Science.gov

Sample records for barley seed germination

  1. Involvement of Alternative Splicing in Barley Seed Germination

    PubMed Central

    Zhang, Qisen; Zhang, Xiaoqi; Wang, Songbo; Tan, Cong; Zhou, Gaofeng; Li, Chengdao

    2016-01-01

    Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS) regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling). Alternative 3’ splicing (34%-45%), intron retention (32%-34%) and alternative 5’ splicing (16%-21%) were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination. PMID:27031341

  2. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination

    PubMed Central

    Ishibashi, Yushi; Kasa, Shinsuke; Sakamoto, Masatsugu; Aoki, Nozomi; Kai, Kyohei; Yuasa, Takashi; Hanada, Atsushi; Yamaguchi, Shinjiro; Iwaya-Inoue, Mari

    2015-01-01

    Reactive oxygen species (ROS) promote the germination of several seeds, and antioxidants suppress it. However, questions remain regarding the role and production mechanism of ROS in seed germination. Here, we focused on NADPH oxidases, which produce ROS. After imbibition, NADPH oxidase mRNAs were expressed in the embryo and in aleurone cells of barley seed; these expression sites were consistent with the sites of ROS production in the seed after imbibition. To clarify the role of NADPH oxidases in barley seed germination, we examined gibberellic acid (GA) / abscisic acid (ABA) metabolism and signaling in barley seeds treated with diphenylene iodonium chloride (DPI), an NADPH oxidase inhibitor. DPI significantly suppressed germination, and suppressed GA biosynthesis and ABA catabolism in embryos. GA, but not ABA, induced NADPH oxidase activity in aleurone cells. Additionally, DPI suppressed the early induction of α-amylase by GA in aleurone cells. These results suggest that ROS produced by NADPH oxidases promote GA biosynthesis in embryos, that GA induces and activates NADPH oxidases in aleurone cells, and that ROS produced by NADPH oxidases induce α-amylase in aleurone cells. We conclude that the ROS generated by NADPH oxidases regulate barley seed germination through GA / ABA metabolism and signaling in embryo and aleurone cells. PMID:26579718

  3. Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  4. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bykova, Natalia V; Igamberdiev, Abir U

    2016-01-01

    The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0-48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy. PMID:26909088

  5. Nitric Oxide and Reactive Oxygen Species Mediate Metabolic Changes in Barley Seed Embryo during Germination

    PubMed Central

    Ma, Zhenguo; Marsolais, Frédéric; Bykova, Natalia V.; Igamberdiev, Abir U.

    2016-01-01

    The levels of nitric oxide (NO) and reactive oxygen species (ROS), ATP/ADP ratios, reduction levels of ascorbate and glutathione, expression of the genes encoding proteins involved in metabolism of NO and activities of the enzymes involved in fermentation and in metabolism of NO and ROS were studied in the embryos of germinating seeds of two barley (Hordeum vulgare L.) cultivars differing in dormancy level. The level of NO production continuously increased after imbibition while the level of nitrosylated SH-groups in proteins increased. This corresponded to the decrease of free SH-groups in proteins. At early stage of germination (0–48 h post imbibition) the genes encoding class 1 phytoglobin (the protein scavenging NO) and S-nitrosoglutathione reductase (scavenging S-nitrosoglutathione) were markedly expressed. More dormant cultivar exhibited lower ATP/ADP and ascorbate/dehydroascorbate ratios and lower lactate and alcohol dehydrogenase activities, while the production of NO and nitrosylation of proteins was higher as compared to the non-dormant cultivar. The obtained data indicate that at the onset of germination NO is actively generated causing nitrosylation of SH-groups and a switch from respiration to fermentation. After radicle protrusion the metabolism changes in a more reducing type as recorded by ratio of reduced and oxidized glutathione and ascorbate. The turnover of NO by the scavenging systems (phytoglobin, S-nitrosoglutathione reductase and interaction with ROS) might contribute to the maintenance of redox and energy balance of germinating seeds and lead to alleviation of dormancy. PMID:26909088

  6. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    PubMed

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  7. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    NASA Astrophysics Data System (ADS)

    Joshi, Anjali; Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-01

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  8. Carbon nanofibers suppress fungal inhibition of seed germination of maize (Zea mays) and barley (Hordeum vulgare L.) crop

    SciTech Connect

    Joshi, Anjali Sharma, Arti; Nayyar, Harsh; Verma, Gaurav; Dharamvir, Keya

    2015-08-28

    Carbon nanofibers (CNFs) are one of allotropes of carbon, consists of graphene layers arrangement in the form of stacked cones or like a cup diameter in nanometer and several millimeters in length. Their extraordinary mechanical, chemical and electronic properties are due to their small size. CNFs have been successfully applied in field of medicine in variety of diagnostic methods. They proven to be an excellent system for drug delivery, tissue regeneration, biosensor etc. This research focuses the applications of CNFs in all fields of Agriculture. In the we treated some fungal disease seed of maize and barley using functionalised CNFs. We find that the tested seeds grow just as well as the healthy seeds whereas the untreated fungal disease seeds, by themselves show very poor germination and seedling growth. This simple experiment shows the extraordinary ability of Carbon nanofibers in carrying effectively inside the germinated seeds.

  9. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    PubMed

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if OMW will be used for irrigating crops, it has to be first treated or diluted with tap water at a ratio of 1:3 OMW:water at least. The most efficient treatment techniques in reducing the phytotoxicity of OMW were the MF+RO, followed by SFO and JR. PMID:25874415

  10. Alanine aminotransferase controls seed dormancy in barley.

    PubMed

    Sato, Kazuhiro; Yamane, Miki; Yamaji, Nami; Kanamori, Hiroyuki; Tagiri, Akemi; Schwerdt, Julian G; Fincher, Geoffrey B; Matsumoto, Takashi; Takeda, Kazuyoshi; Komatsuda, Takao

    2016-01-01

    Dormancy allows wild barley grains to survive dry summers in the Near East. After domestication, barley was selected for shorter dormancy periods. Here we isolate the major seed dormancy gene qsd1 from wild barley, which encodes an alanine aminotransferase (AlaAT). The seed dormancy gene is expressed specifically in the embryo. The AlaAT isoenzymes encoded by the long and short dormancy alleles differ in a single amino acid residue. The reduced dormancy allele Qsd1 evolved from barleys that were first domesticated in the southern Levant and had the long dormancy qsd1 allele that can be traced back to wild barleys. The reduced dormancy mutation likely contributed to the enhanced performance of barley in industrial applications such as beer and whisky production, which involve controlled germination. In contrast, the long dormancy allele might be used to control pre-harvest sprouting in higher rainfall areas to enhance global adaptation of barley. PMID:27188711

  11. Evidence for a Slow-Turnover Form of the Ca2+-Independent Phosphoenolpyruvate Carboxylase Kinase in the Aleurone-Endosperm Tissue of Germinating Barley Seeds1

    PubMed Central

    Osuna, Lidia; Pierre, Jean-Nöel; González, María-Cruz; Alvarez, Rosario; Cejudo, Francisco J.; Echevarría, Cristina; Vidal, Jean

    1999-01-01

    Phosphoenolpyruvate carboxylase (PEPC) activity was detected in aleurone-endosperm extracts of barley (Hordeum vulgare) seeds during germination, and specific anti-sorghum (Sorghum bicolor) C4 PEPC polyclonal antibodies immunodecorated constitutive 103-kD and inducible 108-kD PEPC polypeptides in western analysis. The 103- and 108-kD polypeptides were radiolabeled in situ after imbibition for up to 1.5 d in 32P-labeled inorganic phosphate. In vitro phosphorylation by a Ca2+-independent PEPC protein kinase (PK) in crude extracts enhanced the enzyme's velocity and decreased its sensitivity to l-malate at suboptimal pH and [PEP]. Isolated aleurone cell protoplasts contained both phosphorylated PEPC and a Ca2+-independent PEPC-PK that was partially purified by affinity chromatography on blue dextran-agarose. This PK activity was present in dry seeds, and PEPC phosphorylation in situ during imbibition was not affected by the cytosolic protein-synthesis inhibitor cycloheximide, by weak acids, or by various pharmacological reagents that had proven to be effective blockers of the light signal transduction chain and PEPC phosphorylation in C4 mesophyll protoplasts. These collective data support the hypothesis that this Ca2+-independent PEPC-PK was formed during maturation of barley seeds and that its presumed underlying signaling elements were no longer operative during germination. PMID:9952447

  12. ALPHA-GLUCOSIDASES FROM THE GLYCOSIDE HYDROLASE FAMILY 31 IN GERMINATING SEEDS AND SEEDLING LEAVES OF BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the four starch degrading enzymes in plants, only alpha-amylase and alpha-glucosidase have been extensively studied. Both alpha-amylase and alpha-glucosidase are important in germinating seeds in direct initiation of attack on starch grains. Five different alpha-glucosidases have been found in ...

  13. Barley seed proteomics from spots to structures.

    PubMed

    Finnie, Christine; Svensson, Birte

    2009-04-13

    Barley is a major cereal crop grown mainly for feed and malting. Two-dimensional gel electrophoresis has been used to analyse barley proteins for over 20 years and more recently, mass spectrometry was applied. In the absence of a genome sequence, barley gene and EST sequences combined with information from rice and other cereals facilitate identification of barley proteins. Several hundred barley seed proteins are identified and lower abundance proteins including membrane proteins are now being analysed. In the present review we focus on variation in protein profiles of seed tissues during grain filling, maturation, germination and radicle elongation. Cultivar comparisons and genetic mapping of polymorphic protein spots in doubled haploid populations provide a means to link the genome to the proteome and identify proteins that can influence grain quality. Many proteins appear in multiple forms on 2D-gels. Specific protein families, including peroxidases and alpha-amylases have been subjected to in-depth analysis resulting in characterisation of different isozymes, post-translational modifications and processing. A functional proteomics study focusing on the seed thioredoxin system has led to identification of thioredoxin target proteins, quantitative analysis of reduction of individual target disulphides and structural studies to gain insight into determinants for target protein recognition by thioredoxin. PMID:19118654

  14. The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator

    PubMed Central

    Zhang, Hongxiang; Irving, Louis J.; McGill, Craig; Matthew, Cory; Zhou, Daowei; Kemp, Peter

    2010-01-01

    Background and Aims Seed germination is negatively affected by salinity, which is thought to be due to both osmotic and ion-toxicity effects. We hypothesize that salt is absorbed by seeds, allowing them to generate additional osmotic potential, and to germinate in conditions under which they would otherwise not be able to germinate. Methods Seeds of barley, Hordeum vulgare, were germinated in the presence of either pure water or one of five iso-osmotic solutions of polyethylene-glycol (PEG) or NaCl at 5, 12, 20 or 27 °C. Germination time courses were recorded and germination indices were calculated. Dry mass, water content and sodium concentration of germinating and non-germinating seeds in the NaCl treatments at 12 °C were measured. Fifty supplemental seeds were used to evaluate the changes in seed properties with time. Key Results Seeds incubated in saline conditions were able to germinate at lower osmotic potentials than those incubated in iso-osmotic PEG solutions and generally germinated faster. A positive correlation existed between external salinity and seed salt content in the saline-incubated seeds. Water content and sodium concentration increased with time for seeds incubated in NaCl. At higher temperatures, germination percentage and dry mass decreased whereas germination index and sodium concentration increased. Conclusions The results suggest that barley seeds can take up sodium, allowing them to generate additional osmotic potential, absorb more water and germinate more rapidly in environments of lower water potential. This may have ecological implications, allowing halophytic species and varieties to out-compete glycophytes in saline soils. PMID:20929898

  15. Characterization of the Entire Cystatin Gene Family in Barley and Their Target Cathepsin L-Like Cysteine-Proteases, Partners in the Hordein Mobilization during Seed Germination1[W

    PubMed Central

    Martinez, Manuel; Cambra, Ines; Carrillo, Laura; Diaz-Mendoza, Mercedes; Diaz, Isabel

    2009-01-01

    Plant cystatins are inhibitors of cysteine-proteases of the papain C1A and legumain C13 families. Cystatin data from multiple plant species have suggested that these inhibitors act as defense proteins against pests and pathogens and as regulators of protein turnover. In this study, we characterize the entire cystatin gene family from barley (Hordeum vulgare), which contain 13 nonredundant genes, and identify and characterize their target enzymes, the barley cathepsin L-like proteases. Cystatins and proteases were expressed and purified from Escherichia coli cultures. Each cystatin was found to have different inhibitory capability against barley cysteine-proteases in in vitro inhibitory assays using specific substrates. Real-time reverse transcription-polymerase chain reaction revealed that inhibitors and enzymes present a wide variation in their messenger RNA expression patterns. Their transcripts were mainly detected in developing and germinating seeds, and some of them were also expressed in leaves and roots. Subcellular localization of cystatins and cathepsin L-like proteases fused to green fluorescent protein demonstrated the presence of both protein families throughout the endoplasmic reticulum and the Golgi complex. Proteases and cystatins not only colocalized but also interacted in vivo in the plant cell, as revealed by bimolecular fluorescence complementation. The functional relationship between cystatins and cathepsin L-like proteases was inferred from their common implication as counterparts of mobilization of storage proteins upon barley seed germination. The opposite pattern of transcription expression in gibberellin-treated aleurones presented by inhibitors and enzymes allowed proteases to specifically degrade B, C, and D hordeins stored in the endosperm of barley seeds. PMID:19759340

  16. Conserved transcriptional regulatory programs underlying rice and barley germination.

    PubMed

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang Charles

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID:24558366

  17. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    PubMed Central

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID:24558366

  18. Artificial seeds in barley: encapsulation of microspore-derived embryos.

    PubMed

    Datta, S K; Potrykus, I

    1989-06-01

    An in vitro culture system has been developed for barley (Hordeum vulgare), which yields high frequencies of high quality microspore-derived embryos without an intervening callus phase. The embryos are very similar to zygotic embryos with regard to their morphology and germination capacity. These embryos were encapsulated in sodium alginate to produce individual beads containing one embryo each. In accordance with the literature, these beads are denoted "artificial seeds". The artificial seeds germinated well and with a root system superior to that of non-encapsulated embryos. The artificial seeds also maintained their germination capacity for at least 6 months, whereas non-encapsulated embryos did not survive more than 2 weeks in storage. Artificial seeds, thus, probably provide a simple and universal delivery system of in vitro plantlets to greenhouse or field. PMID:24232898

  19. Studies on the molecular mechanisms of seed germination.

    PubMed

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination. PMID:25597791

  20. Seed Development and Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  1. Changes in cell wall polysaccharide composition, gene transcription and alternative splicing in germinating barley embryos.

    PubMed

    Zhang, Qisen; Zhang, Xiaoqi; Pettolino, Filomena; Zhou, Gaofeng; Li, Chengdao

    2016-02-01

    Barley (Hordeum vulgare L.) seed germination initiates many important biological processes such as DNA, membrane and mitochondrial repairs. However, little is known on cell wall modifications in germinating embryos. We have investigated cell wall polysaccharide composition change, gene transcription and alternative splicing events in four barley varieties at 24h and 48h germination. Cell wall components in germinating barley embryos changed rapidly, with increases in cellulose and (1,3)(1,4)-β-d-glucan (20-100%) within 24h, but decreases in heteroxylan and arabinan (3-50%). There were also significant changes in the levels of type I arabinogalactans and heteromannans. Alternative splicing played very important roles in cell wall modifications. At least 22 cell wall transcripts were detected to undergo either alternative 3' splicing, alternative 5' splicing or intron retention type of alternative splicing. These genes coded enzymes catalyzing synthesis and degradation of cellulose, heteroxylan, (1,3)(1,4)-β-d-glucan and other cell wall polymers. Furthermore, transcriptional regulation also played very important roles in cell wall modifications. Transcript levels of primary wall cellulase synthase, heteroxylan synthesizing and nucleotide sugar inter-conversion genes were very high in germinating embryos. At least 50 cell wall genes changed transcript levels significantly. Expression patterns of many cell wall genes coincided with changes in polysaccharide composition. Our data showed that cell wall polysaccharide metabolism was very active in germinating barley embryos, which was regulated at both transcriptional and post-transcriptional levels. PMID:26788957

  2. Thermoperiodism in cocklebur seed germination.

    PubMed

    Esashi, Y; Tsukada, Y

    1978-03-01

    Germination potential in nondormant, upper cocklebur (Xanthium pensylvanicum Wallr.) seeds, which were incapable of germinating under constant temperatures below 25 C in air, was increased by exposure to diurnally alternating temperatures. The cocklebur seeds failed to respond to the temperature fluctuations in the beginning of water imbibition, and their responsiveness appeared only after aerobic presoaking for a limited period or after anaerobic pretreatment for 1 to 3 days.Maximal germination was obtained after exposure to a thermoperiodic regime of 8 hours at 23 C and 16 hours at 8 C. A process occurring during the high temperature phase was aerobic and had to precede the inductive low temperature phase, its effect increasing with temperature. Critical minimum length of the inductive low temperature phase changed with the duration of a preceding anaerobiosis, for instance about 4 hours after 1 day anaerobiosis, but about 2 hours after 2 days. Percentage of subsequent germination was in proportion to the number of thermoperiodic cycles. A process of the inductive low temperature phase was not perturbed by inserting a brief higher temperature period into its phase; indeed, such insertion rather increased germination potential when performed in the earlier parts of the inductive low temperature phase. The effect of the low temperature survived for 13 to 17 hours during the higher temperature period. PMID:16660310

  3. Thermoperiodism in Cocklebur Seed Germination

    PubMed Central

    Esashi, Yohji; Tsukada, Yoshiya

    1978-01-01

    Germination potential in nondormant, upper cocklebur (Xanthium pensylvanicum Wallr.) seeds, which were incapable of germinating under constant temperatures below 25 C in air, was increased by exposure to diurnally alternating temperatures. The cocklebur seeds failed to respond to the temperature fluctuations in the beginning of water imbibition, and their responsiveness appeared only after aerobic presoaking for a limited period or after anaerobic pretreatment for 1 to 3 days. Maximal germination was obtained after exposure to a thermoperiodic regime of 8 hours at 23 C and 16 hours at 8 C. A process occurring during the high temperature phase was aerobic and had to precede the inductive low temperature phase, its effect increasing with temperature. Critical minimum length of the inductive low temperature phase changed with the duration of a preceding anaerobiosis, for instance about 4 hours after 1 day anaerobiosis, but about 2 hours after 2 days. Percentage of subsequent germination was in proportion to the number of thermoperiodic cycles. A process of the inductive low temperature phase was not perturbed by inserting a brief higher temperature period into its phase; indeed, such insertion rather increased germination potential when performed in the earlier parts of the inductive low temperature phase. The effect of the low temperature survived for 13 to 17 hours during the higher temperature period. PMID:16660310

  4. Viability of barley seeds after long-term exposure to outer side of international space station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi C.; Elena, Shagimardanova; Gusev, Oleg A.; Kihara, Makoto; Hoki, Takehiro; Sychev, Vladimir N.; Levinskikh, Margarita A.; Novikova, Natalia D.; Grigoriev, Anatoly I.

    2011-09-01

    Barley seeds were exposed to outer space for 13 months in a vented metal container without a climate control system to assess the risk of physiological and genetic mutation during long-term storage in space. The space-stored seeds (S0 generation), with an 82% germination rate in 50 seeds, lost about 20% of their weight after the exposure. The germinated seeds showed normal growth, heading, and ripening. The harvested seeds (S1 generation) also germinated and reproduced (S2 generation) as did the ground-stored seeds. The culm length, ear length, number of seed, grain weight, and fertility of the plants from the space-stored seeds were not significantly different from those of the ground-stored seeds in each of the S0 and S1 generation. Furthermore, the S1 and S2 space-stored seeds respectively showed similar β-glucan content to those of the ground-stored seeds. Amplified fragment length polymorphism analysis with 16 primer combinations showed no specific fragment that appears or disappears significantly in the DNA isolated from the barley grown from the space-stored seeds. Though these data are derived from nine S0 space-stored seeds in a single exposure experiment, the results demonstrate the preservation of barley seeds in outer space for 13 months without phenotypic or genotypic changes and with healthy and vigorous growth in space.

  5. Phytochrome and Seed Germination. V. Changes of Phytochrome Content During the Germination of Cucumber Seeds 1

    PubMed Central

    Mancinelli, Alberto L.; Tolkowsky, Abby

    1968-01-01

    Cucumber seeds are light-sensitive, dark-germinating seeds. Inhibition of germination can be induced by prolonged exposure to continuous or intermittent FR. The dark germination process and the response to FR are phytochrome controlled. Phytochrome can be detected in these seeds by differential spectrophotometry in vivo. Spectrophotometrically measurable phytochrome increases during dark germination. The rate of increase is temperature dependent. Light treatments which are inhibitory for germination result in phytochrome contents lower than those of the seeds germinating in darkness. Treatments which restore germination also restore phytochrome formation. PMID:16656797

  6. Proteomics of rice seed germination

    PubMed Central

    He, Dongli; Yang, Pingfang

    2013-01-01

    Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles, and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS) technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies. PMID:23847647

  7. Oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Oleg A.; Hasenstein, K. H.

    2003-05-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax ( Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume = 14 mL) and after 36 h measured the root length. At 90 μl O 2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O 2 we determined the lower limit of reliable germination to be 10 vol. % O 2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination.

  8. Oxygen requirement of germinating flax seeds

    NASA Technical Reports Server (NTRS)

    Kuznetsov, Oleg A.; Hasenstein, K. H.; Hasentein, K. H. (Principal Investigator)

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. c2003 Published by Elsevier Ltd on behalf of COSPAR.

  9. Oxygen requirement of germinating flax seeds.

    PubMed

    Kuznetsov, Oleg A; Hasenstein, K H

    2003-01-01

    Plant experiments in earth orbit are typically prepared on the ground and germinated in orbit to study gravity effects on the developing seedlings. Germination requires the breakdown of storage compounds, and this metabolism depends upon respiration, making oxygen one of the limiting factors in seed germination. In microgravity lack of run-off of excess water requires careful testing of water dispensation and oxygen availability. In preparation for a shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware (Magnetic Field Chamber, MFC). We tested between four to 32 seeds per chamber (air volume=14 mL) and after 36 h measured the root length. At 90 microliters O2 per seed (32 seeds/chamber), the germination decreased from 94 to 69%, and the root length was reduced by 20%, compared to 8 seeds per chamber. Based on the percent germination and root length obtained in controlled gas mixtures between 3.6 and 21.6% O2 we determined the lower limit of reliable germination to be 10 vol. % O2 at atmospheric pressure. Although the oxygen available in the MFC's can support the intended number of seeds, the data show that seed storage and microgravity-related limitations may reduce germination. PMID:14686434

  10. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds.

    PubMed

    Liu, Shu-Jun; Xu, Heng-Heng; Wang, Wei-Qing; Li, Ni; Wang, Wei-Ping; Lu, Zhuang; Møller, Ian Max; Song, Song-Quan

    2016-06-01

    Seed germination is a critical phase in the plant life cycle, but the mechanism of seed germination is still poorly understood. In the present study, rice (Oryza sativa L. cv. Peiai 64S) seeds were sampled individually when they reached different germination stages, quiescent, germinated sensu stricto, germinated completely and seedling, and were used to study the changes in the embryo proteome. A total of 88 protein spots showed a significant change in abundance during germination in water, and the results showed an activation of metabolic processes. Cell division, cell wall synthesis, and secondary metabolism were activated at late seed germination and during preparation for subsequent seedling establishment. Cycloheximide (CHX) at 70μM inhibited seedling establishment without an apparent negative effect on seed germination, while CHX at 500μM completely blocked seed germination. We used this observation to identify the potentially important proteins involved in seed germination (coleoptile protrusion) and seedling establishment (coleoptile and radicle protrusion). Twenty-six protein spots, mainly associated with sugar/polysaccharide metabolism and energy production, showed a significant difference in abundance during seed germination. Forty-nine protein spots, mainly involved in cell wall biosynthesis, proteolysis as well as cell defense and rescue, were required for seedling establishment. The results help improve our understanding of the key events (proteins) involved in germination and seedling development. PMID:27085178

  11. Small RNA mediated regulation of seed germination

    PubMed Central

    Das, Shabari Sarkar; Karmakar, Prakash; Nandi, Asis Kumar; Sanan-Mishra, Neeti

    2015-01-01

    Mature seeds of most of the higher plants harbor dormant embryos and go through the complex process of germination under favorable environmental conditions. The germination process involves dynamic physiological, cellular and metabolic events that are controlled by the interplay of several gene products and different phytohormones. The small non-coding RNAs comprise key regulatory modules in the process of seed dormancy and germination. Recent studies have implicated the small RNAs in plant growth in correlation with various plant physiological processes including hormone signaling and stress response. In this review we provide a brief overview of the regulation of seed germination or dormancy while emphasizing on the current understanding of the role of small RNAs in this regard. We have also highlighted specific examples of stress responsive small RNAs in seed germination and discussed their future potential. PMID:26528301

  12. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination. (a) When both purity and germination tests are required, seeds for germination shall be taken from the... to size or appearance. (b) When only a germination test is required and the pure seed is estimated...

  13. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination. (a) When both purity and germination tests are required, seeds for germination shall be taken from the... to size or appearance. (b) When only a germination test is required and the pure seed is estimated...

  14. The oxygen requirement of germinating flax seeds

    NASA Astrophysics Data System (ADS)

    Kuznetsov, O.; Hasenstein, K.

    Experiments for earth orbit are typically prepared on the ground and often germinated in orbit in order to study gravity effects on developing seedlings. Germination requires the breakdown of storage compounds and respiration. In orbit the formation of a water layer around the seed may further limit oxygen availability. Therefore, the oxygen content of the available gas volume is one of the limiting factors for seed germination. In preparation for an upcoming shuttle experiment (MICRO on STS-107) we studied germination and growth of flax (Linum usitatissimum L.) seedlings in the developed hardware. We tested per seed chamber (gas volume = 14 mL, O2 = 2.9 mL) between 4 to 32 seeds glued to germination paper by 1% (w/v) gum guar. A lexan cover and a gasket hermetically sealed each of the eight chambers. For imbibition of the seeds a previously optimized amount of distilled water was dispensed through sealed inlets. The seedlings were allowed to grow for either 32 to 48 h on a clinostat or without microgravity simulation. Then their root length was measured. With 32 seeds per chamber, four times the intended number of seeds for the flight, the germination rate decreased from 94 to 69%, and the root length was reduced by 20%. Experiments on the germination and root length in controlled atmospheres (5, 10, 15 and 21% O2 ) suggest that germination and growth for two days requires about 200 :l of O (1 mL air) per seed. Our2 experiments correlate oxygen dependency from seed mass and germination temperature, and analyze accumulation of gaseous metabolites (supported by NASA grant NAG10-0190).

  15. Freezing tolerance of conifer seeds and germinants.

    PubMed

    Hawkins, B J; Guest, H J; Kolotelo, D

    2003-12-01

    Survival after freezing was measured for seeds and germinants of four seedlots each of interior spruce (Picea glauca x engelmannii complex), lodgepole pine (Pinus contorta Dougl. ex Loud.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata Donn ex D. Donn). Effects of eight seed treatments on post-freezing survival of seeds and germinants were tested: dry, imbibed and stratified seed, and seed placed in a growth chamber for 2, 5, 10, 15, 20 or 30 days in a 16-h photoperiod and a 22/17 degrees C thermoperiod. Survival was related to the water content of seeds and germinants, germination rate and seedlot origin. After freezing for 3 h at -196 degrees C, dry seed of most seedlots of interior spruce, Douglas-fir and western red cedar had 84-96% germination, whereas lodgepole pine seedlots had 53-82% germination. Freezing tolerance declined significantly after imbibition in lodgepole pine, Douglas-fir and interior spruce seed (western red cedar was not tested), and mean LT50 of imbibed seed of these species was -30, -24.5 and -20 degrees C, respectively. Freezing tolerance continued to decline to a minimum LT50 of -4 to -7 degrees C after 10 days in a growth chamber for interior spruce, Douglas-fir and lodgepole pine, or after 15 days for western red cedar. Minimum freezing tolerance was reached at the stage of rapid hypocotyl elongation. In all species, a slight increase in freezing tolerance of germinants was observed once cotyledons emerged from the seed coat. The decrease in freezing tolerance during the transition from dry to germinating seed correlated with increases in seed water content. Changes in freezing tolerance between 10 and 30 days in the growth chamber were not correlated with seedling water content. Within a species, seedlots differed significantly in freezing tolerance after 2 or 5 days in the growth chamber. Because all seedlots of interior spruce and lodgepole pine germinated quickly, there was no correlation between seedlot hardiness and rate of germination. Germination rate and freezing tolerance of Douglas-fir and western red cedar seedlots was negatively correlated. There was a significant correlation between LT50 after 10 days in the growth chamber and minimum spring temperature at the location of seedlot origin for interior spruce and three seedlots of western red cedar, but no relationship was apparent for lodgepole pine and Douglas-fir. PMID:14652223

  16. Viability and Biological Properties of Barley Seeds Expose to Outside of International Space Station

    NASA Astrophysics Data System (ADS)

    Sugimoto, Manabu; Ishii, Makoto; Mori, Izumi; Shagimardanova, Elena; Gusev, Oleg; Sychev, Vladimir; Levinskikh, Margarita; Novikova, Nataliya; Grigoriev, Anatoly

    Plants play an important role in supplying nutrients and oxygen to human under material recycle system in space as well as on earth, therefore, seed storage in space should be necessary to self-supply foods when number of astronauts would stay and investigate for a long-term habitation of orbit and the bases of the Moon and Mars. In order to understand the effect of real space environment on the preservation of seeds, the seeds of malting barley, Haruna Nijo, were exposed to outside of the Pier docking station of International Space Station in the framework of the Biorisk-MSN program. After exposure to outside of International Space Station for 13 months, the seeds (SP) were transported to Earth, soaked in water, and germinated on the filter paper filled with water. The germination ratio of SP was 82%, while that of the ground control was 96%, showing that the barley seeds survived cosmic radiation, vacuum, and temperature excursion in space. The germinated seeds of SP and ground control were transplanted to the Wagner pots filled with soil and grown for 5 months in the greenhouse. The agronomic character, such as number of main stem leaf and ear, straw weight, culm length, ear length, thousand kernel weight, and percentage of ripening, were not different significantly between SP and ground control. The germination ratio of the harvested SP was 96% as same as that of the harvested ground control. Genomic DNA and protein were extracted from leaves of the barleys and analyzed by AFLP and 2-DE, respectively. The results demonstrated no significant difference in genetic polymorphism and protein production in these barleys. From our results, barley seeds could survive real space environment for the long-term habitation without phenotypic and genotypic damages.

  17. Seed priming to alleviate salinity stress in germinating seeds.

    PubMed

    Ibrahim, Ehab A

    2016-03-15

    Salinity is one of the major abiotic stresses that affect crop production in arid and semiarid areas. Seed germination and seedling growth are the stages most sensitive to salinity. Salt stress causes adverse physiological and biochemical changes in germinating seeds. It can affect the seed germination and stand establishment through osmotic stress, ion-specific effects and oxidative stress. The salinity delays or prevents the seed germination through various factors, such as a reduction in water availability, changes in the mobilization of stored reserves and affecting the structural organization of proteins. Various techniques can improve emergence and stand establishment under salt conditions. One of the most frequently utilized is seed priming. The process of seed priming involves prior exposure to an abiotic stress, making a seed more resistant to future exposure. Seed priming stimulates the pre-germination metabolic processes and makes the seed ready for radicle protrusion. It increases the antioxidant system activity and the repair of membranes. These changes promote seed vigor during germination and emergence under salinity stress. The aim of this paper is to review the recent literature on the response of plants to seed priming under salinity stress. The mechanism of the effect of salinity on seed germination is discussed and the seed priming process is summarized. Physiological, biochemical and molecular changes induced by priming that lead to seed enhancement are covered. Plants' responses to some priming agents under salinity stress are reported based on the best available data. For a great number of crops, little information exists and further research is needed. PMID:26812088

  18. Differences in Spatial Expression between 14-3-3 Isoforms in Germinating Barley Embryos1

    PubMed Central

    Testerink, Christa; van der Meulen, René M.; Oppedijk, Berry J.; de Boer, Albertus H.; Heimovaara-Dijkstra, Sjoukje; Kijne, Jan W.; Wang, Mei

    1999-01-01

    The family of 14-3-3 proteins is ubiquitous in eukaryotes and has been shown to exert an array of functions. We were interested in the possible role of 14-3-3 proteins in seed germination. Therefore, we studied the expression of 14-3-3 mRNA and protein in barley (Hordeum distichum L.) embryos during germination. With the use of specific cDNA probes and antibodies, we could detect individual expression of three 14-3-3 isoforms, 14-3-3A, 14-3-3B, and 14-3-3C. Each homolog was found to be expressed in barley embryos. Whereas protein levels of all three isoforms were constant during germination, mRNA expression was found to be induced upon imbibition of the grains. The induction of 14-3-3A gene expression during germination was different from that of 14-3-3B and 14-3-3C. In situ immunolocalization analysis showed similar spatial expression for 14-3-3A and 14-3-3B, while 14-3-3C expression was markedly different. Whereas 14-3-3A and 14-3-3B were expressed throughout the embryo, 14-3-3C expression was tissue specific, with the strongest expression observed in the scutellum and the L2 layer of the shoot apical meristem. These results show that 14-3-3 homologs are differently regulated in barley embryos, and provide a first step in acquiring more knowledge about the role of 14-3-3 proteins in the germination process. PMID:10482663

  19. Interaction of microwaves and germinating seeds

    SciTech Connect

    Shafer, F.L.

    1987-01-01

    The preliminary investigation measured the internal metabolic process by ATP production. Leakage of ions and organic material from germinating seeds indicated that membranes are a target of microwaves and heat. Electron photo-micrographs showed an increase in damage to membranes as heat and microwave treatments were increased. The second phase of this investigation was concerned with determining some of the biological activity at the initiation of germination of wheat seed, Triticum aestivum L., using a resonating microwave cavity oscillating at 9.3 GHz as a probe. Direct current conductivity measurements were also made on the seeds as a means of confirming the observations made with the microwave cavity.

  20. Allelopathic effects of weeds extracts against seed germination of some plants.

    PubMed

    Kadioglu, Izzet; Yanar, Yusuf; Asav, Unal

    2005-04-01

    This study investigated the allelopathic effects of various weeds extracts on seed germination of 11 crop species. Most of the weed extracts tested had inhibitory effects on seed germination of common bean, tomato, pepper, squash, onion, barley, wheat, and corn at different application rates as compared with the 10% acetone control. Chickpea seed germination was inhibited by extracts of Solanum nigrum L., Chenopodium album L., and Matricaria chamomilla L. (10%, 20% and 22.5%, respectively) at the end of 21 day incubation period. However, Glycyrrhiza glabra L., Sorghum halepense (L.) Pers., and Reseda lutea L. extracts stimulated chickpea seed germination at the rates of 95%, 94%, and 93%, respectively, compared to control. It was concluded that some of the weed extracts tested in this study could be used as inhibitor while others could be used as stimulator for the crops. PMID:16161968

  1. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination.

    PubMed

    Barrero, Jose M; Downie, A Bruce; Xu, Qian; Gubler, Frank

    2014-03-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8'-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  2. Oxidative signaling in seed germination and dormancy

    PubMed Central

    El-Maarouf-Bouteau, Hayat

    2008-01-01

    Reactive Oxygen Species (ROS) play a key role in various events of seed life. In orthodox seeds, ROS are produced from embryogenesis to germination, i.e., in metabolically active cells, but also in quiescent dry tissues during after ripening and storage, owing various mechanisms depending on the seed moisture content. Although ROS have been up to now widely considered as detrimental to seeds, recent advances in plant physiology signaling pathways has lead to reconsider their role. ROS accumulation can therefore be also beneficial for seed germination and seedling growth by regulating cellular growth, ensuring a protection against pathogens or controlling the cell redox status. ROS probably also act as a positive signal in seed dormancy release. They interact with abscisic acid and gibberellins transduction pathway and are likely to control numerous transcription factors and properties of specific protein through their carbonylation. PMID:19513212

  3. Oxygen dependency of germinating Brassica seeds.

    PubMed

    Park, Myoung Ryoul; Hasenstein, Karl H

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions. PMID:26948011

  4. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Source of seeds for germination. 201.53 Section 201.53..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination....

  5. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Source of seeds for germination. 201.53 Section 201.53..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination....

  6. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  7. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  8. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  9. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  10. 7 CFR 201.53 - Source of seeds for germination.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Source of seeds for germination. 201.53 Section 201.53..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.53 Source of seeds for germination....

  11. 7 CFR 201.54 - Number of seeds for germination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Number of seeds for germination. 201.54 Section 201.54..., Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Germination Tests in the Administration of the Act § 201.54 Number of seeds for germination....

  12. Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting.

    PubMed

    Gorzolka, K; Lissel, M; Kessler, N; Loch-Ahring, S; Niehaus, K

    2012-06-15

    Samples of whole seeds, isolated endosperms including the aleurone layer and isolated embryos with attached scutellum from an industrial scale barley malting process (variety Braemar) were analysed for their water soluble metabolites by gas chromatography-mass spectrometry (GC-MS). 73 known metabolites and about 350 unknown signals were detected. Principal component analysis (PCA) showed a time dependent shift of sample profiles. Whole seeds and endosperm samples showed very similar patterns with nearly all compounds rising until the end of germination. In the embryos a maximum concentration of compounds was reached after 72-96 h of malting. Most concentrations decreased afterwards. The kilning step, namely the drying and roasting of germinated seeds, induced variable effects of increases, stability or decreases of metabolites and thereby separated kilned samples from germinated seeds in the PCA. A second barley cultivar (Quench) underwent the same malting and analysis procedures and gave nearly identical results. Fructose, malate, myo-inositol and raffinose exhibited the potential to serve as markers for specific developmental stages of seeds in both varieties. Biological markers represent targets for industrial process control. Their potential application would meet the maltsters' demand to flatten variances in germination properties and to produce equal composed malt by directed malting management. PMID:22465293

  13. Seed biology and in vitro seed germination of Cypripedium.

    PubMed

    Zeng, Songjun; Zhang, Yu; Teixeira da Silva, Jaime A; Wu, Kunlin; Zhang, Jianxia; Duan, Jun

    2014-12-01

    Cypripedium orchids have high horticultural value. The populations of most species are very geographically restricted and they are becoming increasingly rare due to the destruction of native habitats and illegal collection. Reduction of the commercial value through large-scale propagation in vitro is a preferable option to reduce pressure from illegal collection. Cypripedium species are commercially propagated via seed germination in vitro. This review focuses on in vitro seed germination and provides an in-depth analysis of the seed biology of this genus. PMID:24191720

  14. The effects of GA and ABA treatments on metabolite profile of germinating barley.

    PubMed

    Huang, Yuqing; Cai, Shengguan; Ye, Lingzhen; Hu, Hongliang; Li, Chengdao; Zhang, Guoping

    2016-02-01

    Sugar degradation during grain germination is important for malt quality. In malting industry, gibberellin (GA) is frequently used for improvement of malting quality. In this study, the changes of metabolite profiles and starch-degrading enzymes during grain germination, and as affected by GA and abscisic acid (ABA) were investigated using two wild barley accessions XZ72 and XZ95. Totally fifty-two metabolites with known structures were detected and the change of metabolite during germination was time- and genotype dependent. Sugars and amino acids were the most dramatically changed compounds. Addition of GA enhanced the activities of starch-degrading enzymes, and increased most metabolites, especially sugars and amino acids, whereas ABA had the opposite effect. The effect varied with the barley accessions. The current study is the first attempt in investigating the effect of hormones on metabolite profiles in germinating barley grain, being helpful for identifying the factors affecting barley germination or malt quality. PMID:26304431

  15. Fire Effects on Invasive Weed Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Restoring historic fire regimes is often beneficial to rangeland structure and function. However, understanding of interactions between fire and invasive weeds is limited. We designed an experiment to determine fire effects on germination of soil surface-deposited seeds of the invasive weeds Bromu...

  16. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    PubMed

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. PMID:26948880

  17. Radish (Raphanus sativus) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. Studies reporting these results used a large number of plant species that varied in seed size, which might have introduced differences in germination characteristics or various parameter...

  18. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley germination is a complex and multi-stage biological process important to plant development, plant evolution, and agricultural production. It is accompanied with concerted expression of many genes and biological pathways. Transcriptomic analysis of barley grains/seedlings representing six well...

  19. Freezing stress influences emergence of germinated perennial grass seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In sagebrush rangelands perennial bunchgrasses are typically seeded in fall and a high proportion of planted seeds germinate prior to winter onset but fail to emerge in spring. Our objectives were to evaluate freezing tolerance of germinated but non-emergent bluebunch wheatgrass seeds under laborat...

  20. The Importance of Seed Germination in Rangeland Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA, Agricultural Research Service (ARS)/ Great Basin Rangelands Research Unit, Wildland Seed Laboratory, located in Reno, NV, has been studying seed germination for the past 40 years. The wildland seed laboratory has collected, processed, and quantified germination characteristics of hundreds...

  1. Role of H2O2 in pea seed germination

    PubMed Central

    Barba-Espín, Gregorio; Hernández, José Antonio; Diaz-Vivancos, Pedro

    2012-01-01

    The imbibition of pea seeds with hydrogen peroxide (H2O2) increased the germination as well as the seedling growth, producing an invigoration of the seeds. We propose that H2O2 could acts as signaling molecule in the beginning of seed germination involving specific changes at proteomic, transcriptomic and hormonal levels. These findings have practical implication in the context of seed priming technologies to invigorate low vigour seeds. PMID:22415047

  2. Role of H₂O₂ in pea seed germination.

    PubMed

    Barba-Espín, Gregorio; Hernández, José Antonio; Diaz-Vivancos, Pedro

    2012-02-01

    The imbibition of pea seeds with hydrogen peroxide H₂O₂ increased the germination as well as the seedling growth, producing an invigoration of the seeds. We propose that H₂O₂ could acts as signaling molecule in the beginning of seed germination involving specific changes at proteomic, transcriptomic and hormonal levels. These findings have practical implication in the context of seed priming technologies to invigorate low vigour seeds. PMID:22415047

  3. The pleiotropic effects of the seed germination inhibitor germostatin.

    PubMed

    Ye, Yajin; Zhao, Yang

    2016-04-01

    Seed dormancy and germination are the most important adaptive traits of seed plants, which control the germination in a proper space and time. Internal genetic factors together with environmental cues govern seed dormancy and germination. Abscisic acid (ABA), a key phytohormone induces seed dormancy and inhibits seed germination through its molecular genetic signaling network responding the seed inherent physiological and environmental factors. Recently, auxin has been shown to be another phytohormone that induces seed dormancy. We have recently shown that germonstatin (GS), a small synthetic molecule identified by high through-put chemical genetic screenings, inhibits seed germination through up-regulating auxin signaling and inducing auxin biosynthesis. GERMOSTATIN RESISTANCE LOCUS 1 (GSR1) encodes a plant homeodomain (PHD) finger protein and is responsible for GS seed germination inhibition. Its knockdown mutant gsr1 displays decreased dormancy. In this report, we show that GS is not an ABA analog and provided 2 other GS-resistant mutants related to the chemical's function in seed germination inhibition other than gsr1, suggesting that GS may have pleiotropic effects through targeting different pathway governing seed germination. PMID:26918467

  4. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration.

    PubMed

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P C

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the "elevated partial pressure of oxygen" (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom ("OWB-D"), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec ("OWB-R"), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions. PMID:27066038

  5. Barley Seed Aging: Genetics behind the Dry Elevated Pressure of Oxygen Aging and Moist Controlled Deterioration

    PubMed Central

    Nagel, Manuela; Kodde, Jan; Pistrick, Sibylle; Mascher, Martin; Börner, Andreas; Groot, Steven P. C.

    2016-01-01

    Experimental seed aging approaches intend to mimic seed deterioration processes to achieve a storage interval reduction. Common methods apply higher seed moisture levels and temperatures. In contrast, the “elevated partial pressure of oxygen” (EPPO) approach treats dry seed stored at ambient temperatures with high oxygen pressure. To analyse the genetic background of seed longevity and the effects of seed aging under dry conditions, the EPPO approach was applied to the progeny of the Oregon Wolfe Barley (OWB) mapping population. In comparison to a non-treated control and a control high-pressure nitrogen treatment, EPPO stored seeds showed typical symptoms of aging with a significant reduction of normal seedlings, slower germination, and less total germination. Thereby, the parent Dom (“OWB-D”), carrying dominant alleles, is more sensitive to aging in comparison to the population mean and in most cases to the parent Rec (“OWB-R”), carrying recessive alleles. Quantitative trait locus (QTL) analyses using 2832 markers revealed 65 QTLs, including two major loci for seed vigor on 2H and 7H. QTLs for EPPO tolerance were detected on 3H, 4H, and 5H. An applied controlled deterioration (CD) treatment (aged at higher moisture level and temperature) revealed a tolerance QTL on 5H, indicating that the mechanism of seed deterioration differs in part between EPPO or CD conditions. PMID:27066038

  6. Seed germination characteristics of Chrysothamnus nauseosus ssp. viridulus (Astereae, Asteraceae)

    SciTech Connect

    Khan, M.A.; Sankhla, N.; Weber, D.J.; McArthur, E.D.

    1987-04-30

    Rubber rabbitbrush (Chrysothamnus nauseosus (Pallas) Britt. ssp. viridulus) may prove to be a source of high-quality cis-isoprene rubber, but its establishment is limited by a lack of information on seed germination. Consequently, seeds were germinated at alternating temperatures (5-15, 5-25, 15-25, and 20-30 C) in light and dark as well as constant temperatures (15-40 C with 5-C increments) to determine temperature response. Seeds were also germinated in solutions of polyethylene glycol 6000, salinity regimes at all the above-mentioned temperatures to determine salinity and temperature interaction. The hormones GA/sub 3/ and kinetin were used to study their effect on overcoming salt- and temperature-induced germination inhibition. Seeds of C. nauseosus ssp. viridulus were very sensitive to low temperature. Best germination was achieved at 25 and 30 C, but these seeds also germinated at a higher temperature (35 C). The seeds of rabbit brush germinated at both constant and alternating temperatures. Light appears to play little or no role in controlling germination of the seeds of rubber rabbitbrush. However, seeds of rabbitbrush were sensitive to salinity, and seed germination was progressively inhibited by increase in salt concentration, although a few seeds still germinated at the highest saline level. Progressively higher concentrations of polyethylene glycol also progressively inhibited germination. Suppression of seed germination induced by high salt concentrations and high temperatures can be partially alleviated by the application of either GA/sub 3/ or kinetin. 34 references, 5 figures, 3 tables.

  7. Effect of fungicide on Wyoming big sagebrush seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because fungal infection may complicate both the logistics and the interpretation of germination tests, seeds are sometimes treated with chemical fungicides. Fungicides may reduce the germination rate and/or germination percentage, and should be avoided unless fungal contamination is severe enough ...

  8. Transgenic barley with overexpressed PTrx increases aluminum resistance in roots during germination*

    PubMed Central

    Li, Qiao-yun; Niu, Hong-bin; Yin, Jun; Shao, Hong-bo; Niu, Ji-shan; Ren, Jiang-ping; Li, Yong-chun; Wang, Xiang

    2010-01-01

    A transgenic barley line (LSY-11-1-1) with overexpressed Phalaris coerulescens thioredoxin gene (PTrx) was employed to measure the growth, protein oxidation, cell viability, and antioxidase activity in barley roots during germination on the presence of 2 mmol/L AlCl3 on filter paper. The results show that (1) compared with the non-transgenic barley, LSY-11-1-1 had enhanced root growth, although both were seriously inhibited after AlCl3 treatment; (2) the degree of protein oxidation and loss of cell viability in roots of LSY-11-1-1 were much less than those in roots of non-transgenic barley, as reflected by lower contents of protein carbonyl and Evans blue uptakes in LSY-11-1-1; (3) activities of catalase (CAT), glutathione peroxidase (GPX), ascorbate peroxidase (APX), and glutathione reductase (GR) in LSY-11-1-1 root tips were generally higher than those in non-transgenic barley root tips, although these antioxidase activities gave a rise to different degrees in both LSY-11-1-1 and non-transgenic barley under aluminum stress. These results indicate that overexpressing PTrx could efficiently protect barley roots from oxidative injury by increasing antioxidase activity, thereby quenching ROS caused by AlCl3 during germination. These properties raise the possibility that transgenic barley with overexpressed PTrx may be used to reduce the aluminum toxicity in acid soils. PMID:21043055

  9. The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing.

    PubMed

    Donohue, Kathleen; Dorn, Lisa; Griffith, Converse; Kim, EunSuk; Aguilera, Anna; Polisetty, Chandra R; Schmitt, Johanna

    2005-04-01

    Germination timing of Arabidopsis thaliana displays strong plasticity to geographic location and seasonal conditions experienced by seeds. We identified which plastic responses were adaptive using recombinant inbred lines in a field manipulation of geographic location (Kentucky, KY; Rhode Island, RI), maternal photoperiod (14-h and 10-h days), and season of dispersal (June and November). Transgressive segregation created novel genotypes that had either higher fitness or lower fitness in certain environments than either parent. Natural selection on germination timing and its variation explained 72% of the variance in fitness among genotypes in KY, 30% in June-dispersed seeds in RI, but only 4% in November-dispersed seeds in RI. Therefore, natural selection on germination timing is an extremely efficient sieve that can determine which genotypes can persist in some locations, and its efficiency is geographically variable and depends on other aspects of life history. We found no evidence for adaptive responses to maternal photoperiod during seed maturation. We did find adaptive plasticity to season of seed dispersal in RI. Seeds dispersed in June postponed germination, which was adaptive, while seeds dispersed in November accelerated germination, which was also adaptive. We also found maladaptive plasticity to geographic location for seeds dispersed in June, such that seeds dispersed in KY germinated much sooner than the optimum time. Consequently, bet hedging in germination timing was favorable in KY; genotypes with more variation in germination timing had higher fitness because greater variation was associated with postponed germination. Selection on germination timing varied across geographic location, indicating that germination timing can be a critical stage in the establishment of genotypes in new locations. The rate of evolution of germination timing may therefore strongly influence the rate at which species can expand their range. PMID:15926687

  10. Seed germination of GA-insensitive sleepy1 mutants does not require RGL2 protein disappearance in Arabidopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germination. In tomato and Arabidopsis, GA is clearly required for seed germination. Recent evidence suggests tha...

  11. A Role for Barley CRYPTOCHROME1 in Light Regulation of Grain Dormancy and Germination[W][OPEN

    PubMed Central

    Barrero, Jose M.; Downie, A. Bruce; Xu, Qian; Gubler, Frank

    2014-01-01

    It is well known that abscisic acid (ABA) plays a central role in the regulation of seed dormancy and that transcriptional regulation of genes encoding ABA biosynthetic and degradation enzymes is responsible for determining ABA content. However, little is known about the upstream signaling pathways impinging on transcription to ultimately regulate ABA content or how environmental signals (e.g., light and cold) might direct such expression in grains. Our previous studies indicated that light is a key environmental signal inhibiting germination in dormant grains of barley (Hordeum vulgare), wheat (Triticum aestivum), and Brachypodium distachyon and that this effect attenuates as after-ripening progresses further. We found that the blue component of the light spectrum inhibits completion of germination in barley by inducing the expression of the ABA biosynthetic gene 9-cis-epoxycarotenoid dioxygenase and dampening expression of ABA 8’-hydroxylase, thus increasing ABA content in the grain. We have now created barley transgenic lines downregulating the genes encoding the blue light receptors CRYTOCHROME (CRY1) and CRY2. Our results demonstrate that CRY1 is the key receptor perceiving and transducing the blue light signal in dormant grains. PMID:24642944

  12. Investigating the Influence of Karrikins on Seed Germination

    ERIC Educational Resources Information Center

    de Beer, Josef

    2012-01-01

    Recent research has identified a karrikin (a butenolide derative) known as 3-methyl-2H-furo[2,3-c]pyran-2-one, formed from burning cellulose, that stimulates seed germination. Here, I present ideas on how to investigate the influence of karrikins on seed germination in the laboratory.

  13. Smoke-induced seed germination in California chaparral

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.

    1998-01-01

    The California chaparral community has a rich flora of species with different mechanisms for cuing germination to postfire conditions. Heat shock triggers germination of certain species but has no stimulatory effect on a great many other postfire species that are chemically stimulated by combustion products. Previous reports have shown that charred wood will induce germination, and here we report that smoke also induces germination in these same species. Smoke is highly effective, often inducing 100% germination in deeply dormant seed populations with 0% control germination. Smoke induces germination both directly and indirectly by aqueous or gaseous transfer from soil to seeds. Neither nitrate nor ammonium ions were effective in stimulating germination of smoke-stimulated species, nor were most of the quantitatively important gases generated by biomass smoke. Nitrogen dioxide, however, was very effective at inducing germination in Caulanthus heterophyllus (Brassicaceae), Emmenanthe penduliflora (Hydrophyllaceae), Phacelia grandiflora (Hydrophyllaceae), and Silene multinervia (Caryophyllaceae). Three species, Dendromecon rigida (Papaveraceae), Dicentra chrysantha, and Trichostema lanatum (Lamiaceae), failed to germinate unless smoke treatment was coupled with prior treatment of 1 yr soil storage. Smoke-stimulated germination was found in 25 chaparral species, representing 11 families, none of which were families known for heat-shock-stimulated germination. Seeds of smoke-stimulated species have many analogous characteristics that separate them from most heat-shock-stimulated seeds, including: (1) outer seed coats that are highly textured, (2) a poorly developed outer cuticle, (3) absence of a dense palisade tissue in the seed coat, and (4) a subdermal membrane that is semipermeable, allowing water passage but blocking entry of large (molecular mass > 500) solutes. Tentative evidence suggests that permeability characteristics of this subdermal layer are altered by smoke. While the mechanism behind smoke-induced germination is not known, it appears that smoke may be involved in overcoming different blocks to germination in different species. For example, in Emmenanthe penduliflora, NO2 in smoke was sufficient to induce germination, and most forms of physical or chemical scarification also induced germination. For Romneya coulteri, NO2 alone failed to induce germination, and scarified seeds required addition of gibberellic acid. In Dicentra chrysantha, none of these treatments, nor smoke alone, induced germination, but germination was triggered by a combination of soil burial followed by smoke treatment. Smoke-stimulated species differed substantially in the duration of smoke exposure required to induce germination, and this was inversely correlated with tolerance to smoke exposure. We suggest that such differences in response may affect postfire community structure.

  14. Protein repair L-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds.

    PubMed Central

    Mudgett, M B; Lowenson, J D; Clarke, S

    1997-01-01

    Protein L-isoaspartate (D-aspartate) O-methyltransferases (MTs; EC 2.1.1.77) can initiate the conversion of detrimental L-isoaspartyl residues in spontaneously damaged proteins to normal L-aspartyl residues. We detected this enzyme in 45 species from 23 families representing most of the divisions of the plant kingdom. MT activity is often localized in seeds, suggesting that it has a role in their maturation, quiescence, and germination. The relationship among MT activity, the accumulation of abnormal protein L-isoaspartyl residues, and seed viability was explored in barley (Hordeum vulgare cultivar Himalaya) seeds, which contain high levels of MT. Natural aging of barley seeds for 17 years resulted in a significant reduction in MT activity and in seed viability, coupled with increased levels of "unrepaired" L-isoaspartyl residues. In seeds heated to accelerate aging, we found no reduction of MT activity, but we did observe decreased seed viability and the accumulation of isoaspartyl residues. Among populations of accelerated aged seed, those possessing the highest levels of L-isoaspartyl-containing proteins had the lowest germination percentages. These results suggest that the MT present in seeds cannot efficiently repair all spontaneously damaged proteins containing altered aspartyl residues, and their accumulation during aging may contribute to the loss of seed viability. PMID:9414558

  15. Pre-treating Seed to Enhance Germination of Desert Shrubs

    SciTech Connect

    W. K. Ostler; D. C. Anderson; D. J. Hansen

    2002-06-01

    Creosotebush [Larrea tridentata (D.C.) Cav.] and white bursage [Ambrosia dumosa (A. Gray) W.W. Payne] seeds were subjected to pre-treatments of rinsing and soaking in water and thiourea to enhance germination in laboratory experiments. The effects of darkness, temperature, seed source, and soil moisture were also evaluated in the laboratory. The best pre-treatment from the laboratory experiments, rinsing with water for 36 hours followed by drying, was field-tested at Fort Irwin, California. Two sites and two seeding dates (early March and mid April) were determined for each site. Five mulch treatments (no mulch, straw, gravel, chemical stabilizer, and plastic) were evaluated in combination with the seed pre-treatments. Field emergence was greatly enhanced with the seed pre-treatment for white bursage during the March (18-42% increase in germination) and April seedings (16-23% increase in germination). Creosotebush showed poor germination during March (2-5%) when soil temperatures averaged 15 C, but germination increased during the April trials (6-43%) when soil temperatures averaged 23 C. The seed pre-treatment during the April trials increased germination from 16-23%. The plastic mulch treatment increased germination dramatically during both the March and April trials. The plastic mulch increased soil temperatures (8-10 C)and maintained high humidity during germination. Both the chemical stabilizer and the gravel mulches improved germination over the control while the straw mulch decreased germination. These results suggest that seed pre-treatments combined with irrigation and mulch are effective techniques to establish these two dominant Mojave Desert species from seed.

  16. Seed and Germination Characteristics of 20 Amazonian Liana Species

    PubMed Central

    Roeder, Mareike; Ferraz, Isolde D. K.; Hölscher, Dirk

    2013-01-01

    Lianas are an important component of tropical forests, and may reach their highest densities in disturbed areas. However, information on seed and germination characteristics is scarce. Twenty Amazon liana species were screened for their germination characteristics, including light dependence, tolerance of desiccation and of alternating temperatures; these characteristics are considered important for the germination success in areas with relatively open canopies. Between 31–1,420 seeds per species were available, as 15 species seeds came from one mother plant. We studied seed biometry and conducted germination trials with fresh seeds (12 h light daily, or dark) and desiccated seeds at 25 °C. Germination at alternating temperatures (20/30 °C, 15/35 °C) was analyzed for nine species. Of the 20 species, eight species with the largest seeds had desiccation sensitive seeds; this is the first record for species of four genera and one family, where only desiccation tolerant seeds are otherwise recorded. Light-dependent germination was found in three species (0.01–0.015 g) and is the first record for two; however, results were based on seeds from one plant per species. Alternating temperatures of 15/35 °C decreased final germination of four out of nine species, and response to 20/30 °C cycles varied compared to constant 25 °C. Seed and germination characteristics of the species ranged from pioneer to climax traits indicating that establishment of lianas from seeds may be confined to species specific niches. PMID:27137363

  17. SEED HYDRATION-DEHYDRATION IN AN ALLELOCHEMICAL AFFECTS SEED GERMINATION AND SEEDLING GROWTH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coumarin is an allelochemical widely distributed throughout the plant kingdom. Several researchers have reported that, depending on the concentration, this plant compound inhibits or delays germination, and will inhibit or stunt radicle elongation. However, the seed germination and seedling growth...

  18. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  19. Different Modes of Hydrogen Peroxide Action During Seed Germination.

    PubMed

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  20. Seed longevity and germination characteristics of six fen plant species.

    PubMed

    Tatár, S

    2010-01-01

    Fens are among the most threatened habitats in Europe as their area has decreased considerably in the last centuries. For successful management and restoration conservationists need detailed knowledge about seed bank formation and seed longevity of plants, as these features are closely related to successional and vegetation dynamical processes. I analysed seed longevity and the germination characteristics of six fen plant species by seed burial experiments. Based on seed weight, seed bank was expected for long-term persistent for the light-seeded Schoenus nigricans, Carex appropinquata, C. pseudocyperus, C. davalliana and Peucedanum palustre and also that for the medium-seeded Cicuta virosa. It was proved that, the latter two species have short-term persistent seed banks, while Carex pseudocyperus has a transient seed bank, therefore these species may only have a limited role in restoration from seed banks. It was found that Schoenus nigricans, Carex appropinquata and C. davalliana have persistent seed banks, because some of their four-year-old seeds have emerged. Fresh seeds had low germination rate in all studied species and majority of seeds emerged after winter, except for Carex pseudocyperus. After the germination peak in spring, the majority of the ungerminated seeds of Schoenus nigricans, Peucedanum palustre, Carex appropinquata, C. davalliana and Cicuta virosa entered a secondary dormancy phase that was broken in autumn. I found the seasonal emergence of the latter three species highly similar. PMID:21565777

  1. Protein mobilization and malting-specific proteinase expression during barley germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Robust barley was germinated under three different conditions: 1) a production run in a commercial malting facility, 2) a micromalting protocol developed to generate malt with malting quality metrics similar to that from the commercial malting, and 3) a simple laboratory setting using a humidified ...

  2. A Comparison of Factors Involved in Starch Degradation in Barley Germination Under Laboratory and Malting Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grains of the malting barley cultivar Legacy were laboratory germinated (LG) or micromalted (MM) and sampled daily from 0 to 5 days after imbibition/steeping. Alpha-amylase and beta-amylase activities and protein levels along with starch, osmolyte concentration (OC), and sugar (glucose, sucrose, fr...

  3. Effects of UV-irradiation on seed germination.

    PubMed

    Noble, Rudolf E

    2002-11-01

    The advent of depletion of the ozone layer with the reported subsequent increase of UV-irradiation has led to heightened interest in the effects of UV light on cellular organisms. In this study, the effects of UV-irradiation was studied on the germination of kale, cabbage, radish and agave seeds. In all cases, UV light sped the germination of these seeds but the subsequent growth of the seedlings was markedly retarded. Pictures, taken at day 15, are presented to show this latter effect and the possible effects of UV-irradiation on seed germination are discussed. PMID:12462583

  4. MATURITY AND TEMPERATURE AFFECTS THE GERMINATION OF STYRAX JAPONICUS SEEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of seed maturity, warm (18oC) or cold (5.5oC) temperature, and gibberellic acid (GA3) on seed germination of Styrax japonicus Sieb. et. Zucc was investigated. Seed maturity and morphological changes were observed using magnetic resonance (MR) imaging (MRI). Fruits harvested on July 22,...

  5. A shotgun phosphoproteomics analysis of embryos in germinated maize seeds.

    PubMed

    Lu, Tian-Cong; Meng, Ling-Bo; Yang, Chuan-Ping; Liu, Gui-Feng; Liu, Guan-Jun; Ma, Wei; Wang, Bai-Chen

    2008-11-01

    To better understand the role that reversible protein phosphorylation plays in seed germination, we initiated a phosphoproteomic investigation of embryos of germinated maize seeds. A total of 776 proteins including 39 kinases, 16 phosphatases, and 33 phosphoproteins containing 36 precise in vivo phosphorylation sites were identified. All the phosphorylation sites identified, with the exception of the phosphorylation site on HSP22, have not been reported previously (Lund et al. in J Biol Chem, 276, 29924-29929, 2001). Assayed with QRT-PCR, the transcripts of ten kinase genes were found to be dramatically up-regulated during seed germination and those of four phosphatase genes were up-regulated after germination, which indicated that reversible protein phosphorylation occurred and complex regulating networks were activated during this period. At least one-third of these phosphoproteins are key components involved in biological processes which relate to seed germination, such as DNA repair, gene transcription, RNA splicing and protein translation, suggesting that protein phosphorylation plays an important role in seed germination. As far as we know, this is the first phosphoproteomic study on a monocot and it will lay a solid foundation for further study of the molecular mechanisms of seed germination and seedling development. PMID:18726113

  6. Live Cell Imaging During Germination Reveals Dynamic Tubular Structures Derived from Protein Storage Vacuoles of Barley Aleurone Cells

    PubMed Central

    Ibl, Verena; Stoger, Eva

    2014-01-01

    The germination of cereal seeds is a rapid developmental process in which the endomembrane system undergoes a series of dynamic morphological changes to mobilize storage compounds. The changing ultrastructure of protein storage vacuoles (PSVs) in the cells of the aleurone layer has been investigated in the past, but generally this involved inferences drawn from static pictures representing different developmental stages. We used live cell imaging in transgenic barley plants expressing a TIP3-GFP fusion protein as a fluorescent PSV marker to follow in real time the spatially and temporally regulated remodeling and reshaping of PSVs during germination. During late-stage germination, we observed thin, tubular structures extending from PSVs in an actin-dependent manner. No extensions were detected following the disruption of actin microfilaments, while microtubules did not appear to be involved in the process. The previously-undetected tubular PSV structures were characterized by complex movements, fusion events and a dynamic morphology. Their function during germination remains unknown, but might be related to the transport of solutes and metabolites. PMID:27135513

  7. Barley and full-fat canola seed in layer diets.

    PubMed

    Nwokolo, E; Sim, J

    1989-11-01

    Combinations of barley and full-fat canola seed (FFCS) were evaluated in two experiments with pullets. In Experiment 1, diets containing 40% barley plus FFCS or canola meal (CM) were compared with wheat-soybean and barley-soybean control diets. In Experiment 2, various steam-pelleted barley-FFCS mixtures (80:20 70:30, 60:40, 50:50) were used at the 40% dietary level in pullet diets. Diets within each experiment were isocaloric and isonitrogenous. Egg production was depressed when hens were fed unpelleted barley-FFCS diets, whereas hens fed pelleted barley-FFCS diets produced at a rate equivalent to those fed the control diet. Feed consumption, feed conversion, and egg weight were not influenced by dietary treatment. Yolk color index was significantly increased in eggs from hens fed diets containing increasing amounts of FFCS. In Experiment 2, contents of linoleic acid, linolenic acid, and docosahexaenoic acid in the yolk increased in a linear manner with increasing content of FFCS in the diets. PMID:2608614

  8. Seed germination of five Poa species at negative water potentials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Under field conditions water is often inadequate for satisfactory seed germination. An experiment was conducted to determine the effects of simulated dry conditions on germination and seedling growth of five bluegrass (Poa) species including: Texas, P. arachnifera Torr.; annual, P. annua L.; mutto...

  9. Proteins induced by salt stress in tomato germinating seeds

    SciTech Connect

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A. )

    1989-04-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ({sup 35}S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present.

  10. Proteomic analysis of arabidopsis seed germination and priming.

    PubMed

    Gallardo, K; Job, C; Groot, S P; Puype, M; Demol, H; Vandekerckhove, J; Job, D

    2001-06-01

    To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments. PMID:11402211

  11. Trace gas emissions and smoke-induced seed germination

    SciTech Connect

    Keeley, J.E.; Fotheringham, C.J.

    1997-05-23

    Dormant seeds of a California chaparral annual were induced to germinate by smoke or paper. Nitrogen oxides induced 100 percent vapors emitted from smoke-treated sand or treated water samples inducing. Smoke germination in a manner similar to smoke germination were comparable in acidity and concentration of nitrate and nitrite to nitrogen dioxide (NO{sub 2})-treated samples. Vapors from smoke-treated and NO{sub 2}-treated filter paper had comparable NO{sub 2} flux rates. Chaparral wildfires generate sufficient nitrogen oxides from combustion of organic matter or from postfire biogenic nitrification to trigger germination of Emmerianthe penduliflora. Nitrogen oxide-triggered germination is not the result of changes in imbibition, as is the case with heat stimulated seeds.

  12. Effect of seed stimulation on germination and sugar beet yield

    NASA Astrophysics Data System (ADS)

    Prośba-Białczyk, U.; Szajsner, H.; Grzyś, E.; Demczuk, A.; Sacała, E.; Bąk, K.

    2013-03-01

    Germination and sugar beet yield after seed stimulation were investigated. The seeds came from the energ'hill technology and were subject to laser irradiation. The experiments were conducted in the laboratory and field conditions. Lengthening of germinal roots and hypocotyls was observed. A positive effect of the stimulation on the morphological features was observed for the Eh seeds and laser irradiation applied in a three-fold dose. The energ'hill seeds exhibited a significantly higher content of carotenoids in seedlings and an increase in the content of chlorophylls. Laser light irradiation favourably modified the ratio of chlorophyll a to b. The leaves and roots of plants developed from the energ'hill and irradiated seeds were characterized by higher dry matter content thanin non-stimulated seeds. Seed stimulation had a positive influence on yielding and the saccharose content.

  13. Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.

    PubMed

    Khodakovskaya, Mariya; Dervishi, Enkeleda; Mahmood, Meena; Xu, Yang; Li, Zhongrui; Watanabe, Fumiya; Biris, Alexandru S

    2009-10-27

    Carbon nanotubes (CNTs) were found to penetrate tomato seeds and affect their germination and growth rates. The germination was found to be dramatically higher for seeds that germinated on medium containing CNTs (10-40 mug/mL) compared to control. Analytical methods indicated that the CNTs are able to penetrate the thick seed coat and support water uptake inside seeds, a process which can affect seed germination and growth of tomato seedlings. PMID:19772305

  14. Mechanism and Control of Solanum lycocarpum Seed Germination

    PubMed Central

    Pinto, Lilian V. A.; Da silva, Edvaldo A. A.; Davide, Antonio C.; De Jesus, Valquíria A. Mendes; Toorop, Peter E.; Hilhorst, Henk W. M.

    2007-01-01

    Background and Aims Solanaceae seed morphology and physiology have been widely studied but mainly in domesticated crops. The present study aimed to compare the seed morphology and the physiology of germination of Solanum lycocarpum, an important species native to the Brazilian Cerrado, with two species with endospermic seeds, tomato and coffee. Methods Morphological parameters of fruits and seeds were determined by microscopy. Germination was monitored for 40 d under different temperature regimes. Endosperm digestion and resistance, with endo-β-mannanase activity and required force to puncture the endosperm cap as respective markers, were measured during germination in water and in abscisic acid. Key Results Fruits of S. lycocarpum contain dormant seeds before natural dispersion. The best germination condition found was a 12-h alternating light/dark and high/low (20/30 °C) temperature cycle, which seemed to target properties of the endosperm cap. The endosperm cap contains 7–8 layers of elongated polygonal cells and is predestined to facilitate radicle protrusion. The force required to puncture the endosperm cap decreased in two stages during germination and showed a significant negative correlation with endo-β-mannanase activity. As a result of the thick endosperm cap, the puncture force was significantly higher in S. lycocarpum than in tomato and coffee. Endo-β-mannanase activity was detected in the endosperm cap prior to radicle protrusion. Abscisic acid inhibited germination, increase of embryo weight during imbibition, the second stage of weakening of the endosperm cap and of endo-β-mannanase activity in the endosperm cap. Conclusions The germination mechanism of S. lycocarpum bears resemblance to that of tomato and coffee seeds. However, quantitative differences were observed in embryo pressure potential, endo-β-mannanase activity and endosperm cap resistance that were related to germination rates across the three species. PMID:17855380

  15. Impact of seed germination data on genebank management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed viability data on plant genetic resource accessions in cold storage is critical information that impacts many areas of genebank management. Prior to 2002, little germination testing was conducted at the Plant Genetic Resources Conservation Unit (PGRCU), Griffin, GA. Seed was distributed from th...

  16. Malting revisited: Germination of barley (Hordeum vulgare L.) is inhibited by both oxygen deficiency and high carbon dioxide concentrations.

    PubMed

    Kleinwächter, Maik; Meyer, Ann-Kathrin; Selmar, Dirk

    2012-05-01

    During malting, barley (Hordeum vulgare L.) seeds are germinated to promote the mobilisation of storage compounds. Germination is strongly influenced by O2 and CO2; however, any distinction between the particular effects is missing. Since, in this study, the ambient O2 concentration was maintained when high CO2 concentrations were applied, for the first time the impacts of CO2 and of O2 deficiency could be distinguished unambiguously. Germination was inhibited by both O2 deficiency and high CO2 (80%) concentrations, documented by the lack of any growth of coleoptiles and any increase of α-amylase and β-glucanase activity. In contrast, the related impacts of O2 starvation and high CO2 on fermentation differ strongly, demonstrated by quite different patterns of ethanol emission. Additionally, the stress metabolism - monitored by the means of GABA accumulation - was also differently impacted. The elucidation of the underlying, so far unknown, mechanisms will provide novel opportunities to improve malting. PMID:26434318

  17. Evolution of nutrient ingredients in tartary buckwheat seeds during germination.

    PubMed

    Yiming, Zhou; Hong, Wang; Linlin, Cui; Xiaoli, Zhou; Wen, Tang; Xinli, Song

    2015-11-01

    Evolution of nutrient components and the antioxidative activity of seed sprouts of tartary buckwheat (Fagopyrum tataricum L. Gaertn) were investigated in the course of germination. Results showed that the contents of total flavonoids increased with germination time and leveled off after the third germination day with the changing trend of rutin and quercetin opposite to each other. The decrease of total protein and total sugar contents in the germinated seeds was accompanied respectively by an increase of amino acid and reducing sugar contents. The contents of vitamin C (Vc) and B1(V(B1)) exhibited a minimum with no appreciable changes found for vitamin B(2) (V(B2)) and B(6) (V(B6)). The contents of total chlorophyll, chlorophyll A and B all exhibited a maximum on the fifth germination day. The contents of fatty acids had no regular changing trend with germination time. The free radical-scavenging activities of the seeds increased with germination time and were caused by an increase in their antioxidative activity. PMID:25976817

  18. Association mapping of soybean seed germination under salt stress.

    PubMed

    Kan, Guizhen; Zhang, Wei; Yang, Wenming; Ma, Deyuan; Zhang, Dan; Hao, Derong; Hu, Zhenbin; Yu, Deyue

    2015-12-01

    Soil salinity is a serious threat to agriculture sustainability worldwide. Seed germination is a critical phase that ensures the successful establishment and productivity of soybeans in saline soils. However, little information is available regarding soybean salt tolerance at the germination stage. The objective of this study was to identify the genetic mechanisms of soybean seed germination under salt stress. One natural population consisting of 191 soybean landraces was used in this study. Soybean seeds produced in four environments were used to evaluate the salt tolerance at their germination stage. Using 1142 single-nucleotide polymorphisms (SNPs), the molecular markers associated with salt tolerance were detected by genome-wide association analysis. Eight SNP-trait associations and 13 suggestive SNP-trait associations were identified using a mixed linear model and the TASSEL 4.0 software. Eight SNPs or suggestive SNPs were co-associated with two salt tolerance indices, namely (1) the ratio of the germination index under salt conditions to the germination index under no-salt conditions (ST-GI) and (2) the ratio of the germination rate under salt conditions to the germination rate under no-salt conditions (ST-GR). One SNP (BARC-021347-04042) was significantly associated with these two traits (ST-GI and ST-GR). In addition, nine possible candidate genes were located in or near the genetic region where the above markers were mapped. Of these, five genes, Glyma08g12400.1, Glyma08g09730.1, Glyma18g47140.1, Glyma09g00460.1, and Glyma09g00490.3, were verified in response to salt stress at the germination stage. The SNPs detected could facilitate a better understanding of the genetic basis of soybean salt tolerance at the germination stage, and the marker BARC-021347-04042 could contribute to future breeding for soybean salt tolerance by marker-assisted selection. PMID:26001372

  19. The roles of auxin in seed dormancy and germination.

    PubMed

    Haiwei, Shuai; Yongjie, Meng; Xiaofeng, Luo; Feng, Chen; Ying, Qi; Wenyu, Yang; Kai, Shu

    2016-04-01

    Seed dormancy and germination are attractive topics in the fields of plant molecular biology as they are key stages during plant growth and development. Seed dormancy is intricately regulated by complex networks of phytohormones and numerous key genes, combined with diverse environmental cues. The transition from dormancy to germination is a very important biological process, and extensive studies have demonstrated that phytohormones abscisic acid (ABA) and gibberellin acid (GA) are major determinants. Consequently, the precise balance between ABA and GA can ensure that the seeds remain dormant under stress conditions and germinate at optimal times. Here we review the role of auxin in seed dormancy and germination. Auxin is one of the classic phytohormones effective during tropism growth and tissue differentiation. Recent studies, however, show that auxin possesses positive effects on seed dormancy, which suggests that auxin is the second phytohormone that induces seed dormancy, besides ABA. We will focus on the synthetic effects in detail between auxin and ABA pathways on seed dormancy and propose future research directions. PMID:27103455

  20. Seed depth and pathogens affect fatal germination of velvetleaf and giant foxtail

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatal germination of weed seeds occurs when a weed seed initiates germination, but the seedling does not reach the soil surface. Bioassays of velvetleaf and giant foxtail seed fate in Michigan field soil were used to determine the role of pathogenic fungi and seed burial depth in fatal germination ...

  1. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. PMID:26095078

  2. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of vegetable seed in containers of 1 pound or less. Vegetable seeds in containers of 1 pound or less which...

  3. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of vegetable seed in containers of 1 pound or less. Vegetable seeds in containers of 1 pound or less which...

  4. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of vegetable seed in containers of 1 pound or less. Vegetable seeds in containers of 1 pound or less which...

  5. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of vegetable seed in containers of 1 pound or less. Vegetable seeds in containers of 1 pound or less which...

  6. 7 CFR 201.29 - Germination of vegetable seed in containers of 1 pound or less.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination of vegetable seed in containers of 1 pound... (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29 Germination of vegetable seed in containers of 1 pound or less. Vegetable seeds in containers of 1 pound or less which...

  7. Expression of a Polygalacturonase Associated with Tomato Seed Germination1

    PubMed Central

    Sitrit, Yaron; Hadfield, Kristen A.; Bennett, Alan B.; Bradford, Kent J.; Downie, A. Bruce

    1999-01-01

    Radicle protrusion from tomato (Lycopersicon esculentum Mill.) seeds to complete germination requires weakening of the endosperm tissue opposite the radicle tip. In common with other cell wall disassembly processes in plants, polygalacturonases (PGs) may be involved. Only calcium-dependent exo-PG activity was detected in tomato seed protein extracts. Chromatographic profiles of a partially acid-hydrolyzed fraction of polygalacturonic acid further digested with seed extract were consistent with the presence of only calcium-dependent exo-PG activity. In addition, a transcript encoding a previously unknown PG was detected prior to the completion of germination. The mRNA, produced from a gene (LeXPG1) estimated by Southern analysis to be represented once in the genome, was also present in flowers (anthers) and in lower amounts in roots and stems. LeXPG1 mRNA abundance was low during seed development, increased during imbibition, and was even greater in seeds that had completed germination. Expression of LeXPG1 during germination predominates in the endosperm cap and radicle tip, and in the radicle appears as a distinct band possibly associated with vascular tissue differentiation. We suggest that PG is involved in cell wall loosening of the endosperm necessary for radicle protrusion from tomato seeds and in subsequent embryo and seedling growth. PMID:10517833

  8. Effect of soaking, germination, and enzyme treatment of whole barley on nutritional value and digestive tract parameters of broiler chickens.

    PubMed

    Svihus, B; Newman, R K; Newman, C W

    1997-09-01

    1. An experiment was carried out to determine the effect of soaking at 0 degrees C, soaking at room temperature, germination, or enzyme treatment of whole barley on feeding value and digestive tract parameters of 2- to 4-week old broiler chickens given diets with 700g/kg whole barley. 2. Soaking or germination decreased the soluble and total beta-glucan content (P < 0.05) and, except for soaking at 0 degrees C, the acid extract viscosity of the grain also decreased (P < 0.05). Germination and soaking in the presence of enzymes produced the lowest beta-glucan content and viscosity. 3. Except for soaking in cold water, the soaking, germination and enzyme treatments increased weight gain and decreased food:gain ratio (P < 0.05). Correspondingly, the digestibility of protein, fat, and ash, and the digestible energy content, increased (P < 0.05) after enzyme treatment or germination. 4. Chickens fed on enzyme-treated or germinated barley diets had intestinal contents with a greater proportion of dry matter and lower viscosity than chickens fed on untreated barley (P < 0.05). Consequently, the cages and chickens were cleaner (P < 0.05) and the weight of digestive organs as proportion of live weight was lower. 5. Particle size analysis of excreta revealed that whole barley was efficiently ground by the gizzards of 16-d-old chickens, and very few whole kernels were found. PMID:9347148

  9. Rapid and High Seed Germination and Large Soil Seed Bank of Senecio aquaticus in Managed Grassland

    PubMed Central

    Suter, Matthias; Lüscher, Andreas

    2012-01-01

    Senecio aquaticus, regionally a Red List species in Europe, has become increasingly abundant in agricultural grassland of medium to high management intensity in Switzerland, Southern Germany, and Austria in recent years, where it is a threat for animal and human health due to its toxicity. In this study, we investigated the seed ecology of S. aquaticus to help protection of the species in relic populations while improving its control when abundant in managed grassland. Germination percentages of fresh ripe seeds of S. aquaticus were on average 68% in 2008, but only 45% in 2010, indicating yearly variation. Germination was generally fast: ten days after the onset of the tests, often more than 45% of all seeds had germinated. When covered with a soil layer of 5 mm, germination was only 16% compared to 63% in full light. Seeds buried in the soil for one and two years showed a germination of 78%, significantly higher than that of fresh ripe seeds, thus suggesting a stimulating effect of cold-wet stratification on germination and long seed survival in the soil. In grasslands with established populations of S. aquaticus, the number of germinable seeds of the species ranged from 361 to 1875 m−2 in topsoil (0–10 cm) with an average of 1139 m−2. The large seed bank and the rapid and high germination of S. aquaticus suggest that allowing seed formation is important for its preservation in relic populations. With respect to agricultural grassland, strategies to control the species should initially target hindering seed production and dispersal. PMID:22272180

  10. Identification of Microbial Metabolites Elevating Vitamin Contents in Barley Seeds.

    PubMed

    Yousaf, Anam; Qadir, Abdul; Anjum, Tehmina; Ahmad, Aqeel

    2015-08-19

    The current investigation analyzes metabolites of Acetobacter aceti to explore chemical compounds responsible for the induction of vitamins in barley seeds. A bioactivity guided assay of bacterial extracts and chromatographic analyses of barley produce revealed 13 chemical compounds, which were subjected to principal component analysis (PCA). PCA determined four chemical compounds (i.e., quinolinic acid, pyridoxic acid, p-aminobenzoate, and α-oxobutanoic acid) highly associated with increased quantities of vitamins. Further experimentations confirmed that quinolinic acid and p-aminobenzoate were the most efficient vitamin inducers. The results indicated chloroform/ethanol (4:1) as the best solvent system for the extraction of active compounds from crude metabolites of A. aceti. Significant quantities of mevalonic acid were detected in the extracted fraction, indicating the possible induction of the isoprenoid pathway. Altogether, the current investigation broadens the frontiers in plant-microbe interaction. PMID:26173019

  11. Raffinose and stachyose metabolism are not required for efficient soybean seed germination.

    PubMed

    Dierking, Emily C; Bilyeu, Kristin D

    2009-08-15

    Raffinose family oligosaccharides (RFOs), which include raffinose and stachyose, are thought to be an important source of energy during seed germination. In contrast to their potential for promoting germination, RFOs represent anti-nutritional units for monogastric animals when consumed as a component of feed. The exact role for RFOs during soybean seed development and germination has not been experimentally determined; but it has been hypothesized that RFOs are required for successful germination. Previously, inhibition of RFO breakdown during imbibition and germination was shown to significantly delay germination in pea seeds. The objective of this study was to compare the germination potential for soybean seeds with either wild-type (WT) or low RFO levels and to examine the role of RFO breakdown in germination of soybean seeds. There was no significant difference in germination between normal and low RFO soybean seeds when imbibed/germinated in water. Similar to the situation in pea, soybean seeds of wild-type carbohydrate composition experienced a delay in germination when treated with a chemical inhibitor of alpha-galactosidase activity (1-deoxygalactonojirimycin or DGJ) during imbibition. However, low RFO soybean seed germination was not significantly delayed or reduced when treated with DGJ. In contrast to the situation in pea, the inhibitor-induced germination delay in wild-type soybean seeds was not partially overcome by the addition of galactose or sucrose. We conclude that RFOs are not an essential source of energy during soybean seed germination. PMID:19286275

  12. In situ study of water uptake by the seeds, endosperm and husk of barley using infrared spectroscopy.

    PubMed

    Cozzolino, D; Degner, S; Eglinton, J K

    2015-11-01

    Variations in the amount and rates of water uptake influence the seed hydration as well as the modification of the endosperm for industrial uses (e.g., malting). The aim of this study was to investigate and interpret absorption frequencies in the mid infrared (MIR) region associated with water uptake in whole seeds, husk and endosperm of barley seeds during the initial period of soaking in water. Partial least squares (PLS) regression models for the prediction of water uptake in the set of samples yield a coefficient of determination (R(2)) and a standard error in cross validation of 0.75 and 2.57 (% w/w), respectively. The biological implications of this study are that the first stages of germination can be monitored using the information derived from the MIR spectra. These results also demonstrated that whole seeds, endosperm and husk derived from the same variety or genotype have different patterns in the MIR region. PMID:26048560

  13. Interspecific Variations in Seed Germination of Corylopsis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was initiated to investigate the difference in germination pattern between C. coreana Uyeki and C. sinensis var. calvescens Rehder & E. H. Wilson responding to a warm (WS) and cold stratification (CS), and to study the effect of different WS temperatures interacting with different duratio...

  14. Abscisic acid transporters cooperate to control seed germination

    PubMed Central

    Kang, Joohyun; Yim, Sojeong; Choi, Hyunju; Kim, Areum; Lee, Keun Pyo; Lopez-Molina, Luis; Martinoia, Enrico; Lee, Youngsook

    2015-01-01

    Seed germination is a key developmental process that has to be tightly controlled to avoid germination under unfavourable conditions. Abscisic acid (ABA) is an essential repressor of seed germination. In Arabidopsis, it has been shown that the endosperm, a single cell layer surrounding the embryo, synthesizes and continuously releases ABA towards the embryo. The mechanism of ABA transport from the endosperm to the embryo was hitherto unknown. Here we show that four AtABCG transporters act in concert to deliver ABA from the endosperm to the embryo: AtABCG25 and AtABCG31 export ABA from the endosperm, whereas AtABCG30 and AtABCG40 import ABA into the embryo. Thus, this work establishes that radicle extension and subsequent embryonic growth are suppressed by the coordinated activity of multiple ABA transporters expressed in different tissues. PMID:26334616

  15. Effects of frugivorous birds on seed retention time and germination in Xishuangbanna, southwest China

    PubMed Central

    SHI, Ting-Ting; WANG, Bo; QUAN, Rui-Chang

    2015-01-01

    The dispersal of many plants depends on transportation by birds as seed dispersers. The birds play an important role in long distance seed dispersal and may also affect seed germination. However, for plants who have many bird dispersers, the influence of dominant and non-dominant dispersers on retention time (dispersal distance) and germination remains poorly understood. In this study, we performed experiments with captive frugivorous birds and fruiting plant species to study the effects of dominant and non-dominant dispersers on seed retention time (SRT) and germination (seed germination percentage and germination speed). Our study showed a great interspecific variation in the effects of frugivorous birds on both SRT and germination. Some birds enhance the germination of a given plant species, but others do not. Generally, the dominant visitors improved the seed germination and performed longer seed retention time. PMID:26228475

  16. Chaparral & Fire Ecology: Role of Fire in Seed Germination.

    ERIC Educational Resources Information Center

    Steele, Nancy L. C.; Keeley, Jon E.

    1991-01-01

    An activity that incorporates the concepts of plant structure and function and ecology is described. Students investigate the reasons why some California chaparral seeds germinate only after a fire has burned the surrounding chaparral. The procedure, discussion and analysis questions, expected results, potential problems, and additional activities…

  17. Sulfur dioxide effects on petunia pollen germination and seed set

    SciTech Connect

    Linskens, H.F.; van Megen, Y.; Pfahler, P.L.; Wilcox, M.

    1985-05-01

    Information pertaining to SO/sub 2/ effects on sexual reproduction is extremely limited even though this complex process is critical especially in annual species. This study reports the SO/sub 2/ effect on both in vitro and in vivo pollen germination characteristics and in vivo seed set in Petunia hybrida Vilm.

  18. Response of soybean seed germination to cadmium and acid rain.

    PubMed

    Liu, Ting Ting; Wu, Peng; Wang, Li Hong; Zhou, Qing

    2011-12-01

    Cadmium (Cd) pollution and acid rain are the main environmental issues, and they often occur in the same agricultural region. Nevertheless, up to now, little information on the combined pollution of Cd(2+) and acid rain action on crops were presented. Here, we investigated the combined effect of Cd(2+) and acid rain on the seed germination of soybean. The results indicated that the single treatment with the low level of Cd(2+) (0.18, 1.0, 3.0mgL(-1)) or acid rain (pH ?3.0) could not affect the seed germination of soybean, which was resulted in the increased activities of peroxidase and catalase. The single treatment with the high concentration of Cd(2+) (>6mgL(-1)) or acid rain at pH2.5 decreased the activities of peroxidase and catalase, damaged the cell membrane and then decreased the seed germination of soybean. Meanwhile, the same toxic effect was observed in the combined treatment with Cd(2+) and acid rain, and the combined treatment had more toxic effect than the single treatment with Cd(2+) or acid rain. Thus, the combined pollution of Cd(2+) and acid rain had more potential threat to the seed germination of soybean than the single pollution of Cd(2+) or acid rain. PMID:21479540

  19. Investigation of germination and aging in Moravian III barley grain by nuclear magnetic resonance.

    PubMed Central

    Ridenour, C F; Xiong, J; Maciel, G E

    1996-01-01

    High-resolution, solid-state 1H nuclear magnetic resonance (NMR) techniques are used for the first time to study germination in imbibed Moravian III barley grains. Whereas magic-angle spinning 1H NMR spectra reveal the water and lipid components in barley grains, combined rotation and multiple-pulse spectroscopy techniques provide 1H NMR spectra of grains that reveal the protein and carbohydrate as well as the water and lipid components. Spectra of grains are compared with spectra of model compounds to verify assignments. 1H T1 and T2 measurements using magic-angle spinning only and combined rotation and multiple-pulse spectroscopy techniques provide information about molecular mobility within the grains during inhibition. Some grains were subjected to artificial aging conditions. 1H NMR spectral comparisons are made between normal, viable grains and artificially aged grains. PMID:8770229

  20. [Grain filling dynamics and germination characteristics of Bupleurum chinense seeds].

    PubMed

    Jin, Xin; Ren, Bing; Cao, Ai-Nong; Jin, Xiao-Jun

    2014-10-01

    Bupleurum chinense used in the study were cultivated in the experimental fields of Gansu agricultural University for three years. The seeds of B. chinense were collected every 3 days 10 d after the blossom. The result showed that the 1 000-grain fresh weight reached the maximum 43 d after the blossom and then decreased rapidly, at the mature period the fresh weight of seeds were falling to the same level of the dry weight. The dynamic change of the grain dry matter accumulation showed as an S-shape curve, the rapid increase stage was 25-34 d following the flower, and the grain filling was ended 46 d after blossom. Grain filling rate was under the law "fast-slow-fast-slow". And there were two peaks of grain filling rate appeared, after reached the second peak 28 d after the flower the filling rate decreased rapidly and stayed steadily 43 d after flowering. The dehydration rate was also measured at its maximum 43 d following flower. The indexes of seeds all reached the top 52 days following the blossom, when the germination rate reached the peak (34.33%) and water content of seeds was near 10%. The rate of germination and the 1 000-graid weight of seed showed significant positive correlation, while the water content of seeds was found significant negatively correlation with germination percentage. So the best time for harvest should be 52 d after flowering (9 month), the seeds collected at that time showed both high quality and germination rate. PMID:25612430

  1. Serine proteinases from barley malt may degrade beta-amylase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley seed proteinases are critically important to seed germination and malting in that they generate amino acids from seed N reserves, supporting embryo growth during germination and yeast fermentation during brewing. However, relatively little is known regarding the endogenous protein substrate ...

  2. Germination of vegetable seeds exposed to very high pressure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  3. Seed germination and seedling fitness in Mesua ferrea L. in relation to fruit size and seed number per fruit

    NASA Astrophysics Data System (ADS)

    Khan, M. Latif; Bhuyan, Putul; Shankar, Uma; Todaria, Nagendra P.

    1999-11-01

    Effect of fruit size and seediness (seed number per fruit) was examined on germination and early growth of seedlings in Mesua ferrea L. Fruiting incidence (number of fruited trees in a population) and fruit loading (number of fruits per tree) vary from one year to the other, and were greater in 1997 than in 1998. Seeds from large fruits (> 40 g) are preferred for forestry plantations and those from small fruits (< 40 g) are discarded, despite a greater proportion of small fruits (63.2 %) than large fruits (36.8 %). A fruit, large or small in size, may contain one, two, three or four seeds. The germination percentage of seeds increased from 1-seeded through 4-seeded fruits both in laboratory and greenhouse conditions, and both in case of large and small fruits. Conversely, the mean seed weight and germination time decreased along this gradient, i.e. seeds from 1-seeded fruits were the heaviest and required maximum time for germination, and the seeds from 4-seeded fruits were the lightest and required minimum time for germination. The seeds from small fruits were lighter in weight, achieved lower germination percentages and required greater germination time than the seeds from large fruits in all four seeded categories. Seedlings from seeds from 1-seeded fruits survived better and with stronger vigour after 1 year of growth than seedlings from 2-, 3- and 4-seeded fruits. Further, seedling survival and vigour were greater for seeds from large rather than small fruits.

  4. Interactions of Light and a Temperature Shift on Seed Germination

    PubMed Central

    Taylorson, R. B.; Hendricks, S. B.

    1972-01-01

    Germination of Rumex obtusifolius L. seeds is potentiated to an observable degree in 2 minutes by a single shift in temperature from 20 to 35 C. Half-maximal potentiation requires less than 32 minutes at the higher temperature. Similar sensitivities to shifts in temperature were observed for seeds of Barbarea vulgaris, R.Br. B. verna (Mill.) Asch., and Lepidium virginicum L. A shift in temperature interacts strongly with change in form of phytochrome induced by light on germination of the four kinds of seeds. The potentiated effects for R. obtusifolius are only moderately affected by 40 μm cycloheximide. Both the temperature shift and light actions are apparently independent of processes of synthesis necessary for growth. PMID:16657910

  5. Life cycle inventory for the production of germinated oil palm seeds at a selected seed production unit in Malaysia

    NASA Astrophysics Data System (ADS)

    Khairuddin, Nik Sasha Khatrina; Ismail, B. S.; Muhamad, Halimah; May, Choo Yuen

    2013-11-01

    The increasing global demand for edible oil has encouraged Malaysia to increase the areas under oil palm cultivation. The total demand for germinated oil palm seeds in the years 2009, 2010, 2011 and 2012 were 86.4, 76.5, 72.6 and 75.2 million, respectively. Production of germinated oil palm seeds is the first link in the palm oil supply chain. Therefore, good management practices at seed production stage is required to ensure only high quality germinated oil palm seeds are produced before sale to customers. Life cycle assessment (LCA) has been used as a tool to assess environmental impact of the processes throughout a product's lifespan and this approach is an important tool for assessing green house gas (GHG) emission. For this study, a gate-to-gate life cycle inventory (LCI) of a single germinated oil palm seed production unit was carried out. The functional unit used for this LCI was one germinated oil palm seed. To determine the environmental impact for the production of germinated oil palm seeds, information on the inputs were obtained. The inputs for the production of germinated oil palm seeds involved materials such as polyethylene bags, electricity, water, chemicals and fungicides. For this study, the system boundary involved seed germination process and management of germinated oil palm seeds. It was found that the amount of input such as materials and energy used in the production of germinated oil palm seeds was very minimal.

  6. Proteomic Analysis of Lettuce Seed Germination and Thermoinhibition by Sampling of Individual Seeds at Germination and Removal of Storage Proteins by Polyethylene Glycol Fractionation1

    PubMed Central

    Song, Bin-Yan; Deng, Zhi-Jun; Wang, Yue; Liu, Shu-Jun; Møller, Ian Max; Song, Song-Quan

    2015-01-01

    Germination and thermoinhibition in lettuce (Lactuca sativa ‘Jianyexianfeng No. 1’) seeds were investigated by a proteomic comparison among dry seeds, germinated seeds at 15°C, at 15°C after imbibition at 25°C for 48 h, or at 25°C in KNO3 (all sampled individually at germination), and ungerminated seeds at 25°C, a thermoinhibitory temperature. Before two-dimensional gel electrophoresis analysis, storage proteins (greater than 50% of total extractable protein) were removed by polyethylene glycol precipitation, which significantly improved the detection of less abundant proteins on two-dimensional gels. A total of 108 protein spots were identified to change more than 2-fold (P < 0.05) in abundance in at least one germination treatment. Nineteen proteins increasing and one protein decreasing in abundance during germination had higher abundance in germinated 15°C, 15°C after imbibition at 25°C for 48 h, and 25°C in KNO3 seeds than in ungerminated 25°C seeds. Gene expression of 12 of those proteins correlated well with the protein accumulation. Methionine metabolism, ethylene production, lipid mobilization, cell elongation, and detoxification of aldehydes were revealed to be potentially related to lettuce seed germination and thermoinhibition. Accumulation of three proteins and expression of five genes participating in the mevalonate (MVA) pathway of isoprenoid biosynthesis correlated positively with seed germinability. Inhibition of this pathway by lovastatin delayed seed germination and increased the sensitivity of germination to abscisic acid. MVA pathway-derived products, cytokinins, partially reversed the lovastatin inhibition of germination and released seed thermoinhibition at 25°C. We conclude that the MVA pathway for isoprenoid biosynthesis is involved in lettuce seed germination and thermoinhibition. PMID:25736209

  7. Effect of day length on germination of seeds collected in Alaska

    USGS Publications Warehouse

    Densmore, R.V.

    1997-01-01

    Day length control can effectively limit seed germination to favorable seasons, but this phenomenon has been studied in relatively few wild plants. I tested species from interior Alaska for day length control of germination under controlled conditions, and I also monitored germination phenology in natural habitats. Unstratified and cold-stratified seeds were germinated on short (13 h) and long (22 h) day length and in the dark at constant and alternating temperatures. On long day length, unstratified Ledum decumbens and Saxifraga tricuspidata seeds germinated from 5??C to 20??C, but on short day length few or no seeds germinated at 5??C and 10??C and germination was reduced at higher temperatures. Unstratified seeds of Diapensia lapponica and Chamaedaphne calyculata germinated only at 15??C and 20??C on long day length, and short day length completely inhibited germination. Cold stratification widened the temperature range for germination on both long and short day lengths, but germination was still lower on short than long day length. Germination phenology in natural habitats was consistent with germination in controlled conditions. In these species, short day length and low temperatures interact to inhibit germination in the fall. After overwintering, seeds germinate in the spring at low temperatures and on long day lengths. The inhibitory effect of short day length is not important in the spring because day length is already long at snowmelt.

  8. Morphological, Physiological and Biochemical Impact of Ink Industry Effluent on Germination of Maize (Zea mays), Barley (Hordeum vulgare) and Sorghum (Sorghum bicolor).

    PubMed

    Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch

    2015-11-01

    The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water. PMID:26341252

  9. Seed germination and life history syndromes in the California chaparral

    USGS Publications Warehouse

    Keeley, J.E.

    1991-01-01

    Syndromes are life history responses that are correlated to environmental regimes and are shared by a group of species (Stebbins, 1974). In the California chaparral there are two syndromes contrasted by the timing of seedling recruitment relative to wildfires. One syndrome, here called the fire-recruiter or refractory seed syndrome, includes species (both resprouting and non-resprouting) which share the feature that the timing of seedling establishment is specialized to the first rainy season after fire. Included are woody, suffrutescent and annual life forms but no geophytes have this syndrome. These species are linked by the characteristic that their seeds have a dormancy which is readily broken by environmental stimuli such as intense heat shock or chemicals leached from charred wood. Such seeds are referred to as “refractory” and dormancy, in some cases, is due to seed coat impermeability (such seeds are commonly called hardseeded), but in other cases the mechanism is unknown. Seeds of some may require cold stratification and/or light in addition to fire related stimuli. In the absence of fire related cues, a portion or all of a species’ seed pool remains dormant. Most have locally dispersed seeds that persist in the soil seed bank until the site burns. Dispersal of propagules is largely during spring and summer which facilitates the avoidance of flowering and fruiting during the summer and fall drought. Within a life form (e.g., shrub, suffrutescent, etc.), the seeds of these species have less mass than those of species with non-refractory seeds and this possibly reflects the environmental favorableness of the postfire environment for seedling establishment. Regardless of when fire occurs, germination is normally delayed until late winter or early spring. In the absence of fire, or other disturbance, opportunities for population expansion are largely lacking for species with this syndrome. The other syndrome, here called the fire-resister or non-refractory seed syndrome, includes species that are resilient to frequent fires (mostly by vegetative resprouting), but require fire-free periods for recruiting new seedlings. Included are shrubs, subshrubs, suffrutescents, lianas, geophytes and annuals. All are linked by the characteristic that their seeds germinate in the absence of cues related to wildfires. In many cases no form of seed dormancy is present and the seeds germinate soon after dispersal; consequently these species do not accumulate a persistent seed bank. Germination and seedling establishment is independent of fire and thus opportunities for population expansion are also independent of fire. The demographic pattern of seedling recruitment varies with the life form. For shrubs, seedling recruitment may be restricted to sites free of fire for periods of a hundred years or more. Recruitment appears to require relatively mesic conditions and this may account for the patchy distribution of these species within the matrix of relatively arid sites. Finding such sites has selected for propagules specialized for wind or animal dispersal; the majority are bird dispersed. These shrub species all disperse fruits in fall and winter and this may have been selected to take advantage of migratory birds as well as to time dispersal to the winter rains typical of the mediterranean-climate. Germination typically occurs within several weeks of the first fall or winter rains. Maturation of flowers and fruits during the summer and fall drought may account for the distribution of these species on more mesic sites. Seed mass of these species is large and this may have been selected to provide an advantage to seedlings establishing under the canopy of this dense shrub community.

  10. GERMINATION OF STYRAX JAPONICUS SEEDS AS INFLUENCED BY STORAGE AND SOWING CONDITIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effect of storage and sowing conditions on seed germination of Styrax japonicus Sieb. et. Zucc, an ornamental tree with seeds that exhibit double dormancy. The germination of freshly harvested seeds was compared with seeds that had been stored dry at 20C for a year before s...

  11. Carbonhydrate Content and Root Growth in Seeds Germinated Under Salt Stress: Implications for Seed Conditioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugars and sugar alcohols have well documented roles in salt tolerance in whole plants and maturing seeds. Less is known, however, about possible effects of these compounds during germination. Seeds from mannitol-accumulating salt-tolerant celery [Apium graveloens L. var. dulce (P. Mill.) DC], non...

  12. Photoinhibition of germination in grass seed--implications for prairie revegetation.

    PubMed

    Mollard, Federico P O; Naeth, M Anne

    2014-09-01

    Germination photoinhibition is not a recognized cause of revegetation failure; yet prolonged sunlight exposure can inhibit germination of several grass species. This research addressed susceptibility to photoinhibition of selected native grass species used to restore Canadian prairies, and reclamation treatments to alter environmental conditions in order to release seeds from photoinhibition. Under laboratory conditions effects of photoinhibition were tested on the ability of seeds to germinate at low water potential and effects of daily alternating temperatures and nitrates to break photoinhibition. Whether surficial mulch can release seeds from photoinhibition was assessed in a field experiment. Germination photoinhibition was evident in Festuca hallii and Koeleria macrantha seeds even under very low irradiances. The prolonged exposure to light decreased germination rates and ability of seeds to germinate at low water potentials. Daily fluctuating temperatures released a fraction of Bromus carinatus and Elymus trachycaulus seeds from photoinhibition yet did not improve F. hallii or K. macrantha germinability. Nitrates failed to break seed photoinhibition in all species tested. In the field experiment, mulched F. hallii seeds (covered with an erosion control blanket) showed a tenfold increase in germination percentages relative to seeds exposed to direct sunlight, indicating the facilitative effects of mulching on attenuation of the light environment. We conclude that germination photoinhibition as a cause of emergence failures in land reclamation where seed is broadcast or shallow seeded should be recognized and germination photoinhibition included in the decision making process to select revegetation seeding techniques. PMID:24794519

  13. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination.

    PubMed

    Dekkers, Bas J W; Pearce, Simon; van Bolderen-Veldkamp, R P; Marshall, Alex; Widera, Pawel; Gilbert, James; Drost, Hajk-Georg; Bassel, George W; Müller, Kerstin; King, John R; Wood, Andrew T A; Grosse, Ivo; Quint, Marcel; Krasnogor, Natalio; Leubner-Metzger, Gerhard; Holdsworth, Michael J; Bentsink, Leónie

    2013-09-01

    Seed germination is a critical stage in the plant life cycle and the first step toward successful plant establishment. Therefore, understanding germination is of important ecological and agronomical relevance. Previous research revealed that different seed compartments (testa, endosperm, and embryo) control germination, but little is known about the underlying spatial and temporal transcriptome changes that lead to seed germination. We analyzed genome-wide expression in germinating Arabidopsis (Arabidopsis thaliana) seeds with both temporal and spatial detail and provide Web-accessible visualizations of the data reported (vseed.nottingham.ac.uk). We show the potential of this high-resolution data set for the construction of meaningful coexpression networks, which provide insight into the genetic control of germination. The data set reveals two transcriptional phases during germination that are separated by testa rupture. The first phase is marked by large transcriptome changes as the seed switches from a dry, quiescent state to a hydrated and active state. At the end of this first transcriptional phase, the number of differentially expressed genes between consecutive time points drops. This increases again at testa rupture, the start of the second transcriptional phase. Transcriptome data indicate a role for mechano-induced signaling at this stage and subsequently highlight the fates of the endosperm and radicle: senescence and growth, respectively. Finally, using a phylotranscriptomic approach, we show that expression levels of evolutionarily young genes drop during the first transcriptional phase and increase during the second phase. Evolutionarily old genes show an opposite pattern, suggesting a more conserved transcriptome prior to the completion of germination. PMID:23858430

  14. Thiamine binding and metabolism in germinating seeds of selected cereals and legumes.

    PubMed

    Gołda, Anna; Szyniarowski, Piotr; Ostrowska, Katarzyna; Kozik, Andrzej; Rapała-Kozik, Maria

    2004-03-01

    The basic characteristics of thiamine metabolism in germinating seeds of maize (Zea mays), oat (Avena sativa), faba bean (Vicia faba) and garden pea (Pisum sativum) are presented with a special emphasis of a possible thiamine storage function of seed thiamine-binding proteins (TBPs). Seeds were germinated for 6 d in the dark. Thiamine-binding activity in seeds decreased during germination by 50% in cereals and by 30% in legumes. The degradation of TBPs was also detected by polyacrylamide gel electrophoresis. The total thiamine content decreased rapidly to 20-40% of the initial value in cereal seeds during first 3 d of germination while in legume seeds thiamine content started changing from the fourth day and dropped by 50% at the sixth day. A composite pattern was found for the changes in thiamine pyrophosphate (TPP) contribution to total thiamine during seed germination. A peak of the coenzyme percentage was usually detected at the second day of germination. Another gain of TPP was often seen toward the sixth day of germination. The activity of thiamine pyrophosphokinase (EC 2.7.6.2) was high in resting legume seeds and did not significantly change during germination. In contrast, the low activity of this thiamine-activating enzyme in cereal seeds progressively increased during germination. Thiamine phosphate synthase (EC 2.5.1.3) was also detected in seeds and was shown to contribute significantly to the balance of thiamine compounds during seed germination. PMID:15051042

  15. An Acetaldehyde Dehydrogenase from Germinating Seeds 1

    PubMed Central

    Oppenheim, Ariella; Castelfranco, Paul A.

    1967-01-01

    An acetaldehyde dehydrogenase from germinating peanut cotyledons has been purified and its properties have been studied. At the highest purification achieved the preparation is free of alcohol dehydrogenase activity. The enzyme is specific toward diphosphopyridine nucleotide, and can oxidize a variety of aldehydes. The highest reaction rate is obtained with acetaldehyde, which is oxidized to acetate. All the attempts to demonstrate the formation of an energy-rich acetyl derivative during the course of the reaction failed. The enzyme is inhibited by aldol; it is sensitive toward sulfhydryl reagents, including arsenite. Reduced glutathione stabilizes the enzyme, while cysteine, mercaptoethanol, and coenzyme A are inhibitory. Acetaldehyde dehydrogenase is activated by phosphate and inhibited by fatty acyl-CoA derivatives. It appears to be activated by the substrate, as was deduced from the shape of the plot of reaction velocity against acetaldehyde. These properties suggest that the enzyme is an allosteric protein. The plot of reaction velocity against substrate concentration is anomalous. The shape of this plot seems to reflect the presence of 2 different enzymatic activities, one with extremely high apparent affinity for acetaldehyde. The 2 activities may reflect 2 conformational states of a single enzyme or 2 separate enzymes. Experiments with tissue slices indicate that the reaction catalyzed by this enzyme is a step in the oxidation of ethanol to acetyl-CoA. This enzyme may also participate in the oxidation of pyruvate to acetyl-CoA in certain tissues. PMID:16656475

  16. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.)

    PubMed Central

    Tian, Yu; Guan, Bo; Zhou, Daowei; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P < 0.05). The recommended prime reagents were GA at 10?mg/L, NaCl at 50?mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50?mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method. PMID:25093210

  17. Development of Limit Dextrinase in Germinated Barley (Hordeum vulgare L.) (Evidence of Proteolytic Activation).

    PubMed Central

    Longstaff, M. A.; Bryce, J. H.

    1993-01-01

    Barley (Hordeum vulgare L.) that had been malted for 5 d developed only a small amount of bound (inactive) limit dextrinase, and very little free (active) enzyme was detected. Continuation of malting for up to 10 d only slightly increased the amount of both bound and free forms. Grain grown under conditions of ample moisture (wet grown) for 5 d produced a much higher amount of bound enzyme but a similarly low amount of free enzyme compared to malting conditions. After 10 d of growth there was a decrease in the amount of bound enzyme and a large increase in the amount of free enzyme, such that almost all of the enzyme was present in the free form. A more detailed study of limit dextrinase development in wet-grown grains revealed that a bound form was rapidly produced soon after germination. Five to 6 d after germination the amount of bound enzyme decreased rapidly and a very low amount was found in grains 9 d after germination. Meanwhile, a free form appeared slightly later and its initial rate of development was slow. At about 5 d after germination, precisely when the bound enzyme began to decrease, the free form increased rapidly, so that by 9 d after germination nearly all the enzyme was in the free form. The release of bound limit dextrinase in vitro occurred by proteolytic modification through the action of cysteine proteinases that were kept active or activated by the presence of reduced thiols in the extraction medium. The presence of cysteine proteinases was confirmed by inhibition studies using the inhibitors iodoacetamide, N-ethylmaleimide, antipain, and leupeptin. In addition, most of the bound form of limit dextrinase was soluble in 0.2 M sodium acetate buffer (pH 5.0) following extraction at 30[deg]C for 16 h and centrifugation at 3000g. PMID:12231739

  18. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging

    PubMed Central

    Gorzolka, Karin; Kölling, Jan; Nattkemper, Tim W.; Niehaus, Karsten

    2016-01-01

    MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals’ germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest. PMID:26938880

  19. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging.

    PubMed

    Gorzolka, Karin; Kölling, Jan; Nattkemper, Tim W; Niehaus, Karsten

    2016-01-01

    MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals' germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest. PMID:26938880

  20. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    PubMed

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA). PMID:25818098

  1. Common QTL Affect the Rate of Tomato Seed Germination under Different Stress and Nonstress Conditions

    PubMed Central

    Foolad, Majid R.; Subbiah, Prakash; Zhang, Liping

    2007-01-01

    The purpose of this study was to determine whether the rates of tomato seed germination under different stress and nonstress conditions were under common genetic controls by examining quantitative trait loci (QTL) affecting such traits. Seeds of BC1 progeny of a cross between a slow-germinating tomato breeding line and a rapid-germinating tomato wild accession were evaluated for germination under nonstress as well as cold, salt, and drought stress conditions. In each treatment, the most rapidly-germinating seeds were selected, grown to maturity, and subjected to molecular marker analysis. A selective genotyping approach detected between 6 and 9 QTL affecting germination rate under each of the four conditions, with a total of 14 QTL identified. Ten QTL affected germination rate under 2 or 3 conditions, which were considered germination-related common QTL. Four QTL affected germination rate only in one treatment, which were considered germination-related, condition-specific QTL . The results indicated that mostly the same QTL affected seed germination under different stress and nonstress conditions, supporting a previous suggestion that similar physiological mechanisms contribute to rapid seed germination under different conditions. Marker-assisted selection for the common QTL may result in progeny with rapid seed germinability under different conditions. PMID:18317505

  2. Cryopreservation of Bletilla striata mature seeds, 3-day germinating seeds and protocorms by droplet-vitrification.

    PubMed

    Jitsopakul, N; Thammasiri, K; Ishikawa, K

    2008-01-01

    Droplet-vitrification was studied for the cryopreservation of Bletilla striata mature seeds (0 day after sowing), 3-day germinating seeds and protocorms (6, 9 and 12 days after sowing). Mature seeds, 3-day germinating seeds and 6-day old protocorms were precultured in liquid medium supplemented with 0.3 M sucrose for 3 h on a shaker (110 rpm) and then dehydrated with 2 M glycerol and 0.4 M sucrose in liquid medium (loading solution) for 15 min and exposed to PVS2 solution for 60 min at 25 degree C. The plant materials were then immersed in liquid nitrogen, rewarmed rapidly and cultured on solidified ND medium supplemented with 3% sucrose for recovery. After cryopreservation, the highest germination percentage of mature seeds, 3-day germinating seeds and survival of cryopreserved 6-day old protocorms was 93%, 91% and 84%, respectively. For 9-day old protocorms, highest survival (66%) after cryopreservation was achieved after preculture with 0.5 M sucrose for 3 h on a shaker, dehydration with loading solution for 15 min, exposure to PVS2 solution for 40 min at 25 degree C, and culture on solidified ND medium supplemented with 480 mg per liter ammonium nitrate and 3% sucrose. No survival was observed in cryopreserved 12-day old protocorms. PMID:19280055

  3. THE ROLE OF THE SLEEPY1 (SLY1) F-BOX GENE IN GA REGULATION OF SEED GERMINATION IN ARABIDOPSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    17th International Conference on Arabidopsis Research, June 28-July 2, 2006, Madison, WI. Abstract #378. Seed germination is a complex developmental process regulated by phytohormones. The phytohormone abscisic acid (ABA) inhibits seed germination, whereas gibberellin (GA) stimulates seed germinat...

  4. Effect of volatile and gaseous metabolites of germinating pea seeds on Micromycetes.

    PubMed

    Catská, V

    1980-01-01

    Differences in the effect of volatile and gaseous metabolites of germinating pea seeds on the germination of spores of Mucor racemosus and macroconidia of Fusarium oxysporum are described. Germination of spores of M. racemosus was inhibited by seed metabolites whereas germination of macroconidia of F. oxysporum was stimulated during the first two days and inhibition occurred only after further two days of germination of the seeds. A pronounced inhibition of germination of spores of both micromycetes took place due to absorption of CO2 from volatile and gaseous metabolites. Absorption of some components of seed metabolites in a KMnO4 solution led to a decrease of the inhibitory effect on germination of spores of M. racemosus and stimulatory effect on germination of macroconidia of F. oxysporum. PMID:6769770

  5. Germination dramatically increases isoflavonoid content and diversity in chickpea (Cicer arietinum L.) seeds.

    PubMed

    Wu, Ziyun; Song, Lixia; Feng, Shengbao; Liu, Yuancai; He, Guangyuan; Yioe, Yoecelyn; Liu, Shao Quan; Huang, Dejian

    2012-09-01

    The effect of germination on bioactive components in legume seeds was investigated in terms of the antioxidant capacity and total phenolic contents. Germination increased the total phenolic content and antioxidant capacity of most seeds. Particularly in chickpea seeds, the isoflavone contents increased by over 100 fold, mainly due to the increase of formononetin and biochanin A level. As a result, these two compounds were conveniently isolated from the germinated seeds in preparative scale and structurally confirmed by UV-vis, ESI-MS, and (1)H NMR spectroscopies. Isoflavonoid fingerprints analyzed by HPLC-PDA and LC-ESI-MS demonstrated that germination could significantly increase isoflavonoids diversity. Twenty-five isoflavonoids were detected and identified tentatively. These include 20 isoflavones, 2 isoflavanones, and 3 pterocarpan phytoalexins. Total isoflavonoid content of germinated chickpea was approximately 5-fold of that of germinated soybean. Our findings suggest that the germinated chickpea seeds could serve as a promising functional food rich in isoflavonoids. PMID:22816801

  6. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth.

    PubMed

    Lin, Daohui; Xing, Baoshan

    2007-11-01

    Plants need to be included to develop a comprehensive toxicity profile for nanoparticles. Effects of five types of nanoparticles (multi-walled carbon nanotube, aluminum, alumina, zinc, and zinc oxide) on seed germination and root growth of six higher plant species (radish, rape, ryegrass, lettuce, corn, and cucumber) were investigated. Seed germination was not affected except for the inhibition of nanoscale zinc (nano-Zn) on ryegrass and zinc oxide (nano-ZnO) on corn at 2000 mg/L. Inhibition on root growth varied greatly among nanoparticles and plants. Suspensions of 2000 mg/L nano-Zn or nano-ZnO practically terminated root elongation of the tested plant species. Fifty percent inhibitory concentrations (IC50) of nano-Zn and nano-ZnO were estimated to be near 50mg/L for radish, and about 20mg/L for rape and ryegrass. The inhibition occurred during the seed incubation process rather than seed soaking stage. These results are significant in terms of use and disposal of engineered nanoparticles. PMID:17374428

  7. Temperature-dependent models of Zannichellia palustris seed germination for application in aquatic systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The germination characteristics of Zannichellia palustris seeds collected from the spring-fed Fall River of Northern California were investigated across a range of constant temperatures from 4.2 to 40.8 ºC. Germination experiments were conducted on freshly produced and collected seeds. Seeds germina...

  8. Interaction of accelerated aging and p-coumaric acid on crimson clover seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Accelerated seed aging (high temperature (41 C) and high humidity (100%)) reduces germination and seedling vigor, and provides some indication as to seed g...

  9. Carbamoyl Phosphate Synthetase Activity from the Cotyledons of Developing and Germinating Pea Seeds

    PubMed Central

    Kollöffel, Chris; Verkerk, Bep C.

    1982-01-01

    Carbamoyl phosphate synthetase activity was measured in partially purified extracts from cotyledons of developing and germinating seeds of Pisum sativum L. Some properties of the enzyme were established. During cotyledon development, the activity initially increased sharply but decreased during further development. The activity from germinating seeds was only one-tenth of the maximum activity at an early developmental phase. The results are discussed in relation to pea seed development and germination. PMID:16662147

  10. Genes related to high temperature tolerance during maize seed germination.

    PubMed

    Dutra, S M F; Von Pinho, E V R; Santos, H O; Lima, A C; Von Pinho, R G; Carvalho, M L M

    2015-01-01

    The identification of genes related to heat tolerance is fundamental for the development of high-quality seeds that are tolerant to heat stress condition. The objective of this study was to evaluate maize lineages and the gene expression involved in high temperature tolerance during germination using physiological tests, proteomics, and transcriptome analysis. Seeds from six maize lineages (30, 44, 54, 63, 64, and 91) with different levels of tolerance to high temperatures were used. Lineages 54 and 91 were observed to be more tolerant to high temperature conditions. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration. The highest expression of α-amylase was observed in maize seeds from lineages 30 and 91 that were subjected to controlled deterioration; with the controlled deterioration, the highest level of gene expression did not occur in the most tolerant materials; the association of lower expression of genes involved in heat-resistant protein systems was observed in seeds from lineage 44, which were more susceptible to high temperatures, and the highest gene expression of LEA D-34, ZmAN13, and AOX-1 was observed in seeds from lineage 64 when submitted to controlled deterioration. PMID:26782452

  11. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    PubMed Central

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  12. Effect of γ-ray irradiation on the germinating characteristics of wheat seed

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yu, Yong; Tian, Xiaojing

    2012-04-01

    Few researches have been reported on the long-term germination characteristics and the effect of high gamma radiation dose on cereal seeds. In this paper, to observe the effects of gamma irradiation (0-3 kGy) on the germination of wheat seed in long-term (within 20 months), wheat seed was dried after irradiation and the germination experiment during storage time was conducted. It was found that the lengths of buds of irradiated wheat seeds diminished, the roots of irradiated wheat seeds disappeared, and no germinations in irradiated wheat seed was found. The influence of γ-ray irradiation on roots was more significant than that on buds. After long-term storage, the germination of irradiated wheat seeds increased.

  13. Effect on microorganisms of volatile compounds released from germinating seeds.

    PubMed

    Schenck, S; Stotzky, G

    1975-10-01

    Volatile compounds evolved from germinating seeds of slash pine, bean, cabbage, corn, cucumber, and pea were evaluated for their ability to support growth of microorganisms in liquid mineral salts media lacking a carbon source. Growth of eight bacteria was measured turbidimetrically and of six fungi as dry weight of mycelium. Volatiles caused increased growth of Pseudomonas fluorescens, Bacillus cereus, Erwinia carotovora, Agrobacterium tumefaciens, A. radiobacter, Rhizobium japonicum, Mucor mucedo, Fusarium oxysporum f. conglutinans, Trichoderma viride, and Penicillium vermiculatum but not of Sarcina lutea, Serratia marcescens, Chaetomium globosum, or Schizophyllum commune. Spores of Trichoderma viride showed higher germination in the presence of volatiles. Effects on growth were apparent only during the first 3 or 4 days after planting the seeds. Killed or dried seeds had no effect. The volatiles did not support microbial growth in the absence of nitrogen nor did they supply growth factors. Passing volatiles through KMnO4 or hydrazone reduced growth of the bacteria, indicating that oxidizable organic compounds, primarily aldehydes, were the active components. The volatiles were not absorbed by sterile soil, clay minerals, or water, but they were absorbed by non-steril soil and activated charcoal. PMID:1201509

  14. Variation of hairy vetch seed weight alters germination and seedling growth response to an allelochemical

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. This response may have significant impact on weed control by allelopathic cover crops where the small-seeded weeds would be controlled more effectively than large-seeded species. In our...

  15. Hairy vetch (Vicia villosa) seed size affects germination response to coumarin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The inhibition of seed germination by an allelochemical is generally greater in small seeds than in large seeds. This response may have significant impact on weed control by allelopathic cover crops where the small-seeded weeds would be more effectively controlled than large-seeded species. The stu...

  16. Does Cold Plasma Affect Breaking Dormancy and Seed Germination? A Study on Seeds of Lamb's Quarters (Chenopodium album agg.)

    NASA Astrophysics Data System (ADS)

    Božena, Šerá; Michal, Šerý; Vitězslav, Štrañák; Petr, Špatenka; Milan, tichý

    2009-12-01

    Low-pressure discharge is applied for stimulation of germination of two seed lots of Lamb's Quarters (Chenopodium album agg.) with different starting germinations (17%, 8%) and in different stages of dormancy. Different exposition durations with cold plasma treatment were applied. The variable of the ratio cumulative germination was calculated. The Richards' equation was used for curve-fitting and simulation of the growth curves. Population parameters, namely Vi - viability, Me - time, Qu - dispersion, and Sk - skewness, counted from the curves described the germination rate well. Significant differences among Qu confirmed the erratic dormancy and gradual germination of Lamb's Quarters. No difference in the Me parameter was found between two tested seed lots, and no interspecies characteristics were changed using low-pressure discharge. The results suggested that plasma treatment changed seed germination in Lamb's Quarters seeds.

  17. Seed germination strategies: an evolutionary trajectory independent of vegetative functional traits

    PubMed Central

    Hoyle, Gemma L.; Steadman, Kathryn J.; Good, Roger B.; McIntosh, Emma J.; Galea, Lucy M. E.; Nicotra, Adrienne B.

    2015-01-01

    Seed germination strategies vary dramatically among species but relatively little is known about how germination traits correlate with other elements of plant strategy systems. Understanding drivers of germination strategy is critical to our understanding of the evolutionary biology of plant reproduction.We present a novel assessment of seed germination strategies focussing on Australian alpine species as a case study. We describe the distribution of germination strategies and ask whether these are correlated with, or form an independent axis to, other plant functional traits. Our approach to describing germination strategy mimicked realistic temperatures that seeds experience in situ following dispersal. Strategies were subsequently assigned using an objective clustering approach. We hypothesized that two main strategies would emerge, involving dormant or non-dormant seeds, and that while these strategies would be correlated with seed traits (e.g., mass or endospermy) they would be largely independent of vegetative traits when analysed in a phylogenetically structured manner.Across all species, three germination strategies emerged. The majority of species postponed germination until after a period of cold, winter-like temperatures indicating physiological and/or morphological dormancy mechanisms. Other species exhibited immediate germination at temperatures representative of those at dispersal. Interestingly, seeds of an additional 13 species “staggered” germination over time. Germination strategies were generally conserved within families. Across a broad range of ecological traits only seed mass and endospermy showed any correlation with germination strategy when phylogenetic relatedness was accounted for; vegetative traits showed no significant correlations with germination strategy. The results indicate that germination traits correlate with other aspects of seed ecology but form an independent axis relative to vegetative traits. PMID:26528294

  18. Effects of Cellulolytic Ruminal Bacteria and of Cell Extracts on Germination of Euonymus americanus L. Seeds.

    PubMed

    Howard, Gary T; Elliott, Larry P

    1988-01-01

    In past attempts, the experimental germination of the seeds of Euonymus americanus L. in vitro has had little success. However, treatment of seeds with ruminal fluid containing viable microflora has been successful in stimulating germination. In the presence of the cellulolytic ruminal bacterium, Clostridium cellobioparum ATCC 15832, seeds of E. americanus were stimulated to germinate. Subsequent studies were designed to determine whether the bacterium synthesized a cellulolytic enzyme responsible for initiating germination. The cell-free endocellulase from C. cellobioparum induced germination of the seeds. To support the hypothesis that the endocellulase from C. cellobioparum was responsible for triggering germination, a 1,4-beta-d-glucan glucanohydrolase (EC 3.2.1.4) from Penicillum funiculosum was used to treat the seeds. In addition, no germination was obtained from seeds treated with a commercial exocellulase enzyme. Also, Ruminococcus flavefaciens FD-1 was found to initiate germination of E. americanus seeds. Thus, cellulase activity is indicated in the degradation of the testa of the seed, allowing imbibition and germination. PMID:16347528

  19. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  20. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  1. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  2. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  3. 7 CFR 201.29a - Germination of vegetable seed in containers of more than 1 pound.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Germination of vegetable seed in containers of more... AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Vegetable Seeds § 201.29a Germination of vegetable seed in containers of more than 1 pound. Each variety of vegetable seeds...

  4. Proteomics of seed development, desiccation tolerance, germination and vigor.

    PubMed

    Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan; Møller, Ian Max

    2015-01-01

    Proteomics, the large-scale study of the total complement of proteins in a given sample, has been applied to all aspects of seed biology mainly using model species such as Arabidopsis or important agricultural crops such as corn and rice. Proteins extracted from the sample have typically been separated and quantified by 2-dimensional polyacrylamide gel electrophoresis followed by liquid chromatography and mass spectrometry to identify the proteins in the gel spots. In this way, qualitative and quantitative changes in the proteome during seed development, desiccation tolerance, germination, dormancy release, vigor alteration and responses to environmental factors have all been studied. Many proteins or biological processes potentially important for each seed process have been highlighted by these studies, which greatly expands our knowledge of seed biology. Proteins that have been identified to be particularly important for at least two of the seed processes are involved in detoxification of reactive oxygen species, the cytoskeleton, glycolysis, protein biosynthesis, post-translational modifications, methionine metabolism, and late embryogenesis-abundant (LEA) proteins. It will be useful for molecular biologists and molecular plant breeders to identify and study genes encoding particularly interesting target proteins with the aim to improve the yield, stress tolerance or other critical properties of our crop species. PMID:25461695

  5. Small Heat Shock Proteins Can Release Light Dependence of Tobacco Seed during Germination1[OPEN

    PubMed Central

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia

    2015-01-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  6. Small heat shock proteins can release light dependence of tobacco seed during germination.

    PubMed

    Koo, Hyun Jo; Park, Soo Min; Kim, Keun Pill; Suh, Mi Chung; Lee, Mi Ok; Lee, Seong-Kon; Xinli, Xia; Hong, Choo Bong

    2015-03-01

    Small heat shock proteins (sHSPs) function as ATP-independent molecular chaperones, and although the production and function of sHSPs have often been described under heat stress, the expression and function of sHSPs in fundamental developmental processes, such as pollen and seed development, have also been confirmed. Seed germination involves the breaking of dormancy and the resumption of embryo growth that accompany global changes in transcription, translation, and metabolism. In many plants, germination is triggered simply by imbibition of water; however, different seeds require different conditions in addition to water. For small-seeded plants, like Arabidopsis (Arabidopsis thaliana), lettuce (Lactuca sativa), tomato (Solanum lycopersicum), and tobacco (Nicotiana tabacum), light is an important regulator of seed germination. The facts that sHSPs accumulate during seed development, sHSPs interact with various client proteins, and seed germination accompanies synthesis and/or activation of diverse proteins led us to investigate the role of sHSPs in seed germination, especially in the context of light dependence. In this study, we have built transgenic tobacco plants that ectopically express sHSP, and the effect was germination of the seeds in the dark. Administering heat shock to the seeds also resulted in the alleviation of light dependence during seed germination. Subcellular localization of ectopically expressed sHSP was mainly observed in the cytoplasm, whereas heat shock-induced sHSPs were transported to the nucleus. We hypothesize that ectopically expressed sHSPs in the cytoplasm led the status of cytoplasmic proteins involved in seed germination to function during germination without additional stimulus and that heat shock can be another signal that induces seed germination. PMID:25604531

  7. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress.

    PubMed

    Sneideris, Larissa C; Gavassi, Marina A; Campos, Marcelo L; D'Amico-Damião, Victor; Carvalho, Rogério F

    2015-09-01

    In this work we investigated whether priming with auxin, cytokinin, gibberellin, abscisic acid and ethylene, alters the physiological responses of seeds of pigeon pea germinated under water and cadmium stress. Seeds treated with water or non-treated seeds were used as control. Although compared to non-treated seeds we found that the hormone treatments improve the germination of pigeon pea under cadmium stress, however, these treatments did not differ from water. However, we also observed a trend of tolerance to the effects of cadmium in the presence of ethylene, suggesting that the use of this hormone may be an efficient method to overcome seed germination under metal stress. PMID:26221985

  8. Inhibition by fusicoccin of germination of pea seeds.

    PubMed

    Lioi, L; Petruzzelli, L; Morgutti, S; Cocucci, S M

    1984-11-01

    Fusicoccin inhibits the germination of pea (Pisum sativum L. cv Progress 9) seeds by decreasing the growth of the embryonal axis and by stimulating the fresh weight increase of the cotyledons. The growth of isolated embryonal axes in the presence of sucrose and KCl is stimulated by fusicoccin. The effect of fusicoccin on the seeds is not counteracted by sucrose and KCl. Fusicoccin promotes preferentially in the cotyledons a hyperpolarization of the transmembrane electric potential and an increase in the uptake capacity, suggesting the reinforcement of the sink strength of the cotyledons in comparison with the one of the embryonal axis and therefore the inhibition of translocation from the cotyledons of some substance necessary for the growth of the embryonal axis. PMID:16663930

  9. Inhibition by Fusicoccin of Germination of Pea Seeds 1

    PubMed Central

    Lioi, Lucia; Petruzzelli, Luciana; Morgutti, Silvia; Cocucci, Sergio M.

    1984-01-01

    Fusicoccin inhibits the germination of pea (Pisum sativum L. cv Progress 9) seeds by decreasing the growth of the embryonal axis and by stimulating the fresh weight increase of the cotyledons. The growth of isolated embryonal axes in the presence of sucrose and KCl is stimulated by fusicoccin. The effect of fusicoccin on the seeds is not counteracted by sucrose and KCl. Fusicoccin promotes preferentially in the cotyledons a hyperpolarization of the transmembrane electric potential and an increase in the uptake capacity, suggesting the reinforcement of the sink strength of the cotyledons in comparison with the one of the embryonal axis and therefore the inhibition of translocation from the cotyledons of some substance necessary for the growth of the embryonal axis. PMID:16663930

  10. Quantitative trait loci analysis for rice seed vigor during the germination stage.

    PubMed

    Wang, Zhou-fei; Wang, Jian-fei; Bao, Yong-mei; Wang, Fu-hua; Zhang, Hong-sheng

    2010-12-01

    Seed vigor is an important characteristic of seed quality, and rice cultivars with strong seed vigor are desirable in direct-sowing rice production for optimum stand establishment. In the present study, the quantitative trait loci (QTLs) of three traits for rice seed vigor during the germination stage, including germination rate, final germination percentage, and germination index, were investigated using one recombinant inbred line (RIL) population derived from a cross between japonica Daguandao and indica IR28, and using the multiple interval mapping (MIM) approach. The results show that indica rice presented stronger seed vigor during the germination stage than japonica rice. A total of ten QTLs, and at least five novel alleles, were detected to control rice seed vigor, and the amount of variation (R(2)) explained by an individual QTL ranged from 7.5% to 68.5%, with three major QTLs with R(2)>20%. Most of the QTLs detected here are likely to coincide with QTLs for seed weight, seed size, or seed dormancy, suggesting that the rice seed vigor might be correlated with seed weight, seed size, and seed dormancy. At least five QTLs are novel alleles with no previous reports of seed vigor genes in rice, and those major or minor QTLs could be used to significantly improve the seed vigor by marker-assisted selection (MAS) in rice. PMID:21121075

  11. Frugivory and the effects of ingestion by bats on the seed germination of three pioneering plants

    NASA Astrophysics Data System (ADS)

    de Carvalho-Ricardo, Maria C.; Uieda, Wilson; Fonseca, Renata Cristina B.; Rossi, Marcelo N.

    2014-02-01

    The dispersion and seedling establishment of pioneering plants can be favoured by the presence of frugivorous bats because the bats usually improve seed germination after ingestion. Although seed germinability is known to vary greatly after ingestion by different bats, the relative contribution of each bat species to seed germination within plant communities is poorly understood. In this study, we first determined the fauna of frugivorous bats in a semideciduous seasonal forest remnant in southern Brazil and subsequently identified the plant species of the seeds passed through their guts. Second, the germination performance (i.e., germination percentage and speed) of the seeds of three pioneering plants (Piper aduncum, Piper hispidinervum and Solanum granuloso-leprosum) ingested by the most abundant bats was compared with that of the non-ingested seeds (seeds collected from fruits). Additionally, the effects on seed germination of different bat species were compared. During one year, five species of frugivorous bats were caught, and the seeds of eleven identifiable plant species (not counting those of undetermined species) were found in their faeces. We found that the germination performance of the seeds of Piper species was significantly enhanced after ingestion by bats, whereas S. granuloso-leprosum seeds had neutral or reduced germinability when seeds in faeces were compared with pulp-removed seeds. Our results revealed that the bat species that were captured exerted different effects upon seed germination; such a disparity is expected to result in different rates of early establishment of these pioneer plants in tropical forests, most likely affecting forest composition and structure, particularly during the initial stages of succession.

  12. Germination of coffee seeds and its significance for coffee quality.

    PubMed

    Selmar, D; Bytof, G; Knopp, S-E; Breitenstein, B

    2006-03-01

    Besides genotypic characteristics, the crucial factor that determines coffee quality is the mode of post-harvest treatment, i.e., the wet and dry processing. Up to now, the resulting characteristic flavour differences between these differentially processed coffees were attributed exclusively to differences in starting material. However, as these quality differences are still evident, even when identical coffee samples were processed by the two methods in parallel, the differences must be created by metabolic processes in the coffee beans themselves. Based on expression studies of the germination-specific isocitrate lyase and the resumption of cell cycle activity, monitored by the abundance of beta-tubulin, we evidence that germination is initiated in coffee seeds during the course of standard coffee post-harvest treatments. The extent and nature of the germination processes depend on the processing method. The coherence of metabolic events, substantial differences in the chemical composition of the coffee beans, and the generation of specific coffee qualities establishes the basis for a quite novel approach in coffee research. PMID:16547871

  13. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds.

    PubMed

    Eskelin, Katri; Ritala, Anneli; Suntio, Taina; Blumer, Susan; Holkeri, Heidi; Wahlström, Eva H; Baez, Julio; Mäkinen, Kristiina; Maria, Nuutila Anna

    2009-09-01

    Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications. PMID:19656332

  14. Control of Seed Germination by Abscisic Acid 1

    PubMed Central

    Schopfer, Peter; Plachy, Claudia

    1985-01-01

    The physical mechanism of seed germination and its inhibition by abscisic acid (ABA) in Brassica napus L. was investigated, using volumetric growth (= water uptake) rate (dV/dt), water conductance (L), cell wall extensibility coefficient (m), osmotic pressure (∏i), water potential (Ψi), turgor pressure (P), and minimum turgor for cell expansion (Y) of the intact embryo as experimental parameters. dV/dt, ∏i, and Ψi were measured directly, while m, P, and Y were derived by calculation. Based on the general equation of hydraulic cell growth [dV/dt = Lm/(L + m) (Δ∏ - Y), where Δ∏ = ∏i - ∏ of the external medium], the terms (Lm/(L + m) and ∏i - Y were defined as growth coefficient (kG) and growth potential (GP), respectively. Both kG and GP were estimated from curves relating dV/dt (steady state) to ∏ of osmotic test solutions (polyethylene glycol 6000). During the imbibition phase (0-12 hours after sowing), kG remains very small while GP approaches a stable level of about 10 bar. During the subsequent growth phase of the embryo, kG increases about 10-fold. ABA, added before the onset of the growth phase, prevents the rise of kG and lowers GP. These effects are rapidly abolished when germination is induced by removal of ABA. Neither L (as judged from the kinetics of osmotic water efflux) nor the amount of extractable solutes are affected by these changes. ∏i and Ψi remain at a high level in the ABA-treated seed but drop upon induction of germination, and this adds up to a large decrease of P, indicating that water uptake of the germinating embryo is controlled by cell wall loosening rather than by changes of ∏i or L. ABA inhibits water uptake by preventing cell wall loosening. By calculating Y and m from the growth equation, it is further shown that cell wall loosening during germination comprises both a decrease of Y from about 10 to 0 bar and an at least 10-fold increase of m. ABA-mediated embryo dormancy is caused by a reversible inhibition of both of these changes in cell wall stability. PMID:16664118

  15. [Effect of seed soaking with aluminum on seed germination and seedling physiology of Platycodon grandiflorum].

    PubMed

    Zhu, Lixiang; Wang, Jianhua; Fang, Xinsheng; Wang, Yong; Hao, Junkai; Weiwei, Ma; Jiao, Tianying

    2010-12-01

    In order to study the effect of seed soaking with different aluminum solution on seed germination and seedling physiological characteristics of Platycondon grandiflorum, two P. grandiflorum varieties'seed (the white flower and the purple flower) were soaked in Al3+ solution with different concentrations (0, 10, 100, 250, 500, 750 and 1000 mg x L) for 24 h, then germinated in illumination incubator. Results showed that the aluminum toxicity on the trends of the germination rate, germination index and vigor index was positive associated with its concentration, and the Al tolerance of the purple was slightly greater than that of the white. There were some relationships between the physiological indices, which were the leakage rate of electrolyte, the malonaldehyde (MDA) content, the activities of peroxidase (POD) and superoxide dismutase (SOD) , the free praline(Pro) and the soluble sugar contents, with the concentrations of Al. It was suggested that there was Al tolerance difference between the two P. grandiflorum varieties: the purple flower was greater than the white. PMID:21438384

  16. Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter is part of a series reviewing advances in transgenic crop plants. The chapter covers advances in barley transformation. Conventional and biotechnological approaches to barley improvement are discussed. Experiments conducted around the world to improve barley food, feed and malting ...

  17. SEED PHOSPHORUS AND INOSITOL PHOSPHATE PHENOTYPE OF BARLEY LOW PHYTIC ACID GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    myo-Inositol-1,2,3,4,5,6-hexakisphosphate (Ins P6 or "phytic acid") typically represents ~75% of the total phosphorus and >80% of soluble myo-inositol (Ins) phosphates in seeds. The seed phosphorus and Ins phosphate phenotypes of four non-lethal barley (Hordeum vulgare L.) low phytic acid mutations...

  18. Effect of heavy metals on germination of seeds.

    PubMed

    Sethy, Sunil Kumar; Ghosh, Shyamasree

    2013-07-01

    With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress. PMID:24082715

  19. Effect of heavy metals on germination of seeds

    PubMed Central

    Sethy, Sunil Kumar; Ghosh, Shyamasree

    2013-01-01

    With the expansion of the world population, the environmental pollution and toxicity by chemicals raises concern. Rapid industrialization and urbanization processes has led to the incorporation of pollutants such as pesticides, petroleum products, acids and heavy metals in the natural resources like soil, water and air thus degrading not only the quality of the environment, but also affecting both plants and animals. Heavy metals including lead, nickel, cadmium, copper, cobalt, chromium and mercury are important environmental pollutants that cause toxic effects to plants; thus, lessening productivity and posing dangerous threats to the agro-ecosystems. They act as stress to plants and affect the plant physiology. In this review, we have summarized the effects of heavy metals on seeds of different plants affecting the germination process. Although reports exist on mechanisms by which the heavy metals act as stress and how plants have learnt to overcome, the future scope of this review remains in excavating the signaling mechanisms in germinating seeds in response to heavy metal stress. PMID:24082715

  20. Ethylene-, light-, and prechill-enhanced germination of Echinacea angustifolia seeds

    SciTech Connect

    Feghahati, S.M.J.; Reese, R.N. . Dept. of Biology and Microbiology)

    1994-07-01

    Echinacea angustifolia DC., the common coneflower of the western Great Plains, is difficult to propagate by achenes due to inherent seed dormancy. The effects of light and prechilling on seed germination were examined, alone and combined with scarification (mechanical, acid) and ethylene (ethephon) treatments. The results showed that a 2-week prechill treatment combined with ethephon and continuous light, followed by a 2-week germination period in light (16 hours per day) at 25 C, could induce >95% seed germination in E. angustifolia. This was a significantly higher percentage of germination over a shorter period of time than any other method examined or previously described. This treatment also synchronized germination, with most viable seeds germinating in <1 week after being placed at 25 C in the light. Chemical name used: 2-chloroethylphosphonic acid (ethephon).

  1. Recurrent selection for increased seed germination in sand bluestem (Andropogon hallii)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water is essential for plant growth and under field conditions is often inadequate for satisfactory seed germination and seedling growth. The objective of this research was to improve the seed germination of sand bluestem (Andropogon hallii Hack.) lines ‘AB-medium Syn-0’ and ‘CD-tall Syn-0’ at low ...

  2. SEED GERMINATION AND ROOT ELONGATION TOXICITY TESTS IN HAZARDOUS WASTE SITE EVALUATION: METHODS DEVELOPMENT AND APPLICATIONS

    EPA Science Inventory

    Seed germination tests measure soil toxicity directly, while root elongation tests consider the indirect effects of water-soluble constituents which may be present in site-samples. n the seed germination toxicity test, site-soil is mixed with a reference soil to yield exposure co...

  3. RGL2 PROTEIN DOES NOT DISAPPEAR DURING SLY1 MUTANT SEED GERMINATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The SLEEPY1 (SLY1) and RGA-like2 (RGL2) genes play an important role in the regulation of seed germination by GA in Arabidopsis. The control of seed dormancy and germination is critical for plant survival and important for proper stand establishment in crop species. The plant hormone gibberelli...

  4. ABA, ROS and NO are key players during switchgrass seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy and germination are complex physiological processes usually under hormonal control. Germination of seeds from many plants including switchgrass, are inhibited by ABA and promoted by NO and by ROS. However, ABA apparently requires both ROS and NO as intermediates in its action, with R...

  5. Growth regulators and chemicals stimulate germination of leafy spurge seeds (Euphorbia esula)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to survey the effect of various growth regulator and chemical treatments on germination of leafy spurge seeds. Non-treated seeds in this population were nearly fully imbibed in 3 h and display approximately 35% germination in 21 d under the normal alternating temperature of ...

  6. Effects of stress temperatures of germination on polyamine titers of soybean seeds

    NASA Astrophysics Data System (ADS)

    Pineda-Mejia, Renan

    High and low stress temperatures during seed germination and seedling development limit total germination and the rate of germination and growth. Changes in polyamine (PA) concentrations in seeds of different species have been associated with germination, growth and environmental stresses such as temperature, drought, oxygen, chilling injury and osmotic conditions. Two studies were conducted to determine the effect of stress temperatures during germination and seedling development on polyamine titers in soybean seeds. Three germination temperatures, 25, 30, and 36C were used in the first study to evaluate their influence on changes in polyamine concentrations in soybean seeds germinated at 76 and 90 hours. The polyamines (PAs), cadaverine (Cad), putrescine (Put), spermidine (Spd), agmatine (Agm), and spermine (Spin) were quantified by HPLC using a cation exchange column and an electrochemical detector. Cad, Put, Agm, and Spd declined as the germination temperatures increased from 25 to 36C. Conversely, Spin increased considerably with an increase in temperature. Total germination was reduced from 97.2 to 92.5% as germination temperatures increased from 25 to 36C. Germination time did not affect Cad, Agm and Spm, and total germination, however, the interaction between temperature and germination time for Put and Spd concentrations was significant. In the second study, changes in PA concentrations, seedling growth, germination time (t50), fresh and dry weight, and moisture content were measured in the embryonic axis and cotyledons of soybean seeds germinated at 10 and 25C through six stages of germination dry seed (DS), testa split (TS), radicle at 10 mm (Ra-10), root hairs visible (RHV), secondary root primordia (SRP), and complete seedling (CS). The concentrations of Cad and Put in the embryonic axis, were significantly higher in seeds germinated under low temperature than in seeds at 25C (approximately 10 and 3 fold respectively). However, this difference was not observed until the last three stages of germination. The stage of germination also influenced the levels of these polyamines. The concentrations of Cad and Put detected at the CS stage were 50 and 18 fold respectively, relative to the initial concentrations found at the DS stage. Spd levels in seeds under stress temperatures also increased, but to a lesser extent compared to Cad and Put. Differences in Spd concentrations between temperatures were observed only at the CS stage. Agm concentrations were higher at 25 than at 10C at SRP and CS. Spm concentrations of seeds germinated at 25C remained higher during the first four stages of development but at the end of germination, seeds at 10C had higher quantities of Spm. In the cotyledons, Polyamines tended to decline with stages of germination, regardless of the temperature. However, Agm levels increased in the cotyledons of soybean seeds. Maximum dry weight and seedling growth was found at RHV, SRP, and CS. Maximum levels of Cad and Put were also found during these stages. Spd increased with both temperatures from DS to Ra-10, thereafter, Spd levels in seeds at 10C continued increasing while seeds at 25C declined. High and low stress germination temperatures caused significant changes in polyamine concentrations, reduced germination and seedling growth of soybean seeds.

  7. Morpho-anatomy, imbibition, viability and germination of the seed of Anadenanthera colubrina var. cebil (Fabaceae).

    PubMed

    Varela, Rodolfo Omar; Albornoz, Patricia Liliana

    2013-09-01

    Seed biology is a relevant aspect of tropical forests because it is central to the understanding of processes of plant establishment, succession and natural regeneration. Anadenanthera colubrina var. cebil is a timber tree from South America that produces large seeds with thin weak teguments, which is uncommon among legumes. This study describes the morphology and anatomy of the seed coat, the viability, imbibition, and germination in this species. Seeds used during the essays came from 10 trees that grow naturally in Horco Molle, province of Tucumán, Argentina. Seed morphology was described from a sample of 20 units. The seed coat surface was examined with a scanning electron microscope. Transverse sections of hydrated and non-hydrated seeds were employed to describe the histological structure of the seed coat. Hydration, viability and germination experiments were performed under laboratory controlled conditions; and the experimental design consisted of 10 replicas of 10 seeds each. Viability and germination tests were conducted using freshly fallen seeds and seeds stored for five months. Morphologically the seeds of A. colubrina var. cebil are circular to subcircular, laterally compressed, smooth, bright brown and have a horseshoe fissure line (= pleurogram) on both sides. The seed coat comprises five tissue layers and a double (external and internal) cuticle. The outer cuticle (on the epidermis) is smooth and interrupted by microcracks and pores of variable depth. The epidermis consists of macroesclereids with non-lignified secondary walls. This layer is separated from the underlying ones during seed hydration. The other layers of internal tissues are comprised of osteosclereids, parenchyma, osteosclereids, and macrosclereids. The percentage of viable seeds was 93%, decreasing to 75% in seeds with five months old. Seed mass increased 76% after the first eight hours of hydration. Germination percentage was 75% after 76 hours. Germination of seeds stored for five months decreased to 12%. The results showed that seeds of A. colubrina var. cebil are highly permeable and germinate directly without a dormant period. PMID:24027911

  8. Basic Techniques to Assess Seed Germination Responses to Abiotic Stress in Arabidopsis thaliana.

    PubMed

    Piskurewicz, Urszula; Lopez-Molina, Luis

    2016-01-01

    The model organism Arabidopsis thaliana has been extensively used to unmask the molecular genetic signaling pathways controlling seed germination in plants. In Arabidopsis, the normal seed to seedling developmental transition involves testa rupture soon followed by endosperm rupture, radicle elongation, root hair formation, cotyledon expansion, and greening. Here we detail a number of basic procedures to assess Arabidopsis seed germination in response to different light (red and far-red pulses), temperature (seed thermoinhibition), and water potential (osmotic stress) environmental conditions. We also discuss the role of the endosperm and how its germination-repressive activity can be monitored genetically by means of a seed coat bedding assay. Finally we detail how to evaluate germination responses to changes in gibberellin (GA) and abscisic acid (ABA) levels by manipulating pharmacologically the germination medium. PMID:26867624

  9. Estimation of scavenging capacity of melatonin and other antioxidants: contribution and evaluation in germinated seeds.

    PubMed

    Aguilera, Yolanda; Herrera, Teresa; Benítez, Vanesa; Arribas, Silvia M; López de Pablo, Angel L; Esteban, Rosa M; Martín-Cabrejas, María A

    2015-03-01

    Seven edible seeds for the levels of melatonin, phenolic compounds and their antioxidant capacity were evaluated during germination process. Radical scavenging parameters were also studied in standard antioxidants to understand their antiradical actions. Germination brought about significant increases of total phenol compounds in all edible seeds, showing red cabbage, radish and broccoli the highest contents (21.6, 20.4 and 16.4 mg GAE/g DW, respectively). The concentration of melatonin is greatly variable in edible seeds, exhibiting significant increases during germination. The highest levels were found in red cabbage (857 pg/g DW) radish (536 pg/g DW) and broccoli (439 pg/g DW). The germinated seeds which had the highest levels of polyphenols and melatonin were those that showed the most relevant antiradical activities (>97%). This information is valuable for the incorporation of red cabbage, radish and broccoli germinated seeds into the diet to promote potential health benefits. PMID:25306336

  10. Comparison of light-regulated seed germination in Ficus spp. and Cecropia obtusifolia: ecological implications.

    PubMed

    Vázquez-Yanes, C; Rojas-Aréchiga, M; Sánchez-Coronado, M E; Orozco-Segovia, A

    1996-10-01

    The major components of annual seed deposition in the rain forest at Los Tuxtlas, Veracruz, México are seeds of the pioneer tree species Cecropia obtusifolia and those of some species of Ficus. Cecropia obtusifolia Bertol. forms a relatively persistent viable soil seed bank, whereas seeds of Ficus are seldom found in the soil. Both genera require light for seed germination; however, the species differ in their germination responses to far red (FR) light under laboratory and field conditions. Seeds of C. obtusifolia did not germinate in low red/far red (R/FR) or pure FR, whereas seeds of the Ficus species did. This suggests that Ficus seeds do not become dormant under the light conditions (low R/FR ratio) beneath the leaf canopy of the rain forest. This difference may explain why the species differ in their presence in the soil seed bank. PMID:14871679

  11. Campanulaceae: a family with small seeds that require light for germination

    PubMed Central

    Koutsovoulou, Katerina; Daws, Matthew I.; Thanos, Costas A.

    2014-01-01

    Background and Aims The Campanulaceae is a large cosmopolitan family, but is understudied in terms of germination, and seed biology in general. Small seed mass (usually in the range 10–200 µg) is a noteworthy trait of the family, and having small seeds is commonly associated with a light requirement. Thus, the purpose of this study was to investigate the effect of light on germination in 131 taxa of the Campanulaceae family, from all five continents of its distribution. Methods For all taxa, seed germination was tested in light (8 or 12 h photoperiod) and continuous darkness under constant and alternating temperatures. For four taxa, the effect of light on germination was examined over a wide range of temperatures on a thermogradient plate, and the possible substitution of the light requirement by gibberellic acid and nitrate was examined in ten taxa. Key Results For all 131 taxa, seed germination was higher in light than in darkness for every temperature tested. Across species, the light requirement decreased significantly with increasing seed mass. For larger seeded species, germination in the dark reached higher levels under alternating than under constant temperatures. Gibberellic acid promoted germination in darkness whereas nitrates partially substituted for a light requirement only in species showing some dark germination. Conclusions A light requirement for germination, observed in virtually all taxa examined, constitutes a collective characteristic of the family. It is postulated that smaller seeded taxa might germinate only on the soil surface or at shallow depths, while larger seeded species might additionally germinate when buried in the soil if cued to do so by fluctuating temperatures. PMID:24232382

  12. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination.

    PubMed

    Linkies, Ada; Leubner-Metzger, Gerhard

    2012-02-01

    Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance. PMID:22044964

  13. Seed Dispersal and Germination Traits of 70 Plant Species Inhabiting the Gurbantunggut Desert in Northwest China

    PubMed Central

    Liu, Huiliang; Zhang, Daoyuan; Yang, Xuejun; Huang, Zhenying; Duan, Shimin; Wang, Xiyong

    2014-01-01

    Seed dispersal and germination were examined for 70 species from the cold Gurbantunggut Desert in northwest China. Mean and range (3 orders of magnitude) of seed mass were smaller and narrower than those in other floras (5–8 orders of magnitude), which implies that selection favors relatively smaller seeds in this desert. We identified five dispersal syndromes (anemochory, zoochory, autochory, barochory, and ombrohydrochory), and anemochorous species were most abundant. Seed mass (F = 3.50, P = 0.01), seed size (F = 8.31, P < 0.01), and seed shape (F = 2.62, P = 0.04) differed significantly among the five dispersal syndromes and barochorous species were significantly smaller and rounder than the others. There were no significant correlations between seed mass (seed weight) (P = 0.15), seed size (P = 0.38), or seed shape (variance) (P = 0.95) and germination percentage. However, germination percentages differed significantly among the dispersal syndromes (F = 3.64, P = 0.01) and seeds of ombrohydrochorous species had higher germination percentages than those of the other species. In the Gurbantunggut Desert, the percentage of species with seed dormancy was about 80%. In general, our studies suggest that adaptive strategies in seed dispersal and germination of plants in this area are closely related to the environment in which they live and that they are influenced by natural selection forces. PMID:25485296

  14. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.).

    PubMed

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser(355) was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  15. Mechanical Resistance of the Seed Coat and Endosperm during Germination of Capsicum annuum at Low Temperature.

    PubMed

    Watkins, J T; Cantliffe, D J

    1983-05-01

    Decoated pepper (Capsicum annuum L. cv Early Calwonder) seeds germinated earlier at 25 degrees C, but not at 15 degrees C, compared to coated seeds. The seed coat did not appear to impose a mechanical restriction on pepper seed germination. Scarification of the endosperm material directly in front of the radicle reduced the time to germination at both 15 degrees C and 25 degrees C.The amount of mechanical resistance imposed by the endosperm on radicle emergence before germination was measured using the Instron Universal Testing Machine. Endosperm strength decreased as imbibition time increased. The puncture force decreased faster when seeds were imbibed at 25 degrees C than at 15 degrees C. The reduction in puncture force corresponded with the ability of pepper seeds to germinate. Most radicle emergence occurred at 15 degrees C and 25 degrees C after the puncture force was reduced to between 0.3 and 0.4 newtons.Application of gibberellic acid(4+7) (100 microliters per liter) resulted in earlier germination at 15 degrees C and 25 degrees C and decreased endosperm strength sooner than in untreated seeds. Similarly, high O(2) concentrations had similar effects on germination earliness and endosperm strength decline as did gibberellic acid(4+7), but only at 25 degrees C. At 15 degrees C, high O(2) concentrations slowed germination and endosperm strength decline. PMID:16662948

  16. [Effect of acid rain on seed germination of rice, wheat and rape].

    PubMed

    Zeng, Qing-ling; Huang, Xiao-hua; Zhou, Qing

    2005-01-01

    Rice, wheat and rape seeds were treated with simulated acid rain at pH 2.0, 2.5, 3.0, 3.5, 4.0 and 5.0 levels for 7 days in order to understand the effects of acid rain on seed germination of various acid-fast plant. The germination test showed that seed germination was absolutely inhibited at pH 2.0 for three species. Rice and wheat seeds germinated abnormally at pH 2.5. WhenpH values above 3.0, percentage germination, germination energy, germination index, vigor index of rice, wheat and rape seeds increased in relation with decreased acidity levels. In contrast, the percentage of abnormal germination of rice and wheat decreased. The experiment data about physiological aspect demonstrated that water absorption rate, respiratory rate and storage reserve transformation rate of rice, wheat and rape seeds also increased with increased pH values. The storage loss of rice and wheat increased with increased pH values but that of rape decreased. Inhibition index of shoot and root length of three kinds of seeds decreased in relation with increased pH values. The amplitude difference of index of rice was lower than that of wheat, and wheat was lower than that of rape. The experiment data showed that rice had stronger fastness than wheat and rape, wheat had stronger fastness than rape under acid rain stress. PMID:15859434

  17. Proteomic Analysis Reveals Key Proteins and Phosphoproteins upon Seed Germination of Wheat (Triticum aestivum L.)

    PubMed Central

    Dong, Kun; Zhen, Shoumin; Cheng, Zhiwei; Cao, Hui; Ge, Pei; Yan, Yueming

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the oldest cultivated crops and the second most important food crop in the world. Seed germination is the key developmental process in plant growth and development, and poor germination directly affects plant growth and subsequent grain yield. In this study, we performed the first dynamic proteome analysis of wheat seed germination using a two-dimensional differential gel electrophoresis (2D-DIGE)-based proteomic approach. A total of 166 differentially expressed protein (DEP) spots representing 73 unique proteins were identified, which are mainly involved in storage, stress/defense/detoxification, carbohydrate metabolism, photosynthesis, cell metabolism, and transcription/translation/transposition. The identified DEPs and their dynamic expression profiles generally correspond to three distinct seed germination phases after imbibition: storage degradation, physiological processes/morphogenesis, and photosynthesis. Some key DEPs involved in storage substance degradation and plant defense mechanisms, such as globulin 3, sucrose synthase type I, serpin, beta-amylase, and plastid ADP-glucose pyrophosphorylase (AGPase) small subunit, were found to be phosphorylated during seed germination. Particularly, the phosphorylation site Ser355 was found to be located in the enzyme active region of beta-amylase, which promotes substrate binding. Phosphorylated modification of several proteins could promote storage substance degradation and environmental stress defense during seed germination. The central metabolic pathways involved in wheat seed germination are proposed herein, providing new insights into the molecular mechanisms of cereal seed germination. PMID:26635843

  18. Characterization of a maize beta-amylase cDNA clone and its expression during seed germination.

    PubMed Central

    Wang, S M; Lue, W L; Wu, S Y; Huang, H W; Chen, J

    1997-01-01

    A maize (Zea mays L.) cDNA clone (pZMB2) encoding beta-amylase was isolated from a cDNA library prepared from the aleurone RNA of germinating kernels. The cDNA encodes a predicted product of 488 amino acids with significant similarity to known beta-amylases from barley (Hordeum vulgare), rye (Secale cereale), and rice (Oryza sativa). Glycine-rich repeats found in the carboxyl terminus of the endosperm-specific beta-amylase of barley and rye are absent from the maize gene product. The N-terminal sequence of the first 20 amino acids of a beta-amylase peptide derived from purified protein is identical to the 5th through 24th amino acids of the predicted cDNA product, indicating the absence of a conventional signal peptide in the maize protein. Recombinant inbred mapping data indicate that the cDNA clone is single-copy gene that maps to chromosome 7L at position 83 centimorgans. Northern blot analysis and in vitro translation-immunoprecipitation data indicate that the maize beta-amylase is synthesized de novo in the aleurone cells but not in the scutellum during seed germination. PMID:9046591

  19. Arabidopsis Seed Development and Germination Is Associated with Temporally Distinct Metabolic Switches1[W

    PubMed Central

    Fait, Aaron; Angelovici, Ruthie; Less, Hadar; Ohad, Itzhak; Urbanczyk-Wochniak, Ewa; Fernie, Alisdair R.; Galili, Gad

    2006-01-01

    While the metabolic networks in developing seeds during the period of reserve accumulation have been extensively characterized, much less is known about those present during seed desiccation and subsequent germination. Here we utilized metabolite profiling, in conjunction with selective mRNA and physiological profiling to characterize Arabidopsis (Arabidopsis thaliana) seeds throughout development and germination. Seed maturation was associated with a significant reduction of most sugars, organic acids, and amino acids, suggesting their efficient incorporation into storage reserves. The transition from reserve accumulation to seed desiccation was associated with a major metabolic switch, resulting in the accumulation of distinct sugars, organic acids, nitrogen-rich amino acids, and shikimate-derived metabolites. In contrast, seed vernalization was associated with a decrease in the content of several of the metabolic intermediates accumulated during seed desiccation, implying that these intermediates might support the metabolic reorganization needed for seed germination. Concomitantly, the levels of other metabolites significantly increased during vernalization and were boosted further during germination sensu stricto, implying their importance for germination and seedling establishment. The metabolic switches during seed maturation and germination were also associated with distinct patterns of expression of genes encoding metabolism-associated gene products, as determined by semiquantitative reverse transcription-polymerase chain reaction and analysis of publicly available microarray data. When taken together our results provide a comprehensive picture of the coordinated changes in primary metabolism that underlie seed development and germination in Arabidopsis. They furthermore imply that the metabolic preparation for germination and efficient seedling establishment initiates already during seed desiccation and continues by additional distinct metabolic switches during vernalization and early germination. PMID:16963520

  20. A high-throughput seed germination assay for root parasitic plants

    PubMed Central

    2013-01-01

    Background Some root-parasitic plants belonging to the Orobanche, Phelipanche or Striga genus represent one of the most destructive and intractable weed problems to agricultural production in both developed and developing countries. Compared with most of the other weeds, parasitic weeds are difficult to control by conventional methods because of their life style. The main difficulties that currently limit the development of successful control methods are the ability of the parasite to produce a tremendous number of tiny seeds that may remain viable in the soil for more than 15 years. Seed germination requires induction by stimulants present in root exudates of host plants. Researches performed on these minute seeds are until now tedious and time-consuming because germination rate is usually evaluated in Petri-dish by counting germinated seeds under a binocular microscope. Results We developed an easy and fast method for germination rate determination based on a standardized 96-well plate test coupled with spectrophotometric reading of tetrazolium salt (MTT) reduction. We adapted the Mosmann’s protocol for cell cultures to germinating seeds and determined the conditions of seed stimulation and germination, MTT staining and formazan salt solubilization required to obtain a linear relationship between absorbance and germination rate. Dose–response analyses were presented as applications of interest for assessing half maximal effective or inhibitory concentrations of germination stimulants (strigolactones) or inhibitors (ABA), respectively, using four parameter logistic curves. Conclusion The developed MTT system is simple and accurate. It yields reproducible results for germination bioassays of parasitic plant seeds. This method is adapted to high-throughput screenings of allelochemicals (stimulants, inhibitors) or biological extracts on parasitic plant seed germination, and strengthens the investigations of distinctive features of parasitic plant germination. PMID:23915294

  1. A seed coat bedding assay to genetically explore in vitro how the endosperm controls seed germination in Arabidopsis thaliana.

    PubMed

    Lee, Keun Pyo; Lopez-Molina, Luis

    2013-01-01

    The Arabidopsis endosperm consists of a single cell layer surrounding the mature embryo and playing an essential role to prevent the germination of dormant seeds or that of nondormant seeds irradiated by a far red (FR) light pulse. In order to further gain insight into the molecular genetic mechanisms underlying the germination repressive activity exerted by the endosperm, a "seed coat bedding" assay (SCBA) was devised. The SCBA is a dissection procedure physically separating seed coats and embryos from seeds, which allows monitoring the growth of embryos on an underlying layer of seed coats. Remarkably, the SCBA reconstitutes the germination repressive activities of the seed coat in the context of seed dormancy and FR-dependent control of seed germination. Since the SCBA allows the combinatorial use of dormant, nondormant and genetically modified seed coat and embryonic materials, the genetic pathways controlling germination and specifically operating in the endosperm and embryo can be dissected. Here we detail the procedure to assemble a SCBA. PMID:24300527

  2. Seed fate in the myrmecochorous Neotropical plant Turnera ulmifolia L., from plant to germination

    NASA Astrophysics Data System (ADS)

    Salazar-Rojas, Betzabeth; Rico-Gray, Vctor; Canto, Azucena; Cuautle, Mariana

    2012-04-01

    Myrmecochory (seed dispersal by ants) differs from other dispersal systems in a series of advantages offered by the ants to the plants. Here, seed fate, from fruit to germination, of the myrmecochorous Neotropical plant Turnera ulmifolia L. is described. Seed movement from the fruit to their germination was studied, using different measurements and experiments. The results show that a T. ulmifolia individual produces ca. 5000 seeds per year. The main pre-seed-fall predators are the larvae of the Microlepidopteran Crocidosema plebejana Zeller, which consumed 1% of the seeds on the plant. The red-land crab Gecarcinus lateralis (Freminville) consumed 19% of the seeds beneath the plant and was the main post-seed-fall predator. Seed removal by ants was recorded on and beneath the plant, and ants removed 49% of the total seed production. Considering the seed removal events, the ant Forelius analis contributed with 64% of the total number of events. F. analis took seeds to its nest and discarded 23% of the seeds collected. Germination of seeds collected by F. analis was two to four times higher than that of seeds with and without elaiosome, respectively. The relatively low seed predation was probably related to ant defense, associated with the presence of extrafloral nectaries in this plant and with seed removal on the plant. Our results suggest that F. analis is a quantitatively efficient but qualitatively inefficient seed disperser of T. ulmifolia.

  3. Enhanced tocopherol levels during early germination events in Chamaerops humilis var. humilis seeds.

    PubMed

    Siles, Laura; Alegre, Leonor; Tijero, Verónica; Munné-Bosch, Sergi

    2015-10-01

    Most angiosperms accumulate vitamin E in the form of tocopherols in seeds, exerting a protective antioxidant role. However, several palm trees principally accumulate tocotrienols, rather than tocopherols, in seeds, as it occurs in other monocots. To unravel the protective role of either tocopherols or tocotrienols against lipid peroxidation during seed germination in Chamaerops humilis var. humilis; seed viability, natural and induced germination capacity, seed water content, malondialdehyde levels (as an indicator of the extent of lipid peroxidation) and vitamin E levels (including both tocopherols and tocotrienols) were examined at various germination phases in a simulated, natural seed bank. At the very early stages of germination (operculum removal), malondialdehyde levels increased 2.8-fold, to decrease later up to 74%, thus indicating a transient lipid peroxidation at early stages of germination. Tocopherol levels were absent in quiescent seeds and did not increase during operculum removal, but increased later presumably dampening malondialdehyde accumulation. Thereafter, tocopherols continued increasing, while lipid peroxidation levels decreased. By contrast, tocotrienols levels remained constant or even decreased as germination progressed, showing no correlation with lipid peroxidation levels. We hypothesize that despite their high tocotrienol content, seeds synthesize tocopherols during germination to protect lipids from peroxidation events. PMID:26241488

  4. Seed germination in response to chemicals: effect of nitrogen and pH in the media.

    PubMed

    Pérez-Fernández, M A; Calvo-Magro, E; Montanero-Fernández, J; Oyola-Velasco, J A

    2006-01-01

    Seed germination generally presents a peak in the next growing season after a fire. Among other factors associated with fire are the increase of soil nitrogen and changes in the pH of the soil. In this study, we addressed the question, whether or not the germination response of eight species is linked with the increase in pH and nitrogenous compounds in the germination media? We assessed the separate and combined effects of nitrogenous compounds and pH on the percentage and rate of germination of seeds of Medicago arabica (L.) Hudson, Epilobium hirsutum L., Foeniculum vulgare Miller, Daucus carota L., Thapsia villosa L., Cynosurus cristatus L., Dactylis glomerata L. and Rumex crispus L. All these species are well represented in the Mediterranean ecosystems of the central-west Spain. Water and CaCl2 were used as controls. Nitrogenous compounds increased percent germination (level) and rate in three of the species studied. High pH negatively affected the germination rate of seeds from most species, but had no effect on the per cent germination of any of the species. The higher concentration of the nutritious solutions affected negatively the germination level and rate. The different germination responses of seeds of the studied species could not be exclusively attributed to pH values in the media, whereas the amount and form of Nitrogen in the media has a greater effect on it. These differences in germination are species dependent. PMID:16850869

  5. ?-amylase from starchless seeds of Trigonella foenum-graecum and its localization in germinating seeds.

    PubMed

    Srivastava, Garima; Kayastha, Arvind M

    2014-01-01

    Fenugreek (Trigonella foenum-graecum) seeds do not contain starch as carbohydrate reserve. Synthesis of starch is initiated after germination. A ?-amylase from ungerminated fenugreek seeds was purified to apparent electrophoretic homogeneity. The enzyme was purified 210 fold with specific activity of 732.59 units/mg. Mr of the denatured enzyme as determined from SDS-PAGE was 58 kD while that of native enzyme calculated from size exclusion chromatography was 56 kD. Furthermore, its identity was confirmed to be ?-amylase from MALDI-TOF analysis. The optimum pH and temperature was found to be 5.0 and 50C, respectively. Starch was hydrolyzed at highest rate and enzyme showed a Km of 1.58 mg/mL with it. Antibodies against purified Fenugreek ?-amylase were generated in rabbits. These antibodies were used for localization of enzyme in the cotyledon during different stages of germination using fluorescence and confocal microscopy. Fenugreek ?-amylase was found to be the major starch degrading enzyme depending on the high amount of enzyme present as compared to ?-amylase and also its localization at the periphery of amyloplasts. A new finding in terms of its association with protophloem was observed. Thus, this enzyme appears to be important for germination of seeds. PMID:24551136

  6. Germinating Seeds of Citrus aurantium a Good Source of Bioactive Limonoids.

    PubMed

    Ariza, Marta R; Herrador del Pino, M Mar; Barrero, Alejandro F

    2015-06-01

    A simple method to obtain extracts enriched in bioactive limonoids from Citrus aurantium L. seeds has been developed, using solvents of increasing polarity. 1H NMR data from the extracts revealed that the highest amounts of limonoids were present in the t-butylmethylether extract. The comparison between extracts obtained from dormant and germinating seeds showed that the latter contained almost double amounts of limonoids, revealing germinating seeds as an excellent source of those bioactive compounds. PMID:26197503

  7. Vegetable product containing caseinomacropeptide and germinated seed and sprouts.

    PubMed

    Karakaya, Sibel; El, Sedef Nehir; Simsek, Sebnem; Buyukkestelli, Hulya Ilyasoglu

    2016-01-01

    In this study vegetable product containing germinated seed and sprouts of lentils and cowpeas, and caseinomacropeptide isolated from whey is produced. Three different forms of vegetable product namely puree (VP), freeze-dried (FD) and drum-dried (DD) are produced. Freeze-dried and DD forms are produced to diversify forms of utilization and to improve functionality such as increased shelf life and decreased storage space. Their beneficial effects on health are determined using in vitro methods. All forms displayed antioxidant activities against DPPH radical and oxygen radical, α-amylase inhibitory activities, bile acid binding capacities, and angiotension converting enzyme (ACE) inhibitory activities. Freeze-dried product exhibited the strongest inhibition on α-amylase and ACE with the IC50 value 0.09 μM total phenolic and 0.82 mg protein/g sample, respectively when evaluated on the basis of serving size. PMID:26788011

  8. Spatial and Temporal Divergence of Expression in Duplicated Barley Germin-Like Protein-Encoding Genes

    PubMed Central

    Federico, Maria L.; Iñiguez-Luy, Federico L.; Skadsen, Ronald W.; Kaeppler, Heidi F.

    2006-01-01

    Subfunctionalization is the process by which a pair of duplicated genes, or paralogs, experiences a reduction of individual expression patterns or function while still reproducing the complete expression pattern and function of the ancestral gene. Two germin-like protein (GLP)-encoding genes, GerB and GerF, are paralogs that belong to a small gene family in barley (Hordeum vulgare). Both genes share high nucleotide sequence similarity in coding and noncoding regions and encode identical apoplastic proteins. The use of RNA gel blots, coupled with single-stranded conformation polymorphism (SSCP) analysis of RT–PCR products, elucidated the developmental and tissue-specific expression patterns of each gene. Individual expression patterns provided evidence of both overlapping redundancy and early subfunctionalization. GerB is predominantly expressed in developing shoots, while GerF is predominantly expressed in seedling roots, developing spikes, and pericarp/testa. GerF promoter deletion studies located a region (−356/−97) responsible for high promoter activity and showed the ability of GerB and GerF upstream regions to drive gfp expression in coleoptiles, epicarps, and lemma/palea of developing spikes. The observed expression patterns are consistent with proposed roles in plant development and defense mechanisms for this gene family. These roles may explain why redundancy has been selectively maintained in this duplicate gene pair. PMID:16751662

  9. A new prebiotic from germinated barley for nutraceutical treatment of ulcerative colitis.

    PubMed

    Bamba, Tadao; Kanauchi, Osamu; Andoh, Akira; Fujiyama, Yoshihide

    2002-08-01

    A germinated barley foodstuff (GBF) containing glutamine-rich protein and hemicellulose-rich fiber was made from brewer's spent grain, by physical isolation. Our previous studies demonstrated that GBF supported maintenance of epithelial cell populations, facilitated epithelial repair, and suppressed epithelial nuclear factor kappaB-DNA-binding activity through generating increased short-chain fatty acid (especially butyrate) production by luminal microflora, which includes Bifidobacterium and Eubacterium, thereby preventing experimental colonic injury. The fiber fraction also modulates stool water content because of its high water-holding capacity. The patients with mild to moderate active ulcerative colitis who had been unresponsive to or intolerant of standard treatment received 20-30 g GBF, feeding daily in a non-randomized, open-label fashion. At 4 weeks, this treatment resulted in a significant clinical and endoscopic improvement. The improvement was associated with an increase in stool butyrate concentrations. These results indicate that GBF feeding is a potentially new, attractive prebiotic treatment in patients with ulcerative colitis. The potency of GBF on modulating microflora, as well as the high water-holding capacity, may play an important role in treatment and prolongation of remission in ulcerative colitis. PMID:12164955

  10. Phase-Sequence of Redroot Pigweed Seed Germination Responses to Ethylene and Other Stimuli 1

    PubMed Central

    Schonbeck, Mark W.; Egley, G. H.

    1981-01-01

    Phase-sequence studies showed that light, ethylene, and high temperature each enhanced germination of redroot pigweed (Amaranthus retroflexus L.) seeds when given during the first 24 hours of seed imbibition. Responses were maximal during the first 12 hours. After 48 hours all three stimuli given together caused 75% germination but each alone was ineffective. The main influence of water potential on seed germination occurred at about 24 hours, but the influence of CO2 extended into the second and third days. Germination was reduced by water stress (−4 bars) or CO2-free air, but ethylene reversed the reduction even when administered after several days incubation. This suggested that environmental and hormonal factors affected redroot pigweed seeds at two distinct stages in the sequence of germination events. PMID:16661865

  11. Germination rate of Phyllospadix japonicus seeds relative to storage methods and periods

    NASA Astrophysics Data System (ADS)

    Park, Jung-Im; Lee, Kun-Seop; Son, Min Ho

    2014-03-01

    To determine the optimal storage method and longest possible storage period of Phyllospadix japonicus seeds, we examined post-storage germination rates using different storage methods and periods for P. japonicus seeds harvested in Korean coastal waters. P. japonicus seeds are classified as recalcitrant seeds with an average moisture content of 45.4%. Germination rates of P. japonicus seeds stored in seawater at 4 °C, seawater at room temperature with air supply, and an aquarium with continuous seawater circulation ranged from 35.0% to 43.5%, whereas seeds stored in seawater at 30°C, a refrigerator at -20°C, and a desiccator at room temperature did not germinate. Seeds stored at 4°C maintained germination rates of 72.5˜73.0% until 30 days of storage, but showed rapidly decreasing germination rates after 60 days and no germination after 180 days. Since few studies have investigated seed storage of P. japonicus, these results will serve as useful data for seed-based P. japonicus habitat restoration.

  12. [Light quality effect on the seeds germination in tropical pioneer tree Heliocarpus appendiculatus (Tiliaceae)].

    PubMed

    Figueroa, Javier A; Vázquez-Yanes, Carlos

    2002-03-01

    The objective of this study was to determine whether seeds of the pioneer tree Heliocarpus appendiculatus possess photoblastic dormancy. Seeds from nine trees were collected in Los Tuxtlas, Mexico. In order to test for the presence of photoblastic dormancy, germination experiments were carried out separately on seeds of each individual tree. The seeds from each tree were sown and subjected to four light treatments: fluorescent white light, red light (660 nm), far red light (730 nm), and darkness. A total of 50 seeds were sown in each plastic Petri dish (three replicates per treatment) on an agar solution. Experiments were carried out at a constant temperature of 20 degrees C, and a 12:12 hr (L:D) photoperiod. In addition, seeds of three individuals were sown on agar and subjected to a light quality gradient from red to far red (1.1-0.2). Results show that final germination percentages of seeds were unaffected by light quality in all individuals. Nevertheless, germination was delayed by 24 hr in the seeds of four individuals under the far red light treatment. By the end of fourth day, final germination did not differ among treatments. Further, germination of the three individuals under the red/far red gradient was unaffected. Seeds of H. appendiculatus lack photoblastic dormancy and germination behavior can not be used to explain the absence of seedlings below the canopy. We propose that this absence is due to the failure of the seedlings to establish themselves under the canopy. PMID:12298259

  13. Barley peroxidase isozymes

    NASA Astrophysics Data System (ADS)

    Laugesen, Sabrina; Bak-Jensen, Kristian Sass; Hägglund, Per; Henriksen, Anette; Finnie, Christine; Svensson, Birte; Roepstorff, Peter

    2007-12-01

    Thirteen peroxidase spots on two-dimensional gels were identified by comprehensive proteome analysis of the barley seed. Mass spectrometry tracked multiple forms of three different peroxidase isozymes: barley seed peroxidase 1, barley seed-specific peroxidase BP1 and a not previously identified putative barley peroxidase. The presence of multiple spots for each of the isozymes reflected variations in post-translational glycosylation and protein truncation. Complete sequence coverage was achieved by using a series of proteases and chromatographic resins for sample preparation prior to mass spectrometric analysis. Distinct peroxidase spot patterns divided the 16 cultivars tested into two groups. The distribution of the three isozymes in different seed tissues (endosperm, embryo, and aleurone layer) suggested the peroxidases to play individual albeit partially overlapping roles during germination. In summary, a subset of three peroxidase isozymes was found to occur in the seed, whereas products of four other barley peroxidase genes were not detected. The present analysis documents the selective expression profiles and post-translational modifications of isozymes from a large plant gene family.

  14. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual.

    PubMed

    Lu, Juan J; Tan, Dun Y; Baskin, Carol C; Baskin, Jerry M

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  15. Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual

    PubMed Central

    Lu, Juan J.; Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2016-01-01

    The maternal environment can influence the intensity of seed dormancy and thus seasonal germination timing and post-germination life history traits. We tested the hypotheses that germination season influences phenotypic expression of post-germination life history traits in the cold desert annual Isatis violascens and that plants from autumn- and spring-germinating seeds produce different proportions of seeds with nondeep and intermediate physiological dormancy (PD). Seeds were sown in summer and flexibility in various life history traits determined for plants that germinated in autumn and in spring. A higher percentage of spring- than of autumn-germinating plants survived the seedling stage, and all surviving plants reproduced. Number of silicles increased with plant size (autumn- > spring-germinating plants), whereas percent dry mass allocated to reproduction was higher in spring- than in autumn-germinating plants. Autumn-germinating plants produced proportionally more seeds with intermediate PD than spring-germinating plants, while spring-germinating plants produced proportionally more seeds with nondeep PD than autumn-germinating plants. Flexibility throughout the life history and transgenerational plasticity in seed dormancy are adaptations of I. violascens to its desert habitat. Our study is the first to demonstrate that autumn- and spring-germinating plants in a species population differ in proportion of seeds produced with different levels of PD. PMID:27117090

  16. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable. PMID:26934150

  17. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions.

    PubMed

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  18. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions

    PubMed Central

    Meng, Yongjie; Chen, Feng; Shuai, Haiwei; Luo, Xiaofeng; Ding, Jun; Tang, Shengwen; Xu, Shuanshuan; Liu, Jianwei; Liu, Weiguo; Du, Junbo; Liu, Jiang; Yang, Feng; Sun, Xin; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Shu, Kai; Yang, Wenyu

    2016-01-01

    Karrikins (KAR) are a class of signal compounds, discovered in wildfire smoke, which affect seed germination. Currently, numerous studies have focused on the model plant Arabidopsis in the KAR research field, rather than on crops. Thus the regulatory mechanisms underlying KAR regulation of crop seed germination are largely unknown. Here, we report that KAR delayed soybean seed germination through enhancing abscisic acid (ABA) biosynthesis, while impairing gibberellin (GA) biogenesis. Interestingly, KAR only retarded soybean seed germination under shaded conditions, rather than under dark and white light conditions, which differs from in Arabidopsis. Phytohormone quantification showed that KAR enhanced ABA biogenesis while impairing GA biosynthesis during the seed imbibition process, and subsequently, the ratio of active GA4 to ABA was significantly reduced. Further qRT-PCR analysis showed that the transcription pattern of genes involved in ABA and GA metabolic pathways are consistent with the hormonal measurements. Finally, fluridone, an ABA biogenesis inhibitor, remarkably rescued the delayed-germination phenotype of KAR-treatment; and paclobutrazol, a GA biosynthesis inhibitor, inhibited soybean seed germination. Taken together, these evidences suggest that KAR inhibit soybean seed germination by mediating the ratio between GA and ABA biogenesis. PMID:26902640

  19. The effects of Fusarium oxysporum on broomrape (Orobanche egyptiaca) seed germination.

    PubMed

    Hasannejad, S; Zad, S Javad; Alizade, H Mohamad; Rahymian, H

    2006-01-01

    Broomrape (Orobanche aegyptiaca L.), one of the most important parasitic weeds in Iran, is a root parasitic plant that can attack several crops such as tobacco, sunflower, tomato and etc. Several methods were used for Orobanche control, however these methods are inefficient and very costly. Biological control is an additional recent tool for the control of parasitic weeds. In order to study of the fungus Fusarium oxysporum (biocontrol agent) effects on broomrape seed germination, two laboratory studies were conducted in Tehran University. In the first experiment, different concentration of GR60 (0, 1, 2 and 5 ppm) as stimulation factor for Orobanche seeds germination were experimented. Results showed that concentrations of GR60 had a significant effect on seed germination. The highest seed germination percent was obtained in 1 ppm. In the second experiment, the effect of Fusarium oxysporum was tested on O. aegyptiaca seeds germination. The fungus Fusarium oxysporum were isolated from infested and juvenile O. aegyptiaca ower stalks in tomato field in karaj. Fungus spores suspension in different concentrations (0 (Control), 10(5) (T1), 10(6) (T2), 10(7) (T3) and 3 x 10(7) (T4)) from potato dextrose agar (PDA) prepared and together with 1ppm of GR60 concentration were tested on O. aegyptiaca seeds. Results show that the highest inhibition of seed germination obtained in 10(5) spores/ml. With increasing of suspension concentrations, inhibition percent was reduced and mortality of seeds germ tube was increased. In this investigation, Fusarium oxysporum can be used to inhibit seed germination, stimulate the "suicidal germination" of seeds and reduce the Orobanche seed bank. PMID:17390893

  20. Seed flotation and germination of salt marsh plants: The effects of stratification, salinity, and/or inundation regime

    USGS Publications Warehouse

    Elsey-Quirk, T.; Middleton, B.A.; Proffitt, C.E.

    2009-01-01

    We examined the effects of cold stratification and salinity on seed flotation of eight salt marsh species. Four of the eight species were tested for germination success under different stratification, salinity, and flooding conditions. Species were separated into two groups, four species received wet stratification and four dry stratification and fresh seeds of all species were tested for flotation and germination. Fresh seeds of seven out of eight species had flotation times independent of salinity, six of which had average flotation times of at least 50 d. Seeds of Spartina alterniflora and Spartina patens had the shortest flotation times, averaging 24 and 26 d, respectively. Following wet stratification, the flotation time of S. alterniflora seeds in higher salinity water (15 and 36 ppt) was reduced by over 75% and germination declined by more than 90%. Wet stratification reduced the flotation time of Distichlis spicata seeds in fresh water but increased seed germination from 2 to 16% in a fluctuating inundation regime. Fresh seeds of Iva frutescens and S. alternflora were capable of germination and therefore are non-dormant during dispersal. Fresh seeds of I. frutescens had similar germination to dry stratified seeds ranging 25-30%. Salinity reduced seed germination for all species except for S. alterniflora. A fluctuating inundation regime was important for seed germination of the low marsh species and for germination following cold stratification. The conditions that resulted in seeds sinking faster were similar to the conditions that resulted in higher germination for two of four species. ?? 2009 Elsevier B.V.

  1. BARLEY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Barley is recognized as one of the very first crops to be domesticated for human consumption. Today, it remains one of the major cereal crops grown in the world, including the USA. Barley is grown on every continent on which crops are grown. It is well adapted to diverse environmental conditions, an...

  2. Nitric oxide implication in the control of seed dormancy and germination

    PubMed Central

    Arc, Erwann; Galland, Marc; Godin, Béatrice; Cueff, Gwendal; Rajjou, Loïc

    2013-01-01

    Germination ability is regulated by a combination of environmental and endogenous signals with both synergistic and antagonistic effects. Nitric oxide (NO) is a potent dormancy-releasing agent in many species, including Arabidopsis, and has been suggested to behave as an endogenous regulator of this physiological blockage. Distinct reports have also highlighted a positive impact of NO on seed germination under sub-optimal conditions. However, its molecular mode of action in the context of seed biology remains poorly documented. This review aims to focus on the implications of this radical in the control of seed dormancy and germination. The consequences of NO chemistry on the investigations on both its signaling and its targets in seeds are discussed. NO-dependent protein post-translational modifications are proposed as a key mechanism underlying NO signaling during early seed germination. PMID:24065970

  3. Heat shock effects on seed germination of five Brazilian savanna species.

    PubMed

    Ribeiro, L C; Pedrosa, M; Borghetti, F

    2013-01-01

    Fire is considered an important factor in influencing the physiognomy, dynamics and composition of Neotropical savannas. Species of diverse physiognomies exhibit different responses to fire, such as population persistence and seed mortality, according to the fire frequency to which they are submitted. The aim of this study is to investigate the effects of heat shocks on seed germination of Anadenanthera macrocarpa (Benth.) Brenan, Dalbergia miscolobium Benth., Aristolochia galeata Mart. & Zucc., Kielmeyera coriacea (Spreng.) Mart. and Guazuma ulmifolia Lam., which are native species of the Brazilian savanna. The temperatures and exposure times to which the seeds were submitted were established according to data obtained in the field during a prescribed fire: 60 °C (10, 20 and 40 min), 80 °C (5, 10 and 20 min) and 100 °C (2, 5 and 10 min). Untreated seeds were used as controls. Seeds of A. galeata and K. coriacea showed high tolerance to most heat treatments, and seeds of A. macrocarpa showed a significant reduction in germination percentage after treatments of 80 °C and 100 °C. Treatments of 100 °C for 10 min reduced germination percentage for all species except G. ulmifolia, which has dormant seeds. For this species, germination was accelerated by heat treatments. The high temperatures applied did not interfere with the time to 50% germination (T(50) ) of the tolerant seeds. Seeds of the savanna species K. coriacea and A. galeata were more tolerant to heat shocks than seeds of the forest species A. macrocarpa. Guazuma ulmifolia, the forest species with seeds that germinate after heat shock, also occurs in savanna physiognomies. Overall, the high temperatures applied did not affect the germination rate of the tolerant seeds. PMID:22672775

  4. Morphology, ecophysiology and germination of seeds of the neotropical tree Alibertia patinoi (Rubiaceae).

    PubMed

    Escobar Escobar, Diego Fernando; Torres, Alba Marina

    2013-06-01

    Alibertia patinoi (Rubiaceae) is of economic and cultural importance for communities in the Colombian Pacific and Amazon regions, where it is cultivated and mature fruits are highly appreciated and consumed. Since there is a lack of knowledge of the seed physiology of this species, we describe here the germination behavior and morphometry of seeds of Alibertia patinoi, and relate them to its habitat. Fruits were collected from a mixed food crop and a commercial plantation in Guaimía village, Buenaventura, Colombia, a tropical rain forest area. We measured length, width, thickness, mass (n = 1 400), and moisture content of seeds (n = 252). Primary dormancy tests were conducted (n = 200), followed by imbibition (n=252) and germination dynamics, under different conditions of light and temperature specific to understory and forest clearings (n = 300 seeds). Finally, seed storage behavior was established (n = 100 seeds). We observed that size and mass of seeds had a narrow range of values that did not differ within or among fruits and that the species did not exhibit primary dormancy. The seeds are recalcitrant, and recently harvested seeds exhibited higher seed moisture content (ca. 44%) and continuous metabolism. The seed germination percentage was observed to be higher under the specific dense canopy forest light and temperature conditions; furthermore, neither enriched far-red light nor darkness conditions inhibited germination. We concluded that rapid germination could be the establishment strategy of this species. Also, the physiological traits (i.e., rapid germination rate, low germination requirements, absence of primary dormancy, and recalcitrant behavior) and seed size and mass, suggest that A. patinoi is adapted to conditions of mature tropical rain forests. PMID:23885573

  5. Farmers' seed management and innovation in varietal selection: implications for barley breeding in Tigray, northern Ethiopia.

    PubMed

    Abay, Fetien; Waters-Bayer, Ann; Bjørnstad, Asmund

    2008-06-01

    Farmers' innovation and selection of barley varieties were studied in the Tigray Region in northern Ethiopia. Two districts each in the central and southern zones and three districts in the eastern zone of Tigray were randomly selected for this study, which sought to understand the current status of local barley varieties and to measure their relative preference by farmers. Household surveys were conducted covering 240 households to elicit farmers' views on the values, constraints, and opportunities of growing local varieties of barley. This was supported by focus-group and informal discussions with elders, key informants, and women's groups. Case studies were made of local farmers whom the community recognized as barley breeders. Twenty-four barley varieties and their major descriptors were recorded. Seed and varietal-selection criteria depended on the environmental and varietal characteristics. Investigation of intrahousehold decision making indicated that, while men tended to decide on the type of variety to grow, seed storage and processing were exclusively the responsibility of women. Farmers undertook preharvest and postharvest selection, giving emphasis mainly to earliness and spike characteristics. The distinct varietal-selection and seed-renewal procedures revealed their potential for use in further plant breeding. The case-study analysis of farmer-developed varieties provided knowledge that, if combined with scientists' knowledge, could lead to identification and development of valuable cultivars with a wide potential for use in semiarid areas of Tigray and other parts of Ethiopia. PMID:18686512

  6. Factors influencing seed germination of medicinal plant Salvia aegyptiaca L. (Lamiaceae)

    PubMed Central

    Gorai, Mustapha; Gasmi, Hayet; Neffati, Mohamed

    2011-01-01

    Salvia aegyptiaca is a xerophytic perennial herb belongs to the Lamiaceae family commonly used for medicinal purposes. Laboratory experiments were carried out to assess the effects of temperature and salinity on seed germination and recovery responses after transferring to distilled water. Temperatures between 10 and 40 °C seem to be favourable for the germination of this species. Germination was inhibited by either an increase or decrease in temperature from the optimum (30 °C). The highest germination percentages were obtained at 0 mM NaCl; however, the increase of solution osmolalities progressively inhibited seed germination. The germination rate decreased with an increase in salinity for most of tested temperatures, but comparatively higher rates were obtained at 30 °C. Salt stress decreased both the percentage and the rate of germination. An interaction between salinity and temperature yielded no germination at 300 mM NaCl. By experimental transfer to distilled water, S. aegyptiaca seeds that were exposed to moderately saline conditions recovered and keep their ability to germinate mostly at low temperatures. At 300 mM NaCl, germination recovery decreased with increasing temperature and it was completely inhibited at 40 °C. PMID:23961132

  7. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    USGS Publications Warehouse

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  8. The mitochondrion-located protein OsB12D1 enhances flooding tolerance during seed germination and early seedling growth in rice.

    PubMed

    He, Dongli; Zhang, Hui; Yang, Pingfang

    2014-01-01

    B12D belongs to a function unknown subgroup of the Balem (Barley aleurone and embryo) proteins. In our previous work on rice seed germination, we identified a B12D-like protein encoded by LOC_Os7g41350 (named OsB12D1). OsB12D1 pertains to an ancient protein family with an amino acid sequence highly conserved from moss to angiosperms. Among the six OsB12Ds, OsB12D1 is one of the major transcripts and is primarily expressed in germinating seed and root. Bioinformatics analyses indicated that OsB12D1 is an anoxic or submergence resistance-related gene. RT-PCR results showed OsB12D1 is induced remarkably in the coleoptiles or roots by flooding during seed germination and early seedling growth. The OsB12D1-overexpressed rice seeds could protrude radicles in 8 cm deep water, further exhibiting significant flooding tolerance compared to the wild type. Moreover, this tolerance was not affected by the gibberellin biosynthesis inhibitor paclobutrazol. OsB12D1 was identified in the mitochondrion by subcellular localization analysis and possibly enhances electron transport through mediating Fe and oxygen availability under flooded conditions. This work indicated that OsB12D1 is a promising gene that can help to enhance rice seedling establishment in farming practices, especially for direct seeding. PMID:25089878

  9. Cyanide-sensitive and Cyanide-resistant Respiration in the Germination of Cocklebur Seeds

    PubMed Central

    Esashi, Yohji; Sakai, Yuuko; Ushizawa, Ryohko

    1981-01-01

    Interrelation between the CN-sensitive cytochrome path and the CN-resistant, benzohydroxamic acid (BHM)-sensitive, or n-propylgallate (nPG)-sensitive alternative path in seed respiration during germination was examined using the nondormant upper and lower seeds of Xanthium pensylvanicum Wallr. The operation of both paths was required not only for normal germination of the lower seed but also for KCN- or NaN3-induced germination of both. From the sensitivity to BHM of the germination response, it became obvious that the alternative path exerts its physiological activity as soon as it develops during the early period of water imbibition. Pretreatments with KCN and NaN3 for promoting germination, strikingly decreased only the engagement of the cytochrome path in the subsequent respiration without affecting that of the alternative path. Nevertheless, no germination occurred without the operation of the cytochrome path. This suggested that excess operation of the cytochrome path is detrimental to germination, being maximal following the BHM-sensitive phase. The alternative and cytochrome paths operated in a proportion of 1 to 5 in a period just before the lower seeds started to germinate. However, there was little difference between the upper seeds of relatively low germination potential and the lower seeds of relatively high potential with respect to both the developmental pattern of the alternative path and the balance of the alternative and cytochrome paths. The higher germination potential of the lower seeds may be related to their high capacities for the alternative path. PMID:16661703

  10. Evaluation of factors that influence Benghal dayflower (Commelina benghalensis) seed germination and emergence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A perennial species in its native range, Benghal dayflower (BD) in North America establishes annually from seed. BD has the unique ability to produce aerial and subterranean flowers and seeds; information on how various environmental factors affect BD aerial and subterranean seed germination and eme...

  11. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress.

    PubMed

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P

    2015-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt stress in dimorphic seeds might provide a strategy for S. salsa plants to survive adverse environmental conditions. PMID:26793214

  12. Roles of Gibberellins and Abscisic Acid in Regulating Germination of Suaeda salsa Dimorphic Seeds Under Salt Stress

    PubMed Central

    Li, Weiqiang; Yamaguchi, Shinjiro; Khan, M. Ajmal; An, Ping; Liu, Xiaojing; Tran, Lam-Son P.

    2016-01-01

    Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs) and abscisic acid (ABA) in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA homeostases by salt stress in dimorphic seeds might provide a strategy for S. salsa plants to survive adverse environmental conditions. PMID:26793214

  13. Ingestion and dispersal: direct and indirect effects of frugivores on seed viability and germination of Corema album (Empetraceae)

    NASA Astrophysics Data System (ADS)

    Calviño-Cancela, María

    2004-07-01

    The effect of gulls, blackbirds and rabbits on the viability and germination of Corema album seeds are compared. Frugivores can affect seed viability and germination (1) directly, through the effect of ingestion and (2) indirectly, dispersing seeds to different sites with different conditions. These two major factors in the quality of a seed disperser are not necessarily concordant in direction and magnitude. Gulls and blackbirds have similar direct effects, being much better than those of rabbits, due to the low probability of germination of seeds within rabbit pellets. Seed germination occurs mainly in the open ground, particularly in the sparse scrub, and is very low under vegetation cover. This pattern becomes crucial determining the indirect effects of seed dispersers that will depend on their capacity to carry seeds to the most suitable sites for germination. Gulls and rabbits disperse most of seeds to open ground, exerting a positive indirect effect on germination, whereas blackbirds disperse seeds mainly under shrubs, thus exerting a negative indirect effect. Direct and indirect effects on seed germination are concordant for gulls but discordant for blackbirds and rabbits. Gulls were the best dispersers; the overall probability of germination for a seed dispersed by gulls was 17.59%. The quality of blackbirds and rabbits was relatively low (3.49% and 1.17%, respectively). Frugivores seem to be essential for germination of C. album seeds, not as much for their direct effects but for their ability to carry seeds to suitable sites.

  14. Barley (Hordeum vulgare L.) low phytic acid 1-1: an endosperm-specific filial determinant of seed total phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cultivated cereal and legume seed crops, inositol hexaphosphate (Ins P6 or “phytic acid”) typically accounts for 75% (±10%) of seed total phosphorus (P). Genetic blocks in seed Ins P6 accumulation in some cases can also alter the distribution or total amount of seed P. In non-mutant barley (Horde...

  15. Germination of Ocotea pulchella (Nees) Mez (Lauraceae) seeds in laboratory and natural restinga environment conditions.

    PubMed

    Pires, L A; Cardoso, V J M; Joly, C A; Rodrigues, R R

    2009-08-01

    The germination response of Ocotea pulchella (Nees) Mez seeds to light, temperature, water level and pulp presence is introduced. The laboratory assays were carried out in germination chambers and thermal-gradient apparatus, whereas the field assays were performed in environments with distinct light, temperature and soil moisture conditions within a permanent parcel of Restinga forest of the Parque Estadual da Ilha do Cardoso, Cananéia, São Paulo. The seeds do not exhibit dormancy, they are non photoblastic, and a loss of viability in dry stored seeds can be related to a decrease in water content of the seed. The presence of the pulp and the flooded substratum influenced negatively the germination of O. pulchella seeds tested in the laboratory. Otherwise, light and temperature probably are not limiting factors of the germination of O. pulchella seeds in the natural environment of Restinga. The optimum temperature range for germination of Ocotea pulchella seeds was 20 to 32 degrees C, the minimum or base temperature estimated was 11 degrees C and the maximum ranged between 33 and 42 degrees C. The isotherms exhibited a sigmoidal pattern well described by the Weibull model in the sub-optimal temperature range. The germinability of O. pulchella seeds in the understorey, both in wet and dry soil, was higher than in gaps. Germination was not affected by fluctuations in soil moisture content in the understorey environment, whereas in gaps, germination was higher in wet soils. Thus, the germination of this species involves the interaction of two or more factors and it cannot be explained by a single factor. PMID:19802455

  16. Effects of High Temperature and Water Stress on Seed Germination of the Invasive Species Mexican Sunflower

    PubMed Central

    Wen, Bin

    2015-01-01

    Mexican sunflower is native to Mexico and Central America and was introduced into China early last century. Now it has widely naturalized and is exhibiting increasing invasiveness in South China. As this species often dominates bare ground, a habitat characterized by extreme fluctuation in temperature and water, it is reasonable to hypothesize that it has special adaptations to high temperature and water stress. Using laboratory experiments to simulate these stresses, this study investigated the response of Mexican sunflower seed germination to temperature and water stress, and compared these responses with those previously reported for another invasive, bamboo piper, which is confined to relatively cool and moist habitats in Xishuangbanna. As expected, Mexican sunflower seeds exhibited higher tolerance to these stresses than bamboo piper. Germination of Mexican sunflower seeds was highest at 15–30°C, but significant numbers of seeds germinated and formed seedlings at 10°C and 35°C, at which no bamboo piper seeds formed seedlings, indicating a wider temperature range for germination than the latter. Roughly half the seeds survived 240 h continuous heat treatment and up to 15 h daily periodical heat treatment at 40°C, while bamboo piper seeds were mostly killed by these treatments. About 20% of Mexican sunflower but no bamboo piper seeds germinated after heat treatment for 30 min at 80°C. Germination was completely inhibited in bamboo piper seeds at -0.6 mPa, while 20–60% of Mexican sunflower seeds germinated depending on PEG or NaCl as osmoticum. This higher tolerance in Mexican sunflower seeds accords with its stronger invasiveness in this area. This comparison between two plant invaders demonstrates that invasiveness is not an all-or-nothing situation, and that adaptation to local habitats is a critical determinant of successful invasiveness for an alien plant. PMID:26509675

  17. Using hyperspectral imaging to determine germination of native Australian plant seeds.

    PubMed

    Nansen, Christian; Zhao, Genpin; Dakin, Nicole; Zhao, Chunhui; Turner, Shane R

    2015-04-01

    We investigated the ability to accurately and non-destructively determine the germination of three native Australian tree species, Acacia cowleana Tate (Fabaceae), Banksia prionotes L.F. (Proteaceae), and Corymbia calophylla (Lindl.) K.D. Hill & L.A.S. Johnson (Myrtaceae) based on hyperspectral imaging data. While similar studies have been conducted on agricultural and horticultural seeds, we are unaware of any published studies involving reflectance-based assessments of the germination of tree seeds. Hyperspectral imaging data (110 narrow spectral bands from 423.6nm to 878.9nm) were acquired of individual seeds after 0, 1, 2, 5, 10, 20, 30, and 50days of standardized rapid ageing. At each time point, seeds were subjected to hyperspectral imaging to obtain reflectance profiles from individual seeds. A standard germination test was performed, and we predicted that loss of germination was associated with a significant change in seed coat reflectance profiles. Forward linear discriminant analysis (LDA) was used to select the 10 spectral bands with the highest contribution to classifications of the three species. In all species, germination decreased from over 90% to below 20% in about 10-30days of experimental ageing. P50 values (equal to 50% germination) for each species were 19.3 (A. cowleana), 7.0 (B. prionotes) and 22.9 (C. calophylla) days. Based on independent validation of classifications of hyperspectral imaging data, we found that germination of Acacia and Corymbia seeds could be classified with over 85% accuracy, while it was about 80% for Banksia seeds. The selected spectral bands in each LDA-based classification were located near known pigment peaks involved in photosynthesis and/or near spectral bands used in published indices to predict chlorophyll or nitrogen content in leaves. The results suggested that seed germination may be successfully classified (predicted) based on reflectance in narrow spectral bands associated with the primary metabolism function and performance of plants. PMID:25752861

  18. Re-induction of desiccation tolerance after germination of Cedrela fissilis Vell. seeds.

    PubMed

    Masetto, Tathiana E; Faria, Jose M; Fraiz, Ana C R

    2014-09-01

    This work aimed to characterize the re-induction of desiccation tolerance (DT) in germinated seeds, using polyethylene glycol (PEG 8000). Cell changes were investigated through cytological assays (cell viability and transmission electronic microscopy) as well as DNA integrity during loss and re-establishment of DT. The loss of DT was characterized by drying germinated seeds with different radicle lengths (1, 2, 3, 4 and 5 mm) in silica gel, decreasing the moisture content to ten percentage points intervals, followed by pre-humidification (100% RH / 24 h) and rehydration. To re-induce DT, germinated seeds were treated for 72 h with PEG (-2.04 MPa) and PEG (-2.04 MPa) + ABA (100 µM) before dehydration. Germinated seeds did not tolerate desiccation to 10% moisture content, irrespectively of the radicle length. However, when incubated in PEG, those with 1 and 2 mm long radicle attained 71% and 29% survival, respectively. The PEG+ABA treatment was efficient to re-establish DT in seeds with 1 mm long radicles (100% survival). The ultrastructural assays of the cells of germinated seeds with 2 and 5 mm length confirmed the obtained physiological results. Germinated seeds of C. fissilis constitute a useful tool for desiccation tolerance investigations. PMID:25140505

  19. A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    USGS Publications Warehouse

    Klinger, R.; Rejmanek, M.

    2010-01-01

    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.

  20. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20

    PubMed Central

    2014-01-01

    Background Wheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array. Results A total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0–12 hours after imbibition [HAI]), a plateau phase (12–24 HAI), and a further water uptake phase (24–48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co-expression network with a k-core algorithm to determine which play pivotal roles in germination. Twenty-three meaningful genes were found, and quantitative RT-PCR analysis validated the expression patterns of 12 significant genes. Conclusions Wheat seed germination comprises three distinct phases and includes complicated regulation networks involving a large number of genes. These genes belong to many functional groups, and their co-regulations guarantee regular germination. Our results provide new insight into metabolic changes during seed germination and interactions between some significant genes. PMID:24410729

  1. Raffinose and Stachyose Metabolism are not Required for Efficient Soybean Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Raffinose family oligosaccharides (RFOs), which include raffinose and stachyose, are thought to be an important source of energy during seed germination. In contrast to their potential for promoting germination, RFOs represent anti-nutritional units for monogastric animals when consumed as a compone...

  2. STRESS TEST WITH HYDROGEN PEROXIDE: SUGAR BEET SEED GERMINATION IN SOLUTION REFLECTS RELATIVE EMERGENCE POTENTIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigation of sugar beet seed germination in water, hydrogen peroxide, and other solutions has revealed insights into the mechanism of seedling vigor in beets. Results showed that germination in solution reflected the relative emergence potential of sugar beet in the field. Experiments at East ...

  3. A NOVEL NONINVASIVE TECHNIQUE TO MONITOR REAL-TIME OXYGEN UPTAKE DURING SEED GERMINATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report here a technique that allows real-time monitoring of oxygen consumption during seed germination. Germination, which begins with rehydration of the dormant tissue and is technically complete once embryo growth and emergence occurs, does not lend itself to easy and frequent monitoring. For...

  4. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  5. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.

    PubMed

    Chen, Changming; Twito, Shir; Miller, Gad

    2014-01-01

    Successful execution of germination program greatly depends on the seeds' oxidative homeostasis. We recently identified new roles for the H2O2-reducing enzyme ascorbate peroxidase 6 (APX6) in germination control and seeds' stress tolerance. APX6 replaces APX1 as the dominant APX in dry seeds, and its loss-of-function results in reduced germination due to over accumulation of ROS and oxidative damage. Metabolic analyses in dry apx6 seeds, revealed altered homeostasis of primary metabolites including accumulation of TCA cycle metabolites, ABA and auxin, supporting a novel role for APX6 in regulating cellular metabolism. Increased sensitivity of apx6 mutants to ABA or IAA in germination assays indicated impaired perception of these signals. Relative suppression of ABI3 and ABI5 expression, and induction of ABI4, suggested the activation of a signaling route inhibiting germination in apx6 seeds that is independent of ABI3. Here we provide additional evidence linking ABI4 with ABA- and auxin-controlled inhibition of germination and suggest a hypothetical model for the role of APX6 in the regulation of the crosstalk between these hormones and ROS. PMID:25482750

  6. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis.

    PubMed

    Guan, M; Møller, I S; Schjoerring, J K

    2015-01-01

    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter-green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis. PMID:25316065

  7. Two cytosolic glutamine synthetase isoforms play specific roles for seed germination and seed yield structure in Arabidopsis

    PubMed Central

    Guan, M.; Møller, I. S.; Schjoerring, J. K.

    2015-01-01

    Nitrogen (N) remobilization from reserves to sinks is essential for seedling establishment and seed production. Cytosolic glutamine synthetase (GS1) is up-regulated during both seed germination and seed filling in plants. However, the specific roles of the individual GS1 isogenes with respect to N remobilization, early seedling vigour, and final seed productivity are not known. In this study, impairment of seed germination and seedling establishment is demonstrated in the single knockout mutant gln1;2, and the double knockout mutant gln1;1:gln1;2. The negative effect of Gln1;2 deficiency was associated with reduced N remobilization from the cotyledons and could be fully alleviated by exogenous N supply. Following reproductive growth, both the single and double Gln1;2-knockout mutants showed decreased seed yield due to fewer siliques, less seeds per silique, and lower dry weight per seed. The gln1;1 single mutant had normal seed yield structure but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter–green fluorescent protein constructs showed that Gln1;2 localizes to the vascular cells of roots, petals, and stamens. It is concluded that Gln1;2 plays an important role in N remobilization for both seedling establishment and seed production in Arabidopsis. PMID:25316065

  8. Assessment of phytochemicals and antioxidant activities of raw and germinating Ceiba pentandra (kapok) seeds

    PubMed Central

    Ravi Kiran, Chekuboyina; Rao, Dadi Bhaskara; Sirisha, Nagala; Rao, Tamanam Raghava

    2015-01-01

    Abstract To determine the significance of germination on phytochemical constituents and non-enzymatic antioxidant activities of Ceiba pentandra seed extracts. Phytochemicals and antioxidant activities of raw and germinating seeds of Ceiba pentandra were estimated by different methods. The levels of phytochemical constituents were influenced by germination and increased except alkaloids and tannins, which were decreased significantly during germination. Among non-enzymatic antioxidants like DPPH, FRAP, reducing assay and hydroxyl radical scavenging activity all showed improved activity compared with non-germinating seeds. This may be due to various reactive oxygen species (ROS) that were generated as by-products of metabolism during germination. This group of ROS included superoxide radicals (O2), hydrogen peroxide radicals (H2O2) and hydroxyl radicals (OH). The formation of these oxygen radicals resulted in the accumulation of lipid hydroperoxides by radical chain oxidation via phospholipids peroxy radicals within membranes. Therefore, it was hypothesized that this could be related to the increase of antioxidant activity in large unilamellar vesicles observed in germinated seeds. The implication of this study is that the Ceiba pentandra seeds as natural antioxidant agents and put forward the possibility of employing for therapeutic potential. PMID:26442618

  9. Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico

    NASA Astrophysics Data System (ADS)

    Zuloaga-Aguilar, Susana; Briones, Oscar; Orozco-Segovia, Alma

    2011-05-01

    In many fire-prone ecosystems, seed germination is triggered by heat shock, smoke, ash and charred wood. However, few studies concerning the effect of these fire products on the germination of tropical and subtropical species exist. We assessed the effect of fire products and their interactions on seed germination in 12 species that frequently grow in burned areas of pine-oak and mixed forest in a mountainous subtropical area. Each species was exposed to a predetermined treatment of heat shock, which was optimised in accordance with a previous study. For smoke treatments, seeds were immersed in smoke water, whereas for ash treatments, 1.5 g of ash was added to the incubation medium. Germination increased in 92% of the species in response to the products of fire. Both the smoke water and the ash treatments promoted germination in four species that had permeable seed covers and physiological dormancy. Six species with physical dormancy required both heat shock and smoke water or ash to break dormancy. Our results indicate that seed germination response to fire products depends on the species and/or dormancy type. The germination response to the fire products varied between species; therefore, fire products may influence the species composition in post-fire regeneration.

  10. Assessment of phytochemicals and antioxidant activities of raw and germinating Ceiba pentandra (kapok) seeds.

    PubMed

    Ravi Kiran, Chekuboyina; Rao, Dadi Bhaskara; Sirisha, Nagala; Rao, Tamanam Raghava

    2015-09-01

    To determine the significance of germination on phytochemical constituents and non-enzymatic antioxidant activities of Ceiba pentandra seed extracts. Phytochemicals and antioxidant activities of raw and germinating seeds of Ceiba pentandra were estimated by different methods. The levels of phytochemical constituents were influenced by germination and increased except alkaloids and tannins, which were decreased significantly during germination. Among non-enzymatic antioxidants like DPPH, FRAP, reducing assay and hydroxyl radical scavenging activity all showed improved activity compared with non-germinating seeds. This may be due to various reactive oxygen species (ROS) that were generated as by-products of metabolism during germination. This group of ROS included superoxide radicals (O2), hydrogen peroxide radicals (H2O2) and hydroxyl radicals (OH). The formation of these oxygen radicals resulted in the accumulation of lipid hydroperoxides by radical chain oxidation via phospholipids peroxy radicals within membranes. Therefore, it was hypothesized that this could be related to the increase of antioxidant activity in large unilamellar vesicles observed in germinated seeds. The implication of this study is that the Ceiba pentandra seeds as natural antioxidant agents and put forward the possibility of employing for therapeutic potential. PMID:26442618

  11. Seed dormancy and germination of Ficus lundellii and tropical forest restoration.

    PubMed

    Garcia, Ximena; Hong, Tran D; Ellis, Richard H

    2006-01-01

    We investigated seed dormancy and germination in Ficus lundellii Standl. (Moraceae), a native species of Mexico's Los Tuxtlas tropical rain forest. In an 8-h photoperiod at an alternating diurnal (16/8 h) temperature of 20/30 degrees C, germination was essentially complete (96%) within 28 days, whereas in darkness, all seeds remained dormant. Neither potassium nitrate (0.05-0.2%) applied continuously nor gibberellic acid applied either continuously (10-200 ppm) or as a 24 hour pretreatment (2000 ppm) induced germination in the dark. Germination in the light was not reduced by a 24-h hydrochloric acid (0.1-1%) pretreatment, but it was reduced both by a 24-h pretreatment with either H(2)O(2) (0.1-5 M) or 5% HCl, or by more than 5 days of storage at 40 degrees C (4.5% seed water content). In a study with a 2-dimensional temperature gradient plate, seeds germinated fully and rapidly in the light at a constant temperature of 30 degrees C, and fully but less rapidly in the light at alternating temperatures with low amplitudes (< 12 degrees C) about the optimal constant temperature. The base, optimal and ceiling temperatures for rate of germination were estimated as 13.8, 30.1 and 41.1 degrees C, respectively. In all temperature regimes, light was essential for the germination of F. lundellii seeds. PMID:16203717

  12. QTLs for Seed Vigor-Related Traits Identified in Maize Seeds Germinated under Artificial Aging Conditions

    PubMed Central

    Han, Zanping; Ku, Lixia; Zhang, Zhenzhen; Zhang, Jun; Guo, ShuLei; Liu, Haiying; Zhao, Ruifang; Ren, Zhenzhen; Zhang, Liangkun; Su, Huihui; Dong, Lei; Chen, Yanhui

    2014-01-01

    High seed vigor is important for agricultural production due to the associated potential for increased growth and productivity. However, a better understanding of the underlying molecular mechanisms is required because the genetic basis for seed vigor remains unknown. We used single-nucleotide polymorphism (SNP) markers to map quantitative trait loci (QTLs) for four seed vigor traits in two connected recombinant inbred line (RIL) maize populations under four treatment conditions during seed germination. Sixty-five QTLs distributed between the two populations were identified and a meta-analysis was used to integrate genetic maps. Sixty-one initially identified QTLs were integrated into 18 meta-QTLs (mQTLs). Initial QTLs with contribution to phenotypic variation values of R2>10% were integrated into mQTLs. Twenty-three candidate genes for association with seed vigor traits coincided with 13 mQTLs. The candidate genes had functions in the glycolytic pathway and in protein metabolism. QTLs with major effects (R2>10%) were identified under at least one treatment condition for mQTL2, mQTL3-2, and mQTL3-4. Candidate genes included a calcium-dependent protein kinase gene (302810918) involved in signal transduction that mapped in the mQTL3-2 interval associated with germination energy (GE) and germination percentage (GP), and an hsp20/alpha crystallin family protein gene (At5g51440) that mapped in the mQTL3-4 interval associated with GE and GP. Two initial QTLs with a major effect under at least two treatment conditions were identified for mQTL5-2. A cucumisin-like Ser protease gene (At5g67360) mapped in the mQTL5-2 interval associated with GP. The chromosome regions for mQTL2, mQTL3-2, mQTL3-4, and mQTL5-2 may be hot spots for QTLs related to seed vigor traits. The mQTLs and candidate genes identified in this study provide valuable information for the identification of additional quantitative trait genes. PMID:24651614

  13. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants.

    PubMed

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence suggest that there may be major implications for future plant population size and structure. PMID:26197387

  14. Effects of Autumn and Spring Heat Waves on Seed Germination of High Mountain Plants

    PubMed Central

    Orsenigo, Simone; Abeli, Thomas; Rossi, Graziano; Bonasoni, Paolo; Pasquaretta, Cristian; Gandini, Maurizia; Mondoni, Andrea

    2015-01-01

    Alpine plants are considered to be particularly vulnerable to climate change and related extreme episodes, such as heat waves. Despite growing interest in the impact of heat waves on alpine plants, knowledge about their effects on regeneration is still fragmentary. Recruitment from seeds will be crucial for the successful migration and survival of these species and will play a key role in their future adaptation to climate change. In this study, we assessed the impacts of heat waves on the seed germination of 53 high mountain plants from the Northern Apennines (Italy). The seeds were exposed to laboratory simulations of three seasonal temperature treatments, derived from real data recorded at a meteorological station near the species growing site, which included two heat wave episodes that occurred both in spring 2003 and in autumn 2011. Moreover, to consider the effect of increasing drought conditions related to heat waves, seed germination was also investigated under four different water potentials. In the absence of heat waves, seed germination mainly occurred in spring, after seeds had experienced autumn and winter seasons. However, heat waves resulted in a significant increase of spring germination in c. 30% of the species and elicited autumn germination in 50%. When heat waves were coupled with drought, seed germination decreased in all species, but did not stop completely. Our results suggest that in the future, heat waves will affect the germination phenology of alpine plants, especially conditionally dormant and strictly cold-adapted chorotypes, by shifting the emergence time from spring to autumn and by increasing the proportion of emerged seedlings. The detrimental effects of heat waves on recruitment success is less likely to be due to the inhibition of seed germination per se, but rather due to seedling survival in seasons, and temperature and water conditions that they are not used to experiencing. Changes in the proportion and timing of emergence suggest that there may be major implications for future plant population size and structure. PMID:26197387

  15. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination.

    PubMed

    Shu, Kai; Liu, Xiao-Dong; Xie, Qi; He, Zu-Hua

    2016-01-01

    Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also important for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node. PMID:26343970

  16. Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.

    PubMed

    Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui

    2015-05-22

    Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺. PMID:25907538

  17. Synthesis, processing and export of cytoplasmic endo-beta-1,4-xylanase from barley aleurone during germination.

    PubMed

    Caspers, M P; Lok, F; Sinjorgo, K M; van Zeijl, M J; Nielsen, K A; Cameron-Mills, V

    2001-04-01

    We have identified the major endo-beta-1,4-xylanase (XYN-1) in the aleurone of germinating barley grain, and show that it is expressed as a precursor of Mr 61 500 with both N- and C-terminal propeptides. XYN-1 is synthesized as an inactive enzyme in the cytoplasm, and only becomes active at a late stage of germination when the aleurone ceases to secrete hydrolases. A series of processing steps, mediated in part by aleurone cysteine endoproteases, yields a mature active enzyme of Mr 34 000. Processing and extracellular release of the mature enzyme coincide with the programmed cell death (PCD)-regulated disintegration of aleurone cells. We discuss the significance of delayed aleurone cell-wall degradation by endoxylanases in relation to the secretory capacity of the aleurone, and propose a novel role for aleurone PCD in facilitating the export of hydrolases. PMID:11389760

  18. Old sleeping Sicilian beauty: seed germination in the palaeoendemic Petagnaea gussonei (Spreng.) Rauschert (Saniculoideae, Apiaceae).

    PubMed

    De Castro, O; Gianguzzi, L; Carucci, F; De Luca, A; Gesuele, R; Guida, M

    2015-09-01

    Petagnaea gussonei (Apiaceae) is a perennial herbaceous species endemic to northeast Sicily (Nebrodi Mountains). It is considered a remnant of the Sicilian Tertiary flora, and is endangered according to the Red List. There is no information in the literature about the germinability of its seeds, even though seed production is know to occur. The aim of this study was to obtain data to better understand seed germination of this species and its biological implications. Thus, several approaches were employed: vitality analyses, gibberellic acid supply, germination and soil microbial flora analyses via end-point and qPCR. The results suggest that seed germination occurs after ca. 1.5 years at a rate of ca. 11%. The seeds can be classified as physiologically dormant, and probably require prolonged cold stratification for germination. Because seed germination is low, it is likely that agamic reproduction represents an important mean for its conservation and survival. These results have important implications for P. gussonei survival and should be considered in possible re-introduction attempts aimed at restoring threatened populations. PMID:25847095

  19. Differentially expressed genes associated with dormancy or germination of Arabidopsis thaliana seeds.

    PubMed

    Toorop, Peter E; Barroco, Rosa Maria; Engler, Gilbert; Groot, Steven P C; Hilhorst, Henk W M

    2005-07-01

    Differential display analysis using dormant and non-dormant Arabidopsis thaliana (L.) Heynh seeds resulted in a set of genes that were associated with either dormancy or germination. Expression of the germination-associated genes AtRPL36B and AtRPL27B, encoding two ribosomal proteins, was undetectable in the dry seed, low in dormant seed, and high under conditions that allowed completion of germination. Expression of these genes was also found to be light-regulated and to correlate with germination speed. Expression of the dormancy-associated genes ATS2 and ATS4, encoding a caleosin-like protein and a protein similar to a low-temperature-induced protein respectively, was high in the dry seed and decreased during germination. Expression of ATS2 and ATS4 was high in primary and secondary dormant seed but low in after-ripened or chilled seed. The expression of both genes was also light-regulated, but no relationship with temperature-dependent germination speed was found. PMID:15678336

  20. EASTERN DODDER (CUSCUTA MONOGYNA VAHL.) SEED GERMINATION AFFECTED BY SOME HERBACEOUS DISTILLATES.

    PubMed

    Movassaghi, M; Hassannejad, S

    2015-01-01

    Eastern dodder (Cuscuta monogyna Vahl.) is one of the noxious parasitic weeds that infected many ornamental trees in green spaces and gardens. Our purpose is to find natural inhibitors for prevention of its seed germination. In order to reach this aim, laboratory studies were conducted by using of herbaceous distillates of Dracocephalum moldavica, Nasturtium officinalis, Malva neglecta, Mentha piperita, Mentha pulegium, Rosa damascene, Ziziphora tenuior, and Urtica dioica on seed germination of C. monogyna. Z. tenuior distillate stimulated C. monogyna seed germination, whereas others reduced this parasitic weed's seed germination. D. moldavica caused maximum inhibition on weed seed germination. Seedling growth of C. monogyna was more affected than its seed germination. All of these herbaceous distillates reduced C. monogyna seedling length so that the latter decreased from 28.2 mm in distilled water to 4.5, 3.97, 3.85, 3.67, 3.1, 2.87, 2.57, 1.9, and 1.17 in M. pulegium, M. piperita, F. officinalis, Z. tenuior, N. officinalis, M. neglecta, R. damascene, U. dioica and D. moldavica, respectively. By using these medicinal plants distillates instead of herbicides, the parasitic weed seedling length and host plant infection will reduce. PMID:27145591

  1. 12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis[C][W][OA

    PubMed Central

    Dave, Anuja; Hernández, M. Luisa; He, Zhesi; Andriotis, Vasilios M.E.; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2011-01-01

    Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis. PMID:21335376

  2. Seed germination of cirsium arvense and Lepidium latifolium: Implications for management of montane wetlands

    USGS Publications Warehouse

    Laubhan, M.K.; Shaffer, T.L.

    2006-01-01

    Cirsium arvense and Lepidium latifolium are species that can aggressively invade wetland margins and potentially reduce biodiversity and alter ecosystem function. Although expansion of these species primarily occurs via rhizomatous growth, seeds are thought to be important in initial establishment. We conducted this study to investigate differences in seed germination of C. arvense and L. latifolium in montane wetlands of Colorado and Wyoming, USA. We used germination chambers to simulate environmental conditions (photoperiod, day/night temperature) during three periods of the growing season at each site and evaluated seed germination in relation to three soil moisture levels and two soil depths. A combination of shallow (<1 cm) seed burial and wet conditions resulted in the greatest germination probability of C. arvense (x = 63.0%), 95% CI = 41.2-80.5%), whereas deep (2-3 cm) seed burial and saturated moisture conditions resulted in almost no germination (x?? = 0.3%, 95% CI = 0.1-1.3%). The maximum germination probability of 44.0% (CI = 28.1-61.4%) for L. latifolium also occurred in the shallow burial and wet treatment; however, only effects of seed burial were significant (P < 0.05). The estimated mean germination probability of deeply buried seeds was <1.0% (CI = 0.3-1.4%) compared to 32% (CI = 19.7-47.9%) for shallowly buried seeds. Our results suggest that each species has the ability to germinate at similar rates throughout the growing season and across a large portion of the moisture gradient. This suggests that management actions, including water-level manipulations, at any time during the growing season may stimulate germination. Although burial of seed to depths of 2-3 cm reduced the germination potential of both species, the use of mechanical implements may be problematic in established stands because new plants of both species easily sprout from root buds. Further, disturbance resulting from such actions diminishes the density and vigor of other plants already present, which may ultimately decrease the competitive resistance of the disturbed environment to invasion by outside species. Detection of new invasions is a critical component of any integrated weed management program. Our results indicate that the incidence of C. arvense and L. latifolium germination is most likely in areas with seeds that are within 1 cm of the soil surface and soil moisture is 75-100% of field capacity for extended periods. ?? 2006, The Society of Wetland Scientists.

  3. Cytochrome C oxidase activity in germinating Phaseolus vulgaris l. seeds: Effects of carbon monoxide

    SciTech Connect

    Caughey, W.S. ); Sowa, S.; Roos, E.E.

    1989-04-01

    Cytochrome c oxidase is a key bioenergetic enzyme required for seed germination. The enzyme was isolated from 2-day germinating beans and biochemically compared to its bovine heart counterpart. Carbon monoxide, which binds to the heme a{sub 3} site of cytochrome c oxidase, we used to probe O{sub 2} utilization activity in isolated enzyme, mitochondrial particles, and whole seeds. Bean seeds under 80% CO/20% O{sub 2} exhibited 46% growth inhibition as determined by root length. Reversible, dose-dependent partial inhibition of bean seed mitochondrial respiration was observed in the presence of CO; heart mitochondria had a more sensitive, less reversible response. Effects of CO on bean and bovine heart enzyme were similar. The close correlation of CO effects observed on seedling growth, mitochondrial respiration and cytochrome oxidase activity indicate an important role for this enzyme during the early stages of seed germination.

  4. [Changes in Properties of Water during Germination of Zucchini Seed in Water Used].

    PubMed

    Novikov, S N; Novikov, L N; Ermolaeva, A I; Timoshenkov, S P; Goryunova, E P

    2015-01-01

    In this research the changes in the supramolecular structure of distilled water during germination of the seed in this water were studied. We used three methods: gravimetry, precision thermal analysis, electron work function measurements. In the first stage of seed germination--seed swelling--the seed extracts coherent domains in the water, herewith due to the transition of coherent domains adsorbed in nanofields into a stable state the flow of electromagnetic energy appears. In the second stage of the experiment--germ growing--the flow of biophotons occurs. This is evidenced by the increased water electron work function. A hypothetical model of the process of zucchini seed germination is suggested. PMID:26394483

  5. A study of the effects of micro-gravity on seed germination

    NASA Technical Reports Server (NTRS)

    Klein, Lynn Suzanne; Mckibben, Mark; Brain, David A.; Johnson, Theodore C.; Dannenberg, Konrad K.

    1992-01-01

    This study will identify characteristics of seed germination dependent upon gravity. To accomplish this objective, four different seed types will be germinated in space and then be compared to a control group germinated on Earth. Both the experimental and control groups will be analyzed on the cellular level for the size of cells, structural anomalies, and gravitational effects. The experiment will be conducted in a Get Away Special Canister (GAS Can no. 608) owned by the U.S. Space and Rocket Center and designed for students. The GAS Can will remain in the cargo bay of the Space Shuttle with minimal astronaut interaction.

  6. Effects of different pretreatments on germination of Prunus serotina seed sources.

    PubMed

    Esen, Derya; Yildiz, Oktay; Sarginci, Murat; Isik, Kani

    2007-01-01

    Establishing intensive plantations of fast growing hardwood tree species that have high market values in the forest industry can narrow the gap between Turkey's demand and the supply of quality hardwood products. Black cherry (P. serotina Ehrh.) is a fast growing hardwood species with a high market value. Introducing and intensively growing black cherry (BC) in Turkey may significantly reduce the country's quality wood shortage. Adequate seed germination constitutes the first essential step for successful establishments. In this paper effects of different pretreatments, including artificial and natural stratification, on the seeds of different BC seed sources (SSs) were studied. Pretreatments had substantial effects on the dormancy breaking and germination behaviours of the SSs. Consecutive periods of complex warm and cold artificial stratification regimes longer than 90 days or natural stratification (where seeds were assumed to be naturally exposed to this complexity) resulted in best dormancy breaking and, in turn, germination among all pretreatments. Deeper dormancy and reduced germination rates of some BC seeds as the altitude of the source increases might suggest an ecological adaptive strategy of the species. BC may have deeper morphophysiological dormancy than is commonly believed. Seed size may have a positive effect on seed germination. PMID:17717993

  7. [Adaptation strategies of seed germination and seedling growth to sand dune environment].

    PubMed

    Zhu, Yajuan; Dong, Ming; Huang, Zhenying

    2006-01-01

    Sand dune plants possess many adaptation strategies to withstand sand environment, e. g., some desert plant seeds are dormant when matured, which helps them to escape from unfeasible environment conditions and be preserved as seed bank. The seed germination and seedling establishment of psammophytes need moderate sand burial, while excessive burial will inhibit seed germination and seedling emergence. Seeds without germination in deeper sand are in enforced dormancy, and form soil seed bank. Sand dune plant seedlings could tolerant finite sand burial by increasing the number of nodes per culm and elongating internodes. When the seedlings are partially buried, they could survive through the maintenance of photosynthesis organism. Once sand burial exceed the threshold of the plant, seedlings growth will be restrained and the growth ability even permanently lost. Other factors such as salt spray, insect herbivory, and lack of soil nutrients also affect seed germination and seedling establishment. The precipitation in desert and sand land is unpredictable and irregular. Sand erosion leads roots be exposed to the air and dehydrated to die. However, seedlings of some desert plant have the ability to tolerate desiccation for a period of time after germination. Once there is rain, the seedlings will rivive. PMID:16689250

  8. Seed germination and seedling growth of the Mexican sunflower Tithonia diversifolia (Compositae) in Nigeria, Africa.

    PubMed

    Agboola, D A; Idowu, W F; Kadiri, M

    2006-06-01

    We studied seed germination and seedling growth of the Mexican sunflower Tithonia diversifolia in Nigeria. This involved the usage of some dormancy-releasing methods and the effect of some concentrations of three herbicide formulations on the young seedlings. Initial germination tests on fresh and stored seeds revealed a low percentage germination of less than 30%. The seeds of the weed exhibit dormancy. Subjecting the seeds to wet heat at 80 and 100 degrees C and light treatment terminated dormancy both in the fresh and stored seeds. Light greatly enhanced the germination percentage of seeds by about 70%. There was gradual increase in germination percentage with increase in storage period in dormancy-released seeds. The mean LAR (Leaf Area Ratio), NAR (Net Assimilation Rate) and RGR (Relative Growth Rate) are comparatively high in young seedlings. Concentrations of 0.5-2.0% of Gramoxone, Primextra and Galex are toxic to 1 month old seedlings. For eradication, the seedlings should be attacked at one month stage. PMID:18494310

  9. Protein dynamics during seed germination under copper stress in Arabidopsis over-expressing Potentilla superoxide dismutase.

    PubMed

    Gill, Tejpal; Dogra, Vivek; Kumar, Sanjay; Ahuja, Paramvir Singh; Sreenivasulu, Yelam

    2012-01-01

    Copper (Cu), though an essential micronutrient for plants, poses toxicity at higher concentrations possibly by inducing oxidative stress. With the background that enzyme superoxide dismutase (SOD) ameliorates oxidative stress, the present work focused on understanding physiological and proteomic response of Arabidopsis seeds constitutively over-expressing copper-zinc SOD of Potentilla atrosanguinea (PaSOD) during germination in response to varied concentrations of copper sulphate (Cu stress). Transgenics showed higher germination percentage and required less "mean time to germination" under Cu-stress. In response to Cu stress, 39 differentially expressed protein spots were detected by 2-D electrophoresis in proteins of germinating wild type (WT) and transgenic seeds, of which 14 spots appeared exclusively in transgenics. Among the rest 25 protein spots, 14 showed down-regulation, one showed up-regulation, and 10 spots disappeared. MALDI-TOF and subsequent peptide mass fingerprinting analysis revealed that the down-regulated proteins in transgenics were related to oxidative stress, detoxification, germination, intermediary metabolism and regulatory proteins. Up-regulated proteins in WT and down-regulated proteins in transgenic during Cu stress were the same. Changes in key proteins, vis-à-vis alleviation of oxidative stress in transgenic Arabidopsis over-expressing PaSOD possibly alleviated toxicity of Cu-induced stress during seed germination, resulting in higher germination rate and germination percentage. PMID:21479579

  10. Molecular Clustering Interrelationships and Carbohydrate Conformation in Hull and Seeds Among Barley Cultivars

    SciTech Connect

    N Liu; P Yu

    2011-12-31

    The objective of this study was to use molecular spectral analyses with the diffuse reflectance Fourier transform infrared spectroscopy (DRIFT) bioanlytical technique to study carbohydrate conformation features, molecular clustering and interrelationships in hull and seed among six barley cultivars (AC Metcalfe, CDC Dolly, McLeod, CDC Helgason, CDC Trey, CDC Cowboy), which had different degradation kinetics in rumen. The molecular structure spectral analyses in both hull and seed involved the fingerprint regions of ca. 1536-1484 cm{sup -1} (attributed mainly to aromatic lignin semicircle ring stretch), ca. 1293-1212 cm{sup -1} (attributed mainly to cellulosic compounds in the hull), ca. 1269-1217 cm{sup -1} (attributed mainly to cellulosic compound in the seeds), and ca. 1180-800 cm{sup -1} (attributed mainly to total CHO C-O stretching vibrations) together with an agglomerative hierarchical cluster (AHCA) and principal component spectral analyses (PCA). The results showed that the DRIFT technique plus AHCA and PCA molecular analyses were able to reveal carbohydrate conformation features and identify carbohydrate molecular structure differences in both hull and seeds among the barley varieties. The carbohydrate molecular spectral analyses at the region of ca. 1185-800 cm{sup -1} together with the AHCA and PCA were able to show that the barley seed inherent structures exhibited distinguishable differences among the barley varieties. CDC Helgason had differences from AC Metcalfe, MeLeod, CDC Cowboy and CDC Dolly in carbohydrate conformation in the seed. Clear molecular cluster classes could be distinguished and identified in AHCA analysis and the separate ellipses could be grouped in PCA analysis. But CDC Helgason had no distinguished differences from CDC Trey in carbohydrate conformation. These carbohydrate conformation/structure difference could partially explain why the varieties were different in digestive behaviors in animals. The molecular spectroscopy technique used in this study could also be used for other plant-based feed and food structure studies.

  11. Influence of temperature and salinity on germination of eelgrass ( Zostera marina L.) seeds

    NASA Astrophysics Data System (ADS)

    Pan, Jinhua; Jiang, Xin; Li, Xiaojie; Cong, Yizhou; Zhang, Zhuangzhi; Li, Zhiling; Zhou, Weili; Han, Houwei; Luo, Shiju; Yang, Guanpin

    2011-06-01

    Seagrass restoration as part of ocean ecosystem protection has been launched for many years all over the world, but intensive research on this subject in China has just begun in recent years. Seed broadcasting has been widely accepted as the most potentially useful method for seagrass restoration over large areas. We examined the influence of key environmental factors on seed germination to help promote eelgrass bed restoration. Under anoxic conditions, the influence of temperature and salinity on the germination rate of eelgrass ( Zostera marina L.) seeds was examined at different combinations of four temperatures (4, 9, 14, and 24°C) and nine salinities (5 to 45, increment of 5). The effect of significant interaction of temperature and salinity on germination rate was observed (ANOVA) ( P<0.001). The highest germination rate (83.3 ± 3.5)% was reached in 8 weeks at 14°C and salinity 5. Higher temperature significantly increased the germination rate at salinity 5 ( P<0.001) during the whole observation period except for 24°C, while lower salinity significantly increased the germination rate at 14°C ( P<0.001). Although significant interaction was found between temperature and salinity ( P<0.001), the influence of salinity was stronger than that of temperature for the germination of eelgrass seeds. These results provide useful information for the propagation of artificial seedlings for seagrass restoration in China.

  12. Pyrimidine nucleoside phosphorylation in developing seeds and germinating seedlings of wheat

    SciTech Connect

    Rowe, M.L.

    1988-01-01

    Uridine- and thymidine-phosphorylating enzymes were measured in developing and germinating seeds of Triticum aestivum v. Arthur and T. aestivum v. Lemhi. Because crude extracts were to be used in the developmental study, characteristics of unpurified nucleoside phosphotransferase (NPTase) were examined. In the developmental study with two varieties of wheat, NPTase activity was found to be very low in all of the true seed tissues during seed maturation. Uridine-phosphorylating activity was due to primarily to uridine kinase. Thymidine phosphorylation was very low in all tissues throughout seed maturation, with a brief appearance by thymidine kinase in the developing embryo. In germinating seeds, uridine-phosphorylating activity was present from earliest stages of germination but showed a decrease in activity followed by a recovery after 48 hours inbibition. Experiments using ({alpha}-{sup 32}P)ATP indicated that uridine kinase was present during early germination but had disappeared by 96 hours. Uridine phosphorylation at later stages of germination was accomplished by NTPase. Thymidine phosphorylation did not begin until after 36 hours of germination and was the result of NPTase activity.

  13. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth.

    PubMed

    Albertos, Pablo; Romero-Puertas, María C; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  14. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth

    PubMed Central

    Albertos, Pablo; Romero-Puertas, María C.; Tatematsu, Kiyoshi; Mateos, Isabel; Sánchez-Vicente, Inmaculada; Nambara, Eiji; Lorenzo, Oscar

    2015-01-01

    Plant survival depends on seed germination and progression through post-germinative developmental checkpoints. These processes are controlled by the stress phytohormone abscisic acid (ABA). ABA regulates the basic leucine zipper transcriptional factor ABI5, a central hub of growth repression, while the reactive nitrogen molecule nitric oxide (NO) counteracts ABA during seed germination. However, the molecular mechanisms by which seeds sense more favourable conditions and start germinating have remained elusive. Here we show that ABI5 promotes growth via NO, and that ABI5 accumulation is altered in genetic backgrounds with impaired NO homeostasis. S-nitrosylation of ABI5 at cysteine-153 facilitates its degradation through CULLIN4-based and KEEP ON GOING E3 ligases, and promotes seed germination. Conversely, mutation of ABI5 at cysteine-153 deregulates protein stability and inhibition of seed germination by NO depletion. These findings suggest an inverse molecular link between NO and ABA hormone signalling through distinct posttranslational modifications of ABI5 during early seedling development. PMID:26493030

  15. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. Results Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP), we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. Conclusions Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that gibberellins, acting via RGL2, control several aspects of seed germination. PMID:23035751

  16. Molecular and physiological dissection of enhanced seed germination using short-term low-concentration salt seed priming in tomato.

    PubMed

    Nakaune, Makoto; Hanada, Atsushi; Yin, Yong-Gen; Matsukura, Chiaki; Yamaguchi, Shinjiro; Ezura, Hiroshi

    2012-03-01

    Seed germination is the initial step of plant development. Seed priming with salt promotes seed germination in tomato (Solanum lycopersicum L.); however, the molecular and physiological mechanisms underlying the enhancement of seed germination by priming remain to be elucidated. In this study, we examined the following in seeds both during and after priming treatment: the endogenous abscisic acid (ABA) and gibberellin (GA) concentrations; the expression of genes encoding ABA catabolic and GA biosynthesis enzymes, including 8'-hydroxylase (CYP707A), copalyl diphosphate synthase (CPS), GA 20-oxidase (GA20ox) and GA 3-oxidase (GA3ox); and endosperm cap weakening enzymes, including expansin (EXP), class I ?-1,3-glucanase (GulB), endo-?-mannanase (MAN) and xyloglucan endotransglucosylase (XTH). Tomato seeds were soaked for 24h at 25C in the dark in 300mM NaCl (NaCl-priming) or distilled water (hydro-priming). For both priming treatments, the ABA content in the seeds increased during treatment but rapidly decreased after sowing. Both during and after the priming treatments, the ABA levels in the hydro-primed seeds and NaCl-primed seeds were not significantly different. The expression levels of SlGA20ox1, SlGA3ox1 and SlGA3ox2 were significantly enhanced in the NaCl-primed seeds compared to the hydro-primed seeds. The GA(4) content was quantifiable after both types of priming, indicating that GA(4) is the major bioactive GA molecule involved in tomato seed germination. The GA(4) content was significantly higher in the NaCl-primed seeds than in the hydro-primed seeds 12h after sowing and thereafter. Additionally, the peak expression levels of SlEXP4, SlGulB, SlMAN2 and SlXTH4 occurred earlier and were significantly higher in the NaCl-primed seeds than in the hydro-primed seeds. These results suggest that the observed effect of NaCl-priming on tomato seed germination is caused by an increase of the GA(4) content via GA biosynthetic gene activation and a subsequent increase in the expression of genes related to endosperm cap weakening. PMID:22305065

  17. The transcriptomes of dormant leafy spurge seeds under alternating temperature are differentially affected by a germination-enhancing pretreatment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy is an important stage in the life cycle of many non-domesticated plants, often characterized by the temporary failure to germinate under conditions that normally favor the process. Pre-treating dormant imbibed seeds at a constant temperate accelerated germination of leafy spurge seeds ...

  18. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth

    PubMed Central

    Ratnikova, Tatsiana A.; Podila, Ramakrishna; Rao, Apparao M.; Taylor, Alan G.

    2015-01-01

    Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth. PMID:26495423

  19. Tomato Seed Coat Permeability to Selected Carbon Nanomaterials and Enhancement of Germination and Seedling Growth.

    PubMed

    Ratnikova, Tatsiana A; Podila, Ramakrishna; Rao, Apparao M; Taylor, Alan G

    2015-01-01

    Seed coat permeability was examined using a model that tested the effects of soaking tomato (Solanum lycopersicon) seeds in combination with carbon-based nanomaterials (CBNMs) and ultrasonic irradiation (US). Penetration of seed coats to the embryo by CBNMs, as well as CBNMs effects on seed germination and seedling growth, was examined. Two CBNMs, C60(OH)20 (fullerol) and multiwalled nanotubes (MWNTs), were applied at 50 mg/L, and treatment exposure ranged from 0 to 60 minutes. Bright field, fluorescence, and electron microscopy and micro-Raman spectroscopy provided corroborating evidence that neither CBNM was able to penetrate the seed coat. The restriction of nanomaterial (NM) uptake was attributed to the semipermeable layer located at the innermost layer of the seed coat adjacent to the endosperm. Seed treatments using US at 30 or 60 minutes in the presence of MWNTs physically disrupted the seed coat; however, the integrity of the semipermeable layer was not impaired. The germination percentage and seedling length and weight were enhanced in the presence of MWNTs but were not altered by C60(OH)20. The combined exposure of seeds to NMs and US provided insight into the nanoparticle-seed interaction and may serve as a delivery system for enhancing seed germination and early seedling growth. PMID:26495423

  20. Programmed cell death (PCD): an essential process of cereal seed development and germination.

    PubMed

    Domínguez, Fernando; Cejudo, Francisco J

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  1. Programmed cell death (PCD): an essential process of cereal seed development and germination

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2014-01-01

    The life cycle of cereal seeds can be divided into two phases, development and germination, separated by a quiescent period. Seed development and germination require the growth and differentiation of new tissues, but also the ordered disappearance of cells, which takes place by a process of programmed cell death (PCD). For this reason, cereal seeds have become excellent model systems for the study of developmental PCD in plants. At early stages of seed development, maternal tissues such as the nucellus, the pericarp, and the nucellar projections undergo a progressive degeneration by PCD, which allows the remobilization of their cellular contents for nourishing new filial tissues such as the embryo and the endosperm. At a later stage, during seed maturation, the endosperm undergoes PCD, but these cells remain intact in the mature grain and their contents will not be remobilized until germination. Thus, the only tissues that remain alive when seed development is completed are the embryo axis, the scutellum and the aleurone layer. In germinating seeds, both the scutellum and the aleurone layer play essential roles in producing the hydrolytic enzymes for the mobilization of the storage compounds of the starchy endosperm, which serve to support early seedling growth. Once this function is completed, scutellum and aleurone cells undergo PCD; their contents being used to support the growth of the germinated embryo. PCD occurs with tightly controlled spatial-temporal patterns allowing coordinated fluxes of nutrients between the different seed tissues. In this review, we will summarize the current knowledge of the tissues undergoing PCD in developing and germinating cereal seeds, focussing on the biochemical features of the process. The effect of hormones and redox regulation on PCD control will be discussed. PMID:25120551

  2. THE EFFECTS OF COUMARIN ON RADISH SEED GERMINATION AND RADICLE ELONGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coumarin is a compound that inhibits seed germination and seedling growth. This inhibitory effect may confer a competitive advantage for the plants that secrete coumarin into the environment. This study was conducted to evaluate the effect of hydration-dehydration of radish seed in the presence of...

  3. Effects of accelerated aging and p-coumaric on crimson clover (Trifolium incarnatium L.) seed germination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Whether these effects are exacerbated in forage species by environmental stressors is unknown. Accelerated seed aging (high temperature (41 C) and high hum...

  4. INTERACTION OF ACCELERATED AGING AND P-COUMARIC ACID ON CRIMSON CLOVER SEED GERMINATION.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several phenolic acids, including p-coumaric acid, have been described as allelochemicals that may inhibit seed germination or seedling growth. Whether, in forage species, these effects are exacerbated by environmental stressors is not known. Accelerated seed aging (high temperature (41 C) and high...

  5. Mathematical simulation of soil microclimate conditions for predicting weed seed germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microclimate-based models for weed seed emergence are in the initial phases of development. The major driving forces of weed seed germination in the soil environment are temperature and soil moisture content. In the past these quantities have been measured at a single point (e.g., 5 cm). However, th...

  6. Potential Link Between Contents of Fatty Acids and Soybean Seed Germination Rate Under Early Production System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean seed produced from the Early Soybean Production System (ESPS) in the Midsouth often has low germination with poor seed quality. The mechanism of this phenomenon is not clear. A field study was conducted in 2008 and 2009 on a silt-loam -soil at the Delta Research and Extension Center, Stonevi...

  7. Effects of various treatments on seed germination and growth of carob (Ceratonia siliqua L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carob (Ceratonia siliqua L.) plays an important role in Mediterranean landscape. It is commercially propagated by grafting which requires the generation of seedlings. However, its seeds are very recalcitrant and need pretreatment for germination. In this study, carob seeds harvested from both wild a...

  8. Cheatgrass germination at three seed maturity stages from five plant communities in northwestern Nevada

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The invasive exotic plant cheatgrass (Bromus tectorum), has invaded numerous plant communities throughout the Intermountain West. Our goal was to test whether cheatgrass seed in different phenotypic stages and site characteristics differ in germination. Cheatgrass seed from sites dominated by Wyom...

  9. Thioredoxin-linked proteins are reduced during germination of medicago truncatula seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Germination of cereals is accompanied by extensive change in the redox state of seed proteins. Proteins present in oxidized (S-S) form in dry seeds are converted to the reduced (SH) state following imbibition. Thioredoxin (Trx) appears to play a role in this transition in cereals. It is not known, h...

  10. PARTIAL PURIFICATION AND PROPERTIES OF LIPASE FROM GERMINATING SEEDS OF JATROPHA CURCAS L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The lipase present in the seeds of Jatropha curcas L. was isolated, partially purified, and some of its properties studied. Lipase activity was detected in both the dormant and germinating seeds. The lipase hydrolysed palm kernel, coconut, and olive oils at comparable rates (approximately 5 µg FFA...

  11. [Seed germination of four tree species from the tropical dry forest of Valle del Cauca, Colombia].

    PubMed

    Vargas Figueroa, Jhon Alexander; Duque Palacio, Olga Lucía; Torres González, Alba Marina

    2015-03-01

    The ecological restoration strategies for highly threatened ecosystems such as the tropical dry forest, depend on the knowledge of limiting factors of biological processes for the different species. Some of these include aspects such as germination and seed longevity of typical species present in those forests. In this study, we evaluated the effect of light and temperature on seed germination of two Fabaceae (Samanea saman and Jacaranda caucana) and two Bignoniaceae (Pithecellobium dulce and Tabebuia rosea) species having potential use in restoration, and we analyzed the seed storage behavior of these species for a three months period. To study the light effect, four levels of light quality on seeds were used (photoperiod of 12 hours of white light, darkness and light enriched in red and far-red, both for an hour each day), and we combined them with three levels of alternated temperatures (20/25, 20/30 and 25/30*C-16/8h). For the storage behavior, two levels of seed moisture content particular for each species were used (low: 3.5-6.1% and high: 8.3-13.8%), with three storage temperatures (20, 5 and -20 degrees C) and two storage times (one and three months). The criterion for germination was radicle emergence which was measured in four replicates per treatment, and was expressed as percentage of germination (PG). There were significant differences in germination of Samanea saman and Jacaranda caucana among light and temperature treatments, with the lowest value in darkness treatments, whereas germination of Pithecellobium dulce and Tabebuia rosea did not differ between treatments (PG>90%). The most suitable temperature regime to promote germination in all species was 25/30 degrees C. These four species showed an orthodox seed storage behavior. We concluded that seeds of R dulce, J. caucana and T. rosea did not have an apparent influence of all light conditions tested in their germination response, which might confer advantages in colonization and establishment processes, while S. saman did not germinate well in darkness. We suggest the use of seeds of P dulce, J. caucana and T rosea in ecological restoration processes, due to their tolerance and germination under a wide range of temperature and light conditions. Futhermore, seeds of S. saman might be used in open areas such as forest gaps. PMID:26299129

  12. Seed dispersal and germination patternsin a rare Mediterranean island endemic ( Anchusa crispa Viv., Boraginaceae)

    NASA Astrophysics Data System (ADS)

    Quilichini, Anglique; Debussche, Max

    2000-12-01

    We analyse and discuss patterns of seed dispersal and germination of a rare endemic plant species, Anchusa crispa Viv. (Boraginaceae) from Corsica and Sardinia. This coastal plant inhabits dunes and back-dunes, and currently numbers only a few thousand individuals which generally occur in isolated populations. This study included experiments conducted in the field in Corsica and also under controlled conditions in the laboratory. Short-distance dispersal of A. crispa is performed by ants, both by myrmecochory and dyszoochory. The invasion of an exotic species of ant, Linepithema humile, could locally modify the dispersal system and possibly the population dynamics of A. crispa. Long-distance dispersal may occur by water transport since seeds can germinate after at least 1 week of immersion in seawater and readily float on the surface. Burial of seeds is favourable for germination, percentage germination being maximised at a depth of 1-2 cm below the soil surface. A. crispa has a seed bank of about ten viable seeds per m 2, which may contribute to the survival of this species which exists in small populations with a short life span. Due to its seed dispersal and germination patterns, the conservation of this species will necessitate that human disturbance, which can destabilise the surface of the sand is prevented and that new populations are introduced to favourable sites.

  13. Morpho-colorimetric analysis and seed germination of Brassica insularis Moris (Brassicaceae) populations.

    PubMed

    Santo, A; Mattana, E; Grillo, O; Bacchetta, G

    2015-03-01

    Brassica insularis is a perennial plant growing on both coastal and inland cliffs. Three seed lots from Sardinia were analysed using an image analysis system to detect differences in seed morphology, both within and among populations. Germination requirements at constant (5-25C) and alternating temperatures (25/10C), both in light and in darkness, were evaluated for all populations. In addition, the effect of a dry after-ripening period (90days at 25C) was also investigated. Morpho-colorimetric analysis clearly identified seeds from different populations and discriminated three chromatic categories for seeds belonging to the Isola dei Cavoli coastal population, but not for the inland Masa and the coastal Planu Sartu. Inter-population variability was also observed in germination behaviour. B.insularis seeds germinated, with percentages up to 60%, in a wide range of temperatures (5-25C), and neither light nor dry after-ripening affected final germination percentages. Moisture content measurements were made for seeds of each colour, but there were no particular differences among colours. Inter-populational variability in germination behaviour may be a survival strategy for species growing under unpredictable environmental conditions, such as under Mediterranean climate, while heteromorphy may be due to independent evolutionary divergence processes of the Isola dei Cavoli population. PMID:25174700

  14. A method for the imbibition and germination of wheat seeds in space

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Piastuch, W. C.; Sager, J. C. (Principal Investigator)

    1999-01-01

    A method was developed for the reliable germination in space of wheat seeds on porous tube nutrient delivery systems. Germination paper strips were loosely rolled into cylinders and two seeds inserted close to the outer edges of each cylinder. This configuration: 1) directed the emerging shoots upward and roots downward, 2) was efficient in wicking moisture from the porous tubes, and 3) provided open areas for oxygen diffusion. Cotton tufts were inserted into the bottom crevices of the cylinders to fix the seeds in a mid-level position and cylinders were then storable (indefinitely) prior to the preprogrammed (on-orbit) initiation of imbibition. This method extends both the upper and lower ends of acceptable moisture levels for successful seed germination, increasing the probability of success for spaceflight applications where moisture availability is more variable than on Earth.

  15. AtNG1 encodes a protein that is required for seed germination.

    PubMed

    Yang, Libo; Peng, Xiongbo; Sun, Meng-xiang

    2011-10-01

    The pentatricopeptide repeat (PPR) family of eukaryotic proteins has numerous members in plants and is important for plant development. In the present study, we cloned a novel PPR gene, designated AtNG1, and characterized the ng1 Arabidopsis mutant. Morphological and structural observation of an ng1 mutant revealed that its sexual reproduction and seed formation processes are essentially normal. The mature embryonic root of ng1 is fully developed and has a well-differentiated structure; however, ng1 seeds cannot germinate, even when supplied with supplemental hormones and nutrition. Further investigation showed that embryo expansion and root cell elongation fails to occur after water imbibitions. Transient gene expression analysis indicated that AtNG1 localizes in mitochondrion. This implies that the deficiency of mitochondrion function might be the reason for the failed seed germination. Thus, our finding confirmed that AtNG1 plays a critical role in the early process of seed germination. PMID:21889052

  16. Gibberellin Signaling: a Wake-up Call for Seed Germination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Making an appropriate decision to germinate is essential for the survival of plant species and is important for proper stand establishment in crop plants. Germination is regulated by the antagonistic effects to two plant hormones in Arabidopsis thaliana: abscisic acid (ABA) induces dormancy and repr...

  17. Hydrothermal time models for conidial germination and mycelial growth of the seed pathogen Pyrenophora semeniperda.

    PubMed

    Barth, Connor W; Meyer, Susan E; Beckstead, Julie; Allen, Phil S

    2015-08-01

    Population-based threshold models using hydrothermal time (HTT) have been widely used to model seed germination. We used HTT to model conidial germination and mycelial growth for the seed pathogen Pyrenophora semeniperda in a novel approach to understanding its interactions with host seeds. Germination time courses and mycelial growth rates for P.semeniperda were measured on PDA amended to achieve a series of five water potentials (ca. 0 to -6 MPa) at six constant temperatures (5-30 °C). Conidial germination was described with alternative population-based models using constant or variable base and maximum temperature and water potential parameters. Mycelial growth was modeled as a continuous, linear process with constant base temperature and base water potential. Models based on HTT showed reasonable fit to germination and growth rate data sets. The best-fit conidial germination model (R(2) = 0.859) was based on variable base and maximum temperature as a function of water potential. The good fit of the linear mycelial growth model (R(2) = 0.916) demonstrated the utility of HTT for modeling continuous as well as population-based processes. HTT modeling may be a useful approach to the quantification of germination and growth processes in a wide range of filamentous fungi. PMID:26228560

  18. Seed dormancy and germination in Jeffersonia dubia (Berberidaceae) as affected by temperature and gibberellic acid.

    PubMed

    Rhie, Y H; Lee, S Y; Kim, K S

    2015-03-01

    The genus Jeffersonia, which contains only two species, has a trans-Atlantic disjunct distribution. The aims of this study were to determine the requirements for breaking dormancy and germination of J. dubia seeds and to compare its dormancy characteristics with those of the congener in eastern North America. Ripe seeds of J. dubia contain an underdeveloped embryo and were permeable to water. In nature, seeds were dispersed in May, while embryos began to grow in September, and were fully elongated by late November. Germination started in March of the next year, and seeds emerged as seedlings soon after germination. In laboratory experiments, incubation at high temperatures (25 °C, 25/15 °C) for at least 8 weeks was required to initiate embryo growth, while a transfer to moderate temperatures (20/10 °C, 15/6 °C) was needed for the completion of embryo growth. At least 8 weeks at 5 °C was effective in overcoming physiological dormancy and for germination in seeds after the embryos had fully elongated. Thus, both high and low temperatures were essential to break dormancy. Gibberellic acid (GA3 ) treatment could substitute for the high temperature requirement, but not for the low temperature requirement. Based on the dormancy-breaking requirements, it is confirmed that the seeds have deep simple morphophysiological dormancy. This dormancy type is similar to that of seeds of the eastern North American species J. diphylla. Although seeds require 10-11 months from seed dispersal to germination in nature, under controlled conditions they required only 3 months after treatment with 1000 mg·l(-1) GA3 , followed by incubation at 15/6 °C. This represents practical knowledge for propagation of these plants from seed. PMID:25319374

  19. Effects of soil contamination by trace elements on white poplar progeny: seed germination and seedling vigour.

    PubMed

    Madejón, Paula; Cantos, Manuel; Jiménez-Ramos, María C; Marañón, Teodoro; Murillo, José M

    2015-11-01

    Seed germination is considered a critical phase in plant development and relatively sensitive to heavy metals. White poplar (Populus alba) trees tend to accumulate Cd and Zn in their tissues. We tested if soil contamination can affect P. alba progeny, reduced seed germination and explored the distribution of mineral elements in the seed. For this purpose, fruits and seeds from female P. alba trees were selected from two contaminated and one non-contaminated areas. Seeds from all the sites were germinated using only water or a nutritive solution (in vitro). Concentrations of nutrients and trace elements in the fruits and seeds were analysed. Seedling growth in vitro was also analysed. Finally, a mapping of different elements within the poplar seed was obtained by particle-induced X-ray emission (PIXE). Germination was similar between different progenies, refuting our hypothesis that seeds from a contaminated origin would have reduced germination capacity compared to those from a non-contaminated site. Seedling growth was not affected by the contaminated origin. Cadmium and Zn concentrations in fruits produced by P. alba trees in the contaminated sites were higher than by those from the non-contaminated site. However, the nutritional status of the trees was adequate in both cases. Cd in seedlings was higher in those from contaminated soils although lower than in fruits, indicating a certain exclusion from seeds. Preliminary results of the PIXE technique showed that Al and Zn were distributed uniformly in the seeds (Cd was not detected with this technique), while the nutrients P and S were concentrated in the cotyledons. PMID:26433900

  20. A Comparison of Barley Malt Amylolytic Enzyme Activities and Malt Sugar Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to test the hypothesis that barley malt alpha-amylase activity would correlate better with malt sugar concentrations than the activities of beta-amylase, or limit dextrinase. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germin...

  1. A Comparison Of Barley Malt Amylolytic Enzyme Thermostabilities As Indicators Of Malt Sugar Concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to test the hypothesis that barley malt amylolytic enzyme thermostabilities would correlate negatively with malt sugar concentrations. Seeds of four two-row and four six-row North American elite barley cultivars were steeped and germinated in a micromalter for 6 days. At 2...

  2. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    PubMed Central

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  3. Modification of radiation-induced oxic and anoxic damage by caffeine and potassium permanganate in barley seeds.

    PubMed

    Kesavan, P C; Dodd, N J

    1976-08-01

    We show that both the immediate and post-irradiation oxygen effects in barley seeds decrease in magnitude in the presence of potassium permanganate and caffeine. This implies that these two types of oxygen effect have features in common. With the removal of the radiation-induced oxygen-sensitive sites, by anoxic hydration, caffeine potentiates the oxygen-independent component of damage, in seeds irradiated in a dry or pre-soaked state. Potassium permangenate, on the other hand, enhances the anoxic radiation damage only in seeds irradiated in a dry state. The possible mode of action of KMnO4 and caffeine in barley seeds is discussed. PMID:1086298

  4. Fire cue effects on seed germination of six species of northwestern Patagonian grasslands

    NASA Astrophysics Data System (ADS)

    Gonzalez, S. L.; Ghermandi, L.

    2012-09-01

    Postfire recruitment of seedlings has been attributed to a stimulation of germination by fire-related cues. The germination response to heat shock (80 °C - 5 min), smoke (60 min), the combination of both factors and no heat no smoke (control) was studied in six native species (two dominant grasses, two dominant shrubs and two annual fugitive herbs) of northwestern Patagonian grasslands. Seeds of the grasses Festuca pallescens and Stipa speciosa and the shrub Senecio bracteolatus (Asteraceae) germinated when they were exposed to heat shock, whereas seeds of the other shrub, Mulinum spinosum (Apiaceae), were killed by this fire cue. In grasses, probably the glume of caryopsis protected embryos from heat. Possibly, the seed size could explain the different responses of the two shrubs. Heat combined with smoke reduced seed germination for S. speciosa and S. bracteolatus. The heat could have scarified seeds and the longer exposure to smoke could have been toxic for embryos. The same treatment increased germination of the annual fugitive herb Boopis gracilis (Calyceraceae). We concluded that fire differentially affects the seedling recruitment of the studied species in the northwestern Patagonian grasslands.

  5. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination.

    PubMed

    Shi, Hui; Wang, Xin; Mo, Xiaorong; Tang, Chao; Zhong, Shangwei; Deng, Xing Wang

    2015-03-24

    Seed is an essential propagation organ and a critical strategy adopted by terrestrial flowering plants to colonize the land. The ability of seeds to accurately respond to light is vital for plant survival. However, the underlying mechanism is largely unknown. In this study, we reveal a circuit of triple feed-forward loops adopted by Arabidopsis seeds to exclusively repress germination in dark conditions and precisely initiate germination under diverse light conditions. We identify that de-etiolated 1 (DET1), an evolutionarily conserved protein, is a central repressor of light-induced seed germination. Genetic analysis demonstrates that DET1 functions upstream of long hypocotyl in far-red 1 (HFR1) and phytochrome interacting factor 1 (PIF1), the key positive and negative transcription regulators in seed germination. We further find that DET1 and constitutive photomorphogenic 10 (COP10) target HFR1 for protein degradation by assembling a COP10-DET1-damaged DNA binding protein 1-cullin4 E3 ligase complex. Moreover, DET1 and COP10 directly interact with and promote the protein stability of PIF1. Computational modeling reveals that phytochrome B (phyB)-DET1-HFR1-PIF1 and phyB-DET1-Protease-PIF1 are new signaling pathways, independent of the previously identified phyB-PIF1 pathway, respectively mediating the rapid and time-lapse responses to light irradiation. The model-simulated results are highly consistent with their experimental validations, suggesting that our mathematical model captures the essence of Arabidopsis seed germination networks. Taken together, this study provides a comprehensive molecular framework for light-regulated seed germination, improving our understanding of how plants respond to changeable environments. PMID:25775589

  6. Arabidopsis DET1 degrades HFR1 but stabilizes PIF1 to precisely regulate seed germination

    PubMed Central

    Shi, Hui; Wang, Xin; Mo, Xiaorong; Tang, Chao; Zhong, Shangwei; Deng, Xing Wang

    2015-01-01

    Seed is an essential propagation organ and a critical strategy adopted by terrestrial flowering plants to colonize the land. The ability of seeds to accurately respond to light is vital for plant survival. However, the underlying mechanism is largely unknown. In this study, we reveal a circuit of triple feed-forward loops adopted by Arabidopsis seeds to exclusively repress germination in dark conditions and precisely initiate germination under diverse light conditions. We identify that de-etiolated 1 (DET1), an evolutionarily conserved protein, is a central repressor of light-induced seed germination. Genetic analysis demonstrates that DET1 functions upstream of long hypocotyl in far-red 1 (HFR1) and phytochrome interacting factor 1 (PIF1), the key positive and negative transcription regulators in seed germination. We further find that DET1 and constitutive photomorphogenic 10 (COP10) target HFR1 for protein degradation by assembling a COP10–DET1–damaged DNA binding protein 1–cullin4 E3 ligase complex. Moreover, DET1 and COP10 directly interact with and promote the protein stability of PIF1. Computational modeling reveals that phytochrome B (phyB)–DET1–HFR1–PIF1 and phyB–DET1–Protease–PIF1 are new signaling pathways, independent of the previously identified phyB-PIF1 pathway, respectively mediating the rapid and time-lapse responses to light irradiation. The model-simulated results are highly consistent with their experimental validations, suggesting that our mathematical model captures the essence of Arabidopsis seed germination networks. Taken together, this study provides a comprehensive molecular framework for light-regulated seed germination, improving our understanding of how plants respond to changeable environments. PMID:25775589

  7. Temperature requirements for seed germination of Pereskia aculeata and Pereskia grandifolia.

    PubMed

    Souza, Lucéia F; Gasparetto, Bruno F; Lopes, Rodrigo R; Barros, Ingrid B I

    2016-04-01

    Pereskia aculeata and Pereskia grandifolia have been studied widely due to their high nutritional and therapeutic values. However, little is known about the biological requirements of their seeds for the various germination factors. Thus, this experiment aimed to evaluate the thermal effects on the germination of these species at the temperatures of 24°C, 27°C, 30°C, 33°C and 36°C. After verification of the existence of differences in the performance of germination, a non-linear regression was carried out, relating the germination to temperature and identifying its point of maximum efficiency. We found that the lowest synchronization indexes of germination were observed close to 30°C. The best germination response of the P. aculeata and P. grandifolia was observed at 30°C and 33°C, respectively, with greater germination strength and fewer days to attain 63.21% of germinations. The results obtained from the germination of P. aculeata and P. grandifolia can be described by the Weindull distribution model with three parameters, as proposed by Carneiro and Guedes (1992). PMID:27033034

  8. Seed weight and germination behavior of the submerged plant Potamogeton pectinatus in the arid zone of northwest China

    PubMed Central

    Li, Zhongqiang; Lu, Wei; Yang, Lei; Kong, Xianghong; Deng, Xuwei

    2015-01-01

    Variation in seed weight is common within and among plant species, but few studies have attempted to document the pattern of seed weight and germination attributes for aquatic macrophytes at a large scale. This study examined within-species variation in seed weight and germination attributes and the effects of environmental factors on seed traits of the submerged plant Potamogeton pectinatus in the arid zone of northwest China. Our results showed that the average seed weight was 0.24 g per 100 seeds with a coefficient of variation (CV) of 28.4% among the eight P. pectinatus populations. The total germination fraction of seeds of P. pectinatus was relatively poor, less than 35% in seven P. pectinatus populations, and the lowest germination percentage found was only 2%. There were significant differences in seed weight, time to onset of germination, and total germination fraction among the eight different populations. Hierarchical partitioning analysis showed a strongly positive correlation between seed weight and water temperature and pH. Seed weight and the maternal environmental factors significantly affected both time to initiation of germination and total germination fraction. Our results suggest that (1) seed weight variation in P. pectinatus primarily is the result of temperature variation during fruit development; (2) relatively poor germination fraction suggests that seeds are relatively unimportant in the short-term survival of populations and that it may be another adaptive trait allowing plants to take place in the right place and at the right time, especially in harsh environment; and (3) variation in seed germination traits should be determined by local environmental and intrinsic factors that interact in a complex fashion. PMID:25897389

  9. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu.

    PubMed

    Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A; Huang, Wei-Chang; Zeng, Song-Jun

    2015-01-01

    This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888

  10. Embryo development in association with asymbiotic seed germination in vitro of Paphiopedilum armeniacum S. C. Chen et F. Y. Liu

    PubMed Central

    Zhang, Yan-Yan; Wu, Kun-Lin; Zhang, Jian-Xia; Deng, Ru-Fang; Duan, Jun; Teixeira da Silva, Jaime A.; Huang, Wei-Chang; Zeng, Song-Jun

    2015-01-01

    This paper documents the key anatomical features during the development of P. armeniacum zygotic embryos and their ability to germinate asymbiotically in vitro. This study also examines the effect of media and seed pretreatments on seed germination and subsequent seedling growth. Seeds collected from pods 45 days after pollination (DAP) did not germinate while 95 DAP seeds displayed the highest seed germination percentage (96.2%). Most seedlings (50%) developed to stage 5 from 110 DAP seeds whose compact testa had not yet fully formed. Suspensor cells were vacuolated, which enabled the functional uptake of nutrients. The optimum basal medium for seed germination and subsequent protocorm development was eighth-strength Murashige and Skoog (1/8MS) for 95 DAP seeds and ¼MS for 110 DAP seeds. Poor germination was displayed by 140 DAP seeds with a compact testa. Pretreatment of dry mature seeds (180 DAP) with 1.0% sodium hypochlorite solution for 90 min or 40 kHz of ultrasound for 8 min improved germination percentage from 0 to 29.2% or to 19.7%, respectively. Plantlets that were at least 5 cm in height were transplanted to a Zhijing stone substrate for orchids, and 85.3% of plantlets survived 180 days after transplanting. PMID:26559888

  11. Towards a systems biology approach to understanding seed dormancy and germination

    PubMed Central

    Penfield, Steven; King, John

    2009-01-01

    Seed germination is the first adaptive decision in the development of many land plants. Advances in genetics and molecular physiology have taught us much about the control of germination using the model plant Arabidopsis thaliana. Here we review the current state of the art with an emphasis on mechanistic considerations and explore the potential impact of a systems biology approach to the problem. PMID:19605392

  12. Seeds of Brassicaceae weeds have an inherent or inducible response to the germination stimulant karrikinolide

    PubMed Central

    Long, Rowena L.; Stevens, Jason C.; Griffiths, Erin M.; Adamek, Markus; Gorecki, Marta J.; Powles, Stephen B.; Merritt, David J.

    2011-01-01

    Background and Aims Karrikinolide (KAR1) is a smoke-derived chemical that can trigger seeds to germinate. A potential application for KAR1 is for synchronizing the germination of weed seeds, thereby enhancing the efficiency of weed control efforts. Yet not all species germinate readily with KAR1, and it is not known whether seemingly non-responsive species can be induced to respond. Here a major agronomic weed family, the Brassicaceae, is used to test the hypothesis that a stimulatory response to KAR1 may be present in physiologically dormant seeds but may not be expressed under all circumstances. Methods Seeds of eight Brassicaceae weed species (Brassica tournefortii, Raphanus raphanistrum, Sisymbrium orientale, S. erysimoides, Rapistrum rugosum, Lepidium africanum, Heliophila pusilla and Carrichtera annua) were tested for their response to 1 µm KAR1 when freshly collected and following simulated and natural dormancy alleviation, which included wet–dry cycling, dry after-ripening, cold and warm stratification and a 2 year seed burial trial. Key Results Seven of the eight Brassicaceae species tested were stimulated to germinate with KAR1 when the seeds were fresh, and the remaining species became responsive to KAR1 following wet–dry cycling and dry after-ripening. Light influenced the germination response of seeds to KAR1, with the majority of species germinating better in darkness. Germination with and without KAR1 fluctuated seasonally throughout the seed burial trial. Conclusions KAR1 responses are more complex than simply stating whether a species is responsive or non-responsive; light and temperature conditions, dormancy state and seed lot all influence the sensitivity of seeds to KAR1, and a response to KAR1 can be induced. Three response types for generalizing KAR1 responses are proposed, namely inherent, inducible and undetected. Given that responses to KAR1 were either inherent or inducible in all 15 seed lots included in this study, the Brassicaceae may be an ideal target for future application of KAR1 in weed management. PMID:21821831

  13. RopGEF2 is involved in ABA-suppression of seed germination and post-germination growth of Arabidopsis.

    PubMed

    Zhao, Shujuan; Wu, Yuxuan; He, Yuqing; Wang, Yarui; Xiao, Jun; Li, Lin; Wang, Yanping; Chen, Xi; Xiong, Wei; Wu, Yan

    2015-12-01

    The involvement of Rho of Plants (ROP) GTPases in abscisic acid (ABA) signalling in Arabidopsis has been demonstrated in many studies. However, the roles of RopGEFs (Rop guanine nucleotide exchange factors), which modulate ROP activities in ABA signalling, are poorly understood. Here, we demonstrate that RopGEF2 may play a negative role in ABA-suppressed seed germination and post-germination growth. We show that disruption of RopGEF2 enhances sensitivity to exogenous ABA in seed germination assays and that RopGEF2pro-GUS is mainly expressed in developing embryos and germinating seeds. Interestingly, YFP-RopGEF2 is located in both the cytoplasmic region and in mitochondria. Notably, the PRONE2 (plant-specific ROP nucleotide exchanger 2) domain of RopGEF2 is detected in mitochondria, whereas the N-terminus of RopGEF2 is shown to be in the cytosol. After ABA treatment, degradation of RopGEF2 is triggered in the cytosol through the ubiquitin-26S proteasome system. The binding of RopGEF2 to ROP2, ROP6 or ROP10, which has been demonstrated to be involved in ABA signalling, not only alters the localization of RopGEF2 but also enables RopGEF2 to escape degradation in the cell. Thus, in this study, we deduce a sophisticated mechanism of ABA-mediated RopGEF2-ROP signalling, which potentially implicates the inactivation of ROPs in responsiveness to ABA. PMID:26461226

  14. Physiological and biochemical changes during the loss of desiccation tolerance in germinating Adenanthera pavonina L. seeds.

    PubMed

    Soares, Giuliana C M; Dias, Denise C F S; Faria, José M R; Borges, Eduardo E L

    2015-01-01

    We investigated the loss of desiccation tolerance (DT) in Adenanthera pavonina seeds during germination. Seeds were subjected to imbibition for 0, 24, 36, 48, 60 and 81 h, then dried to their initial moisture content (13%), rehydrated and evaluated for survival (resumption of growth and development of normal seedlings) and membrane system integrity (electrolyte leakage). Embryonic axes of seeds subjected only to imbibition during the same early time periods were used to investigate the electrophoretic patterns of heat-stable proteins and the relative nuclear DNA content. In A. pavonina seeds, DT remained unchanged until 36 h of imbibition (resulting in germination and 82% normal seedlings), after which it was progressively lost, and seeds with a protruded radicle length of 1 mm did not withstand dehydration. The loss of desiccation tolerance could not be related to either membrane damage caused by drying or the resumption of the cell cycle during germination. However, the decrease in heat-stable protein contents observed throughout germination may be related to the loss of DT in A. pavonina seeds. PMID:26628022

  15. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination. PMID:24811898

  16. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.

    PubMed

    Kranner, Ilse; Roach, Thomas; Beckett, Richard P; Whitaker, Claire; Minibayeva, Farida V

    2010-07-01

    Extracellularly produced reactive oxygen species (ROS) play key roles in plant development, but their significance for seed germination and seedling establishment is poorly understood. Here we report on the characteristics of extracellular ROS production during seed germination and early seedling development in Pisum sativum. Extracellular superoxide (O2(.-)) and hydrogen peroxide (H2O2) production and the activity of extracellular peroxidases (ECPOX) were determined spectrophotometrically, and O2(.-) was identified by electron paramagnetic resonance. Cell wall fractionation of cotyledons, seed coats and radicles was used in conjunction with polyacrylamide gel electrophoresis to investigate substrate specificity and molecular masses of O2(.-)-producing enzymes, and the forces that bind them to the cell wall. Seed imbibition was accompanied by an immediate, transient burst of redox activity that involved O2(.-) and other substances capable of oxidizing epinephrine, and also H2O2. At the final stages of germination, coinciding with radicle elongation, a second increase in O2(.-) but not H2O2 production occurred and was correlated with an increase in extracellular ECPOX activity. Electrophoretic analyses of cell wall fractions demonstrated the presence of enzymes capable of O2(.-) production. The significance of extracellular ROS production during seed germination and early seedling development, and also during seed aging, is discussed. PMID:20303611

  17. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L.) Verdc. (Fabaceae)).

    PubMed

    Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire

    2015-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA. PMID:26550604

  18. In Vitro Seeds Germination and Seedling Growth of Bambara Groundnut (Vigna subterranea (L.) Verdc. (Fabaceae))

    PubMed Central

    Koné, Mongomaké; Koné, Tchoa; Silué, Nakpalo; Soumahoro, André Brahima; Kouakou, Tanoh Hilaire

    2015-01-01

    Bambara groundnut (Vigna subterranea (L.) Verdc.) is an indigenous grain legume. It occupies a prominent place in the strategies to ensure food security in sub-Saharan Africa. Development of an efficient in vitro regeneration system, a prerequisite for genetic transformation application, requires the establishment of optimal conditions for seeds germination and plantlets development. Three types of seeds were inoculated on different basal media devoid of growth regulators. Various strengths of the medium of choice and the type and concentration of carbon source were also investigated. Responses to germination varied with the type of seed. Embryonic axis (EA) followed by seeds without coat (SWtC) germinated rapidly and expressed a high rate of germination. The growth performances of plantlets varied with the basal medium composition and the seeds type. The optimal growth performances of plants were displayed on half strength MS basal medium with SWtC and EA as source of seeds. Addition of 3% sucrose in the culture medium was more suitable for a maximum growth of plantlets derived from EA. PMID:26550604

  19. Development of a Threshold Model to Predict Germination of Populus tomentosa Seeds after Harvest and Storage under Ambient Condition

    PubMed Central

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654

  20. Effects of cold plasma treatment on seed germination and seedling growth of soybean

    NASA Astrophysics Data System (ADS)

    Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong

    2014-07-01

    Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean.

  1. Effects of cold plasma treatment on seed germination and seedling growth of soybean.

    PubMed

    Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong

    2014-01-01

    Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean. PMID:25080862

  2. Effects of cold plasma treatment on seed germination and seedling growth of soybean

    PubMed Central

    Ling, Li; Jiafeng, Jiang; Jiangang, Li; Minchong, Shen; Xin, He; Hanliang, Shao; Yuanhua, Dong

    2014-01-01

    Effects of cold plasma treatment on soybean (Glycine max L. Merr cv. Zhongdou 40) seed germination and seedling growth were studied. Seeds were pre-treated with 0, 60, 80, 100 and 120 W of cold plasma for 15 s. Results showed that plasma treatments had positive effects on seed germination and seedling growth, and treatment of 80 W had the highest stimulatory effect. Germination and vigor indices significantly increased by 14.66% and 63.33%, respectively. Seed's water uptake improved by 14.03%, and apparent contact angle decreased by 26.19%. Characteristics of seedling growth, including shoot length, shoot dry weight, root length and root dry weight, significantly increased by 13.77%, 21.95%, 21.42% and 27.51%, respectively, compared with control. The seed reserve utilization, including weight of the mobilized seed reserve, seed reserve depletion percentage and seed reserve utilization efficiency significantly improved by cold plasma treatment. In addition, soluble sugar and protein contents were 16.51% and 25.08% higher than those of the control. Compared to a 21.95% increase in shoot weight, the root weight increased by 27.51% after treatment, indicating that plasma treatment had a greater stimulatory effect on plant roots. These results indicated that cold plasma treatment might promote the growth even yield of soybean. PMID:25080862

  3. Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems

    NASA Astrophysics Data System (ADS)

    Somova, L. A.; Pechurkin, N. S.; Sarangova, A. B.; Pisman, T. I.

    Effect of the size of rhizospheric bacterial populations on germination of seeds and development of simple terrestrial "wheat plants - rhizospheric microorganisms - artificial soil" and "wheat plants - artificial soil" systems has been studied. Experiments demonstrated that within specify ranges in the inoculate, the rhizospheric bacteria are capable of increasing the yield of germinated seeds and stimulate the growth of plantlets. Germination of seeds inoculated with bacteria was either stimulated, or inhibited or remained at control levels depending on the amount of bacteria. Plant biomass growth and total photoassimilation has been found to depend on the amount of bacteria on the plant roots: the higher the amount of bacteria on plant roots, the smaller is the biomass of plants but the total photoassimilation is, higher. Thus, depending on the amount of bacteria on the roots of plants the system either increases the biomass of plants or increases the total photoassimilation, i.e. "pumps" carbon through itself involving bacteria.

  4. Do seed mass and family affect germination and juvenile performance in Knautia arvensis? A study using failure-time methods

    NASA Astrophysics Data System (ADS)

    Vange, Vibekke; Heuch, Ivar; Vandvik, Vigdis

    2004-05-01

    Germination and seedling establishment are vulnerable stages in the plant life cycle. We investigated how seed mass and family (progeny origin) affect germination and juvenile performance in the grassland herb Knautia arvensis. Seeds were produced by cross-pollination by hand. The fate of 15 individually weighed seeds from each of 15 plants was followed during a 3-month growth chamber experiment. Progeny origin affected germination, both through seed mass and as an independent factor. Two groups of progenies could be distinguished by having rapid or delayed germination. The two groups had similar mean seed masses, but a positive relationship between seed mass and germination rate could be established only among the rapidly germinating progenies. These biologically relevant patterns were revealed because timing of germination was taken into account in the analyses, not only frequencies. Time-to-event data were analysed with failure-time methods, which gave more stable estimates for the relation between germination and seed mass than the commonly applied logistic regression. Progeny origin and seed mass exerted less impact on later characters like juvenile survival, juvenile biomass, and rosette number. These characters were not affected by the timing of germination under the competition-free study conditions. The decrease in the effect of progeny origin from the seed and germination to the juvenile stages suggests that parental effects other than those contributing to the offspring genotype strongly influenced the offspring phenotype at the earliest life stages. Further, the division of progeny germination patterns into two fairly distinct groups indicates that there was a genetic basis for the variation in stratification requirements among parental plants. Field studies are needed to elucidate effects of different timing of germination in the seasonal grasslands that K. arvensis inhabits.

  5. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.

    PubMed

    Liu, Shu-Jun; Song, Shun-Hua; Wang, Wei-Qing; Song, Song-Quan

    2015-11-01

    At supraoptimal temperature, germination of lettuce (Lactuca sativa L.) seeds exhibits a typical germination thermoinhibition, which can be alleviated by sodium nitroprusside (SNP) in a nitric oxide-dependent manner. However, the molecular mechanism of seed germination thermoinhibition and its alleviation by SNP are poorly understood. In the present study, the lettuce seeds imbibed at optimal temperature in water or at supraoptimal temperature with or without 100 μM SNP for different periods of time were used as experimental materials, the total RNA was extracted and sequenced, we gained 147,271,347 raw reads using Illumina paired-end sequencing technique and assembled the transcriptome of germinating lettuce seeds. A total of 51,792 unigenes with a mean length of 849 nucleotides were obtained. Of these unigenes, a total of 29,542 unigenes were annotated by sequence similarity searching in four databases, NCBI non-redundant protein database, SwissProt protein database, euKaryotic Ortholog Groups database, and NCBI nucleotide database. Among the annotated unigenes, 22,276 unigenes were assigned to Gene Ontology database. When all the annotated unigenes were searched against the Kyoto Encyclopedia of Genes and Genomes Pathway database, a total of 8,810 unigenes were mapped to 5 main categories including 260 pathways. We first obtained a lot of unigenes encoding proteins involved in abscisic acid (ABA) signaling in lettuce, including 11 ABA receptors, 94 protein phosphatase 2Cs and 16 sucrose non-fermenting 1-related protein kinases. These results will help us to better understand the molecular mechanism of seed germination, thermoinhibition of seed germination and its alleviation by SNP. PMID:26263518

  6. TaMFT-A1 Is Associated with Seed Germination Sensitive to Temperature in Winter Wheat

    PubMed Central

    Wang, Shuwen; Zhu, Meirong; Carver, Brett F.; Yan, Liuling

    2013-01-01

    The ability of seed to germinate under favorable environmental conditions is critical for seedling emergence, plant establishment, subsequent development and growth of adult plants, and it is controlled by internal genetic factors and external environmental factors. Winter wheat in the southern Great Plains is often planted six weeks before the optimal planting date to produce more biomass for cattle grazing during the winter season. A high seed germination rate in this higher soil temperature environment is required for this specific management system. In this study, a major QTL for temperature-sensitive germination was mapped on the short arm of chromosome 3A (QTsg.osu-3A) in a RIL population generated from two winter wheat cultivars. Furthermore, TaMFT-A1, previously reported to regulate seed dormancy and pre-harvest sprouting in spring wheat cultivars, was mapped tightly associated with the peak of QTsg.osu-3A. However, allelic variation in TaMFT-A1 between the two winter wheat cultivars differed from that was observed in spring wheat cultivars. There were 87 SNPs (single nucleotide polymorphisms) and 12 indels (insertions/deletions) in TaMFT-A1 between the Jagger allele for high germination and the 2174 allele for low germination in the after-ripened seeds, in comparison with 2 SNPs between the two alleles for differential pre-harvest sprouting in spring wheat cultivars. The Jagger TaMFT-A1 allele is a novel haplotype and appears extensively in winter wheat cultivars. TaMFT-A1 transcript levels were up-regulated by high temperature but down-regulated by low temperature or seed storage time. These findings suggest that TaMFT-A1 may invoke different mechanisms for controlling seed dormancy/germination among winter wheat cultivars. PMID:24069187

  7. The study of a barley epigenetic regulator, HvDME, in seed development and under drought

    PubMed Central

    2013-01-01

    Background Epigenetic factors such as DNA methylation and histone modifications regulate a wide range of processes in plant development. Cytosine methylation and demethylation exist in a dynamic balance and have been associated with gene silencing or activation, respectively. In Arabidopsis, cytosine demethylation is achieved by specific DNA glycosylases, including AtDME (DEMETER) and AtROS1 (REPRESSOR OF SILENCING1), which have been shown to play important roles in seed development. Nevertheless, studies on monocot DNA glycosylases are limited. Here we present the study of a DME homologue from barley (HvDME), an agronomically important cereal crop, during seed development and in response to conditions of drought. Results An HvDME gene, identified in GenBank, was found to encode a protein with all the characteristic modules of DME-family DNA glycosylase proteins. Phylogenetic analysis revealed a high degree of homology to other monocot DME glycosylases, and sequence divergence from the ROS1, DML2 and DML3 orthologues. The HvDME gene contains the 5′ and 3′ Long Terminal Repeats (LTR) of a Copia retrotransposon element within the 3′ downstream region. HvDME transcripts were shown to be present both in vegetative and reproductive tissues and accumulated differentially in different seed developmental stages and in two different cultivars with varying seed size. Additionally, remarkable induction of HvDME was evidenced in response to drought treatment in a drought-tolerant barley cultivar. Moreover, variable degrees of DNA methylation in specific regions of the HvDME promoter and gene body were detected in two different cultivars. Conclusion A gene encoding a DNA glycosylase closely related to cereal DME glycosylases was characterized in barley. Expression analysis during seed development and under dehydration conditions suggested a role for HvDME in endosperm development, seed maturation, and in response to drought. Furthermore, differential DNA methylation patterns within the gene in two different cultivars suggested epigenetic regulation of HvDME. The study of a barley DME gene will contribute to our understanding of epigenetic mechanisms operating during seed development and stress response in agronomically important cereal crops. PMID:24175960

  8. Effects of fungicide seed treatments on germination, population, and yield of maize grown from seed infected with fungal pathogens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedborne fungi can reduce survival, growth, and yield of maize (Zea mays L.). Laboratory, field, and growth chamber experiments were conducted to determine the effects of the seed treatment fungicides fludioxonil, mefenoxam, and azoxystrobin on germination, plant population, and grain yield of maiz...

  9. Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina.

    PubMed

    Sebastián, Fracchia; Vanesa, Silvani; Eduardo, Flachsland; Graciela, Terada; Silvana, Sede

    2014-01-01

    Aa achalensis is an endangered terrestrial orchid endemic from Argentina. In vitro symbiotic seed germination was evaluated for its propagation. Five different fungal strains were isolated from this species: two Rhizoctonia-like related to Thanatephorus cucumeris and three ascomicetaceous fungi belonging to Phialophora graminicola and one to an uncultured Pezizaceae. All five isolates promoted seed germination being one T. cucumeris strain the most effective. After 16 weeks of growth, 30% of A. achalensis protocorms developed until seedlings with two/four leaves in this treatment. These findings open an opportunity to the knowledge and preservation of this species. PMID:23780616

  10. The ecophysiology of seed persistence: a mechanistic view of the journey to germination or demise.

    PubMed

    Long, Rowena L; Gorecki, Marta J; Renton, Michael; Scott, John K; Colville, Louise; Goggin, Danica E; Commander, Lucy E; Westcott, David A; Cherry, Hillary; Finch-Savage, William E

    2015-02-01

    Seed persistence is the survival of seeds in the environment once they have reached maturity. Seed persistence allows a species, population or genotype to survive long after the death of parent plants, thus distributing genetic diversity through time. The ability to predict seed persistence accurately is critical to inform long-term weed management and flora rehabilitation programs, as well as to allow a greater understanding of plant community dynamics. Indeed, each of the 420000 seed-bearing plant species has a unique set of seed characteristics that determine its propensity to develop a persistent soil seed bank. The duration of seed persistence varies among species and populations, and depends on the physical and physiological characteristics of seeds and how they are affected by the biotic and abiotic environment. An integrated understanding of the ecophysiological mechanisms of seed persistence is essential if we are to improve our ability to predict how long seeds can survive in soils, both now and under future climatic conditions. In this review we present an holistic overview of the seed, species, climate, soil, and other site factors that contribute mechanistically to seed persistence, incorporating physiological, biochemical and ecological perspectives. We focus on current knowledge of the seed and species traits that influence seed longevity under ex situ controlled storage conditions, and explore how this inherent longevity is moderated by changeable biotic and abiotic conditions in situ, both before and after seeds are dispersed. We argue that the persistence of a given seed population in any environment depends on its resistance to exiting the seed bank via germination or death, and on its exposure to environmental conditions that are conducive to those fates. By synthesising knowledge of how the environment affects seeds to determine when and how they leave the soil seed bank into a resistance-exposure model, we provide a new framework for developing experimental and modelling approaches to predict how long seeds will persist in a range of environments. PMID:24618017

  11. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination.

    PubMed

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-08-26

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the delay of germination 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251

  12. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination

    PubMed Central

    Graeber, Kai; Linkies, Ada; Steinbrecher, Tina; Mummenhoff, Klaus; Tarkowská, Danuše; Turečková, Veronika; Ignatz, Michael; Sperber, Katja; Voegele, Antje; de Jong, Hans; Urbanová, Terezie; Strnad, Miroslav; Leubner-Metzger, Gerhard

    2014-01-01

    Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination. PMID:25114251

  13. Thermal niche for in situ seed germination by Mediterranean mountain streams: model prediction and validation for Rhamnus persicifolia seeds

    PubMed Central

    Porceddu, Marco; Mattana, Efisio; Pritchard, Hugh W.; Bacchetta, Gianluigi

    2013-01-01

    Background and Aims Mediterranean mountain species face exacting ecological conditions of rainy, cold winters and arid, hot summers, which affect seed germination phenology. In this study, a soil heat sum model was used to predict field emergence of Rhamnus persicifolia, an endemic tree species living at the edge of mountain streams of central eastern Sardinia. Methods Seeds were incubated in the light at a range of temperatures (10–25 and 25/10 °C) after different periods (up to 3 months) of cold stratification at 5 °C. Base temperatures (Tb), and thermal times for 50 % germination (θ50) were calculated. Seeds were also buried in the soil in two natural populations (Rio Correboi and Rio Olai), both underneath and outside the tree canopy, and exhumed at regular intervals. Soil temperatures were recorded using data loggers and soil heat sum (°Cd) was calculated on the basis of the estimated Tb and soil temperatures. Key Results Cold stratification released physiological dormancy (PD), increasing final germination and widening the range of germination temperatures, indicative of a Type 2 non-deep PD. Tb was reduced from 10·5 °C for non-stratified seeds to 2·7 °C for seeds cold stratified for 3 months. The best thermal time model was obtained by fitting probit germination against log °Cd. θ50 was 2·6 log °Cd for untreated seeds and 2·17–2·19 log °Cd for stratified seeds. When θ50 values were integrated with soil heat sum estimates, field emergence was predicted from March to April and confirmed through field observations. Conclusions Tb and θ50 values facilitated model development of the thermal niche for in situ germination of R. persicifolia. These experimental approaches may be applied to model the natural regeneration patterns of other species growing on Mediterranean mountain waterways and of physiologically dormant species, with overwintering cold stratification requirement and spring germination. PMID:24201139

  14. Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor.

    PubMed

    Chu, Pu; Chen, Huhui; Zhou, Yuliang; Li, Yin; Ding, Yu; Jiang, Liwen; Tsang, Edward W T; Wu, Keqiang; Huang, Shangzhi

    2012-06-01

    Annexins are multifunctional proteins characterized by their capacity to bind calcium ions and negatively charged lipids. Although there is increasing evidence implicating their importance in plant stress responses, their functions in seeds remain to be further studied. In this study, we identified a heat-induced annexin, NnANN1, from the embryonic axes of sacred lotus (Nelumbo nucifera Gaertn.) using comparative proteomics approach. Moreover, the expression of NnANN1 increased considerably in response to high-temperature treatment. Quantitative real-time PCR (qRT-PCR) revealed that the transcripts of NnANN1 were detected predominantly during seed development and germination in sacred lotus, implicating a role for NnANN1 in plant seeds. Ectopic expression of NnANN1 in Arabidopsis resulted in enhanced tolerance to heat stress in transgenic seeds. In addition, compared to the wild-type seeds, transgenic seeds ectopically expressing NnANN1 exhibited improved resistance to accelerated aging treatment used for assessing seed vigor. Furthermore, transgenic seeds showed enhanced peroxidase activities, accompanied with reduced lipid peroxidation and reduced ROS release levels compared to the wild-type seeds. Taken together, these results indicate that NnANN1 plays an important role in seed thermotolerance and germination vigor. PMID:22167260

  15. Effect of flooding and draw-down disturbance on germination from a seashore meadow seed bank

    USGS Publications Warehouse

    Jutila, H.M.

    2001-01-01

    The objective of this study was to investigate the effects of flooding and draw-down on the germination from the coastal grassland seed banks and to determine whether the effect of flooding varies between the delta and the seashore. Seed bank samples were collected from three shore transects in SW Finland, two on the shore of the Baltic Sea and one on the delta of River Kokema??enjoki. Samples were germinated in non-flooded and flooded conditions for over a month, after which both treatments were maintained in non-flooded conditions. A total of 9267 seedlings of 47 species germinated and mean density of seeds in the soil was ca. 84 000/m2. Most of the seedlings were monocots (98%) and perennials (98%). Ca. 30-40% of the species found in the above-ground vegetation had a seed bank including the majority of the most abundant species. The number of seeds and species richness increased as the organic layer became thicker. The organic layer was thicker in the seashore samples and the seed bank was significantly larger than in the delta. The flooding and draw-down treatment significantly increased the number of germinating seedlings in the seashore and also increased species richness in two transects, one in the delta and the other in the seashore. Two species, Schoenoplectus tabernaemontani and Typha latifolia, had significantly higher germination in the flooded treatment than in the non-flooded. Apparently, many species in these coastal grasslands have adapted to flood disturbance and for seeds of some species flooding may work as a positive signal, possibly breaking dormancy.

  16. Vacuolar H+-ATPase Is Expressed in Response to Gibberellin during Tomato Seed Germination1

    PubMed Central

    Cooley, Michael B.; Yang, Hong; Dahal, Peetambar; Mella, R. Alejandra; Downie, A. Bruce; Haigh, Anthony M.; Bradford, Kent J.

    1999-01-01

    Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA4+7. Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V0 membrane sector of vacuolar H+-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V1 sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds. PMID:10594121

  17. Expression of genes related to tolerance to low temperature for maize seed germination.

    PubMed

    Silva-Neta, I C; Pinho, E V; Veiga, A D; Pìnho, R G; Guimarães, R M; Caixeta, F; Santos, H O; Marques, T L

    2015-01-01

    The aim of this study was to characterize maize lines tolerant to cold temperatures during the germination process. Seeds from lines with different levels of tolerance to low temperatures were used; 3 lines were classified as tolerant and 3 as susceptible to low germination temperatures. A field was set up to multiply seeds from selected lines. After the seeds were harvested and classified, we conducted physiological tests and analyzed fatty acid content of palmitic, stearic, oleic, linoleic, linolenic, and eicosenoic acids. In proteomic analysis, the expression of heat-resistant proteins, including catalase, peroxidase, esterase, superoxide dismutase, and α-amylase, were evaluated. Transcript analysis was used to measure the expression of the genes AOX1, AOX2, ZmMPK-17, and ZmAN-13. The material showing the highest susceptibility to low germination temperatures contained high saturated fatty acid content. Expression of α-amylase in seeds soaked for 72 h at a temperature of 10°C was lower than expression of α-amylase when soaked at 25°C for the same amount of time. We observed variation in the expression of heat-resistant proteins in seeds of the lines evaluated. The genes AOX and Zm-AN13 were promising for use in identifying maize materials that are tolerant to low germination temperatures. PMID:25867416

  18. No evidence of adverse effects on germination, emergence, and fruit yield due to space exposure of tomato seeds.

    PubMed

    Kahn, B A; Stoffella, P J

    1996-05-01

    Seeds of 'Rutgers California Supreme' tomato (Lycopersicon esculentum Mill.) were exposed to outer space conditions aboard the long duration exposure facility (LDEF) satellite in the space exposed experiment developed for students (SEEDS) project of the National Aeronautics and Space Administration (NASA). Seeds aboard the LDEF were packed in dacron bags forming four layers per sealed canister. Some of these seeds were used in Oklahoma and Florida for studies of germination, emergence, and fruit yield. Among all measured variables in three experiments, there was only one significant main effect of canister 2 versus canister 7 (for mean time to germination) and only one main effect of layer (for seedling shoot dry weight). There also were only two inconsistent canister x layer interactions in the germination tests. The contrast of Earth-based control seed versus space-exposed seed was significant four times: in Oklahoma in 1991 the mean time to germination of space-exposed seeds and the days to 50% of final germination were 0.7 days less than for Earth-based seeds, and in Florida in 1992 seedling percent emergence and shoot dry weight were increased by space exposure. Fruit yield and marketability were unaffected in plants grown from space-exposed seeds. These results support student findings from the SEEDS project, and provide evidence that tomato seeds can survive in space for several years without adverse effects on germination, emergence, and fruit yield. PMID:11539352

  19. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds

    PubMed Central

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-01-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy. PMID:23077725

  20. Cold Radiofrequency Plasma Treatment Modifies Wettability and Germination Speed of Plant Seeds

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Grynyov, Roman; Bormashenko, Yelena; Drori, Elyashiv

    2012-10-01

    We report the possibility to modify the wetting properties of the surfaces of a diversity of seeds including: lentils (Lens culinaris), beans (Phaseolus vulgaris) and wheat (Triticum, species C9) by cold radiofrequency air plasma treatment. Air plasma treatment leads to the dramatic decrease in the apparent contact angle. Moreover, the speed of germination and yield (germination rate) of seeds can be modified by preliminary plasma treatment. The change in the wetting properties of seeds is at least partially due to oxidation of their surface under plasma treatment. Significant growth of the peaks corresponding to the nitrogen containing groups in the mass spectra of air plasma treated seeds was registered by TOF-SIMS spectroscopy.

  1. Seed dormancy-breaking and germination requirements of Drosera anglica, an insectivorous species of the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Baskin, Carol C.; Milberg, Per; Andersson, Lars; Baskin, Jerry M.

    2001-02-01

    Seeds of Drosera anglica collected in Sweden were dormant at maturity in late summer, and dormancy break occurred during cold stratification. Stratified seeds required light for germination, but light had to be given after temperatures were high enough to be favorable for germination. Seeds stratified in darkness at 5/1 °C and incubated in light at 12/12 h daily temperature regimes of 15/6, 20/10 and 25/15 °C germinated slower and to a significantly lower percentage at each temperature regime than those stratified in light and incubated in light. Length of the stratification period required before seeds would germinate to high percentages depended on (1) whether seeds were in light or in darkness during stratification and during the subsequent incubation period, and (2) the temperature regime during incubation. Seeds collected in 1999 germinated to 4, 24 and 92 % in light at 15/6, 20/10 and 25/15 °C, respectively, after 2 weeks of stratification in light. Seeds stratified in light for 18 weeks and incubated in light at 15/6, 20/10 and 25/15 °C germinated to 87, 95 and 100 %, respectively, while those stratified in darkness for 18 weeks and incubated in light germinated to 6, 82 and 91 %, respectively. Seeds collected from the same site in 1998 and 1999, stratified in light at 5/1 °C and incubated in light at 15/6 °C germinated to 22 and 87 %, respectively, indicating year-to-year variation in degree of dormancy. As dormancy break occurred, the minimum temperature for germination decreased. Thus, seed dormancy is broken in nature by cold stratification during winter, and by spring, seeds are capable of germinating at low habitat temperatures, if they are exposed to light.

  2. Dynamic Proteomics Emphasizes the Importance of Selective mRNA Translation and Protein Turnover during Arabidopsis Seed Germination*

    PubMed Central

    Galland, Marc; Huguet, Romain; Arc, Erwann; Cueff, Gwendal; Job, Dominique; Rajjou, Loïc

    2014-01-01

    During seed germination, the transition from a quiescent metabolic state in a dry mature seed to a proliferative metabolic state in a vigorous seedling is crucial for plant propagation as well as for optimizing crop yield. This work provides a detailed description of the dynamics of protein synthesis during the time course of germination, demonstrating that mRNA translation is both sequential and selective during this process. The complete inhibition of the germination process in the presence of the translation inhibitor cycloheximide established that mRNA translation is critical for Arabidopsis seed germination. However, the dynamics of protein turnover and the selectivity of protein synthesis (mRNA translation) during Arabidopsis seed germination have not been addressed yet. Based on our detailed knowledge of the Arabidopsis seed proteome, we have deepened our understanding of seed mRNA translation during germination by combining two-dimensional gel-based proteomics with dynamic radiolabeled proteomics using a radiolabeled amino acid precursor, namely [35S]-methionine, in order to highlight de novo protein synthesis, stability, and turnover. Our data confirm that during early imbibition, the Arabidopsis translatome keeps reflecting an embryonic maturation program until a certain developmental checkpoint. Furthermore, by dividing the seed germination time lapse into discrete time windows, we highlight precise and specific patterns of protein synthesis. These data refine and deepen our knowledge of the three classical phases of seed germination based on seed water uptake during imbibition and reveal that selective mRNA translation is a key feature of seed germination. Beyond the quantitative control of translational activity, both the selectivity of mRNA translation and protein turnover appear as specific regulatory systems, critical for timing the molecular events leading to successful germination and seedling establishment. PMID:24198433

  3. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds.

    PubMed

    Xu, Heng-Heng; Liu, Shu-Jun; Song, Shun-Hua; Wang, Rui-Xia; Wang, Wei-Qing; Song, Song-Quan

    2016-06-01

    Seed germination is a complex trait which is influenced by many genetic, endogenous and environmental factors, but the key event(s) associated with seed germination are still poorly understood. In present study, the non-dormant cultivated rice Yannong S and the dormant Dongxiang wild rice seeds were used as experimental materials, we comparatively investigated the water uptake, germination time course, and the differential proteome of the effect of embryo and endosperm on germination of these two types of seeds. A total of 231 and 180 protein spots in embryo and endosperm, respectively, showed a significant change in abundance during germination. We observed that the important proteins associated with seed germination included those involved in metabolism, energy production, protein synthesis and destination, storage protein, cell growth and division, signal transduction, cell defense and rescue. The contribution of embryo and endosperm to seed germination is different. In embryo, the proteins involved in amino acid activation, sucrose cleavage, glycolysis, fermentation and protein synthesis increased; in endosperm, the proteins involved in sucrose cleavage and glycolysis decreased, and those with ATP and CoQ synthesis and proteolysis increased. Our results provide some new knowledge to understand further the mechanism of seed germination. PMID:27035683

  4. Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields

    PubMed Central

    Saatkamp, Arne; Affre, Laurence; Dutoit, Thierry; Poschlod, Peter

    2011-01-01

    Background and Aims Seed persistence in the soil under field conditions is an important issue for the maintenance of local plant populations and the restoration of plant communities, increasingly so in the light of rapidly changing land use and climate change. Whereas processes important for dispersal in space are well known, knowledge of processes governing dispersal in time is still limited. Data for morphological seed traits such as size have given contradictory results for prediction of soil seed persistence or cover only a few species. There have been few experimental studies on the role of germination traits in determining soil seed persistence, while none has studied their predictive value consistently across species. Delayed germination, as well as light requirements for germination, have been suggested to contribute to the formation of persistent seed banks. Moreover, diurnally fluctuating temperatures can influence the timing of germination and are therefore linked to seed bank persistence. Methods The role of germination speed measured by T50 (days to germination of 50 % of all germinated seeds), light requirement and reaction to diurnally fluctuating temperatures in determining seed persistence in the soil was evaluated using an experimental comparative data set of 25 annual cereal weed species. Key Results It is shown that light requirements and slow germination are important features to maintain seeds ungerminated just after entering the soil, and hence influence survival of seeds in the soil. However, the detection of low diurnally fluctuating temperatures enhances soil seed bank persistence by limiting germination. Our data further suggest that the effect of diurnally fluctuating temperatures, as measured on seeds after dispersal and dry storage, is increasingly important to prevent fatal germination after longer burial periods. Conclusions These results underline the functional role of delayed germination and light for survival of seeds in the soil and hence their importance for shaping the first part of the seed decay curve. Our analyses highlight the detection of diurnally fluctuating temperatures as a third mechanism to achieve higher soil seed persistence after burial which interacts strongly with season. We therefore advocate focusing future research on mechanisms that favour soil seed persistence after longer burial times and moving from studies of morphological features to exploration of germination traits such as reaction to diurnally fluctuating temperatures. PMID:21224268

  5. Seed Germination Ecology of Feather Lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes

    PubMed Central

    Chauhan, Bhagirath S.

    2013-01-01

    Feather lovegrass [Eragrostis tenella (L.) Beauv. Ex Roemer & J.A. Schultes] is a C4 grass weed that has the ability to grow in both lowland and upland conditions. Experiments were conducted in the laboratory and screenhouse to evaluate the effect of environmental factors on germination, emergence, and growth of this weed species. Germination in the light/dark regime was higher at alternating day/night temperatures of 30/20 °C (98%) than at 35/25 °C (83%) or 25/15 °C (62%). Germination was completely inhibited by darkness. The osmotic potential and sodium chloride concentrations required for 50% inhibition of maximum germination were -0.7 MPa and 76 mM, respectively. The highest seedling emergence (69%) was observed from the seeds sown on the soil surface and no seedlings emerged from seeds buried at depths of 0.5 cm or more. The use of residue as mulches significantly reduced the emergence and biomass of feather lovegrass seedlings. A residue amount of 0.5 t ha-1 was needed to suppress 50% of the maximum seedlings. Because germination was strongly stimulated by light and seedling emergence was the highest for the seeds sown on the soil surface, feather lovegrass is likely to become a problematic weed in zero-till systems. The knowledge gained from this study could help in developing effective and sustainable weed management strategies. PMID:24255700

  6. Comparison of germination and seed vigor of sunflower in two contaminated soils of different texture

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; Han, Jaemaro; Lee, Jong Keun; Kim, Jae Young

    2014-05-01

    Phytoremediation as an emerging low-cost and ecologically friendly alternative to the conventional soil remediation technologies has gained a great deal of attention and into lots of research. As a kind of the methods that use of green plants to remediate heavy metals contaminated soils, the early growth status of plant seeds in the contaminated environmental directly affects the effect of phytoremediation. Germination test in the water (aqueous solution of heavy metal) is generally used for assessing heavy metal phytotoxicity and possibility of plant growth, but there is a limit. Because soil is commonly main target of phytoremediation, not the water. The bioavailability of heavy metals in the soil also depends on the texture. So soil texture is an important factor of phytoremediation effect. Sunflower is the representative species which have good tolerance to various heavy metals; furthermore, the seeds of sunflower can be used as the raw-material for producing bio-diesel. The objectives of this research were to investigate germination rate of sunflowers in various heavy metal contaminated soils and to compare the seedling vigor index (SVI) of sunflower in two contaminated soils of different texture. Sunflower (Helianthusannuus L.) seeds were obtained from a commercial market. In order to prove the soil texture effect on heavy metal contaminated soil, germination tests in soil were conducted with two different types of soil texture (i.e., loam soil and sandy loam soil) classified by soil textural triangle (defined by USDA) including representative soil texture of Korea. Germination tests in soil were conducted using KS I ISO 11260-1 (2005) for reference that sunflower seeds were incubated for 7 days in dark at 25 ± 1 Celsius degree. The target heavy metals are Nickel (Ni) and Zinc (Zn). The Ni and Zn concentrations were 0, 10, 50, 100, 200, 300, 500 mg-Ni/kg-dry soil, and 0, 10, 50, 100, 300, 500, 900 mg-Zn/kg-dry soil, respectively. After germination test for 7 days, germination rate of sunflower was calculated, and shoot and root lengths were also measured. According to the results of germination tests, the seeds germination rates were reduced with increasing heavy metal concentrations in both loam soil and sandy loam soil. The SVI values in loam soil in more than in sandy loam soil. Keywords: phytoremediation, sunflower, soil texture, germination test ACKNOWLEDGEMENT This work is supported by the Korea Ministry of the Environment as 'The GAIA (Geo-Advanced Innovative Action) Project'.

  7. Secretion of α-Amylase by the Aleurone Layer and the Scutellum of Germinating Barley Grain 1

    PubMed Central

    Ranki, Harri; Sopanen, Tuomas

    1984-01-01

    α-Amylase activities in extracts of different parts of barley grain (Hordeum vulgare L. cv Himalaya) were low after 1 day of germination at 20°C, but they began to increase afterwards. In the scutellum and the aleurone layer, the increases were small, but in the starchy endosperm a great increase took place between days 1 and 6. When the aleurone layers were separated from germinating whole grains and incubated in 10 millimolar CaCl2, the α-amylase activity in the medium increased linearly for about 30 to 60 minutes, indicating secretion. The activity inside the aleurone layer decreased only slightly during the incubation, indicating that secretion of α-amylase was accompanied by synthesis. The rates of secretion in vitro by the aleurone layers separated at different stages of germination corresponded rather well to the rate of accumulation of α-amylase activity in the starchy endosperm in a whole grain. Scutella separated after 1 day of germination released small amounts of α-amylase activity into 10 millimolar CaCl2. This release was linear for at least 1 hour and did not occur at 0°C; it is therefore likely to be due to secretion. At later stages of germination, the secretion by the scutella was slower than at day 1 and the total secretion accounted for only 5 to 10% of the increase of α-amylase activity in the starchy endosperm in a whole grain. Since the times from the separation of the parts of the grain to the beginning of the secretion assay (10-40 minutes) as well as the duration of the assay itself (20-60 minutes) were short, the rates of secretion by the separated grain parts are likely to represent those in an intact grain. The results indicate therefore that at least in the conditions used the bulk of the total α-amylase in the starchy endosperm is secreted by the aleurone layer, the contribution by the scutellum being only 5 to 10% of the total activity. PMID:16663692

  8. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14

    PubMed Central

    Rueda-Romero, Paloma; Barrero-Sicilia, Cristina; Gómez-Cadenas, Aurelio; Carbonero, Pilar; Oñate-Sánchez, Luis

    2012-01-01

    Seed dormancy prevents seeds from germinating under environmental conditions unfavourable for plant growth and development and constitutes an evolutionary advantage. Dry storage, also known as after-ripening, gradually decreases seed dormancy by mechanisms not well understood. An Arabidopsis thaliana DOF transcription factor gene (DOF6) affecting seed germination has been characterized. The transcript levels of this gene accumulate in dry seeds and decay gradually during after-ripening and also upon seed imbibition. While constitutive over-expression of DOF6 produced aberrant growth and sterility in the plant, its over-expression induced upon seed imbibition triggered delayed germination, abscisic acid (ABA)-hypersensitive phenotypes and increased expression of the ABA biosynthetic gene ABA1 and ABA-related stress genes. Wild-type germination and gene expression were gradually restored during seed after-ripening, despite of DOF6-induced over-expression. DOF6 was found to interact in a yeast two-hybrid system and in planta with TCP14, a previously described positive regulator of seed germination. The expression of ABA1 and ABA-related stress genes was also enhanced in tcp14 knock-out mutants. Taken together, these results indicate that DOF6 negatively affects seed germination and opposes TCP14 function in the regulation of a specific set of ABA-related genes. PMID:22155632

  9. Exogenous Melatonin Improves Antioxidant Defense in Cucumber Seeds (Cucumis sativus L.) Germinated under Chilling Stress

    PubMed Central

    Marta, Bałabusta; Szafrańska, Katarzyna; Posmyk, Małgorzata M.

    2016-01-01

    The relationship between exogenous melatonin applied into cucumber seeds during osmopriming and modifications of their antioxidant defense was studied. Accumulation of hydrogen peroxide, antioxidant enzyme activities and glutathione pool were investigated in embryonic axes isolated from the control, osmoprimed, and osmoprimed with melatonin seeds. Germinating cucumber seeds are very sensitive to chilling. Temperature 10°C causes oxidative stress in young seedlings. Seed pre-treatment with melatonin seemed to limit H2O2 accumulation during germination under optimal condition as well as during chilling stress and recovery period. Melatonin affected superoxide dismutase (SOD) activity and its isoforms during stress and recovery period but did not influence CAT and POX activities. Thus it is possible that in cucumber this indoleamine could act mostly as a direct H2O2 scavenger, but superoxide anion combat via SOD stimulation. The GSH/GSSG ratio is considered as an indirect determinant of oxidative stress. When the cells are exposed to oxidative stress GSSG is accumulated and the ratio of GSH to GSSG decreases. In our research pre-sowing melatonin application into the cucumber seeds caused high beneficial value of GSH/GSSG ratio that could be helpful for stress countering. Glutathione reductase (GSSG-R) activity in the axes isolated from these seeds was two fold higher than in those isolated from the control and from the osmoprimed without melatonin ones. Additional isoforms of GSSG-R in melatonin treated seeds were also observed. It explains high and effective GSH pool restoration in the seeds pre-treated with melatonin. We confirmed that melatonin could protect cucumber seeds and young seedlings against oxidative stress directly and indirectly detoxifying ROS, thereby plants grown better even in harmful environmental conditions. This work is the first that investigated on plant in vivo model and documented melatonin influence on redox state during seed germination. This way we try to fill lack of information about melatonin-regulated pathways involved in antioxidant strategy of plant defense. PMID:27200048

  10. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid

    PubMed Central

    Dave, Anuja; Vaistij, Fabián E.; Gilday, Alison D.; Penfield, Steven D.; Graham, Ian A.

    2016-01-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination in Arabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination in A. thaliana and underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT. PMID:26873978

  11. Regulation of Arabidopsis thaliana seed dormancy and germination by 12-oxo-phytodienoic acid.

    PubMed

    Dave, Anuja; Vaistij, Fabián E; Gilday, Alison D; Penfield, Steven D; Graham, Ian A

    2016-04-01

    We previously demonstrated that the oxylipin 12-oxo-phytodienoic acid (OPDA) acts along with abscisic acid to regulate seed germination inArabidopsis thaliana, but the mechanistic details of this synergistic interaction remain to be elucidated. Here, we show that OPDA acts through the germination inhibition effects of abscisic acid, the abscisic acid-sensing ABI5 protein, and the gibberellin-sensing RGL2 DELLA protein. We further demonstrate that OPDA also acts through another dormancy-promoting factor, MOTHER-OF-FT-AND-TFL1 (MFT). Both abscisic acid and MFT positively feed back into the OPDA pathway by promoting its accumulation. These results confirm the central role of OPDA in regulating seed dormancy and germination inA. thalianaand underline the complexity of interactions between OPDA and other dormancy-promoting factors such as abscisic acid, RGL2, and MFT. PMID:26873978

  12. Effect of phytohormones on seed germination and seedling growth of Coriandrum sativum L.

    PubMed

    Kumar, Mahender; Agnihotri, R K; Vamil, R; Sharma, R

    2014-04-01

    Coriander commonly known as Dhania or Chinese parsley is generally grown for its use in soups, salads, dressing vegetables, seasoning and chutney. Effect of two phytohormones viz. GA3 and 2,4-D on seed germination, seedling growth and various physiological and biochemical parameters were studied. The hormones were applied individually in different concentrations (10, 50 and 100 μM concentrations). Both the hormones enhanced the germination percentage, seedling growth (root and shoot length), leaf area, chlorophyll and carotenoid content. The application of these hormones also decreased the germination time. Maximum germination, shoot length, leaf area and carotenoid content was observed in 100 μm concentration of GA3. Root length, chl. a and chl. b was maximum in 50 μM of 2,4-D and 100 μm GA3, respectively. The application of two hormones exhibited a marked increase on all the parameters studied as compared to the control. PMID:25911855

  13. Stimulation of Striga asiatica (Witchweed) Seed Germination by 6-Substituted Purines.

    PubMed

    Worsham, A D; Moreland, D E; Klingman, G C

    1959-12-11

    Kinetin [6-(2-furfuryl) aminopurine] and certain other 6-substituted aminopurines stimulated germination of seed of Striga asiatica (L.) Kuntze. Optimum concentration for most active compounds was in the range of 5 to 25 mg/lit. Derivatives which showed high activity possessed an adenine nucleus with a phenyl, benzyl, phenethyl, or furfuryl radical substituted on the amino group. PMID:17781389

  14. PHYTOTOXICITY OF MIMOSINE AND ALBIZZIINE ON SEED GERMINATION AND SEEDLING GROWTH.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mimosine and albizziine are two toxic, non-protein amino acids found in several legume species. Both compounds have been shown to inhibit seed germination and seedling growth, but no comparative study of the two compounds has been conducted. In the present study the 10-3 M concentration of both com...

  15. DOES SEED SIZE AFFECT THE RATE OF GERMINATION AND EARLY SEEDLING GROWTH IN HAIRY VETCH?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In many crops there is a positive correlation between seed size and the rate of germination and seedling establishment. Hairy vetch (Vicia villosa, Roth) is an annual cool-season legume used primarily for soil improvement or for forage. In the Southern Great Plains its growing season is limited to...

  16. In Vivo Effects of Barbituates on Seed Germination and Seedling Growth.

    ERIC Educational Resources Information Center

    Kordan, H. A.

    1984-01-01

    A simple, low-cost experimental system can be used to demonstrate the "in vivo" effects of barbituates on seed germination and seedling growth behavior in different plant species. Lipid solubility and concentration of individual barbituates both affect the response. List of materials needed, procedures used, and typical results obtained are…

  17. Determination of Kinetic and Thermodynamic Parameters that Describe Isothermal Seed Germination: A Student Research Project.

    ERIC Educational Resources Information Center

    Hageseth, Gaylord T.

    1982-01-01

    Describes a project for students to collect and fit data to a theoretical mathematical model that describes the rate of isothermal seed germination, including activation energy for substrate and produce and the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. (Author/SK)

  18. Seed source may determine field-specific germination and emergence: the source by planting environment interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Farm environmental characteristics and management practices can result in within-cultivar differences in seed quality. Transgenerational plasticity (effects of the farm environment on offspring, or TGP) can be important in germination and emergence dynamics. We chose two commonly-used cultivars (Lod...

  19. Lifting DELLA repression of Arabidopsis seed germination by nonproteolytic gibberellin signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DELLA repression of Arabidopsis seed germination can be lifted through the ubiquitin-proteasome pathway and proteolysis-independent GA signaling. GA-binding to the GID1 (GIBBERELLIN-INSENSITIVE DWARF1) GA receptors stimulates GID1-GA-DELLA complex formation which in turn triggers DELLA protein ubiq...

  20. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation

    PubMed Central

    Hu, Xiangang; Zhou, Qixing

    2014-01-01

    It is well known that graphene (G) induces nanotoxicity towards living organisms. Here, a novel and biocompatible hydrated graphene ribbon (HGR) unexpectedly promoted aged (two years) seed germination. HGR formed at the normal temperature and pressure (120 days hydration), presented 17.1% oxygen, 0.9% nitrogen groups, disorder-layer structure, with 0.38 nm thickness ribbon morphology. Interestingly, there were bulges around the edges of HGR. Compared to G and graphene oxide (GO), HGR increased seed germination by 15% root differentiation between 52 and 59% and enhanced resistance to oxidative stress. The metabonomics analysis discovered that HGR upregulated carbohydrate, amino acid, and fatty acids metabolism that determined secondary metabolism, nitrogen sequestration, cell membrane integrity, permeability, and oxidation resistance. Hexadecanoic acid as a biomarker promoted root differentiation and increased the germination rate. Our discovery is a novel HGR that promotes aged seed germination, illustrates metabolic specificity among graphene-based materials, and inspires innovative concepts in the regulation of seed development. PMID:24445438

  1. In Vivo Effects of Barbituates on Seed Germination and Seedling Growth.

    ERIC Educational Resources Information Center

    Kordan, H. A.

    1984-01-01

    A simple, low-cost experimental system can be used to demonstrate the "in vivo" effects of barbituates on seed germination and seedling growth behavior in different plant species. Lipid solubility and concentration of individual barbituates both affect the response. List of materials needed, procedures used, and typical results obtained are

  2. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation

    NASA Astrophysics Data System (ADS)

    Hu, Xiangang; Zhou, Qixing

    2014-01-01

    It is well known that graphene (G) induces nanotoxicity towards living organisms. Here, a novel and biocompatible hydrated graphene ribbon (HGR) unexpectedly promoted aged (two years) seed germination. HGR formed at the normal temperature and pressure (120 days hydration), presented 17.1% oxygen, 0.9% nitrogen groups, disorder-layer structure, with 0.38 nm thickness ribbon morphology. Interestingly, there were bulges around the edges of HGR. Compared to G and graphene oxide (GO), HGR increased seed germination by 15% root differentiation between 52 and 59% and enhanced resistance to oxidative stress. The metabonomics analysis discovered that HGR upregulated carbohydrate, amino acid, and fatty acids metabolism that determined secondary metabolism, nitrogen sequestration, cell membrane integrity, permeability, and oxidation resistance. Hexadecanoic acid as a biomarker promoted root differentiation and increased the germination rate. Our discovery is a novel HGR that promotes aged seed germination, illustrates metabolic specificity among graphene-based materials, and inspires innovative concepts in the regulation of seed development.

  3. Field emergence and plant density of sand bluestem lines selected for increased seed germination.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sand bluestem (Andropogon hallii Hack.) populations AB-medium Syn-1 and Syn-2, and CD-tall Syn-1 and Syn-2 were developed from populations AB-medium Syn-0 and CD-tall Syn-0 by recurrent selection for increased seed germination in low water potentials. The objective of this research was to verify if...

  4. Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat

    NASA Astrophysics Data System (ADS)

    Jiang, Jiafeng; He, Xin; Li, Ling; Li, Jiangang; Shao, Hanliang; Xu, Qilai; Ye, Renhong; Dong, Yuanhua

    2014-01-01

    This study investigated the effect of cold helium plasma treatment on seed germination, growth and yield of wheat. The effects of different power of cold plasma on the germination of treated wheat seeds were studied. We found that the treatment of 80 W could significantly improve seed germination potential (6.0%) and germination rate (6.7%) compared to the control group. Field experiments were carried out for wheat seeds treated with 80 W cold plasma. Compared with the control, plant height (20.3%), root length (9.0%) and fresh weight (21.8%) were improved significantly at seedling stage. At booting stage, plant height, root length, fresh weight, stem diameter, leaf area and leaf thickness of the treated plant were respectively increased by 21.8%, 11.0%, 7.0%, 9.0%, 13.0% and 25.5%. At the same time, the chlorophyll content (9.8%), nitrogen (10.0%) and moisture content (10.0%) were higher than those of the control, indicating that cold plasma treatment could promote the growth of wheat. The yield of treated wheat was 7.55 t · ha-1, 5.89% more than that of the control. Therefore, our results show that cold plasma has important application prospects for increasing wheat yield.

  5. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Bridgers, Kevin; Brown, Cecelia Wright

    1995-01-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  6. Germination, growth rates, and electron microscope analysis of tomato seeds flown on the LDEF

    SciTech Connect

    Hammond, E.C. Jr.; Bridgers, K.; Brown, C.W.

    1995-02-01

    The tomato seeds were flown in orbit aboard the Long Duration Exposure Facility (LDEF) for nearly six years. During this time, the tomato seeds received an abundant exposure to cosmic radiation and solar wind. Upon the return of the LDEF to earth, the seeds were distributed throughout the United States and 30 foreign countries for analysis. The purpose of the experiment was to determine the long term effect of cosmic rays on living tissue. Our university analysis included germination and growth rates as well as Scanning Electron Microscopy and X-ray analysis of the control as well as Space-exposed tomato seeds. In analyzing the seeds under the Electron Microscope, usual observations were performed on the nutritional and epidermis layer of the seed. These layers appeared to be more porous in the Space-exposed seeds than on the Earth-based control seeds. This unusual characteristic may explain the increases in the space seeds growth pattern. (Several test results show that the Space-exposed seeds germinate sooner than the Earth-Based seeds. Also, the Space-exposed seeds grew at a faster rate). The porous nutritional region may allow the seeds to receive necessary nutrients and liquids more readily, thus enabling the plant to grow at a faster rate. Roots, leaves and stems were cut into small sections and mounted. After sputter coating the specimens with Argon/Gold Palladium Plasma, they were ready to be viewed under the Electron Microscope. Many micrographs were taken. The X-ray analysis displayed possible identifications of calcium, potassium, chlorine, copper, aluminum, silicon, phosphate, carbon, and sometimes sulfur and iron. The highest concentrations were shown in potassium and calcium. The Space-exposed specimens displayed a high concentration of copper and calcium in the two specimens. There was a significantly high concentration of copper in the Earth-based specimens, whereas there was no copper in the Space-exposed specimens.

  7. In vitro Asymbiotic Germination of Immature Seed and Formation of Protocorm by Cephalanthera falcata (Orchidaceae)

    PubMed Central

    YAMAZAKI, JUN; MIYOSHI, KAZUMITSU

    2006-01-01

    • Background and Aims Many Orchidaceous species are threatened globally by development and over-collection from their natural habitats for horticultural purposes. Artificial propagation from seeds is difficult in most terrestrial orchids native to temperate regions. Seed production is another limiting factor in the artificial propagation for these species because of the lessened probability of pollination and the destruction of fruit by insect larvae. Members of the genus Cephalanthera are distributed across Europe, Asia and North America. C. falcata is a temperate species of East Asia and an endangered species in Japan. As successful propagation from seeds of this species has never been reported, a reproducible method is described here for seed production in situ and propagation using immature seeds in asymbiotic culture in vitro. • Methods Effects of hand-pollination and bagging treatment of ovaries were examined. Young capsules were collected every 10 d from 50 d after pollination until 120 d after pollination. Immature seeds obtained from these capsules were cultured asymbiotically on modified Kano medium and ND medium. Seed viability was examined within TTC (2,3,5-triphenyl tetrazolium chloride) test solution and histological observations were made on viable seeds by paraffin embedding at each collection stage. • Key Results and Conclusions Hand-pollination followed by bagging treatment of ovaries with aluminium foil was effective for insect control during fruit development, and successfully yielded capsules. Of the capsules, 74·5 % survived to full maturity. The highest frequency (39·8 %) of seed germination was obtained with seeds harvested 70 d after pollination. The frequency declined with progress of seed maturity on the mother plant. Minimal germination was observed with seeds harvested 100 d or later after pollination. Histological observation suggests that accumulation of such substances as lignin in the inner integument surrounding the embryo during seed maturation plays an important role in induction of dormancy. PMID:17071633

  8. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus.

    PubMed

    Hatzig, Sarah V; Frisch, Matthias; Breuer, Frank; Nesi, Nathalie; Ducournau, Sylvie; Wagner, Marie-Helene; Leckband, Gunhild; Abbadi, Amine; Snowdon, Rod J

    2015-01-01

    Rapid and uniform seed germination is a crucial prerequisite for crop establishment and high yield levels in crop production. A disclosure of genetic factors contributing to adequate seed vigor would help to further increase yield potential and stability. Here we carried out a genome-wide association study in order to define genomic regions influencing seed germination and early seedling growth in oilseed rape (Brassica napus L.). A population of 248 genetically diverse winter-type B. napus accessions was genotyped with the Brassica 60k SNP Illumina genotyping array. Automated high-throughput in vitro phenotyping provided extensive data for multiple traits related to germination and early vigor, such as germination speed, absolute germination rate and radicle elongation. The data obtained indicate that seed germination and radicle growth are strongly environmentally dependent, but could nevertheless be substantially improved by genomic-based breeding. Conditions during seed production and storage were shown to have a profound effect on seed vigor, and a variable manifestation of seed dormancy appears to contribute to differences in germination performance in B. napus. Several promising positional and functional candidate genes could be identified within the genomic regions associated with germination speed, absolute germination rate, radicle growth and thousand seed weight. These include B. napus orthologs of the Arabidopsis thaliana genes SNOWY COTYLEDON 1 (SCO1), ARABIDOPSIS TWO-COMPONENT RESPONSE REGULATOR (ARR4), and ARGINYL-t-RNA PROTEIN TRANSFERASE 1 (ATE1), which have been shown previously to play a role in seed germination and seedling growth in A. thaliana. PMID:25914704

  9. [Effects of light intensity on Quercus liaotungensis seed germination and seedling growth].

    PubMed

    Yan, Xing-fu; Wang, Jian-li; Zhou, Li-biao

    2011-07-01

    This paper studied the effects of different shading (55.4%, 18.9%, 5.5%, 2.2%, 0.5% , and 0.3% natural sunlight) on the seed germination and seedling growth of Quercus liaotungensis. The seed germination rate and germination index were the highest (72.5% and 0.22, respectively) at 55.4% natural sunlight, declined with decreasing light intensity, and were the lowest (42.5% and 0.11, respectively) at 0.3% natural sunlight. Strong light had definite delaying effect on the germination. The index of germination vigor increased with decreasing light intensity, being the maximum at 0.5% natural sunlight. The delay of seed germination under strong light could be the selective tradeoff on varied seed fates. Strong light benefited the basal stem diameter and root system growth and dry mass accumulation of Q. liaotunensis seedling, but resulted in the minimum seedlings height (6.06 cm). Greater morphological plasticity was observed for the seedlings under different shading, which lent support to the higher adaptability of the seedlings to light environment. For example, the specific leaf area, specific shoot length, specific root length, and chlorophyll b and total chlorophyll contents were the maximum at 0.5% natural sunlight, being 142.57 cm2 x g(-1), 156.86 cm x g(-1), 271.87 cm x g(-1), 0.07 g x cm(-2), and 0.24 g x cm(-2), respectively, and the minimum at 55.4% natural sunlight, being 44.89 cm2 x g(-1), 52.84 cm x g(-1), 101.98 cm x g(-1), 0.04 g x cm(-2), and 0.15 g x cm(-2), respectively. The variation of the root/shoot ratio of Q. liaotungensis seedlings under different shading could be the effects of the combination of light intensity and water availability. PMID:22007441

  10. Analysis of thermal dependence on the germination of braquiarão seeds using the thermal time model.

    PubMed

    Nakao, E A; Cardoso, V J M

    2016-02-01

    This paper analyzed the thermal dependence on the germination of Urochloa brizantha (Stapf) Webster seeds under constant and fluctuating temperatures through the thermal time model. Germination tests were carried out at constant temperatures ranging from 8 °C to 41.5 °C in order to determine the model parameters: base (Tb), optimal (To) and maximum temperature (Tc) for germination; and the thermal time (θT) required for individual seeds to germinate. Braquiarão seeds germinate within a temperature interval from 8 °C to 41.5 °C, with an optimum range for germination estimated at 31.5 ° ≤ T ≤ 34.5 °C. Actual and expected distributions of cumulative germination percentages of U. brizantha seeds put to germinate both under controlled and uncontrolled temperature regimes were compared, and it can be seen that the model described relatively well the germination at isothermal assays; however the model failed to predict germination at a wide range of thermal fluctuations. Possible explanations for the results are discussed. PMID:26909633

  11. Changes in the germination process and growth of pea in effect of laser seed irradiation

    NASA Astrophysics Data System (ADS)

    Podleśna, Anna; Gładyszewska, Bożena; Podleśny, Janusz; Zgrajka, Wojciech

    2015-10-01

    The aim of this study was to determine the effect of pre-sowing helium-neon (He-Ne) laser irradiation of pea seeds on changes in seed biochemical processes, germination rate, seedling emergence, growth rate, and yield. The first experimental factor was exposure to laser radiation: D0 - no irradiation, D3 - three exposures, D5 - five exposures, and the harvest dates were the second factor. Pre-sowing treatment of pea seeds with He-Ne laser light increased the concentrations of amylolytic enzymes and the content of indole-3-acetic acid (IAA) in pea seeds and seedlings. The exposure of seeds to He-Ne laser light improved the germination rate and uniformity and modified growth stages, which caused acceleration of flowering and ripening of pea plants. Laser light stimulation improved the morphological characteristics of plants by increasing plant height and leaf surface area. Irradiation improved the yield of vegetative and reproductive organs of pea, although the effects varied at the different growth stages. The increase in the seed yield resulted from a higher number of pods and seeds per plant, whereas no significant changes were observed in the number of seeds per pod. Both radiation doses exerted similarly stimulating effects on pea growth, development, and yield.

  12. Modeling Analysis on Germination and Seedling Growth Using Ultrasound Seed Pretreatment in Switchgrass

    PubMed Central

    Wang, Quanzhen; Chen, Guo; Yersaiyiti, Hayixia; Liu, Yuan; Cui, Jian; Wu, Chunhui; Zhang, Yunwei; He, Xueqing

    2012-01-01

    Switchgrass is a perennial C4 plant with great potential as a bioenergy source and, thus, a high demand for establishment from seed. This research investigated the effects of ultrasound treatment on germination and seedling growth in switchgrass. Using an orthogonal matrix design, conditions for the ultrasound pretreatment in switchgrass seed, including sonication time (factor A), sonication temperature (factor B) and ultrasound output power (factor C), were optimized for germinating and stimulating seedling growth (indicated as plumular and radicular lengths) through modeling analysis. The results indicate that sonication temperature (B) was the most effective factor for germination, whereas output power (C) had the largest effect on seedling growth when ultrasound treatment was used. Combined with the analyses of range, variance and models, the final optimal ultrasonic treatment conditions were sonication for 22.5 min at 39.7°C and at an output power of 348 W, which provided the greatest germination percentage and best seedling growth. For this study, the orthogonal matrix design was an efficient method for optimizing the conditions of ultrasound seed treatment on switchgrass. The electrical conductivity of seed leachates in three experimental groups (control, soaked in water only, and ultrasound treatment) was determined to investigate the effects of ultrasound on seeds and eliminate the effect of water in the ultrasound treatments. The results showed that the electrical conductivity of seed leachates during either ultrasound treatment or water bath treatment was significantly higher than that of the control, and that the ultrasound treatment had positive effects on switchgrass seeds. PMID:23071756

  13. Dynamic Quantitative Trait Loci Analysis of Seed Reserve Utilization during Three Germination Stages in Rice

    PubMed Central

    Huang, Xi; Lai, Yanyan; Wang, Ling; Du, Wenli; Wang, Zhoufei; Zhang, Hongsheng

    2013-01-01

    In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed reserve utilization during the early (day 6), middle (day 10) and late (day 14) germination stages. The seedling dry weight (SDW) and weight of the mobilized seed reserve (WMSR) were increased, while the seed reserve utilization efficiency (SRUE) decreased, during the process of seed germination. The SDW and WMSR were affected by the seed weight, while the SRUE was not affected by the seed weight. A total of twenty unconditional and twenty-one conditional additive QTLs and eight epistatic QTLs were identified at three germination stages, and the more QTLs were expressed at the late germination stage. Among them, twelve additive and three epistatic QTLs for SDW, eight additive and three epistatic QTLs for WMSR and thirteen additive and two epistatic QTLs for SRUE were identified, respectively. The phenotypic variation explained by each additive QTL, epistatic QTL and QTL × development interaction ranged from 6.10 to 23.91%, 1.79 to 6.88% and 0.22 to 2.86%, respectively. Two major additive QTLs qWMSR7.1 and qSRUE4.3 were identified, and each QTL could explain more than 20% of the total phenotypic variance. By comparing the chromosomal positions of these additive QTLs with those previously identified, eleven QTLs might represent novel genes. The best four cross combinations of each trait for the development of RIL populations were selected. The selected RILs and the identified QTLs might be applicable to improve rice seed reserve utilization by the marker-assisted selection approach. PMID:24244592

  14. Evolutionary Conserved Function of Barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in Providing Wax Signals for Germination of Powdery Mildew Fungi1[C][W

    PubMed Central

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B.; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-01-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  15. Evolutionary conserved function of barley and Arabidopsis 3-KETOACYL-CoA SYNTHASES in providing wax signals for germination of powdery mildew fungi.

    PubMed

    Weidenbach, Denise; Jansen, Marcus; Franke, Rochus B; Hensel, Goetz; Weissgerber, Wiebke; Ulferts, Sylvia; Jansen, Irina; Schreiber, Lukas; Korzun, Viktor; Pontzen, Rolf; Kumlehn, Jochen; Pillen, Klaus; Schaffrath, Ulrich

    2014-11-01

    For plant pathogenic fungi, such as powdery mildews, that survive only on a limited number of host plant species, it is a matter of vital importance that their spores sense that they landed on the right spot to initiate germination as quickly as possible. We investigated a barley (Hordeum vulgare) mutant with reduced epicuticular leaf waxes on which spores of adapted and nonadapted powdery mildew fungi showed reduced germination. The barley gene responsible for the mutant wax phenotype was cloned in a forward genetic screen and identified to encode a 3-KETOACYL-CoA SYNTHASE (HvKCS6), a protein participating in fatty acid elongation and required for synthesis of epicuticular waxes. Gas chromatography-mass spectrometry analysis revealed that the mutant has significantly fewer aliphatic wax constituents with a chain length above C-24. Complementation of the mutant restored wild-type wax and overcame germination penalty, indicating that wax constituents less present on the mutant are a crucial clue for spore germination. Investigation of Arabidopsis (Arabidopsis thaliana) transgenic plants with sense silencing of Arabidopsis REQUIRED FOR CUTICULAR WAX PRODUCTION1, the HvKCS6 ortholog, revealed the same germination phenotype against adapted and nonadapted powdery mildew fungi. Our findings hint to an evolutionary conserved mechanism for sensing of plant surfaces among distantly related powdery mildews that is based on KCS6-derived wax components. Perception of such a signal must have been evolved before the monocot-dicot split took place approximately 150 million years ago. PMID:25201879

  16. Biogenic nanoparticle-mediated augmentation of seed germination, growth, and antioxidant level of Eruca sativa mill. varieties.

    PubMed

    Ushahra, Jyoti; Bhati-Kushwaha, Himakshi; Malik, C P

    2014-09-01

    A study was undertaken to examine the influence of biogenic nanoparticles synthesized from Tridax procumbens on different parameters of seed germination, seedling growth, and various biochemical parameters in four Eruca sativa varieties having low percentage of germination. Seeds were treated with different concentrations (30 and 40 ppm) of biogenic nanoparticles, of which 30 ppm was found to be the most effective and was therefore used for subsequent studies. Initially, the effect of biogenic nanoparticles on germination percentage, speed of germination, coefficient of germination, mean germination time, shoot and root length, fresh and dry matter, and vigor index was studied. From the experiments performed and the results obtained, it was evident that the treatment with biogenic nanoparticles decreased the electrolyte leakage and level of malondialdehyde as compared to control. The treatment with biogenic nanoparticles enhanced the levels of proline and ascorbic acid and stimulated the antioxidant enzyme activities resulting in the reduced level of reactive oxygen species. These activities were found to be variety-dependent. The possible involvement of biogenic nanoparticles in the production of new pores in seed coat during their penetration, resulting in the influx of the nutrients inside the seed, is suggested. This accelerated seed germination is followed by rapid seedling growth. The present findings indicated that biogenic nanoparticles promote seed germination in E. sativa by overcoming the detrimental effects of reactive oxygen species (ROS) and improving the antioxidative defense system which finally result in increased seedling growth. PMID:25086920

  17. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability.

    PubMed

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  18. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    PubMed Central

    Osuna, Daniel; Prieto, Pilar; Aguilar, Miguel

    2015-01-01

    Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones. PMID:26635847

  19. Germination of pine seed in weightlessness (investigation in Kosmos 782)

    NASA Technical Reports Server (NTRS)

    Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.

    1978-01-01

    An investigation was made of the orientation of aboveground and underground organs of pine plants grown from seed in weightlessness. Orientation was found to be caused by the position of the seeds relative to the substrate surface. Normal growth was manifest only for the plants grown from seed oriented with embryo toward the substrate. Differences were noted between experiment and control as to the quantitative content of nucleoli in the meristematic cells of the rootlets and the shape of cells in the cotyledonous leaflets. No complete agreement was found between data obtained in weightlessness and when gravity was compensated (clinostat treatment with horizontal rotation).

  20. The Potential of Algarrobo ( Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions

    NASA Astrophysics Data System (ADS)

    Westphal, Claus; Gachón, Paloma; Bravo, Jaime; Navarrete, Carlos; Salas, Carlos; Ibáñez, Cristian

    2015-07-01

    Due to their multipurpose use, leguminous trees are desirable for the restoration of degraded ecosystems. Our aim was to investigate seed germination of the leguminous tree Prosopis chilensis in response to salinity, one of the major abiotic challenges of desertified soils. Germination percentages of seed from 12 wild P. chilensis populations were studied. Treatments included four aqueous NaCl concentrations (150, 300, 450, and 600 mM). In each population, the highest germination percentage was seen using distilled water (control), followed closely by 150 mM NaCl. At 300 mM NaCl or higher salt concentration, germination was progressively inhibited attaining the lowest value at 450 mM NaCl, while at 600 mM NaCl germination remained reduced but with large variation among group of samples. These results allowed us to allocate the 12 groups from where seeds were collected into three classes. First, the seeds from Huanta-Rivadavia showed the lowest percent germination for each salt condition. The second group was composed of moderately salt-tolerant seeds with 75 % germination at 300 mM NaCl, followed by 50 % germination at 450 mM NaCl and 30 % germination at 600 mM NaCl. The third group from Maitencillo and Rapel areas was the most salt tolerant with an impressive seed germination level of 97 % at 300 mM NaCl, 82 % at 450 mM NaCl, and 42 % at 600 mM NaCl. Our results demonstrate that P. chilensis seeds from these latter localities have an increased germination capability under saline stress, confirming that P. chilensis is an appropriate species to rehabilitate desertified soils.

  1. The Potential of Algarrobo (Prosopis chilensis (Mol.) Stuntz) for Regeneration of Desertified Soils: Assessing Seed Germination Under Saline Conditions.

    PubMed

    Westphal, Claus; Gachón, Paloma; Bravo, Jaime; Navarrete, Carlos; Salas, Carlos; Ibáñez, Cristian

    2015-07-01

    Due to their multipurpose use, leguminous trees are desirable for the restoration of degraded ecosystems. Our aim was to investigate seed germination of the leguminous tree Prosopis chilensis in response to salinity, one of the major abiotic challenges of desertified soils. Germination percentages of seed from 12 wild P. chilensis populations were studied. Treatments included four aqueous NaCl concentrations (150, 300, 450, and 600 mM). In each population, the highest germination percentage was seen using distilled water (control), followed closely by 150 mM NaCl. At 300 mM NaCl or higher salt concentration, germination was progressively inhibited attaining the lowest value at 450 mM NaCl, while at 600 mM NaCl germination remained reduced but with large variation among group of samples. These results allowed us to allocate the 12 groups from where seeds were collected into three classes. First, the seeds from Huanta-Rivadavia showed the lowest percent germination for each salt condition. The second group was composed of moderately salt-tolerant seeds with 75% germination at 300 mM NaCl, followed by 50% germination at 450 mM NaCl and 30% germination at 600 mM NaCl. The third group from Maitencillo and Rapel areas was the most salt tolerant with an impressive seed germination level of 97% at 300 mM NaCl, 82 % at 450 mM NaCl, and 42 % at 600 mM NaCl. Our results demonstrate that P. chilensis seeds from these latter localities have an increased germination capability under saline stress, confirming that P. chilensis is an appropriate species to rehabilitate desertified soils. PMID:25894272

  2. Temporal changes in fungal communities from buckwheat seeds and their effects on seed germination and seedling secondary metabolism.

    PubMed

    Kovačec, Eva; Likar, Matevž; Regvar, Marjana

    2016-05-01

    Seed-associated fungal communities affect multiple parameters of seed quality at all stages of production, from seed development to post-harvest storage and germination. We therefore investigated the diversity and dynamics of fungal communities in the seeds of common buckwheat (Fagopyrum esculentum) and Tartary buckwheat (F. tataricum) from harvest to 1 y of storage. Fungal populations in seeds were relatively stable, comprised mainly of field fungi. Incidence of fungi was most likely determined by fungal interspecies direct interactions, as well as by their synthesis of volatile organic compounds. Most prominent antagonistic interactions were seen for two plant pathogens, Alternaria alternata on Botrytis cinerea. Detrimental effects of the fungi on seed germination and seedling development were related to fungal extracellular enzyme activity, and in particular to amylase, cellulase and, polyphenol oxidase. Polyphenol and tannin concentrations in buckwheat seedlings were related to fungal growth rate and intensity of fungal cellulase activity, respectively, which suggests that physical penetration of the fungi through the host tissues is probably the stimulus for the activation of plant defence reactions in these seedlings. PMID:27109364

  3. Quantitative Trait Locus Analysis of Seed Germination and Seedling Vigor in Brassica rapa Reveals QTL Hotspots and Epistatic Interactions

    PubMed Central

    Basnet, Ram K.; Duwal, Anita; Tiwari, Dev N.; Xiao, Dong; Monakhos, Sokrat; Bucher, Johan; Visser, Richard G. F.; Groot, Steven P. C.; Bonnema, Guusje; Maliepaard, Chris

    2015-01-01

    The genetic basis of seed germination and seedling vigor is largely unknown in Brassica species. We performed a study to evaluate the genetic basis of these important traits in a B. rapa doubled haploid population from a cross of a yellow-seeded oil-type yellow sarson and a black-seeded vegetable-type pak choi. We identified 26 QTL regions across all 10 linkage groups for traits related to seed weight, seed germination and seedling vigor under non-stress and salt stress conditions illustrating the polygenic nature of these traits. QTLs for multiple traits co-localized and we identified eight hotspots for quantitative trait loci (QTL) of seed weight, seed germination, and root and shoot lengths. A QTL hotspot for seed germination on A02 mapped at the B. rapa Flowering Locus C (BrFLC2). Another hotspot on A05 with salt stress specific QTLs co-located with the B. rapa Fatty acid desaturase 2 (BrFAD2) locus. Epistatic interactions were observed between QTL hotspots for seed germination on A02 and A10 and with a salt tolerance QTL on A05. These results contribute to the understanding of the genetics of seed quality and seeding vigor in B. rapa and can offer tools for Brassica breeding. PMID:26648948

  4. Laboratory Studies of Thermotolerance Acquisition during Seed Imbibition and Germination.

    ERIC Educational Resources Information Center

    Choinski, John S., Jr.

    1999-01-01

    Describes a series of low-cost experiments to investigate the ability of seeds from different species to acquire tolerance of thermal stress. Suggests links to discussions on molecular biology, physiology, ecology, and evolution. (WRM)

  5. Seeds Use Temperature Cues to Ensure Germination under Nurse-plant Shade in Xeric Kalahari Savannah

    PubMed Central

    Kos, Martijn; Poschlod, Peter

    2007-01-01

    Background and Aims In arid environments many plant species are found associated with the canopies of woody perennials. Favourable conditions for establishment under canopies are likely to be associated with shade, but under canopies shade is distributed patchily and differs in quality. Diurnal temperature fluctuations and maximum temperatures could be reliable indicators of safe sites. Here, an examination is made as to whether canopy-associated species use temperature cues to germinate in shade patches, rather than matrix areas between trees. Methods The study was carried out in arid southern Kalahari savannah (Republic of South Africa). Perennial and annual species associated with Acacia erioloba trees and matrix species were germinated at temperature regimes resembling shaded and unshaded conditions. Soil temperature was measured in the field. Key Results Germination of all fleshy-fruited perennial acacia-associated species and two annual acacia-associated species was inhibited by the temperature regime resembling unshaded conditions compared with at least one of the regimes resembling shaded conditions. Inhibition in perennials decreased with seed mass, probably reflecting that smaller seedlings are more vulnerable to drought. Germination of matrix species was not inhibited by the unshaded temperature regime and in several cases it increased germination compared with shaded temperature regimes or constant temperature. Using phylogenetically independent contrasts a significant positive relationship was found between canopy association and the germination at shade temperatures relative to unshaded temperatures. Conclusions The data support the hypothesis that canopy species have developed mechanisms to prevent germination in open sun conditions. The results and data from the literature show that inhibition of germination at temperature regimes characteristic of open sun conditions can be found in fleshy-fruited species of widely divergent taxonomic groups. It is predicted that germination mechanisms to detect canopy shade based on temperature cues are widespread in species depending on nurse plants, especially bird-dispersed species. PMID:17259226

  6. Biological effects of low energy nitrogen ion implantation on Jatropha curcas L. seed germination

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Wang, Xiao-teng; Gan, Cai-ling; Fang, Yan-qiong; Zhang, Meng

    2012-09-01

    To explore the biological effects of nitrogen ion beam implantation on dry Jatropha curcas seed, a beam of N+ with energy of 25 keV was applied to treat the dry seed at six different doses. N+ beam implantation greatly decreased germination rate and seedling survival rate. The doses within the range of 12 × 1016 to 15 × 1016 ions cm-2 severely damaged the seeds: total antioxidant capacity (TAC), germination rate, seedling survival rate, reduced ascorbate acid (HAsA) and reduced glutathione (GSH) contents, and most of the tested antioxidases activity (i.e. catalase (CAT), ascorbate peroxidase (APX) and superoxide dismutase (SOD)) reached their lowest levels. At a dose of 18 × 1016 ion cm-2, biological repair took place: moderate increases were found in TAC, germination rate, seedling survival rate, HAsA and GSH contents, and some antioxidant enzyme activities (i.e. CAT, APX, SOD and GPX). The dose of 18 × 1016 ions cm-2 may be the optimum dose for use in dry J. curcas seed mutation breeding. CAT, HAsA and GSH contributed to the increase of TAC, but CAT was the most important. POD performed its important role as seed was severely damaged. The main role of the HAsA-GSH cycle appeared to be for regeneration of HAsA.

  7. [Study on germination rate of zoysia (Zoysia japonica Steud.) seeds using near infrared reflectance spectroscopy].

    PubMed

    Liang, Xiao-Hong; Zhang, Li-Juan; Fan, Bo; Mao, Wen-Hua; Mao, Wen-Hua; Puyang, Xue-Hua; Han, Lie-Bao

    2013-10-01

    With 37 zoysia seed samples with different germination rates ranging from 58.5% to 92%, harvested in different years from 2009 to 2011 and from different locations of China, a model for determining germination rate of zoysia seeds was tried to be built by near infrared reflectance spectroscopy with quantitative partial least squares (QPLS). All the seeds samples were divided into two groups: calibration set (including 28 samples) and validation set (including 9 samples). The results showed that with the spectral range from 6 000 to 7 000 cm(-1) and 6 main components, there was a better fitting between the predictive value and true value. Determination coefficients (R2) of calibration and validation sets are 90.73% and 91.80%, the coefficients of correlation are 0.986 6 and 0.987 2, the standard errors are 9.80 and 9.47, and the average absolute errors are 7.64% and 6.98% respectively. Even with different calibration samples, the models have a high determination coefficient (R2 over building of NIR model for determining 90%), low standard errors (about 10.00) and low absolute errors (about 8.00%). The building of NIR model for determining germination rate of zoysia seeds could promote the application of high quality seeds in production. PMID:24409708

  8. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds.

    PubMed

    Maia, Julio; Dekkers, Bas J W; Dolle, Miranda J; Ligterink, Wilco; Hilhorst, Henk W M

    2014-07-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this stress response and in DT re-establishment. However, the path from the sensing of an osmotic cue and its signaling to DT re-establishment is still largely unknown. Analyses of DT, ABA sensitivity, ABA content and gene expression were performed in desiccation-sensitive (DS) and desiccation-tolerant Arabidopsis thaliana seeds. Furthermore, loss and re-establishment of DT in germinated Arabidopsis seeds was studied in ABA-deficient and ABA-insensitive mutants. We demonstrate that the developmental window in which DT can be re-established correlates strongly with the window in which ABA sensitivity is still present. Using ABA biosynthesis and signaling mutants, we show that this hormone plays a key role in DT re-establishment. Surprisingly, re-establishment of DT depends on the modulation of ABA sensitivity rather than enhanced ABA content. In addition, the evaluation of several ABA-insensitive mutants, which can still produce normal desiccation-tolerant seeds, but are impaired in the re-establishment of DT, shows that the acquisition of DT during seed development is genetically different from its re-establishment during germination. PMID:24697728

  9. Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds.

    PubMed

    Clemente, A C S; Guimarães, R M; Martins, D C; Gomes, L A A; Caixeta, F; Reis, R G E; Rosa, S D V F

    2015-01-01

    Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B. PMID:25966245

  10. Germination of Acacia harpophylla (Brigalow) seeds in relation to soil water potential: implications for rehabilitation of a threatened ecosystem

    PubMed Central

    Kailichova, Yolana; Baumgartl, Thomas

    2014-01-01

    Initial soil water conditions play a critical role when seeding is the primary approach to revegetate post-mining areas. In some semi-arid climates, such as the Brigalow Belt Bioregion in eastern Australia, extensive areas are affected by open-cut mining. Together with erratic rainfall patterns and clayey soils, the Brigalow Belt denotes a unique biome which is representative of other water-limited ecosystems worldwide. Apart from other environmental stressors, germination is governed by the water potential of the surrounding soil material. While previous studies have confirmed the high tolerance of Brigalow (Acacia harpophylla) seeds to a broad range of temperature and salinity, the question of how soil water potential triggers seed germination remains. In this study, we used three replicates of 50 seeds of Brigalow to investigate germination in relation to water potential as an environmental stressor. Solutions of Polyethylene Glycol (PEG 6000) were applied to expose seeds to nine osmotic water potentials ranging from soil water saturation (0 MPa) and field capacity (−.01 to −.03 MPa) to the permanent wilting point (−1.5 MPa). We measured germinability (number of germinated seeds relative to total number of seeds per lot) and mean germination time (mean time required for maximum germination of a seed lot) to quantify germination. Based on the empirical data of the germination we estimated the parameters of the hydrotime model which simulates timing and success of seed emergence. Our findings indicate that Brigalow seeds are remarkably tolerant to water stress, with germination being observed at a water potential as low as −1.5 MPa. Likewise, the average base water potential of a seed population (hydrotime model) was very low and ranged between −1.533 and −1.451 MPa. In general, Brigalow seeds germinate opportunistically over a broad range of abiotic conditions related to temperature, salinity, and water availability. Direct seeding and germination of native plants on post-mining land may be an effective and economically viable solution in order to re-establish plant communities. However, due to their capacity to reproduce asexually, alternative rehabilitation approaches such as transplantation of whole soil-root compartments may become attractive for restoration ecologists to achieve safe, stable, and non-polluting ecosystems. PMID:24795847

  11. Irrigational impact of untreated and treated brewery-distillery effluent on seed germination of marigold (Tagetes erecta L.).

    PubMed

    Sharma, Anuradha; Malaviya, Piyush

    2016-01-01

    Current study presents the effect of irrigation with different concentrations (20, 40, 60, 80 and 100%) of untreated and treated brewery-distillery effluent on germination behaviour of marigold (Tagetes erecta L. var. Pusa Basanti). The 100% untreated effluent showed acidic pH (4.80) and higher values of BOD (1500.00 mg l(-1)), COD (4000.00 mg l(-1)), chloride (1742.20 mg l(-1)), TSS (900.00 mg l(-1)) as compared to that of treated effluent. Tagetes seeds were exposed to different concentrations of effluent and the results revealed maximum values of germination parameters viz., percent germination, peak value, germination value, germination index, speed of germination and vigour index at 20% untreated and 60% treated effluent concentrations, whereas the values for negative germination parameters viz., delay index, germination period and percent inhibition were minimum at 20% untreated and 60% treated effluent concentrations. PMID:26930868

  12. Effects of Salinity, Temperature, and Polyethylene Glycol on the Seed Germination of Sunflower (Helianthus annuus L.)

    PubMed Central

    Luan, Zhihui; Xiao, Moxin; Zhou, Daowei; Tian, Yu; Wu, Yi; Guan, Bo; Song, Yantao

    2014-01-01

    Salinization has severe influences on agriculture in the whole world. The main aims of this work were to evaluate osmotic effect and ion effect of NaCl on seed germination of three sunflower (Helianthus annuus L.) cultivars interacting with three alternating temperature regimes and to select the most salt tolerant cultivars to plant in the saline region. Seeds were germinated in the isotonic NaCl and polyethylene glycol (PEG) solutions of −0.45, −0.90, −1.34, −1.79, and −2.24 MPa at 10 : 20, 15 : 25, and 20 : 30°C temperature regimes. Both NaCl and PEG inhibited germination, but the effects of NaCl were less as compared to that of PEG, which means that adverse effects of PEG on germination were due to osmotic effect rather than specific ion accumulation. For the three cultivars, higher germination occurred at 10 : 20°C in NaCl treatments and at 20 : 30°C in the isotonic PEG treatments. Among the three cultivars, Sandaomei (SDM) is the most tolerant to salt and PEG stress. PMID:25610896

  13. Effects of salinity, temperature, and polyethylene glycol on the seed germination of sunflower (Helianthus annuus L.).

    PubMed

    Luan, Zhihui; Xiao, Moxin; Zhou, Daowei; Zhang, Hongxiang; Tian, Yu; Wu, Yi; Guan, Bo; Song, Yantao

    2014-01-01

    Salinization has severe influences on agriculture in the whole world. The main aims of this work were to evaluate osmotic effect and ion effect of NaCl on seed germination of three sunflower (Helianthus annuus L.) cultivars interacting with three alternating temperature regimes and to select the most salt tolerant cultivars to plant in the saline region. Seeds were germinated in the isotonic NaCl and polyethylene glycol (PEG) solutions of -0.45, -0.90, -1.34, -1.79, and -2.24 MPa at 10:20, 15:25, and 20:30 °C temperature regimes. Both NaCl and PEG inhibited germination, but the effects of NaCl were less as compared to that of PEG, which means that adverse effects of PEG on germination were due to osmotic effect rather than specific ion accumulation. For the three cultivars, higher germination occurred at 10:20 °C in NaCl treatments and at 20:30 °C in the isotonic PEG treatments. Among the three cultivars, Sandaomei (SDM) is the most tolerant to salt and PEG stress. PMID:25610896

  14. Role of thioproline on seed germination: interaction ROS-ABA and effects on antioxidative metabolism.

    PubMed

    Barba-Espin, Gregorio; Nicolas, Eduardo; Almansa, Maria Soledad; Cantero-Navarro, Elena; Albacete, Alfonso; Hernández, José Antonio; Díaz-Vivancos, Pedro

    2012-10-01

    In this work we investigate the effect of the imbibition of pea seeds with different thioproline (TP) concentrations on the germination percentage and the early growth of the seedlings. The interaction between TP and hydrogen peroxide (H₂O₂) treatments is also analysed in order to test if any synergy in germination and growth occurs. Although the imbibition of pea seeds in the presence of TP did not significantly improve the germination percentage, TP and/or H₂O₂ pre-treatments increased seedlings growth. This increase in seedling growth was reduced by abscisic acid (ABA) addition. Imbibition of pea seeds in the presence of ABA also reduced the endogenous H₂O₂ contents of pea seedlings in control and TP-treated seeds. The incubation of pea seeds with TP and/or H₂O₂ in presence or absence of ABA decreased the activity of H₂O₂-scavenging enzymes. The increase of the endogenous H₂O₂ contents observed in TP and/or H₂O₂ treatments in absence of ABA could be correlated with the decrease in these activities. Finally, the hormone profile of pea seedlings was investigated. The results show that the increase in seedling growth is correlated with a decrease in ABA in samples pre-treated with H₂O₂ and TP + H₂O₂. Nevertheless, no significant differences in endogenous ABA concentration were observed with the TP pre-treatment. This paper suggests a relationship between endogenous H₂O₂ contents and plant growth, so reinforcing the intricate crosstalk between reactive oxygen species (ROS) and plant hormones in seed germination signalling and early seedling development. PMID:22244306

  15. Dormancy, germination, emergence and ecology of Gardner saltbush (Atriplex gardneri (Moq. ) D. Dietr. ) seeds

    SciTech Connect

    Ansley, R.J. Jr.

    1983-01-01

    Gardner saltbush (Atriplex gardneri (Moq.) D. Dietr.) provides valuable winter browse and is an important soil stabilizer in arid, alkaline, and saline areas of the intermountain region. However, seed dormancy and poor seedling vigor inhibit its potential for revegetation by direct seeding on disturbed lands. The objectives of this study were to 1) develop seed treatments which would overcome dormancy in Gardner saltbush seeds, 2) evaluate field establishment by direct seeding of Gardner saltbush, and 3) characterize seed dormancy, seedling vigor and some aspects of the ecology of germination in Gardner saltbush. In the laboratory, single and combined pretreatments removed dormancy to varying degrees. Dormancy was completely alleviated with 15 months dry after-ripening + scarification + 24 hours washing + 4 weeks stratification. Dry after-ripening and scarification appeared to facilitate effects of washing and stratification. Physiologically, indirect evidence was obtained suggesting both embryo and seedcoat mediated dormancy occur in Gardner saltbush. Ecologically, the various levels of germination response to simulated environmental pretreatments appeared to be an adaptation of Gardner saltbush seeds to ensure a temporal dispersal of release from dormancy. This increases the probability that under natural conditions some seedlings will emerge during times when the environment is amenable to seedling survival.

  16. The mobilization of defence mechanisms in the early stages of pea seed germination against Ascochyta pisi.

    PubMed

    Morkunas, Iwona; Formela, Magda; Marczak, Lukasz; Stobiecki, Maciej; Bednarski, Waldemar

    2013-02-01

    Ascochyta pisi is a necrotrophic pathogenic fungus, which mainly survives between seasons through infected seeds. Defence responses of pea embryo axes to A. pisi were investigated in the heterotrophic phase of seed germination and during the transition from the heterotrophic to the autotrophic phase. Germinated pea seeds, both non-inoculated and inoculated with A. pisi, were cultured in perlite for 96 h. Polarographic studies performed on intact embryo axes of germinating pea seeds infected with A. pisi showed a high respiratory intensity in time from 48 to 96 h after inoculation. Forty-eight-hour embryo axes of germinating pea seeds exhibited the highest respiration rate, which in infected axes was maintained at the following time points after inoculation. Moreover, at 72 and 96 h after inoculation, respiratory intensity was by 64% and 73% higher than in the control. Electron paramagnetic resonance analysis revealed a higher concentration of semiquinone free radicals with g values of g (||) = 2.0031 ± 0.0004 and g (⊥) = 2.0048 ± 0.0004 in infected axes than in the control. Generation of superoxide anion radical was also higher in infected axes than in the control but stronger at 72 and 96 h after inoculation. Starting from 72 h after infection, the level of Mn(2+) ions in infected axes decreased in relation to the control. At the same time, the highest activity of superoxide dismutase (EC 1.15.1.1) and catalase (EC 1.11.1.6) was observed in 72-h infected axes. In turn, the activity of peroxidase (EC 1.11.1.7) up to 72 h after infection was lower than in the control. In 48-h infected embryo axes, a very high level of pterocarpan pisatin was observed. Infection of germinating pea seeds with A. pisi restricted mainly the growth of the epicotyl, but did not inhibit the increase in length and fresh weight of root embryo axes versus cultivation time. These results indicate that in pea during the stages of seed germination and early seedling growth, protective mechanisms are induced in embryo axes against A. pisi. PMID:22274650

  17. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa.

    PubMed

    Panuccio, M R; Jacobsen, S E; Akhtar, S S; Muscolo, A

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  18. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa

    PubMed Central

    Panuccio, M. R.; Jacobsen, S. E.; Akhtar, S. S.; Muscolo, A.

    2014-01-01

    Salinization is increasing on a global scale, decreasing average yields for most major crop plants. Investigations into salt resistance have, unfortunately, mainly been focused on conventional crops, with few studies screening the potential of available halophytes as new crops. This study has been carried out to investigate the mechanisms used by quinoa, a facultative halophytic species, in order to cope with high salt levels at various stages of its development. Quinoa is regarded as one of the crops that might sustain food security in this century, grown primarily for its edible seeds with their high protein content and unique amino acid composition. Although the species has been described as a facultative halophyte, and its tolerance to salt stress has been investigated, its physiological and molecular responses to seawater (SW) and other salts have not been studied. We evaluated the effects of SW and different salts on seed germination, seedling emergence and the antioxidative pathway of quinoa. Seeds were germinated in Petri dishes and seedlings grown in pots with SW solutions (25, 50, 75 and 100 %) and NaCl, CaCl2, KCl and MgCl2 individually, at the concentrations in which they are present in SW. Our results demonstrated that all salts, at lower concentrations, increased the germination rate but not the germination percentages, compared with control (pure water). Conversely, seedlings were differently affected by treatments in respect to salt type and concentration. Growth parameters affected were root and shoot length, root morphology, fresh and dry weight, and water content. An efficient antioxidant mechanism was present in quinoa, activated by salts during germination and early seedling growth, as shown by the activities of antioxidant enzymes. Total antioxidant capacity was always higher under salt stress than in water. Moreover, osmotic and ionic stress factors had different degrees of influence on germination and development. PMID:25139769

  19. Transient Occurrence of Seed Germination Processes during Coffee Post-harvest Treatment

    PubMed Central

    Bytof, Gerhard; Knopp, Sven-Erik; Kramer, Daniela; Breitenstein, Björn; Bergervoet, Jan H. W.; Groot, Steven P. C.; Selmar, Dirk

    2007-01-01

    Background and Aims The chemical composition of green coffee and thus the final coffee quality are specifically determined by the mode of post-harvest treatment, i.e. the wet and dry processing. Recently, it was shown that metabolic processes, i.e. germination and, a slightly delayed stress-related metabolism are executed during the course of processing. The specific ambient conditions of either post-harvest treatment may influence differentially the extent and time course of these metabolic reactions; therefore, the incidence and intensity of germination processes in coffee seeds were analysed during processing. Methods Expression of the germination-specific isocitrate lyase was monitored using competitive RT-PCRs analyses. Resumption of cell cycle activity and cell division were determined by flow cytometry, as well as by the abundance of β-tubulin quantified by Western blot analyses. Key Results The extent and the time courses of germination processes in coffee seeds differed significantly between wet and dry processed beans. The highest germination activity occurred 2 d after the onset of wet processing, whereas the corresponding maximum in the course of dry processing appeared about 1 week after the start of post harvest treatment. Conclusions As recently shown, there are specific differences in the chemical composition of differentially processed coffee beans. It is concluded that these substantial differences are the consequence of the differential expression of germination processes, i.e. they are the result of differences in the corresponding metabolic activities. The coherence of germination-related metabolism and of expression-specific coffee qualities establishes the basis for a novel approach in coffee research. PMID:17478545

  20. Effect of water stress by Polyethylene Glycol 8000 and Sodium Chloride on germination of Ephedra alata Decne seeds.

    PubMed

    Al-Taisan, Wafa'a A; Al-Qarawi, Abdulaziz A; Alsubiee, Moodi S

    2010-07-01

    Ephedra alata Decne is a perennial shrub and it is a very effective sand-binder. In Saudi Arabia, the species is associated with sand dunes formation, especially the mobile, non-saline and low moisture content ones. Its geographical distribution in Saudi Arabia includes the Northern, Eastern and Central regions. The aims of this study were to determine the effects of temperature, water potential and Sodium Chloride on germination of E. alata. Seeds were collected from King Khalid Centre of Wildlife Research and Development at Thumama (80km north east of Riyadh), Saudi Arabia. Seeds were germinated at four alternating temperature regimes (8/22; 9/23; 13/27 and 18/35C). Seeds were also germinated under stress of aqueous Polyethylene Glycol (PEG) solutions mixed to create water potentials of 0; -0.3; -0.6; -1.2 and -1.5MPa. Seed were also germinated in Sodium Chloride solutions of 0, 0.05, 0.1, 0.2 and 0.3moll(-1). Optimum germination was attained at 13/28C that corresponds to temperatures prevailing during spring time. Seeds germinated in Polyethylene Glycol solutions exhibited significantly lower germination than control especially when water potential fell below -0.3MPa. Germination was also negatively affected by 0.1moll(-1) Sodium Chloride solution or above. Results indicated that the germination temperature responses of the nondormant seeds synchronize the event of germination with the season when environmental conditions are more favorable for subsequent growth and seedling establishment. Germination was also sensitive to both water potential and salinity. PMID:23961087

  1. Germination of salt-stressed seeds as related to the ethylene biosynthesis ability in three Stylosanthes species.

    PubMed

    Silva, Priscila O; Medina, Eduardo F; Barros, Raimundo S; Ribeiro, Dimas M

    2014-01-01

    Stylosanthes, a genus of tropical forage legume, is known to exhibit good persistence in saline soils, yet mechanisms for regulation of seed germination under salt stress are poorly understood. This study was carried out to evaluate the mode of action of salt stress on seed germination of Stylosanthes. 1-Aminocyclopropane-1-carboxylic acid (ACC) increased ethylene biosynthesis and germination of NaCl-inhibited seeds in a dose-dependent manner. Contents of ACC and germination of Stylosanthes humilis seeds increased following transfer from NaCl solution to deionised water, but not after transfer to l-?-(2-aminoethoxyvinyl)-glycine (AVG) solution, an inhibitor of ethylene biosynthesis. Ethylene biosynthesis was much larger in NaCl-treated seeds of Stylosanthes guianensis than in seeds of S. humilis and Stylosanthes capitata, a fact which was reflected in higher germination rates. S. guianensis seedlings also displayed higher growth and survival rates than S. humilis and S. capitata under salt stress. Moreover, smaller ACC levels, as well as reduced ethylene biosynthesis of S. capitata seeds were accompanied by lower germination under salt stress. In addition, S. capitata seedlings treated with NaCl solutions exhibited relatively lower growth and survival rates in comparison with S. humilis and S. guianensis. Thus, different abilities to synthesize ethylene by S. guianensis, S. humilis and S. capitata seeds explain the differences in tolerance to salt stress of the three species. PMID:24120532

  2. Relationships Between Seed Weight, Germination Potential and Biochemical Reserves of Maritime Pine in Morocco: Elements for Tree Seedlings Improvement

    NASA Technical Reports Server (NTRS)

    Wahid, Nadya; Bounoua, Lahouari

    2011-01-01

    Selection of quality seeds in breeding programs can significantly improve seedling productivity. Germination and biochemical analyses on seeds from ten natural populations of maritime pine (Pinus pinaster Ait.) in Morocco reveals significant differences among populations in seed weight, germination characters and protein content in both dry seeds and megagametophytes. During germination, the mobilization of protein content in megagametophyte is significantly different among populations than sugar content. A strong positive correlation between the germination capacity and the protein content in both dry seeds and megagametophytes indicates that the best populations in term of germination capacity may also be the richest in protein content. The present study finds that seed weight is not a good indicator for quality seed selection, nor is it recommended to increase the degree of germinability. Our results suggest that the pine population in southern Morocco might have adapted to drought conditions as it is characterized by heavy seed weight and lower speed of protein content mobilization in megagametophyte compared to northern populations growing in temperate climate.

  3. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress.

    PubMed

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1-1 mg l(-1)) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5-25 mg l(-1)) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l(-1) ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•-) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  4. Exogenous 5-Aminolevulenic Acid Promotes Seed Germination in Elymus nutans against Oxidative Damage Induced by Cold Stress

    PubMed Central

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  5. The interaction of temperature, water availability and fire cues regulates seed germination in a fire-prone landscape.

    PubMed

    Thomas, Paul Bengt; Morris, E Charles; Auld, Tony D; Haigh, Anthony M

    2010-02-01

    Ambient temperature and water availability regulate seasonal timing of germination. In fire-prone landscapes, the role of fire-related cues in affecting the range of temperatures and water potentials (psis) across which germination can occur is poorly known, especially in non-Mediterranean landscapes. We examined interactive effects of temperature (15 or 25 degrees C), psi (0 to -0.9 MPa), and fire-related cues (heat and smoke) on germination for seeds of three shrub species from fire-prone southeastern Australia. Incubation temperature affected germination of untreated seeds of Kunzea ambigua and Kunzea capitata (Myrtaceae) (reduction at 25 degrees C), but germination was uniformly low in Epacris obtusifolia (Ericaceae). Decreasing psi reduced germination across both incubation temperatures. Fire cues increased germination at both incubation temperatures and across psis, although in Kunzea the increase was smaller and occurred over a narrower range of psis at 25 degrees C. Hydrotime analysis suggested that fire cues reduced the amount of water necessary for germination of Kunzea seeds. Post-fire germination of the three study species may occur during the warm season, although it is reduced and confined to wet periods for the two Kunzea species. Warm season germination of the study species is consistent with a trade-off between the increased risk of failure of a cohort of seedlings, and benefits of early establishment of a cohort that may survive in an environment with aseasonal rainfall. PMID:19768469

  6. Hormone-dependent Model on Seed Germination Sensitive to Growth Stage

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Satoshi; Mimura, Masayasu; Ohya, Tomoyuki; Okabe, Hirotaka; Kai, Shoichi

    2000-04-01

    In the germination of seeds, there often observes cluster-formation of well-grown roots and the edge effect phenomenon.During germination and growth before starting photosynthesis, direct interaction such as competition for nutrition among hosts is rather weak because of self-supplying of nutrition.Instead, hormones play an important role and may cause the above experimental observations.In order to understand these aspects, we propose a growth model for root.The hormone effect and its growth-stage-dependent sensitivity are taken into consideration.It is discussed how the growth process of grouping roots is influenced by exogenous hormones secreted from roots.

  7. Seed germination ecology of Echinochloa glabrescens and its implication for management in rice (Oryza sativa L.).

    PubMed

    Opeña, Jhoana L; Chauhan, Bhagirath S; Baltazar, Aurora M

    2014-01-01

    Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and -0.24 MPa, respectively, for the NE population and 254 mM and -0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha(-1) of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha(-1) followed by shallow flooding (2-cm depth) reduced seedling emergence by 94-96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85-100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses. PMID:24642568

  8. Basal Transcription Factor 3 Plays an Important Role in Seed Germination and Seedling Growth of Rice

    PubMed Central

    Wang, Wenyi; Xu, Mengyun; Wang, Ya

    2014-01-01

    BTF3 has been recognized to be involved in plant growth and development. But its function remains mostly unknown during seed germination and seedling stage. Here, we have analyzed OsBTF3-related sequences in Oryza sativa L. subspecies, japonica, which resembles with the conserved domain of a nascent polypeptide associated complex (NAC) with different homologs of OsBTF3 and human BTF3. Inhibition of Osj10gBTF3 has led to considerable morphological changes during seed germination and seedling growth. Germination percentage was not influenced by the application of GA3, ABA, and NaCl but all concentrations caused wild-type (WT) seeds to germinate more rapidly than the RNAi (Osj10gBTF3Ri) transgenic lines. Seedling inhibition was more severe in the Osj10gBTF3Ri seedlings compared with their WT especially when treated with 100 or 200 μM GA3; 50% reduction in shoots was observed in Osj10gBTF3Ri seedlings. The expression of Osj3g1BTF3, Osj3g2BTF3 and Osj10gBTF3 was primarily constitutive and generally modulated by NaCl, ABA, and GA3 stresses in both Osj10gBTF3Ri lines and WT at the early seedling stage, suggesting that Osj3g1BTF3 and Osj10gBTF3 are much similar but different from Osj3g2BTF3 in biological function. These results show that OsBTF3 plays an important role in seed germination and seedling growth gives a new perception demonstrating that more multifaceted regulatory functions are linked with BTF3 in plants. PMID:24971328

  9. Interrelations between Carbon Dioxide and Ethylene on the Stimulation of Cocklebur Seed Germination

    PubMed Central

    Esashi, Yohji; Kawabe, Kunimasa; Isuzugawa, Kanji; Ishizawa, Kimiharu

    1988-01-01

    Interrelations between CO2 and C2H4 on promotion of seed germination were examined in more detail at 23°C with presoaked upper seeds of Xanthium pennsylvanicum Wallr. The germination-promoting effect of C2H4 decreased gradually as its application time was delayed during a soaking period, whereas CO2 was most promotive in application at 5 days of soaking, then its effect declined. CO2 and C2H4 were additive in earlier soaking periods and synergistic in later periods. Such changes in germination behavior in response to CO2 and/or C2H4 during a soaking period were closely associated with growth responsiveness of the axial tissues, but not of the cotyledonary ones. Growth responsiveness of axial tissues to CO2 or C2H4 disappeared finally during a soaking period, but their extinct responsiveness to any one of these gases was almost fully restored in the simultaneous presence of the other. The extinct responsiveness to CO2 was partially recovered by a preexposure to C2H4. This suggests that in the later period of soaking, unlike the case in a very early period of soaking, the C2H4-sensitive phase for seed germination precedes the CO2-sensitive phase in which CO2 potentiated axial growth. The restoration of CO2 responsiveness in axial growth occurred not only after C2H4 treatment but also after exposure to 8 or 33°C or after KCN treatment. Thus, secondarily dormant Xanthium seeds could germinate in response to CO2 alone, when they were previously exposed for shortterms not only to C2H4 but also 8°C, 33°C, or KCN. PMID:16665889

  10. Seed Germination Ecology of Echinochloa glabrescens and Its Implication for Management in Rice (Oryza sativa L.)

    PubMed Central

    Opeña, Jhoana L.; Chauhan, Bhagirath S.; Baltazar, Aurora M.

    2014-01-01

    Echinochloa glabrescens is a C4 grass weed that is very competitive with rice when left uncontrolled. The competitive ability of weeds is intensified in direct-seeded rice production systems. A better understanding is needed of factors affecting weed seed germination, which can be used as a component of integrated weed management in direct-seeded rice. This study was conducted to determine the effects of temperature, light, salt and osmotic stress, burial depth, crop residue, time and depth of flooding, and herbicide application on the emergence, survival, and growth of two populations [Nueva Ecija (NE) and Los Baños (IR)] of E. glabrescens. Seeds from both populations germinated at all temperatures. The NE population had a higher germination rate (88%) from light stimulation than did the IR population (34%). The salt concentration and osmotic potential required to inhibit 50% of germination were 313 mM and −0.24 MPa, respectively, for the NE population and 254 mM and −0.33 MPa, respectively, for the IR population. Emergence in the NE population was totally inhibited at 4-cm burial depth in the soil, whereas that of the IR population was inhibited at 8 cm. Compared with zero residue, the addition of 5 t ha−1 of rice residue reduced emergence in the NE and IR populations by 38% and 9%, respectively. Early flooding (within 2 days after sowing) at 2-cm depth reduced shoot growth by 50% compared with non-flooded conditions. Pretilachlor applied at 0.075 kg ai ha−1 followed by shallow flooding (2-cm depth) reduced seedling emergence by 94−96% compared with the nontreated flooded treatment. Application of postemergence herbicides at 4-leaf stage provided 85−100% control in both populations. Results suggest that integration of different strategies may enable sustainable management of this weed and of weeds with similar germination responses. PMID:24642568

  11. Seed viability and germination success of Acacia tortilis along land-use and aridity gradients in the Eastern Sahara.

    PubMed

    Andersen, Gidske Leknæs; Krzywinski, Knut; Gjessing, Håkon K; Pierce, Richard Holton

    2016-01-01

    Our study focuses on the keystone species Acacia tortilis and is the first to investigate the effect of domestic ungulates and aridity on seed viability and germination over an extensive part of the Eastern Sahara. Bruchids infest its seeds and reduce their viability and germination, but ingestion by ruminant herbivores diminishes infestation levels and enhances/promotes seed viability and germination. The degree of these effects seems to be correlated with animal body mass. Significantly reduced numbers of wild ruminant ungulates have increased the potential importance of domestic animals and pastoral nomadism for the functionality of arid North African and Middle Eastern ecosystems. We sampled seeds (16,543) from A. tortilis in eight areas in three regions with different aridity and land use. We tested the effect of geography and sampling context on seed infestation using random effects logistic regressions. We did a randomized and balanced germination experiment including 1193 seeds, treated with different manure. Germination time and rates across geography, sampling context, and infestation status were analyzed using time-to-event analyses, Kaplan-Meier curves and proportional hazards Cox regressions. Bruchid infestation is very high (80%), and the effects of context are significant. Neither partial infestation nor adding manure had a positive effect on germination. There is a strong indication that intact, uningested seeds from acacia populations in the extremely arid Western Desert germinate more slowly and have a higher fraction of hard seeds than in the Eastern Desert and the Red Sea Hills. For ingested seeds in the pastoralist areas we find that intact seeds from goat dung germinate significantly better than those from camel dung. This is contrary to the expected body-mass effect. There is no effect of site or variation in tribal management. PMID:26811790

  12. Germination responses of the invasive Calotropis procera (Ait.) R. Br. (Apocynaceae): comparisons with seeds from two ecosystems in Northeastern Brazil.

    PubMed

    Leal, Laura C; Meiado, Marcos V; Lopes, Ariadna V; Leal, Inara R

    2013-09-01

    Life history traits are considered key indicators of plant invasibility. Among them, the germination behavior of seeds is of major relevance because it is influenced by environmental factors of invaded ecosystem. Here, we investigated how seed traits and seed tolerance to environmental factors on seed germination of Calotropis procera vary depending on the invaded ecosystems in northeastern Brazil. We have tested seeds from two vegetation types - Caatinga and Restinga - to different levels of light intensity, salinity, and water stress. Previous to those experiments, seed-set and morphometric analysis were carried out for both studied populations. We have observed a higher seed-set in Caatinga. Seeds produced in this ecosystem had lower seed moisture content. Seeds from Restinga showed lower germination time when light intensity decreased. We observed a reduction in both the germinability and the synchronization index with decreasing osmotic potential and increasing salinity. Nevertheless, both populations exhibited changes in photoblastism when seeds were submitted to water and saline stress. In conclusion, C. procera seeds are tolerant to environmental factors assessed. That characteristic ensures the colonization success and wide distribution of this plant species in the studied ecosystems. PMID:24068090

  13. α-Amylase Isozymes in Gibberellic Acid-treated Barley Half-seeds

    PubMed Central

    Tanaka, Y.; Akazawa, T.

    1970-01-01

    The presence of multiple forms of α-amylase in gibberellic acid-treated embryoless barley half-seeds was demonstrated by separation on diethylaminoethyl-Sephadex and isoelectric focusing polyacrylamide gel disc electrophoresis. Two major α-amylase fractions (A and B), each consisting of two to three isozyme components, were purified. α-Amylase fractions A and B were distinguishable in their reaction patterns. The optimal pH of fraction A α-amylase was found to reside in the acidic side (pH 5.0), as was determined by analyzing the reducing sugars formed as well as the paper chromatographic detection of reaction products. At neutral pH, 6.9, fraction A exhibited weak amylolytic activity in forming maltose. The α-amylase activity in fraction A was markedly stimulated by heat treatment (70 C/15 minutes). Fraction B, constituting a major part of amylases in the endosperm extract, was also found to be composed of α-amylase, as evidenced by the loss of enzyme activity upon allowing fractions A and B to stand at pH 3.3 for a prolonged period. The possible physiological function of the two different types of α-amylase in the carbohydrate breakdown of barley seeds is discussed. Images PMID:16657510

  14. Seed dormancy responses to temperature relate to Nothofagus species distribution and determine temporal patterns of germination across altitudes in Patagonia.

    PubMed

    Arana, María V; Gonzalez-Polo, Marina; Martinez-Meier, Alejandro; Gallo, Leonardo A; Benech-Arnold, Roberto L; Sánchez, Rodolfo A; Batlla, Diego

    2016-01-01

    Seeds integrate environmental cues that modulate their dormancy and germination. Although many mechanisms have been identified in laboratory experiments, their contribution to germination dynamics in existing communities and their involvement in defining species habitats remain elusive. By coupling mathematical models with ecological data we investigated the contribution of seed temperature responses to the dynamics of germination of three Nothofagus species that are sharply distributed across different altitudes in the Patagonian Andes. Seed responsiveness to temperature of the three Nothofagus species was linked to the thermal characteristics of their preferred ecological niche. In their natural distribution range, there was overlap in the timing of germination of the species, which was restricted to mid-spring. By contrast, outside their species distribution range, germination was temporally uncoupled with altitude. This phenomenon was described mathematically by the interplay between interspecific differences in seed population thermal parameters and the range in soil thermic environments across different altitudes. The observed interspecific variations in seed responsiveness to temperature and its environmental regulation, constitute a major determinant of the dynamics of Nothofagus germination across elevations. This phenomenon likely contributes to the maintenance of patterns of species abundance across altitude by placing germinated seeds in a favorable environment for plant growth. PMID:26306993

  15. The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome

    PubMed Central

    Maia, Julio; Dekkers, Bas J. W.; Provart, Nicholas J.; Ligterink, Wilco; Hilhorst, Henk W. M.

    2011-01-01

    The combination of robust physiological models with omics studies holds promise for the discovery of genes and pathways linked to how organisms deal with drying. Here we used a transcriptomics approach in combination with an in vivo physiological model of re-establishment of desiccation tolerance (DT) in Arabidopsis thaliana seeds. We show that the incubation of desiccation sensitive (DS) germinated Arabidopsis seeds in a polyethylene glycol (PEG) solution re-induces the mechanisms necessary for expression of DT. Based on a SNP-tile array gene expression profile, our data indicates that the re-establishment of DT, in this system, is related to a programmed reversion from a metabolic active to a quiescent state similar to prior to germination. Our findings show that transcripts of germinated seeds after the PEG-treatment are dominated by those encoding LEA, seed storage and dormancy related proteins. On the other hand, a massive repression of genes belonging to many other classes such as photosynthesis, cell wall modification and energy metabolism occurs in parallel. Furthermore, comparison with a similar system for Medicago truncatula reveals a significant overlap between the two transcriptomes. Such overlap may highlight core mechanisms and key regulators of the trait DT. Taking into account the availability of the many genetic and molecular resources for Arabidopsis, the described system may prove useful for unraveling DT in higher plants. PMID:22195004

  16. Effects of Temperature, Water Potential, and Light on Germination Responses of Redroot Pigweed Seeds to Ethylene

    PubMed Central

    Schonbeck, Mark W.; Egley, Grant H.

    1980-01-01

    The responses of redroot pigweed (Amaranthus retroflexus L.) seeds to nine ethylene concentrations between 0.5 and 50 microliters per liter were assessed at different temperatures and water potentials and in either continuous white light or darkness. Under all experimental treatments, the probit-transformed percentages increased linearly with the log of the ethylene concentration. In dormant seeds, the slope of the response line was unaffected by either light or water potential but increased with decreasing temperature. Conversely, the slope increased with increasing temperature in a partially afterripened seed lot. The ethylene response threshold for germination was little affected by temperature or light, ranging from 0.2 to 0.7 microliter per liter, but decreased to less than 0.1 microliter per liter at negative water potentials. Osmotic inhibition of germination at −4 bars was largely relieved by 1 microliter per liter ethylene. Such interactions between ethylene and other environmental conditions may play an important role in the course of germination of soil-borne seeds. PMID:16661350

  17. Seed germination of calendula in response to temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calendula (Calendula officinalis L.) has been used historically for herbal medicinal purposes and as an ornamental plant. With the discovery that calendula seeds contain high concentrations of calendic acid (C18:3) in the 1980s it began to be investigated as an oilseed crop for use in paint, coating...

  18. Thlaspi arvense (Pennycress) germination, bolting and mechanical harvest seed loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress is being developed as an off-season rotation crop between annual corn and soybean production. This rotation scheme may offer distinct advantages to farmers by providing additional farm income from an otherwise fallow season with little impact on the subsequent soybean production. The seed...

  19. Seed germination of Calendula officinalis 'Carola' in response to temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Calendula (Calendula officinalis 'Carola') is a potential agronomic oilseed crop with application in the paint, coating, and cosmetic industry. Calendula has historically been used for herbal medicinal purposes and an ornamental plant. With the discovery that calendula seeds contain high concentrati...

  20. Do seed VLCFAs trigger spongy tissue formation in Alphonso mango by inducing germination?

    PubMed

    Shivashankar, Seshadri; Sumathi, Manoharan

    2015-06-01

    Spongy tissue is a physiological disorder in Alphonso mango caused by the inception of germination-associated events during fruit maturation on the tree, rendering the fruit inedible. Inter-fruit competition during active fruit growth is a major contributing factor for the disorder which leads to reduced fat content in spongy tissue affected fruits. This study was, therefore, carried out to determine the possible association between seed fats and ST formation. The study of the fat content during fruit growth showed that it increased gradually from 40 percent fruit maturity. At 70 percent maturity, however, there was a sudden increase of fat content of whole fruit, leading to acute competition and resulting in differential allocation of resources among developing fruits. As a result, the seed in spongy-tissue-affected mature ripe fruit showed a marked drop in the levels of fats and the two very long chain fatty acids (VLCFAs), tetracosanoic acid and hexacosanoic acid together with an increase of linolenic acid and a fall in oleic acid contents, which are known to be key determinants for the initiation of pre-germination events in seed. Subsequently, a rise in the level of cytokinin and gibberellins in ST seed associated with a fall in abscisic acid level clearly signalled the onset of germination. Concurrently, a significant reduction in the ratio of linolenic acid/linoleic acid in pulp led to the loss of membrane integrity, cell death and the eventual formation of spongy tissue. Based on the above, it is concluded that a significant reduction in the biosynthesis of VLCFAs in seeds during fruit growth might trigger pre-germination events followed by a cascade of biochemical changes in the pulp, leading to lipid peroxidation and membrane injury in pulp culminating in ST development. Thus, this study presents crucial experimental evidence to highlight the critical role played by VLCFAs in inducing ST formation in Alphonso mango during the pre-harvest phase of fruit growth. PMID:25963264

  1. In vitro propagation of the Garden Heliotrope, Valeriana officinalis L.: influence of pre-chilling and light on seed germination.

    PubMed

    Bhat, B; Sharma, V D

    2015-03-01

    Valeriana officinalis is an important medicinal herb commonly found in Kashmir valley. This study forms an important preliminary step for in-vitro micro propagation of V. officinalis from breaking the seed dormancy, inducing rapid seed germination and its subsequent micro propagation. We investigated the influence of pretreatment of V. officinalis seeds with reduced temperature and light on seed germination and in-vitro propagation. Culture of explants from cultivated seeds have demonstrated its potential for in vitro propagation and plantlet regeneration. Individual as well as combinations of treatments such as temperature and light availability influenced the germination of seeds variedly. Unchilled seeds of V. officinalis were given dip in GA3 (200 ppm) for 24, 48 and 120 h. Seeds treated with GA3 for 24 h and kept in darkness showed the best results, i.e. 48%. Seeds pretreated with GA3 for 120 h and incubated in dark showed 40% germination. Pre-chilling up to 72 h and kept in light showed maximum germination of 60% followed by 40% kept in darkness. Pre-chilling for 48 h resulted in 40 and 25% seed germination in light and darkness, respectively. GA3 pre-treatment for 72 h and 24 h pre chilling were most effective in inducing seed germination. Maximum shoot response was obtained on MS enriched with BAP (1 mg/L) + IAA (0.1 mg/L) combinations using shoot tips as explants. Multiple shoot regeneration from shoot apices was recorded on BAP (1 mg/L) and BAP (1 mg/L) + IAA (0.1 mg/L). PMID:25872250

  2. Loss-of-function of DELLA protein SLN1 activates GA signaling in barley aleurone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gibberellic acid (GA) is a key phytohormone regulating seed germination and seedling growth. In cereal species, GA is synthesized in embyros and then translocated to aleurone tissues where it induces production of hydrolytic enzymes for mobolization of seed storage reserve. De-embyronated barley a...

  3. A comparison of barley malt amylolytic enzyme thermostabilities and wort sugars produced during mashing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial process that converts seed starch to fermentable sugars, known as mashing, takes place at high temperatures. Barley seed is typically germinated for 4 – 6 days during the malting process during which time the enzymes that convert starch to sugars are either synthetized and/or activat...

  4. Effects of osmopriming on seed germination of canola (Brassica napus L.) under salinity stress.

    PubMed

    Ehsanfar, S; Modarres-Sanavy, S A M; Tavakkol-Afshari, R

    2006-01-01

    Canola has good yield and performance in weak and saline soils that other oil crops can not be cultivated in them. Performance and production of this crop can be improved by increasing the vigor of its seeds. Priming is one of the techniques for enhancing seed vigor under stress condition. Pretreatment of seeds in osmotic solutions is called osmopriming, which is used to increase the seed moisture content and speed of germination. In this study, seeds of three varieties of canola (SLM046, Okapi and Licord) were primed in osmotic solutions and then were germinated under salinity stress at laboratory conditions. Osmotic solutions were made by polyethylene glycol 6000 in osmotic potentials of -10, -12, -14, -16 and -18 bar for 24 h. NaCl solutions with electrical conductivities of 0, 6, 12 and 18 ds/m were used to make salinity stress. Results of this study showed that osmopriming could be used to increase the performance of seeds under normal and salinity stress. PMID:17390787

  5. Ecophysiology of seed germination of wild Dahlia coccinea (Asteraceae) in a spatially heterogeneous fire-prone habitat

    NASA Astrophysics Data System (ADS)

    Vivar-Evans, Susana; Barradas, Víctor L.; Sánchez-Coronado, María E.; Gamboa de Buen, Alicia; Orozco-Segovia, Alma

    2006-03-01

    Dahlia coccinea grows on fire-prone xerophilous shrubland, on a lava field located in Mexico City. Two kinds of experiments were performed to test the role of fire and environmental heterogeneity on germination. The first experiment tested the effect of environmental conditions (constant and alternating temperatures, cold stratification and light). The second one tested the effects of fire and high temperatures (dry and moist heat) on germination. Seeds of Dahlia were indifferent to light. The seeds showed physiological dormancy, which was lost by after-ripening or by gibberellins. During simulated fires, dry seeds tolerated high temperatures of short duration and also withstood prolonged exposure to 60 °C. Dry heat treatment reduced the mechanical restriction for embryo growth in dormant seeds. Ash and prolonged exposure to moist heat inhibited germination. Exogenous gibberellins reversed the deleterious effects of prolonged exposure to moist heat. The effect of cold stratification was related to the seeds' physiological stage and to light conditions; stratification in the dark reduced germination. Seeds of D. coccinea could tolerate, evade, or be slightly favored by the effects of low intensity fires occurring in their habitat. Seed responses to treatments suggest that the spatially heterogeneous lava field could provide a wide variety of micro-sites where physiological dormancy could be broken and during fires seeds could maintain their viability and subsequently germinate and/or develop a seed bank.

  6. Effect of Temperature, Light and Salinity on Seed Germination and Radicle Growth of the Geographically Widespread Halophyte Shrub Halocnemum strobilaceum

    PubMed Central

    Qu, Xiao-Xia; Huang, Zhen-Ying; Baskin, Jerry M.; Baskin, Carol C.

    2008-01-01

    Background and Aims The small leafy succulent shrub Halocnemum strobilaceum occurs in saline habitats from northern Africa and Mediterranean Europe to western Asia, and it is a dominant species in salt deserts such as those of north-west China. The effects of temperature, light/darkness and NaCl salinity were tested on seed germination, and the effects of salinity were tested on seed germination recovery, radicle growth and radicle elongation recovery, using seeds from north-west China; the results were compared with those previously reported on this species from salt steppes in the Mediterranean region of Spain. Methods Seed germination was tested over a range of temperatures in light and in darkness and over a range of salinities at 25 C in the light. Seeds that did not germinate in the NaCl solutions were tested for germination in deionized water. Seeds from which radicles had barely emerged in deionized water were transferred to NaCl solutions for 10 d and then back to deionized water for 10 d to test for radicle growth and recovery. Key Results Seeds germinated to higher percentages in light than in darkness and at high than at low temperatures. Germination percentages decreased with an increase in salinity from 01 to 075 m NaCl. Seeds that did not germinate in NaCl solutions did so after transfer to deionized water. Radicle elongation was increased by low salinity, and then it decreased with an increase in salinity, being completely inhibited by ?20 m NaCl. Elongation of radicles from salt solutions <30 m resumed after seedlings were transferred to deionized water. Conclusions The seed and early seedling growth stages of the life cycle of H. strobilaceum are very salt tolerant, and their physiological responses differ somewhat between the Mediterranean salt steppe of Spain and the inland cold salt desert of north-west China. PMID:17428834

  7. Comparisons of barley malt amylolytic enzyme thermostabilities to wort osmolyte concentrations, malt extract, ASBC measures of malt quality, and initial enzyme activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study the hypothesis that wort osmolyte concentration (OC) would correlate much better than malt extract (ME) with barley amylolytic enzyme thermostabilities of malts produced over several days of germination was tested. Seeds of 4 two-row and 4 six-row North American elite barley cultivars ...

  8. Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru

    USGS Publications Warehouse

    Foster, M.S.

    2008-01-01

    The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.

  9. An Increase in Pectin Methyl Esterase Activity Accompanies Dormancy Breakage and Germination of Yellow Cedar Seeds1

    PubMed Central

    Ren, Chengwei; Kermode, Allison R.

    2000-01-01

    Pectin methyl esterase (PME) (EC 3.1.1.11) catalyzes the hydrolysis of methylester groups of cell wall pectins. We investigated the role of this enzyme in dormancy termination and germination of yellow cedar (Chamaecyparis nootkatensis [D. Don] Spach) seeds. PME activity was not detected in dormant seeds of yellow cedar but was induced and gradually increased during moist chilling; high activity coincided with dormancy breakage and germination. PME activity was positively correlated to the degree of dormancy breakage of yellow cedar seeds. The enzyme produced in different seed parts and in seeds at different times during moist chilling, germination, and early post-germinative growth consisted of two isoforms, both basic with isoelectric points of 8.7 and 8.9 and the same molecular mass of 62 kD. The pH optimum for the enzyme was between 7.4 and 8.4. In intact yellow cedar seeds, activities of the two basic isoforms of PME that were induced in embryos and in megagametophytes following dormancy breakage were significantly suppressed by abscisic acid. Gibberellic acid had a stimulatory effect on the activities of these isoforms in embryos and megagametophytes of intact seeds at the germinative stage. We hypothesize that PME plays a role in weakening of the megagametophyte, allowing radicle emergence and the completion of germination. PMID:10982438

  10. Gibberellic acid nitrite stimulates germination of two species of light-requiring seeds via the nitric oxide pathway.

    PubMed

    Jovanović, Vladan; Giba, Zlatko; Djoković, Dejan; Milosavljević, Slobodan; Grubisić, Dragoljub; Konjević, Radomir

    2005-06-01

    We used two species of light-requiring seeds, Paulownia tomentosa, which have absolute light requirement (no germination in darkness), and Stellaria media seeds, which germinate in darkness to a certain extent because of presence of preformed active phytochrome, to obtain results strongly suggesting that gibberellic acid nitrite stimulates seed germination via its capability as a functional NO donor. Exogenous application of gibberellic acid nitrite stimulates gibberellin-insensitive Stellaria media seed germination in darkness as do a wide variety of NO donors. Pure gibberellic acid could replace the light requirement of P. tomentosa seeds, thus enabling them to germinate in darkness. Gibberellic acid nitrite did not have this effect. A stimulative effect from gibberellic acid nitrite could be detected only after exposure of these seeds to short, 10 min, pulse of red light. Taken together, these results suggest that gibberellic activity of gibberellic acid nitrite is lost after nitrosation but, regarding to the presence of -O-NO moiety in the molecule, gibberellic acid nitrite shares stimulative properties in seed germination with other compounds with NO-releasing properties. PMID:16154981

  11. Seed Germination Ecology of the Cold Desert Annual Isatis violascens (Brassicaceae): Two Levels of Physiological Dormancy and Role of the Pericarp.

    PubMed

    Zhou, Yuan M; Lu, Juan J; Tan, Dun Y; Baskin, Carol C; Baskin, Jerry M

    2015-01-01

    The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75-80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy. PMID:26513241

  12. Seed Germination Ecology of the Cold Desert Annual Isatis violascens (Brassicaceae): Two Levels of Physiological Dormancy and Role of the Pericarp

    PubMed Central

    Tan, Dun Y.; Baskin, Carol C.; Baskin, Jerry M.

    2015-01-01

    The occurrence of various species of Brassicaceae with indehiscent fruits in the cold deserts of NW China suggests that there are adaptive advantages of this trait. We hypothesized that the pericarp of the single-seeded silicles of Isatis violascens restricts embryo expansion and thus prevents germination for 1 or more years. Thus, our aim was to investigate the role of the pericarp in seed dormancy and germination of this species. The effects of afterripening, treatment with gibberellic acid (GA3) and cold stratification on seed dormancy-break were tested using intact silicles and isolated seeds, and germination phenology was monitored in an experimental garden. The pericarp has a role in mechanically inhibiting germination of fresh seeds and promotes germination of nondormant seeds, but it does not facilitate formation of a persistent seed bank. Seeds in silicles in watered soil began to germinate earlier in autumn and germinated to higher percentages than isolated seeds. Sixty-two percent of seeds in the buried silicles germinated by the end of the first spring, and only 3% remained nongerminated and viable. Twenty to twenty-five percent of the seeds have nondeep physiological dormancy (PD) and 75–80% intermediate PD. Seeds with nondeep PD afterripen in summer and germinate inside the silicles in autumn if the soil is moist. Afterripening during summer significantly decreased the amount of cold stratification required to break intermediate PD. The presence of both nondeep and intermediate PD in the seed cohort may be a bet-hedging strategy. PMID:26513241

  13. Germinated barley as a functional ingredient in chicken sausages: effect on physicochemical and technological properties at different levels.

    PubMed

    Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Kim, Yong-Jae; Ham, Youn-Kyung; Jeong, Tae-Jun; Choi, Yun-Sang; Kim, Cheon-Jei

    2016-01-01

    The objective of this study was to evaluate the effect of germinated barley (GB) levels on physicochemical and technological properties of cooked chicken sausages. The chicken sausages were formulated with 0-4 % GB. Addition of GB increased pH and yellowness but decreased lightness of the cooked chicken sausages. However, there was no difference in redness among treatments (P > 0.05). Based on the positive effects of GB on measurements related to water and/or fat retention ability, such as emulsion stability, cooking loss, and thawing loss, such results depended upon the added amount of GB. In addition, apparent viscosity increased with increasing levels of GB, resulting in hardness, springiness, and chewiness (P < 0.05). These results could be associated with polysaccharides contained in GB, such as insoluble fiber, β-glucan, and starch. Therefore, our results suggests that GB could be a functional ingredient to improve physicochemical and technological properties of chicken sausages and optimal level of GB was determined as minimum 2 %. PMID:26788010

  14. Genetic changes induced by space flight factors in barley seeds on Soyuz-5 and Soyuz-9 craft

    NASA Technical Reports Server (NTRS)

    Nuzhdin, N. I.; Dozortseva, R. L.

    1980-01-01

    Air-dry seeds of the barley Zimujuschij moscowskyi of the 1969 harvest were taken into space onboard the spaceships Soyuz-5 and Soyuz-9. A cytological study of the mitoses in meristemic cells in rootlet terminals revealed that space flight factors (SFF) in nonirradiated seeds induced about 3% of aberrant cells. After irradiation the effect of SFF increased over two-fold. Although the radio protectors ensured the seeds against from the SFF-induced damage either in irradiated or nonirradiated seed cells which is inconsistent with the previously obtained data.

  15. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.

    PubMed

    Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A

    2014-05-01

    This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition. PMID:25166338

  16. Priming effects on seed germination in Tecoma stans (Bignoniaceae) and Cordia megalantha (Boraginaceae), two tropical deciduous tree species

    NASA Astrophysics Data System (ADS)

    Alvarado-López, Sandra; Soriano, Diana; Velázquez, Noé; Orozco-Segovia, Alma; Gamboa-deBuen, Alicia

    2014-11-01

    Successful revegetation necessarily requires the establishment of a vegetation cover and one of the challenges for this is the scarce knowledge about germination and seedling establishment of wild tree species. Priming treatments (seed hydration during a specific time followed by seed dehydration) could be an alternative germination pre-treatment to improve plant establishment. Natural priming (via seed burial) promotes rapid and synchronous germination as well as the mobilisation of storage reserves; consequently, it increases seedling vigour. These metabolic and physiological responses are similar to those occurring as a result of the laboratory seed priming treatments (osmopriming and matrix priming) applied successfully to agricultural species. In order to know if natural priming had a positive effect on germination of tropical species we tested the effects of natural priming on imbibition kinetics, germination parameters (mean germination time, lag time and germination rate and percentage) and reserve mobilisation in the seeds of two tree species from a tropical deciduous forest in south-eastern México: Tecoma stans (L Juss. Ex Kunth) and Cordia megalantha (S.F Blake). The wood of both trees are useful for furniture and T. stans is a pioneer tree that promotes soil retention in disturbed areas. We also compared the effect of natural priming with that of laboratory matrix priming (both in soil). Matrix priming improved germination of both studied species. Natural priming promoted the mobilisation of proteins and increased the amount of free amino acids and of lipid degradation in T. stans but not in C. megalantha. Our results suggest that the application of priming via the burial of seeds is an easy and inexpensive technique that can improve seed germination and seedling establishment of tropical trees with potential use in reforestation and restoration practices.

  17. Transcriptional programs related to phytochrome A function in Arabidopsis seed germination.

    PubMed

    Ibarra, Silvia E; Auge, Gabriela; Sánchez, Rodolfo A; Botto, Javier F

    2013-07-01

    In Arabidopsis seeds, germination is promoted only by phytochromes, principally phytochrome B (phyB) and phytochrome A (phyA). Despite the abundant information concerning the molecular basis of phyB signaling downstream of PIF1/PIL5, the signaling network inducing germination by phyA is poorly known. Here, we describe the influence of phyA on the transcriptome of Arabidopsis seeds when germination is induced by a far-red (FR) pulse. The expression of 11% of the genome was significantly regulated by phyA. Most of the genes were up-regulated and the changes noted late (i.e. 5 h after a FR pulse), whereas changes in down-regulated genes were more abundant earlier (i.e. 0.5 h after a FR pulse). Auxin- and GA-associated elements were overrepresented in the genes that were modified by phyA. A significant number of genes whose expression was affected by phyA had not been previously reported to be dependent on PIL5. Among them, homozygotic mutant seeds of MYB66, a SAUR-like protein, PIN7, and GASA4 showed an impaired promotion of germination by phyA. Natural variation at the transcriptional level was found in early signaling and GA metabolic genes, but not in ABA metabolic and expansin genes between Columbia and Landsberg erecta accessions. Although phyA and phyB/PIL5 signaling pathways share some molecular components, our data suggest that phyA signaling is partially independent of PIL5 when germination is promoted by very low fluences of light. PMID:23292879

  18. Effects of Temperature, Salinity and Seed Age on Induction of Zostera japonica Germination in North America, USA

    EPA Science Inventory

    Seagrasses can colonize unstructured mudflats either through clonal growth or seed germination and survival. Zostera japonica is an introduced seagrass in North America that has rapidly colonized mudflats along the Pacific Coast, leading to active management of the species. Gro...

  19. Seed germination responses to varying environmental conditions and provenances in Crucianella maritima L., a threatened coastal species.

    PubMed

    Del Vecchio, Silvia; Mattana, Efisio; Acosta, Alicia T R; Bacchetta, Gianluigi

    2012-01-01

    Seed germination (effects of light, temperature, NaCl and KNO(3)) of the coastal endangered species Crucianella maritima was investigated by testing seeds from three different populations. Data were analyzed by means of Generalized Linear Mixed Model (GLMM). The principal results showed that germination of C. maritima seeds was characterized by photoinhibition, absence of primary dormancy and salt-induced secondary dormancy, with no need for high nutrient availability (KNO(3)). Intraspecific differences in germination pattern emerged, apparently due to a different seed mass. These results show important germination traits of C. maritima which should be taken into account in possible reintroduction attempts aimed at restoring threatened populations of this species. PMID:22226161

  20. Increasing the antioxidant activity, total phenolic and flavonoid contents by optimizing the germination conditions of amaranth seeds.

    PubMed

    Perales-Sánchez, Janitzio X K; Reyes-Moreno, Cuauhtémoc; Gómez-Favela, Mario A; Milán-Carrillo, Jorge; Cuevas-Rodríguez, Edith O; Valdez-Ortiz, Angel; Gutiérrez-Dorado, Roberto

    2014-09-01

    The aim of this study was to optimize the germination conditions of amaranth seeds that would maximize the antioxidant activity (AoxA), total phenolic (TPC), and flavonoid (TFC) contents. To optimize the germination bioprocess, response surface methodology was applied over three response variables (AoxA, TPC, TFC). A central composite rotable experimental design with two factors [germination temperature (GT), 20-45 ºC; germination time (Gt), 14-120 h] in five levels was used; 13 treatments were generated. The amaranth seeds were soaked in distilled water (25 °C/6 h) before germination. The sprouts from each treatment were dried (50 °C/8 h), cooled, and ground to obtain germinated amaranth flours (GAF). The best combination of germination bioprocess variables for producing optimized GAF with the highest AoxA [21.56 mmol trolox equivalent (TE)/100 g sample, dw], TPC [247.63 mg gallic acid equivalent (GAE)/100 g sample, dw], and TFC [81.39 mg catechin equivalent (CAE)/100 g sample, dw] was GT = 30 ºC/Gt = 78 h. The germination bioprocess increased AoxA, TPC, and TFC in 300-470, 829, and 213%, respectively. The germination is an effective strategy to increase the TPC and TFC of amaranth seeds for enhancing functionality with improved antioxidant activity. PMID:24958279

  1. Measurement of Wheat Hardness by Seed Scarifier and Barley Pearler And Comparison with Single-Kernel Characterization System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new procedure based on a seed scarifier (SS) for measuring wheat hardness was described and investigated along with methods of barley pearler (BP) and single kernel characterization system (SKCS). Hardness measured by SS and BP was expressed as percentage of kernel weight remained after abrading ...

  2. Physiology, morphology and phenology of seed dormancy break and germination in the endemic Iberian species Narcissus hispanicus (Amaryllidaceae)

    PubMed Central

    Copete, Elena; Herranz, José M.; Ferrandis, Pablo; Baskin, Carol C.; Baskin, Jerry M.

    2011-01-01

    Background and Aims Only very few studies have been carried out on seed dormancy/germination in the large monocot genus Narcissus. A primary aim of this study was to determine the kind of seed dormancy in Narcissus hispanicus and relate the dormancy breaking and germination requirements to the field situation. Methods Embryo growth, radicle emergence and shoot growth were studied by subjecting seeds with and without an emerged radicle to different periods of warm, cold or warm plus cold in natural temperatures outdoors and under controlled laboratory conditions. Key Results Mean embryo length in fresh seeds was approx. 1·31 mm, and embryos had to grow to 2·21 mm before radicle emergence. Embryos grew to full size and seeds germinated (radicles emerged) when they were warm stratified for 90 d and then incubated at cool temperatures for 30 d. However, the embryos grew only a little and no seeds germinated when they were incubated at 9/5, 10 or 15/4 °C for 30 d following a moist cold pre-treatment at 5, 9/5 or 10 °C. In the natural habitat of N. hispanicus, seeds are dispersed in late May, the embryo elongates in autumn and radicles emerge (seeds germinate) in early November; however, if the seeds are exposed to low temperatures before embryo growth is completed, they re-enter dormancy (secondary dormancy). The shoot does not emerge until March, after germinated seeds are cold stratified in winter. Conclusion Seeds of N. hispanicus have deep simple epicotyl morphophysiological dormancy (MPD), with the dormancy formula C1bB(root) – C3(epicotyl). This is the first study on seeds with simple MPD to show that embryos in advanced stages of growth can re-enter dormancy (secondary dormancy). PMID:21335326

  3. Effect of magnetic field on seed germination and seedling growth of sunflower

    NASA Astrophysics Data System (ADS)

    Matwijczuk, A.; Kornarzyński, K.; Pietruszewski, S.

    2012-07-01

    The impact of a variable magnetic field, magnetically treated water and a combination of both these factors on the germination of seeds and the final mass at the initial stage of growth sunflower plants was presented. Investigations were carried out in pots filled with sand, tin an air-conditioned plant house with no access to daylight using fluorescent light as illumination. A statistical significance positive impact was achieved for the samples subjected to the interaction of both stimulating factors simultaneously, the magnetic field and the impact of treated water several times on the speed of seed germination and final plant mass. Negative impacts were obtained for the majority of the test cases, for the magnetically treated water, the short duration of activity of the magnetic field and for the connection of the magnetic field and low-flow times.

  4. Effects of phthalate ester treatment on seed germination and antioxidant enzyme activities of Phaseolus radiatus L.

    PubMed

    Liu, Wenli; Zhang, Chongbang; Liu, Shuyuan

    2014-05-01

    Effects of di-(2-ethylhexyl) phthalate and di-n-butyl phthalate on seed germination rate and antioxidant enzymes activities of mung bean (Phaseolus radiatus L.) were investigated. Results showed that under the treatment with 10 mg/kg of phthalate esters (PAEs), superoxide dismutase (SOD), peroxidase and catalase (CAT) activities were higher than those of the control (p > 0.05). But SOD and CAT activities decreased with the PAEs concentrations and the treatment duration, and were significantly lower than those of the control (p < 0.05). Effect of PAEs stress on SOD activity in germinating seeds of mung bean displayed a significant dose-effect relationship. PMID:24535285

  5. Seed reserve composition in 19 tree species of a tropical deciduous forest in Mexico and its relationship to seed germination and seedling growth

    PubMed Central

    Soriano, Diana; Orozco-Segovia, Alma; Márquez-Guzmán, Judith; Kitajima, Kaoru; Gamboa-de Buen, Alicia; Huante, Pilar

    2011-01-01

    Background and Aims The size and composition of seed reserves may reflect the ecological strategy and evolutionary history of a species and also temporal variation in resource availability. The seed mass and composition of seed reserves of 19 co-existing tree species were studied, and we examined how they varied among species in relation to germination and seedling growth rates, as well as between two years with contrasting precipitation (652 and 384 mm). Methods Seeds were collected from a tropical deciduous forest in the northwest of Mexico (Chamela Biological Station). The seed dry mass, with and without the seed coat, and the concentrations of lipids, nitrogen and non-structural carbohydrates for the seed minus seed coat were determined. The anatomical localization of these reserves was examined using histochemical analysis. The germination capacity, rate and lag time were determined. The correlations among these variables, and their relationship to previously reported seedling relative growth rates, were evaluated with and without phylogenetic consideration. Key Results There were interannual differences in seed mass and reserve composition. Seed was significantly heavier after the drier year in five species. Nitrogen concentration was positively correlated with seed coat fraction, and was significantly higher after the drier year in 12 species. The rate and lag time of germination were negatively correlated with each other. These trait correlations were also supported for phylogenetic independent contrasts. Principal component analysis supported these correlations, and indicated a negative association of seedling relative growth rate with seed size, and a positive association of germination rate with nitrogen and lipid concentrations. Conclusions Nitrogen concentration tended to be higher after the drier year and, while interannual variations in seed size and reserve composition were not sufficient to affect interspecific correlations among seed and seedling traits, some of the reserves were related to germination variables and seedling relative growth rate. PMID:21385781

  6. The role of fleshy pericarp in seed germination and dispersal under flooded conditions in three wetland forest species

    NASA Astrophysics Data System (ADS)

    Mora, Juan P.; Smith-Ramírez, Cecilia; Zúñiga-Feest, Alejandra

    2013-01-01

    In flooded habitats, inundations affect important forest regeneration processes, such as seed dispersal and germination. The main seed dispersal mechanism used by species in Austral South American temperate swamp and riparian forests is endozoochory, which releases seeds from the fleshy pericarp. Endozoochory could be favorable or unfavorable in wetland habitats, since this mechanism exposes seeds directly to water and can, in some cases, be detrimental to germination. In this study, we studied whether or not the fleshy pericarp favors germination after the flooding period's end. Furthermore, we quantified if the number of days which the fruit was found to be floating related to its germination success. We used the seeds of three common fleshy fruit species of flooded habitats from southern Chile, the trees Luma apiculata and Rhaphithamnus spinosus, and the vine Luzuriaga radicans. We simulated flooding periods of 7, 15, 30 and 45 days submerging seeds, with and without pericarps, in water. We found that the pericarp's presence significantly increased Luma's germination success and significantly decreased that of Luzuriaga. The germination of Rhaphithamnus was low after periods of flooding in both seed treatments, with no significant differences found between them. The fruits could float for an average of one to four weeks, depending on the species, which did not relate to their germination success. These results show that germination was affected by the presence of fleshy pericarps in flooded conditions and furthermore, that flotation allows for hydrochory from one week to one month. We suggest that in swamp forests multiple seed dispersal mechanisms are advantageous, especially for fleshy-fruited species.

  7. Glycinebetaine enhances the tolerance of tomato plants to high temperature during germination of seeds and growth of seedlings.

    PubMed

    Li, Shufen; Li, Feng; Wang, Jianwei; Zhang, Wen; Meng, Qingwei; Chen, Tony H H; Murata, Norio; Yang, Xinghong

    2011-11-01

    Tomato (Lycopersicon esculentum cv. 'Moneymaker') was transformed with a codA gene, from Arthrobacter globiformis, for choline oxidase that had been modified to allow targeting to both chloroplasts and the cytosol. Glycinebetaine (GB) accumulated in seeds of transformed plants up to 1 µmol g(-1) dry weight (DW), while no detectable GB was found in wild-type (WT) seeds. The codA-transgenic seeds germinated faster and at higher frequency than WT seeds with high temperature treatment. After heat stress, levels of expression of a mitochondrial small heat-shock protein (MT-sHSP), heat-shock protein 70 (HSP70) and heat-shock cognate 70 (HSC70) were higher in transgenic seeds than in WT seeds during heat stress, and the accumulation of HSP70 was more prominent in codA-transgenic seeds than in WT seeds. Addition of GB to the germination medium or imbibition of seeds in a solution of GB enhanced the tolerance of WT seeds to high temperatures. WT seeds treated with exogenous GB also expressed heat-shock genes at elevated levels and accumulated more HSP70 than controls. Our results suggest that GB, either applied exogenously or accumulated in vivo in codA-transgenic seeds, enhanced the expression of heat-shock genes in and improved the tolerance to high temperature of tomato seeds during germination. PMID:21711358

  8. Determination of kinetic and thermodynamic parameters that describe isothermal seed germination: A student research project

    NASA Astrophysics Data System (ADS)

    Hageseth, Gaylord T.

    1982-02-01

    Students under the supervision of a faculty member can collect data and fit the data to the theoretical mathematical model that describes the rate of isothermal seed germination. The best-fit parameters are interpreted as an initial substrate concentration, product concentration, and the autocatalytic reaction rate. The thermodynamic model enables one to calculate the activation energy for the substrate and product, the activation energy for the autocatalytic reaction, and changes in enthalpy, entropy, and the Gibb's free energy. Turnip, lettuce, soybean, and radish seeds have been investigated. All data fit the proposed model.

  9. Red fox ( Vulpes vulpes L.) favour seed dispersal, germination and seedling survival of Mediterranean Hackberry ( Celtis australis L.)

    NASA Astrophysics Data System (ADS)

    Juan, Traba; Sagrario, Arrieta; Jesús, Herranz; Cristina, Clamagirand M.

    2006-07-01

    Seeds of the Mediterranean Hackberry Celtis australis are often encountered in fox faeces. In order to evaluate the effect of gut transit on the size of seeds selected, the rates and speed of germination and on the survival of the seedlings, Mediterranean Hackberry seeds from fox faeces were germinated in a greenhouse. The results were compared with those of seeds taken from ripe, uneaten fruits. Fox-dispersed seeds were smaller and lighter than the control ones and had higher (74% vs. 57%) and more rapid germination (74.5 days vs. 99.2 days). Seedlings from fox-dispersed seeds showed significantly greater survival by the end of the study period (74.1% vs. 43.6%) than the control ones. Survival in seedlings from fox-dispersed seeds was related to germination date, late seedlings showing poorer survival. This relationship was not observed away in the control seedlings. Seed mass did not affect seedling survival. Seedling arising from fox-dispersed seeds grew faster than control ones. These results suggest that fox can play a relevant role as seed disperser of Mediterranean Hackberry.

  10. Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology.

    PubMed

    Yasur, Jyothsna; Rani, Pathipati Usha

    2013-12-01

    Increasing use of nanoparticles in daily products is of great concern today, especially when their positive and negative impact on environment is not known. Hence, in current research, we have studied the impact of silver nanoparticle (AgNPs) and silver nitrate (AgNO3) application on seed germination, root, and shoot length of castor bean, Ricinus communis L. plant. Silver nanoparticles had no significant effects on seedling growth even at higher concentration of 4,000 mg L(-1), while the silver in bulk form as AgNO3 applied on the castor bean seeds inhibited the seed germination. Silver uptake in seedlings of the castor seeds on treatment with both the forms of silver was confirmed through atomic absorption spectroscopy studies. The silver nanoparticle and silver nitrate application to castor seeds also caused an enhanced enzymatic activity of ROS enzymes and phenolic content in castor seedlings. High-performance liquid chromatography analysis of individual phenols indicated enhanced content of parahydroxy benzoic acid. These kinds of studies are of great interest in order to unveil the movement and accumulation of nanoparticles in plant tissues for assessing future applications in the field or laboratory. PMID:23702569

  11. Lipase activity and antioxidant capacity in coffee (Coffea arabica L.) seeds during germination.

    PubMed

    Patui, Sonia; Clincon, Luisa; Peresson, Carlo; Zancani, Marco; Conte, Lanfranco; Del Terra, Lorenzo; Navarini, Luciano; Vianello, Angelo; Braidot, Enrico

    2014-04-01

    In this paper, lipase activity was characterized in coffee (Coffea arabica L.) seeds to determine its involvement in lipid degradation during germination. The lipase activity, evaluated by a colorimetric method, was already present before imbibition of seeds and was further induced during the germination process. The activity showed a biphasic behaviour, which was similar in seeds either with or without endocarp (parchment), even though the phenomenon showed a delay in the former. The enzymatic activity was inhibited by tetrahydrolipstatin (THL), a selective and irreversible inhibitor of lipases, and by a polyclonal antibody raised against purified alkaline lipase from castor bean. The immunochemical analysis evidenced a protein of ca. 60 kDa, cross-reacting with an anti-lipase antibody, in coffee samples obtained from seeds of both types. Gas chromatographic analyses of free fatty acid (FFA) content confirmed the differences shown in the lipolytic activity of the samples with or without parchment, since FFA levels increased more rapidly in samples without parchment. Finally, the analyses of the antioxidant capacity showed that the presence of parchment was crucial for lowering the oxidation of the lipophylic fraction, being the seeds with parchment less prone to oxidation processes. PMID:24576760

  12. Development of an Automated Seed Sowing and Induced Germination System for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Kliss, Mark

    1995-01-01

    The successful utilization of higher plants in space flight is likely to require the effective transition of plants through all phases of growth and development. A particularly sensitive and critical stage in this cycle is seed germination. The present inflight capability to manipulate seed from a state of dormancy to germination and the performance of such activity under aseptic conditions is extremely limited. An Automated Sowing Mechanism (ASM) has been designed to address this area of science and technology. The self-contained system is readily compatible with the existing Shuttle middeck locker Plant Growth Unit (PGU) and planned Plant Growth Facility (PGF), presenting an opportunity to extend the experimental capability of these systems. The ASM design encompasses the controlled transition of seed from a dry to hydrated state utilizing solid media substrate as the source of water and nutrient support. System activation has been achieved with both photo and timing mechanisms. Controlled induced germination and development of various plant species has been achieved in ground-based trials. The system is presently being prepared for a KC-135 flight test.

  13. [Toxic effects of monosodium glutamate wastewater on crop seed germination and root elongation].

    PubMed

    Liu, Rui; Zhou, Qixing; Zhang, Lanying; Guo, Hao

    2006-07-01

    To make a comprehensive assessment on monosodium glutamate wastewater pollution, a pollution exposure experiment was carried out on the seed germination and root elongation of wheat, Chinese cabbage and tomato by using the wastewater discharged from different processing phases of monosodium glutamate production. The results showed that there were significantly positive linear relationships between the inhibition rates of wheat seed germination and root elongation and the COD(Cr) of mother liquor scraps. The toxicity of monosodium glutamate wastewater to the test crops was in the order of tomato > Chinese cabbage > wheat, indicating that tomato was most sensitive to the wastewater, and could be considered as an ideal toxic bioindicator. The half-effect concentration (IC50) based on the seed germination and root elongation of test crops exposed to the wastewater discharged from various processing phases of monosodium glutamate production was 22.0 to approximately 32432 mg x L(-1) and 17.3 to approximately 3320 mg x L(-1), respectively. PMID:17044508

  14. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination.

    PubMed

    Klemens, Patrick A W; Patzke, Kathrin; Trentmann, Oliver; Poschet, Gernot; Büttner, Michael; Schulz, Alexander; Marten, Irene; Hedrich, Rainer; Neuhaus, H Ekkehard

    2014-04-01

    Arabidopsis vacuoles harbor, besides sugar transporter of the TMT-type, an early response to dehydration like 6 (ERDL6) protein involved in glucose export into the cytosol. However, the mode of transport of ERDL6 and the plant's feedback to overexpression of its activity on essential properties such as, for example, seed germination or freezing tolerance, remain unexplored. Using patch-clamp studies on vacuoles expressing AtERDL6 we demonstrated directly that this carrier operates as a proton-driven glucose exporter. Overexpression of BvIMP, the closest sugar beet (Beta vulgaris) homolog to AtERDL6, in Arabidopsis leads surprisingly to impaired seed germination under both conditions, sugar application and low environmental temperatures, but not under standard conditions. Upon cold treatment, BvIMP overexpressor plants accumulated lower quantities of monosaccharides than the wild-type, a response in line with the reduced frost tolerance of the transgenic Arabidopsis plants, and the fact that cold temperatures inhibits BvIMP transcription in sugar beet leaves. With these findings we show that the tight control of vacuolar sugar import and export is a key requisite for cold tolerance and seed germination of plants. PMID:24329902

  15. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth

    PubMed Central

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from −1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata. PMID:26089829

  16. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance.

    PubMed

    Nguyen, Tung C T; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R; Snowdon, Rod J

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna.ARF10 and Bna.GH3.5. PMID:27014334

  17. Disruption of Germination and Seedling Development in Brassica napus by Mutations Causing Severe Seed Hormonal Imbalance

    PubMed Central

    Nguyen, Tung C. T.; Obermeier, Christian; Friedt, Wolfgang; Abrams, Suzanne R.; Snowdon, Rod J.

    2016-01-01

    The Brassica napus (oilseed rape) accession 1012-98 shows a disturbed germination phenotype that was thought to be associated with its lack of testa pigmentation and thin seed coat. Here, we demonstrate that the disturbed germination and seedling development are actually due to independent mutations that disrupt the balance of hormone metabolites and their regulators in the seeds. High-throughput UPLC-MS/MS hormone profiling of seeds and seedlings before and after germination revealed that 1012-98 has a severely disturbed hormone balance with extremely atypical, excessive quantities of auxin and ABA metabolites. The resulting hypersensitivity to abscisic acid (ABA) and a corresponding increase in dormancy often results in death of the embryo after imbibition or high frequencies of disturbed, often lethal developmental phenotypes, resembling Arabidopsis mutants for the auxin regulatory factor gene ARF10 or the auxin-overproducing transgenic line iaaM-OX. Molecular cloning of Brassica ARF10 orthologs revealed four loci in normal B. napus, two derived from the Brassica A genome and two from the C genome. On the other hand, the phenotypic mutant 1012-98 exhibited amplification of C-genome BnaC.ARF10 copy number along with a chimeric allele originating from recombination between homeologous A and C genome loci which lead to minor increase of Bna.ARF10 transcription on the critical timepoint for seed germination, the indirect regulator of ABI3, the germinative inhibitor. Bna.GH3.5 expression was upregulated to conjugate free auxin to IAA-asp between 2 and 6 DAS. Functional amino acid changes were also found in important DNA binding domains of one BnaC.ARF10 locus, suggesting that regulatory changes in Bna.ARF10 are collectively responsible for the observed phenotpyes in 1012-98. To our knowledge, this study is the first to report disruption of germination and seedling development in Brassica napus caused by the crosstalk of auxin-ABA and the corresponding regulators Bna.ARF10 and Bna.GH3.5. PMID:27014334

  18. A simple and reliable method to detect gamma irradiated lentil ( Lens culinaris Medik.) seeds by germination efficiency and seedling growth test

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sadhan K.

    2002-05-01

    Germination efficiency and root/shoot length of germinated seedling is proposed to identify irradiated lentil seeds. Germination percentage was reduced above 0.2 kGy and lentil seeds were unable to germinate above 1.0 kGy dose. The critical dose that prevented the root elongation varied from 0.1 to 0.5 kGy. The sensitivity of lentil seeds to gamma irradiation was inversely proportional to moisture content of the seeds. Radiation effects could be detected in seeds even 12 months storage after gamma irradiation.

  19. The Metabolism of Hormones during Seed Germination and Dormancy

    PubMed Central

    Sondheimer, Ernest; Tzou, Dong-Sun

    1971-01-01

    8-14C-Zeatin is taken up rapidly and is extensively metabolized by excised bean axes during a 12-hour incubation at 26 C. Most of the radioactivity is found in the 80% ethanol soluble fraction and consists of zeatin, zeatin riboside, zeatin-5′-ribotide, as well as corresponding dihydrozeatin derivatives. The characterization of 14C-dihydrozeatin included crystallization to constant specific radioactivity. No cleavage of the zeatin side chain to adenine, hypoxanthine, their ribosides, or glycylpurine was detected. Dihydrozeatin has been previously isolated from yellow lupin seeds, and our experiments indicate that it can be derived through reduction of the side chain from preexisting cytokinin. While the total amount of zeatin metabolized is not affected by growth-inhibiting concentrations of abscisic acid or cycloheximide, the conversion to dihydrozeatin derivatives is curtailed. Although somewhat less effective than zeatin and zeatin riboside, dihydrozeatin and dihydrozeatin riboside also counteract the abscisic acid-induced growth inhibition. PMID:16657652

  20. Physiological and molecular changes in barley and wheat under salinity.

    PubMed

    Temel, Aslihan; Gozukirmizi, Nermin

    2015-03-01

    In this study, it was aimed to compare salinity-induced changes in barley (Hordeum vulgare L. cv. Bornova-92) and bread wheat (Triticum aestivum L. cv. Gerek-79). Seeds were germinated under saline conditions (0, 50, 100, 250, and 500 mM NaCl) for 2 days and recovered under non-saline conditions for 2 days. At the end of the salt treatment, germination, water content (WC), total soluble protein content, and catalase (CAT, EC 1.11.1.6) activity were affected in both species, while superoxide dismutase (SOD, EC 1.15.1.1) activity was affected in barley. Salinity affected WC, protein content, and CAT activity in both species, while it affected germination in barley and affected fresh weight and SOD activity in wheat after recovery. Physiological responses of both species were correlated. Expression of α-tubulin, Atls1, and Lls1 genes was down-regulated in barley after 250 mM NaCl treatment. HVA1 gene was highly (more than 50-fold) stimulated by salinity in barley. However, α-tubulin and Atls1 genes were down-regulated, and Lls1 gene was up-regulated in wheat after recovery from 250-mM NaCl treatment. Increase in HVA1 expression was not significant in wheat. The expression profiles of barley and wheat under salinity are different, and barley tended to regulate gene expression faster than wheat. PMID:25578157

  1. [Effects of light quality on the seed germination of main tree species in a secondary forest ecosystem of Northeast China].

    PubMed

    Zhang, Min; Zhu, Jiao-Jun; Yan, Qiao-Ling

    2012-10-01

    This paper explored the effects of light quality on the seed germination of five dominant tree species (Larix kaempferi, Phellodendron amurense, Acer mono, Fraxinus mandshurica, and Pinus koraiensis) in a secondary forest ecosystem of Northeast China, based on the experiments with the seeds of the five tree species in laboratory and those of the P. koraiensis and L. kaempferi in the field. Four treatments of different light quality were designed in laboratory (taking dark as the control), and three treatments of R/FR (the ratio of red light and far red light intensity) were installed in the field. The laboratory experiment showed that light quality had less effect on the seed germination of L. kaempferi, but the seed germination rates of the other four tree species were significantly different under the treatments of different light quality. P. amurense had the highest seed germination rate under white light, whereas A. mono, F. mandshurica, and P. koraiensis had the highest one under the alternative irradiation with red light and far red light (R-FR-R). In consistence with the results in laboratory, the seed germination rate of P. koraiensis in the field decreased with decreasing R/FR ratio, while that of L. kaempferi was less affected. Under natural condition, the R-FR-R fluctuated with the activity of sun-fleck, and the seed germination patterns of A. mono, F. mandshurica, and P. koraiensis could be the adaptation to the sun-fleck environment in forest stand. The germination of large seeds was significantly affected by light quality. PMID:23359919

  2. Germostatin resistance locus 1 encodes a PHD finger protein involved in auxin-mediated seed dormancy and germination.

    PubMed

    Ye, Yajin; Gong, Ziying; Lu, Xiao; Miao, Deyan; Shi, Jianmin; Lu, Juan; Zhao, Yang

    2016-01-01

    Seed dormancy and germination are important physiological processes during the life cycle of a seed plant. Recently, auxin has been characterized as a positive regulator that functions during seed dormancy and as a negative regulator during germination. Through chemical genetic screenings, we have identified a small molecule, germostatin (GS), which effectively inhibits seed germination in Arabidopsis. GSR1 (germostatin resistance locus 1) encodes a tandem plant homeodomain (PHD) finger protein, identified by screening GS-resistant mutants. Certain PHD fingers of GSR1 are capable of binding unmethylated H3K4, which has been reported as an epigenetic mark of gene transcriptional repression. Biochemical studies show that GSR1 physically interacts with the transcriptional repressor ARF16 and attenuates the intensity of interaction of IAA17/ARF16 by directly interacting with IAA17 to release ARF16. Further results show that axr3-1, arf10 arf16 are hyposensitive to GS, and gsr1 not only resists auxin-mediated inhibition of seed germination but also displays decreased dormancy. We therefore propose that GSR1 may form a co-repressor with ARF16 to regulate seed germination. Besides promoting auxin biosynthesis via upregulating expression of YUCCA1, GS also enhances auxin responses by inducing degradation of DΙΙ-VENUS and upregulating expression of DR5-GFP. In summary, we identified GSR1 as a member of the auxin-mediated seed germination genetic network, and GS, a small non-auxin molecule that specifically acts on auxin-mediated seed germination. PMID:26611158

  3. The DOF protein, SAD, interacts with GAMYB in plant nuclei and activates transcription of endosperm-specific genes during barley seed development.

    PubMed

    Diaz, Isabel; Martinez, Manuel; Isabel-LaMoneda, Ines; Rubio-Somoza, Ignacio; Carbonero, Pilar

    2005-06-01

    The DOF protein, SAD, previously shown to be a transcriptional activator in barley aleurone cells upon seed germination, also has an important role in gene regulation during endosperm development. mRNA was detected in early (10 days after flowering) developing barley seeds where it accumulated in the starchy endosperm, aleurone cells, nucellar projection, vascular tissues and the immature embryo, as shown by RT-PCR and in situ hybridization analyses. The SAD protein, expressed in bacteria, binds to oligonucleotides containing the prolamine box, 5'-A/TAAAG-3'sequence, derived from the promoter regions of the endosperm-specific genes Hor2 and Itr1, encoding a B-hordein and trypsin-inhibitor BTI-CMe, respectively. SAD competed for the same binding sites with another endosperm-expressed DOF protein, BPBF. Transient expression experiments in co-bombarded developing endosperms demonstrated that SAD trans-activated transcription from Hor2 and Itr1 promoters through binding to the intact DOF motifs. When the two DOF factors are co-bombarded together an additive effect was observed upon the expression of the Itr1 gene. In-frame fusion of the Sad ORF to the reporter green fluorescent protein gene directs the fluorescence expression to the nucleus in transiently transformed onion epidermal layers. The visualization of fluorescence in the nucleus of onion cells, using the bimolecular fluorescent complex (BiFC) approach, has shown the in vivo interaction between SAD and the R2R3MYB protein GAMYB. The interaction in plant cells has also been documented for the DOF protein BPBF and GAMYB, but nuclear interaction could not be detected between BPBF and SAD by this procedure. PMID:15918880

  4. Identification of desiccation tolerance transcripts potentially involved in rape (Brassica napus L.) seeds development and germination.

    PubMed

    Lang, Sirui; Liu, Xiaoxia; Ma, Gang; Lan, QinYing; Wang, Xiaofeng

    2014-10-01

    To investigate regulatory processes and protective mechanisms leading to desiccation tolerance (DT) in seeds, cDNA amplified fragment length polymorphism (cDNA-AFLP) in conjunction with 128 primer combinations was used to detect differential gene expression in rape seeds in response to DT during seed development and germination. We obtained approximately 8000 transcript-derived fragments (TDFs), of which 394 TDFs with differential expression patterns ("sustained expression", "up-regulated", "couple with seed DT", and "down-regulated") were excised from gels and re-amplified by polymerase chain reaction (PCR). After sequencing and comparison with the National Center for Biotechnology Information database, 176 TDFs presented significant similarity with known genes that could be classified into the following categories: metabolism and energy, stress resistance and defense, storage, signal transduction, and other functional categories. Using semiquantitative reverse-transcription PCR and real-time PCR approaches, the significance of the differences was further confirmed in fresh seeds and dehydrated seeds. The genes that encode superoxide dismutase, peroxiredoxin, caleosin, oleosin S3, steroleosin, late embryogenesis abundant protein, glutathione reductase, β-glucosidase, S23 transcriptional repressor, and some heat-shock proteins could be associated with DT. The results of this study will aid in the identification of candidate genes for future experiments that seek to understand seed DT. PMID:25221920

  5. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice.

    PubMed

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-07-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  6. Effect of essential oil of Origanum rotundifolium on some plant pathogenic bacteria, seed germination and plant growth of tomato

    NASA Astrophysics Data System (ADS)

    Dadaşoǧlu, Fatih; Kotan, Recep; Karagöz, Kenan; Dikbaş, Neslihan; Ćakmakçi, Ramazan; Ćakir, Ahmet; Kordali, Şaban; Özer, Hakan

    2016-04-01

    The aim of this study is to determine effect of Origanum rotundifolium's essential oil on some plant pathogenic bacterias, seed germination and plant growth of tomato. Xanthomonas axanopodis pv. vesicatoria strain (Xcv-761) and Clavibacter michiganensis ssp. michiganensis strain (Cmm) inoculated to tomato seed. The seeds were tested for germination in vitro and disease severity and some plant growth parameters in vivo. In vitro assay, maximum seed germination was observed at 62,5 µl/ml essential oil treatment in seeds inoculated with Xcv-761 and at 62,5 µl/ml essential oil and streptomycin treatment in seeds inoculated with Cmm. The least infected cotiledon number was observed at 500 µg/ml streptomycin treatment in seeds inoculated with Cmm. In vivo assay, maximum seed germination was observed at 250 µl/ml essential oil teratment in tomato inoculated with Cmm. Lowest disease severity, is seen in the CMM infected seeds with 250 µl/ml essential oil application these results were statistically significant when compared with pathogen infected seeds. Similarly, in application conducted with XCV-761 infected seed, the lowest disease severity was observed for seeds as a result of 250 µl/ml essential oil application. Also according to the results obtained from essential oil application of CMM infected seeds conducted with 62,5 µl/ml dose; while disease severity was found statistically insignificant compared to 250 µl/ml to essential oil application, ıt was found statistically significant compared to pathogen infected seeds. The results showed that essential oil of O. rotundifolium has a potential for some suppressed plant disease when it is used in appropriate dose.

  7. Coordinated changes in storage proteins during development and germination of elite seeds of Pongamia pinnata, a versatile biodiesel legume

    PubMed Central

    Kesari, Vigya; Rangan, Latha

    2011-01-01

    Background and aims The oleaginous legume Pongamia pinnata is a rapidly growing and economically important tree. The seeds are used increasingly as feedstock for biodiesel production, with the protein-rich residue providing valuable supplement to farm animal diets. However, little is known about seed development and the characteristics of germination. We therefore studied morphological, protein and ultrastructural changes during seed maturation and germination using seeds from a tree selected for superior morphological and reproductive characters (candidate plus tree). Methodology Phenology, sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS–PAGE), and scanning and transmission electron microscopy were used to investigate seed development from 90 to 350 days after flowering (DAF), and germination and seedling development from 0 to 45 days after the start of imbibition (DAI) (Stages 0–VII). Principal results Seven distinct developmental stages were identified during seed development. Fresh weight, length, breadth and thickness increased from Stage I (90 DAF) to V (270 DAF) and decreased at Stages VI (315 DAF) and VII (350 DAF), when the seeds were fully ripe. Marked changes in total soluble protein content and SDS–PAGE profile were observed in vegetative and reproductive tissues and in the cotyledons of germinating seedlings. Polypeptide fragments of 150–14 kDa were observed during seed maturation and germination. In SDS–PAGE the expression of three main polypeptide bands (50, 18 and 14 kDa) increased from Stage I to Stage V and then almost became the same until Stage VII during seed maturation. During germination the expression of 50 kDa polypeptide decreased and that of 18 and 14 kDa increased from Stage 0 (ungerminated seed) to Stage VI (30 DAI), respectively; however, all three polypeptides (50, 18 and 14 kDa) completely disappeared at Stage VII (45 DAI). Ultrastructural changes during four stages of seed maturation (early immature, 90–135 DAF; late immature, 180–225 DAF; early mature, 225–270 DAF; and late mature, 315–350 DAF) and three stages of germination and seedling development (early 10 DAI to late 45 DAI) localized marked gradients in protein storage reserves. Conclusions Increasing the knowledge base for P. pinnata, especially for its seeds, is an essential prerequisite for rapid and successful exploitation of this promising energy and animal feed crop. Our findings contribute to this by establishing key developmental features of the seeds as they form and germinate. PMID:22476496

  8. Analysis of directional root growth patterns from corn and soybean seeds germinated in space

    NASA Astrophysics Data System (ADS)

    Levine, H.; Tynes, G.; Norwood, K.

    The JOSE (JASON Outreach Seed Experiment) payload was the first plant experiment conducted on the International Space Station (ISS). It consisted of having an on-orbit watering of eight transparent seed pouches each of which contained 6 individual seeds of either soybean (Glycine max cv McCall) or corn ( Zea mays ). The seeds were glued to a germination paper substrate using a 1.2% guar glue solution. The payload was launched on the Orbiter Endeavour (STS-97; ISS Flight 4A) on 11/30/00 and transferred to the ISS on 12/8/00. The eight seed pouches were each watered with 12 mL of distilled water on 1/5/01. Two pouches containing corn plus two pouches containing soybean seeds were maintained in the light after watering. Two additional seed pouches of each species were maintained in the dark after watering. Digital photography was used to document the growth of the germinating seedlings in space. The images were down-linked to a world wide web site for dissemination to students. "Within" species differences (between the light and dark grown seedlings) as well as "between" species differences (comparing corn and soybean) were observed. By day 4 (post-imbibition) there was a clear phototropic effect in the light-grown corn seedlings, each, possessing a green shoot which grew upward towards the light source. In contrast, the dark-grown corn shoots were neither green (since chlorophyll synthesis had not been induced by light) nor were they growing in a uniform direction. For day 4 soybean seedlings, the only difference evident between those germinated under the light vs dark conditions was a slight greening up of the seeds maintained in the presence of light. For both the corn and soybean seedlings, roots grew in a random fashion, with some moving in an upward direction and others progressing downward, reflecting the lack of a gravitropic response which is the primary (earth-based) mechanism controlling the direction of root growth. By day 7 the initial 12 mL of water added to each pouch was greatly diminished, although noticeably less so in the soybean pouches. This was presumably due to the faster and overall greater growth exhibited by the corn seedlings, which resulted in a more rapid utilization of the available water. There was also a more pronounced greening-up of the light-exposed soybean seedlings than was evident at day 4, with both the cotylendons and hypocotyl regions showing signs of chlorophyll synthesis. This work was supported under NASA Contract NAS10-002001.

  9. Switchgrass (Panicum virgatum L.) Intraspecific Variation and Thermotolerance Classification Using in Vitro Seed Germination Assay

    DOE PAGESBeta

    Seepaul, Ramdeo; Macoon, Bisoondat; Reddy, K. Raja; Baldwin, Brian

    2011-06-01

    Cardinal temperatures for plant processes have been used for thermotolerance screening of genotypes, geoclimatic adaptability determination and phenological prediction. Current simulation models for switchgrass (Panicum virgatum L.) utilize single cardinal temperatures across genotypes for both vegetative and reproductive processes although in-tra-specific variation exists among genotypes. An experiment was conducted to estimate the cardinal temperatures for seed germination of 14 diverse switchgrass genotypes and to classify genotypes for temperature tolerance. Stratified seeds of each genotype were germinated at eight constant temperatures from 10 °C to 45 °C under a constant light intensity of 35 μmol m-2s-1 for 12 hd-1. Germination wasmore » recorded at 6-h intervals in all treatments. Maximum seed germination (MSG) and germination rate (GR), estimated by fitting Sigmoidal function to germination-time series data, varied among genotypes. Quadratic and bilinear models best described the MSG and GR responses to temperature, respectively. The mean cardinal temperatures, Tmin, Topt, and Tmax, were 8.1, 26.6, and 45.1 °C for MSG and 11.1, 33.1, and 46.0 °C for GR, respectively. Cardinal temperatures for MSG and GR; however, varied significantly among genotypes. Genotypes were classified as sensitive (Cave-in-Rock, Dacotah, Expresso, Forestburg˜, Kanlow, ˜Sunburst, Trailblazer, and ˜Tusca™), intermediate (˜Alamo, Blackwell, Carthage, ˜Shawnee™, and Shelter™) and tolerant (˜Summer) to high temperature based on cumulative temperature response index (CTRI) estimated by summing individual response indices estimated from the MSG and GR cardinal temperatures. Similarly,