Science.gov

Sample records for barley grain development

  1. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    PubMed Central

    Pietsch, Christof; Sreenivasulu, Nese; Wobus, Ulrich; Röder, Marion S

    2009-01-01

    Background Barley (Hordeum vulgare L.) seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference expression map of regulators

  2. Grain Development Mutants of Barley ([alpha]-Amylase Production during Grain Maturation and Its Relation to Endogenous Gibberellic Acid Content).

    PubMed Central

    Green, L. S.; Faergestad, E. M.; Poole, A.; Chandler, P. M.

    1997-01-01

    Barley (Hordeum vulgare L. Himalaya) mutants with altered grain morphology were isolated to investigate whether defects in grain development, possibly involving gibberellins (GAs) and abscisic acid, would lead to altered patterns of [alpha]-amylase gene expression. Following treatment with sodium azide, 75 mutants, typically showing grain shriveling, were identified. At grain maturity 15 of the 75 mutants had higher [alpha]-amylase activities in shriveled grains compared with either phenotypically normal grains that developed on the same heterozygous plant or with grains of cv Himalaya. Studies of four of these mutants demonstrated increased levels of both high- and low-isoelectric point [alpha]-amylase isozymes midway through grain development. This category of mutant has been designated pga, for premature grain [alpha]-amylase. One such mutant (M326) showed an endosperm-determined inheritance pattern. When crossed into a (GA-deficient) dwarfing background there was a 10- to 20-fold reduction in [alpha]-amylase activity, suggesting a requirement for GA biosynthesis. Endogenous GAs and abscisic acid were quantified by combined gas chromatography-specific ion monitoring in normal and mutant grains of heterozygous M326 plants during the period of [alpha]-amylase accumulation. Mutant grains had significantly higher (5.8-fold) levels of the bioactive GA1 compared with normal grains but much lower (approximately 10-fold) levels of the 2[beta]-hydroxylated ("inactive") GAs, typical of developing barley grains (e.g. GA8, GA34, GA48). We propose that a reduced extent of 2[beta]-hydroxylation in the mutant grains results in an increased level of GA1, which is responsible for premature [alpha]-amylase gene expression. PMID:12223700

  3. Transcriptome Assembly and Analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum) Developing Grains, with Emphasis on Quality Properties

    PubMed Central

    Chen, Xin; Long, Hai; Gao, Ping; Deng, Guangbing; Pan, Zhifen; Liang, Junjun; Tang, Yawei; Tashi, Nyima; Yu, Maoqun

    2014-01-01

    Background Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. Methodology/Principal Findings In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan) were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. Conclusions/Significance We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1–3;1–4)-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley. PMID:24871534

  4. Spatio-Temporal Dynamics of Fructan Metabolism in Developing Barley Grains[W

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-01-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  5. Spatio-temporal dynamics of fructan metabolism in developing barley grains.

    PubMed

    Peukert, Manuela; Thiel, Johannes; Peshev, Darin; Weschke, Winfriede; Van den Ende, Wim; Mock, Hans-Peter; Matros, Andrea

    2014-09-01

    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profiling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8, with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase. PMID:25271242

  6. Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping

    PubMed Central

    Maurer, Andreas; Draba, Vera; Pillen, Klaus

    2016-01-01

    Flowering time is a key agronomic trait that plays an important role in crop yield. There is growing interest in dissecting the developmental subphases of flowering to better understand and fine-tune plant development and maximize yield. To do this, we used the wild barley nested association mapping (NAM) population HEB-25, comprising 1420 BC1S3 lines, to map quantitative trait loci (QTLs) controlling five developmental traits, plant height, and thousand grain weight. Genome-wide association studies (GWAS) enabled us to locate a total of 89 QTLs that genetically regulate the seven investigated traits. Several exotic QTL alleles proved to be highly effective and potentially useful in barley breeding. For instance, thousand grain weight was increased by 4.5g and flowering time was reduced by 9.3 days by substituting Barke elite QTL alleles for exotic QTL alleles at the denso/sdw1 and the Ppd-H1 loci, respectively. We showed that the exotic allele at the semi-dwarf locus denso/sdw1 can be used to increase grain weight since it uncouples the negative correlation between shoot elongation and the ripening phase. Our study demonstrates that nested association mapping of HEB-25 can help unravel the genetic regulation of plant development and yield formation in barley. Moreover, since we detected numerous useful exotic QTL alleles in HEB-25, we conclude that the introgression of these wild barley alleles into the elite barley gene pool may enable developmental phases to be specifically fine-tuned in order to maximize thousand grain weight and, potentially, yield in the long term. PMID:26936829

  7. Caspase-Like Activities Accompany Programmed Cell Death Events in Developing Barley Grains

    PubMed Central

    Tran, Van; Weier, Diana; Radchuk, Ruslana; Thiel, Johannes; Radchuk, Volodymyr

    2014-01-01

    Programmed cell death is essential part of development and cell homeostasis of any multicellular organism. We have analyzed programmed cell death in developing barley caryopsis at histological, biochemical and molecular level. Caspase-1, -3, -4, -6 and -8-like activities increased with aging of pericarp coinciding with abundance of TUNEL positive nuclei and expression of HvVPE4 and HvPhS2 genes in the tissue. TUNEL-positive nuclei were also detected in nucellus and nucellar projection as well as in embryo surrounding region during early caryopsis development. Quantitative RT-PCR analysis of micro-dissected grain tissues revealed the expression of HvVPE2a, HvVPE2b, HvVPE2d, HvPhS2 and HvPhS3 genes exclusively in the nucellus/nucellar projection. The first increase in cascade of caspase-1, -3, -4, -6 and -8-like activities in the endosperm fraction may be related to programmed cell death in the nucellus and nucellar projection. The second increase of all above caspase-like activities including of caspase-9-like was detected in the maturating endosperm and coincided with expression of HvVPE1 and HvPhS1 genes as well as with degeneration of nuclei in starchy endosperm and transfer cells. The distribution of the TUNEL-positive nuclei, tissues-specific expression of genes encoding proteases with potential caspase activities and cascades of caspase-like activities suggest that each seed tissue follows individual pattern of development and disintegration, which however harmonizes with growth of the other tissues in order to achieve proper caryopsis development. PMID:25286287

  8. A roadmap for zinc trafficking in the developing barley grain based on laser capture microdissection and gene expression profiling

    PubMed Central

    Tauris, Birgitte; Borg, Søren; Gregersen, Per L.; Holm, Preben B.

    2009-01-01

    Nutrients destined for the developing cereal grain encounter several restricting barriers on their path towards their final storage sites in the grain. In order to identify transporters and chelating agents that may be involved in transport and deposition of zinc in the barley grain, expression profiles have been generated of four different tissue types: the transfer cells, the aleurone layer, the endosperm, and the embryo. Cells from these tissues were isolated with the ‘laser capture microdissection’ technology and the extracted RNA was subjected to three rounds of T7-based amplification. The amplified RNA was subsequently hybridized to Affymetrix 22K Barley GeneChips. Due to the short average length of the amplified transcripts and the positioning of numerous probe sets at locations more than 400 base pairs (bp) from the poly(A)-tail, a normalization approach was used where the probe positions were taken into account. On the basis of the expression levels of a number of metal homeostasis genes, a working model is proposed for the translocation of zinc from the phloem to the storage sites in the developing grain. PMID:19297552

  9. Changes in chalazal cell walls and in the peroxidase enzymes of the crease region during grain development in barley.

    PubMed

    Cochrane, M P; Paterson, L; Gould, E

    2000-03-01

    In an investigation of the role of peroxidase enzymes in the differentiation of the tissues of the crease region of barley, plants of winter barley cv. Halcyon were grown from anthesis onwards in controlled conditions at a constant temperature of 16 degrees C. Four ears were harvested at 2-d intervals from 6 d after anthesis (daa) until 50 daa. Grains from mid-ear were used for (i) fresh and dry weight determinations, (ii) extraction of crease tissue for the determination of peroxidase activity and for the separation of isozymes of peroxidase by isoelectric focusing (IEF) and (iii) detection of lignin and suberin in the tissues of the crease using autofluorescence and cytochemistry. Peroxidase activity was located histochemically in the crease tissue of cv. Chariot. Scanning electron microscopy studies were carried out on developing grains of cv. Blenheim. Maximum grain water content was achieved at 14 daa. Lignin and suberin were detected in the walls of the chalazal cells from 18 daa onwards. No changes in the staining of chalazal cell walls were detected at the end of grain filling (32 daa), but loss of autofluorescence and staining were observed at 42 daa, just prior to the final, rapid phase of grain dehydration. Peroxidase activity per fresh weight of crease tissue was high at 6 daa and low at 22 daa. It was also low between 32 and 40 daa, but it rose again from 42 daa onwards. IEF demonstrated that both anionic and cationic isozymes of peroxidase were present in crease tissue, the pattern of bands showing some marked changes during the course of grain development. PMID:10938807

  10. Differential expression of two ß-amylase genes (Bmy1 and Bmy2) in developing and mature barley grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) endosperm-specific (Bmy1) and ubiquitous (Bmy2) ß-amylase were studied during the late maturation phase of seed development in four genotypes. Sequencing of Bmy2 from genomic DNA revealed six polymorphisms in the introns and two synonymous SNPs in the coding region. Acc...

  11. Gibberellin-to-abscisic acid balances govern development and differentiation of the nucellar projection of barley grains

    PubMed Central

    Weier, Diana; Thiel, Johannes; Kohl, Stefan; Tarkowská, Danuše; Strnad, Miroslav; Schaarschmidt, Sara; Weschke, Winfriede; Weber, Hans; Hause, Bettina

    2014-01-01

    In cereal grains, the maternal nucellar projection (NP) constitutes the link to the filial organs, forming a transfer path for assimilates and signals towards the endosperm. At transition to the storage phase, the NP of barley (Hordeum vulgare) undergoes dynamic and regulated differentiation forming a characteristic pattern of proliferating, elongating, and disintegrating cells. Immunolocalization revealed that abscisic acid (ABA) is abundant in early non-elongated but not in differentiated NP cells. In the maternally affected shrunken-endosperm mutant seg8, NP cells did not elongate and ABA remained abundant. The amounts of the bioactive forms of gibberellins (GAs) as well as their biosynthetic precursors were strongly and transiently increased in wild-type caryopses during the transition and early storage phases. In seg8, this increase was delayed and less pronounced together with deregulated gene expression of specific ABA and GA biosynthetic genes. We concluded that differentiation of the barley NP is driven by a distinct and specific shift from lower to higher GA:ABA ratios and that the spatial–temporal change of GA:ABA balances is required to form the differentiation gradient, which is a prerequisite for ordered transfer processes through the NP. Deregulated ABA:GA balances in seg8 impair the differentiation of the NP and potentially compromise transfer of signals and assimilates, resulting in aberrant endosperm growth. These results highlight the impact of hormonal balances on the proper release of assimilates from maternal to filial organs and provide new insights into maternal effects on endosperm differentiation and growth of barley grains. PMID:25024168

  12. Barley grain for ruminants: A global treasure or tragedy

    PubMed Central

    2012-01-01

    Barley grain (Hordeum vulgare L.) is characterized by a thick fibrous coat, a high level of ß-glucans and simply-arranged starch granules. World production of barley is about 30 % of that of corn. In comparison with corn, barley has more protein, methionine, lysine, cysteine and tryptophan. For ruminants, barley is the third most readily degradable cereal behind oats and wheat. Due to its more rapid starch fermentation rate compared with corn, barley also provides a more synchronous release of energy and nitrogen, thereby improving microbial nutrient assimilation. As a result, feeding barley can reduce the need for feeding protected protein sources. However, this benefit is only realized if rumen acidity is maintained within an optimal range (e.g., > 5.8 to 6.0); below this range, microbial maintenance requirements and wastage increase. With a low pH, microbial endotoxines cause pro-inflammatory responses that can weaken immunity and shorten animal longevity. Thus, mismanagement in barley processing and feeding may make a tragedy from this treasure or pearl of cereal grains. Steam-rolling of barley may improve feed efficiency and post-rumen starch digestion. However, it is doubtful if such processing can improve milk production and feed intake. Due to the need to process barley less extensively than other cereals (as long as the pericarp is broken), consistent and global standards for feeding and processing barley could be feasibly established. In high-starch diets, barley feeding reduces the need for capacious small intestinal starch assimilation, subsequently reducing hindgut starch use and fecal nutrient loss. With its nutritional exclusivities underlined, barley use will be a factual art that can either matchlessly profit or harm rumen microbes, cattle production, farm economics and the environment. PMID:22958810

  13. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition

    PubMed Central

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-01-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  14. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition.

    PubMed

    Staroske, Nicole; Conrad, Udo; Kumlehn, Jochen; Hensel, Götz; Radchuk, Ruslana; Erban, Alexander; Kopka, Joachim; Weschke, Winfriede; Weber, Hans

    2016-04-01

    Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development. PMID:26951372

  15. Comparative Proteomic Analysis of Two Barley Cultivars (Hordeum vulgare L.) with Contrasting Grain Protein Content

    PubMed Central

    Guo, Baojian; Luan, Haiye; Lin, Shen; Lv, Chao; Zhang, Xinzhong; Xu, Rugen

    2016-01-01

    Grain protein contents (GPCs) of barley seeds are significantly different between feed and malting barley cultivars. However, there is still no insight into the proteomic analysis of seed proteins between feed and malting barley cultivars. Also, the genetic control of barley GPC is still unclear. GPCs were measured between mature grains of Yangsimai 3 and Naso Nijo. A proteome profiling of differentially expressed protein was established by using a combination of 2-DE and tandem mass spectrometry. In total, 502 reproducible protein spots in barley seed proteome were detected with a pH range of 4–7 and 6–11, among these 41 protein spots (8.17%) were detected differentially expressed between Yangsimai 3 and Naso Nijo. Thirty-four protein spots corresponding to 23 different proteins were identified, which were grouped into eight categories, including stress, protein degradation and post-translational modification, development, cell, signaling, glycolysis, starch metabolism, and other functions. Among the identified proteins, enolase (spot 274) and small subunit of ADP-glucose pyrophosphorylase (spot 271) are exclusively expressed in barley Yangsimai 3, which may be involved in regulating seed protein expression. In addition, malting quality is characterized by an accumulation of serpin protein, Alpha-amylase/trypsin inhibitor CMb and Alpha-amylase inhibitor BDAI-1. Most noticeably, globulin, an important storage protein in barley seed, undergoes post-translational processing in both cultivars, and also displays different expression patterns. PMID:27200019

  16. Water uptake in barley grain: Physiology; genetics and industrial applications.

    PubMed

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. PMID:26566843

  17. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.

    PubMed

    García, Guillermo A; Dreccer, M Fernanda; Miralles, Daniel J; Serrago, Román A

    2015-11-01

    Warm nights are a widespread predicted feature of climate change. This study investigated the impact of high night temperatures during the critical period for grain yield determination in wheat and barley crops under field conditions, assessing the effects on development, growth and partitioning crop-level processes driving grain number per unit area (GN). Experiments combined: (i) two contrasting radiation and temperature environments: late sowing in 2011 and early sowing in 2013, (ii) two well-adapted crops with similar phenology: bread wheat and two-row malting barley and (iii) two temperature regimes: ambient and high night temperatures. The night temperature increase (ca. 3.9 °C in both crops and growing seasons) was achieved using purpose-built heating chambers placed on the crop at 19:000 hours and removed at 7:00 hours every day from the third detectable stem node to 10 days post-flowering. Across growing seasons and crops, the average minimum temperature during the critical period ranged from 11.2 to 17.2 °C. Wheat and barley grain yield were similarly reduced under warm nights (ca. 7% °C(-1) ), due to GN reductions (ca. 6% °C(-1) ) linked to a lower number of spikes per m(2) . An accelerated development under high night temperatures led to a shorter critical period duration, reducing solar radiation capture with negative consequences for biomass production, GN and therefore, grain yield. The information generated could be used as a starting point to design management and/or breeding strategies to improve crop adaptation facing climate change. PMID:26111197

  18. Localization of Carboxypeptidase I in Germinating Barley Grain 1

    PubMed Central

    Ranki, Harri; Sopanen, Tuomas; Voutilainen, Raimo

    1990-01-01

    Activity measurements and Northern blot hybridizations were used to study the temporal and spatial expression of carboxypeptidase I in germinating grains of barley (Hordeum vulgare L. cv Himalaya). In the resting grain no carboxypeptidase I activity was found in the aleurone layer, scutellum, or starchy endosperm. During germination high levels of enzyme activity appeared in the scutellum and in the starchy endosperm but only low activity was found in the aleurone layer. No mRNA for carboxypeptidase I was observed in the resting grain. By day 1 of germination the mRNA appeared in the scutellum where its level remained high for several days. In contrast, little mRNA was observed in the aleurone layer. These results indicate that the scutellum plays an important role in the production of carboxypeptidase I in germinating barley grain. Images Figure 3 PMID:16667638

  19. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain compositional components impacting barley (Hordeum vulgare L.) use in food, feed and fuel products, must be combined with improved gronomic traits to produce a commercially viable barley cultivar. Little current information is available on grain composition and variability among winter barley ...

  20. Differential RNA Expression of Two Barley ß-Amylase Genes (Bmy1 and Bmy2) in Developing Grains and Their Association with ß-Amylase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RNA expression from the barley ß-amylase1 (Bmy1) gene was determined during seed development in four genotypes (Legacy, Harrington, Ashqelon, and PI 296897). The Bmy1 transcript amount in Legacy and Harrington was not significantly different at 17, 19, or 21 days after anthesis (DAA). Ashqelon Bmy...

  1. The associations between Vrs1 alleles and grain quality traits in spring barley Hordeum vulgare L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley head row type is a major trait affecting end use quality. Six rowed forms emerged due to mutations in the Vrs1 gene in two rowed barleys. Whether barley is two (Vrs1) or six rowed (vrs1) directly affects a wide range of morphological traits related to seed yield and grain quality. Vrs1 has be...

  2. Differences in Grain Ultrastructure, Phytochemical and Proteomic Profiles between the Two Contrasting Grain Cd-Accumulation Barley Genotypes

    PubMed Central

    Sun, Hongyan; Cao, Fangbin; Wang, Nanbo; Zhang, Mian; Mosaddek Ahmed, Imrul; Zhang, Guoping; Wu, Feibo

    2013-01-01

    To reveal grain physio-chemical and proteomic differences between two barley genotypes, Zhenong8 and W6nk2 of high- and low- grain-Cd-accumulation, grain profiles of ultrastructure, amino acid and proteins were compared. Results showed that W6nk2 possesses significantly lower protein content, with hordein depicting the greatest genotypic difference, compared with Zhenong8, and lower amino acid contents with especially lower proportion of Glu, Tyr, Phe and Pro. Both scanning and transmission electron microscopy observation declared that the size of A-type starch molecule in W6nk2 was considerably larger than that of Zhenong8. Grains of Zhenong8 exhibited more protein-rich deposits around starch granules, with some A-type granules having surface pits. Seventeen proteins were identified in grains, using 2-DE coupled with mass spectrometry, with higher expression in Zhenong8 than that in W6nk2; including z-type serpin, serpin-Z7 and alpha-amylase/trypsin inhibitor CM, carbohydrate metabolism, protein synthesis and signal transduction related proteins. Twelve proteins were less expressed in Zhenong8 than that in W6nk2; including barley trypsin inhibitor chloroform/methanol-soluble protein (BTI-CMe2.1, BTI-CMe2.2), trypsin inhibitor, dehydroascorbate reductase (DHAR), pericentrin, dynein heavy chain and some antiviral related proteins. The data extend our understanding of mechanisms underlying Cd accumulation/tolerance and provides possible utilization of elite genetic resources in developing low-grain-Cd barley cultivars. PMID:24260165

  3. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC

  4. Antioxidants, Enzyme Inhibitors, and Biogenic Compounds in Grain Extracts of Barleys.

    PubMed

    Maliar, Tibor; Slaba, Gabriela; Nemeček, Peter; Maliarová, Mária; Benková, Michaela; Havrlentová, Michaela; Ondrejovič, Miroslav; Kraic, Ján

    2015-11-01

    The content of biogenic compounds and the biological activities of barley (Hordeum vulgare L.)-grain extracts was evaluated. The sufficiently large and heterogeneous set of barley genotypes (100 accessions) enabled the selection of special genotypes interesting for potential industrial, pharmaceutical, and medicinal applications. Barley genotypes with the highest contents of phenols, phenolic acids, flavonoids, biogenic thiols, and amines, radical-scavenging activity, as well as inhibitory activities of trypsin, thrombin, collagenase, urokinase, and cyclooxygenase were identified. PMID:26567946

  5. Ground versus steam-rolled barley grain for lactating cows: a clarification into conventional beliefs.

    PubMed

    Soltani, A; Ghorbani, G R; Alikhani, M; Samie, A; Nikkhah, A

    2009-07-01

    Our objective was to compare the effects of grinding versus steam-rolling of barley grain at 30 or 35% of diet dry matter on feed intake, chewing behavior, rumen fermentation, and milk production in high-producing lactating cows. Eight multiparous Holstein cows (85 +/- 9 d in milk) were used in a replicated 4 x 4 Latin square design experiment with four 21-d periods. Each period included 14 d of adaptation and 7 d of sampling. Treatments included grinding (GB) or steam-rolling (SB) of barley grains at either 35 or 30% of dietary dry matter. Diets were prepared as a total mixed ration and delivered twice daily at 0730 and 1600 h. Neither processing method nor dietary barley grain inclusion rate affected dry matter intake, daily eating, ruminating and chewing times, rumen pH and major volatile fatty acid molar percentages, or milk percentages and yields of fat and protein. Energy-corrected milk yield increased for SB compared with GB at 35% but not at 30% barley grain. Feed efficiency was increased by SB, but was unaffected by dietary barley grain level. Results suggest that at 30% dietary barley grain, GB resulted in similar lactation performance as SB and that SB did not affect productivity when dietary barley grain increased from 30 to 35%. Regardless of barley grain level, grinding effectively maintained dry matter intake and rumen pH at 4 h postfeeding, whereas steam-rolling increased feed efficiency. Increasing barley grain from 30 to 35% of diet dry matter did not improve feed intake and milk production. PMID:19528607

  6. Origin of worldwide cultivated barley revealed by NAM-1 gene and grain protein content

    PubMed Central

    Wang, Yonggang; Ren, Xifeng; Sun, Dongfa; Sun, Genlou

    2015-01-01

    The origin, evolution, and distribution of cultivated barley provides powerful insights into the historic origin and early spread of agrarian culture. Here, population-based genetic diversity and phylogenetic analyses were performed to determine the evolution and origin of barley and how domestication and subsequent introgression have affected the genetic diversity and changes in cultivated barley on a worldwide scale. A set of worldwide cultivated and wild barleys from Asia and Tibet of China were analyzed using the sequences for NAM-1 gene and gene-associated traits-grain protein content (GPC). Our results showed Tibetan wild barley distinctly diverged from Near Eastern barley, and confirmed that Tibet is one of the origin and domestication centers for cultivated barley, and in turn supported a polyphyletic origin of domesticated barley. Comparison of haplotype composition among geographic regions revealed gene flow between Eastern and Western barley populations, suggesting that the Silk Road might have played a crucial role in the spread of genes. The GPC in the 118 cultivated and 93 wild barley accessions ranged from 6.73 to 12.35% with a mean of 9.43%. Overall, wild barley had higher averaged GPC (10.44%) than cultivated barley. Two unique haplotypes (Hap2 and Hap7) caused by a base mutations (at position 544) in the coding region of the NAM-1 gene might have a significant impact on the GPC. Single nucleotide polymorphisms and haplotypes of NAM-1 associated with GPC in barley could provide a useful method for screening GPC in barley germplasm. The Tibetan wild accessions with lower GPC could be useful for malt barley breeding. PMID:26483818

  7. Acrylamide elution from roasted barley grains into mugicha and its formation during roasting.

    PubMed

    Mizukami, Yuzo; Yoshida, Mitsuru; Ono, Hiroshi

    2016-01-01

    This paper investigated acrylamide elution from roasted barley grain into mugicha and its formation during roasting of the grain. Mugicha is an infusion of roasted barley grains. Highly water-soluble acrylamide was easily extracted to mugicha from milled roasted barley grains in teabags. On the other hand, the acrylamide concentration in mugicha prepared from loose grain increased with longer simmering and steeping times. During roasting in a drum roaster, the acrylamide concentration of the grain increased as the surface temperature rose, reaching a maximum at 180-240°C. Above this temperature, the acrylamide concentration decreased with continued roasting, exhibiting an inverted 'U'-shaped curve. For most of the samples, the acrylamide concentration showed good correlation with the value of the colour space parameter L*. The dark-coloured roasted barley grains with lower L* values contained lower amounts of acrylamide as a result of deep roasting. The level of asparagine in barley grains was found to be a significant factor related to acrylamide formation in roasted barley products. The data are an important contribution to the mitigation of acrylamide intake from mugicha. PMID:26678848

  8. The impact of Fusarium culmorum infection on the protein fractions of raw barley and malted grains.

    PubMed

    Oliveira, Pedro M; Waters, Deborah M; Arendt, Elke K

    2013-03-01

    Contaminating fungi, such as Fusarium species, produce metabolites that may interfere with normal barley grain proteolysis pattern and consequently, affect malt and beer quality. Protein compositional changes of an initial mixture of 20 % Fusarium culmorum infected and 80 % noninfected mature barley grains and respective malt are reported here. Proteolytic activity of infected barley grains (IBG) and respective malt, with controls (uninfected grains), were characterized using protease inhibitors from each class of this enzyme, including metallo-, cysteine, serine, and aspartic proteases, as well as uninhibited protease fractions. The proteins were extracted according to the Osborne fractionation and separated by size exclusion chromatography. Additionally, two-dimensional (2D) gel electrophoresis (GE) was used to analyze hydrophobic storage proteins isolated from the control and IBG. Analyses revealed that F. culmorum IBG had a twofold increase of proteolytic activity compared to the control sample, which showed an increase in all protease classes with aspartic proteases dominating. Infected and control malt grains were comparable with cysteine proteases representing almost 50 % of all proteolytic enzymes detected. Protein extractability was 31 % higher in IBG compared to the control barley. The albumin fraction showed that several metabolic proteins decreased and increased at different rates during infection and malting, thus showing a complex F. culmorum infection interdependence. Prolamin storage proteins were more hydrophobic during barley fungal infection. F. culmorum interfered with the grain hydrolytic protein profile, thereby altering the grain's protein content and quality. PMID:23371295

  9. Investigation of germination and aging in Moravian III barley grain by nuclear magnetic resonance.

    PubMed Central

    Ridenour, C F; Xiong, J; Maciel, G E

    1996-01-01

    High-resolution, solid-state 1H nuclear magnetic resonance (NMR) techniques are used for the first time to study germination in imbibed Moravian III barley grains. Whereas magic-angle spinning 1H NMR spectra reveal the water and lipid components in barley grains, combined rotation and multiple-pulse spectroscopy techniques provide 1H NMR spectra of grains that reveal the protein and carbohydrate as well as the water and lipid components. Spectra of grains are compared with spectra of model compounds to verify assignments. 1H T1 and T2 measurements using magic-angle spinning only and combined rotation and multiple-pulse spectroscopy techniques provide information about molecular mobility within the grains during inhibition. Some grains were subjected to artificial aging conditions. 1H NMR spectral comparisons are made between normal, viable grains and artificially aged grains. PMID:8770229

  10. Effects of process parameters on the properties of barley containing snacks enriched with brewer's spent grain.

    PubMed

    Kirjoranta, Satu; Tenkanen, Maija; Jouppila, Kirsi

    2016-01-01

    Brewer's spent grain (BSG), a by-product of malting of barley in the production of malt extract, was used as an ingredient in extruded barley-based snacks in order to improve the nutritional value of the snacks and widen the applications of this by-product in food sector. The effects of the extrusion parameters on the selected properties of the snacks were studied. Snacks with different ingredients including whole grain barley flour, BSG, whey protein isolate (WPI), barley starch and waxy corn starch were produced in 5 separate trials using a co-rotating twin-screw extruder. Extrusion parameters were water content of the mass (17-23 %), screw speed (200-500 rpm) and temperature of the last section and die (110-150 °C). Expansion, hardness and water content of the snacks were determined. Snacks containing barley flour and BSG (10 % of solids) had small expansion and high hardness. Addition of WPI (20 % of solids) increased expansion only slightly. Snacks with high expansion and small hardness were obtained when part of the barley flour was replaced with starch (barley or waxy corn). Yet, the highest expansion and the smallest hardness were achieved when barley flour was used with barley starch and WPI without BSG. Furthermore, expansion increased by increasing screw speed and decreasing water content of the mass in most of the trials. This study showed that BSG is a suitable material for extruded snacks rich in dietary fiber. Physical properties of the snacks could be improved by using barley or waxy corn starch and WPI. PMID:26787998

  11. Effects of Break Crops on Yield and Grain Protein Concentration of Barley in a Boreal Climate

    PubMed Central

    Zou, Ling; Yli-Halla, Markku; Stoddard, Frederick L.; Mäkelä, Pirjo S. A.

    2015-01-01

    Rotation with dicotyledonous crops to break cereal monoculture has proven to be beneficial to successive cereals. In two fields where the soil had been subjected to prolonged, continuous cereal production, two 3-year rotation trials were established. In the first year, faba bean, turnip rape and barley were grown, as first crops, in large blocks and their residues tilled into the soil after harvest. In the following year, barley, buckwheat, caraway, faba bean, hemp and white lupin were sown, as second crops, in each block and incorporated either at flowering stage (except barley) or after harvest. In the third year, barley was grown in all plots and its yield and grain protein concentration were determined. Mineral N in the plough layer was determined two months after incorporation of crops and again before sowing barley in the following year. The effect of faba bean and turnip rape on improving barley yields and grain protein concentration was still detectable two years after they were grown. The yield response of barley was not sensitive to the growth stage of second crops when they were incorporated, but was to different second crops, showing clear benefits averaging 6-7% after white lupin, faba bean and hemp but no benefit from caraway or buckwheat. The effect of increased N in the plough layer derived from rotation crops on barley yields was minor. Incorporation of plants at flowering stage slightly increased third-year barley grain protein concentration but posed a great potential for N loss compared with incorporation of crop residues after harvest, showing the value of either delayed incorporation or using catch crops. PMID:26076452

  12. Effects of Break Crops on Yield and Grain Protein Concentration of Barley in a Boreal Climate.

    PubMed

    Zou, Ling; Yli-Halla, Markku; Stoddard, Frederick L; Mäkelä, Pirjo S A

    2015-01-01

    Rotation with dicotyledonous crops to break cereal monoculture has proven to be beneficial to successive cereals. In two fields where the soil had been subjected to prolonged, continuous cereal production, two 3-year rotation trials were established. In the first year, faba bean, turnip rape and barley were grown, as first crops, in large blocks and their residues tilled into the soil after harvest. In the following year, barley, buckwheat, caraway, faba bean, hemp and white lupin were sown, as second crops, in each block and incorporated either at flowering stage (except barley) or after harvest. In the third year, barley was grown in all plots and its yield and grain protein concentration were determined. Mineral N in the plough layer was determined two months after incorporation of crops and again before sowing barley in the following year. The effect of faba bean and turnip rape on improving barley yields and grain protein concentration was still detectable two years after they were grown. The yield response of barley was not sensitive to the growth stage of second crops when they were incorporated, but was to different second crops, showing clear benefits averaging 6-7% after white lupin, faba bean and hemp but no benefit from caraway or buckwheat. The effect of increased N in the plough layer derived from rotation crops on barley yields was minor. Incorporation of plants at flowering stage slightly increased third-year barley grain protein concentration but posed a great potential for N loss compared with incorporation of crop residues after harvest, showing the value of either delayed incorporation or using catch crops. PMID:26076452

  13. Acrylamide in roasted barley grains: presence, correlation with colour and decrease during storage.

    PubMed

    Mizukami, Yuzo; Yoshida, Mitsuru; Isagawa, Satoshi; Yamazaki, Kumiko; Ono, Hiroshi

    2014-01-01

    We investigated the presence of acrylamide in roasted barley grains, and assessed the correlation between acrylamide concentration and colour, and also examined acrylamide decrease during storage. Acrylamide concentrations in 45 commercially available roasted barley grains were analysed. The mean and standard deviation were 0.24 and 0.08 mg kg(-1), respectively. The CIE colour parameter a* value had little correlation with acrylamide concentration in roasted barley grains; however, the L* and b* values showed correlations with acrylamide concentration in the grains, yielding a correlation coefficient of 0.42 and 0.40, respectively. Darker-coloured roasted barley grains with lower L* values may contain lower amounts of acrylamide. Although acrylamide concentration decreased by 40% in the grains, and decreased by 36% in the milled grains (teabag form) after 309 days of storage at room temperature a significant difference in the rate of acrylamide decrease was not observed between the grain and teabag forms. The data obtained in this study are of importance to the risk assessment and management of acrylamide exposure in Japan. PMID:24761965

  14. Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter is part of a series reviewing advances in transgenic crop plants. The chapter covers advances in barley transformation. Conventional and biotechnological approaches to barley improvement are discussed. Experiments conducted around the world to improve barley food, feed and malting ...

  15. Spatially resolved analysis of variation in barley (Hordeum vulgare) grain micronutrient accumulation.

    PubMed

    Detterbeck, Amelie; Pongrac, Paula; Rensch, Stefan; Reuscher, Stefan; Pečovnik, Matic; Vavpetič, Primož; Pelicon, Primož; Holzheu, Stefan; Krämer, Ute; Clemens, Stephan

    2016-09-01

    Genetic biofortification requires knowledge on natural variation and the underlying mechanisms of micronutrient accumulation. We therefore studied diversity in grain micronutrient concentrations and spatial distribution in barley (Hordeum vulgare), a genetically tractable model cereal and an important crop with widespread cultivation. We assembled a diverse collection of barley cultivars and landraces and analysed grain micronutrient profiles in genebank material and after three independent cultivations. Lines with contrasting grain zinc (Zn) accumulation were selected for in-depth analysis of micronutrient distribution within the grain by micro-proton-induced X-ray emission (μ-PIXE). Also, we addressed association with grain cadmium (Cd) accumulation. The analysis of > 120 lines revealed substantial variation, especially in grain Zn concentrations. A large fraction of this variation is due to genetic differences. Grain dissection and μ-PIXE analysis of contrasting lines showed that differences in grain Zn accumulation apply to all parts of the grain including the endosperm. Cd concentrations exceeded the Codex Alimentarius threshold in most of the representative barley lines after cultivation in a Cd-contaminated agricultural soil. Two important conclusions for biofortification are: first, high-Zn grains contain more Zn also in the consumed parts of the grain; and second, higher micronutrient concentrations are strongly associated with higher Cd accumulation. PMID:27125321

  16. Quality of rolled barley flakes as affected by batch of grain and processing technique.

    PubMed

    Sundberg, B; Abrahamsson, L; Aman, P

    1994-02-01

    Rolled barely flakes were prepared from three different batches of grain by pearling, steaming and rolling. Autoclaved and malted barleys from the three batches were also processed in the same way. Analysis of the nine products showed that both batch of barley and process had significant effects on chemical composition and viscosity. Puddings were prepared from the products and mechanical consistency, juiciness and grain consistency were graded on both newly prepared and heated puddings by a sensory taste panel. Batch of barley had no effect on mechanical consistency but significant effects on juiciness and grain consistency. Type of processing had significant effect on all three parameters for both newly prepared and heated puddings. PMID:8153065

  17. Using barley genomics to develop Fusarium head blight resistant wheat and barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major problem for wheat and barley growers. During infection, F. graminearum produces trichothecene mycotoxins (e.g., deoxynivalenol or DON) that increases fungal virulence and reduces grain quality and yield. Previous work in Arabidopsis sh...

  18. Association mapping of grain hardness, polyphenol oxidase, total phenolics, amylose content, and ß-glucan in US barley breeding germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A renewed interest in breeding barley specifically for food end-uses is being driven by increased consumer interest in healthier foods. We conducted association mapping on physicochemical properties of barley that play a role in food quality and processing including, grain hardness, polyphenol oxid...

  19. Crop identification studies using Landsat data Separation of barley from other spring small grains and corn and soybean decision logic

    NASA Technical Reports Server (NTRS)

    Dailey, C. L.; Register, D. T.; Abotteen, K. M.; Palmer, W. F.; Spikes, G. D.; Magness, E. R.; Wade, L. C.

    1980-01-01

    Two labeling procedures were developed which identify various agricultural crops through the use of Landsat data. One procedure separates barley from other spring small grains, and the other identifies corn and soybeans. For both procedures, a minimum data set (critical acquisition time) has been designated. Landsat data in both image format and various graphic displays were used along with ancillary data to obtain information which aided in labeling the spectral signatures. The corn and soybean procedure also employed a structured decision logic. Test results for the barley separation procedure emphasized the importance of obtaining a critical acquisition and showed some success especially in areas where spring crops followed the expected growth patterns. Two tests of the corn and soybean procedure produced good labeling accuracies. Problems with the procedure were easy to identify, and some solutions were implemented for the second test. Automation of various parts of the procedure and extension to other crops and regions were recommended.

  20. Association mapping of Russian Wheat Aphid Resistance in barley as a method to identify diversity in the National Small Grains Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) infestations of barley cause chlorotic leaf spotting and streaking, and prevent unrolling of leaves which traps spikes and reduces grain yield. Resistant accessions identified in the NSGC were used to develop adapted, resistant germplasm and cultivars. This study identified...

  1. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    PubMed

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  2. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome

    PubMed Central

    De Angelis, Maria; Montemurno, Eustacchio; Vannini, Lucia; Cosola, Carmela; Cavallo, Noemi; Gozzi, Giorgia; Maranzano, Valentina; Di Cagno, Raffaella; Gesualdo, Loreto

    2015-01-01

    In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples. PMID:26386056

  3. Effect of Whole-Grain Barley on the Human Fecal Microbiota and Metabolome.

    PubMed

    De Angelis, Maria; Montemurno, Eustacchio; Vannini, Lucia; Cosola, Carmela; Cavallo, Noemi; Gozzi, Giorgia; Maranzano, Valentina; Di Cagno, Raffaella; Gobbetti, Marco; Gesualdo, Loreto

    2015-11-01

    In this study, we compared the fecal microbiota and metabolomes of 26 healthy subjects before (HS) and after (HSB) 2 months of diet intervention based on the administration of durum wheat flour and whole-grain barley pasta containing the minimum recommended daily intake (3 g) of barley β-glucans. Metabolically active bacteria were analyzed through pyrosequencing of the 16S rRNA gene and community-level catabolic profiles. Pyrosequencing data showed that levels of Clostridiaceae (Clostridium orbiscindens and Clostridium sp.), Roseburia hominis, and Ruminococcus sp. increased, while levels of other Firmicutes and Fusobacteria decreased, from the HSB samples to the HS fecal samples. Community-level catabolic profiles were lower in HSB samples. Compared to the results for HS samples, cultivable lactobacilli increased in HSB fecal samples, while the numbers of Enterobacteriaceae, total coliforms, and Bacteroides, Porphyromonas, Prevotella, Pseudomonas, Alcaligenes, and Aeromonas bacteria decreased. Metabolome analyses were performed using an amino acid analyzer and gas chromatography-mass spectrometry solid-phase microextraction. A marked increase in short-chain fatty acids (SCFA), such as 2-methyl-propanoic, acetic, butyric, and propionic acids, was found in HSB samples with respect to the HS fecal samples. Durum wheat flour and whole-grain barley pasta containing 3% barley β-glucans appeared to be effective in modulating the composition and metabolic pathways of the intestinal microbiota, leading to an increased level of SCFA in the HSB samples. PMID:26386056

  4. GA Enhanced a-Amylase Synthesis in Halved Grains of Barley (Hordeum vulgare): A Simple Laboratory Demonstration

    ERIC Educational Resources Information Center

    Freeland, P. W.

    1972-01-01

    A laboratory demonstration is suggested for the formation of a-amylase enzyme in halved grains of barley. Data presented in the article provide some information of the pattern of a- and b-amylase activity during germination. (PS)

  5. Development of DNA markers associated with beer foam stability for barley breeding.

    PubMed

    Iimure, Takashi; Kihara, Makoto; Ichikawa, Seiichiro; Ito, Kazutoshi; Takeda, Kazuyoshi; Sato, Kazuhiro

    2011-01-01

    Traits conferring brewing quality are important objectives in malting barley breeding. Beer foam stability is one of the more difficult traits to evaluate due to the requirement for a relatively large amount of grain to be malted and then the experimental costs for subsequent brewing trials. Consequently, foam stability tends to be evaluated with only advanced lines in the final stages of the breeding process. To simplify the evaluation and selection for this trait, efficient DNA makers were developed in this study. Previous studies have suggested that the level of both of the foam-associated proteins Z4 and Z7 were possible factors that influenced beer foam stability. To confirm the relationship between levels of these proteins in beer and foam stability, 24 beer samples prepared from malt made from 10 barley cultivars, were examined. Regression analyses suggested that beer proteins Z4 and Z7 could be positive and negative markers for beer foam stability, respectively. To develop DNA markers associated with contents of proteins Z4 and Z7 in barley grain, nucleotide sequence polymorphisms in barley cultivars in the upstream region of the translation initiation codon, where the promoter region might be located were compared. As a result, 5 and 23 nucleotide sequence polymorphisms were detected in protein Z4 and protein Z7, respectively. By using these polymorphisms, cleaved amplified polymorphic sequence (CAPS) markers were developed. The CAPS markers for proteins Z4 and Z7 were applied to classify the barley grain content of 23 barley cultivars into two protein Z4 (pZ4-H and pZ4-L) and three protein Z7 (the pZ7-H, pZ7-L and pZ7-L2) haplotypes, respectively. Barley cultivars with pZ4-H showed significantly higher levels of protein Z4 in grain, and those with pZ7-L and pZ7-L2 showed significantly lower levels of protein Z7 in grain. Beer foam stability in the cultivars with pZ4-H and pZ7-L was significantly higher than that with pZ4-L and pZ7-H, respectively. Our

  6. Evidence of two enzymes performing the de-N-glycosylation of proteins in barley: expression during germination, localization within the grain and set-up during grain formation.

    PubMed

    Vuylsteker, C; Cuvellier, G; Berger, S; Faugeron, C; Karamanos, Y

    2000-05-01

    The occurrence of two enzymes performing de-N-glycosylation of glycoproteins, namely, endo-N-acetyl-beta-D-glucosaminidase (ENGase, EC 3.2.1.96) and peptide-N(4)-(N-acetyl-beta-D-glucosaminyl) asparagine amidase (PNGase, EC 3.5.1.52) was investigated in barley, cv. Plaisant (a winter six rowed variety). The dry grain showed both activities according to the HPLC detection of the hydrolysis of fluorescent resorufin-labelled substrates. However, PNGase activity was 16-fold higher than ENGase activity. During germination, both activities increased, PNGase by only 1.5-fold compared to nearly 4.8-fold for ENGase over the 4 d following imbibition. The localization of these activities within the grain showed that the major contribution of PNGase was due to the endosperm, typically representing over 90% of the whole grain activity. In contrast, ENGase activity was especially high in the embryo and, later, in the developing plantlet (10-fold higher than in the endosperm), particularly in the rootlets and scutellum. In developing spikes, PNGase activity was 5.6-fold higher than in the leaves, but similar ENGase activity was measured in both organs. During grain formation, PNGase activity followed dry matter increase together with endosperm development. In contrast, ENGase activity dropped by 66% at the beginning of grain filling before stabilizing until harvest. The occurrence of de-N-glycosylation-performing enzymes throughout the development of barley raises the question of the nature of their natural substrates. Moreover, the prevalence of one of these enzymes over the other depending on the organ and the developmental stage, could represent the first evidence of specific functions for each enzyme. PMID:10948209

  7. Hulless winter barley for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hulless barley is viable feedstock alternative to corn for ethanol production in areas where small grains are produced. The first barley-based ethanol plant in the US is currently under construction by Osage BioEnergy LLC in Hopewell, VA. New hulless winter barley varieties developed by Virginia T...

  8. Barley Oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare) is an ancient grain that has was domesticated for use as a food. Currently only about 2% is used for food, about two thirds is used for animal feed and one third for malting. Because the oil content of most barley cultivars is low (<2%), obtaining oil from whole barley gra...

  9. Evaluation of the procedure for separating barley from other spring small grains. [North Dakota, South Dakota, Minnesota and Montana

    NASA Technical Reports Server (NTRS)

    Magness, E. R. (Principal Investigator)

    1980-01-01

    The success of the Transition Year procedure to separate and label barley and the other small grains was assessed. It was decided that developers of the procedure would carry out the exercise in order to prevent compounding procedural problems with implementation problems. The evaluation proceeded by labeling the sping small grains first. The accuracy of this labeling was, on the average, somewhat better than that in the Transition Year operations. Other departures from the original procedure included a regionalization of the labeling process, the use of trend analysis, and the removal of time constraints from the actual processing. Segment selection, ground truth derivation, and data available for each segment in the analysis are discussed. Labeling accuracy is examined for North Dakota, South Dakota, Minnesota, and Montana as well as for the entire four-state area. Errors are characterized.

  10. In situ identification and quantification of starch-hydrolyzing bacteria attached to barley and corn grain in the rumen of cows fed barley-based diets.

    PubMed

    Xia, Yun; Kong, Yunhong; Seviour, Robert; Yang, Hee-Eun; Forster, Robert; Vasanthan, Thavaratnam; McAllister, Tim

    2015-08-01

    Cereal grains rich in starch are widely used to meet the energy demands of high-producing beef and dairy cattle. Bacteria are important players in starch digestion in the rumen, and thus play an important role in the hydrolysis and fermentation of cereal grains. However, our understanding of the composition of the rumen starch-hydrolyzing bacteria (SHB) is limited. In this study, BODIPY FL DQ starch staining combined with fluorescence in situ hybridization (FISH) and quantitative FISH were applied to label, identify and quantify SHB possessing active cell-surface-associated (CSA) α-amylase activity in the rumen of heifers fed barley-based diets. When individual cells of SHB with active CSA α-amylase activity were enumerated, they constituted 19-23% of the total bacterial cells attached to particles of four different cultivars of barley grain and corn. Quantitative FISH revealed that up to 70-80% of these SHB were members of Ruminococcaceae in the phylum Firmicutes but were not Streptococcus bovis, Ruminobacter amylophilus, Succinomonas amylolytica, Bifidobacterium spp. or Butyrivibrio fibrisolvens, all of whose amylolytic activities have been demonstrated previously in vitro. The proportion of barley grain in the diet had a large impact on the percentage abundance of total SHB and Ruminococcaceae SHB in these animals. PMID:26142428

  11. Linking stomatal traits and expression of slow anion channel genes HvSLAH1 and HvSLAC1 with grain yield for increasing salinity tolerance in barley

    PubMed Central

    Liu, Xiaohui; Mak, Michelle; Babla, Mohammad; Wang, Feifei; Chen, Guang; Veljanoski, Filip; Wang, Gang; Shabala, Sergey; Zhou, Meixue; Chen, Zhong-Hua

    2014-01-01

    Soil salinity is an environmental and agricultural problem in many parts of the world. One of the keys to breeding barley for adaptation to salinity lies in a better understanding of the genetic control of stomatal regulation. We have employed a range of physiological (stomata assay, gas exchange, phylogenetic analysis, QTL analysis), and molecular techniques (RT-PCR and qPCR) to investigate stomatal behavior and genotypic variation in barley cultivars and a genetic population in four experimental trials. A set of relatively efficient and reliable methods were developed for the characterization of stomatal behavior of a large number of varieties and genetic lines. Furthermore, we found a large genetic variation of gas exchange and stomatal traits in barley in response to salinity stress. Salt-tolerant cultivar CM72 showed significantly larger stomatal aperture under 200 mM NaCl treatment than that of salt-sensitive cultivar Gairdner. Stomatal traits such as aperture width/length were found to significantly correlate with grain yield under salt treatment. Phenotypic characterization and QTL analysis of a segregating double haploid population of the CM72/Gairdner resulted in the identification of significant stomatal traits-related QTLs for salt tolerance. Moreover, expression analysis of the slow anion channel genes HvSLAH1 and HvSLAC1 demonstrated that their up-regulation is linked to higher barley grain yield in the field. PMID:25505473

  12. Exploring the Plant-Microbe Interface by Profiling the Surface-Associated Proteins of Barley Grains.

    PubMed

    Sultan, Abida; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2016-04-01

    Cereal grains are colonized by a microbial community that actively interacts with the plant via secretion of various enzymes, hormones, and metabolites. Microorganisms decompose plant tissues by a collection of depolymerizing enzymes, including β-1,4-xylanases, that are in turn inhibited by plant xylanase inhibitors. To gain insight into the importance of the microbial consortia and their interaction with barley grains, we used a combined gel-based (2-DE coupled to MALDI-TOF-TOF MS) and gel-free (LC-MS/MS) proteomics approach complemented with enzyme activity assays to profile the surface-associated proteins and xylanolytic activities of two barley cultivars. The surface-associated proteome was dominated by plant proteins with roles in defense and stress-responses, while the relatively less abundant microbial (bacterial and fungal) proteins were involved in cell-wall and polysaccharide degradation and included xylanases. The surface-associated proteomes showed elevated xylanolytic activity and contained several xylanases. Integration of proteomics with enzyme assays is a powerful tool for analysis and characterization of the interaction between microbial consortia and plants in their natural environment. PMID:26928395

  13. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation.

    PubMed

    Hoang, Hai Ha; Bailly, Christophe; Corbineau, Françoise; Leymarie, Juliette

    2013-04-01

    In barley, primary dormant grains did not germinate at 30 °C in air and at 15 °C in an atmosphere containing less than 10% O2, while they germinated easily at 15 °C in air. O2 tension in embryos measured with microsensors was 15.8% at 15 °C but only 0.3% at 30 °C. Incubation of grains at 30 °C is known to induce secondary dormancy in barley, and it was shown here that secondary dormancy was also induced by a 3 d treatment in O2 tensions lower than 10% at 15 °C. After such treatments, the grains lost their ability to germinate subsequently at 15 °C in air. During seed treatment in 5% O2, embryo abscisic acid (ABA) content decreased more slowly than in air and was not altered after transfer into air. Hypoxia did not alter the expression of ABA metabolism genes after 1 d, and induction of HvNCED2 occurred only after 3 d in hypoxia. Embryo sensitivity to ABA was similar in both primary and hypoxia-induced secondary dormant grains. Gibberellic acid (GA) metabolism genes were highly regulated and regulated earlier by the hypoxia treatment, with major changes in HvGA2ox3, HvGA3ox2 and HvGA20ox1 expression after 1 d, resulting in reduced GA signalling. Although a high temperature has an indirect effect on O2 availability, the data showed that it did not affect expression of prolyl-4-hydroxylases and that induction of secondary dormancy by hypoxia at 15 °C or by high temperature in air involved separate signalling pathways. Induction by hypoxia at 15 °C appears to be more regulated by GA and less by ABA than the induction by high temperature. PMID:23519728

  14. Induction of secondary dormancy by hypoxia in barley grains and its hormonal regulation

    PubMed Central

    Hoang, Hai Ha; Bailly, Christophe; Corbineau, Françoise; Leymarie, Juliette

    2013-01-01

    In barley, primary dormant grains did not germinate at 30 °C in air and at 15 °C in an atmosphere containing less than 10% O2, while they germinated easily at 15 °C in air. O2 tension in embryos measured with microsensors was 15.8% at 15 °C but only 0.3% at 30 °C. Incubation of grains at 30 °C is known to induce secondary dormancy in barley, and it was shown here that secondary dormancy was also induced by a 3 d treatment in O2 tensions lower than 10% at 15 °C. After such treatments, the grains lost their ability to germinate subsequently at 15 °C in air. During seed treatment in 5% O2, embryo abscisic acid (ABA) content decreased more slowly than in air and was not altered after transfer into air. Hypoxia did not alter the expression of ABA metabolism genes after 1 d, and induction of HvNCED2 occurred only after 3 d in hypoxia. Embryo sensitivity to ABA was similar in both primary and hypoxia-induced secondary dormant grains. Gibberellic acid (GA) metabolism genes were highly regulated and regulated earlier by the hypoxia treatment, with major changes in HvGA2ox3, HvGA3ox2 and HvGA20ox1 expression after 1 d, resulting in reduced GA signalling. Although a high temperature has an indirect effect on O2 availability, the data showed that it did not affect expression of prolyl-4-hydroxylases and that induction of secondary dormancy by hypoxia at 15 °C or by high temperature in air involved separate signalling pathways. Induction by hypoxia at 15 °C appears to be more regulated by GA and less by ABA than the induction by high temperature. PMID:23519728

  15. Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR.

    PubMed Central

    Hatzack, F; Hübel, F; Zhang, W; Hansen, P E; Rasmussen, S K

    2001-01-01

    Inositol phosphates from barley low-phytate grain mutants and their parent variety were analysed by metal-dye detection HPLC and NMR. Compound assignment was carried out by comparison of retention times using a chemical hydrolysate of phytate [Ins(1,2,3,4,5,6)P(6)] as a reference. Co-inciding retention times indicated the presence of phytate, D/L-Ins(1,2,3,4,5)P(5), Ins(1,2,3,4,6)P(5), D/L-(1,2,4,5,6)P(5), D/L-(1,2,3,4)P(4), D/L-Ins(1,2,5,6)P(4) and D/L-Ins(1,4,5,6)P(4) in PLP1B mutants as well as the parent variety. In grain extracts from mutant lines PLP1A, PLP2A and PLP3A unusual accumulations of D/L-Ins(1,3,4,5)P(4) were observed whereas phytate and the above-mentioned inositol phosphates were present in relatively small amounts. Assignment of D/L-Ins(1,3,4,5)P(4) was corroborated by precise co-chromatography with a commercial Ins(1,3,4,5)P(4) standard and by NMR spectroscopy. Analysis of inositol phosphates during grain development revealed accumulation of phytate and D/L-Ins(1,3,4,5)P(4), which suggested the tetrakisphosphate compound to be an intermediate of phytate synthesis. This assumption was strengthened further by phytate degradation assays showing that D/L-Ins(1,3,4,5)P(4) did not belong to the spectrum of degradation products generated by endogenous phytase activity. Metabolic scenarios leading to accumulation of D/L-Ins(1,3,4,5)P(4) in barley low-phytate mutants are discussed. PMID:11171128

  16. Analysis of barley by NIRS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of a rapid method of analysis of barley for moisture, starch, protein, oil, ash and Beta-glucan was attempted. One hundred forty-three barley grain samples of 3 types (hulled, hulless and malt) over 2 growing seasons and from various locations in the United States were utilized in the s...

  17. Post-anthesis N and P dynamics and its impact on grain yield and quality in mycorrhizal barley plants.

    PubMed

    Criado, Maria V; H Gutierrez Boem, Flavio; Roberts, Irma N; Caputo, Carla

    2015-04-01

    An essential goal for modern agriculture is the simultaneous improvement of productivity efficiency and nutrient use efficiency. One way to achieve this goal in crops is to enhance nitrogen (N) and phosphorus (P) acquisition through the mycorrhizal association. This study examined the effect of mycorrhization on post-anthesis N and P dynamics and its impact on grain yield and quality in barley. In addition, the efficiency of both N and P utilization and remobilization was evaluated. With those purposes, barley plants inoculated or not with Rhizophagus intraradices were grown in a soil poor in N and P under greenhouse conditions. Inoculation with R. intraradices in barley enhanced both N and P content in grain and vegetative tissue and reduced phloem amino acid export rate. On the other hand, both N and P vegetative tissue content and phloem amino acid and P export rates decreased during grain filling, whereas N and P grain content increased in both treatments according to the senescence process. However, whereas N grain concentration decreased during grain filling, P grain concentration did not vary, thus suggesting a differential regulation on grain filling. Inoculation with R. intraradices improved the yield and grain quality, thus demonstrating that inoculation with R. intraradices in barley is beneficial, but mycorrhization caused a diminution in nutrient utilization efficiency. As the phloem remobilization rate of amino acids and P did not decrease during grain filling in R. intraradices-inoculated plants compared to non-inoculated ones, these results suggest that nutrient utilization efficiency is most probably regulated by sink strength rather by a mycorrhizal effect. PMID:25242016

  18. Dual aphid resistance in hulless winter barley for ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hulless barley is viable feedstock alternative to corn for ethanol production in areas where small grains are produced. The first barley-based ethanol plant in the US is currently under construction by Osage BioEnergy LLC in Hopewell, VA. New hulless winter barley varieties developed by Virginia T...

  19. Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain.

    PubMed

    Rodrigo, Sara; Santamaria, Oscar; Chen, Yi; McGrath, Steve P; Poblaciones, Maria J

    2014-06-25

    Selenium (Se) biofortification of barley is a suitable strategy to increase the Se concentration in grain. In the present paper, the suitability of this Se-biofortified grain for making Se-enriched beer is analyzed. The aim of the present study was to evaluate the effect of different Se fertilizer doses (0, 10, and 20 g of Se ha(-1)) and forms (sodium selenate or sodium selenite) on the Se loss during the malting and brewing processes and Se speciation in grain, malt, wort, and beer. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS) and high-performance liquid chromatography (HPLC)-ICP-MS for total Se and speciation. Mashing-lautering was the process with the greatest Se loss (83.8%). After malting and brewing, only 7.3% of the initial Se was retained in beer, mainly in selenite form. Even so, the fertilizer application of sodium selenate at 20 g ha(-1) increased the total Se concentration almost 6-fold in the final beer in comparison to the use of grain derived from unfertilized barley. The present paper provides evidence that the use of Se-biofortified barley grain as a raw material to produce Se-enriched beer is possible, and the results are comparable to other methods in terms of efficiency. PMID:24869769

  20. Genetic dissection of grain beta-glucan and amylose content in barley (Hordeum vulgare L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High beta glucan (BG) barleys (Hordeum vulgare L.) have major potential as food ingredients due to the well know health benefits. Quantitative trait loci (QTLs) associated with BG have been reported in hulled barley, however no QTL studies have been reported in hulless barley. In this study, QTL an...

  1. Effect of sprouted barley grain supplementation of an herbage or haylage diet on ruminal fermentation and methane output in continuous culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG), with a pasture (orchardgrass) or haylage diet, on nutrient digestibility, VFA production, bacterial protein synthesis, and methane production. Treatmen...

  2. Effect of sprouted barley grain supplementation of an herbage-based or haylage-based diet on ruminal fermentation and methane output in continuous culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley (SB) or barley grain (BG) with an herbage-based or haylage-based diet on nutrient digestibility, volatile fatty acid (VFA) profiles, bacterial protein synthesis, and methane outp...

  3. Variation in the interaction between alleles of HvAPETALA2 and microRNA172 determines the density of grains on the barley inflorescence

    PubMed Central

    Houston, Kelly; McKim, Sarah M.; Comadran, Jordi; Bonar, Nicola; Druka, Ilze; Uzrek, Nicola; Cirillo, Elisa; Guzy-Wrobelska, Justyna; Collins, Nicholas C.; Halpin, Claire; Hansson, Mats; Dockter, Christoph; Druka, Arnis; Waugh, Robbie

    2013-01-01

    Within the cereal grasses, variation in inflorescence architecture results in a conspicuous morphological diversity that in crop species influences the yield of cereal grains. Although significant progress has been made in identifying some of the genes underlying this variation in maize and rice, in the temperate cereals, a group that includes wheat, barley, and rye, only the dosage-dependent and highly pleiotropic Q locus in hexaploid wheat has been molecularly characterized. Here we show that the characteristic variation in the density of grains along the inflorescence, or spike, of modern cultivated barley (Hordeum vulgare) is largely the consequence of a perturbed interaction between microRNA172 and its corresponding binding site in the mRNA of an APELATA2 (AP2)-like transcription factor, HvAP2. We used genome-wide association and biparental mapping to identify HvAP2. By comparing inflorescence development and HvAP2 transcript abundance in an extreme dense-spike mutant and its nearly isogenic WT line, we show that HvAP2 turnover driven by microRNA 172 regulates the length of a critical developmental window that is required for elongation of the inflorescence internodes. Our data indicate that this heterochronic change, an altered timing of developmental events caused by specific temporal variation in the efficiency of HvAP2 turnover, leads to the striking differences in the size and shape of the barley spike. PMID:24065816

  4. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley.

    PubMed

    Mascher, Martin; Schuenemann, Verena J; Davidovich, Uri; Marom, Nimrod; Himmelbach, Axel; Hübner, Sariel; Korol, Abraham; David, Michal; Reiter, Ella; Riehl, Simone; Schreiber, Mona; Vohr, Samuel H; Green, Richard E; Dawson, Ian K; Russell, Joanne; Kilian, Benjamin; Muehlbauer, Gary J; Waugh, Robbie; Fahima, Tzion; Krause, Johannes; Weiss, Ehud; Stein, Nils

    2016-09-01

    The cereal grass barley was domesticated about 10,000 years before the present in the Fertile Crescent and became a founder crop of Neolithic agriculture. Here we report the genome sequences of five 6,000-year-old barley grains excavated at a cave in the Judean Desert close to the Dead Sea. Comparison to whole-exome sequence data from a diversity panel of present-day barley accessions showed the close affinity of ancient samples to extant landraces from the Southern Levant and Egypt, consistent with a proposed origin of domesticated barley in the Upper Jordan Valley. Our findings suggest that barley landraces grown in present-day Israel have not experienced major lineage turnover over the past six millennia, although there is evidence for gene flow between cultivated and sympatric wild populations. We demonstrate the usefulness of ancient genomes from desiccated archaeobotanical remains in informing research into the origin, early domestication and subsequent migration of crop species. PMID:27428749

  5. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  6. Study of Barley Grain Molecular Structure for Ruminants Using DRIFT, FTIR-ATR and Synchrotron Radiation Infrared Microspectroscopy (SR-IMS): A Review

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang

    2012-05-01

    Barley inherent structures are highly associated with nutrient utilization and availability in both humans and animals. Barley has different degradation kinetics compared with other cereal grains. It has a relatively higher degradation rate and extent, which often cause digestive disorder in the rumen. Therefore understanding barley inherent structure at cellular and molecular levels and processing-induced structure changes is important, because we can manipulate barley inherent structures and digestive behaviors. Several molecular spectroscopy techniques can be used to detect barley inherent structures at cellular and molecular levels. This article reviews several applications of the IR molecular spectral bioanalytical techniques - DRIFT, FT/IR-ATR and SR-IMS for barley chemistry, molecular structure and molecular nutrition research

  7. Effects of Zn Fertilization on Hordein Transcripts at Early Developmental Stage of Barley Grain and Correlation with Increased Zn Concentration in the Mature Grain

    PubMed Central

    Uddin, Mohammad Nasir; Kaczmarczyk, Agnieszka; Vincze, Eva

    2014-01-01

    Zinc deficiency is causing malnutrition for nearly one third of world populations. It is especially relevant in cereal-based diets in which low amounts of mineral and protein are present. In biological systems, Zn is mainly associated with protein. Cereal grains contain the highest Zn concentration during early developmental stage. Although hordeins are the major storage proteins in the mature barley grain and suggested to be involved in Zn binding, very little information is available regarding the Zn fertilization effects of hordein transcripts at early developmental stage and possible incorporation of Zn with hordein protein of matured grain. Zinc fertilization experiments were conducted in a greenhouse with barley cv. Golden Promise. Zn concentration of the matured grain was measured and the results showed that the increasing Zn fertilization increased grain Zn concentration. Quantitative real time PCR showed increased level of total hordein transcripts upon increasing level of Zn fertilization at 10 days after pollination. Among the hordein transcripts the amount of B-hordeins was highly correlated with the Zn concentration of matured grain. In addition, protein content of the matured grain was analysed and a positive linear relationship was found between the percentage of B-hordein and total grain Zn concentration while C-hordein level decreased. Zn sensing dithizone assay was applied to localize Zn in the matured grain. The Zn distribution was not limited to the embryo and aleurone layer but was also present in the outer part of the endosperm (sub-aleurone layers) which known to be rich in proteins including B-hordeins. Increased Zn fertilization enriched Zn even in the endosperm. Therefore, the increased amount of B-hordein and decreased C-hordein content suggested that B-hordein upregulation or difference between B and C hordein could be one of the key factors for Zn biofortification of cereal grains due to the Zn fertilization. PMID:25250985

  8. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm1[OPEN

    PubMed Central

    Zhang, Runxuan; Burton, Rachel A; Shirley, Neil J.; Little, Alan; Morris, Jenny; Milne, Linda

    2016-01-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  9. The Dynamics of Transcript Abundance during Cellularization of Developing Barley Endosperm.

    PubMed

    Zhang, Runxuan; Tucker, Matthew R; Burton, Rachel A; Shirley, Neil J; Little, Alan; Morris, Jenny; Milne, Linda; Houston, Kelly; Hedley, Pete E; Waugh, Robbie; Fincher, Geoffrey B

    2016-03-01

    Within the cereal grain, the endosperm and its nutrient reserves are critical for successful germination and in the context of grain utilization. The identification of molecular determinants of early endosperm development, particularly regulators of cell division and cell wall deposition, would help predict end-use properties such as yield, quality, and nutritional value. Custom microarray data have been generated using RNA isolated from developing barley grain endosperm 3 d to 8 d after pollination (DAP). Comparisons of transcript abundance over time revealed 47 gene expression modules that can be clustered into 10 broad groups. Superimposing these modules upon cytological data allowed patterns of transcript abundance to be linked with key stages of early grain development. Here, attention was focused on how the datasets could be mined to explore and define the processes of cell wall biosynthesis, remodeling, and degradation. Using a combination of spatial molecular network and gene ontology enrichment analyses, it is shown that genes involved in cell wall metabolism are found in multiple modules, but cluster into two main groups that exhibit peak expression at 3 DAP to 4 DAP and 5 DAP to 8 DAP. The presence of transcription factor genes in these modules allowed candidate genes for the control of wall metabolism during early barley grain development to be identified. The data are publicly available through a dedicated web interface (https://ics.hutton.ac.uk/barseed/), where they can be used to interrogate co- and differential expression for any other genes, groups of genes, or transcription factors expressed during early endosperm development. PMID:26754666

  10. Arabinogalactan proteins are involved in root hair development in barley

    PubMed Central

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-01-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  11. Arabinogalactan proteins are involved in root hair development in barley.

    PubMed

    Marzec, Marek; Szarejko, Iwona; Melzer, Michael

    2015-03-01

    The arabinogalactan proteins (AGPs) are involved in a range of plant processes, including cell differentiation and expansion. Here, barley root hair mutants and their wild-type parent cultivars were used, as a model system, to reveal the role of AGPs in root hair development. The treatment of roots with different concentrations of βGlcY (a reagent which binds to all classes of AGPs) inhibited or totally suppressed the development of root hairs in all of the cultivars. Three groups of AGP (recognized by the monoclonal antibodies LM2, LM14, and MAC207) were diversely localized in trichoblasts and atrichoblasts of root hair-producing plants. The relevant epitopes were present in wild-type trichoblast cell walls and cytoplasm, whereas in wild-type atrichoblasts and in all epidermal cells of a root hairless mutant, they were only present in the cytoplasm. In all of cultivars the higher expression of LM2, LM14, and MAC207 was observed in trichoblasts at an early stage of development. Additionally, the LM2 epitope was detected on the surface of primordia and root hair tubes in plants able to generate root hairs. The major conclusion was that the AGPs recognized by LM2, LM14, and MAC207 are involved in the differentiation of barley root epidermal cells, thereby implying a requirement for these AGPs for root hair development in barley. PMID:25465033

  12. Effects of reducing dietary starch content by replacing barley grain with wheat dried distillers grains plus solubles in dairy cow rations on ovarian function.

    PubMed

    Subramaniam, E; Colazo, M G; Gobikrushanth, M; Sun, Y Q; Ruiz-Sanchez, A L; Ponce-Barajas, P; Oba, M; Ambrose, D J

    2016-04-01

    Our objective was to evaluate the effects of dietary starch content, altered by partial substitution of dietary grain with wheat dried distillers grain with solubles (DDGS), on the interval from calving to first ovulation, concentrations of hormones and metabolites in plasma and follicular fluid, and granulosa cell gene expression in preovulatory follicles. Sixty lactating dairy cows were assigned to 1 of 2 diets from calving until 84d postpartum. Diets were formulated to contain either 17.3% rolled barley grain (29.2% starch) or 17.2% wheat DDGS (19.1% starch), with 43.0% barley silage and 21.6% rolled corn grain as the other major ingredients (dry matter basis). Transrectal ultrasonography was performed twice weekly to monitor ovarian dynamics from 7 ± 2d postpartum until ovulation or until 56d in milk, whichever occurred earlier. Plasma concentrations of insulin and insulin-like growth factor-1 (IGF-1) were determined in all 60 cows, and that of glucose, fatty acids, and urea in a subset of 24 cows, representing those in which the first ovulation occurred spontaneously within 5 wk postpartum. Estradiol (proestrus) and progesterone (12d postovulation) in plasma were also measured. Concentrations of insulin, IGF-1, glucose, fatty acids, and urea were determined in follicular fluid (wk 9), and the expression of LH receptor, estrogen receptor β, cytochrome P450 aromatase, and plasma type glutathione peroxidase genes measured in granulosa cells obtained from the preovulatory follicles at wk 9 postpartum in the subset of 24 cows. Diets did not alter the interval from calving to first ovulation (32.3 ± 2.5d), but a significantly lower proportion of cows on the DDGS diet (20%) ovulated multiple (≥ 2) follicles at the first ovulation than those on the barley grain diet (40%). The incidence of multiple ovulations tended to be lower at first insemination (10 vs. 21% for cows fed DDGS and barley grain diets, respectively). Mean plasma concentration of insulin was

  13. Effects of partial replacement of barley grain with beet pulp on performance, ruminal fermentation and plasma concentration of metabolites in transition dairy cows.

    PubMed

    Shahmoradi, A; Alikhani, M; Riasi, A; Ghorbani, G R; Ghaffari, M H

    2016-02-01

    The objective of this study was to determine the effect of partial replacement of barley grain with beet pulp (BP) on dry matter intake (DMI), ruminal fermentation, plasma concentration of metabolites and milk yield of transition dairy cows. Twenty-four multiparous Holstein cows [735 ± 26 kg of body weights and 3.5 ± 0.05 of body condition score (BCS)] were used in a randomized complete block design. Cows were assigned randomly on day 28 relative to expected parturition date to one of three treatments containing (i) 0% BP, (ii) 25% BP or (iii) 50% BP substituted for barley grain on a DM basis. During the pre-partum period, DMI and energy intake were greater (P < 0.01) in cows fed the BP diet compared with cows fed the barley grain diet. During the post-partum period, substituting BP for barley grain caused a response in DMI and energy intake, with the highest amount for the 25% BP diet and lowest for the 50% BP diet (P < 0.01). Milk yield was lowest (P < 0.01) for 50% BP diet than the other treatments. During the post-partum period, cows fed the 50% BP diets had greater rumen pH, molar proportion of butyrate and acetate: propionate ratio (P < 0.01) in the rumen compared with cows fed the 0% BP diets. In addition, cows fed the BP diets had greater (P < 0.01) plasma β-hydroxybutyrate and lower plasma glucose (P < 0.05) and blood urinary nitrogen (BUN) (P < 0.01) concentrations than cows fed the barley grain diets. Results showed that substituting BP for barley grain was effective in increasing DMI, but it did not have a significant effect on net energy balance during the post-partum period. However, replacing BP for barley grain at 50% had adverse effects on DMI, milk yield and metabolic status, as indicated by key blood metabolite concentrations. PMID:25816899

  14. Feeding rolled barley grain steeped in lactic acid modulated energy status and innate immunity in dairy cows.

    PubMed

    Iqbal, S; Zebeli, Q; Mazzolari, A; Dunn, S M; Ametaj, B N

    2010-11-01

    Feeding dairy cows large proportions of cereal grain is commonly associated with rumen acidosis, activation of innate immunity, and perturbation of intermediary metabolism. We previously showed that steeping barley grain in 0.5% lactic acid (LA) decreased the rate of starch degradation, lowered the risk of subacute rumen acidosis, modulated rumen fermentation profile, and increased milk fat content in dairy cows. This study sought to investigate whether feeding of LA-treated barley grain would affect carbohydrate and lipid metabolism as well as innate immunity. Eight rumen-fistulated late-lactation (approximately 217 d in milk, DIM) Holstein cows were randomly assigned, in a 2 × 2 crossover design, to 1 of the 2 dietary treatments consisting of 27% (dry matter basis) rolled barley grain steeped for 48 h in an equal volume (wt/vol) of tap water (CTR) or 0.5% LA (TRT). Each experimental period lasted 21 d, with the first 11 d for diet adaptation. Blood and rumen samples were collected on d 12, 15, 17, and 21 of the experimental period before the morning feeding to evaluate the effects of dietary treatment on preprandial day-to-day variation of plasma and rumen variables. To establish the effect of treatment on diurnal variation of plasma variables, blood samples were collected on the last day of each period at 0, 2, 4, 6, 8, 10, and 12h after the morning feeding (i.e., 0800 h). Results of the day-to-day study showed that cows fed the TRT diet had greater overall preprandial concentrations of glucose, cholesterol, and insulin, and a lower concentration of haptoglobin in plasma. Diurnal data indicated lower concentrations of haptoglobin and serum amyloid A and a tendency for greater plasma lactate in cows fed the TRT diet. A treatment by time interaction was observed for glucose, lactate, insulin, haptoglobin, and lipopolysaccharide-binding protein, suggesting a role for both the processing of grain and the time of sampling on those variables. No effect of diet on

  15. Grain protein concentration and harvestable protein under future climate conditions. A study of 108 spring barley accessions.

    PubMed

    Ingvordsen, Cathrine H; Gislum, René; Jørgensen, Johannes R; Mikkelsen, Teis N; Stockmarr, Anders; Jørgensen, Rikke B

    2016-04-01

    In the present study a set of 108 spring barley (H. vulgareL.) accessions were cultivated under predicted future levels of temperature and [CO2] as single factors and in combination (IPCC, AR5, RCP8.5). Across all genotypes, elevated [CO2] (700 ppm day/night) slightly decreased protein concentration by 5%, while elevated temperature (+5 °C day/night) substantially increased protein concentration by 29%. The combined treatment increased protein concentration across accessions by 8%. This was an increase less than predicted from strictly additive effects of the individual treatments. Despite the increase in grain protein concentration, the decrease in grain yield at combined elevated temperature and elevated [CO2] resulted in 23% less harvestable protein. There was variation in the response of the 108 accessions, which might be exploited to at least maintain if not increase harvestable grain protein under future climate change conditions. PMID:26889013

  16. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability. PMID:22676388

  17. Barley Metallothioneins: MT3 and MT4 Are Localized in the Grain Aleurone Layer and Show Differential Zinc Binding1[W][OA

    PubMed Central

    Hegelund, Josefine Nymark; Schiller, Michaela; Kichey, Thomas; Hansen, Thomas Hesselhøj; Pedas, Pai; Husted, Søren; Schjoerring, Jan Kofod

    2012-01-01

    Metallothioneins (MTs) are low-molecular-weight, cysteine-rich proteins believed to play a role in cytosolic zinc (Zn) and copper (Cu) homeostasis. However, evidence for the functional properties of MTs has been hampered by methodological problems in the isolation and characterization of the proteins. Here, we document that barley (Hordeum vulgare) MT3 and MT4 proteins exist in planta and that they differ in tissue localization as well as in metal coordination chemistry. Combined transcriptional and histological analyses showed temporal and spatial correlations between transcript levels and protein abundance during grain development. MT3 was present in tissues of both maternal and filial origin throughout grain filling. In contrast, MT4 was confined to the embryo and aleurone layer, where it appeared during tissue specialization and remained until maturity. Using state-of-the-art speciation analysis by size-exclusion chromatography inductively coupled plasma mass spectrometry and electrospray ionization time-of-flight mass spectrometry on recombinant MT3 and MT4, their specificity and capacity for metal ion binding were quantified, showing a strong preferential Zn binding relative to Cu and cadmium (Cd) in MT4, which was not the case for MT3. When complementary DNAs from barley MTs were expressed in Cu- or Cd-sensitive yeast mutants, MT3 provided a much stronger complementation than did MT4. We conclude that MT3 may play a housekeeping role in metal homeostasis, while MT4 may function in Zn storage in developing and mature grains. The localization of MT4 and its discrimination against Cd make it an ideal candidate for future biofortification strategies directed toward increasing food and feed Zn concentrations. PMID:22582132

  18. Particle Size Effects on the Quality of Flour Tortillas Enriched with Whole Grain Waxy Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat tortillas were enriched with whole barley flour (WBF) of different particle sizes including 237 micros (regular-R), 131 micros (intermediate-IM), and 68 micros (microground-MG). Topographical and fluorescent microstructure images of flours, doughs and tortillas were examined. Flours and tort...

  19. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products.

    PubMed

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance. PMID:26983120

  20. Murciano-Granadina Goat Performance and Methane Emission after Replacing Barley Grain with Fibrous By-Products

    PubMed Central

    Ibáñez, Carla; Criscioni, Patricia; Arriaga, Haritz; Merino, Pilar; Espinós, Francisco Juan; Fernández, Carlos

    2016-01-01

    The aim of this experiment was to study the effects of substituting dietary barley grain with orange pulp or soybean hulls on energy, nitrogen and carbon balance, methane emission and milk performance in dairy goats. Twelve Murciano-Granadina dairy goats in midlactation were selected and divided into three groups based on similar body weight (42.1 ± 1.2 kg) and milk yield (2.16 ± 0.060 kg/goat/day). The experiment was conducted in an incomplete crossover design where one group of four goats was fed a mixed ration of barley grain (BRL), another group of four goats replaced barley grain with orange pulp (OP) and the last group of four goats with soybean hulls (SH). After adaptation to diets, the goats were allocated to individual metabolism cages and intake, faeces, urine and milk were recorded and analysed. Then, gas exchange measurements were recorded by a mobile open-circuit indirect calorimetry system using a head box. Dry matter intake was similar for all three groups (2.03 kg/d, on average). No influence of the diet was observed for energy balance and the efficiency of use of metabolizable energy for milk production was 0.61. The OP and SH diets showed greater (P < 0.05) fat mobilization (-42.8 kJ/kg of BW0.75, on average) than BRL (19.2 kJ/kg of BW0.75). Pentadecanoic acid (15:0) and heptadecanoic acid (17:0) were potential biomarkers of rumen function because the higher contents found in the milk of OP and SH goats than BRL suggest a negative impact of these diets on rumen bacterial metabolism; probably linked to the lower nitrogen supply of diet OP to synthesize microbial protein and greater content of fat in diet SH. Replacement of cereal grain with fibrous by-products did not increased enteric methane emissions (54.7 L/goat per day, on average). Therefore, lactating goats could utilize dry orange pulp and soybean hulls diets with no detrimental effect on milk performance. PMID:26983120

  1. Transgenic barley: a prospective tool for biotechnology and agriculture.

    PubMed

    Mrízová, Katarína; Holasková, Edita; Öz, M Tufan; Jiskrová, Eva; Frébort, Ivo; Galuszka, Petr

    2014-01-01

    Barley (Hordeum vulgare L.) is one of the founder crops of agriculture, and today it is the fourth most important cereal grain worldwide. Barley is used as malt in brewing and distilling industry, as an additive for animal feed, and as a component of various food and bread for human consumption. Progress in stable genetic transformation of barley ensures a potential for improvement of its agronomic performance or use of barley in various biotechnological and industrial applications. Recently, barley grain has been successfully used in molecular farming as a promising bioreactor adapted for production of human therapeutic proteins or animal vaccines. In addition to development of reliable transformation technologies, an extensive amount of various barley genetic resources and tools such as sequence data, microarrays, genetic maps, and databases has been generated. Current status on barley transformation technologies including gene transfer techniques, targets, and progeny stabilization, recent trials for improvement of agricultural traits and performance of barley, especially in relation to increased biotic and abiotic stress tolerance, and potential use of barley grain as a protein production platform have been reviewed in this study. Overall, barley represents a promising tool for both agricultural and biotechnological transgenic approaches, and is considered an ancient but rediscovered crop as a model industrial platform for molecular farming. PMID:24084493

  2. Improvement of Fermentation and Nutritive Quality of Straw-grass Silage by Inclusion of Wet Hulless-barley Distillers’ Grains in Tibet

    PubMed Central

    Yuan, Xianjun; Yu, Chengqun; Shimojo, M.; Shao, Tao

    2012-01-01

    In order to develop methods that would enlarge the feed resources in Tibet, mixtures of hulless-barley straw and tall fescue were ensiled with four levels (0, 10%, 20%, and 30% of fresh weight) of wet hulless-barley distillers’ grains (WHDG). The silos were opened after 7, 14 or 30 d of ensiling, and the fermentation characteristics and nutritive quality of the silages were analyzed. WHDG addition significantly improved fermentation quality, as indicated by the faster decline of pH, rapid accumulation of lactic acid (LA) (p<0.05), and lower butyric acid content and ammonia-N/total N (p<0.05) as compared with the control. These results indicated that WHDG additions not only effectively inhibited the activity of aerobic bacteria, but also resulted in faster and greatly enhanced LA production and pH value decline, which restricted activity of undesirable bacteria, resulting in more residual water soluble carbohydrates (WSC) in the silages. The protein content of WHDG-containing silages were significantly higher (p<0.05) higher than that of the control. In conclusion, the addition of WHDG increased the fermentation and nutritive quality of straw-grass silage, and this effect was more marked when the inclusion rate of WHDG was greater than 20%. PMID:25049588

  3. QTL dissection of the loss of green colour during post-anthesis grain maturation in two-rowed barley.

    PubMed

    Emebiri, Livinus C

    2013-07-01

    Ability to genetically manipulate the loss of green colour during grain maturation has potentials for increasing productivity, disease resistance, and drought and heat tolerance in crop plants. Two doubled haploid, two-rowed barley populations (Vlamingh × Buloke and VB9524 × ND11231*12) were monitored over 2 years for loss of green colour during grain filling using a portable active sensor. The aims were to determine the genomic regions that control trait heritability by quantitative trait locus (QTL) analysis, and to examine patterns of QTL-environment interactions under different conditions of water stress. In the Vlamingh × Buloke cross, broad-sense heritability estimate for loss of green colour (measured as the difference in sensor readings taken at anthesis and maturity, ∆SRI) was 0.68, and 0.78 for the VB9524 × ND11231*12 population. In the VB9524 × ND11231*12 population, rapid loss of green colour was positively associated with grain yield and percent plump grains, but in the Vlamingh × Buloke population, a slower loss of green colour (low ∆SRI) was associated with increased grain plumpness. With the aid of a dense array of single nucleotide polymorphisms (SNPs) and EST-derived SSR markers, a total of nine QTLs were detected across the two populations. Of these, a single major locus on the short arm of barley chromosome 5H was consistently linked with trait variation across the populations and multiple environments. The QTL was independent of flowering time and explained between 5.4 and 15.4 % of the variation observed in both populations, depending on the environment, and although a QTL × E interaction was detected, it was largely due to a change in the magnitude of the effect, rather than a change in direction. The results suggest that loss of green colour during grain maturation may be under the control of a simple genetic architecture, but a careful study of target populations and environments would be required for breeding

  4. Molecular Marker Development and Linkage Analysis in Three Low Phytic Acid Barley (Hordeum vulgare) Mutant Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytate is the primary form of phosphorus found in mature cereal grain. This form of phosphorus is not available to monogastric animals due to a lack of the enzyme phytase in their digestive tract. Several barley low phytic acid (lpa) mutants have been identified that contain substantial decreases...

  5. Association mapping of Russian wheat aphid resistance in barley as a method to identify diversity in the National Small Grains Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia [Kurdjumov]) is an ongoing problem in the western USA. Infestations in barley (Hordeum vulgare L.) cause chlorotic leaf spotting and streaking and prevent unrolling of emerging leaves which trap spikes and severely reduce fertility and grain yield. Resistant...

  6. A cathepsin F-like peptidase involved in barley grain protein mobilization, HvPap-1, is modulated by its own propeptide and by cystatins

    PubMed Central

    Diaz, Isabel

    2012-01-01

    Among the C1A cysteine proteases, the plant cathepsin F-like group has been poorly studied. This paper describes the molecular and functional characterization of the HvPap-1 cathepsin F-like protein from barley. This peptidase is N-glycosylated and has to be processed to become active by its own propeptide being an important modulator of the peptidase activity. The expression pattern of its mRNA and protein suggest that it is involved in different proteolytic processes in the barley plant. HvPap-1 peptidase has been purified in Escherichia coli and the recombinant protein is able to degrade different substrates, including barley grain proteins (hordeins, albumins, and globulins) stored in the barley endosperm. It has been localized in protein bodies and vesicles of the embryo and it is induced in aleurones by gibberellin treatment. These three features support the implication of HvPap-1 in storage protein mobilization during grain germination. In addition, a complex regulation exerted by the barley cystatins, which are cysteine protease inhibitors, and by its own propeptide, is also described PMID:22791822

  7. Different Hormonal Regulation of Cellular Differentiation and Function in Nucellar Projection and Endosperm Transfer Cells: A Microdissection-Based Transcriptome Study of Young Barley Grains1[W

    PubMed Central

    Thiel, Johannes; Weier, Diana; Sreenivasulu, Nese; Strickert, Marc; Weichert, Nicola; Melzer, Michael; Czauderna, Tobias; Wobus, Ulrich; Weber, Hans; Weschke, Winfriede

    2008-01-01

    Nucellar projection (NP) and endosperm transfer cells (ETC) are essential tissues in growing barley (Hordeum vulgare) grains, responsible for nutrient transfer from maternal to filial tissues, endosperm/embryo nutrition, and grain development. A laser microdissection pressure catapulting-based transcriptome analysis was established to study NP and ETC separately using a barley 12K macroarray. A major challenge was to isolate high-quality mRNA from preembedded, fixed tissue while maintaining tissue integrity. We show that probes generated from fixed and embedded tissue sections represent largely the transcriptome (>70%) of nonchemically treated and nonamplified references. In NP, the top-down gradient of cellular differentiation is reflected by the expression of C3HC4-type ubiquitin ligases and different histone genes, cell wall biosynthesis and expansin/extensin genes, as well as genes involved in programmed cell death-related proteolysis coupled to nitrogen remobilization, indicating distinct areas simultaneously undergoing mitosis, cell elongation, and disintegration. Activated gene expression related to gibberellin synthesis and function suggests a regulatory role for gibberellins in establishment of the differentiation gradient. Up-regulation of plasmalemma-intrinsic protein and tonoplast-intrinsic protein genes indicates involvement in nutrient transfer and/or unloading. In ETC, AP2/EREBP-like transcription factors and ethylene functions are transcriptionally activated, a response possibly coupled to activated defense mechanisms. Transcriptional activation of nucleotide sugar metabolism may be attributed to ascorbate synthesis and/or cell wall biosynthesis. These processes are potentially controlled by trehalose-6-P synthase/phosphatase, as suggested by expression of their respective genes. Up-regulation of amino acid permeases in ETC indicates important roles in active nutrient uptake from the apoplastic space into the endosperm. PMID:18784282

  8. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains

    PubMed Central

    Peukert, Manuela; Thiel, Johannes; Mock, Hans-Peter; Marko, Doris; Weschke, Winfriede; Matros, Andrea

    2016-01-01

    Oligofructans represent one of the most important groups of sucrose-derived water–soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed. PMID:26834760

  9. Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains.

    PubMed

    Peukert, Manuela; Thiel, Johannes; Mock, Hans-Peter; Marko, Doris; Weschke, Winfriede; Matros, Andrea

    2015-01-01

    Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [β(2,1); β(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed. PMID:26834760

  10. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress. PMID:25867895

  11. Methane emissions from two breeds of beef cows offered diets containing barley straw with either grass silage or brewers' grains.

    PubMed

    Duthie, C-A; Rooke, J A; Hyslop, J J; Waterhouse, A

    2015-10-01

    Increasing the concentration of dietary lipid is a promising strategy for reducing methane (CH4) emissions from ruminants. This study investigated the effect of replacing grass silage with brewers' grains on CH4 emissions of pregnant, non-lactating beef cows of two breeds. The experiment was a two×two factorial design comprising two breeds (LIMx, crossbred Limousin; and LUI, purebred Luing) and two diets consisting of (g/kg diet dry matter (DM)) barley straw (687) and grass silage (301, GS), or barley straw (763) and brewers' grains (226, BG), which were offered ad libitum. Replacing GS with BG increased the acid-hydrolysed ether extract concentration from 21 to 37 g/kg diet DM. Cows (n=48) were group-housed in equal numbers of each breed across two pens and each diet was allocated to one pen. Before measurements of CH4, individual dry matter intake (DMI), weekly BW and weekly body condition score were measured for a minimum of 3 weeks, following a 4-week period to acclimatise to the diets. CH4 emissions were subsequently measured on one occasion from each cow using individual respiration chambers. Due to occasional equipment failures, CH4 measurements were run over 9 weeks giving 10 observations for each breed×treatment combination (total n=40). There were no differences between diets for daily DMI measured in the chambers (9.92 v. 9.86 kg/day for BG and GS, respectively; P>0.05). Cows offered the BG diet produced less daily CH4 than GS-fed cows (131 v. 156 g/day: P0.05). However, when expressed as a proportion of metabolic BW (BW0.75), LUI cows had greater DMI than LIMx cows (84.5 v. 75.7 g DMI/kg BW0.75, P<0.05) and produced more CH4 per kg BW0.75 than LIMx cows (1.30 v. 1.05 g CH4/kg BW0.75; P<0.01). Molar proportions of acetate were higher (P<0.001) and propionate and butyrate lower (P<0.01) in rumen fluid samples from BG-fed compared with GS-fed cows. This study demonstrated that replacing GS with BG in barley straw-based diets can effectively reduce CH4

  12. Recent developments in the genetic engineering of barley

    SciTech Connect

    Mannonen, L.; Kauppinen, V.; Enari, T.M. )

    1994-01-01

    Cereals are the most important group of plants for human nutrition and animal feed. Partially due to the commercial value of crop plants, there has been an ever-increasing interest in using modern biotechnological methods for the improvement of the characteristics of cereals during the past decade. The rapid progress in molecular biology, plant cell culture techniques, and gene transfer technology has resulted in successful transformations of all the major cereals--maize, rice, wheat, and barley. This brings the biotechnological methods closer to the routine also in barley breeding. In this article, the current status of barley genetic engineering, including the patent situation, is reviewed. The needs aims, and possible applications of genetic engineering in barley breeding are discussed. 179 refs.

  13. Effects of increasing levels of corn dried distillers grains with solubles and monensin on intake, digestion, and ruminal fermentation in beef heifers fed high-barley grain diets.

    PubMed

    Xu, L; Jin, Y; He, M L; Li, C; McAllister, T A; Yang, W Z

    2013-11-01

    The objective of this study was to determine whether increasing corn-based dried distillers grains with solubles (DDGS) in high-barley grain diets reduces the merit of using higher levels of monensin by assessing intake, digestibility, and ruminal pH and fermentation in feedlot heifers. Five ruminally and duodenally cannulated Angus heifers (average BW of 599±36 kg) were used in a 5×5 Latin square with a 2×2+1 factorial arrangement. Treatments were control (CON, 10% barley silage, 90% barley-based concentrate, and 28 mg monensin/kg DM) and diets substituting 20% (LDG) or 40% (HDG) DDGS for barley grain with 28 mg (ML) or 48 mg (MH) monensin/kg diet DM: 1) CONML, 2) LDGML, 3) HDGML, 4) LDGMH, and 5) HDGMH. Contrasts compared LDG vs. HDG, ML vs. MH, interactions between DDGS and monensin, and the effect of increasing DDGS in the diet. Increasing DDGS quadratically (P<0.01) increased DMI. There was no interaction for DMI between the dietary inclusion rate of DDGS and the dose of monensin; however, DMI was reduced (P<0.05) for heifers fed MH vs. ML. Ruminal digestibility of OM, NDF, and starch linearly decreased (P<0.01), but intestinal digestibility linearly increased (P<0.01) with increasing DDGS, resulting in no differences in total tract digestibility. Ruminal digestibility of OM was greater (P<0.04) in heifers fed MH than ML; however, the total tract digestibility of OM was not affected. Intake of N, flows of total N, nonammonia N, and dietary N were linearly (P<0.02) increased, and the efficiency of ruminal microbial synthesis linearly (P<0.04) improved with increasing DDGS. Increasing DDGS inclusion linearly decreased (P<0.04) the acetate to propionate ratio. Inclusion of MH decreased (P<0.04) acetate and increased (P<0.05) NH3-N compared to ML, but high monensin did not affect mean ruminal pH, the duration of pH<5.8, 5.5, 5.2, or the area below the curve at pH 5.8, 5.5, and 5.2, indicating that there was no evidence that it modulated ruminal pH. These

  14. Drying characteristic of barley under natural convection in a mixed-mode type solar grain dryer

    SciTech Connect

    Basunia, M.A.; Abe, T.

    1999-07-01

    Thin-layer solar drying characteristics of barley were determined at average natural air flow temperature ranging from 43.4 to 51.7 C and for relative humidities ranging from 16.5% to 37.5%. A mixed-mode type natural convection solar dryer was used for this experiment. The data of sample weight, and dry and wet bulb temperatures of the drying air were recorded continuously throughout the drying period for each test. The drying data were then fitted to the Page model. The model gave a good fit for the moisture content with an average standard error of 0.305% dry basis. The parameter N in Page's equation was assumed as a product-dependent constant which made it easy to compare the effects of independent variables on the natural convection solar drying rate without causing considerable error in predicting the drying rate for barley. A linear relationship was found between the parameter K, temperature T, and relative humidity R{sub H}.

  15. Development and Genetic Characterization of an Advanced Backcross-Nested Association Mapping (AB-NAM) Population of Wild × Cultivated Barley.

    PubMed

    Nice, Liana M; Steffenson, Brian J; Brown-Guedira, Gina L; Akhunov, Eduard D; Liu, Chaochih; Kono, Thomas J Y; Morrell, Peter L; Blake, Thomas K; Horsley, Richard D; Smith, Kevin P; Muehlbauer, Gary J

    2016-07-01

    The ability to access alleles from unadapted germplasm collections is a long-standing problem for geneticists and breeders. Here we developed, characterized, and demonstrated the utility of a wild barley advanced backcross-nested association mapping (AB-NAM) population. We developed this population by backcrossing 25 wild barley accessions to the six-rowed malting barley cultivar Rasmusson. The 25 wild barley parents were selected from the 318 accession Wild Barley Diversity Collection (WBDC) to maximize allelic diversity. The resulting 796 BC2F4:6 lines were genotyped with 384 SNP markers, and an additional 4022 SNPs and 263,531 sequence variants were imputed onto the population using 9K iSelect SNP genotypes and exome capture sequence of the parents, respectively. On average, 96% of each wild parent was introgressed into the Rasmusson background, and the population exhibited low population structure. While linkage disequilibrium (LD) decay (r(2) = 0.2) was lowest in the WBDC (0.36 cM), the AB-NAM (9.2 cM) exhibited more rapid LD decay than comparable advanced backcross (28.6 cM) and recombinant inbred line (32.3 cM) populations. Three qualitative traits: glossy spike, glossy sheath, and black hull color were mapped with high resolution to loci corresponding to known barley mutants for these traits. Additionally, a total of 10 QTL were identified for grain protein content. The combination of low LD, negligible population structure, and high diversity in an adapted background make the AB-NAM an important tool for high-resolution gene mapping and discovery of novel allelic variation using wild barley germplasm. PMID:27182953

  16. Endosperm Development in Barley: Microtubule Involvement in the Morphogenetic Pathway.

    PubMed Central

    Brown, R. C.; Lemmon, B. E.; Olsen, O. A.

    1994-01-01

    An immunofluorescence study of sectioned barley endosperm imaged by confocal laser scanning microscopy provided three-dimensional data on the relationship of microtubules to the cytoplasm, nuclei, and cell walls during development from 4 to 21 days after pollination (DAP). Microtubules play an important role throughout endosperm ontogeny. The syncytium is organized into units of nuclear-cytoplasmic domains by nuclear-based radial microtubule systems that appear to control the pattern of the first anticlinal walls at 5 to 6 DAP. After 7 DAP, phragmoplasts of two origins (interzonal and cytoplasmic) guide wall formation. Large compartments formed by the "free growing" walls in association with cytoplasmic phragmoplasts formed adventitiously at interfaces of opposing microtubule systems are subsequently subdivided by interzonal phragmoplast/cell plates to give rise to the starchy endosperm. During development of the aleurone layer from 8 to 21 DAP, the microtubule cycle is typical of plant histogenesis; cortical microtubules are hooplike, and preprophase bands of microtubules predict the division plane. PMID:12244271

  17. Partial replacement of barley grain and soybean meal by fleabane (Conyza bonariensis) in diets of growing Awassi lambs.

    PubMed

    Abo Omar, J M; Omar, M

    2012-07-01

    Effects of partial substitution of barley grain and soybean meal with fleabane (FB) Conyza bonariensis on growth performances and body compositions of 24 male local Awassi lambs were studied. All lambs were male with an average BW of 20.3 kg (s.d. = 2.0 kg) at the beginning of the experiment. Animals were randomly divided into four groups of six lambs each. Lambs in each group received individually their cereal-soybean-based total mixed rations with levels of FB: 0, 50, 100 and 150 g/kg dry matter (DM) diet, which replaced similar values of barley and soybean meal. All rations were isonitrogenous and isocaloric. The fattening experiment lasted 9 weeks, after which all lambs were slaughtered. The composition of nutrients in the C. bonariensis were 89.6%, 15.0%, 28.0%, 30.0% and 10% for organic matter, CP, NDF, ADF and lignin, respectively. At the end of the experiment, lambs fed 100 and 150 g FB/kg DM diets gained more weight (P < 0.05) than those fed the control and 50 g FB/kg DM diets. The DM intake was lower in lambs fed the highest level of FB compared with intakes of lambs in other treatments. Diet content of FB had significant effect (P < 0.05) on weights of empty body, carcass, gut and external (hide, head and feet) among all animals. However, FB had no effects on lambs' thoracic organs (lungs and heart) and liver. Muscle, bone, omental and mesenteric fat, subcutaneous, intermuscular, pelvic and kidney fat weights (g/kg empty BW) were not affected by FB feeding. Carcass fat was decreased (P < 0.05) by the increase of FB. Total body fat was the same in all animals of the experiment. PMID:23031470

  18. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets.

    PubMed

    Zhong, Yadong; Marungruang, Nittaya; Fåk, Frida; Nyman, Margareta

    2015-05-28

    Mixed-linkage β-glucans are fermented by the colon microbiota that give rise to SCFA. Propionic and butyric acids have been found to play an important role in colonic health, as well as they may have extraintestinal metabolic effects. The aim of the present study was to investigate how two whole-grain barley varieties differing in dietary fibre and β-glucan content affected caecal SCFA, gut microbiota and some plasma inflammatory markers in rats consuming low-fat (LF) or high-fat (HF) diets. Barley increased the caecal pool of SCFA in rats fed the LF and HF diets compared with those fed the control diet, and the effect was generally dependent on fibre content, an exception was butyric acid in the LF setting. Furthermore, whole-grain barley reduced plasma lipopolysaccharide-binding protein and monocyte chemoattractant protein-1, increased the caecal abundance of Lactobacillus and decreased the Bacteroides fragilis group, but increased the number of Bifidobacterium only when dietary fat was consumed at a low level. Fat content influenced the effects of barley: rats fed the HF diets had a higher caecal pool of acetic and propionic acids, higher concentrations of amino acids and higher amounts of lipids in the portal plasma and liver than rats fed the LF diets; however, less amounts of butyric acid were generally formed. Interestingly, there was an increase in the caecal abundance of Akkermansia and the caecal pool of succinic acid, and a decrease in the proportion of Bifidobacterium and the Clostridium leptum group. In summary, whole-grain barley decreased HF diet-induced inflammation, which was possibly related to the formation of SCFA and changes in microbiota composition. High β-glucan content in the diet was associated with reduced plasma cholesterol levels. PMID:25864430

  19. S phase of the cell cycle: a key phase for the regulation of thermodormancy in barley grain.

    PubMed

    Gendreau, Emmanuel; Cayla, Thibaud; Corbineau, Françoise

    2012-09-01

    The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to thermodormancy in barley (Hordeum vulgare L., cv. Pewter) grains in relation with abscisic acid (ABA) by: (i) flow cytometry to determine the progression of the cell cycle; and (ii) reverse transcription-PCR to characterize the expression of some important genes involved in cell-cycle regulation. In dry embryos, cells are mostly (82%) arrested in G1 phase of the cell cycle, the remaining cells being in the G2 (17%) or S phase (0.9%). Germination at 20 °C was associated with an increase in the nuclei population in G2 and S (up to 32.5-44.5 and 9.2-11.3%, respectively, after 18-24h). At 30 °C, partial reactivation of the cell cycle occurred in embryos of dormant grains that did not germinate. Incubation with 50mM hydroxyurea suggests that thermodormancy resulted in a blocking of the nuclei in the S phase. In dry dormant grains, transcripts of CDKA1, CYCA3, KRP4, and WEE1 were present, while those of CDKB1, CDKD1, CYCB1, and CYCD4 were not detected. Incubation at 30 °C resulted in a strong reduction of CDKB1, CYCB1, and CYCD4 expression and overexpression of CDK1 and KRP4. ABA had a similar effect as incubation at 30 °C on the expression of CDKB1, CYCB1, and CYCD4, but did not increase that of CDK1 and KRP4. Patterns of gene expression are discussed with regard to thermodormancy expression and ABA. PMID:22859679

  20. S phase of the cell cycle: a key phase for the regulation of thermodormancy in barley grain

    PubMed Central

    Corbineau, FranÇOise

    2012-01-01

    The aim of the present work was to investigate the occurrence of the cell cycle during germination as related to thermodormancy in barley (Hordeum vulgare L., cv. Pewter) grains in relation with abscisic acid (ABA) by: (i) flow cytometry to determine the progression of the cell cycle; and (ii) reverse transcription-PCR to characterize the expression of some important genes involved in cell-cycle regulation. In dry embryos, cells are mostly (82%) arrested in G1 phase of the cell cycle, the remaining cells being in the G2 (17%) or S phase (0.9%). Germination at 20 °C was associated with an increase in the nuclei population in G2 and S (up to 32.5–44.5 and 9.2–11.3%, respectively, after 18–24h). At 30 °C, partial reactivation of the cell cycle occurred in embryos of dormant grains that did not germinate. Incubation with 50mM hydroxyurea suggests that thermodormancy resulted in a blocking of the nuclei in the S phase. In dry dormant grains, transcripts of CDKA1, CYCA3, KRP4, and WEE1 were present, while those of CDKB1, CDKD1, CYCB1, and CYCD4 were not detected. Incubation at 30 °C resulted in a strong reduction of CDKB1, CYCB1, and CYCD4 expression and overexpression of CDK1 and KRP4. ABA had a similar effect as incubation at 30 °C on the expression of CDKB1, CYCB1, and CYCD4, but did not increase that of CDK1 and KRP4. Patterns of gene expression are discussed with regard to thermodormancy expression and ABA. PMID:22859679

  1. Aflatoxins and ochratoxin A in stored barley grain in Spain and impact of PCR-based strategies to assess the occurrence of aflatoxigenic and ochratoxigenic Aspergillus spp.

    PubMed

    Mateo, Eva M; Gil-Serna, Jéssica; Patiño, Belén; Jiménez, Misericordia

    2011-09-15

    Contamination of barley by moulds and mycotoxins results in quality and nutritional losses and represents a significant hazard to the food chain. The presence of aflatoxin B1 (AFB1), B2 (AFB2), G1 (AFG1) and G2 (AFG2) and ochratoxin A (OTA) in stored barley in Spain has been studied. Species-specific PCR assays were used for detection of Aspergillus flavus, A. parasiticus, A. ochraceus, A. steynii, A. westerdijkiae, A. carbonarius and A. niger aggregate in mycotoxin-positive barley samples at different incubation times (0, 1 and 2 days). Classical enumeration techniques (CFU/g) in different culture media for evaluation of Aspergillus in sections Flavi, Circumdati and Nigri were also used. One hundred and five barley kernel samples were collected in Spanish grain stores from 2008 to 2010, and analyzed using a previously optimized method involving accelerated solvent extraction, cleanup by immunoaffinity column, liquid chromatographic separation, post-column derivatization with iodine and fluorescence detection. Twenty-nine samples were contaminated with at least one of the studied mycotoxins. AFB1, AFB2, AFG1, AFG2, and OTA were detected in 12.4%, 2.9%, 4.8%, 2.9%, and 20% of the samples, respectively. Aflatoxins and OTA co-occurred in 4.8% of the samples. Maximum mycotoxin levels (ng/g) were 0.61 (AFB1), 0.06 (AFB2), 0.26 (AFG1), 0.05 (AFG2), and 2.0 (OTA). The results of PCR assays indicated the presence of all the studied species, except A. westerdijkiae. The PCR assays showed high levels of natural contamination of barley with the studied species of Aspergillus which do not correspond to the expected number of CFU/g in the cultures. These results suggest that a high number of non-viable spores or hyphae may exist in the samples. This is the first study carried out on the levels of aflatoxins and OTA in barley grain in Spain. Likewise, this is the first report on the presence of aflatoxigenic and ochratoxigenic Aspergillus spp. in barley grain naturally

  2. Effect of time and temperature on the hydration process of barley grains

    NASA Astrophysics Data System (ADS)

    Montanuci, Flávia Daiana; Jorge, Luiz Mario Matos; Jorge, Regina Maria Matos

    2015-03-01

    The barley behavior during hydration regarding to water absorption, density, volume variation, and solids loss is identified, as well as employ mathematical models such as diffusional, Peleg, Weibull distribution function and first order kinetics, in order to verify the effect of temperature on the process. Hydration was carried out over 32 h at six different temperatures: 35, 30, 25, 20, 15 and 10 °C. The hydration isotherms were divided into two phases, the first one comprising the first 8 h, with a high hydration rate, and the second one in which the moisture content increases slowly until it reaches the equilibrium moisture content. During the first hour of process, the solids loss at 35 °C was 3.95 % higher than at 10 °C. The effective diffusion coefficients ranged from 5.14 to 10.8 × 10-12 m2/s. The model of Peleg and the first order kinetics model best described the water absorption characteristics at the temperatures investigated.

  3. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation.

    PubMed

    Hoang, Hai Ha; Sechet, Julien; Bailly, Christophe; Leymarie, Juliette; Corbineau, Françoise

    2014-06-01

    Germination of primary dormant barley grains is promoted by darkness and temperatures below 20 °C, but is strongly inhibited by blue light. Exposure under blue light at 10 °C for periods longer than five days, results in a progressive inability to germinate in the dark, considered as secondary dormancy. We demonstrate that the inhibitory effect of blue light is reinforced in hypoxia. The inhibitory effect of blue light is associated with an increase in embryo abscisic acid (ABA) content (by 3.5- to 3.8-fold) and embryo sensitivity to both ABA and hypoxia. Analysis of expression of ABA metabolism genes shows that increase in ABA mainly results in a strong increase in HvNCED1 and HvNCED2 expression, and a slight decrease in HvABA8'OH-1. Among the gibberellins (GA) metabolism genes examined, blue light decreases the expression of HvGA3ox2, involved in GA synthesis, increases that of GA2ox3 and GA2ox5, involved in GA catabolism, and reduces the GA signalling evaluated by the HvExpA11 expression. Expression of secondary dormancy is associated with maintenance of high embryo ABA content and a low HvExpA11 expression. The partial reversion of the inhibitory effect of blue light by green light also suggests that cryptochrome might be involved in this hormonal regulation. PMID:24256416

  4. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.

    PubMed

    Gangopadhyay, Nirupama; Rai, Dilip K; Brunton, Nigel P; Gallagher, Eimear; Hossain, Mohammad B

    2016-11-01

    In the present study, the relative contribution of individual/classes of polyphenols in barley, to its antioxidant properties, was evaluated. Flash chromatography was used to fractionate the total polyphenol extract of Irish barley cultivar 'Irina', and fractions with highest antioxidant properties were identified using total phenolic content and three in vitro antioxidant assays: DPPH, FRAP, and ORAC. Flavanols (catechin, procyanidin B, prodelphinidin B, procyanidin C) and a novel substituted flavanol (catechin dihexoside, C27H33O16(-), m/z 613.17), were identified as constituents of the fraction with highest antioxidant capacity. Upon identification of phenolics in the other active fractions, the order of most potent contributors to observed antioxidant capacity of barley extract were, flavanols>flavonols (quercetin)>hydroxycinnamic acids (ferulic, caffeic, coumaric acids). The most abundant polyphenol in the overall extract was ferulic acid (277.7μg/gdw barley), followed by procyanidin B (73.7μg/gdw barley). PMID:27211640

  5. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway

    PubMed Central

    Taketa, Shin; Amano, Satoko; Tsujino, Yasuhiro; Sato, Tomohiko; Saisho, Daisuke; Kakeda, Katsuyuki; Nomura, Mika; Suzuki, Toshisada; Matsumoto, Takashi; Sato, Kazuhiro; Kanamori, Hiroyuki; Kawasaki, Shinji; Takeda, Kazuyoshi

    2008-01-01

    In contrast to other cereals, typical barley cultivars have caryopses with adhering hulls at maturity, known as covered (hulled) barley. However, a few barley cultivars are a free-threshing variant called naked (hulless) barley. The covered/naked caryopsis is controlled by a single locus (nud) on chromosome arm 7HL. On the basis of positional cloning, we concluded that an ethylene response factor (ERF) family transcription factor gene controls the covered/naked caryopsis phenotype. This conclusion was validated by (i) fixation of the 17-kb deletion harboring the ERF gene among all 100 naked cultivars studied; (ii) two x-ray-induced nud alleles with a DNA lesion at a different site, each affecting the putative functional motif; and (iii) gene expression strictly localized to the testa. Available results indicate the monophyletic origin of naked barley. The Nud gene has homology to the Arabidopsis WIN1/SHN1 transcription factor gene, whose deduced function is control of a lipid biosynthesis pathway. Staining with a lipophilic dye (Sudan black B) detected a lipid layer on the pericarp epidermis only in covered barley. We infer that, in covered barley, the contact of the caryopsis surface, overlaid with lipids to the inner side of the hull, generates organ adhesion. PMID:18316719

  6. Effect of feeding diets containing barley, wheat and corn distillers dried grains with solubles on carcass traits and meat quality in growing rabbits.

    PubMed

    Alagón, Gilbert; Arce, Orlando; Serrano, Paula; Ródenas, Luis; Martínez-Paredes, Eugenio; Cervera, Concepción; Pascual, Juan José; Pascual, Mariam

    2015-03-01

    The effect of dietary inclusion of distillers dried grains with solubles (DDGS) on carcass and meat quality of longissimus muscle was studied in 100 growing rabbits from 28 to 59days old. Diets with no DDGS (C), barley (Db20), wheat (Dw20) and corn (Dc20) DDGS at 20% and corn (Dc40) DDGS at 40% were formulated. No effects on most of the carcass traits, texture and water holding capacity were found. Barley and corn DDGS led to a higher dissectible fat percentage. Meat redness was higher with Dw20 and pH was higher with Dw20 and Db20 than with Dc20. Protein and saturated fatty acids concentration declined as corn DDGS level increased. Dc40 led to the lowest saturated/unsaturated fatty acid ratio, atherogenic index and thrombogenic index. In conclusion, dietary inclusion of these DDGS at 20% did not affect most of the carcass and meat quality traits in rabbits. PMID:25437451

  7. Development of quick cooking multi-grain dalia utilizing sprouted grains.

    PubMed

    Mridula, D; Sharma, Monika; Gupta, R K

    2015-09-01

    Multi-grain dalia (MGD) formulations were prepared utilizing sprouted wheat and mixer of other three grains (barley, sorghum and pearl millet) in the ratio of 100:0 (MGD-A), 75:25 (MGD-B), 50:50 (MGD-C), 25:75 (MGD-D) and 0:100 (MGD-E), respectively. The mixer of barley, sorghum and pearl millet was prepared using 50, 25, 25 parts of these grains, respectively. The recovery of grits/ dalia (particle size 1.41 to 2 mm) from sprouted wheat and barley was 74.56 and 69.77 %, respectively while sorghum and pearl millet yield 47.94 and 49.39 % (particle size 0.954 to 1.41 mm), respectively. Sprouting brought a reduction of cooking time by about 50 % as compared to un-sprouted studied grains. Cooking time for different MGD formulations ranged from 3.91 to 4.42 min, which was slightly increased with increasing proportion of mixer of barley, sorghum and pearl millet (p > 0.05). Rehydration ratio of MGD samples varied from 3.12 to 3.45 with minimum in MGD-E sample. Though protein content was decreased with increasing proportion of mixer of three grains in MGD samples but in vitro protein digestibility (58.68 to 62.75 %) was similar (p > 0.05). The mean overall sensory acceptability scores for MGD samples ranged from 7.50 to 8.49 with ≥8.0 in samples having up to 75 % grits of mixer of three grains. In view of very good overall sensory acceptability, rich in crude fibre, calcium and iron content and low cooking time, 25:75 parts of sprouted wheat and mixer of studied three grains, respectively may be considered for preparation of acceptable quality quick cooking multi-grain dalia. PMID:26344997

  8. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG) genes during seed development and in response to external ABA

    PubMed Central

    2010-01-01

    Background Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group) protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare), an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. Results Four barley PcG gene homologues, named HvFIE, HvE(Z), HvSu(z)12a, and HvSu(z)12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z), HvSu(z)12a, and HvSu(z)12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z) gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA) known to be involved in seed maturation, dormancy and germination. Conclusion This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z), HvSu(z)12a and HvSu(z)12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The PcG differential expression

  9. Root border cell development is a temperature-insensitive and Al-sensitive process in barley.

    PubMed

    Pan, Jian-Wei; Ye, Dan; Wang, Li-Ling; Hua, Jing; Zhao, Gu-Feng; Pan, Wei-Huai; Han, Ning; Zhu, Mu-Yuan

    2004-06-01

    In vivo and in vitro experiments showed that border cell (BC) survival was dependent on root tip mucigel in barley (Hordeum vulgare L. cv. Hang 981). In aeroponic culture, BC development was an induced process in barley, whereas in hydroponic culture, it was a kinetic equilibrium process during which 300-400 BCs were released into water daily. The response of root elongation to temperatures (10-35 degrees C) was very sensitive but temperature changes had no great effect on barley BC development. At 35 degrees C, the root elongation ceased whereas BC production still continued, indicating that the two processes might be regulated independently under high temperature (35 degrees C) stress. Fifty microM Al could inhibit significantly BC development by inhibiting pectin methylesterase activity in the root cap of cv. 2000-2 (Al-sensitive) and cv. Humai 16 (Al-tolerant), but 20 microM Al could not block BC development in cv. Humai 16. BCs and their mucigel of barley had a limited role in the protection of Al-induced inhibition of root elongation, but played a significant role in the prevention of Al from diffusing into the meristems of the root tip and the root cap. Together, these results suggested that BC development was a temperature-insensitive but Al-sensitive process, and that BCs and their mucigel played an important role in the protection of root tip and root cap meristems from Al toxicity. PMID:15215510

  10. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley germination is a complex and multi-stage biological process important to plant development, plant evolution, and agricultural production. It is accompanied with concerted expression of many genes and biological pathways. Transcriptomic analysis of barley grains/seedlings representing six well...

  11. Simultaneous Genetic Analysis of Winterhardiness Traits and Development of Winter Malting Barley Varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practical goal of this project is to develop winter malting barley varieties with superior cold tolerance. The basic goal is to advance our understanding of the genetics of low temperature tolerance and vernalization sensitivity. By addressing the question, “Is vernalization sensitivity required...

  12. Developing transgenic wheat and barley that exhibit resistance to Fusarium graminearum via glucoside conjugation of trichothecene mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum infection of wheat and barley results in production of trichothecene mycotoxins including deoxynivalenol (DON) and nivalenol (NIV). These mycotoxins result in increased fungal virulence and reduce grain quality. Numerous transcriptomic studies have been conducted by our lab on t...

  13. Barley HvHMA1 Is a Heavy Metal Pump Involved in Mobilizing Organellar Zn and Cu and Plays a Role in Metal Loading into Grains

    PubMed Central

    Mikkelsen, Maria Dalgaard; Pedas, Pai; Schiller, Michaela; Vincze, Eva; Mills, Rebecca F.; Borg, Søren; Møller, Annette; Schjoerring, Jan K.; Williams, Lorraine E.; Baekgaard, Lone; Holm, Preben Bach; Palmgren, Michael G.

    2012-01-01

    Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated the properties of HvHMA1, which is a barley orthologue of Arabidopsis thaliana AtHMA1 localized to the chloroplast envelope. HvHMA1 was localized to the periphery of chloroplast of leaves and in intracellular compartments of grain aleurone cells. HvHMA1 expression was significantly higher in grains compared to leaves. In leaves, HvHMA1 expression was moderately induced by Zn deficiency, but reduced by toxic levels of Zn, Cu and Cd. Isolated barley chloroplasts exported Zn and Cu when supplied with Mg-ATP and this transport was inhibited by the AtHMA1 inhibitor thapsigargin. Down-regulation of HvHMA1 by RNA interference did not have an effect on foliar Zn and Cu contents but resulted in a significant increase in grain Zn and Cu content. Heterologous expression of HvHMA1 in heavy metal-sensitive yeast strains increased their sensitivity to Zn, but also to Cu, Co, Cd, Ca, Mn, and Fe. Based on these results, we suggest that HvHMA1 is a broad-specificity exporter of metals from chloroplasts and serve as a scavenging mechanism for mobilizing plastid Zn and Cu when cells become deficient in these elements. In grains, HvHMA1 might be involved in mobilizing Zn and Cu from the aleurone cells during grain filling and germination. PMID:23155447

  14. Transposable element junctions in marker development and genomic characterization of barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley is a model plant in genomic studies of Triticeae species. A complete barley genome sequence will facilitate not only barley breeding programs, but also those for related species. However, the large genome size and high repetitive sequence content complicate the barley genome assembly. The ma...

  15. Interface texture development during grain growth

    NASA Astrophysics Data System (ADS)

    Gruber, Jason

    has no measureable effect on interface texture in the simulations performed. The relationship between grain boundary energy and the relative average area of grain boundaries is found to be approximately one-to-one. Interface texture development occurs by changes in the relative average areas of grain boundaries, explained by a triple junction lengthening model, as well as biased elimination of grain boundaries through topological events. In systems with misorientation dependent properties and non-random intial orientation texture, the MDFs do not reach steady states. Interface texture in such cases occurs by the mechanisms suggested above but is also enhanced by strengthening orientation texture. A quantitative critical event model that is in good agreement with all simulations is presented. This model predicts that the number weighted MDF fN(theta, t), the area weighted MDF fA(theta, t), the texture weighted MDF f0(theta, t), and the relative average area of grain boundaries (theta, t)/ are related by the expressions fNq,t ∝f0q,t Aq,t /A and fAq,t ∝f0q,t A q,t/A 2. Results from simulations with inclination dependent anisotropy suggest a similar mechanism as in the case of misorientation dependent anisotropy, with boundaries of lowest energy occuring with the highest frequencies, and no apparent effect of mobility anisotropy.

  16. Quantitative trait loci of barley malting quality trait components in the Stellar/01Ab8219 mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Malting barley is of high economic and scientific importance. Determining barley grains that are suitable for malting involves measuring malting quality, which is an expensive and complex process. In order to decrease the cost of phenotyping and accelerate the process of developing superior malting ...

  17. RECENT ADVANCES IN BARLEY TRANSFORMATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley, an important member of the cereals, has been successfully transformed through various methods such as particle bombardment, Agrobacterium-tumefaciens, DNA uptake, and electroporation. Initially, the transformation in barley concentrated on developing protocols using marker genes such as gus,...

  18. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development.

    PubMed

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U

    2014-03-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. 'Karat' with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  19. Increased symplasmic permeability in barley root epidermal cells correlates with defects in root hair development

    PubMed Central

    Marzec, M; Muszynska, A; Melzer, M; Sas-Nowosielska, H; Kurczynska, E U; Wick, S

    2014-01-01

    It is well known that the process of plant cell differentiation depends on the symplasmic isolation of cells. Before starting the differentiation programme, the individual cell or group of cells should restrict symplasmic communication with neighbouring cells. We tested the symplasmic communication between epidermal cells in the different root zones of parental barley plants Hordeum vulgare L., cv. ‘Karat’ with normal root hair development, and two root hairless mutants (rhl1.a and rhl1.b). The results clearly show that symplasmic communication was limited during root hair differentiation in the parental variety, whereas in both root hairless mutants epidermal cells were still symplasmically connected in the corresponding root zone. This paper is the first report on the role of symplasmic isolation in barley root cell differentiation, and additionally shows that a disturbance in the restriction of symplasmic communication is present in root hairless mutants. PMID:23927737

  20. Using a fibrolytic enzyme in barley-based diets containing wheat dried distillers grains with solubles: ruminal fermentation, digestibility, and growth performance of feedlot steers.

    PubMed

    He, Z X; He, M L; Walker, N D; McAllister, T A; Yang, W Z

    2014-09-01

    Two experiments were conducted to evaluate the effects of adding an exogenous fibrolytic enzyme (FE) on ruminal pH and fermentation, digestibility, and growth performance of feedlot beef cattle fed a finishing diet containing wheat dried distillers grains with solubles (DDGS). In Exp. 1, 4 ruminally cannulated Angus heifers (average BW of 807 ± 93.9 kg) were used in a replicated 4 × 4 Latin square design. Treatments were 1) control (CON; 10% barley silage and 90% barley grain-based concentrate), 2) CON diet substituting 30% wheat DDGS for barley grain (WDG), 3) WDG diet supplemented with low FE (WDGL), and 4) WDG diet supplemented with high FE (WDGH). Heifers fed WDG had less (P = 0.01) total tract DM digestibility than heifers fed CON. Increasing FE linearly (P < 0.05) increased starch digestibility without affecting digestibility of other nutrients. Addition of FE also reduced (P = 0.03) ruminal ammonia-N (NH3-N) concentration but did not affect VFA concentration. Moreover, application of FE to wheat DDGS linearly increased in situ ruminal DM (P < 0.01) and NDF (P = 0.02) disappearance after 48 h of incubation. In Exp. 2, 160 yearling steers (initial BW = 495 ± 37.9 kg) were fed the same diets as in Exp. 1. No differences in DMI, final BW, ADG, dietary NEg, or carcass characteristics were observed among diets. However, the steers fed WDG had less (P < 0.05) G:F and greater number of (P < 0.01) abscessed livers than steers fed CON. Increasing FE application in wheat DDGS diets did not affect DMI, final BW, or ADG but tended (P < 0.09) to linearly improve feed efficiency and decreased (P = 0.03) the incidence of abscessed livers. These results demonstrated adverse effects of including wheat DDGS in finishing diets on feed digestion, feed efficiency, and animal health. Application of FE in wheat DDGS-based diets potentially improved starch digestion, protein metabolism in the rumen, feed efficiency, and animal health. PMID:24987082

  1. A proteomics survey on wheat susceptibility to Fusarium head blight during grain development

    PubMed Central

    Chetouhi, Cherif; Lecomte, Philippe; Cambon, Florence; Merlino, Marielle; Biron, David Georges

    2014-01-01

    The mycotoxigenic fungal species Fusarium graminearum is able to attack several important cereal crops, such as wheat and barley. By causing Fusarium Head Blight (FHB) disease, F. graminearum induces yield and quality losses and poses a public health concern due to in planta mycotoxin production. The molecular and physiological plant responses to FHB, and the cellular biochemical pathways used by F. graminearum to complete its infectious process remain still unknown. In this study, a proteomics approach, combining 2D-gel approach and mass spectrometry, has been used to determine the specific protein patterns associated with the development of the fungal infection during grain growth on susceptible wheat. Our results reveal that F. graminearum infection does not deeply alter the grain proteome and does not significantly disturb the first steps of grain ontogeny but impacts molecular changes during the grain filling stage (impact on starch synthesis and storage proteins). The differentially regulated proteins identified were mainly involved in stress and defence mechanisms, primary metabolism, and main cellular processes such as signalling and transport. Our survey suggests that F. graminearum could take advantage of putative susceptibility factors closely related to grain development processes and thus provide new insights into key molecular events controlling the susceptible response to FHB in wheat grains. PMID:25663750

  2. Consolidated conversion of hulled barley into fermentable sugars using chemical, thermal, and enzymatic (CTE) treatment.

    PubMed

    Kim, Tae Hyun; Nghiem, Nhuan P; Taylor, Frank; Hicks, Kevin B

    2011-06-01

    A novel process using chemical, thermal, and enzymatic treatment for conversion of hulled barley into fermentable sugars was developed. The purpose of this process is to convert both lignocellulosic polysaccharides and starch in hulled barley grains into fermentable sugars simultaneously without a need for grinding and hull separation. In this study, hulled barley grains were treated with 0.1 and 1.0 wt.-% sulfuric acid at various temperatures ranging from 110 to 170 °C in a 63-ml flow-through packed-bed stainless steel reactor. After sulfuric acid pretreatment, simultaneous conversion of lignocellulose and starch in the barley grains into fermentable sugars was performed using an enzyme cocktail, which included α-amylase, glucoamylase, cellulase, and β-glucosidase. Both starch and non-starch polysaccharides in the pre-treated barley grains were readily converted to fermentable sugars. The treated hulled barley grains, including their hull, were completely hydrolyzed to fermentable sugars with recovery of almost 100% of the available glucose and xylose. The pretreatment conditions of this chemical, thermal, and enzymatic (CTE) process for achieving maximum yield of fermentable sugars were 1.0 wt.% sulfuric acid and 110 °C. In addition to starch, the acid pretreatment also retained most of the available proteins in solid form, which is essential for subsequent production of fuel ethanol and high protein distiller's dried grains with solubles co-product. PMID:21229334

  3. Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm.

    PubMed

    Hilscher, Julia; Kapusi, Eszter; Stoger, Eva; Ibl, Verena

    2016-01-01

    The significance of the endosomal sorting complexes required for transport (ESCRT)-III in cereal endosperm has been shown by the identification of the recessive mutant supernumerary aleurone layer1 (SAL1) in maize. ESCRT-III is indispensable in the final membrane fission step during biogenesis of multivesicular bodies (MVBs), responsible for protein sorting to vacuoles and to the cell surface. Here, we annotated barley ESCRT-III members in the (model) crop Hordeum vulgare and show that all identified members are expressed in developing barley endosperm. We used fluorescently tagged core ESCRT-III members HvSNF7a/CHMP4 and HvVPS24/CHMP3 and the associated ESCRT-III component HvVPS60a/CHMP5 for transient localization studies in barley endosperm. In vivo confocal microscopic analyses show that the localization of recombinantly expressed HvSNF7a, HvVPS24 and HvVPS60a differs within barley endosperm. Whereas HvSNF7a induces large agglomerations, HvVPS24 shows mainly cytosolic localization in aleurone and subaleurone. In contrast, HvVPS60a localizes strongly at the plasma membrane in aleurone. In subaleurone, HvVPS60a was found to a lesser extent at the plasma membrane and at vacuolar membranes. These results indicate that the steady-state association of ESCRT-III may be influenced by cell layer-specific protein deposition or trafficking and remodelling of the endomembrane system in endosperm. We show that sorting of an artificially mono-ubiquitinated Arabidopsis plasma membrane protein is inhibited by HvVPS60a in aleurone. The involvement of HvVPS60a in different cell layer-specific trafficking pathways, reflected by localization of HvVPS60a at the plasma membrane in aleurone and at the PSV membrane in subaleurone, is discussed. PMID:25796522

  4. The study of a barley epigenetic regulator, HvDME, in seed development and under drought

    PubMed Central

    2013-01-01

    Background Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. Results An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5′ and 3′ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3′ downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. Conclusion A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation

  5. Sprouted barley for dairy cows: Nutritional composition and digestibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to assess the effect of supplementing 7-d sprouted barley or barley grain with an haylage or pasture diet on nutrient digestibility and methane output. Barley grain was sprouted in climate controlled growth chambers, to be used as part ...

  6. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  7. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  8. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  9. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  10. 7 CFR 810.201 - Definition of barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Definition of barley. 810.201 Section 810.201... GRAIN United States Standards for Barley Terms Defined § 810.201 Definition of barley. Grain that, before the removal of dockage, consists of 50 percent or more of whole kernels of cultivated...

  11. Weather analysis and interpretation procedures developed for the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Trenchard, M. H. (Principal Investigator)

    1980-01-01

    Procedures and techniques for providing analyses of meteorological conditions at segments during the growing season were developed for the U.S./Canada Wheat and Barley Exploratory Experiment. The main product and analysis tool is the segment-level climagraph which depicts temporally meteorological variables for the current year compared with climatological normals. The variable values for the segment are estimates derived through objective analysis of values obtained at first-order station in the region. The procedures and products documented represent a baseline for future Foreign Commodity Production Forecasting experiments.

  12. Investigation of Water Dynamics and the Effect of Evapotranspiration on Grain Yield of Rainfed Wheat and Barley under a Mediterranean Environment: A Modelling Approach

    PubMed Central

    Zhang, Kefeng; Bosch-Serra, Angela D.; Boixadera, Jaume; Thompson, Andrew J.

    2015-01-01

    Agro-hydrological models have increasingly become useful and powerful tools in optimizing water and fertilizer application, and in studying the environmental consequences. Accurate prediction of water dynamics in such models is essential for models to produce reasonable results. In this study, detailed simulations were performed for water dynamics of rainfed winter wheat and barley grown under a Mediterranean climate over a 10-year period. The model employed (Yang et al., 2009. J. Hydrol., 370, 177-190) uses easily available agronomic data, and takes into consideration of all key soil and plant processes in controlling water dynamics in the soil-crop system, including the dynamics of root growth. The water requirement for crop growth was calculated according to the FAO56, and the soil hydraulic properties were estimated using peto-transfer functions (PTFs) based on soil physical properties and soil organic matter content. Results show that the simulated values of soil water content at the depths of 15, 45 and 75 cm agreed with the measurements well with the root of the mean squared errors of 0.027 cm3 cm-3 and the model agreement index of 0.875. The simulated seasonal evapotranspiration (ET) ranged from 208 to 388 mm, and grain yield was found to correlate with the simulated seasonal ET in a linear manner within the studied ET range. The simulated rates of grain yield increase were 17.3 and 23.7 kg ha-l for every mm of water evapotranspired for wheat and barley, respectively. The good agreement of soil water content between measurement and simulation and the simulated relationships between grain yield and seasonal ET supported by the data in the literature indicates that the model performed well in modelling water dynamics for the studied soil-crop system, and therefore has the potential to be applied reliably and widely in precision agriculture. Finally, a two-staged approach using inverse modelling techniques to further improve model performance was discussed

  13. Expression Patterns of HvCKX Genes Indicate Their Role in Growth and Reproductive Development of Barley

    PubMed Central

    Zalewski, Wojciech; Gasparis, Sebastian; Boczkowska, Maja; Rajchel, Izabela K.; Kała, Maciej; Orczyk, Wacław; Nadolska-Orczyk, Anna

    2014-01-01

    Cytokinin oxidase/dehydrogenase proteins (CKX) are encoded by a multigene family of CKX genes with a varying number of members depending on species. For some of the genes, spectacular effects on grain production in selected cereals have been observed. Despite the fact that partial or full length sequences of most HvCKX genes in barley (Hordeum vulgare) have already been published, in most cases their specific biological functions have not been reported. Detailed expression patterns for five HvCKX genes in different organs/tissues of developing barley plants coupled with analysis of RNAi silent for two genes are presented to test the hypothesis that these expression profiles might indicate their function. Elevated expression for four of them – HvCKX1, HvCKX9, HvCKX4, and HvCKX11 – was found in developing kernels of wild-type plants compared to other tissues. HvCKX5 was mainly expressed in leaf tissue. Lower expression was noted for HvCKX1 in seedling roots and for HvCKX9 in leaves. The documented effect of RNAi silencing of HvCKX1 and a trend for HvCKX9 was higher plant productivity, and the trait was inherited through four generations. Higher plant yield was determined by higher numbers of seeds and spikes. Increased productivity was significantly greater in HvCKX1 silenced plants showing higher relative expression of HvCKX1 in developing kernels of wild-type plants compared to the expression of HvCKX9. Both HvCKX1 silenced T1 seedlings of cv. Golden Promise and the newly transformed breeding line STH7308 showed greater root mass, but this trait was not inherited in the next generation. Similarly HvCKX9 silenced T1 seedlings exhibited greater plant height without inheritance in the next generation. It is suggested that these effects were not inherited because of compensation by other genes co-ordinately regulating reproductive development. One line with untypically changed, inherited phenotype, which was selected from several dozen silenced lines showing stable

  14. Abnormal etioplast development in barley seedlings infected with BSMV by seed transmission.

    PubMed

    Harsányi, Anett; Böddi, Béla; Bóka, Károly; Almási, Asztéria; Gáborjányi, Richard

    2002-01-01

    The effect of barley stripe mosaic hordeivirus (BSMV) was studied on the ultrastructure of etioplasts, protochlorophyllide forms and the greening process of barley (Hordeum vulgare cv. Pannónia) plants infected by seed transmission. The leaves of 7- to 11-day-old etiolated seedlings were examined by transmission electron microscopy, fluorescence and absorption spectroscopy. The etioplasts of infected seedlings contained smaller prolamellar bodies with less regular membrane structure, while prothylakoid content was higher than in the control. The protochlorophyllide content of virus-infected seedlings was reduced to 74% of the control. In the 77 K fluorescence spectra the relative amount of 655 nm emitting photoactive protochlorophyllide form decreased, and the amount of the 645 and 633 nm emitting forms increased in the infected leaves. A characteristic effect was observed in the process of the Shibata-shift: 40 min delay was observed in the infected leaves. The results of this work proved that BSMV infection delays or inhibits plastid development and the formation of photosynthetic apparatus. PMID:11982946

  15. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method

    PubMed Central

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-01-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80–90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published Km values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective Km values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass–action ratios

  16. Subcellular analysis of starch metabolism in developing barley seeds using a non-aqueous fractionation method.

    PubMed

    Tiessen, Axel; Nerlich, Annika; Faix, Benjamin; Hümmer, Christine; Fox, Simon; Trafford, Kay; Weber, Hans; Weschke, Winfriede; Geigenberger, Peter

    2012-03-01

    Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios

  17. The homeodomain transcription factor TaHDZipI-2 from wheat regulates frost tolerance, flowering time and spike development in transgenic barley.

    PubMed

    Kovalchuk, Nataliya; Chew, William; Sornaraj, Pradeep; Borisjuk, Nikolai; Yang, Nannan; Singh, Rohan; Bazanova, Natalia; Shavrukov, Yuri; Guendel, Andre; Munz, Eberhard; Borisjuk, Ljudmilla; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2016-07-01

    Homeodomain leucine zipper class I (HD-Zip I) transcription factors (TFs) play key roles in the regulation of plant growth and development under stresses. Functions of the TaHDZipI-2 gene isolated from the endosperm of developing wheat grain were revealed. Molecular characterization of TaHDZipI-2 protein included studies of its dimerisation, protein-DNA interactions and gene activation properties using pull-down assays, in-yeast methods and transient expression assays in wheat cells. The analysis of TaHDZipI-2 gene functions was performed using transgenic barley plants. It included comparison of developmental phenotypes, yield components, grain quality, frost tolerance and the levels of expression of potential target genes in transgenic and control plants. Transgenic TaHDZipI-2 lines showed characteristic phenotypic features that included reduced growth rates, reduced biomass, early flowering, light-coloured leaves and narrowly elongated spikes. Transgenic lines produced 25-40% more seeds per spike than control plants, but with 50-60% smaller grain size. In vivo lipid imaging exposed changes in the distribution of lipids between the embryo and endosperm in transgenic seeds. Transgenic lines were significantly more tolerant to frost than control plants. Our data suggest the role of TaHDZipI-2 in controlling several key processes underlying frost tolerance, transition to flowering and spike development. PMID:26990681

  18. Light/dark modulation of enzyme activity in developing barley leaves

    SciTech Connect

    Sibley, M.H.; Anderson, L.E. )

    1989-12-01

    Light/dark modulation of the ribulose-5-phosphate kinase, NADP{sup +}-glyceraldehyde-3-phosphate dehydrogenase, and fructose-1,6-bisphosphatase activity was measured in the developing primary leaf of barley (Hordeum vulgare L.) seedlings. Ribulose-5-phosphate kinase and NADP{sup +}-glyceraldehyde-3-phosphate dehydrogenase were fully light activated even at the earliest developmental stage sampled. In contrast, light modulation of fructose-1,6-bisphosphatase exhibited a complex response to leaf developmental status. Light stimulation of fructose-1,6-bisphosphatase activity (measured at pH 8.0) increased progressively during leaf development. On the other hand, acid fructose-1,6-bisphosphatase activity (measured at pH 6.0) was inhibited by light, and this light inhibition was greater in the base of the leaf than in the tip of the leaf.

  19. Global Transcriptome Profiling of Developing Leaf and Shoot Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and Inflorescence Development in Barley[OPEN

    PubMed Central

    2015-01-01

    Timing of the floral transition and inflorescence development strongly affect yield in barley (Hordeum vulgare). Therefore, we examined the effects of daylength and the photoperiod response gene PHOTOPERIOD1 (Ppd-H1) on barley development and analyzed gene expression changes in the developing leaves and main shoot apices (MSAs) of barley by RNA sequencing. The daylength sensitivity of MSA development had two phases, floret primordia initiated under long and short days, whereas successful inflorescence development occurred only under long days. The transcripts associated with floral transition were largely regulated independently of photoperiod and allelic variation at Ppd-H1. The photoperiod- and Ppd-H1-dependent differences in inflorescence development and flower fertility were associated with the induction of barley FLOWERING LOCUS T orthologs: FT1 in leaves and FT2 in MSAs. FT1 expression was coregulated with transcripts involved in nutrient transport, carbohydrate metabolism, and cell cycle regulation, suggesting that FT1 might alter source-sink relationships. Successful inflorescence development correlated with upregulation of FT2 and transcripts related to floral organ development, phytohormones, and cell cycle regulation. Identification of photoperiod and stage-specific transcripts gives insights into the regulation of reproductive development in barley and provides a resource for investigation of the complexities of development and yield in temperate grasses. PMID:26307377

  20. Development and Implementation of High-Throughput SNP Genotyping in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approximately 22,000 SNPs were identified from barley ESTs and sequenced amplicons; 4,596 of them were tested for performance in three pilot phase Illumina GoldenGate assays. Pilot phase data from three barley doubled haploid mapping populations supported the production of an initial consensus map, ...

  1. A description of the reformatted spring small grains labeling procedure used in test 2, part 2 of the US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Magness, E. R. (Principal Investigator)

    1981-01-01

    The reformatted spring small grains labeling procedure is designed to be used for assigning crop identification labels to a predetermined and selected number of dots. The development and description of this procedure is presented.

  2. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  3. Alanine aminotransferase controls seed dormancy in barley

    PubMed Central

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G.; Fincher, Geoffrey B.; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  4. [Modification of Barley Development at Early Stages after Exposure of Seeds to γ-Irradiation].

    PubMed

    Geras'kin, S A; Churukin, R S; Kazakova, E A

    2015-01-01

    The reaction of barley seeds (Nur and Grace varieties) to γ-irradiation in the dose range of 2-50 Gy was studied. The length and weight of a root, the length of a seedling and germination rate were investigated. The dose range in which we observed stimulation of plant development was evaluated. It was shown that the increase of root and seedling sizes after irradiation of seeds at stimulating doses is associated with the rise in the developmental speed, rather than with their earlier germination. Also the effects of a dose rate, a quality of seeds, humidity and a period of storage on the manifestation of radiation exposure were studied. PMID:26964346

  5. Spring Small Grains Area Estimation

    NASA Technical Reports Server (NTRS)

    Palmer, W. F.; Mohler, R. J.

    1986-01-01

    SSG3 automatically estimates acreage of spring small grains from Landsat data. Report describes development and testing of a computerized technique for using Landsat multispectral scanner (MSS) data to estimate acreage of spring small grains (wheat, barley, and oats). Application of technique to analysis of four years of data from United States and Canada yielded estimates of accuracy comparable to those obtained through procedures that rely on trained analysis.

  6. cor Gene Expression in Barley Mutants Affected in Chloroplast Development and Photosynthetic Electron Transport1

    PubMed Central

    Dal Bosco, Cristina; Busconi, Marco; Govoni, Chiara; Baldi, Paolo; Stanca, A. Michele; Crosatti, Cristina; Bassi, Roberto; Cattivelli, Luigi

    2003-01-01

    The expression of several barley (Hordeum vulgare) cold-regulated (cor) genes during cold acclimation was blocked in the albino mutant an, implying a chloroplast control on mRNAs accumulation. By using albino and xantha mutants ordered according to the step in chloroplast biogenesis affected, we show that the cold-dependent accumulation of cor14b, tmc-ap3, and blt14 mRNAs depends on plastid developmental stage. Plants acquire the ability to fully express cor genes only after the development of primary thylakoid membranes in their chloroplasts. To investigate the chloroplast-dependent mechanism involved in cor gene expression, the activity of a 643-bp cor14b promoter fragment was assayed in wild-type and albino mutant an leaf explants using transient β-glucuronidase reporter expression assay. Deletion analysis identified a 27-bp region between nucleotides −274 and −247 with respect to the transcription start point, encompassing a boundary of some element that contributes to the cold-induced expression of cor14b. However, cor14b promoter was equally active in green and in albino an leaves, suggesting that chloroplast controls cor14b expression by posttranscriptional mechanisms. Barley mutants lacking either photosystem I or II reaction center complexes were then used to evaluate the effects of redox state of electron transport chain components on COR14b accumulation. In the mutants analyzed, the amount of COR14b protein, but not the steady-state level of the corresponding mRNA, was dependent on the redox state of the electron transport chain. Treatments of the vir-zb63 mutant with electron transport chain inhibitors showed that oxidized plastoquinone promotes COR14b accumulation, thus suggesting a molecular relationship between plastoquinone/plastoquinol pool and COR14b. PMID:12586903

  7. Ethnobotany, diverse food uses, claimed health benefits and implications on conservation of barley landraces in North Eastern Ethiopia highlands

    PubMed Central

    2011-01-01

    Background Barley is the number one food crop in the highland parts of North Eastern Ethiopia produced by subsistence farmers grown as landraces. Information on the ethnobotany, food utilization and maintenance of barley landraces is valuable to design and plan germplasm conservation strategies as well as to improve food utilization of barley. Methods A study, involving field visits and household interviews, was conducted in three administrative zones. Eleven districts from the three zones, five kebeles in each district and five households from each kebele were visited to gather information on the ethnobotany, the utilization of barley and how barley end-uses influence the maintenance of landrace diversity. Results According to farmers, barley is the "king of crops" and it is put for diverse uses with more than 20 types of barley dishes and beverages reportedly prepared in the study area. The products are prepared from either boiled/roasted whole grain, raw- and roasted-milled grain, or cracked grain as main, side, ceremonial, and recuperating dishes. The various barley traditional foods have perceived qualities and health benefits by the farmers. Fifteen diverse barley landraces were reported by farmers, and the ethnobotany of the landraces reflects key quantitative and qualitative traits. Some landraces that are preferred for their culinary qualities are being marginalized due to moisture shortage and soil degradation. Conclusions Farmers' preference of different landraces for various end-use qualities is one of the important factors that affect the decision process of landraces maintenance, which in turn affect genetic diversity. Further studies on improving maintenance of landraces, developing suitable varieties and improving the food utilization of barley including processing techniques could contribute to food security of the area. PMID:21711566

  8. Starch Biosynthesis in Developing Wheat Grain 1

    PubMed Central

    Keeling, Peter L.; Wood, John R.; Tyson, R. Huw; Bridges, Ian G.

    1988-01-01

    We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in

  9. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  10. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  11. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  12. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  13. 7 CFR 801.3 - Tolerances for barley pearlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for barley pearlers. 801.3 Section 801.3... FOR GRAIN INSPECTION EQUIPMENT § 801.3 Tolerances for barley pearlers. The maintenance tolerances for barley pearlers used in performing official inspection services shall be: Item Tolerance Timer switch:...

  14. Strengths and Limitations of Operational Use of 1 Km EO Biophysical Products for Regional Prediction of Grain Yelds in Europe (wheat, barley and maize)

    NASA Astrophysics Data System (ADS)

    Meroni, M.; LEO, O.; Lopez-Lozano, R.; Baruth, B.; Duveiller, G.; Garcia-Condado, S.; Hooker, J.; Seguini, L.

    2014-12-01

    The site-specific relationship between EO indicators and actual crop yields has been explored in many different studies, describing semi-empirical regression models between spatially aggregated biophysical parameters or vegetation indices and observed yields (from field measurements or official statistics). However, when considering larger extensions -from countries to continents- agro-climatic conditions and crop management may differ substantially among regions, and these differences may greatly influence the relationship between biophysical indicators and the observed yields, which may be also driven by limiting factors other than green biomass formation. The present study aims to better assess the contribution of EO indicators within an operational crop yield forecasting system in Europe and neighbouring countries, by evaluating how these above mentioned geographic differences influence the relationship between biophysical indicators and crop yield. We therefore explore, as a first step, the correspondence between fAPAR time-series (1999-2013) and the inter-annual yield variability of wheat, barley and grain maize, at sub-national level across Europe (270-450 Administrative Units, depending on crop). In a second step, we map the agro-climatic contexts in which EO indicators better explain the observed yield inter-annual variability, identify the influence of some meteorological events on the fAPAR -yield relationship and provide some recommendations for further investigation. The results indicate that in water-limited environments (e.g. Mediterranean and Black Sea areas), fAPAR is highly correlated with yields whereas in northern Europe, crop yield appears much less limited by leaf area expansion along the season, and the relationship between yield and EO products becomes more difficult to interpret.

  15. All About the Grains Group

    MedlinePlus

    ... the Grains Group? Any food made from wheat, rice, oats, cornmeal, barley or another cereal grain is ... bulgur (cracked wheat), oatmeal, whole cornmeal, and brown rice. Refined grains have been milled, a process that ...

  16. Differential effects of lesion mimic mutants in barley on disease development by facultative pathogens

    PubMed Central

    McGrann, Graham R. D.; Steed, , Andrew; Burt, Christopher; Nicholson, Paul; Brown, James K. M.

    2015-01-01

    Lesion mimic mutants display spontaneous necrotic spots and chlorotic leaves as a result of mis-regulated cell death programmes. Typically these mutants have increased resistance to biotrophic pathogens but their response to facultative fungi that cause necrotrophic diseases is less well studied. The effect of altered cell death regulation on the development of disease caused by Ramularia collo-cygni, Fusarium culmorum and Oculimacula yallundae was explored using a collection of barley necrotic (nec) lesion mimic mutants. nec8 mutants displayed lower levels of all three diseases compared to nec9 mutants, which had increased R. collo-cygni but decreased F. culmorum disease symptoms. nec1 mutants reduced disease development caused by both R. collo-cygni and F. culmorum. The severity of the nec1-induced lesion mimic phenotype and F. culmorum symptom development was reduced by mutation of the negative cell death regulator MLO. The significant reduction in R. collo-cygni symptoms caused by nec1 was completely abolished in the presence of the mlo-5 allele and both symptoms and fungal biomass were greater than in the wild-type. These results indicate that physiological pathways involved in regulation of cell death interact with one another in their effects on different fungal pathogens. PMID:25873675

  17. Functional proteomics of barley and barley chloroplasts – strategies, methods and perspectives

    PubMed Central

    Petersen, Jørgen; Rogowska-Wrzesinska, Adelina; Jensen, Ole N.

    2013-01-01

    Barley (Hordeum vulgare) is an important cereal grain that is used in a range of products for animal and human consumption. Crop yield and seed quality has been optimized during decades by plant breeding programs supported by biotechnology and molecular biology techniques. The recently completed whole-genome sequencing of barley revealed approximately 26,100 open reading frames, which provides a foundation for detailed molecular studies of barley by functional genomics and proteomics approaches. Such studies will provide further insights into the mechanisms of, for example, drought and stress tolerance, micronutrient utilization, and photosynthesis in barley. In the present review we present the current state of proteomics research for investigations of barley chloroplasts, i.e., the organelle that contain the photosynthetic apparatus in the plant. We describe several different proteomics strategies and discuss their applications in characterization of the barley chloroplast as well as future perspectives for functional proteomics in barley research. PMID:23515231

  18. Genetics of mutations affecting the development of a barley floral bract.

    PubMed Central

    Pozzi, C; Faccioli, P; Terzi, V; Stanca, A M; Cerioli, S; Castiglioni, P; Fink, R; Capone, R; Müller, K J; Bossinger, G; Rohde, W; Salamini, F

    2000-01-01

    Two groups of mutants that affect the morphology of the lemma, a floral bract of barley, are described. The first comprises phenotypes associated with mutant alleles of calcaroides loci. On the lemma of these mutants, a well-organized neomorphic structure is formed, termed the sac. We provide a morphological description of wild-type (WT) and mutant lemmas, based on scanning electron microscopy (SEM), showing that both consist of similar tissues, but that the mutant is characterized by reversed growth polarity. The sac is a unique structure among grasses, and it is remarkable that recessive mutations at five different genetic loci lead to the same organ. The second group of mutants carry recessive alleles of two leafy lemma genes, both of which are necessary to cause the transformation of the lemma into a structure having all characteristics of a vegetative leaf, as shown by SEM analysis. The presence of sheath, blade, and ligule in the mutant lemma suggests that wild-type lemma development is interrupted at a leaf-like stage. The genes cal a, b, C, d, 23, lel1, and lel2 have now been mapped at precise positions on linkage groups 2, 7, 7, 3, 7, 5, and 7, respectively. The mutants considered in this article are unaffected in other floral organs. A model for lemma development is suggested. PMID:10757774

  19. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process. PMID:21806068

  20. The Barley Phytomer

    PubMed Central

    Forster, Brian P.; Franckowiak, Jerome D.; Lundqvist, Udda; Lyon, Jackie; Pitkethly, Ian; Thomas, William T. B.

    2007-01-01

    Background and Aims Morphological mutants have been useful in elucidating the phytomeric structure of plants. Recently described mutants have shed new light on the ontogeny (development of plant structures) and the phytomeric system of barley (Hordeum vulgare). Since the current model for barley phytomers was not adequate to explain the nature of some mutants, a new model is proposed. Methods New phytomer mutants were detected by visual assessment of mutant families in the Optic barley mutation grid population. This was done at various growth stages using laboratory, glasshouse and field screens. Simple explanations were adopted to account for aberrant phytomer phenotypes and a thesis for a new phytomer model was developed. Key Results and Conclusions A barley phytomer model is presented, in which the origins of vegetative and generative structures can be explained by a single repeating phytomer unit. Organs on the barley plant are divided into two classes, single or paired, depending on their origin. Paired structures are often fused together to create specific organs. The model can be applied to wheat (Triticum aestivum) and related grasses. PMID:17901062

  1. Drought stress variability in ancient Near Eastern agricultural systems evidenced by δ13C in barley grain

    PubMed Central

    Riehl, Simone; Pustovoytov, Konstantin E.; Weippert, Heike; Klett, Stefan; Hole, Frank

    2014-01-01

    The collapse and resilience of political systems in the ancient Near East and their relationship with agricultural development have been of wide interest in archaeology and anthropology. Despite attempts to link the archaeological evidence to local paleoclimate data, the precise role of environmental conditions in ancient agricultural production remains poorly understood. Recently, stable isotope analysis has been used for reconstructing site-specific ancient growing conditions for crop species in semiarid and arid landscapes. To open the discussion of the role of regional diversity in past agricultural production as a factor in societal development, we present 1.037 new stable carbon isotope measurements from 33 archaeological sites and modern fields in the geographic area of the Fertile Crescent, spanning the Aceramic Neolithic [10,000 calibrated years (cal) B.C.] to the later Iron Age (500 cal B.C.), alongside modern data from 13 locations. Our data show that drought stress was an issue in many agricultural settlements in the ancient Near East, particularly in correlation with the major Holocene climatic fluctuations, but its regional impact was diverse and influenced by geographic factors. Although cereals growing in the coastal areas of the northern Levant were relatively unaffected by Holocene climatic fluctuations, farmers of regions further inland had to apply irrigation to cope with increased water stress. However, inland agricultural strategies showed a high degree of variability. Our findings suggest that regional differences in climatic effects led to diversified strategies in ancient subsistence and economy even within spatially limited cultural units. PMID:25114225

  2. Development of SNP markers for genes of the phenylpropanoid pathway and their association to kernel and malting traits in barley

    PubMed Central

    2013-01-01

    Background Flavonoids are an important class of secondary compounds in angiosperms. Next to certain biological functions in plants, they play a role in the brewing process and have an effect on taste, color and aroma of beer. The aim of this study was to reveal the haplotype diversity of candidate genes involved in the phenylpropanoid biosynthesis pathway in cultivated barley varieties (Hordeum vulgare L.) and to determine associations to kernel and malting quality parameters. Results Five genes encoding phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H) and dihydroflavonol reductase (DFR) of the phenylpropanoid biosynthesis pathway were partially resequenced in 16 diverse barley reference genotypes. Their localization in the barley genome, their genetic structure, and their genetic variation e.g. single nucleotide polymorphism (SNP) and Insertion/Deletion (InDel) patterns were revealed. In total, 130 SNPs and seven InDels were detected. Of these, 21 polymorphisms were converted into high-throughput pyrosequencing markers. The resulting SNP and haplotype patterns were used to calculate associations with kernel and malting quality parameters. Conclusions SNP patterns were found to be highly variable for the investigated genes. The developed high-throughput markers are applicable for assessing the genetic variability and for the determination of haplotype patterns in a set of barley accessions. The candidate genes PAL, C4H and F3H were shown to be associated to several malting properties like glassiness (PAL), viscosity (C4H) or to final attenuation (F3H). PMID:24088365

  3. Feeding behavior and ruminal pH of corn silage, barley grain, and corn dried distillers' grain offered in a total mixed ration or in a free-choice diet to beef cattle.

    PubMed

    Moya, D; Holtshausen, L; Marti, S; Gibb, D G; McAllister, T A; Beauchemin, K A; Schwartzkopf-Genswein, K

    2014-08-01

    Seventy-nine continental crossbred beef heifers (524.4 ± 41.68 kg BW), 16 of which were ruminally cannulated, were used in a 53-d experiment with a generalized randomized block design to assess the effects of barley grain (BG), corn silage (CS), and corn distillers' grain (DG) offered in a free-choice diet on feeding behavior and ruminal fermentation. Treatments were total mixed ration (TMR) consisting of 85% BG, 10% CS, and 5% supplement or free-choice (i.e., self-selection) diets of BG and CS (BGCS), BG and corn dry DG (BGDG), or CS and corn DG (CSDG). Heifers were housed in groups of 9 or 10 in 8 pens and weighed 2 h before feed delivery at d 0, 21, 42, and 52 of the study. Pens were equipped with an electronic feed bunk monitoring system enabling feed intake and feeding behavior to be continuously monitored. Each of these pens was randomly allocated 2 cannulated heifers equipped with indwelling pH probes for continuous measurement of ruminal pH during wk 1, 2, 4, and 7. Blood and rumen contents were taken from cannulated heifers 2 h after feed delivery on d -3, 0, 7, 8, 42, and 49. Cattle fed either TMR or free-choice diets had similar (P > 0.10) ruminal fermentation, blood profile, and growth performance, with the exception of the CSDG diet, for which ruminal pH levels were consistently greater (P < 0.01) and performance was lower (P < 0.01). When DG was a component in free-choice diets, heifers reduced its inclusion in the diet (P < 0.05) over the experiment without affecting growth rate or ruminal fluid pH. Finishing feedlot cattle fed BG and CS separately selected a diet with a greater proportion of BG (85% DMI) compared to the TMR with no signs of acidosis. When cattle were given free-choice access to corn dry DG as an alternative to CS, they consumed levels up to 30% of their total daily DMI. Under the conditions of our experiment cattle can effectively self-select diets without increasing the risk of subclinical acidosis and still maintain similar

  4. 76 FR 61287 - Request for Public Comment on the United States Standards for Barley

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... Public Comment on the United States Standards for Barley AGENCY: Grain Inspection, Packers and Stockyards....S.) Standards for Barley under the United States Grain Standards Act (USGSA). To ensure that... whether the current barley standards and grading practices need to be changed. DATES: Comments must...

  5. Biochemical heterogeneity of malt is caused by both biological variation and differences in processing: I. Individual grain analyses of biochemical parameters in differently steeped barley (Hordeum vulgare L.) malts.

    PubMed

    Kleinwächter, Maik; Müller, Christian; Methner, Frank-Jürgen; Selmar, Dirk

    2014-03-15

    Using individual grain analyses, the degree of inherent biological variation in germinating barley seeds has been established. Even under homogenous laboratory conditions, the activities of the germination-related enzymes α-amylase, β-amylase and β-glucanase varied by a factor of two to three. The comparison with single grain analyses of different industrially produced malts (steeping systems without aeration, with air suction and pressurised aeration) revealed that the heterogeneity of these malts nearly tripled. This increase may be due to the gradients in O2 and CO2 that arise in large industrial steeping vessels. The most homogenous malting in the industrial systems was achieved without any aeration during steeping. Therefore, to improve homogeneity, the common practise of steep aeration should be omitted. Germination progression was quite different within the three exhaustively aerated attempts, which indicated that gaseous composition was not the only factor affecting germination progression. PMID:24206681

  6. Recent development in processing barley and oats into value-added ingredients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley and oats are unique among cereals because they contain a higher amount (3-8%) of mixed linkage 1-3, 1-4 beta-D-glucan (BG), in addition to starch, protein and other fibers. BG is a water soluble dietary fiber and has been shown to lower serum cholesterol levels and reduce blood glucose respo...

  7. A Low Phytic Acid Barley Mutation Alters Gene Expression in Early Seed Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley (Hordeum vulgare L.) low phytic acid (lpa) mutants have reduced levels of seed phytate, the most abundant form of phosphorus in seeds, and increases in seed inorganic phosphorus. To understand how lpa mutations affect metabolic and developmental processes during seed growth, gene expression ...

  8. A comparison of two milling strategies to reduce the mycotoxin deoxynivalenol in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The trichothecene mycotoxin deoxynivalenol (DON), a common contaminant of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) grain, is a threat to feed and food safety in the United States. New strategies to reduce the threat of DON need to be developed and implemented. Previous work has...

  9. The short-term growth response to salt of the developing barley leaf.

    PubMed

    Fricke, Wieland; Akhiyarova, Gulya; Wei, Wenxue; Alexandersson, Erik; Miller, Anthony; Kjellbom, Per Ola; Richardson, Andrew; Wojciechowski, Tobias; Schreiber, Lukas; Veselov, Dima; Kudoyarova, Guzel; Volkov, Vadim

    2006-01-01

    Recent results concerning the short-term growth response to salinity of the developing barley leaf are reviewed. Plants were grown hydroponically and the growth response of leaf 3 was studied between 10 min and 5 d following addition of 100 mM NaCl to the root medium. The aim of the experiments was to relate changes in variables that are likely to affect cell elongation to changes in leaf growth. Changes in hormone content (ABA, cytokinins), water and solute relationships (osmolality, turgor, water potential, solute concentrations), gene expression (water channel), cuticle deposition, membrane potential, and transpiration were followed, while leaf elongation velocity was monitored. Leaf elongation decreased close to zero within seconds following addition of NaCl. Between 20 and 30 min after exposure to salt, elongation velocity recovered rather abruptly, to about 46% of the pre-stress level, and remained at the reduced rate for the following 5 d, when it reached about 70% of the level in non-stressed plants. Biophysical and physiological analyses led to three major conclusions. (i) The immediate reduction and sudden recovery in elongation velocity is due to changes in the water potential gradient between leaf xylem and peripheral elongating cells. Changes in transpiration, ABA and cytokinin content, water channel expression, and plasma membrane potential are involved in this response. (ii) Significant solute accumulation, which aids growth recovery, is detectable from 1 h onwards; growing and non-growing leaf regions and mesophyll and epidermis differ in their solute response. (iii) Cuticular wax density is not affected by short-term exposure to salt; transpirational changes are due to stomatal control. PMID:16513814

  10. REGISTRATION OF 'HERALD' BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    'Herald' (Reg. No. xxx, P.I. 642403 ) is a low-phytate six-rowed spring feed barley (Hordeum vulgare L.) cultivar developed cooperatively and released in 2006 by the Agricultural Research Service, U.S. Department of Agriculture, and the Idaho Agricultural Experiment Station. It is the first released...

  11. Registration of Endeavor Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Endeavor’ (Reg. No. ______PI 654824); a two-rowed winter malting barley (Hordeum vulgare L.) was developed and submitted for release in 2007 by the Agricultural Research Service-USDA, Aberdeen, ID, in cooperation with the University of Idaho Agricultural Experiment Station. Endeavor is a selection...

  12. Analysis and comparison of bio-oil produced by fast pyrolysis from three barley biomass/byproduct streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluidized bed fast pyrolysis was carried out on three different barley biomass coproduct streams, barley straw, barley hulls and DDGS from Saccharomyces cerevisiae fermentation of barley grain. Each of these are possible sources of feedstock for advanced bio-fuels production via fast pyrolysis as b...

  13. The study of two barley Type I-like MADS-box genes as potential targets of epigenetic regulation during seed development

    PubMed Central

    2012-01-01

    Background MADS-box genes constitute a large family of transcription factors functioning as key regulators of many processes during plant vegetative and reproductive development. Type II MADS-box genes have been intensively investigated and are mostly involved in vegetative and flowering development. A growing number of studies of Type I MADS-box genes in Arabidopsis, have assigned crucial roles for these genes in gamete and seed development and have demonstrated that a number of Type I MADS-box genes are epigenetically regulated by DNA methylation and histone modifications. However, reports on agronomically important cereals such as barley and wheat are scarce. Results Here we report the identification and characterization of two Type I-like MADS-box genes, from barley (Hordeum vulgare), a monocot cereal crop of high agronomic importance. Protein sequence and phylogenetic analysis showed that the putative proteins are related to Type I MADS-box proteins, and classified them in a distinct cereal clade. Significant differences in gene expression among seed developmental stages and between barley cultivars with varying seed size were revealed for both genes. One of these genes was shown to be induced by the seed development- and stress-related hormones ABA and JA whereas in situ hybridizations localized the other gene to specific endosperm sub-compartments. The genomic organization of the latter has high conservation with the cereal Type I-like MADS-box homologues and the chromosomal position of both genes is close to markers associated with seed quality traits. DNA methylation differences are present in the upstream and downstream regulatory regions of the barley Type I-like MADS-box genes in two different developmental stages and in response to ABA treatment which may be associated with gene expression differences. Conclusions Two barley MADS-box genes were studied that are related to Type I MADS-box genes. Differential expression in different seed developmental

  14. Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs

    PubMed Central

    Yoshikawa, Takanori; Tanaka, Shin-Ya; Masumoto, Yuuki; Nobori, Naoya; Ishii, Hiroto; Hibara, Ken-Ichiro; Itoh, Jun-Ichi; Tanisaka, Takatoshi; Taketa, Shin

    2016-01-01

    Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit thin leaves accompanied by short stature. Detailed histological analysis revealed that leaf marginal tissues, such as sawtooth hairs and sclerenchymatous cells, were lacked in nld1, suggesting that narrowed leaf of nld1 was attributable to the defective development of the marginal regions in the leaves. The defective marginal developments were also appeared in internodes and glumes in spikelets. Map-based cloning revealed that NLD1 encodes a WUSCHEL-RELATED HOMEOBOX 3 (WOX3), an ortholog of the maize NARROW SHEATH genes. In situ hybridization showed that NLD1 transcripts were localized in the marginal edges of leaf primordia from the initiating stage. From these results, we concluded that NLD1 plays pivotal role in the increase of organ width and in the development of marginal tissues in lateral organs in barley. PMID:27436952

  15. Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs.

    PubMed

    Yoshikawa, Takanori; Tanaka, Shin-Ya; Masumoto, Yuuki; Nobori, Naoya; Ishii, Hiroto; Hibara, Ken-Ichiro; Itoh, Jun-Ichi; Tanisaka, Takatoshi; Taketa, Shin

    2016-06-01

    Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit thin leaves accompanied by short stature. Detailed histological analysis revealed that leaf marginal tissues, such as sawtooth hairs and sclerenchymatous cells, were lacked in nld1, suggesting that narrowed leaf of nld1 was attributable to the defective development of the marginal regions in the leaves. The defective marginal developments were also appeared in internodes and glumes in spikelets. Map-based cloning revealed that NLD1 encodes a WUSCHEL-RELATED HOMEOBOX 3 (WOX3), an ortholog of the maize NARROW SHEATH genes. In situ hybridization showed that NLD1 transcripts were localized in the marginal edges of leaf primordia from the initiating stage. From these results, we concluded that NLD1 plays pivotal role in the increase of organ width and in the development of marginal tissues in lateral organs in barley. PMID:27436952

  16. The effects on cow performance and calf birth and weaning weight of replacing grass silage with brewers grains in a barley straw diet offered to pregnant beef cows of two different breeds.

    PubMed

    Rooke, J A; Duthie, C-A; Hyslop, J J; Morgan, C A; Waterhouse, T

    2016-08-01

    The effects on cow and calf performance of replacing grass silage with brewers grains in diets based on barley straw and fed to pregnant beef cows are reported. Using a 2 × 2 factorial arrangement of breed and diet, cows pregnant by artificial insemination (n = 34) of two breeds (cross-bred Limousin, n = 19 and pure-bred Luing, n = 15) were fed diets ad libitum which consisted of either (g/kg dry matter) barley straw (664) and grass silage (325; GS) or barley straw (783) and brewers grains (206, BG) and offered as total mixed rations. From gestation day (GD) 168 until 266, individual daily feed intakes were recorded and cow body weight (BW) and body condition score (BCS) measured weekly. Calving date, calf sex, birth and weaning BW, and calf age at weaning were also recorded. Between GD 168 and 266, cross-bred Limousin cows gained more weight than Luing cows (p < 0.05) and cows offered BG gained more weight than cows offered GS (p < 0.001). Luing cows lost more BCS than cross-bred Limousin cows (p < 0.05), but diet did not affect BCS. There were no differences in dry matter intake as a result of breed or diet. Calf birth BW, however, was greater for cows fed BG than GS (44 vs. 38 kg, SEM 1.0, p < 0.001) with no difference between breeds. At weaning, calves born to BG-fed cows were heavier than those born to GS-fed cows (330 vs. 286 kg, SEM 9.3, p < 0.01). In conclusion, replacement of grass silage with brewers grains improved the performance of beef cows and increased calf birth and weaning BW. Further analysis indicated that the superior performance of cows offered the BG diet was most likely due to increases in protein supply which may have improved both energy and protein supply to the foetus. PMID:26613658

  17. Duplicate polyphenol oxidase genes on barley chromosome 2H and their functional differentiation in the phenol reaction of spikes and grains

    PubMed Central

    Taketa, Shin; Matsuki, Kanako; Amano, Satoko; Saisho, Daisuke; Himi, Eiko; Shitsukawa, Naoki; Yuo, Takahisa; Noda, Kazuhiko; Takeda, Kazuyoshi

    2010-01-01

    Polyphenol oxidases (PPOs) are copper-containing metalloenzymes encoded in the nucleus and transported into the plastids. Reportedly, PPOs cause time-dependent discoloration (browning) of end-products of wheat and barley, which impairs their appearance quality. For this study, two barley PPO homologues were amplified using PCR with a primer pair designed in the copper binding domains of the wheat PPO genes. The full-lengths of the respective PPO genes were cloned using a BAC library, inverse-PCR, and 3′-RACE. Linkage analysis showed that the polymorphisms in PPO1 and PPO2 co-segregated with the phenol reaction phenotype of awns. Subsequent RT-PCR experiments showed that PPO1 was expressed in hulls and awns, and that PPO2 was expressed in the caryopses. Allelic variation of PPO1 and PPO2 was analysed in 51 barley accessions with the negative phenol reaction of awns. In PPO1, amino acid substitutions of five types affecting functionally important motif(s) or C-terminal region(s) were identified in 40 of the 51 accessions tested. In PPO2, only one mutant allele with a precocious stop codon resulting from an 8 bp insertion in the first exon was found in three of the 51 accessions tested. These observations demonstrate that PPO1 is the major determinant controlling the phenol reaction of awns. Comparisons of PPO1 single mutants and the PPO1PPO2 double mutant indicate that PPO2 controls the phenol reaction in the crease on the ventral side of caryopses. An insertion of a hAT-family transposon in the promoter region of PPO2 may be responsible for different expression patterns of the duplicate PPO genes in barley. PMID:20616156

  18. Quantitative Trait Loci Associated with the Tocochromanol (Vitamin E) Pathway in Barley

    PubMed Central

    Cuesta-Marcos, Alfonso; Geniza, Matthew; Blake, Tom; Blake, Victoria C.; Butler, Joshua; Chao, Shiaomen; Hole, David J.; Horsley, Rich; Jaiswal, Pankaj; Obert, Don; Smith, Kevin P.; Ullrich, Steven; Hayes, Patrick M.

    2015-01-01

    The Genome-Wide Association Studies approach was used to detect Quantitative Trait Loci associated with tocochromanol concentrations using a panel of 1,466 barley accessions. All major tocochromanol types- α-, β-, δ-, γ-tocopherol and tocotrienol- were assayed. We found 13 single nucleotide polymorphisms associated with the concentration of one or more of these tocochromanol forms in barley, seven of which were within 2 cM of sequences homologous to cloned genes associated with tocochromanol production in barley and/or other plants. These associations confirmed a prior report based on bi-parental QTL mapping. This knowledge will aid future efforts to better understand the role of tocochromanols in barley, with specific reference to abiotic stress resistance. It will also be useful in developing barley varieties with higher tocochromanol concentrations, although at current recommended daily consumption amounts, barley would not be an effective sole source of vitamin E. However, it could be an important contributor in the context of whole grains in a balanced diet. PMID:26208213

  19. Development of High Sensitivity Nuclear Emulsion and Fine Grained Emulsion

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Asada, T.; Naka, T.; Naganawa, N.; Kuwabara, K.; Nakamura, M.

    2014-08-01

    Nuclear emulsion is a particle detector having high spacial resolution and angular resolution. It became useful for large statistics experiment thanks to the development of automatic scanning system. In 2010, a facility for emulsion production was introduced and R&D of nuclear emulsion began at Nagoya university. In this paper, we present results of development of the high sensitivity emulsion and fine grained emulsion for dark matter search experiment. Improvement of sensitivity is achieved by raising density of silver halide crystals and doping well-adjusted amount of chemicals. Production of fine grained emulsion was difficult because of unexpected crystal condensation. By mixing polyvinyl alcohol (PVA) to gelatin as a binder, we succeeded in making a stable fine grained emulsion.

  20. From field barley to malt: detection and specification of microbial activity for quality aspects.

    PubMed

    Noots, I; Delcour, J A; Michiels, C W

    1999-01-01

    Barley grain carries a numerous, variable, and complex microbial population that mainly consists of bacteria, yeasts, and filamentous fungi and that can partly be detected and quantified using plating methods and microscopic and molecular techniques. The extent and the activity of this microflora are determined by the altering state of the grain and the environmental conditions in the malt production chain. Three ecological systems can be distinguished: the growing cereal in the field, the dry barley grain under storage, and the germinating barley kernel during actual malting. Microorganisms interact with the malting process both by their presence and by their metabolic activity. In this respect, interference with the oxygen uptake by the barley grain and secretion of enzymes, hormones, toxins, and acids that may affect the plant physiological processes have been studied. As a result of the interaction, microorganisms can cause important losses and influence malt quality as measured by brewhouse performance and beer quality. Of particular concern is the occurrence of mycotoxins that may affect the safety of malt. The development of the microflora during malt production can to a certain extent be controlled by the selection of appropriate process conditions. Physical and chemical treatments to inactivate the microbial population on the barley grain are suggested. Recent developments, however, aim to control the microbial activity during malt production by promoting the growth of desirable microbial cultures, selected either as biocontrol agents inhibiting mycotoxin-producing molds or as starter cultures actively contributing to malt modification. Such techniques may offer natural opportunities to improve the quality and safety of malt. PMID:10405796

  1. Barley stripe mosaic and Barley yellow stripe

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley stripe mosaic was described in Wisconsin as "barley false stripe" in 1910, making it perhaps the first cereal virus disease described in the United States. The disease has been reported from most barley-producing areas of the world, including North and South America, Asia, Africa, Europe, an...

  2. Evolution and development of cell walls in cereal grains

    PubMed Central

    Burton, Rachel A.; Fincher, Geoffrey B.

    2014-01-01

    The composition of cell walls in cereal grains and other grass species differs markedly from walls in seeds of other plants. In the maternal tissues that surround the embryo and endosperm of the grain, walls contain higher levels of cellulose and in many cases are heavily lignified. This may be contrasted with walls of the endosperm, where the amount of cellulose is relatively low, and the walls are generally not lignified. The low cellulose and lignin contents are possible because the walls of the endosperm perform no load-bearing function in the mature grain and indeed the low levels of these relatively intractable wall components are necessary because they allow rapid degradation of the walls following germination of the grain. The major non-cellulosic components of endosperm walls are usually heteroxylans and (1,3;1,4)-β-glucans, with lower levels of xyloglucans, glucomannans, and pectic polysaccharides. Pectic polysaccharides and xyloglucans are the major non-cellulosic wall constituents in most dicot species, in which (1,3;1,4)-β-glucans are usually absent and heteroxylans are found at relatively low levels. Thus, the “core” non-cellulosic wall polysaccharides in grain of the cereals and other grasses are the heteroxylans and, more specifically, arabinoxylans. The (1,3;1,4)-β-glucans appear in the endosperm of some grass species but are essentially absent from others; they may constitute from zero to more than 45% of the cell walls of the endosperm, depending on the species. It is clear that in some cases these (1,3;1,4)-β-glucans function as a major store of metabolizable glucose in the grain. Cereal grains and their constituent cell wall polysaccharides are centrally important as a source of dietary fiber in human societies and breeders have started to select for high levels of non-cellulosic wall polysaccharides in grain. To meet end-user requirements, it is important that we understand cell wall biology in the grain both during development and

  3. DEVELOPMENT OF A ENERGY SAVING GRAIN DRYING INVENTION

    SciTech Connect

    STEVE SHIVVERS

    2005-09-30

    The project goal is to develop the world's best grain dryer, where best is defined in terms of energy efficiency, grain quality protection, and minimal environmental impact. A technique was developed to recapture enthalpy from a continuous flow drying system and to carry that energy back into the grain kernels. Process design assures that the recaptured energy is used to provide latent heat for evaporation of moisture from the kernels. Maximum kernel temperatures are tightly controlled by the design and can be selected through the system controls. The drying system process has been simulated, the mechanical design for a prototype was completed, and the prototype has been fabricated and installed. Simulation results show energy use that is a fraction of that required by the most efficient heat assisted grain dryer systems available at this time. Unfortunately, project time has expired, funding has been exhausted, and the system has yet to be fully run in order to validate the process design. Additional development work is required to run tests with the prototype, improve the simulation model, optimize the process and mechanical design, and bring this energy saving system to market.

  4. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  5. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  6. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  7. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  8. 7 CFR 810.206 - Grades and grade requirements for barley.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Grades and grade requirements for barley. 810.206... OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.206 Grades and grade requirements for barley. Grade Minimum limits of—...

  9. Do root hydraulic properties change during the early vegetative stage of plant development in barley (Hordeum vulgare)?

    PubMed Central

    Suku, Shimi; Knipfer, Thorsten; Fricke, Wieland

    2014-01-01

    Background and Aims As annual crops develop, transpirational water loss increases substantially. This increase has to be matched by an increase in water uptake through the root system. The aim of this study was to assess the contributions of changes in intrinsic root hydraulic conductivity (Lp, water uptake per unit root surface area, driving force and time), driving force and root surface area to developmental increases in root water uptake. Methods Hydroponically grown barley plants were analysed during four windows of their vegetative stage of development, when they were 9–13, 14–18, 19–23 and 24–28 d old. Hydraulic conductivity was determined for individual roots (Lp) and for entire root systems (Lpr). Osmotic Lp of individual seminal and adventitious roots and osmotic Lpr of the root system were determined in exudation experiments. Hydrostatic Lp of individual roots was determined by root pressure probe analyses, and hydrostatic Lpr of the root system was derived from analyses of transpiring plants. Key Results Although osmotic and hydrostatic Lp and Lpr values increased initially during development and were correlated positively with plant transpiration rate, their overall developmental increases (about 2-fold) were small compared with increases in transpirational water loss and root surface area (about 10- to 40-fold). The water potential gradient driving water uptake in transpiring plants more than doubled during development, and potentially contributed to the increases in plant water flow. Osmotic Lpr of entire root systems and hydrostatic Lpr of transpiring plants were similar, suggesting that the main radial transport path in roots was the cell-to-cell path at all developmental stages. Conclusions Increase in the surface area of root system, and not changes in intrinsic root hydraulic properties, is the main means through which barley plants grown hydroponically sustain an increase in transpirational water loss during their vegetative

  10. Differential RNA Expression of Bmy1 During Late Seed Development in Wild and Cultivated Barley and the Association With ß-Amylase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four genotypes carrying different ß-amylase 1 (Bmy1) intron III alleles (Bmy1.a, Bmy1.b, Bmy1.c, and Bmy1.d) were analyzed for differences in Bmy1 DNA sequence, Bmy1 RNA expression, ß-amylase activity and protein, and total protein during late seed development. Wild barleys Ashqelon (Bmy1.c) and PI...

  11. Development of PCR-Based DNA markers flanking three low phytic acid mutant loci in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytic acid (PA) is the most abundant form of phosphorus (P) in cereal grains. PA chelates mineral cations to form an indigestible salt, and is thus regarded as an antinutritional agent and a contributor to water pollution. Grain with low phytic acid (lpa) genotypes could aid in mitigating this prob...

  12. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid, Rhopalosiphum padi L., is a serious pest of barley, Hordeum vulgare L., world-wide. It is the most efficient vector of barley yellow dwarf virus, the most important viral disease of small grains in the world. Not all bird cherry-oat aphids acquire the virus while feeding on ...

  13. Hardness locus sequence variation and endosperm texture in spring barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain texture is an important quality parameter in both wheat and barley. Cultivars with good malting quality tend to be softer than their poor malting counterparts. Harder textured barley seeds with lower dry matter digestibility may potentially be better in feed quality for beef cattle. Most gr...

  14. Validation of the β-amy1 transcription profiling assay and selection of reference genes suited for a RT-qPCR assay in developing barley caryopsis.

    PubMed

    Ovesná, Jaroslava; Kučera, Ladislav; Vaculová, Kateřina; Štrymplová, Kamila; Svobodová, Ilona; Milella, Luigi

    2012-01-01

    Reverse transcription coupled with real-time quantitative PCR (RT-qPCR) is a frequently used method for gene expression profiling. Reference genes (RGs) are commonly employed to normalize gene expression data. A limited information exist on the gene expression and profiling in developing barley caryopsis. Expression stability was assessed by measuring the cycle threshold (Ct) range and applying both the GeNorm (pair-wise comparison of geometric means) and Normfinder (model-based approach) principles for the calculation. Here, we have identified a set of four RGs suitable for studying gene expression in the developing barley caryopsis. These encode the proteins GAPDH, HSP90, HSP70 and ubiquitin. We found a correlation between the frequency of occurrence of a transcript in silico and its suitability as an RG. This set of RGs was tested by comparing the normalized level of β-amylase (β-amy1) transcript with directly measured quantities of the BMY1 gene product in the developing barley caryopsis. This panel of genes could be used for other gene expression studies, as well as to optimize β-amy1 analysis for study of the impact of β-amy1 expression upon barley end-use quality. PMID:22860024

  15. Development of NIR calibration for determining quality of barley as a fuel ethanol source and calibration transfer between instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently there has been growing interest in using barley as a feedstock for fuel ethanol in the U.S. This study focused on potential of near infrared (NIR) spectroscopy for quality evaluation of barley as a rapid and non-destructive analytical method and calibration transfer between two instrument...

  16. Structural and Biochemical Analysis of the Hordeum vulgare L. HvGR-RBP1 Protein, a Glycine-Rich RNA-Binding Protein Involved in the Regulation of Barley Plant Development and Stress Response

    PubMed Central

    2015-01-01

    The timing of whole-plant senescence influences important agricultural traits such as yield and grain protein content. Post-transcriptional regulation by plant RNA-binding proteins is essential for proper control of gene expression, development, and stress responses. Here, we report the three-dimensional solution NMR structure and nucleic acid-binding properties of the barley glycine-rich RNA-binding protein HvGR-RBP1, whose transcript has been identified as being >45-fold up-regulated in early—as compared to late—senescing near-isogenic barley germplasm. NMR analysis reveals that HvGR-RBP1 is a multidomain protein comprising a well-folded N-terminal RNA Recognition Motif (RRM) and a structurally disordered C-terminal glycine-rich domain. Chemical shift differences observed in 2D 1H–15N correlation (HSQC) NMR spectra of full-length HvGR-RBP1 and N-HvGR-RBP1 (RRM domain only) suggest that the two domains can interact both in-trans and intramolecularly, similar to what is observed in the tobacco NtGR-RBP1 protein. Further, we show that the RRM domain of HvGR-RBP1 binds single-stranded DNA nucleotide fragments containing the consensus nucleotide sequence 5′-TTCTGX-3′ with low micromolar affinity in vitro. We also demonstrate that the C-terminal glycine-rich (HvGR) domain of Hv-GR-RBP1 can interact nonspecifically with ssRNA in vitro. Structural similarities with other plant glycine-rich RNA-binding proteins suggest that HvGR-RBP1 may be multifunctional. Based on gene expression analysis following cold stress in barley and E. coli growth studies following cold shock treatment, we conclude that HvGR-RBP1 functions in a manner similar to cold-shock proteins and harbors RNA chaperone activity. HvGR-RBP1 is therefore not only involved in the regulation of barley development including senescence, but also functions in plant responses to environmental stress. PMID:25495582

  17. Microwave Dielectric Properties Models for Grain and Seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on microwave dielectric properties of wheat, corn, barley, oats, grain sorghum, soybeans, canola, shelled peanuts and pod peanuts measured over ranges of frequency and moisture content, models are developed for predicting the dielectric constant and loss factor of these commodities. Nearly lin...

  18. Models for the Microwave Dielectric Properties of Grain and Seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Based on microwave dielectric properties of wheat, corn, barley, oats, grain sorghum, soybeans, canola, shelled peanuts and pod peanuts measured over ranges of frequency and moisture content, models are developed for predicting the dielectric constant and loss factor of these commodities. Nearly li...

  19. Luteibacter rhizovicinus MIMR1 promotes root development in barley (Hordeum vulgare L.) under laboratory conditions.

    PubMed

    Guglielmetti, Simone; Basilico, Roberto; Taverniti, Valentina; Arioli, Stefania; Piagnani, Claudia; Bernacchi, Andrea

    2013-11-01

    In order to preserve environmental quality, alternative strategies to chemical-intensive agriculture are strongly needed. In this study, we characterized in vitro the potential plant growth promoting (PGP) properties of a gamma-proteobacterium, named MIMR1, originally isolated from apple shoots in micropropagation. The analysis of the 16S rRNA gene sequence allowed the taxonomic identification of MIMR1 as Luteibacter rhizovicinus. The PGP properties of MIMR1 were compared to Pseudomonas chlororaphis subsp. aurantiaca DSM 19603(T), which was selected as a reference PGP bacterium. By means of in vitro experiments, we showed that L. rhizovicinus MIMR1 and P. chlororaphis DSM 19603(T) have the ability to produce molecules able to chelate ferric ions and solubilize monocalcium phosphate. On the contrary, both strains were apparently unable to solubilize tricalcium phosphate. Furthermore, the ability to produce 3-indol acetic acid by MIMR1 was approximately three times higher than that of DSM 19603(T). By using fluorescent recombinants of strains MIMR1 and DSM 19603(T), we also demonstrated that both bacteria are able to abundantly proliferate and colonize the barley rhizosphere, preferentially localizing on root tips and in the rhizoplane. Finally, we observed a negative effect of DSM 19603(T) on barley seed germination and plant growth, whereas MIMR1, compared to the control, determined a significant increase of the weight of aerial part (+22 %), and the weight and length of roots (+53 and +32 %, respectively). The results obtained in this work make L. rhizovicinus MIMR1 a good candidate for possible use in the formulation of bio-fertilizers. PMID:23653264

  20. Barley Genomics: An Overview

    PubMed Central

    Sreenivasulu, Nese; Graner, Andreas; Wobus, Ulrich

    2008-01-01

    Barley (Hordeum vulgare), first domesticated in the Near East, is a well-studied crop in terms of genetics, genomics, and breeding and qualifies as a model plant for Triticeae research. Recent advances made in barley genomics mainly include the following: (i) rapid accumulation of EST sequence data, (ii) growing number of studies on transcriptome, proteome, and metabolome, (iii) new modeling techniques, (iv) availability of genome-wide knockout collections as well as efficient transformation techniques, and (v) the recently started genome sequencing effort. These developments pave the way for a comprehensive functional analysis and understanding of gene expression networks linked to agronomically important traits. Here, we selectively review important technological developments in barley genomics and related fields and discuss the relevance for understanding genotype-phenotype relationships by using approaches such as genetical genomics and association studies. High-throughput genotyping platforms that have recently become available will allow the construction of high-density genetic maps that will further promote marker-assisted selection as well as physical map construction. Systems biology approaches will further enhance our knowledge and largely increase our abilities to design refined breeding strategies on the basis of detailed molecular physiological knowledge. PMID:18382615

  1. Brassinosteroid enhances resistance to fusarium diseases of barley.

    PubMed

    Ali, Shahin S; Kumar, G B Sunil; Khan, Mojibur; Doohan, Fiona M

    2013-12-01

    Fusarium pathogens are among the most damaging pathogens of cereals. These pathogens have the ability to attack the roots, seedlings, and flowering heads of barley and wheat plants with disease, resulting in yield loss and head blight disease and also resulting in the contamination of grain with mycotoxins harmful to human and animal health. There is increasing evidence that brassinosteroid (BR) hormones play an important role in plant defense against both biotic and abiotic stress agents and this study set out to determine if and how BR might affect Fusarium diseases of barley. Application of the epibrassinolide (epiBL) to heads of 'Lux' barley reduced the severity of Fusarium head blight (FHB) caused by Fusarium culmorum by 86% and reduced the FHB-associated loss in grain weight by 33%. Growth of plants in soil amended with epiBL resulted in a 28 and 35% reduction in Fusarium seedling blight (FSB) symptoms on the Lux and 'Akashinriki' barley, respectively. Microarray analysis was used to determine whether growth in epiBL-amended soil changed the transcriptional profile in stem base tissue during the early stages of FSB development. At 24 and 48 h post F. culmorum inoculation, there were 146 epiBL-responsive transcripts, the majority being from the 48-h time point (n = 118). Real-time reverse-transcription polymerase chain reaction analysis validated the results for eight transcripts, including five defense genes. The results of gene expression studies show that chromatin remodeling, hormonal signaling, photosynthesis, and pathogenesis-related genes are activated in plants as a result of growth in epiBL. PMID:23777406

  2. Intelligent classification methods of grain kernels using computer vision analysis

    NASA Astrophysics Data System (ADS)

    Lee, Choon Young; Yan, Lei; Wang, Tianfeng; Lee, Sang Ryong; Park, Cheol Woo

    2011-06-01

    In this paper, a digital image analysis method was developed to classify seven kinds of individual grain kernels (common rice, glutinous rice, rough rice, brown rice, buckwheat, common barley and glutinous barley) widely planted in Korea. A total of 2800 color images of individual grain kernels were acquired as a data set. Seven color and ten morphological features were extracted and processed by linear discriminant analysis to improve the efficiency of the identification process. The output features from linear discriminant analysis were used as input to the four-layer back-propagation network to classify different grain kernel varieties. The data set was divided into three groups: 70% for training, 20% for validation, and 10% for testing the network. The classification experimental results show that the proposed method is able to classify the grain kernel varieties efficiently.

  3. Rapid assignment of malting barley varieties by matrix-assisted laser desorption-ionisation - Time-of-flight mass spectrometry.

    PubMed

    Šedo, Ondrej; Kořán, Michal; Jakešová, Michaela; Mikulíková, Renata; Boháč, Michal; Zdráhal, Zbyněk

    2016-09-01

    A method for discriminating malting barley varieties based on direct matrix-assisted laser desorption-ionisation - time-of-flight mass spectrometry (MALDI-TOF MS) fingerprinting of proteins was developed. Signals corresponding to hordeins were obtained by simple mixing of powdered barley grain with a MALDI matrix solution containing 12.5mgmL(-1) of ferulic acid in an acetonitrile:water:formic acid 50:33:17 v/v/v mixture. Compared to previous attempts at MALDI-TOF mass spectrometric analysis of barley proteins, the extraction and fractionation steps were practically omitted, resulting in a significant reduction in analytical time and costs. The discriminatory power was examined on twenty malting barley varieties and the practicability of the method was tested on sixty barley samples acquired from Pilsner Urquell Brewery. The method is proposed as a rapid tool for variety assignment and purity determination of malting barley that may replace gel electrophoresis currently used for this purpose. PMID:27041307

  4. Gas-grain simulation experiment module conceptual design and gas-grain simulation facility breadboard development

    NASA Technical Reports Server (NTRS)

    Zamel, James M.; Petach, Michael; Gat, Nahum; Kropp, Jack; Luong, Christina; Wolff, Michael

    1993-01-01

    This report delineates the Option portion of the Phase A Gas-Grain Simulation Facility study. The conceptual design of a Gas-Grain Simulation Experiment Module (GGSEM) for Space Shuttle Middeck is discussed. In addition, a laboratory breadboard was developed during this study to develop a key function for the GGSEM and the GGSF, specifically, a solid particle cloud generating device. The breadboard design and test results are discussed and recommendations for further studies are included. The GGSEM is intended to fly on board a low earth orbit (LEO), manned platform. It will be used to perform a subset of the experiments planned for the GGSF for Space Station Freedom, as it can partially accommodate a number of the science experiments. The outcome of the experiments performed will provide an increased understanding of the operational requirements for the GGSF. The GGSEM will also act as a platform to accomplish technology development and proof-of-principle experiments for GGSF hardware, and to verify concepts and designs of hardware for GGSF. The GGSEM will allow assembled subsystems to be tested to verify facility level operation. The technology development that can be accommodated by the GGSEM includes: GGSF sample generation techniques, GGSF on-line diagnostics techniques, sample collection techniques, performance of various types of sensors for environmental monitoring, and some off-line diagnostics. Advantages and disadvantages of several LEO platforms available for GGSEM applications are identified and discussed. Several of the anticipated GGSF experiments require the deagglomeration and dispensing of dry solid particles into an experiment chamber. During the GGSF Phase A study, various techniques and devices available for the solid particle aerosol generator were reviewed. As a result of this review, solid particle deagglomeration and dispensing were identified as key undeveloped technologies in the GGSF design. A laboratory breadboard version of a solid

  5. Molecular basis of protein structure in combined feeds (hulless barley with bioethanol coproduct of wheat dried distillers grains with solubles) in relation to protein rumen degradation kinetics and intestinal availability in dairy cattle.

    PubMed

    Zhang, X; Yu, P

    2012-06-01

    The objectives of this study were to reveal protein molecular structure in relation to rumen degradation kinetics and intestinal availability in combined feeds of hulless barley with bioethanol coproduct [pure wheat dried distillers grains with solubles (DDGS)] at 5 different ratios (100:0, 75:25, 50:50, 25:75, and 0:100) in dairy cattle. The parameters assessed included 1) protein chemical profiles, 2) protein subfractions partitioned by the Cornell Net Carbohydrate and Protein System, 3) in situ protein degradation kinetics, 4) truly absorbed protein supply in the small intestine (DVE), metabolizable protein characteristics and degraded protein balance (OEB), 5) protein molecular structure spectral profiles, and 6) correlation between protein molecular structure and protein nutrient profiles and metabolic characteristics. We found that 1) with increasing inclusion of wheat DDGS in feed combinations, protein chemical compositions of crude protein (CP), neutral detergent-insoluble CP, acid detergent-insoluble CP, and nonprotein N were increased, whereas soluble CP was decreased linearly; CP subfractions A, B₃, and C were increased linearly, but CP subfractions B₁ and B₂ were decreased; truly digestible CP increased but total digestible nutrients at 1× maintenance decreased linearly; protein degradation rate was decreased without affecting potentially soluble, potentially degradable, and potentially undegradable fractions, and both rumen-degradable protein and rumen-undegradable protein were increased; by using the DVE/OEB system, the DVE and OEB values were increased from 98 to 226 g/kg of dry matter and -1 to 105 g/kg of dry matter, respectively; 2) by using the molecular spectroscopy technique, the spectral differences in protein molecular structure were detected among the feed combinations; in the original combined feeds, amide I and II peak area and ratio of amide I to II were increased linearly; although no difference existed in α-helix and

  6. Psychrotolerant Paenibacillus tundrae isolates from barley grains produce new cereulide-like depsipeptides (paenilide and homopaenilide) that are highly toxic to mammalian cells.

    PubMed

    Rasimus, Stiina; Mikkola, Raimo; Andersson, Maria A; Teplova, Vera V; Venediktova, Natalia; Ek-Kommonen, Christine; Salkinoja-Salonen, Mirja

    2012-05-01

    Paenilide is a novel, heat-stable peptide toxin from Paenibacillus tundrae, which colonizes barley. P. tundrae produced 20 to 50 ng of the toxin mg(-1) of cells (wet weight) throughout a range of growth temperatures from +5°C to +28°C. Paenilide consisted of two substances of 1,152 Da and 1,166 Da, with masses and tandem mass spectra identical to those of cereulide and a cereulide homolog, respectively, produced by Bacillus cereus NS-58. The two components of paenilide were separated from those of cereulide by high-performance liquid chromatography (HPLC), showing a structural difference suggesting the replacement of O-Leu (cereulide) by O-Ile (paenilide). The exposure of porcine spermatozoa and kidney tubular epithelial (PK-15) cells to subnanomolar concentrations of paenilide resulted in inhibited motility, the depolarization of mitochondria, excessive glucose consumption, and metabolic acidosis. Paenilide was similar to cereulide in eight different toxicity endpoints with porcine and murine cells. In isolated rat liver mitochondria, nanomolar concentrations of paenilide collapsed respiratory control, zeroed the mitochondrial membrane potential, and induced swelling. The toxic effect of paenilide depended on its high lipophilicity and activity as a high-affinity potassium ion carrier. Similar to cereulide, paenilide formed lipocations, i.e., lipophilic cationic compounds, with K(+) ions already at 4 mM [K(+)], rendering lipid membranes electroconductive. Paenilide-producing P. tundrae was negative in a PCR assay with primers specific for the cesB gene, indicating that paenilide was not a product of plasmid pCER270, encoding the biosynthesis of cereulide in B. cereus. Paenilide represents the first potassium ionophoric compound described for Paenibacillus. The findings in this paper indicate that paenilide from P. tundrae is a potential food-poisoning agent. PMID:22407690

  7. Psychrotolerant Paenibacillus tundrae Isolates from Barley Grains Produce New Cereulide-Like Depsipeptides (Paenilide and Homopaenilide) That Are Highly Toxic to Mammalian Cells

    PubMed Central

    Mikkola, Raimo; Andersson, Maria A.; Teplova, Vera V.; Venediktova, Natalia; Ek-Kommonen, Christine; Salkinoja-Salonen, Mirja

    2012-01-01

    Paenilide is a novel, heat-stable peptide toxin from Paenibacillus tundrae, which colonizes barley. P. tundrae produced 20 to 50 ng of the toxin mg−1 of cells (wet weight) throughout a range of growth temperatures from +5°C to +28°C. Paenilide consisted of two substances of 1,152 Da and 1,166 Da, with masses and tandem mass spectra identical to those of cereulide and a cereulide homolog, respectively, produced by Bacillus cereus NS-58. The two components of paenilide were separated from those of cereulide by high-performance liquid chromatography (HPLC), showing a structural difference suggesting the replacement of O-Leu (cereulide) by O-Ile (paenilide). The exposure of porcine spermatozoa and kidney tubular epithelial (PK-15) cells to subnanomolar concentrations of paenilide resulted in inhibited motility, the depolarization of mitochondria, excessive glucose consumption, and metabolic acidosis. Paenilide was similar to cereulide in eight different toxicity endpoints with porcine and murine cells. In isolated rat liver mitochondria, nanomolar concentrations of paenilide collapsed respiratory control, zeroed the mitochondrial membrane potential, and induced swelling. The toxic effect of paenilide depended on its high lipophilicity and activity as a high-affinity potassium ion carrier. Similar to cereulide, paenilide formed lipocations, i.e., lipophilic cationic compounds, with K+ ions already at 4 mM [K+], rendering lipid membranes electroconductive. Paenilide-producing P. tundrae was negative in a PCR assay with primers specific for the cesB gene, indicating that paenilide was not a product of plasmid pCER270, encoding the biosynthesis of cereulide in B. cereus. Paenilide represents the first potassium ionophoric compound described for Paenibacillus. The findings in this paper indicate that paenilide from P. tundrae is a potential food-poisoning agent. PMID:22407690

  8. Greenhouse screening for bird cherry-oat aphid resistance to barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains through its role as a vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by feeding damage to winter and spring small grains. Barley accessions have been reported to have BCOA ...

  9. Greenhouse screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains through its role as a vector of the PAV strain of barley yellow dwarf virus (BYDV) and by feeding damage to winter and spring small grains. Barley accessions have been reported to have BCOA ...

  10. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.).

    PubMed

    Hua, Wei; Zhang, Xiao-Qi; Zhu, Jinghuan; Shang, Yi; Wang, Junmei; Jia, Qiaojun; Zhang, Qisen; Yang, Jianming; Li, Chengdao

    2016-01-01

    Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence. PMID:27028408

  11. Identification and Fine Mapping of a White Husk Gene in Barley (Hordeum vulgare L.)

    PubMed Central

    Hua, Wei; Zhang, Xiao-Qi; Zhu, Jinghuan; Shang, Yi; Wang, Junmei; Jia, Qiaojun; Zhang, Qisen; Yang, Jianming; Li, Chengdao

    2016-01-01

    Barley is the only crop in the Poaceae family with adhering husks at maturity. The color of husk at barely development stage could influence the agronomic traits and malting qualities of grains. A barley mutant with a white husk was discovered from the malting barley cultivar Supi 3 and designated wh (white husk). Morphological changes and the genetics of white husk barley were investigated. Husks of the mutant were white at the heading and flowering stages but yellowed at maturity. The diastatic power and α-amino nitrogen contents also significantly increased in wh mutant. Transmission electron microscopy examination showed abnormal chloroplast development in the mutant. Genetic analysis of F2 and BC1F1 populations developed from a cross of wh and Yangnongpi 5 (green husk) showed that the white husk was controlled by a single recessive gene (wh). The wh gene was initially mapped between 49.64 and 51.77 cM on chromosome 3H, which is syntenic with rice chromosome 1 where a white husk gene wlp1 has been isolated. The barley orthologous gene of wlp1 was sequenced from both parents and a 688 bp deletion identified in the wh mutant. We further fine-mapped the wh gene between SSR markers Bmac0067 and Bmag0508a with distances of 0.36 cM and 0.27 cM in an F2 population with 1115 individuals of white husk. However, the wlp1 orthologous gene was mapped outside the interval. New candidate genes were identified based on the barley genome sequence. PMID:27028408

  12. Development of a reliable inoculation technique to assess resistance in pearl millet to Fusarium grain mold

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pearl millet is an alternative grain for the drought-prone southeast region of the United States. High humidity in this region can frequently promote the development of diverse fungi associated with grain mold complex. This study was conducted to develop a reliable method for grain mold inoculations...

  13. Films based on oxidized starch and cellulose from barley.

    PubMed

    El Halal, Shanise Lisie Mello; Colussi, Rosana; Deon, Vinícius Gonçalves; Pinto, Vânia Zanella; Villanova, Franciene Almeida; Carreño, Neftali Lenin Villarreal; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2015-11-20

    Starch and cellulose fibers were isolated from grains and the husk from barley, respectively. Biodegradable films of native starch or oxidized starches and glycerol with different concentrations of cellulose fibers (0%, 10% and 20%) were prepared. The films were characterized by morphological, mechanical, barrier, and thermal properties. Cellulose fibers isolated from the barley husk were obtained with 75% purity and high crystallinity. The morphology of the films of the oxidized starches, regardless of the fiber addition, was more homogeneous as compared to the film of the native starch. The addition of cellulose fibers in the films increased the tensile strength and decreased elongation. The water vapor permeability of the film of oxidized starch with 20% of cellulose fibers was lower than the without fibers. However the films with cellulose fibers had the highest decomposition with the initial temperature and thermal stability. The oxidized starch and cellulose fibers from barley have a good potential for use in packaging. The addition of cellulose fibers in starch films can contribute to the development of films more resistant that can be applied in food systems to maintain its integrity. PMID:26344323

  14. Development of a multi-species biotic ligand model predicting the toxicity of trivalent chromium to barley root elongation in solution culture.

    PubMed

    Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing

    2014-01-01

    Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca(2+) and Mg(2+) but not with K(+) and Na(+). The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H(+) competition with Cr(3+) bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH(2+) in solution culture. Stability constants were obtained for the binding of Cr(3+), CrOH(2+), Ca(2+), Mg(2+) and H(+) with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics. PMID:25119269

  15. Development of a Multi-Species Biotic Ligand Model Predicting the Toxicity of Trivalent Chromium to Barley Root Elongation in Solution Culture

    PubMed Central

    Song, Ningning; Zhong, Xu; Li, Bo; Li, Jumei; Wei, Dongpu; Ma, Yibing

    2014-01-01

    Little knowledge is available about the influence of cation competition and metal speciation on trivalent chromium (Cr(III)) toxicity. In the present study, the effects of pH and selected cations on the toxicity of trivalent chromium (Cr(III)) to barley (Hordeum vulgare) root elongation were investigated to develop an appropriate biotic ligand model (BLM). Results showed that the toxicity of Cr(III) decreased with increasing activity of Ca2+ and Mg2+ but not with K+ and Na+. The effect of pH on Cr(III) toxicity to barley root elongation could be explained by H+ competition with Cr3+ bound to a biotic ligand (BL) as well as by the concomitant toxicity of CrOH2+ in solution culture. Stability constants were obtained for the binding of Cr3+, CrOH2+, Ca2+, Mg2+ and H+ with binding ligand: log KCrBL 7.34, log KCrOHBL 5.35, log KCaBL 2.64, log KMgBL 2.98, and log KHBL 4.74. On the basis of those estimated parameters, a BLM was successfully developed to predict Cr(III) toxicity to barley root elongation as a function of solution characteristics. PMID:25119269

  16. AgRISTARS: Foreign commodity production forecasting. The 1980 US/Canada wheat and barley exploratory experiment

    NASA Technical Reports Server (NTRS)

    Payne, R. W. (Principal Investigator)

    1981-01-01

    The crop identification procedures used performed were for spring small grains and are conducive to automation. The performance of the machine processing techniques shows a significant improvement over previously evaluated technology; however, the crop calendars require additional development and refinements prior to integration into automated area estimation technology. The integrated technology is capable of producing accurate and consistent spring small grains proportion estimates. Barley proportion estimation technology was not satisfactorily evaluated because LANDSAT sample segment data was not available for high density barley of primary importance in foreign regions and the low density segments examined were not judged to give indicative or unequvocal results. Generally, the spring small grains technology is ready for evaluation in a pilot experiment focusing on sensitivity analysis to a variety of agricultural and meteorological conditions representative of the global environment.

  17. Allelic diversity of a beer haze active protein gene in cultivated and Tibetan wild barley and development of allelic specific markers.

    PubMed

    Ye, Lingzhen; Dai, Fei; Qiu, Long; Sun, Dongfa; Zhang, Guoping

    2011-07-13

    The formation of haze is a serious quality problem in beer production. It has been shown that the use of silica elute (SE)-ve malt (absence of molecular weight (MW) ∼14000 Da) for brewing can improve haze stability in the resultant beer, and the protein was identified as a barley trypsin inhibitor of the chloroform/methanol type (BTI-CMe). The objectives of this study were to determine (1) the allelic diversity of the gene controlling BTI-CMe in cultivated and Tibetan wild barley and (2) allele-specific (AS) markers for screening SE protein type. A survey of 172 Tibetan annual wild barley accessions and 71 cultivated barley genotypes was conducted, and 104 wild accessions and 35 cultivated genotypes were identified as SE+ve and 68 wild accessions and 36 cultivated genotypes as SE-ve. The allelic diversity of the gene controlling BTI-CMe was investigated by cloning, alignment, and association analysis. It was found that there were significant differences between the SE+ve and SE-ve types in single-nucleotide polymorphisms at 234 (SNP(234)), SNP(313), and SNP(385.) Furthermore, two sets of AS markers were developed to screen SE protein type based on SNP(313). AS-PCR had results very similar to those obtained by immunoblot method. Mapping analysis showed that the gene controlling the MW∼14 kDa band was located on the short arm of chromosome 3H, at the position of marker BPB-0527 (33.302 cM) in the Franklin/Yerong DH population. PMID:21608526

  18. Barley stripe rust resistance QTL: Development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantitative trait loci (QTL) linked with seedling and field resistance to barley stripe rust were mapped in 156 recombinant inbred lines (RILs) derived from a Lenetah by Grannelose Zweizeilige (GZ) cross. A major QTL for seedling resistance on chromosome 4H (LOD = 15.94 at 97.19 cM) was identified,...

  19. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling.

    PubMed

    Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans

    2015-03-01

    During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. PMID:25617470

  20. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling

    PubMed Central

    Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans

    2015-01-01

    During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. PMID:25617470

  1. The dynamics of protein body formation in developing wheat grain.

    PubMed

    Moore, Katie L; Tosi, Paola; Palmer, Richard; Hawkesford, Malcolm J; Grovenor, Chris R M; Shewry, Peter R

    2016-09-01

    Wheat is a major source of protein in the diets of humans and livestock but we know little about the mechanisms that determine the patterns of protein synthesis in the developing endosperm. We have used a combination of enrichment with (15) N glutamine and NanoSIMS imaging to establish that the substrate required for protein synthesis is transported radially from its point of entrance in the endosperm cavity across the starchy endosperm tissues, before becoming concentrated in the cells immediately below the aleurone layer. This transport occurs continuously during grain development but may be slower in the later stages. Although older starchy endosperm cells tend to contain larger protein deposits formed by the fusion of small protein bodies, small highly enriched protein bodies may also be present in the same cells. This shows a continuous process of protein body initiation, in both older and younger starchy endosperm cells and in all regions of the tissue. Immunolabeling with specific antibodies shows that the patterns of enrichment are not related to the contents of gluten proteins in the protein bodies. In addition to providing new information on the dynamics of protein deposition, the study demonstrates the wider utility of NanoSIMS and isotope labelling for studying complex developmental processes in plant tissues. PMID:26898533

  2. Screening for Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  3. Screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of Barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  4. Bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  5. Screening for bird cherry-oat aphid resistance in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), has been reported to cause yield loss in small grains both through its role as an efficient vector of the PAV strain of barley yellow dwarf virus (BYDV) and by actual feeding damage to winter and spring small grains by aviruliferous BCOAs. Barl...

  6. High-Resolution Genotyping of Wild Barley Introgression Lines and Fine-Mapping of the Threshability Locus thresh-1 Using the Illumina GoldenGate Assay

    PubMed Central

    Schmalenbach, Inga; March, Timothy J.; Bringezu, Thomas; Waugh, Robbie; Pillen, Klaus

    2011-01-01

    Genetically well-characterized mapping populations are a key tool for rapid and precise localization of quantitative trait loci (QTL) and subsequent identification of the underlying genes. In this study, a set of 73 introgression lines (S42ILs) originating from a cross between the spring barley cultivar Scarlett (Hordeum vulgare ssp. vulgare) and the wild barley accession ISR42-8 (H. v. ssp. spontaneum) was subjected to high-resolution genotyping with an Illumina 1536-SNP array. The array enabled a precise localization of the wild barley introgressions in the elite barley background. Based on 636 informative SNPs, the S42IL set represents 87.3% of the wild barley genome, where each line contains on average 3.3% of the donor genome. Furthermore, segregating high-resolution mapping populations (S42IL-HRs) were developed for 70 S42ILs in order to facilitate QTL fine-mapping and cloning. As a case study, we used the developed genetic resources to rapidly identify and fine-map the novel locus thresh-1 on chromosome 1H that controls grain threshability. Here, the recessive wild barley allele confers a difficult to thresh phenotype, suggesting that thresh-1 played an important role during barley domestication. Using a S42IL-HR population, thresh-1 was fine-mapped within a 4.3cM interval that was predicted to contain candidate genes involved in regulation of plant cell wall composition. The set of wild barley introgression lines and derived high-resolution populations are ideal tools to speed up the process of mapping and further dissecting QTL, which ultimately clears the way for isolating the genes behind QTL effects. PMID:22384330

  7. Isolation of an in vitro and ex vivo antiradical melanoidin from roasted barley.

    PubMed

    Papetti, Adele; Daglia, Maria; Aceti, Camilla; Quaglia, Milena; Gregotti, Cesarina; Gazzani, Gabriella

    2006-02-22

    The antiradical properties of water-soluble components of both natural and roasted barley were determined in vitro, by means of DPPH* assay and the linoleic acid-beta-carotene system, and ex vivo, in rat liver hepatocyte microsomes against lipid peroxidation induced by CCl4. The results show the occurrence in natural barley of weak antioxidant components. These are able to react against low reactive peroxyl radicals, but offer little protection against stable DPPH radicals deriving from peroxidation in microsomal lipids. Conversely, roasted barley yielded strong antioxidant components that are able to efficiently scavenge free radicals in any system used. The results show that the barley grain roasting process induces the formation of soluble Maillard reaction products with powerful antiradical activity. From roasted barley solution (barley coffee) was isolated a brown high molecular mass melanoidinic component, resistant to acidic hydrolysis, that is responsible for most of the barley coffee antioxidant activity in the biosystem. PMID:16478238

  8. Process development for producing fine-grain casting in space

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Malik, R. K.

    1975-01-01

    Assessment of grain growth kinetics at temperatures near the melting point and investigation into the use of potential nucleating agents in combination with the naturally occurring BeO led to the definition of critical low-g experiments which would help to determine whether one or both of these possibilities are valid and whether space processing would be able to yield fine grain ingot beryllium.

  9. Does Whole Grain Consumption Alter Gut Microbiota and Satiety?

    PubMed Central

    Cooper, Danielle N.; Martin, Roy J.; Keim, Nancy L.

    2015-01-01

    This review summarizes recent studies examining whole grain consumption and its effect on gut microbiota and satiety in healthy humans. Studies comparing whole grains to their refined grain counterparts were considered, as were studies comparing different grain types. Possible mechanisms linking microbial metabolism and satiety are described. Clinical trials show that whole grain wheat, maize, and barley alter the human gut microbiota, but these findings are based on a few studies that do not include satiety components, so no functional claims between microbiota and satiety can be made. Ten satiety trials were evaluated and provide evidence that whole oats, barley, and rye can increase satiety, whereas the evidence for whole wheat and maize is not compelling. There are many gaps in the literature; no one clinical trial has examined the effects of whole grains on satiety and gut microbiota together. Once understanding the impact of whole grains on satiety and microbiota is more developed, then particular grains might be used for better appetite control. With this information at hand, healthcare professionals could make individual dietary recommendations that promote satiety and contribute to weight control. PMID:27417768

  10. Development and application of coarse-grained models for lipids

    NASA Astrophysics Data System (ADS)

    Cui, Qiang

    2013-03-01

    I'll discuss a number of topics that represent our efforts in developing reliable molecular models for describing chemical and physical processes involving biomembranes. This is an exciting yet challenging research area because of the multiple length and time scales that are present in the relevant problems. Accordingly, we attempt to (1) understand the value and limitation of popular coarse-grained (CG) models for lipid membranes with either a particle or continuum representation; (2) develop new CG models that are appropriate for the particular problem of interest. As specific examples, I'll discuss (1) a comparison of atomistic, MARTINI (a particle based CG model) and continuum descriptions of a membrane fusion pore; (2) the development of a modified MARTINI model (BMW-MARTINI) that features a reliable description of membrane/water interfacial electrostatics and its application to cell-penetration peptides and membrane-bending proteins. Motivated specifically by the recent studies of Wong and co-workers, we compare the self-assembly behaviors of lipids with cationic peptides that include either Arg residues or a combination of Lys and hydrophobic residues; in particular, we attempt to reveal factors that stabilize the cubic ``double diamond'' Pn3m phase over the inverted hexagonal HII phase. For example, to explicitly test the importance of the bidentate hydrogen-bonding capability of Arg to the stabilization of negative Gaussian curvature, we also compare results using variants of the BMW-MARTINI model that treat the side chain of Arg with different levels of details. Collectively, the results suggest that both the bidentate feature of Arg and the overall electrostatic properties of cationic peptides are important to the self-assembly behavior of these peptides with lipids. The results are expected to have general implications to the mechanism of peptides and proteins that stimulate pore formation in biomembranes. Work in collaboration with Zhe Wu, Leili Zhang

  11. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta.

    PubMed

    Chapagain, Tejendra; Good, Allen

    2015-01-01

    Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management. The objective of this study was to determine wheat (Triticum spp. L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) yields and production gaps in Alberta. We used 10 years of data (2005-2014) to understand yield variability and input efficiency at a farmers' specified level of management, and the yield potential under optimal management to suggest appropriate pathways for closing yield gaps. Significant management gaps were observed between attainable and actual yields of rainfed wheat (24%), barley (25%), and canola (30%). In addition, genetic gaps (i.e., gaps due to genetic selection) in wheat, barley, and canola were 18, 12, and 5%, respectively. Genetic selection with optimal crop management could increase yields of wheat, barley, and canola significantly, with estimated yield gains of 3.42, 1.92, and 1.65 million tons, respectively, each year under rainfed conditions in Alberta. This paper identifies yield gaps and offers suggestions to improve efficiency in crop production. PMID:26635824

  12. The Discovery of Resistant Sources of Spring Barley, Hordeum vulgare ssp. spontaneum, and Unique Greenbug Biotypes.

    PubMed

    Armstrong, J Scott; Mornhinweg, Dolores W; Payton, Mark E; Puterka, Gary J

    2016-02-01

    The genetic sources for host-plant resistance to the greenbug (Schizaphis graminum Rondani) in barley (Hordeum vulgare ssp. spontaneum) are limited in that only two single dominant genes Rsg1 and Rsg2 are available for the complex of greenbug biotypes. We evaluated four new barley lines from the Wild Barley Diversity Collection (WBDC) that previously showed potential for greenbug resistance. Three of those entries, WBDC 53, WBDC 117, WBDC 336, exhibited very dominant sources of resistance to older known biotypes B, C, E, F, H, I, and TX1, which also add to the host-plant differentials used to separate these greenbug biotypes. We also re-evaluated the earlier known set of greenbug biotypes that have been in culture for several years against the known host-plant differentials, and included seven newer greenbug isolates collected from Wyoming to the full complement of small grain differentials. This resulted in the discovery of five new greenbug biotypes, WY10 MC, WY81, WY10 B, WY12 MC, and WY86. Wyoming isolates WY4 A and WY4 B were identical in their phenotypic profile, and should be combined as a single unique greenbug biotype. These barley trials resulted in finding new sources of host-plant resistance, although more research needs to be conducted on what type of resistance was found, and how it can be used. We also document that the Wheatland, Wyoming area serves as a very conducive environment for the development of new greenbug biotypes. PMID:26527793

  13. Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley.

    PubMed

    Huynh, Bao-Lam; Mather, Diane E; Schreiber, Andreas W; Toubia, John; Baumann, Ute; Shoaei, Zahra; Stein, Nils; Ariyadasa, Ruvini; Stangoulis, James C R; Edwards, James; Shirley, Neil; Langridge, Peter; Fleury, Delphine

    2012-10-01

    Fructans are soluble carbohydrates with health benefits and possible roles in plant adaptation. Fructan biosynthetic genes were isolated using comparative genomics and physical mapping followed by BAC sequencing in barley. Genes encoding sucrose:sucrose 1-fructosyltransferase (1-SST), fructan:fructan 1-fructosyltransferase (1-FFT) and sucrose:fructan 6-fructosyltransferase (6-SFT) were clustered together with multiple copies of vacuolar invertase genes and a transposable element on two barley BAC. Intron-exon structures of the genes were similar. Phylogenetic analysis of the fructosyltransferases and invertases in the Poaceae showed that the fructan biosynthetic genes may have evolved from vacuolar invertases. Quantitative real-time PCR was performed using leaf RNA extracted from three wheat cultivars grown under different conditions. The 1-SST, 1-FFT and 6-SFT genes had correlated expression patterns in our wheat experiment and in existing barley transcriptome database. Single nucleotide polymorphism (SNP) markers were developed and successfully mapped to a major QTL region affecting wheat grain fructan accumulation in two independent wheat populations. The alleles controlling high- and low- fructan in parental lines were also found to be associated in fructan production in a diverse set of 128 wheat lines. To the authors' knowledge, this is the first report on the mapping and sequencing of a fructan biosynthetic gene cluster and in particular, the isolation of a novel 1-FFT gene from barley. PMID:22864927

  14. Yield and Production Gaps in Rainfed Wheat, Barley, and Canola in Alberta

    PubMed Central

    Chapagain, Tejendra; Good, Allen

    2015-01-01

    Improving crop yields are essential to meet the increasing pressure of global food demands. The loss of high quality land, the slowing in annual yield increases of major cereals, increasing fertilizer use, and the effect of this on the environment all indicate that we need to develop new strategies to increase grain yields with less impact on the environment. One strategy that could help address this concern is by narrowing the yield gaps of major crops using improved genetics and management. The objective of this study was to determine wheat (Triticum spp. L.), barley (Hordeum vulgare L.), and canola (Brassica napus L.) yields and production gaps in Alberta. We used 10 years of data (2005–2014) to understand yield variability and input efficiency at a farmers’ specified level of management, and the yield potential under optimal management to suggest appropriate pathways for closing yield gaps. Significant management gaps were observed between attainable and actual yields of rainfed wheat (24%), barley (25%), and canola (30%). In addition, genetic gaps (i.e., gaps due to genetic selection) in wheat, barley, and canola were 18, 12, and 5%, respectively. Genetic selection with optimal crop management could increase yields of wheat, barley, and canola significantly, with estimated yield gains of 3.42, 1.92, and 1.65 million tons, respectively, each year under rainfed conditions in Alberta. This paper identifies yield gaps and offers suggestions to improve efficiency in crop production. PMID:26635824

  15. Association genetics in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Applied and basic barley geneticists have begun to use association genetics as a tool to identify and fine map polymorphisms directly in breeding populations or diversity panels. Barley presents an ideal system because its populations present different extents of LD, from long-range LD in elite cult...

  16. Creation of the first ultra-low gluten barley (Hordeum vulgare L.) for coeliac and gluten-intolerant populations.

    PubMed

    Tanner, Gregory J; Blundell, Malcolm J; Colgrave, Michelle L; Howitt, Crispin A

    2016-04-01

    Coeliac disease is a well-defined condition that is estimated to affect approximately 1% of the population worldwide. Noncoeliac gluten sensitivity is a condition that is less well defined, but is estimated to affect up to 10% of the population, and is often self-diagnosed. At present, the only remedy for both conditions is a lifelong gluten-free diet. A gluten-free diet is often expensive, high in fat and low in fibre, which in themselves can lead to adverse health outcomes. Thus, there is an opportunity to use novel plant breeding strategies to develop alternative gluten-free grains. In this work, we describe the breeding and characterization of a novel ultra-low gluten (ULG) barley variety in which the hordein (gluten) content was reduced to below 5 ppm. This was achieved using traditional breeding strategies to combine three recessive alleles, which act independently of each other to lower the hordein content in the parental varieties. The grain of the initial variety was shrunken compared to wild-type barleys. We implemented a breeding strategy to improve the grain size to near wild-type levels and demonstrated that the grains can be malted and brewed successfully. The ULG barley has the potential to provide novel healthy foods and beverages for those who require a gluten-free diet. PMID:26427614

  17. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence

    PubMed Central

    Christiansen, Michael W.; Matthewman, Colette; Podzimska-Sroka, Dagmara; O’Shea, Charlotte; Lindemose, Søren; Møllegaard, Niels Erik; Holme, Inger B.; Hebelstrup, Kim; Skriver, Karen; Gregersen, Per L.

    2016-01-01

    The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005 is associated with developmental senescence. It was significantly up-regulated following ABA treatment, supported by ABA-responsive elements in its promoter, but it was not up-regulated during dark-induced senescence. The C-termini of proteins closely related to HvNAC005 showed overall high divergence but also contained conserved short motifs. A serine- and leucine-containing central motif was essential for transcriptional activity of the HvNAC005 C-terminus in yeast. Over-expression of HvNAC005 in barley resulted in a strong phenotype with delayed development combined with precocious senescence. The over-expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein–DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence and so is an obvious target for the fine-tuning of gene expression in future attempts to improve nutrient remobilization related to the senescence process in barley. PMID:27436280

  18. Progress in grain pearl millet research and market developments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pearl millet (Pennisetum glaucum [L.] R. Br.) has historically been grown only for forage and hay in the southern United States. However, recent research and technology transfer activities are resulting in continued improvements in grain hybrids adapted to the southeast and the emergence of new mark...

  19. Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing

    NASA Astrophysics Data System (ADS)

    Karmakar, A.; Karani, A.; Patra, S.; Chakrabarti, Debalay

    2013-05-01

    Mixed ferrite grain structures, which have fine- and coarse-grain regions and showing "bimodal" grain size distributions, have been produced by rapid intercritical annealing of warm-rolled (or cold-rolled) samples. Microstructural changes have been analyzed using dilatometric studies, size prediction of transformed and recrystallized grains, and microtexture measurements. Fine austenite grains (<5 μm) developed during rapid annealing and transformed into fine-ferrite grains (2 to 4 μm) after cooling. Coarse-ferrite grains (28 to 42 μm) resulted from the recrystallization and growth of deformed ferrite. The effect of heating rate on microstructural morphologies during intercritical annealing has also been studied. A slow rate of heating (30 K/s) developed a uniform distribution of fine-ferrite grains and austenitic islands, while rapid heating (300 K/s) generated coarse blocks of austenite, elongated along the prior-pearlitic regions, in the ferrite matrix. As expected, bimodal ferrite grain structures or fine-scale dual-phase structures showed superior combination of tensile strength and ductility, compared to the ultrafine-grained steels.

  20. Pearling of hull-less barley: product composition and gel color of pearled barley flours as affected by the degree of pearling.

    PubMed

    Yeung, J; Vasanthan, T

    2001-01-01

    Barley grains from two hull-less varieties, Phoenix and Candle, were pearled to various degrees (10-80%). The composition (starch, protein, beta-glucan, lipid, and ash) of pearled grain (PG) and pearling flour (PF) was determined. Effect of pearling on Hunter L, a, and b color parameters of uncooked and cooked (gel) barley flour (milled from PG) was investigated over a 3 day storage at 4 degrees C. PMID:11170595

  1. Dryland malt barley yield and quality affected by tillage, cropping sequence, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information is needed on the effects of management practices on dryland malt barley (Hordeum vulgaris L.) and pea (Pisum sativum L.) yields and quality. We evaluated the effects of tillage and cropping sequence combination and N fertilization on dryland malt barley and pea yields, grain characterist...

  2. Registration of seventeen spring two-rowed barley germplasm lines resistant to Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) is a new and devastating pest of barley in the western US. No resistance was found in US cultivars whether two-row, six-row, malt, feed, spring or winter. A screening of the entire collection of barley accessions in the National Small Grains Collection by the USDA-ARS in ...

  3. Registration of nineteen spring six-rowed barley germplasm lines resistant to Russian wheat aphid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA) is a new and devastating pest of barley in the western US. No resistance was found in US cultivars whether two-row, six-row, malt, feed, spring or winter. A screening of the entire collection of barley accessions in the National Small Grains Collection by the USDA-ARS in ...

  4. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  5. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  6. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  7. 7 CFR 810.205 - Grades and grade requirements for Two-rowed Malting barley.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... barley. 810.205 Section 810.205 Agriculture Regulations of the Department of Agriculture (Continued... AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Barley Principles Governing the Application of Standards § 810.205 Grades and grade requirements for Two-rowed Malting...

  8. Barley and Oat beta-Glucan content measured by Calcofluor fluorescence in a microplate assay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Beta-glucans, linear glucan polymers of mixed linkage, are important constituents of cereal cell walls. They have important health benefits in the human diet, but also can negatively affect the use of barley grain as an animal feed. High beta-glucans in barley malt can also cause problems in brewi...

  9. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain

    PubMed Central

    Bonnot, Titouan; Bancel, Emmanuelle; Chambon, Christophe; Boudet, Julie; Branlard, Gérard; Martre, Pierre

    2015-01-01

    Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4–7 and pH 6–11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999. PMID:26579155

  10. Ontogeny of the barley plant as related to mutation expression and detection of pollen mutations

    SciTech Connect

    Hodgdon, A.L.; Marcus, A.H.; Arenaz, P.; Rosichan, J.L.; Bogyo, T.P.; Nilan, R.A.

    1980-05-29

    Clustering of mutant pollen grains in a population of normal pollen due to premeiotic mutational events complicates translating mutation frequencies into rates. Embryo ontogeny in barley will be described and used to illustrate the formation of such mutant clusters. The nature of the statistics for mutation frequency will be described from a study of the reversion frequencies of various waxy mutants in barley. Computer analysis by a jackknife method of the reversion frequencies of a waxy mutant treated with the mutagen sodium azide showed a significantly higher reversion frequency than untreated material. Problems of the computer analysis suggest a better experimental design for pollen mutation experiments. Preliminary work on computer modeling for pollen development and mutation will be described.