid or glassy Thermal Protection Systems for spacecraft. Time-dependent axi-symmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. For model validation, the surface recession of fused amorphous quartz rod is computed, and the recession predictions reasonably agree with available data. The present parametric studies for two groups of meteoroid earth entry conditions indicate that the mass loss through moving molten layer is negligibly small for heat-flux conditions at around 1 MW/cm(exp. 2).

  15. Thermal Ablation Modeling for Silicate Materials

    NASA Technical Reports Server (NTRS)

    Chen, Yih-Kanq

    2016-01-01

    A general thermal ablation model for silicates is proposed. The model includes the mass losses through the balance between evaporation and condensation, and through the moving molten layer driven by surface shear force and pressure gradient. This model can be applied in the ablation simulation of the meteoroid and the glassy ablator for spacecraft Thermal Protection Systems. Time-dependent axisymmetric computations are performed by coupling the fluid dynamics code, Data-Parallel Line Relaxation program, with the material response code, Two-dimensional Implicit Thermal Ablation simulation program, to predict the mass lost rates and shape change. The predicted mass loss rates will be compared with available data for model validation, and parametric studies will also be performed for meteoroid earth entry conditions.

  16. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, Mari L.

    1997-01-01

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs.sub.2 Ti.sub.2 Si.sub.4 O.sub.13 pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs.sub.2 O and TiO.sub.2 loadings and are durable glass and ceramic materials. The amount of TiO.sub.2 and Cs.sub.2 that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass.

  17. Cesium titanium silicate and method of making

    DOEpatents

    Balmer, M.L.

    1997-01-07

    The invention is the new material, a ternary compound of cesium, silica, and titania, together with a method of making the ternary compound, cesium titanium silicate pollucite. More specifically, the invention is Cs{sub 2}Ti{sub 2}Si{sub 4}O{sub 13} pollucite which is a new crystalline phase representing a novel class of Ti-containing zeolites. Compositions contain relatively high Cs{sub 2}O and TiO{sub 2} loadings and are durable glass and ceramic materials. The amount of TiO{sub 2} and Cs{sub 2} that can be incorporated into these glasses and crystalline ceramics far exceeds the limits set for the borosilicate high level waste glass. 10 figs.

  18. DISORDERED SILICATES IN SPACE: A STUDY OF LABORATORY SPECTRA OF 'AMORPHOUS' SILICATES

    SciTech Connect

    Speck, Angela K.; Whittington, Alan G.; Hofmeister, Anne M.

    2011-10-20

    We present a laboratory study of silicate glasses of astrophysically relevant compositions including olivines, pyroxenes, and melilites. With emphasis on the classic Si-O stretching feature near 10 {mu}m, we compare infrared spectra of our new samples with laboratory spectra on ostensibly similar compositions, and also with synthetic silicate spectral data commonly used in dust modeling. Several different factors affect spectral features including sample chemistry (e.g., polymerization, Mg/Fe ratio, oxidation state, and Al-content) whereas different sample preparation techniques lead to variations in porosity, density, and water content. The convolution of chemical and physical effects makes it difficult to attribute changes in spectral parameters to any given variable. It is important that detailed chemical and structural characterization be provided along with laboratory spectra. In addition to composition and density, we measured the glass transition temperatures for the samples which place upper limits on the formation and/or processing temperatures of these solids in space. Popular synthetically generated optical functions do not have spectral features that match any of our glass samples. However, the {approx}10 {mu}m feature generated by the synthetic data rarely exactly matches the shape and peak position of astronomically observed silicate features. Our comparison with the synthetic spectra allows astronomers to determine likely candidates among our glass samples for matching astronomical observations.

  19. Raman Gain Coefficient of Barium Nitrate Measured for the Spectral Region of TI:SAPPHIRE Laser

    NASA Astrophysics Data System (ADS)

    Lisinetskii, V. A.; Mishkel', I. I.; Chulkov, R. V.; Grabtchikov, A. S.; Apanasevich, P. A.; Eichler, H.-J.; Orlovich, V. A.

    We report the measurements of the Raman gain coefficient for a barium nitrate crystal in the spectral region of a Ti:Sapphire laser using Raman amplification. The experimentally-obtained data are well described by the known empirical formula.

  20. The value of the preoperative barium-enema examination in the assessment of pelvic masses

    SciTech Connect

    Gedgaudas, R.K.; Kelvin, F.M.; Thompson, W.M.; Rice, R.P.

    1983-03-01

    The value of the barium-enema examination in the assessment of pelvic masses was studied in 44 patients. Findings from those barium-enema examinations and from pathological specimens from 37 patients who had malignant tumors and seven patients who had endometriosis were retrospectively analyzed to determine if the barium-enema examination is useful in differentiating extrinsic lesions with and without invasion of the colon. None of the 12 patients who had extrinsic lesions had any of the criteria that indicated bowel-wall invasion. These criteria included fixation and serrations of the bowel wall in all patients with invasion, and ulceration and fistulizaton in those patients who had complete transmural invasion. In patients with pelvic masses, the preoperative barium-enema examination may be useful to the surgeon in planning surgery and in preparing the patient for the possibility of partial colectomy or colostomy.

  1. Numberical simulation of the effects of radially injected barium plasma in the ionosphere

    NASA Technical Reports Server (NTRS)

    Swift, D. W.

    1985-01-01

    The morphology of the ion cloud in the radial shaped charge barium injection was studied. The shape of the ion cloud that remains after the explosive products and neutral barium clears away was examined. The ion cloud which has the configuration of a rimless wagon wheel is shown. The major features are the 2.5 km radius black hole in the center of the cloud, the surrounding ring of barium ion and the spokes of barium ionization radiating away from the center. The cloud shows no evolution after it emerges from the neutral debris and it is concluded that it is formed within 5 seconds of the event. A numerical model is used to calculate the motion of ions and electrons subject to the electrostatic and lorenz forces.

  2. Expulsion of Barium and Methane at Mud Volcanoes in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Castellini, D. G.; Dickens, G. R.; Snyder, G. T.; Gilhooly, W. P.; Ruppel, C. D.

    2003-12-01

    Submarine mud volcanoes and cold-seeps along continental margins transfer methane from gas-charged marine sediments to the water column. Such methane venting is dynamic and may provide an important and variable supply of carbon to the ocean and atmosphere through time. Barite mounds and chimneys have been found around some modern mud volcanoes and seeps, and similar structures can be identified in the geological record (e.g., bedded barite deposits). These observations suggest that expelled methane-rich fluids are greatly enriched in dissolved barium. However, there are very few analyses of barium concentrations in these systems. Here, we examine the dissolved barium of pore fluids from a series of shallow piston cores across two submarine mud volcanoes in the Gulf of Mexico. Dissolved barium concentrations at 1.5 m below the seafloor at the Garden Bank volcano range from 18200 μ M at the center of the feature to 0.56 μ M on its flanks approximately 1 km away. Similarly, dissolved barium concentrations at the Mississippi Canyon volcano range from 15600 μ M to 0.50 μ M. Thus, the concentrations in the cores of the mud volcanoes are nominally 5 orders of magnitude greater than in mean ocean water ( ˜0.1 μ M). Anaerobic oxidation of upward flowing methane consumes sulfate, which leads to the dissolution of barite and release of barium to pore fluids. Because this mechanism alone cannot explain the extreme concentrations in the mud volcanoes, a deep source of barium may exist in the Gulf of Mexico strata. Our current work is focused on quantifying the fluxes and sedimentary fate of expelled barium at these locations. However, even if a large fraction of the barium precipitates adjacent to the sites of methane venting, fluid expulsion at mud volcanoes must significantly impact the barium cycle in the Gulf of Mexico. Conceivably, submarine mud volcanoes and cold-seeps along continental margins are a major source of barium to the deep ocean, a concept that has

  3. INTERSTELLAR SILICATE DUST IN THE z = 0.89 ABSORBER TOWARD PKS 1830-211: CRYSTALLINE SILICATES AT HIGH REDSHIFT?

    SciTech Connect

    Aller, Monique C.; Kulkarni, Varsha P.; Som, Debopam; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni

    2012-03-20

    We present evidence of a >10{sigma} detection of the 10 {mu}m silicate dust absorption feature in the spectrum of the gravitationally lensed quasar PKS 1830-211, produced by a foreground absorption system at redshift 0.886. We have examined more than 100 optical depth templates, derived from both observations of Galactic and extragalactic sources and laboratory measurements, in order to constrain the chemical structure of the silicate dust. We find that the best fit to the observed absorption profile is produced by laboratory crystalline olivine, with a corresponding peak optical depth of {tau}{sub 10} = 0.27 {+-} 0.05. The fit is slightly improved upon by including small contributions from additional materials, such as silica, enstatite, or serpentine, which suggests that the dust composition may consist of a blend of crystalline silicates. Combining templates for amorphous and crystalline silicates, we find that the fraction of crystalline silicates needs to be at least 95%. Given the rarity of extragalactic sources with such a high degree of silicate crystallinity, we also explore the possibility that the observed spectral features are produced by amorphous silicates in combination with other molecular or atomic transitions, or by foreground source contamination. While we cannot rule out these latter possibilities, they lead to much poorer profile fits than for the crystalline olivine templates. If the presence of crystalline interstellar silicates in this distant galaxy is real, it would be highly unusual, given that the Milky Way interstellar matter contains essentially only amorphous silicates. It is possible that the z = 0.886 absorber toward PKS 1830-211, well known for its high molecular content, has a unique star-forming environment that enables crystalline silicates to form and prevail.

  4. Generation of sub-100-fs Stokes pulses upon SRS in a barium nitrate crystal

    SciTech Connect

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2010-10-15

    72-fs pulses are generated at the first Stokes component frequency upon stimulated Raman scattering in a barium nitrate crystal for the radiation of the Ti{sup 3+}:Al{sub 2}O{sub 3} laser with the pulse duration of 50 fs. The energy efficiency of conversion is 20%. The barium nitrate crystal was optically pumped by two consecutive orthogonally polarised chirped pulses with the following time compression of the Stokes radiation pulse. (nonlinear optical phenomena)

  5. Role of Barium Swallow in Diagnosing Clinically Significant Anastomotic Leak following Esophagectomy

    PubMed Central

    Roh, Simon; Iannettoni, Mark D.; Keech, John C.; Bashir, Mohammad; Gruber, Peter J.; Parekh, Kalpaj R.

    2016-01-01

    Background Barium swallow is performed following esophagectomy to evaluate the anastomosis for detection of leaks and to assess the emptying of the gastric conduit. The aim of this study was to evaluate the reliability of the barium swallow study in diagnosing anastomotic leaks following esophagectomy. Methods Patients who underwent esophagectomy from January 2000 to December 2013 at our institution were investigated. Barium swallow was routinely done between days 5–7 to detect a leak. These results were compared to clinically determined leaks (defined by neck wound infection requiring jejunal feeds and or parenteral nutrition) during the postoperative period. The sensitivity and specificity of barium swallow in diagnosing clinically significant anastomotic leaks was determined. Results A total of 395 esophagectomies were performed (mean age, 62.2 years). The indications for the esophagectomy were as follows: malignancy (n=320), high-grade dysplasia (n=14), perforation (n=27), benign stricture (n=7), achalasia (n=16), and other (n=11). A variety of techniques were used including transhiatal (n=351), McKeown (n=35), and Ivor Lewis (n=9) esophagectomies. Operative mortality was 2.8% (n=11). Three hundred and sixty-eight patients (93%) underwent barium swallow study after esophagectomy. Clinically significant anastomotic leak was identified in 36 patients (9.8%). Barium swallow was able to detect only 13/36 clinically significant leaks. The sensitivity of the swallow in diagnosing a leak was 36% and specificity was 97%. The positive and negative predictive values of barium swallow study in detecting leaks were 59% and 93%, respectively. Conclusion Barium swallow is an insensitive but specific test for detecting leaks at the cervical anastomotic site after esophagectomy. PMID:27066433

  6. Barium isotopes in Allende meteorite - Evidence against an extinct superheavy element

    NASA Technical Reports Server (NTRS)

    Lewis, R. S.; Anders, E.; Shimamura, T.; Lugmair, G. W.

    1983-01-01

    Carbon and chromite fractions from the Allende meteorite that contain isotopically anomalous xenon-131 to xenon-136 (carbonaceous chondrite fission or CCF xenon) at up to 5 x 10 to the 11th atoms per gram show no detectable isotopic anomalies in barium-130 to barium-138. This rules out the possibility that the CCF xenon was formed by in situ fission of an extinct superheavy element. Apparently the CCF xenon and its carbonaceous carrier are relics from stellar nucleosynthesis.

  7. Comparison of the reflectance characteristics of polytetrafluoroethylene and barium sulfate paints

    NASA Technical Reports Server (NTRS)

    Butner, C. L.; Schutt, J. B.; Shai, M. C.

    1984-01-01

    Preliminary results are presented of the directional reflectance measurements taken on two tetrafluorethylene (TFE) paints formulated with silicone binders. Both paints are found to be more Lambertian than barium sulfate paint and pressed powder, although the pigment to binder ratios for barium sulfate and TFE paints are about 133 and 3.3 to 1, respectively. The TFE paints exhibit total visible reflectances above 90 percent and offer surfaces that are not significantly affected by water.

  8. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  9. Barium swallow study in routine clinical practice: a prospective study in patients with chronic cough*,**

    PubMed Central

    Nin, Carlos Shuler; Marchiori, Edson; Irion, Klaus Loureiro; Paludo, Artur de Oliveira; Alves, Giordano Rafael Tronco; Hochhegger, Daniela Reis; Hochhegger, Bruno

    2013-01-01

    OBJECTIVE: To assess the routine use of barium swallow study in patients with chronic cough. METHODS: Between October of 2011 and March of 2012, 95 consecutive patients submitted to chest X-ray due to chronic cough (duration > 8 weeks) were included in the study. For study purposes, additional images were obtained immediately after the oral administration of 5 mL of a 5% barium sulfate suspension. Two radiologists systematically evaluated all of the images in order to identify any pathological changes. Fisher's exact test and the chi-square test for categorical data were used in the comparisons. RESULTS: The images taken immediately after barium swallow revealed significant pathological conditions that were potentially related to chronic cough in 12 (12.6%) of the 95 patients. These conditions, which included diaphragmatic hiatal hernia, esophageal neoplasm, achalasia, esophageal diverticulum, and abnormal esophageal dilatation, were not detected on the images taken without contrast. After appropriate treatment, the symptoms disappeared in 11 (91.6%) of the patients, whereas the treatment was ineffective in 1 (8.4%). We observed no complications related to barium swallow, such as contrast aspiration. CONCLUSIONS: Barium swallow improved the detection of significant radiographic findings related to chronic cough in 11.5% of patients. These initial findings suggest that the routine use of barium swallow can significantly increase the sensitivity of chest X-rays in the detection of chronic cough-related etiologies. PMID:24473762

  10. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae.

    PubMed

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla. PMID:27123456

  11. Comparison of Calcium and Barium Microcapsules as Scaffolds in the Development of Artificial Dermal Papillae

    PubMed Central

    Liu, Yang; Lin, Changmin; Zeng, Yang; Li, Haihong; Cai, Bozhi; Huang, Keng; Yuan, Yanping; Li, Yu

    2016-01-01

    This study aimed to develop and evaluate barium and calcium microcapsules as candidates for scaffolding in artificial dermal papilla. Dermal papilla cells (DPCs) were isolated and cultured by one-step collagenase treatment. The DPC-Ba and DPC-Ca microcapsules were prepared by using a specially designed, high-voltage, electric-field droplet generator. Selected microcapsules were assessed for long-term inductive properties with xenotransplantation into Sprague-Dawley rat ears. Both barium and calcium microcapsules maintained xenogenic dermal papilla cells in an immunoisolated environment and induced the formation of hair follicle structures. Calcium microcapsules showed better biocompatibility, permeability, and cell viability in comparison with barium microcapsules. Before 18 weeks, calcium microcapsules gathered together, with no substantial immune response. After 32 weeks, some microcapsules were near inflammatory cells and wrapped with fiber. A few large hair follicles were found. Control samples showed no marked changes at the implantation site. Barium microcapsules were superior to calcium microcapsules in structural and mechanical stability. The cells encapsulated in hydrogel barium microcapsules exhibited higher short-term viability. This study established a model to culture DPCs in 3D culture conditions. Barium microcapsules may be useful in short-term transplantation study. Calcium microcapsules may provide an effective scaffold for the development of artificial dermal papilla. PMID:27123456

  12. Lattice thermal conductivity of dense silicate glass at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2015-12-01

    The layered structure of the Earth's interior is generally believed to develop through the magma ocean differentiation in the early Earth. Previous seismic studies revealed the existence of ultra low velocity zones above the core mantle boundary (CMB) which was inferred to be associated with the remnant of a deep magma ocean. The heat flux through the core mantle boundary therefore would strongly depend on the thermal conductivity, both lattice (klat) and radiative (krad) of dense silicate melts and major constituent minerals of the lower mantle. Recent experimental results on the radiative thermal conductivity of dense silicate glasses and lower-mantle minerals suggest that krad of dense silicate glasses could be remarkably lower than krad of the surrounding solid mantle phases. In this case, the dense silicate melts will act as a trap for heat from the Earth's outer core. However, this conclusion remains uncertain because of the lack of direct measurements on lattice thermal conductivities of silicate glasses/melts under lower mantle pressures up to date. Here we report experimental results on lattice thermal conductivities of dense silicate glass with basaltic composition under pressures relevant to the Earth's lower mantle in a diamond-anvil cell using time-domain thermoreflectance method. The study will assist the comprehension of thermal transport properties of silicate melts in the Earth's deep interior and is crucial for understanding the dynamic and thermal evolution of the Earth's internal structure.

  13. Layer silicates in a chondritic porous interplanetary dust particle

    NASA Astrophysics Data System (ADS)

    Rietmeijer, F. J. M.; MacKinnon, I. D. R.

    1985-11-01

    Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300 C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25 C) after aggregate formation.

  14. Characterization of chitin-metal silicates as binding superdisintegrants.

    PubMed

    Rashid, Iyad; Daraghmeh, Nidal; Al-Remawi, Mayyas; Leharne, Stephen A; Chowdhry, Babur Z; Badwan, Adnan

    2009-12-01

    When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin-silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin-metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin-metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated. PMID:19691098

  15. Steps toward interstellar silicate mineralogy. 1: Laboratory results of a silicate glass of mean cosmic composition

    NASA Astrophysics Data System (ADS)

    Jaeger, C.; Mutschke, H.; Begemann, B.; Dorschner, J.; Henning, Th.

    1994-12-01

    Although extrasolar silicates were detected more than 25 years ago, important questions concerning chemical composition, material properties, and grain structure are still without reliable answers. The most important of these questions are listed at the beginning of this paper because they play decisive roles as guide-posts for the silicate research program of the Jena laboratory astrophysics group. This paper communicates the first results of this program aimed at a closer mineralogical characterization of the interstellar/circumstellar silicates that have been observed in different types of objects. In this first approach, pyroxene glass samples, the cation content of which reflects mean cosmic proportions of the four most abundant metals, have been prepared and analytically characterized. They are expected to be good candidates for matching the silicate spectra of star-forming regions and young stellar objects (YSOs). For the pyroxene glass, optical constants from 250 nm to 500 micrometers have been determined. Particles having sizes within the Rayleigh limit show broad bands peaking at 9.5 and 18.8 micrometers. For the sake of comparison, a crystalline sample of the same composition was also measured. Its narrow bands are positioned at 9.4, 10.5, 11.1, 13.7, 15.6, 18.1, 19.5, 26.5, 29.5, 37.5, and 49 micrometers in agreement with expectations for a chemical composition corresponding to hypersthene. In addition to the vibration bands weak crystal field bands at 1 and 2 micrometers due to Fe(2+) have also been detected for the pyroxene glass. If these bands were detectable in interstellar and circumstellar sources they would offer a unique possibility of discriminating the pyroxene-type from the olivine-type silicates. The FIR absorption coefficient measured for the glass sample turned out to be proportional to lambda-2. The centroids of the 10 and 19 micrometer bands of the pyroxene glass satisfactorily match those observed in the Orion Trapezium and massive

  16. Silicate nephrolithiasis after ingestion of supplements containing silica dioxide.

    PubMed

    Flythe, Jennifer E; Rueda, Jose F; Riscoe, Michael K; Watnick, Suzanne

    2009-07-01

    Silicate calculi are common in some mammals, such as dogs and sheep, but extremely rare in humans. We report a case of silicate calculi in a woman using oral over-the-counter Uncaria tomentosa, Digestive Advantage and FlexProtex supplements. All 3 contained the excipient silica dioxide. Stone analysis showed composition of 100% silicate. The nephrolithiasis promptly abated after discontinuation of the products containing silica, then returned when the patient restarted her supplements. This case emphasizes the importance of stone analysis when obvious causes of nephrolithiasis are unclear and highlights the concerns of using over-the-counter supplements without substantial oversight. PMID:19100669

  17. Microstructures of Rare Silicate Stardust from Nova and Supernovae

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Keller, L. P.; Rahman, Z.; Messenger, S

    2011-01-01

    Most silicate stardust analyzed in the laboratory and observed around stellar environments derives from O-rich red giant and AGB stars [1,2]. Supernova (SN) silicates and oxides are comparatively rare, and fewer than 10 grains from no-va or binary star systems have been identified to date. Very little is known about dust formation in these stellar environments. Mineralogical studies of only three O-rich SN [3-5] and no nova grains have been performed. Here we report the microstructure and chemical makeup of two SN silicates and one nova grain.

  18. The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2010-01-01

    Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar

  19. Chemistry of the subalkalic silicic obsidians

    USGS Publications Warehouse

    MacDonald, Ray; Smith, Robert L.; Thomas, John E.

    1992-01-01

    Nonhydrated obsidians are quenched magmatic liquids that record in their chemical compositions details of the tectonic environment of formation and of the differentiation mechanisms that affected their subsequent evolution. This study attempts to analyze, in terms of geologic processes, the compositional variations in the subalkalic silicic obsidians (Si02≥70 percent by weight, molecular (Na2O+K20)>Al2O3). New major- and trace-element determinations of 241 samples and a compilation of 130 published major-element analyses are reported and interpreted. Obsidians from five different tectonic settings are recognized: (1) primitive island arcs, (2) mature island arcs, (3) continental margins, (4) continental interiors, and (5) oceanic extensional zones. Tectonomagmatic discrimination between these groups is successfully made on Nb-Ta, Nb-FeOt and Th-Hf-Ta plots, and compositional ranges and averages for each group are presented. The chemical differences between groups are related to the type of crust in which magmas were generated. With increasingly sialic (continental type) crust, the obsidians show overall enrichment in F, Be, Li, Mo, Nb, Rb, Sn, Ta, U, W, Zn, and the rare-earth elements, and depletion in Mg, Ca, Ba, Co, Sc, Sr, and Zr. They become more potassic, have higher Fe/Mg and F/Cl ratios, and lower Zr/Hf, Nb/Ta, and Th/U ratios. Higher values of total rare-earth elements are accompanied by light rare-earth-element enrichment and pronounced negative Eu anomalies. An attempt is made to link obsidian chemistry to genetic mechanlism. Two broad groups of rocks are distinguished: one generated where crystal-liquid processes dominated (CLPD types), which are the products of crustal anatexis, possibly under conditions of low halogen fugacity, ± crystal fractionation ± magma mixing; and a second group represented by rocks formed in the upper parts of large magma chambers by interplays of crystal fractionation, volatile transfer, magma mixing, and possibly various

  20. Interstellar silicate analogs for grain-surface reaction experiments: Gas-phase condensation and characterization of the silicate dust grains

    SciTech Connect

    Sabri, T.; Jäger, C.; Gavilan, L.; Lemaire, J. L.; Vidali, G.; Henning, T.

    2014-01-10

    Amorphous, astrophysically relevant silicates were prepared by laser ablation of siliceous targets and subsequent quenching of the evaporated atoms and clusters in a helium/oxygen gas atmosphere. The described gas-phase condensation method can be used to synthesize homogeneous and astrophysically relevant silicates with different compositions ranging from nonstoichiometric magnesium iron silicates to pyroxene- and olivine-type stoichiometry. Analytical tools have been used to characterize the morphology, composition, and spectral properties of the condensates. The nanometer-sized silicate condensates represent a new family of cosmic dust analogs that can generally be used for laboratory studies of cosmic processes related to condensation, processing, and destruction of cosmic dust in different astrophysical environments. The well-characterized silicates comprising amorphous Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4}, as well as the corresponding crystalline silicates forsterite and fayalite, produced by thermal annealing of the amorphous condensates, have been used as real grain surfaces for H{sub 2} formation experiments. A specifically developed ultra-high vacuum apparatus has been used for the investigation of molecule formation experiments. The results of these molecular formation experiments on differently structured Mg{sub 2}SiO{sub 4} and Fe{sub 2}SiO{sub 4} described in this paper will be the topic of the next paper of this series.

  1. Molecular aggregation of rhodamine dyes in dispersions of layered silicates: influence of dye molecular structure and silicate properties.

    PubMed

    Bujdák, Juraj; Iyi, Nobuo

    2006-02-01

    The molecular aggregation of six rhodamine dyes (rhodamine 560, B, 3B, 19, 6G, 123) in layered silicate (saponite and fluorohectorite) dispersions was investigated by using visible (vis) spectroscopy. The dye molecular aggregation was influenced by the properties of both the silicates and the dyes themselves. The layer charge of the silicates enhanced the molecular aggregation of the hydrophilic, cationic dyes. The presence of a carboxyl acid group in the dye molecules inhibited adsorption of the dyes on the surface of fluorohectorite, a silicate with a high charge density. A lower or no adsorption could be observed by vis spectroscopy. Strong association of the dyes to the silicate surface led to remarkable changes in the dye spectra, mainly due to the molecular aggregation. Dye assemblies initially formed after mixing the dye solutions with silicate dispersions were unstable. Decomposition of the dye molecular assemblies, and the formation of new species or molecular aggregate rearrangements, were studied on the bases of time-difference spectra. The reaction pathways were specific, not only for the dyes, depending upon their molecular structure and properties, but also on the silicate substrates. PMID:16471802

  2. Interstellar Silicate Dust: Modeling and Grain Alignment

    NASA Astrophysics Data System (ADS)

    Das, Indrajit

    We examine some aspects of the alignment of silicate dust grains with respect to the interstellar magnetic field. First, we consider possible observational constraints on the magnetic properties of the grains. Second, we investigate the role of collisions with gas atoms and the production of H2 molecules on the grain surface in the alignment process when the grain is drifting in the gaseous medium. Paramagnetism associated with Fe content in the dust is thought to play a critical role in alignment. Min et al (2007) claimed that the Fe content of the silicate dust can be constrained by the shape of the 10 μm extinction feature. They found low Fe abundances, potentially posing problems for grain alignment theories. We revisit this analysis modeling the grains with irregularly shaped Gaussian Random Sphere (GRS). We give a comprehensive review of all the relevant constraints researchers apply and discuss their effects on the inferred mineralogy. Also, we extend this analysis to examine whether constraints can be placed on the presence of Fe-rich inclusions which could yield "super-paramagnetism". This possibility has long been speculated, but so far observational constraints are lacking. Every time a gas atom collides with a grain, the grain's angular momentum is slightly modified. Likewise when an H2 molecule forms on the surface and is ejected. Here also we model the grain with GRS shape and considered various scenarios about how the colliding gas particles depart the grain. We develop theoretical and computational tools to estimate the torques associated with these aforementioned events for a range of grain drift speeds---from low subsonic to high supersonic speeds. Code results were verified with spherical grain for which analytical results were available. Finally, the above torque results were used to study the grain rotational dynamics. Solving dynamical equations we examine how these torques influence the grain alignment process. Our analysis suggests that

  3. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles.

    PubMed

    Kamalasanan, Kaladhar; Anupriya; Deepa, M K; Sharma, Chandra P

    2014-10-01

    A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release

  4. Active experiments in space in conjunction with Skylab. [barium plasma injection experiment and magnetic storm of March 7, 1972

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.

    1974-01-01

    Two papers are presented which relate to the Skylab barium shaped charge experiments. The first describes the L=6.6 OOSIK barium plasma injection experiment and magnetic storm of March 7, 1972. Rocket payload, instrumentation, data reduction methods, geophysical environment at the time of the experiment, and results are given. The second paper presents the observation of an auroral Birkeland current which developed from the distortion of a barium plasma jet during the above experiment.

  5. A Silicic Shield Volcano in Bolivia

    NASA Technical Reports Server (NTRS)

    Christensen, P. R.; Greeley, R.

    1985-01-01

    Volcan Quemado and its environs provides an excellent site to study the radar signature of a silicic volcanic construct. This feature differs from basaltic terrains primarily by the evidence of explosive eruptions associated with silica-rich magmas. These explosions produced a complex of distinctive craters that are visible on radar because of their steep inner walls and exposed bedrock units. Explosive events also generated surface deposits of fine (1 mm to 10 cm) material that mantles the region around the volcano to a distance of 20 to 30 km from its center. These features are very different from those observed on basaltic flows, which typically lack violet, explosive events. In these terrains, the surface is dominated by radar-rough flows with steep, lobate flow fronts. Craters are less common, although maars are found in some regions. These comparisons suggest that spaceborne radar may be able to distinguish surface characteristics that can be used to identify volcanic eruptive styles on Venus, Mars, and other solar-system bodies.

  6. Lithologic mapping of silicate rocks using TIMS

    NASA Technical Reports Server (NTRS)

    Gillespie, A. R.

    1986-01-01

    Common rock-forming minerals have thermal infrared spectral features that are measured in the laboratory to infer composition. An airborne Daedalus scanner (TIMS) that collects six channels of thermal infrared radiance data (8 to 12 microns), may be used to measure these same features for rock identification. Previously, false-color composite pictures made from channels 1, 3, and 5 and emittance spectra for small areas on these images were used to make lithologic maps. Central wavelength, standard deviation, and amplitude of normal curves regressed on the emittance spectra are related to compositional information for crystalline igneous silicate rocks. As expected, the central wavelength varies systematically with silica content and with modal quartz content. Standard deviation is less sensitive to compositional changes, but large values may result from mixed admixture of vegetation. Compression of the six TIMS channels to three image channels made from the regressed parameters may be effective in improving geologic mapping from TIMS data, and these synthetic images may form a basis for the remote assessment of rock composition.

  7. Selective silicate-directed motility in diatoms.

    PubMed

    Bondoc, Karen Grace V; Heuschele, Jan; Gillard, Jeroen; Vyverman, Wim; Pohnert, Georg

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 10(12) mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment-water dSi fluxes and biogeochemical cycling. PMID:26842428

  8. Selective silicate-directed motility in diatoms

    PubMed Central

    Bondoc, Karen Grace V.; Heuschele, Jan; Gillard, Jeroen; Vyverman, Wim; Pohnert, Georg

    2016-01-01

    Diatoms are highly abundant unicellular algae that often dominate pelagic as well as benthic primary production in the oceans and inland waters. Being strictly dependent on silica to build their biomineralized cell walls, marine diatoms precipitate 240 × 1012 mol Si per year, which makes them the major sink in the global Si cycle. Dissolved silicic acid (dSi) availability frequently limits diatom productivity and influences species composition of communities. We show that benthic diatoms selectively perceive and behaviourally react to gradients of dSi. Cell speed increases under dSi-limited conditions in a chemokinetic response and, if gradients of this resource are present, increased directionality of cell movement promotes chemotaxis. The ability to exploit local and short-lived dSi hotspots using a specific search behaviour likely contributes to micro-scale patch dynamics in biofilm communities. On a global scale this behaviour might affect sediment–water dSi fluxes and biogeochemical cycling. PMID:26842428

  9. Metal-Silicate Segregation in Asteroidal Meteorites

    NASA Technical Reports Server (NTRS)

    Herrin, Jason S.; Mittlefehldt, D. W.

    2006-01-01

    A fundamental process of planetary differentiation is the segregation of metal-sulfide and silicate phases, leading eventually to the formation of a metallic core. Asteroidal meteorites provide a glimpse of this process frozen in time from the early solar system. While chondrites represent starting materials, iron meteorites provide an end product where metal has been completely concentrated in a region of the parent asteroid. A complimentary end product is seen in metal-poor achondrites that have undergone significant igneous processing, such as angrites, HED's and the majority of aubrites. Metal-rich achondrites such as acapulcoite/lodranites, winonaites, ureilites, and metal-rich aubrites may represent intermediate stages in the metal segregation process. Among these, acapulcoite-lodranites and ureilites are examples of primary metal-bearing mantle restites, and therefore provide an opportunity to observe the metal segregation process that was captured in progress. In this study we use bulk trace element compositions of acapulcoites-lodranites and ureilites for this purpose.

  10. Study of thermal effects of silicate-containing hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Golovanova, O. A.; Zaits, A. V.; Berdinskaya, N. V.; Mylnikova, T. S.

    2016-02-01

    The possibility of modifications of hydroxyapatite silicate ions, from the extracellular fluid prototype solution under near-physiological conditions has been studied. Formation of silicon-structured hydroxyapatite with different extent of substitution of phosphate groups in the silicate group has been established through chemical and X-ray diffraction analyses, FTIR spectroscopy and optical microscopy. The results obtained are in agreement and suggest the possibility of substitution of phosphate groups for silicate groups in the hydroxyapatite structure when introducing different sources of silica, tetraethoxysilane and sodium silicate, in the reaction mixture. Growth in the amount of silicon in Si-HA results in the increase in the thermal stability of the samples. The greatest mass loss occurs at temperatures in the range of 25-400 0C that is caused by the removal of the crystallization and adsorption water and volatile impurities. It is shown that the modified apatites are of imperfect structure and crystallize in a nanocrystalline state.

  11. Silicic Volcanism Identified by the Diviner Lunar Radiometer Experiment

    NASA Astrophysics Data System (ADS)

    Glotch, T. D.; Greenhagen, B. T.; Hagerty, J. J.; Jolliff, B. L.; Ashley, J. W.; Williams, J.-P.; Petro, N. E.

    2016-05-01

    The Diviner Lunar Radiometer Experiment on the Lunar Reconnaissance Orbiter has mapped and characterized a number of silicic volcanic constructs on the lunar surface. Here, we summarize Diviner's contributions to our understanding of these features.

  12. History of Nebular Processing Traced by Silicate Stardust in IDPs

    NASA Astrophysics Data System (ADS)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A.

    2010-03-01

    We have identified two presolar silicate grains as polycrystalline assemblages, or equilibrated aggregates. These grains occur in a stardust-rich interplanetary dust particle (IDP). We propose these grains were annealed in the solar nebula.

  13. Method of preparing barium, titanium, zirconium oxide ferroelectric ceramic composition

    SciTech Connect

    McSweeney, R.T.; Zuk, K.

    1991-07-16

    This patent describes a method for preparing a barium titanium zirconium oxide ferroelectric ceramic composition. It comprises reacting tetraalkyl titanate and tetraalkyl zirconate in appropriate amounts to produce (Ti{sub 1{minus}x}Zr{sub x}) alkoxide wherein 021 x {le} 0.25; reacting the (Ti{sub 1{minus}x}Sr{sub x}) alkoxide to form a two phase mixture of TiZrO{sub 4} and (Ti{sub 1{minus}s}Zr{sub s})O{sub 2}, wherein s is the solubility limit for ZrO{sub 2} in TiO{sub 2}; admixing the (Ti{sub 1{minus}s}Zr{sub s})O{sub 2} and TiZrO{sub 4} with a BaO precursor, the BaO precursor, (Ti{sub 1{minus}s}Zr{sub s})O{sub 2} and TiZrO{sub 4}; and heading the admixture for a period of time and at a sufficient temperature to produce Ba(Ti{sub 1{minus}x}Zr{sub x})O{sub 3} wherein 0 {lt} x {le} 0.25.

  14. Barium in landscape components of the western Transbaikal region

    NASA Astrophysics Data System (ADS)

    Kashin, V. K.

    2015-10-01

    Barium concentrations in parent materials, soils, and plants of the forest-steppe, steppe, and dry steppe landscapes of the Transbaikal region have been studied. The average concentration of this element in rocks and soils of this region exceeds its clarke by 1.8-2.1 times. A positive correlation between the contents of Ba in soils, soil-forming rocks, and plants has been found. The concentration of Ba in soils does not correlate with the soil pH and humus content. Distribution patterns of Ba in the soil profiles have been characterized. With respect to the coefficient of the biological uptake by plants, Ba is assigned to the group of low accumulation (0.55-0.65) for mineral soils and of strong accumulation (6.0) for alluvial bog soils. Average concentrations of Ba in the steppe, meadow, and cultivated vegetation of the region are 1.9-2.3 times higher in comparison with the average concentration of this element in plants of the continents. The biological migration of Ba is most active in meadow landscapes, whereas steppe landscapes are characterized by the least active biological migration of this element.

  15. Two new barium sulfonates with pillared layered structures

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Li; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng

    2006-08-01

    The reactions of BaCl 2·2H 2O with NaHL a and K 3L b (H 2L a=4-hydroxybenzenesulfonic acid, H 3L b=4-hydroxy-5-nitro-1,3-benzenedisulfonic acid) gave two pillared layered coordination polymers: Ba(HL a)(Cl) 1 and KBaL b(H 2O) 32, respectively. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0509 and wR=0.1216 using 1455 reflections with I>2 σ( I) for 1; and R=0.0288 and wR=0.0727 using 2661 reflections with I>2 σ( I) for 2. The interesting feature of compound 1 is the coordination actions of chloride anions, which help to form the polymeric layers by bridging barium cations. In compound 2 the Lb3- anion acts as an unusual dodecadente ligand to form a coordination polymer with pillared layered structure.

  16. Two new barium sulfonates with pillared layered structures

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Li; Ma, Jian-Fang; Liu, Ying-Ying; Ma, Ji-Cheng

    2006-05-01

    The reactions of BaCl 2·2H 2O with NaHL a and K 3L b (H 2L a=4-hydroxybenzenesulfonic acid, H 3L b=4-hydroxy-5-nitro-1,3-benzenedisulfonic acid) gave two pillared layered coordination polymers: Ba(HL a)(Cl) 1 and KBaL b(H 2O) 32, respectively. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0509 and wR=0.1216 using 1455 reflections with I>2 σ( I) for 1; and R=0.0288 and wR=0.0727 using 2661 reflections with I>2 σ( I) for 2. The interesting feature of compound 1 is the coordination actions of chloride anions, which help to form the polymeric layers by bridging barium cations. In compound 2 the Lb3- anion acts as an unusual dodecadente ligand to form a coordination polymer with pillared layered structure.

  17. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  18. The chemical composition of the mild barium star HD 202109

    NASA Astrophysics Data System (ADS)

    Yushchenko, A. V.; Gopka, V. F.; Kim, C.; Liang, Y. C.; Musaev, F. A.; Galazutdinov, G. A.

    2004-01-01

    We present chemical abundances of the mild barium star HD 202109 (\\zeta Cyg) determined from the analysis of a spectrum obtained by using the 2-m telescope at the Peak Terskol Observatory and a high-resolution spectrometer with R=80 000, signal to noise ratio >100. We also present the atmospheric parameters of the star determined using various methods including iron-line abundance analysis. For line identifications, we use whole-range synthetic spectra computed from Kurucz's database and the latest lists of spectral lines. Among the determined abundances of 51 elements, those of P, S, K, Cu, Zn, Ge, Rb, Sr, Nb, Mo, Ru, Rh, Pd, In, Sm, Gd, Tb, Dy, Er, Tm, Hf, Os, Ir, Pt, Tl, and Pb were not investigated previously. Assuming that the overabundance pattern of Ba stars is due to binary accretion, the observed abundance pattern of the neutron-capture process elements in HD 202109 can be explained by combining the AGB star nucleosynthesis and the wind accretion scenario. Based on observations obtained at the 2-m telescope of Peak Terskol observatory near Mt. Elbrus, Northern Caucasus, Russia - International Center for Astronomical, Medical and Ecological Research (ICAMER), Ukraine & Russia.

  19. Impact of vanadium ions in barium borate glass.

    PubMed

    Abdelghany, A M; Hammad, Ahmed H

    2015-02-25

    Combined optical and infrared spectral measurements of prepared barium borate glasses containing different concentrations of V2O5 were carried out. Vanadium containing glasses exhibit extended UV-visible (UV/Vis.) bands when compared with base binary borate glass. UV/Vis. spectrum shows the presence of an unsymmetrical strong UV broad band centered at 214 nm attributed to the presence of unavoidable trace iron impurities within the raw materials used for the preparation of such glass. The calculated direct and indirect optical band gaps are found to decrease with increasing the vanadium content (2.9:137 for indirect and 3.99:2.01 for direct transition). This change was discussed in terms of structural changes in the glass network. Infrared absorption spectra of the glasses reveal the appearance of both triangular and tetrahedral borate units. Electron spin resonance analyses indicate the presence of unpaired species in sufficient quantity to be identified and to confirm the spectral data. PMID:25194319

  20. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  1. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOEpatents

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  2. Abundance analysis of s-process enhanced barium stars

    NASA Astrophysics Data System (ADS)

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  3. Barium from a mini r-process in supernovae

    NASA Technical Reports Server (NTRS)

    Heymann, D.

    1983-01-01

    McCulloch and Wasserburg (1978) have reported nonlinear isotopic anomalies in barium for two Ca-Al-rich inclusions of the Allende carbonaceous chondrite, known as EK-1-4-1 and C-1. In an attempt to account for these anomalies, it has been proposed that Ba from an r-process of nucleosynthesis, containing Ba-135 and Ba-137, was injected into the primeval color system but was not totally homogenized. Questions arise in connection with the relations of Xe isotopes in carbonaceous chondrites. This has prompted Heymann and Dziczkaniec (1979, 1980, 1981) to study the formation of r-Xe, r-Kr, and r-Te by the mini r-process which is thought to occur in the O, Ne-rich shells of Type II supernovae. Lee et al. (1979) have studied the formation of r-Ba, r-Nd, and r-Sm by the same process. Certain differences regarding the approaches used by Lee et al. and by Heymann and Dziczkaniec make it necessary to restudy the work of Lee et al. Attention is given to the survival probabilities of nuclear species of interest, taking into accounts the elements Cs, Ba, I, and Xe.

  4. Properties of barium strontium titanate at millimeter wave frequencies

    SciTech Connect

    Osman, Nurul; Free, Charles

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  5. Dielectric and Impedance Spectroscopy of Barium Bismuth Vanadate Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Sutar, B. C.; Choudhary, R. N. P.; Das, Piyush R.

    2014-07-01

    Structural, micro-structural and electrical properties of barium bismuth vanadate Ba(Bi0.5V0.5)O3 ceramics were investigated. X-ray diffraction (XRD) analysis of the prepared material confirmed the formation of the compound with monoclinic crystal system. Scanning electron microscopy (SEM) of the compound exhibits well-defined grains that are uniformly distributed throughout the surface of the sample. Dielectric properties of the compound were studied as a function of temperature at different frequencies. An observation of dielectric anomaly at 295 °C is due to ferroelectric phase transition that was later confirmed by the appearance of hysteresis loop. Detailed studies of complex impedance spectroscopy have provided a better understanding of the relaxation process and correlations between the microstructure-electrical properties of the materials. The nature of frequency dependence of ac conductivity obeys the Debye power law. The dc conductivity, calculated from the ac conductivity spectrum, shows the negative temperature coefficient of resistance behavior similar to that of a semiconductor.

  6. Hydrogen diffusion in lead zirconate titanate and barium titanate

    SciTech Connect

    Alvine, K. J.; Vijayakumar, M.; Bowden, M. E.; Schemer-Kohrn, A. L.; Pitman, S. G.

    2012-08-28

    Hydrogen is a potential clean-burning, next-generation fuel for vehicle and stationary power. Unfortunately, hydrogen is also well known to have serious materials compatibility issues in metals, polymers, and ceramics. Piezoelectric actuator materials proposed for low-cost, high efficiency high-pressure hydrogen internal combustion engines (HICE) are known to degrade rapidly in hydrogen. This limits their potential use and poses challenges for HICE. Hydrogen-induced degradation of piezoelectrics is also an issue for low-pressure hydrogen passivation in ferroelectric random access memory. Currently, there is a lack of data in the literature on hydrogen species diffusion in piezoelectrics in the temperature range appropriate for the HICE as charged via a gaseous route. We present 1HNMR quantification of the local hydrogen species diffusion within lead zirconate titanate and barium titanate on samples charged by exposure to high-pressure gaseous hydrogen ~32 MPa. We discuss results in the context of theoretically predicted interstitial hydrogen lattice sites and aqueous charging experiments from existing literature.

  7. Characterization of A-site deficient samarium doped barium titanate

    NASA Astrophysics Data System (ADS)

    Ganguly, M.; Rout, S. K.; Woo, W. S.; Ahn, C. W.; Kim, I. W.

    2013-02-01

    Ba1-xSm2x/3TiO3 (0.00≤x≤0.10, in a step of 0.02) ceramics have been prepared through solid state reaction route. Structural studies (XRD, FTIR, Raman) suggested a tetragonal symmetry of all the prepared ceramics and a decrease in tetragonality with increase in Sm content. Rietveld refinement technique has been employed to investigate the details of crystal structure and was found to be tetragonal at room temperature with space group P4mm. Photoluminescence study confirmed formation of shallow defects. The prepared materials are found to show photoemission in the violet, blue and green zone. Optical band gap values calculated from UV-visual diffuse reflectance spectra showed a decreasing trend in band gap values with increase in samarium concentration. Disk shaped pellets were prepared using PVA as binder. Scanning electron microscopy showed a drastic decrease in grain size on doping than undoped barium titanate. A regular increase in the grain size with increase in Sm content in the doped compositions is observed. Dielectric studies were performed over a wide temperature range from 15 K to 600 K at different frequencies. Normal ferroelectric character was obtained for all the compositions. A gradual decrease in the Curie temperature was noticed with increase in samarium content. P∼E hysteresis loops showed a domain pinning effect which increased successively resulting in a decrease in the values of remnant polarization and coercive fields.

  8. Review on dielectric properties of rare earth doped barium titanate

    NASA Astrophysics Data System (ADS)

    Ismail, Fatin Adila; Osman, Rozana Aina Maulat; Idris, Mohd Sobri

    2016-07-01

    Rare earth doped Barium Titanate (BaTiO3) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO3 (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO3 downshifted the Curie temperature (TC). Transition temperature also known as Curie temperature, TC where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-doped BaTiO3, Er-doped BaTiO3, Sm-doped BaTiO3, Nd-doped BaTiO3 and Ce-doped BaTiO3 had been proved to increase and the transition temperature or also known as TC also lowered down to room temperature as for all the RE doped BaTiO3 except for Er-doped BaTiO3.

  9. Electrical properties of lanthanum doped barium titanate ceramics

    SciTech Connect

    Vijatovic Petrovic, M.M.; Bobic, J.D.; Ramoska, T.; Banys, J.; Stojanovic, B.D.

    2011-10-15

    Pure and lanthanum doped barium titanate (BT) ceramics were prepared by sintering pellets at 1300 deg. C for 8 h, obtained from nanopowders synthesized by the polymeric precursor method. XRD results showed formation of a tetragonal structure. The presence of dopants changed the tetragonal structure to pseudo-cubic. The polygonal grain size was reduced up to 300 nm with addition of lanthanum as a donor dopant. Determined dielectric properties revealed that lanthanum modified BT ceramics possessed a diffused ferroelectric character in comparison with pure BT that is a classical ferroelectric material. In doped BT phase transition temperatures were shifted to lower temperatures and dielectric constant values were much higher than in pure BT. A modified Currie Weiss law was used to explore the connection between the doping level and degree of diffuseness of phase transitions. Impedance spectroscopy measurements were carried out at different temperatures in order to investigate electrical resistivity of materials and appearance of a PTCR effect. - Highlights: {yields} Pure and lanthanum doped BaTiO{sub 3} were prepared by polymeric precursors method. {yields} Change of structure from tetragonal to pseudo-cubic. {yields} Lanthanum as a donor dopant influenced on change of ferro-para phase transition. {yields} The diffuseness factor indicated the formation of diffuse ferroelectric material. {yields} Lanthanum affected on PTCR effect appearance in BT ceramics.

  10. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  11. H-Bond interactions between silicates and water during zeolite pre-nucleation.

    PubMed

    Mora-Fonz, Miguel J; Catlow, C Richard A; Lewis, Dewi W

    2008-11-21

    The relative strength of water-water, water-silicate and silicate-silicate interactions are studied, in order to explain the low solubility of the monomer (Si(OH)(4)), and determine the degree of dispersion of silicate clusters in solution during the hydrothermal synthesis of zeolites. We will show how the hydrogen bond interactions between water and monomeric silicate species are similar to that in pure water, whilst monomer-monomer interactions are stronger. However, when larger silicate species are also considered we find the relative hydrogen-bonding strength to follow: water-water < silicate-water < silicate-silicate. The effects of pH are also considered. The implications of the relative strength of these interactions on the formation of larger silicate species, leading to zeolite pre-nucleation, are discussed. PMID:18979042

  12. LOW-TEMPERATURE CRYSTALLIZATION OF AMORPHOUS SILICATE IN ASTROPHYSICAL ENVIRONMENTS

    SciTech Connect

    Tanaka, Kyoko K.; Yamamoto, Tetsuo; Kimura, Hiroshi

    2010-07-01

    We construct a theoretical model for low-temperature crystallization of amorphous silicate grains induced by exothermic chemical reactions. As a first step, the model is applied to the annealing experiments, in which the samples are (1) amorphous silicate grains and (2) amorphous silicate grains covered with an amorphous carbon layer. We derive the activation energies of crystallization for amorphous silicate and amorphous carbon from the analysis of the experiments. Furthermore, we apply the model to the experiment of low-temperature crystallization of an amorphous silicate core covered with an amorphous carbon layer containing reactive molecules. We clarify the conditions of low-temperature crystallization due to exothermic chemical reactions. Next, we formulate the crystallization conditions so as to be applicable to astrophysical environments. We show that the present crystallization mechanism is characterized by two quantities: the stored energy density Q in a grain and the duration of the chemical reactions {tau}. The crystallization conditions are given by Q>Q{sub min} and {tau} < {tau}{sub cool} regardless of details of the reactions and grain structure, where {tau}{sub cool} is the cooling timescale of the grains heated by exothermic reactions, and Q{sub min} is minimum stored energy density determined by the activation energy of crystallization. Our results suggest that silicate crystallization occurs in wider astrophysical conditions than hitherto considered.

  13. High Pressure/Temperature Metal Silicate Partitioning of Tungsten

    NASA Technical Reports Server (NTRS)

    Shofner, G. A.; Danielson, L.; Righter, K.; Campbell, A. J.

    2010-01-01

    The behavior of chemical elements during metal/silicate segregation and their resulting distribution in Earth's mantle and core provide insight into core formation processes. Experimental determination of partition coefficients allows calculations of element distributions that can be compared to accepted values of element abundances in the silicate (mantle) and metallic (core) portions of the Earth. Tungsten (W) is a moderately siderophile element and thus preferentially partitions into metal versus silicate under many planetary conditions. The partitioning behavior has been shown to vary with temperature, silicate composition, oxygen fugacity, and pressure. Most of the previous work on W partitioning has been conducted at 1-bar conditions or at relatively low pressures, i.e. <10 GPa, and in two cases at or near 20 GPa. According to those data, the stronger influences on the distribution coefficient of W are temperature, composition, and oxygen fugacity with a relatively slight influence in pressure. Predictions based on extrapolation of existing data and parameterizations suggest an increased pressured dependence on metal/ silicate partitioning of W at higher pressures 5. However, the dependence on pressure is not as well constrained as T, fO2, and silicate composition. This poses a problem because proposed equilibration pressures for core formation range from 27 to 50 GPa, falling well outside the experimental range, therefore requiring exptrapolation of a parametereized model. Higher pressure data are needed to improve our understanding of W partitioning at these more extreme conditions.

  14. Silicate-melt inclusions in magmatic rocks: applications to petrology

    NASA Astrophysics Data System (ADS)

    Frezzotti, Maria-Luce

    2001-01-01

    Silicate-melt inclusions in igneous rocks provide important information on the composition and evolution of magmatic systems. Such inclusions represent accidentally trapped silicate melt (±immiscible H 2O and/or CO 2 fluids) that allow one to follow the evolution of magmas through snapshots, corresponding to specific evolution steps. This information is available on condition that they remained isolated from the enclosing magma after their entrapment. The following steps of investigation are discussed: (a) detailed petrographic studies to characterise silicate-melt inclusion primary characters and posttrapping evolution, including melt crystallisation; (b) high temperature studies to rehomogenise the inclusion content and select chemically representative inclusions: chemical compositions should be compared to relevant phase diagrams. Silicate-melt inclusion studies allow us to concentrate on specific topics; inclusion studies in early crystallising phases allow the characterisation of primary magmas, while in more differentiated rocks, they unravel the subsequent chemical evolution. The distribution of volatile species (i.e., H 2O, CO 2, S, Cl) in inclusion glass can provide information on the degassing processes and on recycling of subducted material. In intrusive rocks, silicate melt inclusions may preserve direct evidence of magmatic stage evolution (e.g., immiscibility phenomena). Melt inclusions in mantle xenoliths indicate that high-silica melts can coexist with mantle peridotites and give information on the presence of carbonate melt within the upper mantle. Thus, combining silicate-melt inclusion data with conventional petrological and geochemical information and experimental petrology can increase our ability to model magmatic processes.

  15. The application of silicon and silicates in dentistry: a review.

    PubMed

    Lührs, A-K; Geurtsen, Werner

    2009-01-01

    Silicates and silicate-based compounds are frequently used materials in dentistry. One of their major applications is their use as fillers in different dental filling materials such as glass-ionomer cements, compomers, composites, and adhesive systems. In these materials, the fillers react with acids during the setting process or they improve the mechanical properties by increasing physical resistance, thermal expansion coefficient and radiopacity in acrylic filling materials. They also reduce polymerization shrinkage, and increase esthetics as well as handling properties. Furthermore, silicates are used for the tribochemical silication of different surfaces such as ceramics or alloys. The silicate layer formed in this process is the chemical basis for silanes that form a bond between this layer and the organic composite matrix. It also provides a micromechanical bond between the surface of the material and the composite matrix. Silicates are also a component of dental ceramics, which are frequently used in dentistry, for instance for veneers, inlays, and onlays, for denture teeth, and for full-ceramic crowns or as crown veneering materials. PMID:19198786

  16. Effects of solvent structure on the distribution of silicate anions in mixed aqueous/organic solutions of alkaline tetramethylammonium silicate

    SciTech Connect

    Hendricks, W.M.; Bell, A.T.; Radke, C.J. )

    1991-11-14

    Interest in the physical-chemical processes occurring during zeolite synthesis has stimulated the study of dissolved silicate oligomers in aqueous alkaline solution and their possible link to zeolite nucleation and crystal growth. Effects of solvent structure on the equilibrium distribution of silicate oligomers in mixed organic/aqueous solutions of tetramethylammonium hydroxide (TMAOH) have been investigated by using {sup 29}Si NMR spectroscopy. The results indicate that the presence of organic molecules leads to condensation of the silicates, particularly to double-ring structures. Equilibrium calculations indicate that the observed extent of silicate condensation exceeds what would be expected from mass action. The variety of organic solvents used allowed elucidation of structure effects due to the following: carbon chain length, carbon chain morphology, functional group, and placement of the functional group. The structural effects of organic solvents can be attributed to the ordering of water around the solvent molecules.

  17. Microwave absorption properties of Al- and Cr-substituted M-type barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxun; Gu, Mingyuan; Shen, Haigen

    2005-09-01

    Aluminum- and chromium-substituted barium ferrite particles with single magnetic domain were prepared using self-propagating combustion method. The crystalline structure, size, coercivity and microwave absorption property of the particles were investigated by means of X-ray diffraction, transmission electron microscopy, vibrating sample magnetometry and vector network analyzer. The results show that the crystalline structure of BaFe 12-xAl xO 19 is still hexagonal. But when the chromium substitution amount y exceeds 0.6, the extra chromium ions cannot enter the lattice of BaFe 12-yCr yO 19. After Fe 3+ is partly substituted with Al 3+ and Cr 3+, the microwave absorption properties of barium ferrite are improved. The maximum absorption reaches 34.76 dB. The ferromagnetic resonance is an important channel of barium ferrite to absorb microwaves with high frequency. Aluminum and chromium substitutions change the ferromagnetic resonant frequency of barium ferrite. The multipeak phenomenon of the ferromagnetic resonance increases the microwave absorption capability of barium ferrite.

  18. High pressure-low temperature phase diagram of barium: Simplicity versus complexity

    NASA Astrophysics Data System (ADS)

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo; Li, Quan; Ma, Yanming

    2015-11-01

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  19. High pressure–low temperature phase diagram of barium: Simplicity versus complexity

    SciTech Connect

    Desgreniers, Serge; Tse, John S.; Matsuoka, Takahiro; Ohishi, Yasuo

    2015-11-30

    Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that of complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.

  20. Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  1. Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.

    1993-01-01

    We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.

  2. Mingling of carbonate and silicate magmas under turbulent flow conditions: Evidence from rock textures and mineral chemistry in sub-volcanic carbonatite dykes, Chagatai, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Moore, K. R.; Wall, F.; Divaev, F. K.; Savatenkov, V. M.

    2009-06-01

    The Triassic Chagatai Complex, Uzbekistan, comprises explosive pipes and dykes, dominantly of silicocarbonatite composition, with cross-cutting relationships indicating multi-stage emplacement. Although the dykes have been reported as diamond-bearing, they have not previously undergone detailed investigation in terms of their mineral chemistry or rock texture. The xenolith-rich dykes contain irregularly-shaped microscopic magmatic enclaves of silicate composition within carbonatite magma and corroded microphenocrysts with crystal overgrowths that record synmagmatic geochemical disequilibrium. Quench crystals of apatite and aegirine, and anhedral baryte, which formed after corrosion of apatite and magnetite microphenocrysts but prior to formation of crystal overgrowths and mantles, indicate contemporaneous rapid undercooling. The anhedral baryte formed as a by-product of an oxidising hydrous reaction from Ba-rich biotite and pyrite to chlorite. The rock and microphenocryst textures suggest that mingling between two magmas occurred and a post-mingling mineral assemblage, including baryte, crystallised in a partially hybridised heterogeneous magma. An initial carbonatite mineral assemblage is identified as calcite + magnetite + apatite ± augite ± barium-rich biotite ± melilite ± pyrite. Changes in mineral chemistry of the carbonatite assemblage that are contemporaneous with the disequilibrium reaction textures suggest addition of a hydrous, Na-Si-Al-rich magma, and the mineral assemblage in the magmatic enclaves is similar to that of trachyte dykes in the Chagatai Complex. Using primarily rock textures and mineral chemistry, supported by mass balance calculations and isotope data, the silicate material is interpreted as a hydrous trachyte magma that had assimilated upper crustal material. The trachyte magma was entrained by carbonatite that was rapidly and turbulently ascending through the crust, shortly before emplacement as silicocarbonatite. The interpretation

  3. TWO BARIUM STARS IN THE OPEN CLUSTER NGC 5822

    SciTech Connect

    Katime Santrich, O. J.; Pereira, C. B.; De Castro, D. B. E-mail: claudio@on.br

    2013-08-01

    Open clusters are very useful examples to explain the constraint of the nucleosynthesis process with the luminosities of stars because the distances of the clusters are better known than those of field stars. We carried out a detailed spectroscopic analysis to derive the chemical composition of two red giants in the young open cluster NGC 5822, NGC 5822-2, and NGC 5822-201. We obtained abundances of C, N, O, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce, and Nd. The atmospheric parameters of the studied stars and their chemical abundances were determined using high-resolution optical spectroscopy. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. The abundances of the light elements were derived using the spectral synthesis technique. We found that NGC 5822-2 and -201 have, respectively, a mean overabundance of the elements created by the s-process, ''s'', with the notation [s/Fe] of 0.77 {+-} 0.12 and 0.83 {+-} 0.05. These values are higher than those for field giants of similar metallicity. We also found that NGC 5822-2 and -201 have, respectively, luminosities of 140 L{sub Sun} and 76 L{sub Sun }, which are much lower than the luminosity of an asymptotic giant branch star. We conclude that NGC 5822-2 and NGC 5822-201 are two new barium stars first identified in the open cluster NGC 5822. The mass transfer hypothesis is the best scenario to explain the observed overabundances.

  4. Dominant toughening mechanisms in barium aluminosilicate (BAS) glass-ceramics

    NASA Astrophysics Data System (ADS)

    Griggs, Jason Alan

    The purpose of this study was to develop a barium aluminosilicate (BAS) glass-ceramic with improved strength and fracture toughness by controlling the morphology of the constituent phases through a series of thermal crystallization treatments. The specific objectives of this study were to (1) determine which toughening mechanisms are active in the BAS system, (2) provide quantitative estimates of the relative contributions of those mechanisms, and (3) identify the processing conditions that correspond to a glass-ceramic with optimal fracture toughness. The BAS system was chosen for this study because of its potential applications in CAD-CAM production of dental prostheses. It is concluded that load sharing and crack deflection are the only major sources of toughening in the BAS system. Theoretical predictions for toughening increases due to load sharing and crack deflection are insufficient to account for 100% of the increases observed. The excess increase in fracture toughness is produced by thermal mismatch between and crystal and glass phases. The strength and fracture toughness of BAS glass-ceramics are shown to increase with increasing crystal growth time over the entire range of treatments studied. The strength and fracture toughness increased from 63 ± 8 MPa and 0.89 ± 0.05 MPa*msp{1/2}, respectively for BAS glass to 141 ± 8 MPa and 1.87 ± 0.07 MPa*msp{1/2} respectively for a glass-ceramic treated for 256 h at 975sp°C. Fracture toughness was also shown to increase with increasing mean crystal size. A non-stoichiometric glass composition results in thermal compatibility between the glass and crystal phases, eliminating the weakening at large crystal sizes that can be associated with a spontaneous microcracking mechanism.

  5. Evaluation of antibacterial properties of Barium Zirconate Titanate (BZT) nanoparticle

    PubMed Central

    Mohseni, Simin; Aghayan, Mahdi; Ghorani-Azam, Adel; Behdani, Mohammad; Asoodeh, Ahmad

    2014-01-01

    So far, the antibacterial activity of some organic and inorganic compounds has been studied. Barium zirconate titanate [Ba(ZrxTi1-x)O3] (x = 0.05) nanoparticle is an example of inorganic materials. In vitro studies have provided evidence for the antibacterial activity of this nanoparticle. In the current study, the nano-powder was synthesized by sol-gel method. X-ray diffraction showed that the powder was single-phase and had a perovskite structure at the calcination temperature of 1000 °C. Antibacterial activity of the desired nanoparticle was assessed on two gram-positive (Staphylococcus aureus PTCC1431 and Micrococcus luteus PTCC1625) and two gram-negative (Escherichia coli HP101BA 7601c and clinically isolated Klebsiella pneumoniae) bacteria according to Radial Diffusion Assay (RDA). The results showed that the antibacterial activity of BZT nano-powder on both gram-positive and gram-negative bacteria was acceptable. The minimum inhibitory concentration of this nano-powder was determined. The results showed that MIC values for E. coli, K. pneumoniae, M. luteus and S. aureus were about 2.3 μg/mL, 7.3 μg/mL, 3 μg/mL and 12 μg/mL, respectively. Minimum bactericidal concentration (MBC) was also evaluated and showed that the growth of E. coli, K. pneumoniae, M. luteus and S. aureus could be decreased at 2.3, 14, 3 and 18 μg/mL of BZT. Average log reduction in viable bacteria count in time-kill assay ranged between 6 Log10 cfu/mL to zero after 24 h of incubation with BZT nanoparticle. PMID:25763046

  6. Kinetic analysis of barium currents in chick cochlear hair cells.

    PubMed Central

    Zidanic, M; Fuchs, P A

    1995-01-01

    Inward barium current (IBa) through voltage-gated calcium channels was recorded from chick cochlear hair cells using the whole-cell clamp technique. IBa was sensitive to dihydropyridines and insensitive to the peptide toxins omega-agatoxin IVa, omega-conotoxin GVIa, and omega-conotoxin MVIIC. Changing the holding potential over a -40 to -80 mV range had no effect on the time course or magnitude of IBa nor did it reveal any inactivating inward currents. The activation of IBa was modeled with Hodgkin-Huxley m2 kinetics. The time constant of activation, tau m, was 550 microseconds at -30 mV and gradually decreased to 100 microseconds at +50 mV. A Boltzmann fit to the activation curve, m infinity, yielded a half activation voltage of -15 mV and a steepness factor of 7.8 mV. Opening and closing rate constants, alpha m and beta m, were calculated from tau m and m infinity, then fit with modified exponential functions. The H-H model derived by evaluating the exponential functions for alpha m and beta m not only provided an excellent fit to the time course of IBa activation, but was predictive of the time course and magnitude of the IBa tail current. No differences in kinetics or voltage dependence of activation of IBa were found between tall and short hair cells. We conclude that both tall and short hair cells of the chick cochlea predominantly, if not exclusively, express noninactivating L-type calcium channels. These channels are therefore responsible for processes requiring voltage-dependent calcium entry through the basolateral cell membrane, such as transmitter release and activation of Ca(2+)-dependent K+ channels. PMID:7787021

  7. Electrical properties of niobium doped barium bismuth-titanate ceramics

    SciTech Connect

    Bobić, J.D.; Vijatović Petrović, M.M.; Banys, J.; Stojanović, B.D.

    2012-08-15

    Highlights: ► Pure and doped BaBi{sub 4}Ti{sub 4}O{sub 15} were prepared via the solid-state reaction method. ► The grain size was suppressed in Nb-doped samples. ► The diffuseness of the dielectric peak increased with dopant concentration. ► Niobium affected on relaxor behavior of barium bismuth titanate ceramics. ► The conductivity change was noticed in doped samples. -- Abstract: BaBi{sub 4}Ti{sub 4–5/4x}Nb{sub x}O{sub 15} (BBNTx, x = 0, 0.05, 0.15, 0.30) ceramics have been prepared by solid state method. XRD data indicate the formation of single-phase-layered perovskites for all compositions. SEM micrographs suggest that the grain size decreases with Nb doping. The effect of niobium doping on the dielectric and relaxor behavior of BaBi{sub 4}Ti{sub 4}O{sub 15} ceramics was investigated in a wide range of temperatures (20–777 °C) and frequencies (1.21 kHz to 1 MHz). Nb doping influences T{sub c} decrease as well as the decrease of dielectric permittivity at Curie temperature. At room temperature, undoped BaBi{sub 4}Ti{sub 4}O{sub 15} exhibits dielectric constant of ∼204 at 100 kHz, that slightly increases with Nb doping. The conductivity of BBNT5 ceramics is found to be lower than that of other investigated compositions. The value of activation energy of σ{sub DC} was found to be 0.89 eV, 1.01 eV, 0.93 eV and 0.71 eV for BBT, BBNT5, BBNT15 and BBNT30, respectively.

  8. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    SciTech Connect

    Gray, R. O.; McGahee, C. E.; Griffin, R. E. M.; Corbally, C. J. E-mail: cmcgahe@g.clemson.edu E-mail: corbally@as.arizona.edu

    2011-05-15

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  9. Comment on "The shape and composition of interstellar silicate grains"

    SciTech Connect

    Bradley, J P; Ishii, H

    2007-09-27

    In the paper entitled 'The shape and composition of interstellar silicate grains' (A & A, 462, 667-676 (2007)), Min et al. explore non-spherical grain shape and composition in modeling the interstellar 10 and 20 {micro}m extinction features. This progression towards more realistic models is vitally important to enabling valid comparisons between dust observations and laboratory measurements. Min et al. proceed to compare their model results with GEMS (glass with embedded metals and sulfides) from IDPs (interplanetary dust particles) and to discuss the nature and origin of GEMS. Specifically, they evaluate the hypothesis of Bradley (1994) that GEMS are interstellar (IS) amorphous silicates. From a comparison of the mineralogy, chemical compositions, and infrared (IR) spectral properties of GEMS with their modeling results, Min et al. conclude: 'GEMS are, in general, not unprocessed leftovers from the diffuse ISM'. This conclusion is based, however, on erroneous and incomplete GEMS data. It is important to clarify first that Bradley (1994) never proposed that GEMS are unprocessed leftovers from the diffuse ISM, nor did he suggest that individual subnanogram mass GEMS are a representative sampling of the enormous mass of silicates in the diffuse ISM. Bradley (1994) simply showed that GEMS properties are consistent with those of IS amorphous silicates. It is widely accepted that circumstellar outflows are important sources of IS silicates, and whether GEMS are processed or not, the circumstellar heritage of some has been rigorously confirmed through measurements of non-solar oxygen (O) isotope abundances (Messenger et al., 2003; Floss et al., 2006). Keller et al. (2000) assert that even GEMS without detectable O isotope anomalies are probably also extrasolar IS silicates because they are embedded in carbonaceous material with non-solar D/H isotopic composition. (Much of the silicate dust in the ISM may be isotopically homogenized (Zhukovska et al., 2007)). Recent

  10. Reverse microemulsion-mediated synthesis and structural evolution of barium hexaaluminate nanoparticles

    SciTech Connect

    Zarur, A.J.; Hwu, H.H.; Ying, J.Y.

    2000-04-04

    Nanocrystalline barium hexaaluminate has been successfully synthesized through the use of a reverse microemulsion as a medium for controlled hydrolysis and polycondensation of barium and aluminum alkoxides. The nanoparticles derived were characterized with electron microscopy, X-ray diffraction, and nitrogen adsorption analysis. This novel material possessed a well-defined particle morphology and an ultrahigh surface area, and exhibited excellent catalytic performance in methane combustion. Its structural evolution was found to be strongly dependent on synthesis parameters, such as water/alkoxide ratio and aging period. Powder recovery and drying techniques also had an important impact on particle agglomeration and structural development. Through the unique synthesis approach described, barium hexaaluminate with superb thermal stability was achieved, with surface areas in excess of 100 m{sup 2}/g retained even after calcination at 1,300 C.

  11. Changes in the Small Intestine of a Cat Associated with Barium Sulphate Following Contrast Radiography.

    PubMed

    Igarashi, H; Oishi, M; Ohno, K; Tsuboi, M; Irie, N; Uchida, K; Tsujimoto, H

    2016-01-01

    A 7-year-old neutered male domestic short-haired cat that had undergone contrast radiography of the bowel with barium sulphate after acute episodes of vomiting 2 months previously, was presented with chronic vomiting, anorexia and weight loss. Abdominal radiography and ultrasonography revealed residual contrast enhancement and an obstruction of the small intestine. A contracted and stenosed ileum and distal jejunum were identified by exploratory laparotomy and surgically resected; subsequently, the clinical signs resolved. Histopathological examination of the ileum revealed mucosal ulceration with severe submucosal granulation tissue formation associated with scattered foreign crystalline material. Energy-dispersive X-ray spectroscopy revealed that the crystals contained barium sulphate. This is the first report in animals of the rare complication of barium sulphate incorporation into the gastrointestinal mucosa after contrast radiography. PMID:26997652

  12. The review of various synthesis methods of barium titanate with the enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    More, S. P.; Topare, R. J.

    2016-05-01

    The Barium Titanate is a very well known dielectric ceramic belongs to perovskite structure. It has very wide applications in the field of electronic, electro ceramic, electromechanical and electro-optical applications. Barium Titanate has very high dielectric constant as well as low dielectric loss. Substituted dielectrics are one of the most important technological compounds in modern electro ceramics. Its electrical properties can be tuned flexibly by a simple substitution technique. This has encouraged researchers to select a typical cation to be substituted at cationic sites. In the present paper, the review of various synthesis methods of Barium Titanate compound with the effect of different dopants, the grain size on the dielectric properties at various temperatures is discussed.

  13. Improved chemical stability and conductivity of barium cerate nanopowders by Lanthanum doping.

    PubMed

    Lee, Hunhyeong; Park, Inyu; Shin, Dongwook

    2013-09-01

    Despite of the highest proton conductivity, barium cerate electrolytes are well known for the deficiency of chemical stability at elevated temperature under CO2 atmosphere. This work is focused on improving chemical stability of lanthanum doped barium cerate (BCL) powder for electrolyte. Although lanthanum doping causes distortion of perovskite structure lattice, immoderate doping could stabilize structure due to increasing symmetry of structure lattices. The thermogravimetric analysis and AC impedance measurements revealed that the lanthanum doping suppresses the reaction between barium and carbonate and this effect results in sufficient improvement in ionic conductivity in operating temperatures range. It was confirmed that BaCe0.7La0.3O3-delta (BCL30) was the most stable composition and the conductivity of BCL30 is high as 3.8 S x cm(-1) x K at 700 degrees C. PMID:24205607

  14. Barium isotopes in individual presolar silicon carbide grains from the Murchison meteorite.

    SciTech Connect

    Savina, M. R.; Davis, A. M.; Tripa, C. E.; Pellin, M. J.; Clayton, R. N.; Lewis, R. S.; Amari, S.; Gallino, R.; Lugaro, M.; Univ. of Chicago; Washington Univ.; Univ. di Torino; Cambridge Univ.

    2003-09-01

    Barium isotopic compositions of single 2.3-5.3 {mu}m presolar SiC grains from the Murchison meteorite were measured by resonant ionization mass spectrometry. Mainstream SiC grains are enriched in s-process barium and show a spread in isotopic composition from solar to dominantly s-process. In the relatively coarse grain size fraction analyzed, there are large grain-to-grain variations of barium isotopic composition. Comparison of single grain data with models of nucleosynthesis in asymptotic giant branch (AGB) stars indicates that the grains most likely come from low mass carbon-rich AGB stars (1.5 to 3 solar masses) of about solar metallicity and with approximately solar initial proportions of r- and s-process isotopes. Measurements of single grains imply a wide variety of neutron-to-seed ratios, in agreement with previous measurements of strontium, zirconium and molybdenum isotopic compositions of single presolar SiC grains.

  15. Solid solution barium-strontium chlorides with tunable ammonia desorption properties and superior storage capacity

    NASA Astrophysics Data System (ADS)

    Bialy, Agata; Jensen, Peter B.; Blanchard, Didier; Vegge, Tejs; Quaade, Ulrich J.

    2015-01-01

    Metal halide ammines are very attractive materials for ammonia absorption and storage-applications where the practically accessible or usable gravimetric and volumetric storage densities are of critical importance. Here we present, that by combining advanced computational materials prediction with spray drying and in situ thermogravimetric and structural characterization, we synthesize a range of new, stable barium-strontium chloride solid solutions with superior ammonia storage densities. By tuning the barium/strontium ratio, different crystallographic phases and compositions can be obtained with different ammonia ab- and desorption properties. In particular it is shown, that in the molar range of 35-50% barium and 65-50% strontium, stable materials can be produced with a practically usable ammonia density (both volumetric and gravimetric) that is higher than any of the pure metal halides, and with a practically accessible volumetric ammonia densities in excess of 99% of liquid ammonia.

  16. Phase transition studies in barium and strontium titanates at microwave frequencies

    NASA Technical Reports Server (NTRS)

    Dahiya, Jai N.

    1993-01-01

    The objectives were the following: to understand the phase transformations in barium and strontium titanates as the crystals go from one temperature to the other; and to study the dielectric behavior of barium and strontium titanate crystals at a microwave frequency of 9.12 GHz and as a function of temperature. Phase transition studies in barium and strontium titanate are conducted using a cylindrical microwave resonant cavity as a probe. The cavity technique is quite successful in establishing the phase changes in these crystals. It appears that dipole relaxation plays an important role in the behavior of the dielectric response of the medium loading the cavity as phase change takes place within the sample. The method of a loaded resonant microwave cavity as applied in this work has proven to be sensitive enough to monitor small phase changes of the cavity medium.

  17. Plasma irregularities caused by cycloid bunching of the CRRES G-2 barium release

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Pongratz, M. B.; Simons, D. J.; Wolcott, J. H.

    1993-01-01

    The Combined Release and Radiation Effects Satellite (CRRES) spacecraft carried a number of barium thermite canisters for release into the upper atmosphere. The barium release labeled G-2 showed evidence of curved irregularities not aligned with the ambient magnetic field B. The newly discovered curved structures can be explained by a process called cycloid bunching. Cycloid bunching occurs when plasma is created by photoionization of a neutral cloud injected at high velocity perpendicular to B. If the injection velocity is much larger than the expansion speed of the cloud, the ion trail will form a cycloid that has irregularities spaced by the product of the perpendicular injection speed and the ion gyroperiod, Images of the solar-illuminated barium ions are compared with the results of a three-dimensional kinetic simulation. Cycloid bunching is shown to be responsible for the rapid generation of both curved and field-aligned irregularities in the CRRES G-2 experiment.

  18. Prompt ionization in the CRIT II barium releases. [Critical Ionization Tests

    NASA Technical Reports Server (NTRS)

    Torbert, R. B.; Kletzing, C. A.; Liou, K.; Rau, D.

    1992-01-01

    Observations of electron and ion distributions inside a fast neutral barium jet in the ionosphere show significant fluxes within 4 km of release, presumably related to beam plasma instability processes involved in the Critical Ionization Velocity (CIV) effect. Electron fluxes exceeding 5 x 10 exp 12/sq cm-str-sec-keV were responsible for ionizing both the streaming barium and ambient oxygen. Resulting ion fluxes seem to be consistent with 1-2 percent ionization of the fast barium, as reported by optical observations, although the extended spatial distribution of the optically observed ions is difficult to reconcile with the in situ observations. When the perpendicular velocity of the neutrals falls below critical values, these processes shut off. Although these observations resemble the earlier Porcupine experimental results (Haerendel, 1982), theoretical understanding of the differences between these data and that of earlier negative experiments is still lacking.

  19. Observation and theory of the barium releases from the CRRES satellite

    NASA Technical Reports Server (NTRS)

    Bernhardt, P. A.; Huba, J. D.; Scales, W. A.; Wescott, E. M.; Stenbaek-Nielsen, H. C.

    1992-01-01

    The relationship between releases of barium from the NASA Combined Release and Radiation Effects Satellite (CRRES) and enhanced auroral activity is discussed with reference to observational data. Barium releases were conducted at a variety of altitudes and injection velocities, and plasma irregularities are reported as a result of the interactions. Auroral activity increased within 5 min of each release, and references are made to the effects on diamagnetic cavities, bulk ion motion, and stimulated electron and ion precipitation. Artificially created structured diamagnetic cavities are noted for each release, plasma waves are generated by the high-speed ion clouds, and enhanced ionization is found in the critical ionization-velocity process. Barium releases are effective in stimulating electron precipitation, and the observed irregularities are related to cycloid bunching of the initial ion distributions.

  20. Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis

    SciTech Connect

    Bowland, Christopher C.; Zhou, Zhi; Malakooti, Mohammad H.; Sodano, Henry A.

    2015-06-01

    We report on the development of a hydrothermal synthesis procedure that results in the growth of highly aligned arrays of high aspect ratio barium titanate nanowires. Using a multiple step, scalable hydrothermal reaction, a textured titanium dioxide film is deposited on titanium foil upon which highly aligned nanowires are grown via homoepitaxy and converted to barium titanate. Scanning electron microscope images clearly illustrate the effect the textured film has on the degree of orientation of the nanowires. The alignment of nanowires is quantified by calculating the Herman's Orientation Factor, which reveals a 58% improvement in orientation as compared to growth in the absence of the textured film. The ferroelectric properties of barium titanate combined with the development of this scalable growth procedure provide a powerful route towards increasing the efficiency and performance of nanowire-based devices in future real-world applications such as sensing and power harvesting.

  1. Characterization, sintering and dielectric properties of nanocrystalline barium titanate synthesized through a modified combustion process

    SciTech Connect

    George, C.N.; Thomas, J.K. Kumar, H.P.; Suresh, M.K.; Kumar, V.R.; Wariar, P.R.S.; Jose, R.; Koshy, J.

    2009-04-15

    Nanocrystalline barium titanate has been synthesized through a modified combustion process in a single step for the first time. The as-prepared barium titanate powder is cubic perovskite with lattice constant a = 4.018 A. The phase purity of the nanopowder was examined using thermo gravimetric analysis, differential thermal analysis and Fourier transform infrared spectroscopy. Transmission electron microscopic investigations have shown that the particle size of the as-prepared powder is in the range 20-40 nm. The agglomerate size distribution of the as-prepared powder was studied using atomic force microscopy. The nanoparticles of barium titanate were sintered to 97% of the theoretical density at a temperature of 1350 deg. C for 3 h. The microstructure of the sintered surface was examined using scanning electron microscopy. The dielectric constant and loss factor of the sintered pellets at 1 MHz measured at room temperature were 1223 and 3.5 x 10{sup -3} respectively.

  2. Spectroscopy of Ba and Ba+ deposits in solid xenon for barium tagging in nEXO

    NASA Astrophysics Data System (ADS)

    Mong, B.; Cook, S.; Walton, T.; Chambers, C.; Craycraft, A.; Benitez-Medina, C.; Hall, K.; Fairbank, W.; Albert, J. B.; Auty, D. J.; Barbeau, P. S.; Basque, V.; Beck, D.; Breidenbach, M.; Brunner, T.; Cao, G. F.; Cleveland, B.; Coon, M.; Daniels, T.; Daugherty, S. J.; DeVoe, R.; Didberidze, T.; Dilling, J.; Dolinski, M. J.; Dunford, M.; Fabris, L.; Farine, J.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Giroux, G.; Gornea, R.; Graham, K.; Gratta, G.; Heffner, M.; Hughes, M.; Jiang, X. S.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Moore, D.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Retiere, F.; Rowson, P. C.; Rozo, M. P.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Twelker, K.; Vuilleumier, J.-L.; Walton, J.; Weber, M.; Wen, L. J.; Wichoski, U.; Yang, L.; Yen, Y.-R.; Zhao, Y. B.; nEXO Collaboration

    2015-02-01

    Progress on a method of barium tagging for the nEXO double beta decay experiment is reported. Absorption and emission spectra for deposits of barium atoms and ions in solid xenon matrices are presented. Excitation spectra for prominent emission lines, temperature dependence, and bleaching of the fluorescence reveal the existence of different matrix sites. A regular series of sharp lines observed in Ba+ deposits is identified with some type of barium hydride molecule. Lower limits for the fluorescence quantum efficiency of the principal Ba emission transition are reported. Under current conditions, an image of fewer than or equal to 104 Ba atoms can be obtained. Prospects for imaging single Ba atoms in solid xenon are discussed.

  3. Preparation and Insulation Properties of Epoxy-Layered Silicate Nanocomposite

    NASA Astrophysics Data System (ADS)

    Imai, Takahiro; Sawa, Fumio; Ozaki, Tamon; Nakano, Toshiyuki; Shimizu, Toshio; Yoshimitsu, Tetsuo

    Recent rapid progress in nanotechnology has focused research and development efforts on new high performance materials. Organic-inorganic hybrid materials such as nylon-layered silicate nanocomposites have attracted special interest and various studies continue to be conducted on thermoplastic resins. In this study, we found out the best organic modifier of layered silicate that contributed to an affinity for epoxy resin (thermosetting resin), and succeeded in creating an intercalated-type epoxy-layered silicate nanocomposite. This nanocomposite realized some improvements by the addition of 5 or 6 weight percentage of organically modified layered silicates, which have 20oC higher thermal resistance, 60% higher fracture toughness, 19% higher flexural strength and 10% higher insulation breakdown strength than these of an epoxy resin without layered silicate fillers. An electrical treeing growth was observed in the nanocomposite. The electrical treeing progress with many branches in the nanocomposite seemed to result in an increase in the insulation breakdown strength. These results suggest the possibility of practical use as an insulating material in heavy apparatuses.

  4. Behavior of Np(VII, VI, V) in Silicate Solutions

    SciTech Connect

    Shilov, V P.; Fedoseev, A M.; Yusov, A B.; Delegard, Calvin H.

    2004-11-30

    Spectrophotometric methods were used to investigate the properties of neptunium(VII), (VI), and (V) in silicate solution. The transition of cationic neptunium(VII) to anionic species in non-complexing environments proceeds in the range of ?? 5.5 to 7.5. In the presence of carbonate, this transition occurs at ?? 10.0 to 11.5 and in silicate solutions at ?? 10.5-12.0. These findings show that cationic neptunium(VII) forms complexes with both carbonate and silicate and that the silicate complex is stronger than that of the carbonate. The competition of complex formation reactions for neptunium(VI) with carbonate and silicate and on the known complex stability constant of NpO2(CO3)34- allowed the NpO2SiO3 complex stability constant, log ? = 16.5, to be estimated. Determination of the formation constant of Np(V) complexes with SiO32- was not possible using similar methods.

  5. Source of silicate and carbonate cements during deep burial diagenesis

    SciTech Connect

    Dutta, P.K.

    1986-05-01

    Detrital silicate minerals and silicate cements (formed during shallow burial) of siliciclastic sandstones commonly dissolve during deep burial diagenesis. Quartz, feldspars, mica, and garnet among detrital silicate minerals, and quartz and kaolinite among authigenic silicate minerals show extensive dissolution features during deep burial diagenesis of siliciclastic sandstones of the Gondwana Supergroup, India. No dissolution features were observed in zircon, tourmalene, and rutile among detrital minerals or in chlorite and smectite among early formed authigenic minerals. Dissolution enriched the pore fluids in silica, potassium, sodium, calcium, magnesium, iron, and aluminum. Authigenic cements formed during this stage are illite, quartz, feldspar, iron oxide, and carbonates of calcium, magnesium, and iron. Mass-balance calculations show that the source of all silicate cements formed during deep burial diagenesis was internally derived from the dissolution of both detrital and early formed authigenic cements. However, a considerable gap exists between the amounts of cations (calcium, magnesium, and iron) derived internally and the respective amounts of these cations needed to form the various carbonate cements at this stage. Therefore, an outside source for these cations is needed to explain the formation of carbonate cements. A large mass transfer of cations from outside the sediment source seems remote since ground-water movement, which probably carried cement from an external source, is extremely restricted at great burial depths. Therefore, carbonate cements may have been major constituents during shallow burial diagenesis in Gondwana sandstones. Subsequently, these early formed carbonates were completely dissolved and remobilized as late-stage carbonate cement.

  6. Properties of cometary crystalline silicate before and after perihelion passage

    NASA Astrophysics Data System (ADS)

    Ootsubo, Takafumi

    2013-01-01

    Crystalline silicate is sometimes observed in comets as an 11.3-micron resonant emission feature, and may be used for probing the early solar nebula. Because the formation of the crystalline silicate requires high temperature, they are thought to be born from amorphous silicate at the inner region, and then transported toward the outer regions where comets were born. This transportation can produce the difference in the crystalline fraction in the cometary silicate dust between two dynamical types of comets, Oort-cloud comets (OCs) and Ecliptic comets (ECs), due to the different heliocentric distances of their birth places. The study of peak wavelengths in crystalline features is important to investigate the conditions of the crystalline silicate formation as well. Thus far, we don't have enough OC samples, while we have observed several ECs. Fortunately, we can observe three comets in this semester. In particular, C/2012 S1 (ISON) is a bright sungrazing comet, and we might expect possible splitting and exposing of pristine materials inside the nucleus after its perihelion passage. Observations at pre- and post-perihelion provide us precious information on the dust evolution of the comet. The comet C/2012 S1 (ISON), along with two other comets, is an unparalleled target for this study.

  7. Heterogeneous Nucleation of Protein Crystals on Fluorinated Layered Silicate

    PubMed Central

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  8. Heterogeneous nucleation of protein crystals on fluorinated layered silicate.

    PubMed

    Ino, Keita; Udagawa, Itsumi; Iwabata, Kazuki; Takakusagi, Yoichi; Kubota, Munehiro; Kurosaka, Keiichi; Arai, Kazuhito; Seki, Yasutaka; Nogawa, Masaya; Tsunoda, Tatsuo; Mizukami, Fujio; Taguchi, Hayao; Sakaguchi, Kengo

    2011-01-01

    Here, we describe an improved system for protein crystallization based on heterogeneous nucleation using fluorinated layered silicate. In addition, we also investigated the mechanism of nucleation on the silicate surface. Crystallization of lysozyme using silicates with different chemical compositions indicated that fluorosilicates promoted nucleation whereas the silicates without fluorine did not. The use of synthesized saponites for lysozyme crystallization confirmed that the substitution of hydroxyl groups contained in the lamellae structure for fluorine atoms is responsible for the nucleation-inducing property of the nucleant. Crystallization of twelve proteins with a wide range of pI values revealed that the nucleation promoting effect of the saponites tended to increase with increased substitution rate. Furthermore, the saponite with the highest fluorine content promoted nucleation in all the test proteins regardless of their overall net charge. Adsorption experiments of proteins on the saponites confirmed that the density of adsorbed molecules increased according to the substitution rate, thereby explaining the heterogeneous nucleation on the silicate surface. PMID:21818343

  9. Barium hydrogen phosphate/gelatin composites versus gelatin-free barium hydrogen phosphate: synthesis and characterization of properties.

    PubMed

    Gashti, Mazeyar Parvinzadeh; Burgener, Matthias; Stir, Manuela; Hulliger, Jürg

    2014-10-01

    Recently, attention has been spent on crystal growth of phosphate compounds in gels for studying the mechanism of in vitro crystallization processes. Here, we present a gel-based approach for the synthesis of barium hydrogen phosphate (BHP) crystals using single and double diffusion techniques in gelatin. The composite crystals were compared with analytical grade BHP powder, single and polycrystalline BHP materials using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), scanning pyroelectric microscopy (SPEM), optical microscopy (OM), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD). FTIR spectra showed surface adsorption of gelatin molecules by using BHP stacked sheets due to CH2 stretching, CH2 bending and amide I vibrations are found in a gelatin content of about 2% determined by dissolution. SEM shows various crystal morphologies of the BHP/gelatin composites forming bundled micro-flakes to irregular bundled needles and spheres different from gel-free crystals. The variety in morphology depends on the ion concentration, pH of gel as well as the method of crystal growth. SPEM investigation of BHP/gelatin aggregates revealed polar domains showing alteration of the polarization. Moreover, BHP/gelatin composite crystals showed a higher thermal stability in comparison with analytical grade BHP or/and BHP single crystals due to strong interactions between gelatin and BHP. The XRD diffraction analysis demonstrated that the single and double diffusion techniques in gelatin led to the formation of orthorhombic BHP. This study demonstrates that gelatin is a useful high molecular weight biomacromolecule for controlling the crystallization of a composite material by producing a variety of morphological forms. PMID:24996024

  10. Meteorological support to the West German-United States Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Westfall, R. R.; Chamberlain, L. W.

    1972-01-01

    The objective of the Barium Ion Cloud Project was to study a barium ionized cloud released at an altitude of 5 earth radii. Accurate forecasting of weather conditions to prevail during the experiment period was critical to the project success. Good seeing conditions were required at all optical sites during the experiment. All meteorological support was the responsibility of the National Weather Service at Wallops Station, Virginia. Preliminary results confirm the scientists' theories of the magnetic fields and the existence of electric fields in the magnetosphere.

  11. Physical states and properties of barium titanate films in a plane electric field

    NASA Astrophysics Data System (ADS)

    Shirokov, V. B.; Kalinchuk, V. V.; Shakhovoi, R. A.; Yuzyuk, Yu. I.

    2016-07-01

    The influence of a plane electric field on the phase states of barium titanate thin films under the conditions of forced deformation has been studied. The field dependence of a complete set of material constants has been taken in the region of the c-phase, where polarization losses are absent. The material constants are calculated using equations of the piezoelectric effect derived by linearizing the nonlinear equations of state from the phenomenological; theory for barium titanate. It has been shown that there is a critical value of the field at which the electromechanical coupling coefficient reaches a maximum.

  12. The structural properties of barium cobalt hexaferrite powder prepared by a simple heat treatment method

    NASA Astrophysics Data System (ADS)

    Chauhan, Chetna; Jotania, Rajshree

    2016-05-01

    The W-type barium hexaferrite was prepared using a simple heat treatment method. The precursor was calcinated at 650°C for 3 hours and then slowly cooled to room temperature in order to obtain barium cobalt hexaferrite powder. The prepared powder was characterised by different experimental techniques like XRD, FTIR and SEM. The X-ray diffractogram of the sample shows W-and M phases. The particle size calculated by Debye Scherrer formula. The FTIR spectra of the sample was taken at room temperature by using KBr pallet method which confirms the formation of hexaferrite phase. The morphological study on the hexaferrite powder was carried out by SEM analysis.

  13. Calcium barium niobate as a functional material for broadband optical frequency conversion.

    PubMed

    Sheng, Yan; Chen, Xin; Lukasiewicz, Tadeusz; Swirkowicz, Marek; Koynov, Kaloian; Krolikowski, Wieslaw

    2014-03-15

    We demonstrate the application of as-grown calcium barium niobate (CBN) crystal with random-sized ferroelectric domains as a broadband frequency converter. The frequency conversion process is similar to broadband harmonic generation in commonly used strontium barium niobate (SBN) crystal, but results in higher conversion efficiency reflecting a larger effective nonlinear coefficient of the CBN crystal. We also analyzed the polarization properties of the emitted radiation and determined the ratio of d32 and d33 components of the second-order susceptibility tensor of the CBN crystal. PMID:24690779

  14. Magnetic properties of barium ferrite dispersed within polystyrene-butadiene-styrene block copolymers.

    PubMed

    Chipara, M; Skomski, R; Ali, N; Hui, D; Sellmyer, D J

    2009-06-01

    Magnetic properties of nanocomposite materials obtained by dispersing barium ferrite nanoparticles within polystyrene-butadiene-styrene block copolymer, in the temperature range, 300 to 500 K are reported. The temperature dependence of the magnetization at saturation, averaged uniaxial magnetocrystalline anisotropy, and coercive field of thick films are analyzed. A "matrix effect" was noticed within the glass transition range of the hard component (polystyrene) of the polymeric matrix. The reported modifications of the magnetic properties were assigned to the competition between the magnetic and mechanical reorientation of nanoparticles within the polymeric matrix. Such modifications were not observed in barium ferrite dispersed in cement. PMID:19504902

  15. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  16. Physical Property of Magnesium Doped Barium Hexaferrite Particles By Citrate Precursor Route In Presence Of Surfactants

    SciTech Connect

    Paladiya, Snehal; Chauhan, C. C.; Jotania, R. B.

    2010-12-01

    M-type Barium Magnesium hexaferrite with the composition BaMg{sub 2}Fe{sub 10}O{sub 19} was successfully prepared with and without surfactant by using a citrate precursor route. The obtained precursors were calcined at various temperatures. The crystalline structure, phase analysis and particle size were investigated by using X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) techniques. It is observed that the surfactant addition controls the microstructure of the formed Barium Magnesium hexaferrite particles and the type of surfactant plays a crucial role in deciding the morphology of particles.

  17. Electric field-induced softening of alkali silicate glasses

    NASA Astrophysics Data System (ADS)

    McLaren, C.; Heffner, W.; Tessarollo, R.; Raj, R.; Jain, H.

    2015-11-01

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  18. Origin of silicic magma in Iceland revealed by Th isotopes

    SciTech Connect

    Sigmarsson, O.; Condomines, M. ); Hemond, C. ); Fourcade, S. ); Oskarsson, N. )

    1991-06-01

    Th, Sr, Nd, and O isotopes have been determined in a suite of volcanic rocks from Hekla and in a few samples from Askja and Krafla volcanic centers in Iceland. Although {sup 87}Sr/{sup 86}Sr and {sup 143}Nd/{sup 144}Nd ratios are nearly the same for all compositions at Hekla, the ({sup 230}Th/{sup 232}Th) ratios differ and thus clearly show that the silicic rocks cannot be derived from fractional crystallization of a more primitive magma. Similar results are obtained for the Krafla and Askja volcanic centers, where the {delta}{sup 18}O values are much lower in the silicic magma than in the mafic magma. These data suggest that large volumes of silicic rocks in central volcanoes of the neovolcanic zones in Iceland are produced by partial melting of the underlying crust.

  19. The Elga meteorite - Silicate inclusions and shock metamorphism

    NASA Astrophysics Data System (ADS)

    Osadchii, E. G.; Novikov, G. V.; Baryshnikova, G. V.

    The present investigation is concerned with the silicate inclusions in the Elga meteorite which was found in Yakutia in 1959. Microscopic studies of the silicate inclusions indicate five distinct types with respect to structure, mineralogy, and petrology. Most of the silicate inclusions in the Elga meteorite contain nearly equal amounts of clinopyroxene and K-Na feldspar. The transparent minerals are considered, taking into account K-Na feldspar, alkali glasses, clinopyroxene, orthopyroxene, olivine, whitlockite, fluorapatite, phosphate glasses, tridymite, and rutile. Opaque minerals and alloys found include schreibersite, Fe-Ni-P alloy, Fe-Ni-P-S alloy, troilite, magnetite, and chromite. Structural characteristics related to impact melting are investigated. The mineralogy and structure of the Elga meteorite are found to indicate that it must have had at least two impact events of different intensity early in its history.

  20. FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES

    SciTech Connect

    Jing Dapeng; He Jiao; Vidali, Gianfranco; Brucato, John Robert; Tozzetti, Lorenzo; De Sio, Antonio

    2012-09-01

    Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

  1. Redox equilibria of multivalent ions in silicate glasses

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Morris, R. V.

    1977-01-01

    Experimental studies were made on the compositional dependence of the redox equilibrium of Eu in synthetic silicate liquids, together with an empirical model describing the observed compositional dependence. Electron paramagnetic resonance (EPR) was used to measure the concentration ratio of Eu(2+) to Eu(3+) in various glasses formed by rapidly quenching silicate liquids. The compositional field studied comprised mixtures of SiO2, TiO2, Al2O3, CaO, MgO, and Na2O. The proposed model describes the Eu(2+)/Eu(3+) ratio over the entire compositional field in terms of parameters easily related to each glass composition. The general applicability and utility of the model is further demonstrated by its application to the Fe(2+)-Fe(3+), Ce(3+)-Ce(4+), and Cr(3+)-Cr(6+) redox reactions in binary alkali oxide silicate glasses of Li, Na, and K.

  2. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  3. Characterization of silicate based cathodes for Li Ion Batteries

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Nazri, Gholam-Abbas; Nazri, Maryam; Nail, Vaman; Vaishnava, Prem; Naik, Ratna; Energy Group Collaboration; Energy Group Collaboration; Energy Group Collaboration

    2013-03-01

    The silicate compounds Li2MSiO4, where M = Mn, Fe, Co and Ni have gained interest as electrode materials for Lithium ion batteries due to their high theoretical capacity (>330mAh/g), high thermal stability due to strong Si-O covalent bonds, environmental friendliness, and low cost. However, these materials intrinsically have low electrical conductivity. To improve conductivity of these classes of electrode materials, we synthesized Li2MnSiO4 and Li2FeSiO4 by solid state reaction in an argon atmosphere. The lithium transition metal silicates were compounded with graphene nano-sheets and the composites were used as positive electrode in a coin cell configuration.. The materials structure-composition, morphology, conductivity and electrochemical performance were characterized by XRD, XPS, SEM, TEM and electrochemical techniques.The detail structure-composition analysis and electrochemical performance of the silicate electrodes will be reported.

  4. Treatability of manganese by sodium silicate and chlorine

    SciTech Connect

    Robinson, F.B.; Ronk, S.K. )

    1987-11-01

    Manganese sequestering by nearly simultaneous additions of sodium silicate and sodium hypochlorite was studied in laboratory-prepared waters. Under conditions of near-neutral pH and 150-250 mg/liter of alkalinity as CaCO{sub 3}, 1-2 mg manganese/liter could be sequestered for up to one day. Less effective manganese treatability was found at pH 8 than at pH 7. Additionally, at pH 7 the best results were obtained when neither silicate nor hypochlorite was added because of the slow manganese oxidation rate by oxygen alone. Aging of diluted stock silicate solutions prior to dosing also resulted in poor treatment; the presence of background silica increased the treatment effectiveness only slightly. Overall, manganese was less treatable by this method than iron under the same treatment conditions.

  5. Composition of the Silicates around Evolved Stars and Protostars

    NASA Astrophysics Data System (ADS)

    Demyk, K.; Dartois, E.; Wiesemeyer, H.; Jones, A.; D'Hendecourt, L.; Jourdain de Muizon, M.; Heras, A. M.

    2000-11-01

    We present a study of the composition of the silicates around five evolved stars and three high-mass protostars. Around evolved stars, the oxygen-rich dust is composed of amorphous olivine, crystalline silicates (enstatite, forsterite, diopside) and some oxides (FeO, Al2O3). Using a radiative transfer code we have modelled the SED of two OH/IR stars. We estimate that the amount of crystalline silicates in these objects is of the order of 20%. Around protostars, the dust is composed of porous pyroxene and/or aluminosilicate grains containing iron oxide. We calculate that at most 1-2% of the dust mass is crystalline. The newly formed dust around evolved stars has a different structure and composition from the old dust found around protostars. This implies that some mechanism, which remains to be found, occurs during the grain lifetime and alters the chemical composition and structure of the grains.

  6. Interaction of silicic acid with sulfurous acid scale inhibitor

    SciTech Connect

    Gallup, D.L.

    1997-12-31

    The solubility of amorphous silica and the inhibition of silica polymerization in the presence of sulfurous acid and sulfite salts has been investigated to 260{degrees}C. Investigations of inhibition of silica scaling from geothermal brines by sulfurous acid have produced unusual results. Bisulfite/sulfite increases amorphous silica solubility by {open_quotes}salting in{close_quotes} effects resulting from apparent complexation. Silica-sulfite complexes are postulated to form via hydrogen bonding, and appear to be much stronger than silica-sulfate complexes. Treatment of brines with sulfurous acid inhibits silica scaling by (1) retarding the kinetics of silicic acid polymerization, and (2) forming soluble sulfito-silicate complexes. Sulfurous acid offers several advantages over sulfuric acid in controlling scale deposition-reduced corrosion potential, reduced by-product scale formation potential, oxygen scavenging and inhibition of certain metal silicate scales.

  7. Energetic Processing of Interstellar Silicate Grains by Cosmic Rays

    SciTech Connect

    Bringa, E M; Kucheyev, S O; Loeffler, M J; Baragiola, R A; Tielens, A G Q M; Dai, Z R; Graham, G; Bajt, S; Bradley, J; Dukes, C A; Felter, T E; Torres, D F; van Breugel, W

    2007-03-28

    While a significant fraction of silicate dust in stellar winds has a crystalline structure, in the interstellar medium nearly all of it is amorphous. One possible explanation for this observation is the amorphization of crystalline silicates by relatively 'low' energy, heavy ion cosmic rays. Here we present the results of multiple laboratory experiments showing that single-crystal synthetic forsterite (Mg{sub 2}SiO{sub 4}) amorphizes when irradiated by 10 MeV Xe{sup ++} ions at large enough fluences. Using modeling, we extrapolate these results to show that 0.1-5.0 GeV heavy ion cosmic rays can rapidly ({approx}70 Million yrs) amorphize crystalline silicate grains ejected by stars into the interstellar medium.

  8. Growth rate controlled barium partitioning in calcite and aragonite

    NASA Astrophysics Data System (ADS)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  9. Rapid ray motions in barium plasma clouds and auroras

    SciTech Connect

    Wescott, E.M.; Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Swift, D.W.; Wallis, D.D. )

    1993-03-01

    Barium plasma clouds released at high latitudes characteristically become striated with many field-aligned rays. The rays which often resemble auroral features usually drift as a whole with the E [times] B/B[sup 2] drift of the cloud and alter position only slowly (order or tens of seconds). On two evenings in 1968, in releases from Andoya, Norway, anomalous field-aligned brightenings or emission enhancements of up to 3X were observed to move rapidly (10-20 km/s) through three different Ba[sup +] clouds. Similar effects were observed in Ba[sup +] clouds released from rockets launched from Poker Flat, Alaska: On March 21, 1973, in two Ba thermite releases and on March 22, 1980, in the Ba-shaped charge experiment Miss Peggy.' On these occasions, auroras on or near the Ba[sup +] L shell, also exhibited active rapid ray motions. This leads to the assumption that the two phenomena are related and the expectation that an explanation of the rapid ray motions in the Ba[sup +] clouds would lead to a better understanding of the physics of auroral ray motions and the auroral ionosphere. Seven possible mechanisms to produce the observed moving emission enhancements are discussed. Direct motion of an isolated Ba[sup +] ray past the other rays by E [times] B/B[sup 2] motion seems very unlikely due to the observed variations in the enhancements and the large E field required (> 500 mV/m). Compressional waves do not seem to be of sufficient amplitude or velocity. Absorption or radiation of Doppler shifted Ba[sup +] emissions by ions gyrating or moving at a few kilometers per second seems to be the most promising mechanism for producing the enhancements. The observations provide compelling evidence for the existence of transient electric fields of order 100 mV/m at altitudes as low as 200 km during active aurora with rapid ray motions. The affected regions have dimensions of order a few kilometers across B and move eastward at 10-20 km/s. 36 refs., 10 figs., 1 tab.

  10. MG Isotopic Measurement of FIB-Isolated Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Nguyen, A.; Ito, M.; Rahman, Z.

    2010-01-01

    The majority of presolar oxide and silicate grains are ascribed to origins in low-mass red giant and asymptotic giant branch (AGB) stars based on their O isotopic ratios. However, a minor population of these grains (< 10%) has O isotopic ratios incompatible with these sources. Two principle alternative sources are higher-than-solar metallicity (Z) stars or, more likely, supernovae (SN) [1-3]. These rare (Group 4) grains [3] are characterized by enrichments in O-18, and typically also enrichments in O-17. An even rarer subset of grains with extremely large enrichments in O-17 and smaller depletions in O-18 were suggested to come from binary star systems [2]. To establish the origins of these isotopically unusual grains, it is necessary to examine isotopic systems in addition to O. Presolar silicates offer several elements diagnostic of their stellar sources and nuclear processes, including O, Si, Mg, Fe and Ca. However, the database for minor element isotopic compositions in silicates is seriously lacking. To date only two silicate grains have been analyzed for Mg [4] or Fe [5]. One major complicating factor is their small size (average 230 nm), which greatly limits the number of measurements that can be performed on any one grain and makes it more difficult to obtain statistically relevant data. This problem is compounded because the grains are identified among isotopically solar silicates, which contribute a diluting signal in isotopic measurements [1]. Thus, relatively small isotopic anomalies are missed due to this dilution effect. By applying focused ion beam (FIB) milling, we obtain undiluted Mg isotopic ratios of isolated rare presolar silicate grains to investigate their sources.

  11. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3). PMID:22233912

  12. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  13. The Lassell Massif - a Silicic Lunar Volcano

    NASA Astrophysics Data System (ADS)

    Ashley, J.; Robinson, M. S.; Stopar, J. D.; Glotch, T. D.; Hawke, B. R.; Lawrence, S. J.; Jolliff, B. L.; Greenhagen, B. T.; Paige, D. A.

    2013-12-01

    Lunar volcanic processes were dominated by mare-producing basaltic extrusions. However, limited occurrences of non-mare, geochemically evolved (Si-enriched) volcanic deposits have long been suspected on the basis of spectral anomalies (red spots), landform morphologies, and the occurrence of minor granitic components in Apollo sample suites [e.g., 1-5]. The LRO Diviner Lunar Radiometer Experiment (Diviner) measured thermal emission signatures considered diagnostic of highly silicic rocks in several red spot areas [6,7], within the Marius domes [8], and from the Compton-Belkovich feature on the lunar farside [9]. The present study focuses on the Lassell massif red spot (14.73°S, 350.97°E) located in northeastern Mare Nubium near the center of Alphonsus A crater. Here we use Diviner coverage co-projected with Lunar Reconnaissance Orbiter Camera (LROC) images [10] and digital elevation models to characterize the Lassell massif geomorphology and composition. Localized Diviner signatures indicating relatively high silica contents correlate with spatially distinct morphologic features across the Lassell massif. These features include sub-kilometer scale deposits with clear superposing relationships between units of different silica concentrations. The zone with the strongest signal corresponds to the southern half of the massif and the Lassell G and K depressions (formerly thought to be impact craters [11]). These steep-walled pits lack any obvious raised rims or ejecta blankets that would identify them as impact craters; they are likely explosive volcanic vents or collapse calderas. This silica-rich area is contained within the historic red spot area [4], but does not appear to fully overlap with it, implying compositionally distinct deposits originating from the same source region. Low-reflectance deposits, exposed by impact craters and mass wasting across the massif, suggest either basaltic pyroclastics or minor late-stage extrusion of basaltic lavas through vents

  14. Mantle Mineral/Silicate Melt Partitioning

    NASA Astrophysics Data System (ADS)

    McFarlane, E. A.; Drake, M. J.

    1992-07-01

    Introduction: The partitioning of elements among mantle phases and silicate melts is of interest in unraveling the early thermal history of the Earth. It has been proposed that the elevated Mg/Si ratio of the upper mantle of the Earth is a consequence of the flotation of olivine into the upper mantle (Agee and Walker, 1988). Agee and Walker (1988) have generated a model via mass balance by assuming average mineral compositions to generate upper mantle peridotite. This model determines that upper mantle peridotite could result from the addition of 32.7% olivine and 0.9% majorite garnet into the upper mantle, and subtraction of 27.6% perovskite from the upper mantle (Agee and Walker, 1988). The present contribution uses experimental data to examine the consequences of such multiple phase fractionations enabling an independent evaluation of the above mentioned model. Here we use Mg-perovskite/melt partition coefficients from both a synthetic and a natural system (KLB-1) obtained from this laboratory. Also used are partition coefficient values for majorite garnet/melt, beta spinel/melt and olivine/melt partitioning (McFarlane et al., 1991b; McFarlane et al., 1992). Multiple phase fractionations are examined using the equilibrium crystallization equation and partition coefficient values. The mineral proportions determined by Agee and Walker (1988) are converted into weight fractions and used to compute a bulk partition coefficient value. Discussion: There has been a significant debate concerning whether measured values of trace element partition coefficients permit large-scale fractionation of liquidus phases from an early terrestrial magma ocean (Kato et al., 1988a,b; Walker and Agee, 1989; Drake, 1989; Drake et al., 1991; McFarlane et al., 1990, 1991). It should be noted that it is unclear which, if any, numerical values of partition coefficients are appropriate for examining this question, and certainly the assumptions for the current model must be more fully

  15. Electrical conductivity measurements on silicate melts using the loop technique

    NASA Technical Reports Server (NTRS)

    Waff, H. S.

    1976-01-01

    A new method is described for measurement of the electrical conductivity of silicate melts under controlled oxygen partial pressure at temperatures to 1550 C. The melt samples are suspended as droplets on platinum-rhodium loops, minimizing iron loss from the melt due to alloying with platinum, and providing maximum surface exposure of the melt to the oxygen-buffering gas atmosphere. The latter provides extremely rapid equilibration of the melt with the imposed oxygen partial pressure. The loop technique involves a minimum of setup time and cost, provides reproducible results to within + or - 5% and is well suited to electrical conductivity studies on silicate melts containing redox cations.

  16. Development of interfaces in oxide and silicate matrix composites

    SciTech Connect

    Lewis, M.H.; Cain, M.G.; Doleman, P.

    1995-12-01

    Silicate and oxide matrix CMCs are being developed for application in advanced gas turbines. High-performance Silicate/Nicalon CMCs have been characterised mainly as materials for interface, process and mechanical modelling due to their limited thermal and oxidative stability. Saphikon (Al{sub 2}O{sub 3}) monofilaments have been used in the development of interphase chemistry and processing via vapour and liquid-precursor methods. Prototype Al{sub 2}O{sub 3}-matrix CMCs have been fabricated and exploration of alternative fibre/interphase chemistries conducted via reactivity studies up to 1600{degrees}C.

  17. Polymer layered silicate nanocomposites: Structure, morphology, and properties

    NASA Astrophysics Data System (ADS)

    Nawani, Pranav

    Layered silicates are important fillers for improving various mechanical, flame retardant, and barrier properties of polymers, which can be attributed to their sheet-like morphology. Layered silicates can be modified with organic surfactants to render them compatible with polymer matrices. Organically modified silicates (organoclays) having large surface areas are very cost-efficient non-toxic nanofillers effective at very low loads and are readily available. Upon amalgamation of organoclays with polymer matrix nanocomposites, polymer chains can penetrate in between the silicate layers and result in an intercalated structure where the clay stack remains intact but the interlayer spacing is increased. When penetration becomes more severe, disintegration of clay stacks can occur, resulting in an exfoliated structure. It has often been observed that exfoliation is not complete down to the level of isolated silicate layers; rather, the large clay stacks are broken up into shorter stacks termed 'tactoids' together with a few individual silicate layers, resulting in a kind of mixed intercalated-exfoliated structure. Organoclay particles are mostly intercalated, having a preferred orientation with the clay gallery planes being preferentially parallel to the plane of the pressed film. Preferential orientation of organoclays affects the barrier properties of polymer membranes. Additional fillers like carbon black can induce a change in the orientation of organoclays. The effect of carbon black on the orientation of organoclays was elucidated and a relationship between orientation and permeability of air through such membranes was established. We have also investigated the flammability properties of a series of polymer nanocomposites, containing various Transition Metal Ion (TMI) modified organoclays. The improved fire retardation in nanocomposites with TMI-modified organoclays can be attributed to enhanced carbonaceous char formation during combustion, i.e., charring

  18. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  19. Polymerization of silicate on hematite surfaces and its influence on arsenic sorption.

    PubMed

    Christl, Iso; Brechbühl, Yves; Graf, Moritz; Kretzschmar, Ruben

    2012-12-18

    Iron oxides and oxyhydroxides are important sorbents for arsenic in soils, sediments, and water treatment systems, but their long-term potential for arsenic retention may be diminished by the formation of polymeric silicate on their surfaces. To study these interactions, we first investigated the sorption of silicate to colloidal hematite (α-Fe(2)O(3)) in short-term (48 h) and long-term (210 days) batch experiments. The polymerization of silicate on the hematite surface was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The pH dependence of silicate sorption exhibited a maximum between pH 9.0 and 9.5. The condensation of silicate on hematite surfaces adsorbed from monomeric silicate solutions steadily continued over the 210 day period, whereby surface polymerization was slower at pH 3 than at pH 6. The effect of silicate surface polymerization on arsenate and arsenite sorption was studied by use of hematite pre-equilibrated with silicate for different time periods of up to 210 days. The competitive effect of silicate on arsenate and arsenite sorption increased with increasing silicate pre-equilibration time. Only under strongly acidic conditions (pH 3), where silicate sorption was weakest and surface polymerization was slowest, was arsenate and arsenite sorption not affected by the presence of silicate. We conclude that the long-term exposure to dissolved silicate can decrease the potential of natural iron (oxyhydr)oxides for adsorbing inorganic arsenic. PMID:23163533

  20. Barium responsiveness of the rat aorta and femoral artery during pregnancy.

    PubMed

    Hart, J L

    1982-01-11

    The barium responses of isolated aortic strips and femoral arteries from non-pregnant and pregnant rats were investigated. Barium caused concentration-related increases in tension of vessels from both pregnant and non-pregnant rats. The concentration-response curves of femoral arteries from non-pregnant and 3 week pregnant rats were not different; however contractility and slopes of concentration-response lines for thoracic aortas from 1, 2 and 3 week pregnant rats were significantly less than those of aortas from non-pregnant rats. In addition, barium caused rhythmic contractions to develop in both femoral arteries and aortas of 3 week pregnant rats more frequently than vessels from non-pregnant rats. Rhythmic contractions did not develop in aortas from 3 week pregnant rats in calcium-free Krebs. Since the effects of barium on the electrical and mechanical activity of various muscles have been postulated to be similar to and/or dependent on calcium, these results may indicate that changes in calcium sensitivity of vascular smooth muscle occur during pregnancy. Such changes may contribute to the blood flow redistribution and other cardiovascular adaptations of pregnancy. PMID:7054642

  1. [Mesenteric panniculitis of the colon: barium enema, US, CT, and MRI findings (case report)].

    PubMed

    Kebapçi, Mahmut; Adapinar, Baki; Kaya, Tamer; Kebapçi, Nur

    2004-12-01

    Mesenteric panniculitis as an uncommon disease of unknown etiology characterised by nonspecific inflammation of the fat tissue of the mesentery. In this report, we are presenting a case of mesenteric panniculitis of the rectosigmoid colon in which characteristic findings of barium enema, ultrasonography, computed tomography, and magnetic resonance imaging were noted. We emphasized the diagnostic significance of these methods. PMID:15611917

  2. Magnetic studies of cobalt doped barium hexaferrite nanoparticles prepared by modified sol-gel method

    NASA Astrophysics Data System (ADS)

    Shalini, M. Govindaraj; Sahoo, Subasa C.

    2016-05-01

    M-type barium hexaferrite (BaFe12O19) and cobalt doped barium hexaferrite (BaFe11CoO19) nanopowders were synthesized by modified sol-gel auto-combustion technique and were annealed at 900°C in air for 4 hours. The annealed powders were studied in the present work and X-ray diffraction studies showed pure phase formation after annealing. The average grain size in the nanopowder sample was decreased after doping. Magnetization value of 60 emu/g was observed at 300K for the barium hexaferrite and was reduced to 54 emu/g after doping. The coercivity of 5586 Oe was observed at 300K for the undoped sample and was found to be decreased in the doped sample. As the measurement temperature was decreased from 300K to 60K, magnetization value was increased in both the samples compared to those at 300K. The coercivity of the undoped sample was found to decrease whereas it was increased for the doped sample at 60K. The observed magnetic properties may be understood on the basis of modified exchange interaction and anisotropy in the doped sample compared to that of pure barium hexaferrite.

  3. Surface composition and barium evaporation rate of ``pedigreed'' impregnated tungsten dispenser cathodes during accelerated life testing

    NASA Astrophysics Data System (ADS)

    Tomich, D. H.; Mescher, J. A.; Grant, J. T.

    1987-03-01

    A study has been made of the surface composition and barium evaporation rate of "pedigreed" impregnated tungsten dispenser cathodes. The effect of air exposure on coated cathodes was examined and was found to have no significant effect on barium evaporation rate although in some cases longer reactivation times were required. No changes in surface topography were apparent following air exposure and reactivation. Life testing was done at 100°C above the typical operating temperature for the cathode, where the typical operating temperature was taken to be 950°C for coated cathodes and 1050°C for uncoated cathodes. The cathodes were examined at different stages of life testing, up to 1200 h. Significant decreases in barium evaporation rates were found after as few as 500 h of life testing. After 1000 h the evaporation rate had decreased more than an order of magnitude. Changes in surface composition were also found. The effects of tungsten particle size, used in manufacture of the billet, on barium evaporation rate were also studied but no correlation was found.

  4. Effects of barium and cadmium on the population development of the marine nematode Rhabditis (Pellioditis) marina.

    PubMed

    Lira, V F; Santos, G A P; Derycke, S; Larrazabal, M E L; Fonsêca-Genevois, V G; Moens, T

    2011-10-01

    Offshore oil and gas drilling often involves the use of fluids containing barium and traces of other heavy metals. These may affect the environment, but information on their toxicity to benthic biota remains scant. Here, we present results of a 10-day bioassay with the marine nematode Rhabditis (Pellioditis) marina at different loads of barium (0-10 ,000 ppm nominal concentrations) and cadmium (0-12 ppm) in the range of concentrations reported from drilling-impacted sediments. Barium did not affect the fitness and population development of R. (P.) marina at concentrations up to 300 ppm, but did cause a decrease in population abundance and an increase in development time from concentrations of 400-2000 ppm onwards. Increased mortality occurred at 4800 ppm Ba. For cadmium, LOEC and EC₅₀ values for total population abundance were 2.95 and 8.82 ppm, respectively. Cd concentrations as low as 2.40 to 2.68 caused a decrease in the abundance of adult nematodes, indicating that assays covering more generations would likely demonstrate yet more pronounced population-level effects. Our results indicate that oil and gas drilling activities may potentially have important implications for the meiobenthos through the toxicity of barium and associated metals like cadmium. PMID:21855994

  5. Low temperature phase barium borate: A new optical limiter in continuous wave and nano pulsed regime

    NASA Astrophysics Data System (ADS)

    Babeela, C.; Girisun, T. C. Sabari

    2015-11-01

    Low temperature phase barium borate was synthesized by hydrothermal method. XRD analysis confirms the formation of γ-BBO or hydrated barium polyborate (Ba3B6O9(OH)6) which crystallizes in monoclinic system in the P2/c space group. The molecular structure analysis shows the presence of dominant BO4 unit and the hydrated nature of material. γ-BBO exhibits sharp absorption edge at 202 nm and highly transparency in the UV-Visible-NIR region. The peak at 347 nm in the emission spectrum is due to the presence of self-trapped exciton. The third order nonlinear optical properties and limiting behavior of low temperature barium borate in both pulsed and continuous wave regime were studied. The effective 2PA absorption coefficient of γ-BBO under ns pulse excitation is estimated to be 0.38 × 10-10 m/W. The nonlinear absorption coefficient, refractive index and optical susceptibility of the material in cw regime were found to be in the order of 10-5 m W-1, 10-12 m2 W-1, 10-6 esu respectively. In both regimes, low temperature phase barium borate exhibits better optical limiting properties than high temperature phase β-BBO.

  6. Effect of aluminum substitution on microwave absorption properties of barium hexaferrite

    NASA Astrophysics Data System (ADS)

    Qiu, Jianxun; Zhang, Qiguo; Gu, Mingyuan; Shen, Haigen

    2005-11-01

    Aluminum substituted barium hexaferrites were prepared by the self-propagating combustion method and subsequent calcination at 850 °C. The crystalline structure, complex permittivity, complex permeability, and hyperfine parameters of BaFe12-xAlxO19 (x varies from 1.5 to 2.3 in steps of 0.2) were measured with x-ray diffraction (XRD), vector network analyzer and Mössbauer spectroscopy. The XRD results show that all Al3+ ions enter into the lattice of hexagonal barium ferrite. The substitution of Al3+ ions can greatly affect the complex permittivity and permeability of barium ferrite. With increasing substitution, the real part of complex permittivity increases gradually, and the peaks of the imaginary part of complex permeability shift into higher frequency band. When the substitution amount x is 1.9, the largest movement of the peaks is 1.95 GHz, which indicates that the ferromagnetic resonant frequency of barium ferrite increases by 1.95 GHz. The Al3+ ions preferentially occupy the 4f2, 2a, 4f1, and 12k sites in the subcrystalline structure up to x =1.9, and then the Al3+ ions mainly occupy 12k sites. This change also results in 2b sites with a large quadrupole splitting. These occupations lead to a variable magnetocrystalline anisotropy field.

  7. Near-resonance-Rayleigh scattering measurement on a resonant laser-driven barium plasma

    SciTech Connect

    Nee, T.A.

    1985-06-01

    Near-resonance-Rayleigh scattering is used as a space-time-resolved density probe on a resonant laser-driven barium plasma. Feasibility of this technique was investigated. Comparison to other methods such as absorption technique is made and found to be consistent.

  8. Distribution and source of barium in ground water at Cattaraugus Indian Reservation, southwestern New York

    USGS Publications Warehouse

    Moore, R.B.; Staubitz, W.W.

    1984-01-01

    High concentrations of dissolved barium have been found in ground water from bedrock wells on the Seneca Nation of Indians Reservation on Cattaraugus Creek in southwestern New York. Concentrations in 1982 were as high as 23.0 milligrams per liter , the highest found reported from any natural ground-water system in the world. The highest concentrations are in a bedrock aquifer and in small lenses of saturated gravel between bedrock and the overlying till. The bedrock aquifer is partly confined by silt, clay, and till. The high barium concentrations are attributed to dissolution of the mineral barite (BaSO4), which is present in the bedrock and possibly in overlying silt, clay, or till. The dissolution of barite seems to be controlled by action of sulfate-reducing bacteria, which alter the BaSO4 equilibrium by removing sulfate ions and permitting additional barite to dissolve. Ground water from the surficial, unconsolidated deposits and surface water in streams contain little or no barium. Because barium is chemically similar to calcium, it probably could be removed by cation exchange or treatments similar to those used for water softening. (USGS)

  9. Thermochemical process for the production of hydrogen using chromium and barium compound

    DOEpatents

    Bamberger, Carlos E.; Richardson, Donald M.

    1977-01-25

    Hydrogen is produced by a closed cyclic process involving the reduction and oxidation of chromium compounds by barium hydroxide and the hydrolytic disproportionation of Ba.sub.2 CrO.sub.4 and Ba.sub.3 (CrO.sub.4).sub.2.

  10. Barium versus Nonbarium Stimuli: Differences in Taste Intensity, Chemesthesis, and Swallowing Behavior in Healthy Adult Women

    ERIC Educational Resources Information Center

    Nagy, Ahmed; Steele, Catriona M.; Pelletier, Cathy A.

    2014-01-01

    Purpose: The authors examined the impact of barium on the perceived taste intensity of 7 different liquid tastant stimuli and the modulatory effect that these differences in perceived taste intensity have on swallowing behaviors. Method: Participants were 80 healthy women, stratified by age group (<40; >60) and genetic taste status…

  11. Assessment of Barium Sulphate Formation and Inhibition at Surfaces with Synchrotron X-ray Diffraction (SXRD)

    SciTech Connect

    E Mavredaki; A Neville; K Sorbie

    2011-12-31

    The precipitation of barium sulphate from aqueous supersaturated solutions is a well-known problem in the oil industry often referred to as 'scaling'. The formation and growth of barite on surfaces during the oil extraction process can result in malfunctions within the oil facilities and serious damage to the equipment. The formation of barium sulphate at surfaces remains an important topic of research with the focus being on understanding the mechanisms of formation and means of control. In situ synchrotron X-ray diffraction (SXRD) was used to investigate the formation of barium sulphate on a stainless steel surface. The effect of Poly-phosphinocarboxylic acid (PPCA) and Diethylenetriamine-penta-methylenephosphonic acid (DETPMP) which are two commercial inhibitors for barium sulphate was examined. The in situ SXRD measurements allowed the identification of the crystal faces of the deposited barite in the absence and presence of the two inhibitors. The preferential effect of the inhibitors on some crystal planes is reported and the practical significance discussed.

  12. Fabrication and characterization of cerium doped barium titanate/PMMA nanocomposites

    NASA Astrophysics Data System (ADS)

    Padalia, Diwakar; Bisht, Garima; Johri, U. C.; Asokan, K.

    2013-05-01

    The cerium doped barium titanate (BaTiO3:Ce)/poly methyl methacrylate(PMMA) polymer nano-composites (PNC) were successfully fabricated via solvent evaporation method with microwaves (2.4 GHz) heating. The X-ray diffraction measurements confirm the formation of barium titanate (BT) with crystallite size ranges from 55 to 62 nm. Differential scanning calorimetry study shows that the glass transition temperature (Tg) directly affected by microwaves heat treatment and particle size of filler. The broadband dielectric spectroscopy was employed to investigate the frequency and temperature dependence of the dielectric properties of the nanocomposites in a frequency range from 75 kHz to 5 MHz and temperature range 80-400 K. The introduction of different BT fillers in PMMA enhance the dielectric constant of PNCs drastically and give a smooth response in frequency range mentioned above. The loss factor of the composite can be suppressed by using cerium doped barium titanate filler rather than pure barium titanate filler.

  13. BARIUM BIOAVAILABILITY AS THE CHLORIDE, SULFATE, OR CARBONATE SALT IN THE RAT

    EPA Science Inventory

    This study was conducted to determine how the bioavailability of a low concentration of barium (Ba) in drinking water is affected by anion speciation. Male Sprague Dawley rats weighing 250-300 grams were maintained on a diet of less than 1 mg Ba/kg of food for at least 1 month pr...

  14. WEAK-ACID ION EXCHANGE FOR REMOVING BARIUM, RADIUM, AND HARDNESS

    EPA Science Inventory

    Weak-acid resin in the hydrogen form was found to effectively remove barium, radium, and hardness, without increasing the sodium content of the product water. The maximum capacity of the weak-acid resin was about 2.3 times that of strong-acid resin, and much less spent regenerant...

  15. PROPOSED ORAL REFERENCE DOSE (RFD) FOR BARIUM AND COMPOUNDS (Final Report) 2004

    EPA Science Inventory

    This document is the final report for the 2004 external peer review of the Proposed Oral Reference Dose (RfD) for Barium and Compounds, prepared by the U.S. Environmental Protection Agency (EPA), National Center for Environmental Assessment (NCEA), for the Integrated Risk Informa...

  16. Periodate salts as pyrotechnic oxidizers: development of barium- and perchlorate-free incendiary formulations.

    PubMed

    Moretti, Jared D; Sabatini, Jesse J; Chen, Gary

    2012-07-01

    In a flash: pyrotechnic incendiary formulations with good stabilities toward various ignition stimuli have been developed without the need for barium or perchlorate oxidizers. KIO(4) and NaIO(4) were introduced as pyrotechnic oxidizers and exhibited excellent pyrotechnic performance. The periodate salts may garner widespread use in military and civilian fireworks because of their low hygroscopicities and high chemical reactivities. PMID:22639415

  17. DEMONSTRATION BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANIC/INORGANIC CONTAMINANTS - SILICATE TECHNOLOGY CORPORATION

    EPA Science Inventory

    Silicate Technology Corporation's (STC's) technology for treating hazardous waste utilizes silicate compounds to stabilize organic and inorganic constituents in contaminated soils and sludges. STC has developed two groups of reagents: SOILSORB HM for treating wastes with inorgan...

  18. SILICATE TECHNOLOGY CORPORATION'S SOLIDIFICATION/ STABILIZATION TECHNOLOGY FOR ORGANIC AND INORGANIC CONTAMINANTS IN SOILS - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This Applications Analysis Report evaluates the solidification/stabilization treatment process of Silicate Technology Corporation (STC) for the on-site treatment of hazardous waste. The STC immobilization technology utilizes a proprietary product (FMS Silicate) to chemically stab...

  19. Mesoporous silicates: Materials science and biological applications

    NASA Astrophysics Data System (ADS)

    Roggers, Robert Anthony

    This thesis dissertation presents the collective research into the advancement of mesoporous silicate particles as biointerface devices, the development of new materials and the application of these particles as solid supports for heterogeneous catalysis. Mesoporous silica has been utilized in the aforementioned applications due to several reasons; the first being the ability to achieve high surface areas (500 - 1000 m2 g-1) with controlled pore sizes and particle morphology. Another reason for their popularity is their robustness in applications of heterogeneous catalysis and the ability to functionalize the surface with a wide variety of organic functional groups. In the field of biointerface devices, mesoporous silica nanoparticles represent a class of materials that exhibit high biocompatibility. In addition, the ability to functionalize the surfaces (outer surface and pore interiors) allows the particles to be targeted to specific cell types as well as the ability to release many different therapeutic molecules under specific stimuli. A unique particle coating consisting of a chemically cleavable lipid bilayer that allows for the encapsulation of a fluorescent molecule and increases the biocompatibility of the particle has been developed. The lipid bilayer coated mesoporous silica nanoparticle (LB-MSN) was characterized using X-ray diffraction, transmission electron microscopy and nitrogen `sorption isotherms. The finished LB-MSN was then incubated with mammalian cells in order to prove their biocompatibility. Confocal micrographs demonstrate the endocytosis of the particles into the cells. In addition the micrographs also show that the LB-MSNs are separate from the endosomal compartments, however due to the lipophilic nature of the dye used to label the endosome there is some debate regarding this conclusion. The lipid bilayer coating was then applied to a large pore MSN (l-MSN) which had been previously shown to cause lysis of red blood cells (RBCs) at low

  20. A study of the microchemistry of nanocrystalline barium titanate with tetragonal and pseudocubic room temperature symmetries

    NASA Astrophysics Data System (ADS)

    Lacey, Robert A.

    The investigation of possible effects of undesired surface species on barium titanate, one of the most utilized ferroelectric ceramics, constitutes the focus of this work. Six commercial barium titanate powders from three manufacturers representing two different synthesis processes, with average particle sizes from 40 nm to 470 nm, were analyzed in this study. Four of the nanopowders exhibited pseudocubic room temperature symmetry. Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopic analysis of the nanopowders was conducted in ambient atmosphere at room temperature. High temperature DRIFT followed incorporating four avenues of analysis: moisture adsorption studies, deuterium oxide exchange studies, carbon dioxide adsorption studies, and high temperature analysis under dry air and UHP nitrogen atmospheres. At the highest temperature used in this study, 1173K, moisture and the accompanying incorporated protonic impurities were still present. The powders readily readsorbed moisture during rapid cooling, 170K/minute, to room temperature. The smallest powder, as received, formed spherical agglomerates up to 10 mum diameter. These sintered as separate units attaining diameters up to 60 mum during intermediate stage sintering. X-ray photoelectron spectroscopy indicated a surface contamination layer of 10 A to 18 A; 50--70% of which was barium carbonate, the balance being atmospheric adsorbed species. Samples cooled at 3K/minute after an 1173K calcine retained cubic symmetry as indicated with high temperature X-ray diffraction. However, spectral evidence was obtained indicating that upon the rapid cooling from the 1173K calcine, a reorientation to the room temperature tetragonal symmetry was observed. Further, SEM and TEM supported this finding with visual evidence of interfacial rearrangement including corroborating electron diffraction analysis. This data, therefore, substantiated the hypothesis that the cause of the room temperature pseudocubic