Science.gov

Sample records for barn owl auditory

  1. Moving Objects in the Barn Owl's Auditory World.

    PubMed

    Langemann, Ulrike; Krumm, Bianca; Liebner, Katharina; Beutelmann, Rainer; Klump, Georg M

    2016-01-01

    Barn owls are keen hunters of moving prey. They have evolved an auditory system with impressive anatomical and physiological specializations for localizing their prey. Here we present behavioural data on the owl's sensitivity for discriminating acoustic motion direction in azimuth that, for the first time, allow a direct comparison of neuronal and perceptual sensitivity for acoustic motion in the same model species. We trained two birds to report a change in motion direction within a series of repeating wideband noise stimuli. For any trial the starting point, motion direction, velocity (53-2400°/s), duration (30-225 ms) and angular range (12-72°) of the noise sweeps were randomized. Each test stimulus had a motion direction being opposite to that of the reference stimuli. Stimuli were presented in the frontal or the lateral auditory space. The angular extent of the motion had a large effect on the owl's discrimination sensitivity allowing a better discrimination for a larger angular range of the motion. In contrast, stimulus velocity or stimulus duration had a smaller, although significant effect. Overall there was no difference in the owls' behavioural performance between "inward" noise sweeps (moving from lateral to frontal) compared to "outward" noise sweeps (moving from frontal to lateral). The owls did, however, respond more often to stimuli with changing motion direction in the frontal compared to the lateral space. The results of the behavioural experiments are discussed in relation to the neuronal representation of motion cues in the barn owl auditory midbrain. PMID:27080662

  2. Auditory spatial discrimination by barn owls in simulated echoic conditions

    NASA Astrophysics Data System (ADS)

    Spitzer, Matthew W.; Bala, Avinash D. S.; Takahashi, Terry T.

    2003-03-01

    In humans, directional hearing in reverberant conditions is characterized by a ``precedence effect,'' whereby directional information conveyed by leading sounds dominates perceived location, and listeners are relatively insensitive to directional information conveyed by lagging sounds. Behavioral studies provide evidence of precedence phenomena in a wide range of species. The present study employs a discrimination paradigm, based on habituation and recovery of the pupillary dilation response, to provide quantitative measures of precedence phenomena in the barn owl. As in humans, the owl's ability to discriminate changes in the location of lagging sources is impaired relative to that for single sources. Spatial discrimination of lead sources is also impaired, but to a lesser extent than discrimination of lagging sources. Results of a control experiment indicate that sensitivity to monaural cues cannot account for discrimination of lag source location. Thus, impairment of discrimination ability in the two-source conditions most likely reflects a reduction in sensitivity to binaural directional information. These results demonstrate a similarity of precedence effect phenomena in barn owls and humans, and provide a basis for quantitative comparison with neuronal data from the same species.

  3. Representation of frequency in the primary auditory field of the barn owl forebrain.

    PubMed

    Cohen, Y E; Knudsen, E I

    1996-12-01

    1. The primary auditory field (PAF) constitutes the first telencephalic stage of auditory information processing in the classical auditory pathway. In this study we investigated the frequency representation in the PAF of the barn owl, a species with a broad frequency range of hearing and a highly advanced auditory system. 2. Single- and multiunit sites were recorded extracellularly in ketamine-anesthetized owls. The frequency response properties of PAF sites were assessed with the use of digitally synthesized dichotic stimuli. PAF sites (n = 442) either were unresponsive to tonal stimulation (but responsive to noise stimuli), were tuned for frequency, or had multipeaked frequency response profiles. Tuned sites responded best to frequencies between 0.2 and 8.8 kHz, a range that encompasses nearly the entire hearing range of the barn owl. Most sites responding best to frequencies < 4 kHz had relatively broad frequency tuning, whereas sites responding best to higher frequencies had either broad or narrow frequency tuning. Sites with multipeaked frequency response profiles typically had two response peaks. The first peak was usually between 1 and 3 kHz and the second was usually between 5 and 8 kHz; there was no systematic relationship between the two peak frequencies. 3. In dorsoventral electrode penetrations that contained sites with tuned and/or multipeaked response profiles, a "common frequency" was identified that elicited a maximal response from all of the sites in the penetration. 4. The PAF contains a single tonotopic field. Units tuned to low frequencies are located caudomedially, whereas units tuned to high frequencies are located rostrolaterally. Compared with the frequency representation along the basilar papilla and in other auditory structures, the PAF overrepresents low frequencies (< 4 kHz) that are important for barn owl vocalizations. Conversely, high frequencies (> or = 4 kHz), which are necessary for precise sound localization, are underrepresented

  4. Disruption of auditory spatial working memory by inactivation of the forebrain archistriatum in barn owls.

    PubMed

    Knudsen, E I; Knudsen, P F

    1996-10-01

    Barn owls not only localize auditory stimuli with great accuracy, they also remember the locations of auditory stimuli and can use this remembered spatial information to guide their flight and strike. Although the mechanisms of sound localization have been studied extensively, the neurobiological basis of auditory spatial memory has not. Here we show that the ability of barn owls to orient their gaze towards and fly to the remembered location of auditory targets is lost during pharmacological inactivation of a small region in the forebrain, the anterior archistriatum. In contrast, archistriatal inactivation has no effect on stimulus-guided responses to auditory targets. The memory-dependent deficit is evident only for acoustic events that occur in the hemifield contralateral to the side that is inactivated. The data demonstrate that in the avian archistriatum, as in the mammalian frontal cortex, there exists a region that is essential for the expression of spatial working memory and that, in the barn owl, this region encodes auditory spatial memory. PMID:8837773

  5. Visual-auditory integration for visual search: a behavioral study in barn owls.

    PubMed

    Hazan, Yael; Kra, Yonatan; Yarin, Inna; Wagner, Hermann; Gutfreund, Yoram

    2015-01-01

    Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual-auditory integration at the neuronal level. However, behavioral data on visual-auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention toward salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam) to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors) is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades). From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely toward the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search target. PMID

  6. Adaptation in the auditory space map of the barn owl.

    PubMed

    Gutfreund, Yoram; Knudsen, Eric I

    2006-08-01

    Auditory neurons in the owl's external nucleus of the inferior colliculus (ICX) integrate information across frequency channels to create a map of auditory space. This study describes a powerful, sound-driven adaptation of unit responsiveness in the ICX and explores the implications of this adaptation for sensory processing. Adaptation in the ICX was analyzed by presenting lightly anesthetized owls with sequential pairs of dichotic noise bursts. Adaptation occurred in response even to weak, threshold-level sounds and remained strong for more than 100 ms after stimulus offset. Stimulation by one range of sound frequencies caused adaptation that generalized across the entire broad range of frequencies to which these units responded. Identical stimuli were used to test adaptation in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides input directly to the ICX. Compared with ICX adaptation, adaptation in the ICCls was substantially weaker, shorter lasting, and far more frequency specific, suggesting that part of the adaptation observed in the ICX was attributable to processes resident to the ICX. The sharp tuning of ICX neurons to space, along with their broad tuning to frequency, allows ICX adaptation to preserve a representation of stimulus location, regardless of the frequency content of the sound. The ICX is known to be a site of visually guided auditory map plasticity. ICX adaptation could play a role in this cross-modal plasticity by providing a short-term memory of the representation of auditory localization cues that could be compared with later-arriving, visual-spatial information from bimodal stimuli. PMID:16707713

  7. An anatomical basis for visual calibration of the auditory space map in the barn owl's midbrain.

    PubMed

    Feldman, D E; Knudsen, E I

    1997-09-01

    The map of auditory space in the external nucleus of the inferior colliculus (ICX) of the barn owl is calibrated by visual experience during development. ICX neurons are tuned for interaural time difference (ITD), the owl's primary cue for sound source azimuth, and are arranged into a map of ITD. When vision is altered by rearing owls with prismatic spectacles that shift the visual field in azimuth, ITD tuning in the ICX shifts adaptively. In contrast, ITD tuning remains unchanged in the lateral shell of the central nucleus of the inferior colliculus (ICCls), which provides the principal auditory input to the ICX, suggesting that the projection from the ICCls to the ICX is altered by prism-rearing. In this study, the topography of the ICCls-ICX projection was assessed in normal and prism-reared owls by retrograde labeling using biotinylated dextran amine. In juvenile owls at the age before prism attachment, and in normal adults, labeling patterns were consistent with a topographic projection, with each ICX site receiving input from a restricted region of the ICCls with similar ITD tuning. In prism-reared owls, labeling patterns were systematically altered: each ICX site received additional, abnormal input from a region of the ICCls where ITD tuning matched the shifted ITD tuning of the ICX neurons. These results indicate that anatomical reorganization of the ICCls-ICX projection contributes to the visual calibration of the ICX auditory space map. PMID:9254692

  8. Acetylcholinesterase staining differentiates functionally distinct auditory pathways in the barn owl.

    PubMed

    Adolphs, R

    1993-03-15

    The aim of this study was to examine how the functional specialization of the barn owl's auditory brainstem might correlate with histochemical compartmentalization. The barn owl uses interaural intensity and time differences to encode, respectively, the vertical and azimuthal positions of sound sources in space. These two auditory cues are processed in parallel ascending pathways that separate from each other at the level of the cochlear nuclei. Sections through the auditory brainstem were stained for acetylcholinesterase (AChE) to examine whether nuclei that process different auditory cues stain differentially for this enzyme. Of the two cochlear nuclei, angularis showed more intense staining than nucleus magnocellularis. Nucleus angularis projects to all of the nuclei and subdivisions of nuclei that belong to the intensity processing pathway. Acetylcholinesterase stained all regions that contain terminal fields of nucleus angularis and thus provided discrimination between the time and intensity pathways. Moreover, staining patterns with acetylcholinesterase were complementary to those previously reported with an anti-calbindin antibody, which stains terminal fields of nucleus laminaris, and thus stains all the nuclei and subdivisions of nuclei that belong to the time pathway. Some of the gross staining patterns observed with AChE were similar to those reported with antibodies to glutamate decarboxylase. However, AChE is a more convenient and definitive marker in discriminating between these pathways than is calbindin or glutamate decarboxylase. Acetylcholinesterase staining of the intensity pathway in the owl may be related to encoding of sound intensity by spike rate over large dynamic ranges. PMID:7681456

  9. Forebrain pathway for auditory space processing in the barn owl.

    PubMed

    Cohen, Y E; Miller, G L; Knudsen, E I

    1998-02-01

    The forebrain plays an important role in many aspects of sound localization behavior. Yet, the forebrain pathway that processes auditory spatial information is not known for any species. Using standard anatomic labeling techniques, we used a "top-down" approach to trace the flow of auditory spatial information from an output area of the forebrain sound localization pathway (the auditory archistriatum, AAr), back through the forebrain, and into the auditory midbrain. Previous work has demonstrated that AAr units are specialized for auditory space processing. The results presented here show that the AAr receives afferent input from Field L both directly and indirectly via the caudolateral neostriatum. Afferent input to Field L originates mainly in the auditory thalamus, nucleus ovoidalis, which, in turn, receives input from the central nucleus of the inferior colliculus. In addition, we confirmed previously reported projections of the AAr to the basal ganglia, the external nucleus of the inferior colliculus (ICX), the deep layers of the optic tectum, and various brain stem nuclei. A series of inactivation experiments demonstrated that the sharp tuning of AAr sites for binaural spatial cues depends on Field L input but not on input from the auditory space map in the midbrain ICX: pharmacological inactivation of Field L eliminated completely auditory responses in the AAr, whereas bilateral ablation of the midbrain ICX had no appreciable effect on AAr responses. We conclude, therefore, that the forebrain sound localization pathway can process auditory spatial information independently of the midbrain localization pathway. PMID:9463450

  10. Sensitive periods for visual calibration of the auditory space map in the barn owl optic tectum.

    PubMed

    Brainard, M S; Knudsen, E I

    1998-05-15

    Previous studies have identified sensitive periods for the developing barn owl during which visual experience has a powerful influence on the calibration of sound localization behavior. Here we investigated neural correlates of these sensitive periods by assessing developmental changes in the capacity of visual experience to alter the map of auditory space in the optic tectum of the barn owl. We used two manipulations. (1) We equipped owls with prismatic spectacles that optically displaced the visual field by 23 degrees to the left or right, and (2) we restored normal vision to prism-reared owls that had been raised wearing prisms. In agreement with previous behavioral experiments, we found that the capacity of abnormal visual experience to shift the tectal auditory space map was restricted to an early sensitive period. However, this period extended until later in life (approximately 200 d) than described previously in behavioral studies (approximately 70 d). Furthermore, unlike the previous behavioral studies that found that the capacity to recover normal sound localization after restoration of normal vision was lost at approximately 200 d of age, we found that the capacity to recover a normal auditory space map was never lost. Finally, we were able to reconcile the behaviorally and neurophysiologically defined sensitive periods by taking into account differences in the richness of the environment in the two sets of experiments. We repeated the behavioral experiments and found that when owls were housed in a rich environment, the capacity to adjust sound localization away from normal extended to later in life, whereas the capacity to recover to normal was never lost. Conversely, when owls were housed in an impoverished environment, the capacity to recover a normal auditory space map was restricted to a period ending at approximately 200 d of age. The results demonstrate that the timing and even the existence of sensitive periods for plasticity of a neural circuit

  11. Representation of sound localization cues in the auditory thalamus of the barn owl.

    PubMed

    Proctor, L; Konishi, M

    1997-09-16

    Barn owls can localize a sound source using either the map of auditory space contained in the optic tectum or the auditory forebrain. The auditory thalamus, nucleus ovoidalis (N.Ov), is situated between these two auditory areas, and its inactivation precludes the use of the auditory forebrain for sound localization. We examined the sources of inputs to the N.Ov as well as their patterns of termination within the nucleus. We also examined the response of single neurons within the N.Ov to tonal stimuli and sound localization cues. Afferents to the N.Ov originated with a diffuse population of neurons located bilaterally within the lateral shell, core, and medial shell subdivisions of the central nucleus of the inferior colliculus. Additional afferent input originated from the ipsilateral ventral nucleus of the lateral lemniscus. No afferent input was provided to the N.Ov from the external nucleus of the inferior colliculus or the optic tectum. The N.Ov was tonotopically organized with high frequencies represented dorsally and low frequencies ventrally. Although neurons in the N.Ov responded to localization cues, there was no apparent topographic mapping of these cues within the nucleus, in contrast to the tectal pathway. However, nearly all possible types of binaural response to sound localization cues were represented. These findings suggest that in the thalamo-telencephalic auditory pathway, sound localization is subserved by a nontopographic representation of auditory space. PMID:9294226

  12. Dynamics of visually guided auditory plasticity in the optic tectum of the barn owl.

    PubMed

    Brainard, M S; Knudsen, E I

    1995-02-01

    1. In the optic tectum of normal barn owls, bimodal (auditory-visual) neurons are tuned to the values of interaural time difference (ITD) that are produced by sounds at the locations of their visual receptive fields (VRFs). The auditory tuning of tectal neurons is actively guided by visual experience during development: in the tectum of adult owls reared with an optically displaced visual field, neurons are tuned to abnormal values of ITD that are close to the values produced by sounds at the locations of their optically displaced VRFs. In this study we investigated the dynamics of this experience-dependent plasticity. 2. Owls were raised from shortly after eye-opening (14-22 days of age) with prismatic spectacles that displaced the visual field to the right or left. Starting at approximately 60 days of age, multiunit recordings were made to assess the tuning of tectal neurons to ITD presented via earphones. In the earliest recording sessions (ages 60-80 days), ITD tuning was often close to normal, even though the majority of the owls' previous experience was with an altered correspondence between ITD values and VRF locations. Subsequently, over a period of weeks, responses to the normal range of ITDs were gradually eliminated while responses to values of ITD corresponding with the optically displaced VRF were acquired. 3. At intermediate stages in this process, the ITD tuning at many sites became abnormally broad, so that responses were simultaneously present to both normal values of ITD and to values corresponding with the optically displaced VRF. At this stage the latencies and durations of newly acquired responses systematically exceeded the latencies and durations of the responses to normal values of ITD. 4. Dynamic changes in ITD tuning similar to those recorded in the optic tectum also occurred in the external nucleus of the inferior colliculus (ICX), which provides the major source of ascending auditory input to the tectum. 5. These results suggest the

  13. Adaptation in the auditory midbrain of the barn owl (Tyto alba) induced by tonal double stimulation.

    PubMed

    Singheiser, Martin; Ferger, Roland; von Campenhausen, Mark; Wagner, Hermann

    2012-02-01

    During hunting, the barn owl typically listens to several successive sounds as generated, for example, by rustling mice. As auditory cells exhibit adaptive coding, the earlier stimuli may influence the detection of the later stimuli. This situation was mimicked with two double-stimulus paradigms, and adaptation was investigated in neurons of the barn owl's central nucleus of the inferior colliculus. Each double-stimulus paradigm consisted of a first or reference stimulus and a second stimulus (probe). In one paradigm (second level tuning), the probe level was varied, whereas in the other paradigm (inter-stimulus interval tuning), the stimulus interval between the first and second stimulus was changed systematically. Neurons were stimulated with monaural pure tones at the best frequency, while the response was recorded extracellularly. The responses to the probe were significantly reduced when the reference stimulus and probe had the same level and the inter-stimulus interval was short. This indicated response adaptation, which could be compensated for by an increase of the probe level of 5-7 dB over the reference level, if the latter was in the lower half of the dynamic range of a neuron's rate-level function. Recovery from adaptation could be best fitted with a double exponential showing a fast (1.25 ms) and a slow (800 ms) component. These results suggest that neurons in the auditory system show dynamic coding properties to tonal double stimulation that might be relevant for faithful upstream signal propagation. Furthermore, the overall stimulus level of the masker also seems to affect the recovery capabilities of auditory neurons. PMID:22288481

  14. NMDA and non-NMDA glutamate receptors in auditory transmission in the barn owl inferior colliculus.

    PubMed

    Feldman, D E; Knudsen, E I

    1994-10-01

    The pharmacology of auditory responses in the inferior colliculus (IC) of the barn owl was investigated by iontophoresis of excitatory amino acid receptor antagonists into two different functional subdivisions of the IC, the external nucleus (ICx) and the lateral shell of the central nucleus (lateral shell), both of which carry out important computations in the processing of auditory spatial information. Combined application of the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (AP5) and the non-NMDA receptor antagonist 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX) significantly reduced auditory-evoked spikes at all sites in these two subdivisions, and completely eliminated responses at many locations. This suggests that excitatory amino acid receptors mediate the bulk, if not all, of auditory responses in the ICx and lateral shell. NMDA and non-NMDA receptors contributed differently to auditory responses in the two subdivisions. In the ICx, AP5 significantly reduced the number of auditory-evoked spikes at every site tested. On average, AP5 eliminated 55% of auditory-evoked spikes at multiunit sites and 64% at single-unit sites in this structure. In contrast, in the lateral shell, AP5 significantly reduced responses at less than half the sites tested, and, on average, AP5 eliminated only 19% of spikes at multiunit sites and 25% at single-unit sites. When the magnitude of response blockade produced by AP5 at individual multiunit sites was normalized to adjust for site-to-site differences in the efficacy of iontophoresed AP5 and CNQX, AP5 blockade was still significantly greater in the ICx than the lateral shell. CNQX application strongly reduced responses in both subdivisions. These data suggest that NMDA receptor currents make a major contribution to auditory responses in the ICx, while they make only a small contribution to auditory responses in the lateral shell. Non-NMDA receptor currents, on the other hand, contribute to auditory responses in both

  15. Emergence of multiplicative auditory responses in the midbrain of the barn owl.

    PubMed

    Fischer, Brian J; Peña, José Luis; Konishi, Masakazu

    2007-09-01

    Space-specific neurons in the barn owl's auditory space map gain spatial selectivity through tuning to combinations of the interaural time difference (ITD) and interaural level difference (ILD). The combination of ITD and ILD in the subthreshold responses of space-specific neurons in the external nucleus of the inferior colliculus (ICx) is well described by a multiplication of ITD- and ILD-dependent components. It is unknown, however, how ITD and ILD are combined at the site of ITD and ILD convergence in the lateral shell of the central nucleus of the inferior colliculus (ICcl) and therefore whether ICx is the first site in the auditory pathway where multiplicative tuning to ITD- and ILD-dependent signals occurs. We used extracellular recording of single neurons to determine how ITD and ILD are combined in ICcl of the anesthetized barn owl (Tyto alba). A comparison of additive, multiplicative, and linear-threshold models of neural responses shows that ITD and ILD are combined nonlinearly in ICcl, but the interaction of ITD and ILD is not uniformly multiplicative over the sample. A subset (61%) of the neural responses is well described by the multiplicative model, indicating that ICcl is the first site where multiplicative tuning to ITD- and ILD-dependent signals occurs. ICx, however, is the first site where multiplicative tuning is observed consistently. A network model shows that a linear combination of ICcl responses to ITD-ILD pairs is sufficient to produce the multiplicative subthreshold responses to ITD and ILD seen in ICx. PMID:17615132

  16. Reverse correlation analysis of auditory-nerve fiber responses to broadband noise in a bird, the barn owl.

    PubMed

    Fontaine, Bertrand; Köppl, Christine; Peña, Jose L

    2015-02-01

    While the barn owl has been extensively used as a model for sound localization and temporal coding, less is known about the mechanisms at its sensory organ, the basilar papilla (homologous to the mammalian cochlea). In this paper, we characterize, for the first time in the avian system, the auditory nerve fiber responses to broadband noise using reverse correlation. We use the derived impulse responses to study the processing of sounds in the cochlea of the barn owl. We characterize the frequency tuning, phase, instantaneous frequency, and relationship to input level of impulse responses. We show that, even features as complex as the phase dependence on input level, can still be consistent with simple linear filtering. Where possible, we compare our results with mammalian data. We identify salient differences between the barn owl and mammals, e.g., a much smaller frequency glide slope and a bimodal impulse response for the barn owl, and discuss what they might indicate about cochlear mechanics. While important for research on the avian auditory system, the results from this paper also allow us to examine hypotheses put forward for the mammalian cochlea. PMID:25315358

  17. Learning drives differential clustering of axodendritic contacts in the barn owl auditory system.

    PubMed

    McBride, Thomas J; Rodriguez-Contreras, Adrian; Trinh, Angela; Bailey, Robert; Debello, William M

    2008-07-01

    Computational models predict that experience-driven clustering of coactive synapses is a mechanism for information storage. This prediction has remained untested, because it is difficult to approach through time-lapse analysis. Here, we exploit a unique feature of the barn owl auditory localization pathway that permits retrospective analysis of prelearned and postlearned circuitry: owls reared wearing prismatic spectacles develop an adaptive microcircuit that coexists with the native one but can be analyzed independently based on topographic location. To visualize the clustering of axodendritic contacts (potential synapses) within these zones, coactive axons were labeled by focal injection of fluorescent tracer and their target dendrites labeled with an antibody directed against CaMKII (calcium/calmodulin-dependent protein kinase type II, alpha subunit). Using high-resolution confocal imaging, we measured the distance from each contact to its nearest neighbor on the same branch of dendrite. We found that the distribution of intercontact distances for the adaptive zone was shifted dramatically toward smaller values compared with distributions for either the maladaptive zone of the same animals or the adaptive zone of normal juveniles, which indicates that a dynamic clustering of contacts had occurred. Moreover, clustering in the normal zone was greater in normal juveniles than in prism-adapted owls, indicative of declustering. These data demonstrate that clustering is bidirectionally adjustable and tuned by behaviorally relevant experience. The microanatomical configurations in all zones of both experimental groups matched the functional circuit strengths that were assessed by in vivo electrophysiological mapping. Thus, the observed changes in clustering are appropriately positioned to contribute to the adaptive strengthening and weakening of auditory-driven responses. PMID:18596170

  18. Auditory and visual space maps in the cholinergic nucleus isthmi pars parvocellularis of the barn owl.

    PubMed

    Maczko, Kristin A; Knudsen, Phyllis F; Knudsen, Eric I

    2006-12-01

    The nucleus isthmi pars parvocellularis (Ipc) is a midbrain cholinergic nucleus that shares reciprocal, topographic connections with the optic tectum (OT). Ipc neurons project to spatially restricted columns in the OT, contacting essentially all OT layers in a given column. Previous research characterizes the Ipc as a visual processor. We found that, in the barn owl, the Ipc responds to auditory as well as to visual stimuli. Auditory responses were tuned broadly for frequency, but sharply for spatial cues. We measured the tuning of Ipc units to binaural sound localization cues, including interaural timing differences (ITDs) and interaural level differences (ILDs). Units in the Ipc were tuned to specific values of both ITD and ILD and were organized systematically according to their ITD and ILD tuning, forming a map of space. The auditory space map aligned with the visual space map in the Ipc. These results demonstrate that the Ipc encodes the spatial location of objects, independent of stimulus modality. These findings, combined with the precise pattern of projections from the Ipc to the OT, suggest that the role of the Ipc is to regulate the sensitivity of OT neurons in a space-specific manner. PMID:17151283

  19. Auditory tuning for spatial cues in the barn owl basal ganglia.

    PubMed

    Cohen, Y E; Knudsen, E I

    1994-07-01

    1. The basal ganglia are known to contribute to spatially guided behavior. In this study, we investigated the auditory response properties of neurons in the barn owl paleostriatum augmentum (PA), the homologue of the mammalian striatum. The data suggest that the barn owl PA is specialized to process spatial cues and, like the mammalian striatum, is involved in spatial behavior. 2. Single- and multiunit sites were recorded extracellularly in ketamine-anesthetized owls. Spatial receptive fields were measured with a free-field sound source, and tuning for frequency and interaural differences in timing (ITD) and level (ILD) was assessed using digitally synthesized dichotic stimuli. 3. Spatial receptive fields measured at nine multiunit sites were tuned to restricted regions of space: tuning widths at half-maximum response averaged 22 +/- 9.6 degrees (mean +/- SD) in azimuth and 54 +/- 22 degrees in elevation. 4. PA sites responded strongly to broadband sounds. When frequency tuning could be measured (n = 145/201 sites), tuning was broad, averaging 2.7 kHz at half-maximum response, and tended to be centered near the high end of the owl's audible range. The mean best frequency was 6.2 kHz. 5. All PA sites (n = 201) were selective for both ITD and ILD. ITD tuning curves typically exhibited a single, large "primary" peak and often smaller, "secondary" peaks at ITDs ipsilateral and/or contralateral to the primary peak. Three indices quantified the selectivity of PA sites for ITD. The first index, which was the percent difference between the minimum and maximum response as a function of ITD, averaged 100 +/- 29%. The second index, which represented the size of the largest secondary peak relative to that of the primary peak, averaged 49 +/- 23%. The third index, which was the width of the primary ITD peak at half-maximum response, averaged only 66 +/- 35 microseconds. 6. The majority (96%; n = 192/201) of PA sites were tuned to a single "best" value of ILD. The widths of ILD

  20. Distribution of GABAergic neurons and terminals in the auditory system of the barn owl.

    PubMed

    Carr, C E; Fujita, I; Konishi, M

    1989-08-01

    Antisera to GAD (glutamic acid decarboxylase) and GABA were used to determine the distribution of GABAergic cells and terminals in the brainstem and midbrain auditory nuclei of the barn owl. The owl processes time and intensity components of the auditory signal in separate pathways, and each pathway has a distinctive pattern of GAD- and GABA-like immunoreactivity. In the time pathway, all the cells of the cochlear nucleus magnocellularis and nucleus laminaris receive perisomatic GABAergic terminals, and small numbers of GABAergic neurons surround both nuclei. The ventral nucleus of the lateral lemniscus (anterior division) contains both immunoreactive terminals and some GABAergic neurons. In the intensity pathway, dense immunoreactive terminals are distributed throughout the cochlear nucleus angularis, which also contains a small number of GABAergic neurons. The superior olive contains two GABAergic cell types and immunoreactive terminals distributed throughout the neuropil. All the neurons of the nucleus of the lateral lemniscus (ventral part) appear to be GABAergic, and this nucleus also contains a moderate number of immunoreactive terminals. Immunoreactive terminals are distributed throughout the neuropil of the ventral nucleus of the lateral lemniscus (posterior division), whereas multipolar and small fusiform GABAergic neurons predominate in the dorsal regions of the nucleus. The time and intensity pathways combine in the inferior colliculus. The central nucleus of the inferior colliculus contains a larger number of fusiform and stellate GABAergic neurons and a dense plexus of immunoreactive terminals, whereas the external nucleus contains slightly fewer immunoreactive cells and terminals. The superficial nucleus contains dense, fine immunoreactive terminals and a small number of GABAergic neurons. PMID:2794115

  1. Formation of temporal-feature maps in the barn owl's auditory system

    NASA Astrophysics Data System (ADS)

    Kempter, Richard

    2000-03-01

    Computational maps are of central importance to the brain's representation of the outside world. The question of how maps are formed during ontogenetic development is a subject of intense research (Hubel & Wiesel, Proc R Soc B 198:1, 1977; Buonomano & Merzenich, Annu Rev Neurosci 21:149, 1998). The development in the primary visual cortex is in principle well explained compared to that in the auditory system, partly because the mechanisms underlying the formation of temporal-feature maps are hardly understood (Carr, Annu Rev Neurosci 16:223, 1993). Through a modelling study based on computer simulations in a system of spiking neurons a solution is offered to the problem of how a map of interaural time differences is set up in the nucleus laminaris of the barn owl, as a typical example. An array of neurons is able to represent interaural time differences in an orderly manner, viz., a map, if homosynaptic spike-based Hebbian learning (Gerstner et al, Nature 383:76, 1996; Kempter et al, Phys Rev E 59:4498, 1999) is combined with a presynaptic propagation of synaptic modifications (Fitzsimonds & Poo, Physiol Rev 78:143, 1998). The latter may be orders of magnitude weaker than the former. The algorithm is a key mechanism to the formation of temporal-feature maps on a submillisecond time scale.

  2. Top-down gain control of the auditory space map by gaze control circuitry in the barn owl.

    PubMed

    Winkowski, Daniel E; Knudsen, Eric I

    2006-01-19

    High-level circuits in the brain that control the direction of gaze are intimately linked with the control of visual spatial attention. Immediately before an animal directs its gaze towards a stimulus, both psychophysical sensitivity to that visual stimulus and the responsiveness of high-order neurons in the cerebral cortex that represent the stimulus increase dramatically. Equivalent effects on behavioural sensitivity and neuronal responsiveness to visual stimuli result from focal electrical microstimulation of gaze control centres in monkeys. Whether the gaze control system modulates neuronal responsiveness in sensory modalities other than vision is unknown. Here we show that electrical microstimulation applied to gaze control circuitry in the forebrain of barn owls regulates the gain of midbrain auditory responses in an attention-like manner. When the forebrain circuit was activated, midbrain responses to auditory stimuli at the location encoded by the forebrain site were enhanced and spatial selectivity was sharpened. The same stimulation suppressed responses to auditory stimuli represented at other locations in the midbrain map. Such space-specific, top-down regulation of auditory responses by gaze control circuitry in the barn owl suggests that the central nervous system uses a common strategy for dynamically regulating sensory gain that applies across modalities, brain areas and classes of vertebrate species. This approach provides a path for discovering mechanisms that underlie top-down gain control in the central nervous system. PMID:16421572

  3. Early auditory experience induces frequency-specific, adaptive plasticity in the forebrain gaze fields of the barn owl.

    PubMed

    Miller, G L; Knudsen, E I

    2001-05-01

    Binaural acoustic cues such as interaural time and level differences (ITDs and ILDs) are used by many species to determine the locations of sound sources. The relationship between cue values and locations in space is frequency dependent and varies from individual to individual. In the current study, we tested the capacity of neurons in the forebrain localization pathway of the barn owl to adjust their tuning for binaural cues in a frequency-dependent manner in response to auditory experience. Auditory experience was altered by raising young owls with a passive acoustic filtering device that caused frequency-dependent changes in ITD and ILD. Extracellular recordings were made in normal and device-reared owls to characterize frequency-specific ITD and ILD tuning in the auditory archistriatum (AAr), an output structure of the forebrain localization pathway. In device-reared owls, individual sites in the AAr exhibited highly abnormal, frequency-dependent variations in ITD tuning, and across the population of sampled sites, there were frequency-dependent shifts in the representation of ITD. These changes were in a direction that compensated for the acoustic effects of the device on ITD and therefore tended to restore a normal representation of auditory space. Although ILD tuning was degraded relative to normal at many sites in the AAr of device-reared owls, the representation of frequency-specific ILDs across the population of sampled sites was shifted in the adaptive direction. These results demonstrate that early auditory experience shapes the representation of binaural cues in the forebrain localization pathway in an adaptive, frequency-dependent manner. PMID:11353033

  4. Registration of neural maps through value-dependent learning: modeling the alignment of auditory and visual maps in the barn owl's optic tectum.

    PubMed

    Rucci, M; Tononi, G; Edelman, G M

    1997-01-01

    In the optic tectum (OT) of the barn owl, visual and auditory maps of space are found in close alignment with each other. Experiments in which such alignment has been disrupted have shown a considerable degree of plasticity in the auditory map. The external nucleus of the inferior colliculus (ICx), an auditory center that projects massively to the tectum, is the main site of plasticity; however, it is unclear by what mechanisms the alignment between the auditory map in the ICx and the visual map in the tectum is established and maintained. In this paper, we propose that such map alignment occurs through a process of value-dependent learning. According to this paradigm, value systems, identifiable with neuromodulatory systems having diffuse projections, respond to innate or acquired salient cues and modulate changes in synaptic efficacy in many brain regions. To test the self-consistency of this proposal, we have developed a computer model of the principal neural structures involved in the process of auditory localization in the barn owl. This is complemented by simulations of aspects of the barn owl phenotype and of the experimental environment. In the model, a value system is activated whenever the owl carries out a foveation toward an auditory stimulus. A term representing the diffuse release of a neuromodulator interacts with local pre- and postsynaptic events to determine synaptic changes in the ICx. Through large-scale simulations, we have replicated a number of experimental observations on the development of spatial alignment between the auditory and visual maps during normal visual experience, after the retinal image is shifted through prismatic goggles, and after the reestablishment of normal visual input. The results suggest that value-dependent learning is sufficient to account for the registration of auditory and visual maps of space in the OT of the barn owl, and they lead to a number of experimental predictions. PMID:8987759

  5. Adaptive visual and auditory map alignment in barn owl superior colliculus and its neuromorphic implementation.

    PubMed

    Huo, Juan; Murray, Alan; Wei, Dongqing

    2012-09-01

    Adaptation is one of the most important phenomena in biology. A young barn owl can adapt to imposed environmental changes, such as artificial visual distortion caused by wearing a prism. This adjustment process has been modeled mathematically and the model replicates the sensory map realignment of barn owl superior colliculus (SC) through axonogenesis and synaptogenesis. This allows the biological mechanism to be transferred to an artificial computing system and thereby imbue it with a new form of adaptability to the environment. The model is demonstrated in a real-time robot environment. Results of the experiments are compared with and without prism distortion of vision, and show improved adaptability for the robot. However, the computation speed of the embedded system in the robot is slow. A digital and analog mixed signal very-large-scale integration (VLSI) circuit has been fabricated to implement adaptive sensory pathway changes derived from the SC model at higher speed. VLSI experimental results are consistent with simulation results. PMID:24807931

  6. Bilateral inhibition generates neuronal responses tuned to interaural level differences in the auditory brainstem of the barn owl.

    PubMed

    Adolphs, R

    1993-09-01

    I investigated the neural algorithms by which neurons gain selectivity for interaural level difference in the brainstem of the barn owl (Tyto alba). Differences in the timing and in the level of sounds at the ears are used by this owl to encode, respectively, azimuthal and vertical position of sound sources in space. These two cues are processed in two parallel neural pathways. Below the level of the inferior colliculus, all neurons in the pathway that processes level differences show responses to this cue that are monotonic, and thus not selective for a particular level difference. Only in the inferior colliculus, which contains a map of auditory space, are neurons sharply tuned to specific interaural level differences. How are these response properties generated from those of the nuclei that provide input to the inferior colliculus? I show that the posterior subdivision of the nucleus ventralis lemnisci lateralis (VLVp) projects bilaterally to the lateral shell of the central nucleus of the inferior colliculus, the input stage to the map of auditory space. Both these nuclei are part of the pathway that processes interaural level differences. Manipulations of the responses in VLVp affected the responses to level differences in the inferior colliculus; responses to time differences were unaffected. By systematically increasing or decreasing neural activity in VLVp, I show that the VLVp on each side provides inhibition to the colliculus at large level differences. This results in a peaked response that is tuned to level differences in the inferior colliculus. Some cells in the lateral shell of the inferior colliculus appear to receive direct GABAergic inhibition from VLVp. I suggest that this circuitry and the algorithms it supports are the neural substrates that allow the barn owl to exploit level differences for computation of sound source elevation. PMID:7690063

  7. Functional Delay of Myelination of Auditory Delay Lines in the Nucleus Laminaris of the Barn Owl

    PubMed Central

    Cheng, Shih-Min; Carr, Catherine E.

    2012-01-01

    In the barn owl, maps of interaural time difference (ITD) are created in the nucleus laminaris (NL) by interdigitating axons that act as delay lines. Adult delay line axons are myelinated, and this myelination is timely, coinciding with the attainment of adult head size, and stable ITD cues. The proximal portions of the axons become myelinated in late embryonic life, but the delay line portions of the axon in NL remain unmyelinated until the first postnatal week. Myelination of the delay lines peaks at the third week posthatch, and myelinating oligodendrocyte density approaches adult levels by one month, when the head reaches its adult width. Migration of oligodendrocyte progenitors into NL and the subsequent onset of myelination may be restricted by a glial barrier in late embryonic stages and the first posthatch week, since the loss of tenascin-C immunoreactivity in NL is correlated with oligodendrocyte progenitor migration into NL. PMID:17918244

  8. Topographic projection from the optic tectum to the auditory space map in the inferior colliculus of the barn owl.

    PubMed

    Hyde, P S; Knudsen, E I

    2000-05-29

    In the barn owl (Tyto alba), the external nucleus of the inferior colliculus (ICX) contains a map of auditory space that is calibrated by visual experience. The source of the visually based instructive signal to the ICX is unknown. Injections of biotinylated dextran amine and Fluoro-Gold in the ICX retrogradely labelled neurons in layers 8-15 of the ipsilateral optic tectum (OT) that could carry this instructive signal. This projection was point-to-point and in register with the feed-forward, auditory projection from the ICX to the OT. Most labelled neurons were in layers 10-11, and most were bipolar. Tripolar, multipolar, and unipolar neurons were also observed. Multipolar neurons had dendrites that were oriented parallel to the tectal laminae. In contrast, most labelled bipolar and tripolar neurons had dendrites oriented perpendicular to the tectal laminae, extending superficially into the retino-recipient laminae and deep into the auditory recipient laminae. Therefore, these neurons were positioned to receive both visual and auditory information from particular locations in space. Biocytin injected into the superficial layers of the OT labelled bouton-laden axons in the ICX. These axons were generally finer than, but had similar bouton densities as, feed-forward auditory fibers in the ICX, labelled by injections of biocytin into the central nucleus of the inferior colliculus (ICC). These data demonstrate a point-to-point projection from the OT to the ICX that could provide a spatial template for calibrating the auditory space map in the ICX. PMID:10813778

  9. Binaural tuning of auditory units in the forebrain archistriatal gaze fields of the barn owl: local organization but no space map.

    PubMed

    Cohen, Y E; Knudsen, E I

    1995-07-01

    We identified a region in the archistriatum of the barn owl forebrain that contains neurons sensitive to auditory stimuli. Nearly all of these neurons are tuned for binaural localization cues. The archistriatum is known to be the primary source of motor-related output from the avian forebrain and, in barn owls, contributes to the control of gaze, much like the frontal eye fields in monkeys. The auditory region is located in the medial portion of the archistriatum, at the level of the anterior commissure, and is within the region of the archistriatum from which head saccades can be elicited by electrical microstimulation (see preceding companion article, Knudsen et al., 1995). Free-field measurements revealed that auditory sites have large, spatial receptive fields. However, within these large receptive fields, responses are tuned sharply for sound source location. Dichotic measurements showed that auditory sites are tuned broadly for frequency and that the majority are tuned to particular values of interaural time differences and interaural level differences, the principal cues used by barn owls for sound localization. The tuning of sites to these binaural cues is essentially independent of sound level. The auditory properties of units in the medial archistriatum are similar to those of units in the optic tectum, a structure that also contributes to gaze control. Unlike the optic tectum, however, the auditory region of the archistriatum does not contain a single, continuous auditory map of space. Instead, it is organized into dorsoventral clusters of sites with similar binaural (spatial) tuning. The different representations of auditory space in closely related structures in the forebrain (archistriatum) and midbrain (optic tectum) probably reflect the fact that the forebrain contributes to a wide variety of sensorimotor tasks more complicated than gaze control. PMID:7623142

  10. Transcriptome changes associated with instructed learning in the barn owl auditory localization pathway.

    PubMed

    Swofford, Janet A; DeBello, William M

    2007-09-15

    Owls reared wearing prismatic spectacles learn to make adaptive orienting movements. This instructed learning depends on re-calibration of the midbrain auditory space map, which in turn involves the formation of new synapses. Here we investigated whether these processes are associated with differential gene expression, using longSAGE. Newly fledged owls were reared for 8-36 days with prism or control lenses at which time the extent of learning was quantified by electrophysiological mapping. Transciptome profiles were obtained from the inferior colliculus (IC), the major site of synaptic plasticity, and the optic tectum (OT), which provides an instructive signal that controls the direction and extent of plasticity. Twenty-two differentially expressed sequence tags were identified in IC and 36 in OT, out of more than 35,000 unique tags. Of these, only four were regulated in both structures. These results indicate that regulation of two largely independent gene clusters is associated with synaptic remodeling (in IC) and generation of the instructive signal (in OT). Real-time PCR data confirmed the changes for two transcripts, ubiquitin/polyubiquitin and tyrosine 3-monooxgenase/tryotophan 5-monooxygenase activation protein, theta subunit (YWHAQ; also referred to as 14-3-3 protein). Ubiquitin was downregulated in IC, consistent with a model in which protein degradation pathways act as an inhibitory constraint on synaptogenesis. YWHAQ was up-regulated in OT, indicating a role in the synthesis or delivery of instructive information. In total, our results provide a path towards unraveling molecular cascades that link naturalistic experience with synaptic remodeling and, ultimately, with the expression of learned behavior. PMID:17526003

  11. Pharmacological specialization of learned auditory responses in the inferior colliculus of the barn owl.

    PubMed

    Feldman, D E; Knudsen, E I

    1998-04-15

    Neural tuning for interaural time difference (ITD) in the optic tectum of the owl is calibrated by experience-dependent plasticity occurring in the external nucleus of the inferior colliculus (ICX). When juvenile owls are subjected to a sustained lateral displacement of the visual field by wearing prismatic spectacles, the ITD tuning of ICX neurons becomes systematically altered; ICX neurons acquire novel auditory responses, termed "learned responses," to ITD values outside their normal, pre-existing tuning range. In this study, we compared the glutamatergic pharmacology of learned responses with that of normal responses expressed by the same ICX neurons. Measurements were made in the ICX using iontophoretic application of glutamate receptor antagonists. We found that in early stages of ITD tuning adjustment, soon after learned responses had been induced by experience-dependent processes, the NMDA receptor antagonist D, L-2-amino-5-phosphonopentanoic acid (AP-5) preferentially blocked the expression of learned responses of many ICX neurons compared with that of normal responses of the same neurons. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) blocked learned and normal responses equally. After long periods of prism experience, preferential blockade of learned responses by AP-5 was no longer observed. These results indicate that NMDA receptors play a preferential role in the expression of learned responses soon after these responses have been induced by experience-dependent processes, whereas later in development or with additional prism experience (we cannot distinguish which), the differential NMDA receptor-mediated component of these responses disappears. This pharmacological progression resembles the changes that occur during maturation of glutamatergic synaptic currents during early development. PMID:9526024

  12. Experience-dependent plasticity in the inferior colliculus: a site for visual calibration of the neural representation of auditory space in the barn owl.

    PubMed

    Brainard, M S; Knudsen, E I

    1993-11-01

    The optic tectum (homolog of the superior colliculus) contains mutually aligned neural maps of auditory and visual space. During development, the organization of the auditory map is guided by spatial information provided by vision: barn owls raised wearing prismatic spectacles, which optically shift the visual field and the visual map in the optic tectum, develop an auditory map that is shifted by an approximately equivalent amount, such that alignment between the two maps is preserved (Knudsen and Brainard, 1991). In this study we investigated whether this shift in the auditory map is intrinsic to the optic tectum or whether it reflects plasticity at an earlier stage in the auditory pathway. Owls were raised wearing prismatic spectacles that displaced the visual field by 23 degrees to the left or right. This manipulation alters the normal correspondence between locations in the visual field and interaural time difference (ITD), the primary cue for the azimuth of a sound source. In normal owls and in owls with at least 150 d of prism experience, extracellular unit recordings were used to assess the representations of ITD at anatomically and physiologically defined sites in the optic tectum and in the two prior stages of the auditory pathway, the external and central nuclei of the inferior colliculus (ICx and ICc). In the optic tectum of normal owls, the values of ITD to which units responded most strongly (best ITDs) varied systematically with the azimuths of unit visual receptive fields (VRFs). In the prism-reared owls, best ITDs were shifted from normal toward the values of ITD produced by sounds at the locations of the units' optically displaced VRFs. In the ICx of prism-reared owls, the representation of ITD also was shifted from normal, by an amount and in a direction that could completely account for the shift in ITD measured in the optic tectum. At some sites in the ICx, the shift in ITD tuning was apparent within the first 7-8 msec of the response; shifted

  13. Rodenticides in British barn owls.

    PubMed

    Newton, I; Wyllie, I; Freestone, P

    1990-01-01

    Out of 145 Barn Owls found dead through accidents (66%), starvation (32%), shooting (2%) and poisoning (<1%), 10% contained residues of rodenticides, difenacoum or brodifacoum, in their livers. Difenacoum was in the range 0.005-0.106 microg g(-1) fresh weight, and brodifacoum was in the range 0.019-0.515 microg g(-1). Minimum levels of detection were about 0.005 microg g(-1) for both chemicals. Mice fed for 1 day on food containing difenacoum and brodifacoum died after 2-11 days. Within these mice residues were present at greater concentration in the liver than in the rest of the carcass. The mean mass of residue in a whole 35g mouse was estimated at 10.17 microg (range 4.73-20.65 microg) for difenacoum and 15.36 microg (range 8.07-26.55) for brodifacoum. Such poisoned mice were fed to Barn Owls for successive periods of 1, 3 and 6 days. All six owls fed on difenacoum-dosed mice survived all three treatments, in which up to an estimated 101.7 microg of difenacoum was consumed, and the coagulation times of their blood returned to near normal in less than 5-23 days. Four of the six owls fed on brodifacoum-dosed mice died 6-17 days after the 1-day treatment, but the survivors also survived the 3-day and 6-day treatments. Those that died had each eaten 3 mice, with a combined weight of about 105g and a total brodifacoum content of about 46.07 microg, which was equivalent to a dose of 0.150-0.182 mg kg(-1) of owl body weight. After death these owls had 0.63-1.25 micro g(-1) of brodifacoum in their livers. Blood from the survivors would not coagulate at 9 days post-treatment, but did so at 16 days in one bird and between 38 and 78 days in the other. It is concluded that: (1) Barn Owls in Britain are now widely exposed to second-generation rodenticides; (2) not all owls exposed to these chemicals are likely to receive a lethal dose; (3) brodifacoum is more toxic to owls than difenacoum; and (4) while there is yet no evidence that rodenticides have had any appreciable

  14. Responses of neurons in the auditory pathway of the barn owl to partially correlated binaural signals.

    PubMed

    Albeck, Y; Konishi, M

    1995-10-01

    1. Extracellular single-unit recording in anesthetized barn owls was used to study neuronal response to dichotic stimuli of variable binaural correlation (BC). Recordings were made in the output fibers of nucleus laminaris (NL), the anterior division of the ventral lateral lemniscal nucleus (VLVa), the core of the central nucleus of the inferior colliculus (ICcC), the lateral shell of the central nucleus of the inferior colliculus (ICcLS), and the external nucleus of the inferior colliculus (ICx). 2. The response of all neurons sensitive to interaural time difference (ITD) varied with BC. The relationship between BC and impulse number fits a linear, a parabolic, or a ramp model. A linear or parabolic model fits most neurons in low-level nuclei. Higher order neurons in ICx did not respond to noise bursts with strong negative binaural correlation, creating a ramp-like response to BC. 3. A neuron's ability to detect ITD varied as a function of BC. Conversely, a neuron's response to BC changed with ITD. Neurons in NL, VLVa, and ICcC show almost periodic ITD response curves. In these neurons peaks and troughs of ITD response curves diminished as BC decreased, creating a flat ITD response when BC = 0. When BC was set to -1, the most favorable ITD became the least favorable one and vice versa. The ITD response curve of ICx neurons usually has a single dominant peak. The response of those neurons to a negatively correlated noise pair (BC = -1) showed two ITD peaks, flanking the position of the primary peak. 4. The parabolic BC response of NL neurons fits the prediction of the cross-correlation model, assuming half-wave rectification of the sound by the cochlea. Linear response is not predicted by the model. However, the parabolic and the linear neurons probably do not belong to two distinct groups as the difference between them is not statistically significant. Thus, the cross-correlation model provides a good description of the binaural response not only in NL but also in

  15. Early visual experience shapes the representation of auditory space in the forebrain gaze fields of the barn owl.

    PubMed

    Miller, G L; Knudsen, E I

    1999-03-15

    Auditory spatial information is processed in parallel forebrain and midbrain pathways. Sensory experience early in life has been shown to exert a powerful influence on the representation of auditory space in the midbrain space-processing pathway. The goal of this study was to determine whether early experience also shapes the representation of auditory space in the forebrain. Owls were raised wearing prismatic spectacles that shifted the visual field in the horizontal plane. This manipulation altered the relationship between interaural time differences (ITDs), the principal cue used for azimuthal localization, and locations of auditory stimuli in the visual field. Extracellular recordings were used to characterize ITD tuning in the auditory archistriatum (AAr), a subdivision of the forebrain gaze fields, in normal and prism-reared owls. Prism rearing altered the representation of ITD in the AAr. In prism-reared owls, unit tuning for ITD was shifted in the adaptive direction, according to the direction of the optical displacement imposed by the spectacles. Changes in ITD tuning involved the acquisition of unit responses to adaptive ITD values and, to a lesser extent, the elimination of responses to nonadaptive (previously normal) ITD values. Shifts in ITD tuning in the AAr were similar to shifts in ITD tuning observed in the optic tectum of the same owls. This experience-based adjustment of binaural tuning in the AAr helps to maintain mutual registry between the forebrain and midbrain representations of auditory space and may help to ensure consistent behavioral responses to auditory stimuli. PMID:10066282

  16. Adaptive plasticity of the auditory space map in the optic tectum of adult and baby barn owls in response to external ear modification.

    PubMed

    Knudsen, E I; Esterly, S D; Olsen, J F

    1994-01-01

    1. This study demonstrates the influence of experience on the establishment and maintenance of the auditory map of space in the optic tectum of the barn owl. Auditory experience was altered either by preventing the structures of the external ears (the facial ruff and preaural flaps) from appearing in baby barn owls (baby ruff-cut owls) or by removing these structures in adults (adult ruff-cut owls). These structures shape the binaural cues used for localizing sounds in both the horizontal and vertical dimensions. 2. The acoustic effects of removing the external ear structures were measured using probe tube microphones placed in the ear canals. In both baby and adult ruff-cut owls, the spatial pattern of binaural localization cues was dramatically different from normal: interaural level difference (ILD) changed with azimuth instead of with elevation, the rate of change of ILD across space was decreased relative to normal, and the rate of change of interaural time difference (ITD) across frontal space was increased relative to normal. 3. The neurophysiological representations of ITD and ILD in the optic tectum were measured before and > or = 3 mo after ruff removal in adults and beginning at 4.5 months of age in baby ruff-cut owls. Multiunit tuning to ITD and to ILD was measured using dichotic stimulation in ketamine-anesthetized owls. The tectal maps of ITD and ILD were reconstructed using visual receptive field location as a marker for recording site location in the optic tectum. 4. Adjustment of the tectal map of ITD to the altered spatial pattern of acoustic ITD was essentially complete in adults as well as in baby ruff-cut owls. This adjustment changed the magnification of ITD across the tectum, with resultant changes in ITD tuning at individual tectal sites of up to approximately 25 microseconds (approximately 5% of the physiological range) relative to normal values. 5. Adaptation of the tectal ILD map to the ruff-cut spatial pattern of acoustic ILD was

  17. How the owl resolves auditory coding ambiguity.

    PubMed

    Mazer, J A

    1998-09-01

    The barn owl (Tyto alba) uses interaural time difference (ITD) cues to localize sounds in the horizontal plane. Low-order binaural auditory neurons with sharp frequency tuning act as narrow-band coincidence detectors; such neurons respond equally well to sounds with a particular ITD and its phase equivalents and are said to be phase ambiguous. Higher-order neurons with broad frequency tuning are unambiguously selective for single ITDs in response to broad-band sounds and show little or no response to phase equivalents. Selectivity for single ITDs is thought to arise from the convergence of parallel, narrow-band frequency channels that originate in the cochlea. ITD tuning to variable bandwidth stimuli was measured in higher-order neurons of the owl's inferior colliculus to examine the rules that govern the relationship between frequency channel convergence and the resolution of phase ambiguity. Ambiguity decreased as stimulus bandwidth increased, reaching a minimum at 2-3 kHz. Two independent mechanisms appear to contribute to the elimination of ambiguity: one suppressive and one facilitative. The integration of information carried by parallel, distributed processing channels is a common theme of sensory processing that spans both modality and species boundaries. The principles underlying the resolution of phase ambiguity and frequency channel convergence in the owl may have implications for other sensory systems, such as electrolocation in electric fish and the computation of binocular disparity in the avian and mammalian visual systems. PMID:9724807

  18. Evolutionary conservation of Kv3.1 in the barn owl Tyto alba.

    PubMed

    Kullmann, Lars; Schlüter, Tina; Wagner, Hermann; Nothwang, Hans Gerd

    2013-01-01

    For prey capture in the dark, the barn owl Tyto alba has evolved into an auditory specialist with an exquisite capability of sound localization. Adaptations include asymmetrical ears, enlarged auditory processing centers, the utilization of minute interaural time differences, and phase locking along the entire hearing range up to 10 kHz. Adaptations on the molecular level have not yet been investigated. Here, we tested the hypothesis that divergence in the amino acid sequence of the voltage-gated K(+) channel Kv3.1 contributes to the accuracy and high firing rates of auditory neurons in the barn owl. We therefore cloned both splice variants of Kcnc1, the gene encoding Kv3.1. Both splice variants, Kcnc1a and Kcnc1b, encode amino acids identical to those of the chicken, an auditory generalist. Expression analyses confirmed neural-restricted expression of the channel. In summary, our data reveal strong evolutionary conservation of Kcnc1 in the barn owl and point to other genes involved in auditory specializations of this animal. The data also demonstrate the feasibility to address neuroethological questions in organisms with no reference genome by molecular approaches. This will open new avenues for neuroethologists working in these organisms. PMID:23615168

  19. Axodendritic contacts onto calcium/calmodulin-dependent protein kinase type II-expressing neurons in the barn owl auditory space map.

    PubMed

    Rodriguez-Contreras, Adrian; Liu, Xiao-Bo; DeBello, William M

    2005-06-01

    In the owl midbrain, a map of auditory space is synthesized in the inferior colliculus (IC) and conveyed to the optic tectum (OT). Ascending auditory information courses through these structures via topographic axonal projections. Little is known about the molecular composition of projection neurons or their postsynaptic targets. To visualize axodendritic contacts between identified cell types, we used double-label immunohistochemistry, in vivo retrograde tracing, in vitro anterograde tracing, high-resolution confocal microscopy, three-dimensional reconstruction and fly-through visualization. We discovered a major class of IC neurons that strongly expressed calcium/calmodulin-dependent protein kinase type II, alpha subunit (CaMKII). The distribution of these cells within the IC was mostly restricted to the external nucleus of the IC (ICX), in which the auditory space map is assembled. A large proportion of ICX-OT projection neurons were CaMKII positive. In addition to being the principal outputs, CaMKII cells were in direct contact with axonal boutons emanating from the main source of input to ICX, the lateral shell of the central nucleus of the inferior colliculus (ICCls). Numerous sites of putative synaptic contact were found on the somata, proximal dendrites, and distal dendrites. Double-label immunoelectron microscopy confirmed the existence of synapses between ICCls axons and the dendrites of CaMKII cells. Collectively, our data indicate that CaMKII ICX neurons are a cellular locus for the computation of auditory space-specific responses. Because the ICCls-ICX projection is physically altered during experience-dependent plasticity, these results lay the groundwork for probing microanatomical rearrangements that may underlie plasticity and learning. PMID:15944389

  20. Otoacoustic interrelationships of the barn owl

    NASA Astrophysics Data System (ADS)

    Bergevin, Christopher; Manley, Geoffrey A.; Köppl, Christine

    2015-12-01

    Significant debate still exists about the biophysical mechanisms at work in otoacoustic emission (OAE) generation and how such may differ between mammals and non-mammals given gross morphological differences (e.g., existence of basilar membrane traveling waves, degree of tectorial membrane coupling). To further elucidate general principles at work, we examined the barn owl for interrelationships between spontaneous emissions (SOAEs) and those evoked using a single tone (SFOAEs). First, most ears exhibited SOAEs as a stable periodic `rippling' whose peak-to-peak spacing was relatively constant (˜0.4 kHz). Some ears showed substantially larger narrowband peaks, although their statistical distributions were highly noisy. Second, significant interactions between a low-level tone and SOAE activity were observed via an interference pattern as the tone frequency was swept. Using a suppression paradigm to extract SFOAEs as the residual, the magnitude exhibited a stable pattern of peaks and valleys unique to each ear. Third, SFOAE phase exhibited significant accumulation as frequency was swept, with a phase-gradient delay of approximately 2 ms that was constant across frequency. The amount of SFOAE phase accumulation between adjacent SOAE peaks tended to cluster about an integral number of cycles, as previously observed for humans. Taken together, our data suggest that the principles underlying how active hair cells work together (e.g., entrainment, phase coherence) are shared between widely different inner ear morphologies, leading to the generation of OAEs with similar properties.

  1. Visual modulation of auditory responses in the owl inferior colliculus.

    PubMed

    Bergan, Joseph F; Knudsen, Eric I

    2009-06-01

    The barn owl's central auditory system creates a map of auditory space in the external nucleus of the inferior colliculus (ICX). Although the crucial role visual experience plays in the formation and maintenance of this auditory space map is well established, the mechanism by which vision influences ICX responses remains unclear. Surprisingly, previous experiments have found that in the absence of extensive pharmacological manipulation, visual stimuli do not drive neural responses in the ICX. Here we investigated the influence of dynamic visual stimuli on auditory responses in the ICX. We show that a salient visual stimulus, when coincident with an auditory stimulus, can modulate auditory responses in the ICX even though the same visual stimulus may elicit no neural responses when presented alone. For each ICX neuron, the most effective auditory and visual stimuli were located in the same region of space. In addition, the magnitude of the visual modulation of auditory responses was dependent on the context of the stimulus presentation with novel visual stimuli eliciting consistently larger response modulations than frequently presented visual stimuli. Thus the visual modulation of ICX responses is dependent on the characteristics of the visual stimulus as well as on the spatial and temporal correspondence of the auditory and visual stimuli. These results demonstrate moment-to-moment visual enhancements of auditory responsiveness that, in the short-term, increase auditory responses to salient bimodal stimuli and in the long-term could serve to instruct the adaptive auditory plasticity necessary to maintain accurate auditory orienting behavior. PMID:19321633

  2. Variability reduction in interaural time difference tuning in the barn owl.

    PubMed

    Fischer, Brian J; Konishi, Masakazu

    2008-08-01

    The interaural time difference (ITD) is the primary auditory cue used by the barn owl for localization in the horizontal direction. ITD is initially computed by circuits consisting of axonal delay lines from one of the cochlear nuclei and coincidence detector neurons in the nucleus laminaris (NL). NL projects directly to the anterior part of the dorsal lateral lemniscal nucleus (LLDa), and this area projects to the core of the central nucleus of the inferior colliculus (ICcc) in the midbrain. To show the selectivity of an NL neuron for ITD requires averaging of responses over several stimulus presentations for each ITD. In contrast, ICcc neurons detect their preferred ITD in a single burst of stimulus. We recorded extracellularly the responses of LLDa neurons to ITD in anesthetized barn owls and show that this ability is already present in LLDa, raising the possibility that ICcc inherits its noise reduction property from LLDa. PMID:18509071

  3. Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds

    NASA Astrophysics Data System (ADS)

    Brittan-Powell, Elizabeth F.; Lohr, Bernard; Hahn, D. Caldwell; Dooling, Robert J.

    2005-07-01

    The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4-5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.

  4. Auditory brainstem responses in the Eastern Screech Owl: An estimate of auditory thresholds

    USGS Publications Warehouse

    Brittan-Powell, E.F.; Lohr, B.; Hahn, D.C.; Dooling, R.J.

    2005-01-01

    The auditory brainstem response (ABR), a measure of neural synchrony, was used to estimate auditory sensitivity in the eastern screech owl (Megascops asio). The typical screech owl ABR waveform showed two to three prominent peaks occurring within 5 ms of stimulus onset. As sound pressure levels increased, the ABR peak amplitude increased and latency decreased. With an increasing stimulus presentation rate, ABR peak amplitude decreased and latency increased. Generally, changes in the ABR waveform to stimulus intensity and repetition rate are consistent with the pattern found in several avian families. The ABR audiogram shows that screech owls hear best between 1.5 and 6.4 kHz with the most acute sensitivity between 4?5.7 kHz. The shape of the average screech owl ABR audiogram is similar to the shape of the behaviorally measured audiogram of the barn owl, except at the highest frequencies. Our data also show differences in overall auditory sensitivity between the color morphs of screech owls.

  5. A Pulse-type Hardware Level Difference Detection Model Based on Sound Source Localization Mechanism in Barn Owl

    NASA Astrophysics Data System (ADS)

    Sakurai, Tsubasa; Sekine, Yoshifumi

    Auditory information processing is very important in the darkness where vision information is extremely limited. Barn owls have excellent hearing information processing function. Barn owls can detect a sound source in the high accuracy of less than two degrees in both of the vertical and horizontal directions. When they perform the sound source localization, the barn owls use the interaural time difference for localization in the horizontal plane, and the interaural level difference for localization in the vertical plane. We are constructing the two-dimensional sound source localization model using pulse-type hardware neuron models based on sound source localization mechanism of barn owl for the purpose of the engineering application. In this paper, we propose a pulse-type hardware model for level difference detection based on sound source localization mechanism of barn owl. Firstly, we discuss the response characteristics of the mathematical model for level difference detection. Next we discuss the response characteristics of the hardware mode. As a result, we show clearly that this proposal model can be used as a sound source localization model of vertical direction.

  6. Multiple sites of adaptive plasticity in the owl's auditory localization pathway.

    PubMed

    DeBello, William M; Knudsen, Eric I

    2004-08-01

    In the midbrain auditory localization pathway of the barn owl, a map of auditory space is relayed from the external nucleus of the inferior colliculus (ICX) to the deep and intermediate layers of the optic tectum (OT) and from these layers to the superficial layers. Within the OT, the auditory space map aligns with a visual map of space. Raising young barn owls with a prismatic displacement of the visual field leads to progressive changes in auditory tuning in the OT that tend to realign the auditory space map with the prismatically displaced visual space map. The only known site of this adaptive plasticity is in the ICX, in which the auditory system first creates a map of space. In this study, we identified an additional site of plasticity in the OT. In owls that experienced prisms beginning late in the juvenile period, adaptive shifts in auditory tuning in the superficial layers of the OT exceeded the adaptive shifts that occurred in the deep layers of the OT or in the ICX. Anatomical results from these owls demonstrated that the topography of intrinsic OT connections was systematically altered in the adaptive direction. In juvenile owls, plasticity in the OT increased as plasticity in the ICX decreased. Because plasticity at both sites has been shown to decline substantially in adults, these results suggest that an age-dependent decrease in auditory map plasticity occurs first in the ICX and later at the higher level, in the OT. PMID:15295019

  7. Parallel pathways mediating both sound localization and gaze control in the forebrain and midbrain of the barn owl.

    PubMed

    Knudsen, E I; Knudsen, P F; Masino, T

    1993-07-01

    The hypothesis that sound localization and gaze control are mediated in parallel in the midbrain and forebrain was tested in the barn owl. The midbrain pathway for gaze control was interrupted by reversible inactivation (muscimol injection) or lesion of the optic tectum. Auditory input to the forebrain was disrupted by reversible inactivation or lesion of the primary thalamic auditory nucleus, nucleus ovoidalis (homolog of the medial geniculate nucleus). Barn owls were trained to orient their gaze toward auditory or visual stimuli presented from random locations in a darkened sound chamber. Auditory and visual test stimuli were brief so that the stimulus was over before the orienting response was completed. The accuracy and kinetics of the orienting responses were measured with a search coil attached to the head. Unilateral inactivation of the optic tectum had immediate and long-lasting effects on auditory orienting behavior. The owls failed to respond on a high percentage of trials when the auditory test stimulus was located on the side contralateral to the inactivated tectum. When they did respond, the response was usually (but not always) short of the target, and the latency of the response was abnormally long. When the auditory stimulus was located on the side ipsilateral to the inactivated tectum, responses were reliable and accurate, and the latency of responses was shorter than normal. In a tectally lesioned animal, response probability and latency to contralateral sounds returned to normal within 2 weeks, but the increase in response error (due to undershooting) persisted for at least 12 weeks. Despite abnormalities in the response, all of the owls were capable of localizing and orienting to contralateral auditory stimuli on some trials with the optic tectum inactivated or lesioned. This was not true for contralateral visual stimuli. Immediately following tectal inactivation, the owls exhibited complete neglect for visual stimuli located more than 20

  8. Comparison of midbrain and thalamic space-specific neurons in barn owls.

    PubMed

    Pérez, María Lucía; Peña, José Luis

    2006-02-01

    Spatial receptive fields of neurons in the auditory pathway of the barn owl result from the sensitivity to combinations of interaural time (ITD) and level differences across stimulus frequency. Both the forebrain and tectum of the owl contain such neurons. The neural pathways, which lead to the forebrain and tectal representations of auditory space, separate before the midbrain map of auditory space is synthesized. The first nuclei that belong exclusively to either the forebrain or the tectal pathways are the nucleus ovoidalis (Ov) and the external nucleus of the inferior colliculus (ICx), respectively. Both receive projections from the lateral shell subdivision of the inferior colliculus but are not interconnected. Previous studies indicate that the owl's tectal representation of auditory space is different from those found in the owl's forebrain and the mammalian brain. We addressed the question of whether the computation of spatial cues in both pathways is the same by comparing the ITD tuning of Ov and ICx neurons. Unlike in ICx, the relationship between frequency and ITD tuning had not been studied in single Ov units. In contrast to the conspicuous frequency independent ITD tuning of space-specific neurons of ICx, ITD selectivity varied with frequency in Ov. We also observed that the spatially tuned neurons of Ov respond to lower frequencies and are more broadly tuned to ITD than in ICx. Thus there are differences in the integration of frequency and ITD in the two sound-localization pathways. Thalamic neurons integrate spatial information not only within a broader frequency band but also across ITD channels. PMID:16424454

  9. Neuroethology of prey capture in the barn owl (Tyto alba L.).

    PubMed

    Wagner, Hermann; Kettler, Lutz; Orlowski, Julius; Tellers, Philipp

    2013-01-01

    Barn owls are a model system for studying prey capture. These animals can catch mice by hearing alone, but use vision whenever light conditions allow this. The silent flight, the frontally oriented eyes, and the facial ruffs are specializations that evolved to optimize prey capture. The auditory system is characterized by high absolute sensitivity, a use of interaural time difference for azimuthal sound-localization over almost the total hearing range up to at least 9 kHz, and the use of interaural level difference for elevational sound localization in the upper frequency range. Response latencies towards auditory targets were shortened by covert attention, while overt attention helped to orient towards salient visual objects. However, only 20% of the fixation movements could be explained by the saliency of the fixated objects, suggesting a top-down control of attention. In a visual-search experiment the birds turned earlier and more often towards and spent more time at salient objects. The visual system also exhibits high absolute sensitivity, while the spatial resolution is not particularly high. Last but not least, head movements may be classified as fixations, translations, and rotations combined with translations. These motion primitives may be combined to complex head-movement patterns. With the expected easy availability of genetic techniques for specialists in the near future and the possibility to apply the findings in biomimetic devices prey capture in barn owls will remain an exciting field in the future. PMID:22510644

  10. Preservation of spectrotemporal tuning between the nucleus laminaris and the inferior colliculus of the barn owl.

    PubMed

    Christianson, G Björn; Peña, José Luis

    2007-05-01

    Performing sound recognition is a task that requires an encoding of the time-varying spectral structure of the auditory stimulus. Similarly, computation of the interaural time difference (ITD) requires knowledge of the precise timing of the stimulus. Consistent with this, low-level nuclei of birds and mammals implicated in ITD processing encode the ongoing phase of a stimulus. However, the brain areas that follow the binaural convergence for the computation of ITD show a reduced capacity for phase locking. In addition, we have shown that in the barn owl there is a pooling of ITD-responsive neurons to improve the reliability of ITD coding. Here we demonstrate that despite two stages of convergence and an effective loss of phase information, the auditory system of the anesthetized barn owl displays a graceful transition to an envelope coding that preserves the spectrotemporal information throughout the ITD pathway to the neurons of the core of the central nucleus of the inferior colliculus. PMID:17314241

  11. Temporal Map Formation in the Barn Owl's Brain

    NASA Astrophysics Data System (ADS)

    Leibold, Christian; Kempter, Richard; van Hemmen, J. Leo

    2001-12-01

    Barn owls provide an experimentally well-specified example of a temporal map, a neuronal representation of the outside world in the brain by means of time. Their laminar nucleus exhibits a place code of interaural time differences, a cue which is used to determine the azimuthal location of a sound stimulus, e.g., prey. We analyze a model of synaptic plasticity that explains the formation of such a representation in the young bird and show how in a large parameter regime a combination of local and nonlocal synaptic plasticity yields the temporal map as found experimentally. Our analysis includes the effect of nonlinearities as well as the influence of neuronal noise.

  12. Cross-correlation in the auditory coincidence detectors of owls.

    PubMed

    Fischer, Brian J; Christianson, G Björn; Peña, José Luis

    2008-08-01

    Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory. PMID:18685035

  13. Representation of interaural time difference in the central nucleus of the barn owl's inferior colliculus.

    PubMed

    Wagner, H; Takahashi, T; Konishi, M

    1987-10-01

    This paper investigates the role of the central nucleus of the barn owl's inferior colliculus in determination of the sound-source azimuth. The central nucleus contains many neurons that are sensitive to interaural time difference (ITD), the cue for azimuth in the barn owl. The response of these neurons varies in a cyclic manner with the ITD of a tone or noise burst. Response maxima recur at integer multiples of the period of the stimulating tone, or, if the stimulus is noise, at integer multiples of the period corresponding to the neuron's best frequency. Such neurons can signal, by means of their relative spike rate, the phase difference between the sounds reaching the left and right ears. Since an interaural phase difference corresponds to more than one ITD, these neurons represent ITD ambiguously. We call this phenomenon phase ambiguity. The central nucleus is tonotopically organized and its neurons are narrowly tuned to frequency. Neurons in an array perpendicular to isofrequency laminae form a physiological and anatomical unit; only one ITD, the array-specific ITD, activates all neurons in an array at the same relative level. We, therefore, may say that, in the central nucleus, an ITD is conserved in an array of neurons. Array-specific ITDs are mapped and encompass the entire auditory space of the barn owl. Individual space-specific neurons of the external nucleus, which receive inputs from a wide range of frequency channels (Knudsen and Konishi, 1978), are selective for a unique ITD. Space-specific neurons do not show phase ambiguity when stimulated with noise (Takahashi and Konishi, 1986). Space-specific neurons receive inputs from arrays that are selective for the same ITD. The collective response of the neurons in an array may be the basis for the absence of phase ambiguity in space-specific neurons. PMID:3668618

  14. Hearing impairment induces frequency-specific adjustments in auditory spatial tuning in the optic tectum of young owls.

    PubMed

    Gold, J I; Knudsen, E I

    1999-11-01

    Bimodal, auditory-visual neurons in the optic tectum of the barn owl are sharply tuned for sound source location. The auditory receptive fields (RFs) of these neurons are restricted in space primarily as a consequence of their tuning for interaural time differences and interaural level differences across broad ranges of frequencies. In this study, we examined the extent to which frequency-specific features of early auditory experience shape the auditory spatial tuning of these neurons. We manipulated auditory experience by implanting in one ear canal an acoustic filtering device that altered the timing and level of sound reaching the eardrum in a frequency-dependent fashion. We assessed the auditory spatial tuning at individual tectal sites in normal owls and in owls raised with the filtering device. At each site, we measured a family of auditory RFs using broadband sound and narrowband sounds with different center frequencies both with and without the device in place. In normal owls, the narrowband RFs for a given site all included a common region of space that corresponded with the broadband RF and aligned with the site's visual RF. Acute insertion of the filtering device in normal owls shifted the locations of the narrowband RFs away from the visual RF, the magnitude and direction of the shifts depending on the frequency of the stimulus. In contrast, in owls that were raised wearing the device, narrowband and broadband RFs were aligned with visual RFs so long as the device was in the ear but not after it was removed, indicating that auditory spatial tuning had been adaptively altered by experience with the device. The frequency tuning of tectal neurons in device-reared owls was also altered from normal. The results demonstrate that experience during development adaptively modifies the representation of auditory space in the barn owl's optic tectum in a frequency-dependent manner. PMID:10561399

  15. Barn Owl Productivity Response to Variability of Vole Populations.

    PubMed

    Pavluvčík, Petr; Poprach, Karel; Machar, Ivo; Losík, Jan; Gouveia, Ana; Tkadlec, Emil

    2015-01-01

    We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young) both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity) and vole numbers in both non-detrended and detrended data. At the districts' level, we explored whether the degree of synchrony (measured by the correlation coefficient) and the strength of the productivity response increase (measured by the regression coefficient) in areas with higher vole population variability measured by the s-index. We found that the owls' annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls' reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor's exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations. PMID:26709518

  16. The representation of sound localization cues in the barn owl's inferior colliculus.

    PubMed

    Singheiser, Martin; Gutfreund, Yoram; Wagner, Hermann

    2012-01-01

    The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation. PMID:22798945

  17. The representation of sound localization cues in the barn owl's inferior colliculus

    PubMed Central

    Singheiser, Martin; Gutfreund, Yoram; Wagner, Hermann

    2012-01-01

    The barn owl is a well-known model system for studying auditory processing and sound localization. This article reviews the morphological and functional organization, as well as the role of the underlying microcircuits, of the barn owl's inferior colliculus (IC). We focus on the processing of frequency and interaural time (ITD) and level differences (ILD). We first summarize the morphology of the sub-nuclei belonging to the IC and their differentiation by antero- and retrograde labeling and by staining with various antibodies. We then focus on the response properties of neurons in the three major sub-nuclei of IC [core of the central nucleus of the IC (ICCc), lateral shell of the central nucleus of the IC (ICCls), and the external nucleus of the IC (ICX)]. ICCc projects to ICCls, which in turn sends its information to ICX. The responses of neurons in ICCc are sensitive to changes in ITD but not to changes in ILD. The distribution of ITD sensitivity with frequency in ICCc can only partly be explained by optimal coding. We continue with the tuning properties of ICCls neurons, the first station in the midbrain where the ITD and ILD pathways merge after they have split at the level of the cochlear nucleus. The ICCc and ICCls share similar ITD and frequency tuning. By contrast, ICCls shows sigmoidal ILD tuning which is absent in ICCc. Both ICCc and ICCls project to the forebrain, and ICCls also projects to ICX, where space-specific neurons are found. Space-specific neurons exhibit side peak suppression in ITD tuning, bell-shaped ILD tuning, and are broadly tuned to frequency. These neurons respond only to restricted positions of auditory space and form a map of two-dimensional auditory space. Finally, we briefly review major IC features, including multiplication-like computations, correlates of echo suppression, plasticity, and adaptation. PMID:22798945

  18. Neural maps of head movement vector and speed in the optic tectum of the barn owl.

    PubMed

    du Lac, S; Knudsen, E I

    1990-01-01

    1. This study investigates the contribution of the optic tectum in encoding the metric and kinetic properties of saccadic head movements. We describe the dependence of head movement components (size, direction, and speed) on parameters of focal electrical stimulation of the barn owl's optic tectum. The results demonstrate that both the site and the amount of activity can influence head saccade metrics and kinetics. 2. Electrical stimulation of the owl's optic tectum elicited rapid head movements that closely resembled natural head movements made in response to auditory and visual stimuli. The kinetics of these movements were similar to those of saccadic eye movements in primates. 3. The metrics and kinetics of head movements evoked from any given site depended strongly on stimulus parameters. Movement duration increased with stimulus duration, as did movement size. Both the size and the maximum speed of the movement increased to a plateau value with current strength and pulse rate. Movement direction was independent of stimulus parameters. 4. The initial position of the head influenced the size, direction, and speed of movements evoked from any given site: when the owl initially faced away from the direction of the induced saccade, the movement was larger and faster than when the owl initially faced toward the direction of the induced movement. 5. A characteristic movement of particular size, direction, and speed could be defined for each site by the use of stimulation parameters that elicited plateau movements with normal kinetic profiles and by having the head initially centered on the body. The size, direction, and speed of these characteristic movements varied systematically with the site of stimulation across the tectum. The map of head movement vector (size and direction) was aligned with the sensory representations of visual and auditory space, such that the movement elicited from a given site when the owl initially faced straight ahead brought the owl to

  19. Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-01

    Interaural phase and intensity are cues by which the barn owl determines, respectively, the azimuth and elevation of a sound source. Physiological studies indicate that phase and intensity are processed independently in the auditory brainstem of the barn owl. The phases of spectral components of a sound are encoded in nucleus magnocellularis (NM), one of the two cochlear nuclei. NM projects solely and bilaterally to nucleus laminaris (NL), wherein interaural phase difference is computed. The other cochlear nucleus, nucleus angularis (NA), encodes the amplitudes of spectral components of sounds. We report here the projections of NA and NL to the lateral lemniscal nuclei of the barn owl. The lateral lemniscal complex comprises nucleus olivaris superior (SO); nucleus lemnisci lateralis, pars ventralis (LLv); and nucleus ventralis lemnisci lateralis (VLV). At caudal levels, VLV may be divided into a posterior (VLVp) and an anterior (VLVa) subdivision on cytoarchitectonic grounds. At rostral levels, the cytoarchitectural differences diminish and the boundaries between the two subdivisions become obscured. Likewise, our data from anterograde tracing studies suggest that at caudal levels the terminal fields of NA and NL remain confined to VLVp and VLVa, respectively. They merge, however, at rostral levels. The data also suggest that NL projects to the medial portion of the ipsilateral SO and that NA projects bilaterally to all parts of SO and LLv. Studies with the retrograde transport of horseradish peroxidase confirm these projections. PMID:2463287

  20. Effects of binaural decorrelation on neural and behavioral processing of interaural level differences in the barn owl (Tyto alba).

    PubMed

    Egnor, S E

    2001-10-01

    The effect of binaural decorrelation on the processing of interaural level difference cues in the barn owl (Tyto alba) was examined behaviorally and electrophysiologically. The electrophysiology experiment measured the effect of variations in binaural correlation on the first stage of interaural level difference encoding in the central nervous system. The responses of single neurons in the posterior part of the ventral nucleus of the lateral lemniscus were recorded to stimulation with binaurally correlated and binaurally uncorrelated noise. No significant differences in interaural level difference sensitivity were found between conditions. Neurons in the posterior part of the ventral nucleus of the lateral lemniscus encode the interaural level difference of binaurally correlated and binaurally uncorrelated noise with equal accuracy and precision. This nucleus therefore supplies higher auditory centers with an undegraded interaural level difference signal for sound stimuli that lack a coherent interaural time difference. The behavioral experiment measured auditory saccades in response to interaural level differences presented in binaurally correlated and binaurally uncorrelated noise. The precision and accuracy of sound localization based on interaural level difference was reduced but not eliminated for binaurally uncorrelated signals. The observation that barn owls continue to vary auditory saccades with the interaural level difference of binaurally uncorrelated stimuli suggests that neurons that drive head saccades can be activated by incomplete auditory spatial information. PMID:11763957

  1. Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl.

    PubMed

    Geduhn, Anke; Esther, Alexandra; Schenke, Detlef; Gabriel, Doreen; Jacob, Jens

    2016-02-15

    Worldwide, small rodents are main prey items for many mammalian and avian predators. Some rodent species have pest potential and are managed with anticoagulant rodenticides (ARs). ARs are consumed by target and non-target small mammals and can lead to secondary exposure of predators. The development of appropriate risk mitigation strategies is important and requires detailed knowledge of AR residue pathways. From July 2011 to October 2013 we collected 2397 regurgitated barn owl (Tyto alba) pellets to analyze diet composition of owls on livestock farms in western Germany. 256 of them were fresh pellets that were collected during brodifacoum baiting. Fresh pellets and 742 liver samples of small mammals that were trapped during baiting in the same area were analyzed for residues of ARs. We calculated exposure risk of barn owls to ARs by comparing seasonal diet composition of owls with AR residue patterns in prey species. Risk was highest in autumn, when barn owls increasingly preyed on Apodemus that regularly showed AR residues, sometimes at high concentrations. The major prey species (Microtus spp.) that was consumed most frequently in summer had less potential to contribute to secondary poisoning of owls. There was no effect of AR application on prey composition. We rarely detected ARs in pellets (2 of 256 samples) but 13% of 38 prey individuals in barn owl nests were AR positive and substantiated the expected pathway. AR residues were present in 55% of 11 barn owl carcasses. Fluctuation in non-target small mammal abundance and differences in AR residue exposure patterns in prey species drives exposure risk for barn owls and probably other predators of small mammals. Exposure risk could be minimized through spatial and temporal adaption of AR applications (avoiding long baiting and non-target hot spots at farms) and through selective bait access for target animals. PMID:26657360

  2. Representation of binaural spatial cues in field L of the barn owl forebrain.

    PubMed

    Cohen, Y E; Knudsen, E I

    1998-02-01

    This study examined the representation of spatial information in the barn owl Field L, the first telencephalic processing stage of the classical auditory pathway. Field L units were recorded extracellularly, and their responses to dichotically presented interaural time differences (ITD) and interaural level differences (ILD) were tested. We observed a variety of tuning profiles in Field L. Some sites were not sensitive to ITD or ILD. Other sites, especially those in the high-frequency region, were highly selective for values of ITD and ILD. These sites had multipeaked (commonly called "phase ambiguous") ITD tuning profiles and were tuned for a single value of ILD. The tuning properties of these sites are similar to those seen in the lateral shell of the central nucleus of the inferior colliculus. Although the tuning properties of Field L sites were similar to those observed in the inferior colliculus, the functional organization of this spatial information was fundamentally different. Whereas in the inferior colliculus spatial information is organized into global topographics maps, in Field L spatial information is organized into local clusters, with sites having similar binaural tuning properties grouped together. The representation of binaural cues in Field L suggests that it is involved in auditory space processing but at a lower level of information processing than the auditory archistriatum, a forebrain area that is specialized for processing spatial information, and that the levels of information processing in the forebrain space processing pathway are remarkably similar to those in the well-known midbrain space processing pathway. PMID:9463449

  3. Barn Owl Productivity Response to Variability of Vole Populations

    PubMed Central

    Pavluvčík, Petr; Poprach, Karel; Machar, Ivo; Losík, Jan; Gouveia, Ana; Tkadlec, Emil

    2015-01-01

    We studied the response of the barn owl annual productivity to the common vole population numbers and variability to test the effects of environmental stochasticity on their life histories. Current theory predicts that temporal environmental variability can affect long-term nonlinear responses (e.g., production of young) both positively and negatively, depending on the shape of the relationship between the response and environmental variables. At the level of the Czech Republic, we examined the shape of the relationship between the annual sum of fledglings (annual productivity) and vole numbers in both non-detrended and detrended data. At the districts’ level, we explored whether the degree of synchrony (measured by the correlation coefficient) and the strength of the productivity response increase (measured by the regression coefficient) in areas with higher vole population variability measured by the s-index. We found that the owls’ annual productivity increased linearly with vole numbers in the Czech Republic. Furthermore, based on district data, we also found that synchrony between dynamics in owls’ reproductive output and vole numbers increased with vole population variability. However, the strength of the response was not affected by the vole population variability. Additionally, we have shown that detrending remarkably increases the Taylor’s exponent b relating variance to mean in vole time series, thereby reversing the relationship between the coefficient of variation and the mean. This shift was not responsible for the increased synchrony with vole population variability. Instead, we suggest that higher synchrony could result from high food specialization of owls on the common vole in areas with highly fluctuating vole populations. PMID:26709518

  4. In vivo Recordings from Low-Frequency Nucleus Laminaris in the Barn Owl.

    PubMed

    Palanca-Castan, Nicolas; Köppl, Christine

    2015-01-01

    Localization of sound sources relies on 2 main binaural cues: interaural time differences (ITD) and interaural level differences. ITD computing is first carried out in tonotopically organized areas of the brainstem nucleus laminaris (NL) in birds and the medial superior olive (MSO) in mammals. The specific way in which ITD are derived was long assumed to conform to a delay line model in which arrays of systematically arranged cells create a representation of auditory space, with different cells responding maximally to specific ITD. This model conforms in many details to the particular case of the high-frequency regions (above 3 kHz) in the barn owl NL. However, data from recent studies in mammals are not consistent with a delay line model. A new model has been suggested in which neurons are not topographically arranged with respect to ITD and coding occurs through assessment of the overall response of 2 large neuron populations – 1 in each brainstem hemisphere. Currently available data comprise mainly low-frequency (<1,500 Hz) recordings in the case of mammals and higher-frequency recordings in the case of birds. This makes it impossible to distinguish between group-related adaptations and frequency-related adaptations. Here we report the first comprehensive data set from low-frequency NL in the barn owl and compare it to data from other avian and mammalian studies. Our data are consistent with a delay line model, so differences between ITD processing systems are more likely to have originated through divergent evolution of different vertebrate groups. PMID:26182962

  5. Multiple paternity in polyandrous barn owls (Tyto alba).

    PubMed

    Henry, Isabelle; Antoniazza, Sylvain; Dubey, Sylvain; Simon, Céline; Waldvogel, Céline; Burri, Reto; Roulin, Alexandre

    2013-01-01

    In polyandrous species females produce successive clutches with several males. Female barn owls (Tyto alba) often desert their offspring and mate to produce a 2(nd) annual brood with a second male. We tested whether copulating during chick rearing at the 1(st) annual brood increases the male's likelihood to obtain paternity at the 2(nd) annual breeding attempt of his female mate in case she deserts their brood to produce a second brood with a different male. Using molecular paternity analyses we found that 2 out of 26 (8%) second annual broods of deserting females contained in total 6 extra-pair young out of 15 nestlings. These young were all sired by the male with whom the female had produced the 1(st) annual brood. In contrast, none of the 49 1(st) annual breeding attempts (219 offspring) and of the 20 2(nd) annual breeding attempts (93 offspring) of non-deserting females contained extra-pair young. We suggest that female desertion can select male counter-strategies to increase paternity and hence individual fitness. Alternatively, females may copulate with the 1(st) male to derive genetic benefits, since he is usually of higher quality than the 2(nd) male which is commonly a yearling individual. PMID:24244622

  6. Sleep and vigilance linked to melanism in wild barn owls.

    PubMed

    Scriba, M F; Rattenborg, N C; Dreiss, A N; Vyssotski, A L; Roulin, A

    2014-10-01

    Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration. PMID:25056556

  7. The barn owl wing: an inspiration for silent flight in the aviation industry?

    NASA Astrophysics Data System (ADS)

    Bachmann, Thomas; Mühlenbruch, Georg; Wagner, Hermann

    2011-04-01

    Barn owls are specialists in prey detection using acoustic information. The flight apparatus of this bird of prey is most efficiently adapted to the hunting behavior by reducing flight noise. An understanding of the underlying mechanisms owls make use of could help minimize the noise disturbances in airport or wind power plant neighborhood. Here, we characterize wings of barn owls in terms of an airfoil as a role model for studying silent flight. This characterization includes surface and edge specialization (serrations, fringes) evolved by the owl. Furthermore, we point towards possible adaptations of either noise suppression or air flow control that might be an inspiration for the construction of modern aircraft. Three-dimensional imaging techniques such as surface digitizing, computed tomography and confocal laser scanning microscopy were used to investigate the wings and feathers in high spatial resolution. We show that wings of barn owls are huge in relation to their body mass resulting in a very low wing loading which in turn enables a slow flight and an increased maneuverability. Profiles of the wing are highly cambered and anteriorly thickened, especially at the proximal wing, leading to high lift production during flight. However, wind tunnel experiments showed that the air flow tends to separate at such wing configurations, especially at low-speed flight. Barn owls compensated this problem by evolving surface and edge modifications that stabilize the air flow. A quantitative three-dimensionally characterization of some of these structures is presented.

  8. Tuning Neuronal Hardware with Microsecond Precision: Sound Localization in the Barn Owl

    NASA Astrophysics Data System (ADS)

    van Hemmen, J. Leo

    1998-03-01

    In auditory and electrosensory neuronal systems, there seems to exist an unresolved paradox: They encode behaviorally relevant signals in the range of a few microseconds with neurons that are at least one order of magnitude slower. The barn owl's auditory system is a prominent example that may serve to provide a solution(W. Gerstner, R. Kempter, J.L. van Hemmen, and H. Wagner, Nature 383) (1996) 76--78 to the above paradox. First, neuronal output is much more accurate than the input, phprovided the presynaptic spikes arrive coherently on the average -- as they do in the adult animal. Second, this coherence in signal arrival times can be attained through unsupervised Hebbian learning (`tuning') during ontogenetic development. The learning rule governing the strength of a synapse is based on the precise timing of input as compared to output spikes. Third, the learning rule also selects the correct delays from two independent groups of input, for example, from the left and right ear and, thus, can explain the tuning to interaural time differences in the microsecond range that underlies sound localization. The relation to stochastic resonance is indicated.

  9. The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl.

    PubMed

    Baxter, Caitlin S; Nelson, Brian S; Takahashi, Terry T

    2013-02-01

    Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls (Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643-655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map. PMID:23175801

  10. The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl

    PubMed Central

    Baxter, Caitlin S.; Takahashi, Terry T.

    2013-01-01

    Echoes and sounds of independent origin often obscure sounds of interest, but echoes can go undetected under natural listening conditions, a perception called the precedence effect. How does the auditory system distinguish between echoes and independent sources? To investigate, we presented two broadband noises to barn owls (Tyto alba) while varying the similarity of the sounds' envelopes. The carriers of the noises were identical except for a 2- or 3-ms delay. Their onsets and offsets were also synchronized. In owls, sound localization is guided by neural activity on a topographic map of auditory space. When there are two sources concomitantly emitting sounds with overlapping amplitude spectra, space map neurons discharge when the stimulus in their receptive field is louder than the one outside it and when the averaged amplitudes of both sounds are rising. A model incorporating these features calculated the strengths of the two sources' representations on the map (B. S. Nelson and T. T. Takahashi; Neuron 67: 643–655, 2010). The target localized by the owls could be predicted from the model's output. The model also explained why the echo is not localized at short delays: when envelopes are similar, peaks in the leading sound mask corresponding peaks in the echo, weakening the echo's space map representation. When the envelopes are dissimilar, there are few or no corresponding peaks, and the owl localizes whichever source is predicted by the model to be less masked. Thus the precedence effect in the owl is a by-product of a mechanism for representing multiple sound sources on its map. PMID:23175801

  11. Low glucokinase activity and high rates of gluconeogenesis contribute to hyperglycemia in barn owls (Tyto alba) after a glucose challenge.

    PubMed

    Myers, M R; Klasing, K C

    1999-10-01

    Barn owls (Tyto alba) and leghorn chickens were fed a low protein high glucose (33.44% protein, 23.67% glucose) or a high protein low glucose (55.35% protein, 1.5% glucose) diet. After an intravenous glucose infusion, the peak in plasma glucose was not affected by diet in either species and was 22.6 and 39.4 mmol/L in chickens and barn owls, respectively. Glucose levels returned to normal within 30 min in chickens, but remained elevated for 3.5 h in barn owls. An oral glucose challenge also resulted in greater and longer hyperglycemia in barn owls than in chickens. The activities of hepatic glucokinase, malic enzyme and phosphoenolpyruvate carboxykinase of barn owls were 16, 35, and 333% of the levels in chickens. Malic enzyme (P = 0.024) was less affected by dietary glucose level in barn owls than in chickens. Cultured hepatocytes from chickens produced 43% more glucose from lactate than hepatocytes from barn owls and, conversely, barn owl hepatocytes produced 87% more glucose from threonine than chickens (P = 0.001). Gluconeogenesis from lactate was greatly suppressed by high media glucose in chicken hepatocytes but not in those of barn owls (P = 0.0001 for species by glucose level interaction). When threonine was the substrate, gluconeogenesis was suppressed by increased glucose in both species but to a greater relative extent in chickens (P = 0.007 for species by glucose level interaction). Owls were glucose intolerant at least in part because of low hepatic glucokinase activity and an inadequate suppression of gluconeogenesis in the presence of exogenous glucose, apparently because they evolved with large excesses of amino acids and limited glucose in their normal diet. PMID:10498765

  12. Distribution within the barn owl's inferior colliculus of neurons projecting to the optic tectum and thalamus.

    PubMed

    Arthur, Ben J

    2005-11-01

    Behavioral studies in barn owls indicate that both the optic tectum (OT) and the auditory arcopallium (AAr) mediate sound localization through the presence of neurons that respond only when sound comes from a circumscribed direction in space. The early stages of the computations leading to these so-called space-specific neurons are shared in a common brainstem pathway, which then splits at the level of the inferior colliculus (IC) such that the last computational stage is thought to be duplicated. The study presented here addresses whether the space-specific neurons in OT and AAr are indeed partially independent of each other by using anatomical methods more precise than those used in previous studies. Specifically, projection neurons in IC were retrogradely labelled with injections of fluorescein- and rhodamine-conjugated dextran amines into OT and nucleus ovoidalis (OV), the thalamic nucleus leading to AAr. By labelling the OT-projecting and OV-projecting neurons in the same owl, it was confirmed that neurons in IC project to either OV or OT but not both. However, although a segregation was generally observed between the medially positioned OV-projecting neurons and the laterally positioned OT-projecting neurons, there was also a slight overlap between the two populations. Moreover, electrolytic lesions demarcating physiological tuning properties indicate that many OV-projecting neurons are within the area containing space-specific neurons. These results highlight the need for more detailed studies elucidating the microcircuitry and corresponding physiology of IC, such as have been done in the cortices of the mammalian cerebellum and cerebrum. PMID:16175562

  13. Systematics and distribution of the giant fossil barn owls of the West Indies (Aves: Strigiformes: Tytonidae).

    PubMed

    Suárez, William; Olson, Storrs L

    2015-01-01

    After reviewing the systematics and distribution of the extinct West Indian taxa of Tytonidae (Tyto) larger than the living barn owl Tyto alba (Scopoli), we reached the following conclusions: (1) the species T. ostologa Wetmore (1922) is the only giant barn owl known so far from Hispaniola; (2) T. pollens Wetmore (1937) was a somewhat larger and even more robust representative of T. ostologa known from the Great Bahama Bank and Cuba; (3) the very rare species T. riveroi Arredondo (1972b) is here synonymized with T. pollens; (4) the smallest taxon of these giant barn owls is T. noeli Arredondo (1972a), which is widespread and abundant in Quaternary deposits of Cuba and is here reported for the first time from two cave deposits in Jamaica; (5) the only large barn owl named so far from the Lesser Antilles is T. neddi Steadman & Hilgartner (1999), which is here synonymized with T. noeli; (6) a new taxon from Cuba, T. cravesae new species, which in size approached the linear dimensions of T. ostologa, is named and described herein. PMID:26624114

  14. Neural Coding of Relational Invariance in Speech: Human Language Analogs to the Barn Owl.

    ERIC Educational Resources Information Center

    Sussman, Harvey M.

    1989-01-01

    The neuronal model shown to code sound-source azimuth in the barn owl by H. Wagner et al. in 1987 is used as the basis for a speculative brain-based human model, which can establish contrastive phonetic categories to solve the problem of perception "non-invariance." (SLD)

  15. Dynamic shifts in the owl's auditory space map predict moving sound location.

    PubMed

    Witten, Ilana B; Bergan, Joseph F; Knudsen, Eric I

    2006-11-01

    The optic tectum of the barn owl contains a map of auditory space. We found that, in response to moving sounds, the locations of receptive fields that make up the map shifted toward the approaching sound. The magnitude of the receptive field shifts increased systematically with increasing stimulus velocity and, therefore, was appropriate to compensate for sensory and motor delays inherent to auditory orienting behavior. Thus, the auditory space map is not static, but shifts adaptively and dynamically in response to stimulus motion. We provide a computational model to account for these results. Because the model derives predictive responses from processes that are known to occur commonly in neural networks, we hypothesize that analogous predictive responses will be found to exist widely in the central nervous system. This hypothesis is consistent with perceptions of stimulus motion in humans for many sensory parameters. PMID:17013379

  16. Through a barn owl's eyes: interactions between scene content and visual attention.

    PubMed

    Ohayon, Shay; Harmening, Wolf; Wagner, Hermann; Rivlin, Ehud

    2008-02-01

    In this study we investigated visual attention properties of freely behaving barn owls, using a miniature wireless camera attached to their heads. The tubular eye structure of barn owls makes them ideal subjects for this research since it limits their eye movements. Video sequences recorded from the owl's point of view capture part of the visual scene as seen by the owl. Automated analysis of video sequences revealed that during an active search task, owls repeatedly and consistently direct their gaze in a way that brings objects of interest to a specific retinal location (retinal fixation area). Using a projective model that captures the geometry between the eye and the camera, we recovered the corresponding location in the recorded images (image fixation area). Recording in various types of environments (aviary, office, outdoors) revealed significant statistical differences of low level image properties at the image fixation area compared to values extracted at random image patches. These differences are in agreement with results obtained in primates in similar studies. To investigate the role of saliency and its contribution to drawing the owl's attention, we used a popular bottom-up computational model. Saliency values at the image fixation area were typically greater than at random patches, yet were only 20% out of the maximal saliency value, suggesting a top-down modulation of gaze control. PMID:18066583

  17. Trends in North American small mammals found in common barn-owl (Tyto alba) dietary studies

    USGS Publications Warehouse

    Clark, D.R., Jr.; Bunck, C.M.

    1991-01-01

    Data on mammals were compiled from published studies of common barn-owl (Tyto alba) pellets. Mammalian composition of pellet samples was analyzed within geographic regions in regard to year, mean annual precipitation, latitude, and number of individual mammals in the sample. Percentages of individuals in pellets that were shrews increased whereas the percentages of rodents decreased with greater mean annual precipitation, especially in northern and western areas of North America. From the 1920s through 1980s, in northern and eastern areas the percentage of species that was shrews decreased, and in northern and central areas the percentage of individuals that was murid rats and mice increased. Human alterations of habitats during these seven decades are postulated to have caused changes in available small mammals, leading to changes in the barn-owl diet.

  18. Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl.

    PubMed

    Dreiss, Amélie N; Séchaud, Robin; Béziers, Paul; Villain, Nicolas; Genoud, Michel; Almasi, Bettina; Jenni, Lukas; Roulin, Alexandre

    2016-02-01

    Endothermic animals vary in their physiological ability to maintain a constant body temperature. Since melanin-based coloration is related to thermoregulation and energy homeostasis, we predict that dark and pale melanic individuals adopt different behaviours to regulate their body temperature. Young animals are particularly sensitive to a decrease in ambient temperature because their physiological system is not yet mature and growth may be traded-off against thermoregulation. To reduce energy loss, offspring huddle during periods of cold weather. We investigated in nestling barn owls (Tyto alba) whether body temperature, oxygen consumption and huddling were associated with melanin-based coloration. Isolated owlets displaying more black feather spots had a lower body temperature and consumed more oxygen than those with fewer black spots. This suggests that highly melanic individuals display a different thermoregulation strategy. This interpretation is also supported by the finding that, at relatively low ambient temperature, owlets displaying more black spots huddled more rapidly and more often than those displaying fewer spots. Assuming that spot number is associated with the ability to thermoregulate not only in Swiss barn owls but also in other Tytonidae, our results could explain geographic variation in the degree of melanism. Indeed, in the northern hemisphere, barn owls and allies are less spotted polewards than close to the equator, and in the northern American continent, barn owls are also less spotted in colder regions. If melanic spots themselves helped thermoregulation, we would have expected the opposite results. We therefore suggest that some melanogenic genes pleiotropically regulate thermoregulatory processes. PMID:26552377

  19. Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl.

    PubMed

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E

    2013-01-01

    Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation. PMID:24265615

  20. Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    Interaural time difference (ITD), or the difference in timing of a sound wave arriving at the two ears, is a fundamental cue for sound localization. A wide variety of animals have specialized neural circuits dedicated to the computation of ITDs. In the avian auditory brainstem, ITDs are encoded as the spike rates in the coincidence detector neurons of the nucleus laminaris (NL). NL neurons compare the binaural phase-locked inputs from the axons of ipsi- and contralateral nucleus magnocellularis (NM) neurons. Intracellular recordings from the barn owl's NL in vivo showed that tonal stimuli induce oscillations in the membrane potential. Since this oscillatory potential resembled the stimulus sound waveform, it was named the sound analog potential (Funabiki et al., 2011). Previous modeling studies suggested that a convergence of phase-locked spikes from NM leads to an oscillatory membrane potential in NL, but how presynaptic, synaptic, and postsynaptic factors affect the formation of the sound analog potential remains to be investigated. In the accompanying paper, we derive analytical relations between these parameters and the signal and noise components of the oscillation. In this paper, we focus on the effects of the number of presynaptic NM fibers, the mean firing rate of these fibers, their average degree of phase-locking, and the synaptic time scale. Theoretical analyses and numerical simulations show that, provided the total synaptic input is kept constant, changes in the number and spike rate of NM fibers alter the ITD-independent noise whereas the degree of phase-locking is linearly converted to the ITD-dependent signal component of the sound analog potential. The synaptic time constant affects the signal more prominently than the noise, making faster synaptic input more suitable for effective ITD computation. PMID:24265615

  1. Overt attention toward oriented objects in free-viewing barn owls

    PubMed Central

    Harmening, Wolf Maximilian; Orlowski, Julius; Ben-Shahar, Ohad; Wagner, Hermann

    2011-01-01

    Visual saliency based on orientation contrast is a perceptual product attributed to the functional organization of the mammalian brain. We examined this visual phenomenon in barn owls by mounting a wireless video microcamera on the owls’ heads and confronting them with visual scenes that contained one differently oriented target among similarly oriented distracters. Without being confined by any particular task, the owls looked significantly longer, more often, and earlier at the target, thus exhibiting visual search strategies so far demonstrated in similar conditions only in primates. Given the considerable differences in phylogeny and the structure of visual pathways between owls and humans, these findings suggest that orientation saliency has computational optimality in a wide variety of ecological contexts, and thus constitutes a universal building block for efficient visual information processing in general. PMID:21536886

  2. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain.

    PubMed

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. PMID:25531067

  3. Stretched and upside-down maps of auditory space in the optic tectum of blind-reared owls; acoustic basis and behavioral correlates.

    PubMed

    Knudsen, E I; Esterly, S D; du Lac, S

    1991-06-01

    Vision during early life plays an important role in calibrating sound localization behavior. This study investigates the effects of visual deprivation on sound localization and on the neural representation of auditory space. Nine barn owls were raised with eyelids sutured closed; one owl was congenitally anophthalmic. Data from these birds were compared with data from owls raised with normal visual experience. Sound localization behavior was significantly less precise in blind-reared owls than in normal owls. The scatter of localization errors was particularly large in elevation, though it was abnormally large in both dimensions. However, there was no systematic bias to the localization errors measured over a range of source locations. This indicates that the representation of auditory space is degraded in some way for blind-reared owls, but on average is properly calibrated. The spatial tuning of auditory neurons in the optic tectum was studied in seven of the blind-reared owls to assess the effects of early visual deprivation on the neural representation of auditory space. In normal owls, units in the optic tectum are sharply tuned for sound source location and are organized systematically according to the locations of their receptive fields to form a map of auditory space. In blind-reared owls, the following auditory properties were abnormal: (1) auditory tuning for source elevation was abnormally broad, (2) the progression of the azimuths and elevations of auditory receptive fields across the tectum was erratic, and (3) in five of the seven owls, the auditory representation of elevation was systematically stretched, and in the two others large portions of the representation of elevation were flipped upside down. The following unit properties were apparently unaffected by blind rearing: (1) the sharpness of tuning for sound source azimuth, (2) the orientation of the auditory representation of azimuth, and (3) the mutual alignment of the auditory and visual

  4. Neural maps of interaural time and intensity differences in the optic tectum of the barn owl.

    PubMed

    Olsen, J F; Knudsen, E I; Esterly, S D

    1989-07-01

    This report describes the binaural basis of the auditory space map in the optic tectum of the barn owl (Tyto alba). Single units were recorded extracellularly in ketamine-anesthetized birds. Unit tuning for interaural differences in timing and intensity of wideband noise was measured using digitally synthesized sound presented through earphones. Spatial receptive fields of the same units were measured with a free field sound source. Auditory units in the optic tectum are sharply tuned for both the azimuth and the elevation of a free field sound source. To determine the binaural cues that could be responsible for this spatial tuning, we measured in the ear canals the amplitude and phase spectra produced by a free field noise source and calculated from these measurements the interaural differences in time and intensity associated with each of 178 locations throughout the frontal hemisphere. For all frequencies, interaural time differences (ITDs) varied systematically and most strongly with source azimuth. The pattern of variation of interaural intensity differences (IIDs) depended on frequency. For low frequencies (below 4 kHz) IID varied primarily with source azimuth, whereas for high frequencies (above 5 kHz) IID varied primarily with source elevation. Tectal units were tuned for interaural differences in both time and intensity of dichotic stimuli. Changing either parameter away from the best value for the unit decreased the unit's response. The tuning of units to either parameter was sharp: the width of ITD tuning curves, measured at 50% of the maximum response with IID held constant (50% tuning width), ranged from 18 to 82 microsecs. The 50% tuning widths of IID tuning curves, measured with ITD held constant, ranged from 8 to 37 dB. For most units, tuning for ITD was largely independent of IID, and vice versa. A few units exhibited systematic shifts of the best ITD with changes in IID (or shifts of the best IID with changes in ITD); for these units, a change in

  5. Bidirectional regulation of the cAMP response element binding protein encodes spatial map alignment in prism-adapting barn owls.

    PubMed

    Nichols, Grant S; DeBello, William M

    2008-10-01

    The barn owl midbrain contains mutually aligned maps of auditory and visual space. Throughout life, map alignment is maintained through the actions of an instructive signal that encodes the magnitude of auditory-visual mismatch. The intracellular signaling pathways activated by this signal are unknown. Here we tested the hypothesis that CREB (cAMP response element-binding protein) provides a cell-specific readout of instructive information. Owls were fitted with prismatic or control spectacles and provided rich auditory-visual experience: hunting live mice. CREB activation was analyzed within 30 min of hunting using phosphorylation state-specific CREB (pCREB) and CREB antibodies, confocal imaging, and immunofluorescence measurements at individual cell nuclei. In control owls or prism-adapted owls, which experience small instructive signals, the frequency distributions of pCREB/CREB values obtained for cell nuclei within the external nucleus of the inferior colliculus (ICX) were unimodal. In contrast, in owls adapting to prisms or readapting to normal conditions, the distributions were bimodal: certain cells had received a signal that positively regulated CREB and, by extension, transcription of CREB-dependent genes, whereas others received a signal that negatively regulated it. These changes were restricted to the subregion of the inferior colliculus that received optically displaced input, the rostral ICX, and were not evident in the caudal ICX or central nucleus. Finally, the topographic pattern of CREB regulation was patchy, not continuous, as expected from the actions of a topographically precise signal encoding discrete events. These results support a model in which the magnitude of CREB activation within individual cells provides a readout of the instructive signal that guides plasticity and learning. PMID:18829948

  6. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence

    PubMed Central

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    Abstract In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  7. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence.

    PubMed

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  8. Organochlorine residues, eggshell thickness, and nest success in barn owls from the Chesapeake Bay

    USGS Publications Warehouse

    Klaas, E.E.; Wiemeyer, Stanley N.; Ohlendorf, H.M.; Swineford, D.M.

    1978-01-01

    Eggs of barn owls (Tyto alba) were collected from 18 nests in offshore duck blinds on the Maryland side of the lower Potomac River estuary in 1972 and 1973 and analyzed for organochlorine residues. DDE was found in 100% of the clutches, PCBs in 89%, and dieldrin in 78%. Eggshell thickness was inversely correlated with concentrations of DDE, DDD, and dieldrin residues. Six of the 18 clutches had mean DDE residues above 5 ppm, and eggshell thickness in these six clutches was significantly less (P < 0.001) than in the other 12 clutches. The owls produced 1.7 young per active nest in 1973. This rate is slightly below the reproductive rate needed to maintain a stable population. An estimated 15% of the population carried concentrations of organochlorine residues that may have been detrimental to their reproduction. Passerine birds, taken extensively as food by a small proportion of the population, are believed to have been the source of elevated concentrations of organochlorines in these barn owls.

  9. Sensitive and critical periods for visual calibration of sound localization by barn owls.

    PubMed

    Knudsen, E I; Knudsen, P F

    1990-01-01

    This study describes developmental changes in the capacity of owls to adjust sound localization in response to chronic prismatic displacement of the visual field and to recover accurate sound localization following the restoration of normal vision. Matched, binocular displacing prisms were mounted over the eyes of 19 barn owls (Tyto alba) beginning at ages ranging from 10 to 272 d. In nearly all cases, the visual field was shifted 23 degrees to the right. Sound localization was assessed on the basis of head orientations to sound sources, measured in a darkened sound chamber with a search coil system. Chronic exposure to a displaced visual field caused the owls to alter sound localization in the direction of the visual field displacement, thereby inducing a sound-localization error. The size of the sound-localization error that resulted depended on the age of the animal when prism experience began. Maximal errors of about 20 degrees were induced only when prism experience began by 21 d of age. As prism experience began at later ages, the magnitude of induced errors decreased. A bird that wore prisms beginning at 102 d of age, altered sound localization by only 6 degrees. An adult owl, when exposed chronically to a displaced visual field, altered sound localization by about 3 degrees. We refer to the early period in life when displaced vision induces exceptionally large sound-localization errors (relative to those induced in the adult) as a sensitive period. The capacity to recover accurate sound localization following restoration of normal vision was tested in 7 owls that had been raised wearing prisms. Four owls that had prisms removed by 182 d of age recovered accurate localization rapidly (over a period of weeks), whereas 3 owls that were older when the prisms were removed did not recover accurate localization when tested for up to 7 months after prism removal. Adjustment of sound localization slowed greatly or ceased at about 200 days of age, referred to here as

  10. Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia

    PubMed Central

    Bachmann, Thomas; Klän, Stephan; Baumgartner, Werner; Klaas, Michael; Schröder, Wolfgang; Wagner, Hermann

    2007-01-01

    Background Owls are known for their silent flight. Even though there is some information available on the mechanisms that lead to a reduction of noise emission, neither the morphological basis, nor the biological mechanisms of the owl's silent flight are known. Therefore, we have initiated a systematic analysis of wing morphology in both a specialist, the barn owl, and a generalist, the pigeon. This report presents a comparison between the feathers of the barn owl and the pigeon and emphasise the specific characteristics of the owl's feathers on macroscopic and microscopic level. An understanding of the features and mechanisms underlying this silent flight might eventually be employed for aerodynamic purposes and lead to a new wing design in modern aircrafts. Results A variety of different feathers (six remiges and six coverts), taken from several specimen in either species, were investigated. Quantitative analysis of digital images and scanning electron microscopy were used for a morphometric characterisation. Although both species have comparable body weights, barn owl feathers were in general larger than pigeon feathers. For both species, the depth and the area of the outer vanes of the remiges were typically smaller than those of the inner vanes. This difference was more pronounced in the barn owl than in the pigeon. Owl feathers also had lesser radiates, longer pennula, and were more translucent than pigeon feathers. The two species achieved smooth edges and regular surfaces of the vanes by different construction principles: while the angles of attachment to the rachis and the length of the barbs was nearly constant for the barn owl, these parameters varied in the pigeon. We also present a quantitative description of several characteristic features of barn owl feathers, e.g., the serrations at the leading edge of the wing, the fringes at the edges of each feather, and the velvet-like dorsal surface. Conclusion The quantitative description of the feathers and

  11. Energy metabolism and body temperature of barn owls fasting in the cold.

    PubMed

    Thouzeau, C; Duchamp, C; Handrich, Y

    1999-01-01

    Energetic adaptation to fasting in the cold has been investigated in a nocturnal raptor, the barn owl (Tyto alba), during winter. Metabolic rate and body temperature (Tb) were monitored in captive birds, (1) after acute exposure to different ambient temperatures (Ta), and (2) during a prolonged fast in the cold (4 degrees C), to take into account the three characteristic phases of body fuel utilization that occur during a long-term but reversible fast. In postabsorptive birds, metabolic rate in the thermoneutral zone was 4. 1+/-0.1 W kg-1 and increased linearly below a lower critical temperature of 23 degrees C. Metabolic rate was 70% above basal at +4 degrees C Ta. Wet thermal conductance was 0.22 W kg-1 degrees C-1. During fasting in the cold, the mass-specific resting metabolic rate decreased by 16% during the first day (phase I) and remained constant thereafter. The amplitude of the daily rhythm in Tb was only moderately increased during phase II, with a slight lowering (0. 6 degrees C) in minimal diurnal Tb, but rose markedly in phase III with a larger drop (1.4 degrees C) in minimal diurnal Tb. Refeeding the birds ended phase III and reversed the observed changes. These results indicate that diurnal hypothermia may be used in long-term fasting barn owls and could be triggered by a threshold of body lipid depletion, according to the shift from lipid to protein fuel metabolism occurring at the phase II/phase III transition. The high cost of regulatory thermogenesis and the limited use of hypothermia during fasting may contribute to the high mortality of barn owls during winter. PMID:10068620

  12. Leap and strike kinetics of an acoustically 'hunting' barn owl (Tyto alba).

    PubMed

    Usherwood, James R; Sparkes, Emily L; Weller, Renate

    2014-09-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting 'strike' onto an acoustically targeted - and potentially entirely hidden - prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. PMID:24948629

  13. Inner vane fringes of barn owl feathers reconsidered: morphometric data and functional aspects.

    PubMed

    Bachmann, Thomas; Wagner, Hermann; Tropea, Cameron

    2012-07-01

    It is a challenge to understand how barn owls (Tyto alba) reduce noise during flight to be able to hunt small mammals by audition. Several specializations of the wing and the wing feathers have been implicated in noise reduction. What has been overlooked so far are the fringes at the inner vanes of remiges. We demonstrated, by using precise imaging techniques combined with morphometric measurements and air-flow studies, that these fringes merge into neighboring feather vanes by gliding into the grooves at the lower wing surface that are formed by parallel-oriented barb shafts. The connection of adjacent feathers results in a smooth lower wing surface and thus reduces sharp and noisy edges. This finding sheds new light on the mechanisms underlying noise reduction of flying owls. PMID:22471670

  14. Inner vane fringes of barn owl feathers reconsidered: morphometric data and functional aspects

    PubMed Central

    Bachmann, Thomas; Wagner, Hermann; Tropea, Cameron

    2012-01-01

    It is a challenge to understand how barn owls (Tyto alba) reduce noise during flight to be able to hunt small mammals by audition. Several specializations of the wing and the wing feathers have been implicated in noise reduction. What has been overlooked so far are the fringes at the inner vanes of remiges. We demonstrated, by using precise imaging techniques combined with morphometric measurements and air-flow studies, that these fringes merge into neighboring feather vanes by gliding into the grooves at the lower wing surface that are formed by parallel-oriented barb shafts. The connection of adjacent feathers results in a smooth lower wing surface and thus reduces sharp and noisy edges. This finding sheds new light on the mechanisms underlying noise reduction of flying owls. PMID:22471670

  15. Site of auditory plasticity in the brain stem (VLVp) of the owl revealed by early monaural occlusion.

    PubMed

    Mogdans, J; Knudsen, E I

    1994-12-01

    1. The optic tectum of the barn owl contains a physiological map of interaural level difference (ILD) that underlies, in part, its map of auditory space. Monaural occlusion shifts the range of ILDs experienced by an animal and alters the correspondence of ILDs with source locations. Chronic monaural occlusion during development induces an adaptive shift in the tectal ILD map that compensates for the effects of the earplug. The data presented in this study indicate that one site of plasticity underlying this adaptive adjustment is in the posterior division of the ventral nucleus of the lateral lemniscus (VLVp), the first site of ILD comparison in the auditory pathway. 2. Single and multiple unit sites were recorded in the optic tecta and VLVps of ketamine-anesthetized owls. The owls were raised from 4 wk of age with one ear occluded with an earplug. Auditory testing, using digitally synthesized dichotic stimuli, was carried out 8-16 wk later with the earplug removed. The adaptive adjustment in ILD coding in each bird was quantified as the shift from normal ILD tuning measured in the optic tectum. Evidence of adaptive adjustment in the VLVp was based on statistical differences between the VLVp's ipsilateral and contralateral to the occluded ear in the sensitivity of units to excitatory-ear and inhibitory-ear stimulation. 3. The balance of excitatory to inhibitory influences on VLVp units was shifted in the adaptive direction in six out of eight owls. In three of these owls, adaptive differences in inhibition, but not in excitation, were found. For this group of owls, the patterns of response properties across the two VLVps can only be accounted for by plasticity in the VLVp. For the other three owls, the possibility that the difference between the two VLVps resulted from damage to one of the VLVps could not be eliminated, and for one of these, plasticity at a more peripheral site (in the cochlea or cochlear nucleus) could also explain the data. In the remaining two

  16. Nestling barn owls assess short-term variation in the amount of vocally competing siblings.

    PubMed

    Ruppli, Charlène A; Dreiss, Amélie N; Roulin, Alexandre

    2013-11-01

    Assessing the amount of rivals is crucial to optimally adjust investment into a contest. If laboratory animals show numerical abilities, little is known about the ecological implications particularly in young animals. The two to nine barn owl (Tyto alba) siblings vocally compete for priority of access to food resources before parents actually deliver them. In dyads, the individual that vocalizes at the highest rate in the absence of parents deters its siblings from competing for next delivered prey. We tested the novel hypothesis that to optimally adjust vocal investment, barn owl nestlings assess how many of their siblings are currently competing. To singleton owlets, we broadcasted a fixed global number of calls emitted by one, two or four pre-recorded unfamiliar nestlings. We could thus distinguish the independent effect on singletons' vocal behavior of the global number of calls produced by a brood from the number of competitors that produced these calls. Overall, nestlings retreated more from vocal contest when facing more competitors. However, in front of one highly motivated competitor, nestlings refrained from vocalizing to a larger extent than when competing against more but less motivated individuals. Therefore, young animals assess variation in the number of currently competing siblings based on individual-specific vocal cues. PMID:23604690

  17. Noise reduction of coincidence detector output by the inferior colliculus of the barn owl.

    PubMed

    Christianson, G Björn; Peña, José Luis

    2006-05-31

    A recurring theme in theoretical work is that integration over populations of similarly tuned neurons can reduce neural noise. However, there are relatively few demonstrations of an explicit noise reduction mechanism in a neural network. Here we demonstrate that the brainstem of the barn owl includes a stage of processing apparently devoted to increasing the signal-to-noise ratio in the encoding of the interaural time difference (ITD), one of two primary binaural cues used to compute the position of a sound source in space. In the barn owl, the ITD is processed in a dedicated neural pathway that terminates at the core of the inferior colliculus (ICcc). The actual locus of the computation of the ITD is before ICcc in the nucleus laminaris (NL), and ICcc receives no inputs carrying information that did not originate in NL. Unlike in NL, the rate-ITD functions of ICcc neurons require as little as a single stimulus presentation per ITD to show coherent ITD tuning. ICcc neurons also displayed a greater dynamic range with a maximal difference in ITD response rates approximately double that seen in NL. These results indicate that ICcc neurons perform a computation functionally analogous to averaging across a population of similarly tuned NL neurons. PMID:16738236

  18. Sensitivity to spectral interaural intensity difference cues in space-specific neurons of the barn owl.

    PubMed

    Arthur, B J

    2004-02-01

    Barn owls use interaural intensity differences to localize sounds in the vertical plane. At a given elevation the magnitude of the interaural intensity difference cue varies with frequency, creating an interaural intensity difference spectrum of cues which is characteristic of that direction. To test whether space-specific cells are sensitive to spectral interaural intensity difference cues, pure-tone interaural intensity difference tuning curves were taken at multiple different frequencies for single neurons in the external nucleus of the inferior colliculus. For a given neuron, the interaural intensity differences eliciting the maximum response (the best interaural intensity differences) changed with the frequency of the stimulus by an average maximal difference of 9.4+/-6.2 dB. The resulting spectral patterns of these neurally preferred interaural intensity differences exhibited a high degree of similarity to the acoustic interaural intensity difference spectra characteristic of restricted regions in space. Compared to stimuli whose interaural intensity difference spectra matched the preferred spectra, stimuli with inverted spectra elicited a smaller response, showing that space-specific neurons are sensitive to the shape of the spectrum. The underlying mechanism is an inhibition for frequency-specific interaural intensity differences which differ from the preferred spectral pattern. Collectively, these data show that space-specific neurons are sensitive to spectral interaural intensity difference cues and support the idea that behaving barn owls use such cues to precisely localize sounds. PMID:14669025

  19. A pathway for predation in the brain of the barn owl (Tyto alba)

    PubMed Central

    Wild, J. M.; Kubke, M. F.; Peña, J. L.

    2008-01-01

    The Wulst of birds, which is generally considered homologous with the isocortex of mammals, comprises an elevation on the dorsum of the telencephalon that is particularly prominent in predatory species, especially those with large, frontally placed eyes, such as owls. The Wulst, therefore, is largely visual, but a relatively small rostral portion is somatosensory in nature. In barn owls this rostral somatosensory part of the Wulst forms a unique physical protuberance dedicated to the representation of the contralateral claw. Here we investigate whether the input to this ‘claw area’ arises from dorsal thalamic neurons that, in turn, receive their somatosensory input from the gracile nucleus. Following injections of biotinylated dextran amine into the gracile nucleus and cholera toxin B-chain into the claw area, terminations from the former and retrogradely labeled neurons from the latter overlapped substantially in the thalamic nucleus dorsalis intermedius ventralis anterior. These results indicate the existence in this species of a ‘classical’ trisynaptic somatosensory pathway from the body periphery to the telencephalic Wulst, via the dorsal thalamus, one that is likely involved in the barn owl’s predatory behavior. The results are discussed in the context of somatosensory projections, primarily in this and other avian species. PMID:18461603

  20. Spatial cue reliability drives frequency tuning in the barn Owl's midbrain

    PubMed Central

    Cazettes, Fanny; Fischer, Brian J; Pena, Jose L

    2014-01-01

    The robust representation of the environment from unreliable sensory cues is vital for the efficient function of the brain. However, how the neural processing captures the most reliable cues is unknown. The interaural time difference (ITD) is the primary cue to localize sound in horizontal space. ITD is encoded in the firing rate of neurons that detect interaural phase difference (IPD). Due to the filtering effect of the head, IPD for a given location varies depending on the environmental context. We found that, in barn owls, at each location there is a frequency range where the head filtering yields the most reliable IPDs across contexts. Remarkably, the frequency tuning of space-specific neurons in the owl's midbrain varies with their preferred sound location, matching the range that carries the most reliable IPD. Thus, frequency tuning in the owl's space-specific neurons reflects a higher-order feature of the code that captures cue reliability. DOI: http://dx.doi.org/10.7554/eLife.04854.001 PMID:25531067

  1. Top-down control of multimodal sensitivity in the barn owl optic tectum.

    PubMed

    Winkowski, Daniel E; Knudsen, Eric I

    2007-11-28

    We studied the effects of electrically microstimulating a gaze-control area in the owl's forebrain, the arcopallial gaze fields (AGFs), on the responsiveness of neurons in the optic tectum (OT) to visual and auditory stimuli. Microstimulation of the AGF enhanced the visual and auditory responsiveness and stimulus discriminability of OT neurons representing the same location in space as that represented at the microstimulation site in the AGF. At such OT sites, AGF microstimulation also sharpened auditory receptive fields and shifted them toward the location represented at the AGF stimulation site. At the same time, AGF microstimulation suppressed the responsiveness of OT neurons that represented visual or auditory stimuli at other locations in space. The top-down influences of this forebrain gaze-control area on sensory responsiveness in the owl OT are strikingly similar to the space-specific regulation of visual responsiveness in the monkey visual cortex produced by voluntary attention as well as by microstimulation of the frontal eye fields. This experimental approach provides a means for discovering mechanisms that underlie the top-down regulation of sensory responses. PMID:18045922

  2. Breeding success of barn owls (Tyto alba) fed low levels of DDE and dieldrin

    USGS Publications Warehouse

    Mendenhall, V.M.; Klaas, E.E.; McLane, M.A.R.

    1983-01-01

    The relative importance of two organochlorine pesticides in the recent reproductive failure of raptors was investigated. Captive barn owls were fed 3.0 ppm DDE and 0.5 ppm dieldrin; doses were given separately and in combination for two years. Breeding success was followed from the laying of eggs through natural incubation and rearing of young. DDE was associated with significant eggshell thinning, egg breakage, embryo mortality, and reduced production per pair. Dieldrin alone was associated with slight but significant eggshell thinning, but not with reduction of breeding success. Ecological implications of the results are discussed; it is suggested that DDE had a much more severe effect on reproduction in wild raptors than dieldrin, which contributed to their decline primarily through adult mortality.

  3. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight

    NASA Astrophysics Data System (ADS)

    Wolf, Thomas; Konrath, Robert

    2015-02-01

    This paper presents results of high-resolution three-dimensional wing shape measurements performed on free-flying barn owls in flapping flight. The applied measurement technique is introduced together with a moving camera set-up, allowing for an investigation of the free flapping flight of birds with high spatial and temporal resolution. Based on the three-dimensional surface data, a methodology for parameterizing the wing profile along with wing kinematics during flapping flight has been developed. This allowed a description of the spanwise varying kinematics and aerodynamic parameters (e.g. effective angles of attack, camber, thickness) of the wing in dependence on the flapping phase. The results are discussed in detail using the data of a single flight, whereas a comparison of some kinematic parameters obtained from different flights is given too.

  4. Hematologic and plasma biochemistry reference intervals of healthy adult barn owls (Tyto alba).

    PubMed

    Szabo, Zoltan; Klein, Akos; Jakab, Csaba

    2014-06-01

    Hematologic and plasma biochemistry parameters of barn owls (Tyto alba) were studied in collaboration by the Exotic Division of the Faculty of Veterinary Science of the Szent Istvan University and the Eötvös Loránd University, both in Budapest, Hungary. Blood samples were taken from a total of 42 adult barn owls kept in zoos and bird repatriation stations. The following quantitative and qualitative hematologic values were determined: packed cell volume, 46.2 +/- 4%; hemoglobin concentration, 107 +/- 15 g/L; red blood cell count, 3.2 +/- 0.4 x 10(12)/L; white blood cell count, 13.7 +/- 2.7 x 10(9)/L; heterophils, 56.5 +/- 11.5% (7.8 +/- 2 x 10(9)/L); lymphocytes, 40.3 +/- 10.9% (5.5 +/- 1.9 x 10(9)/L); monocytes, 1.8 +/- 2.1% (0.3 +/- 0.3 x 10(9)/ L); eosinophils, 1 +/- 1% (0.1 +/- 0.1 x 10(9)/L); and basophils, 0.6 +/- 0.5% (0.1 +/- 0.1 x 10(9)/L). The following plasma biochemistry values also were determined: aspartate aminotransferase, 272 +/- 43 U/L; L-gamma-glutamyltransferase, 9.5 +/- 4.7 U/L; lipase, 31.7 +/- 11.1 U/L; creatine kinase, 2228 +/- 578 U/L; lactate dehydrogenase, 1702 +/- 475 U/L; alkaline phosphatase, 358 +/- 197 U/L; amylase, 563 +/- 114 U/L; glutamate dehydrogenase, 7.5 +/- 2.5 U/L; total protein, 30.6 +/- 5.3 g/L; uric acid, 428 +/- 102 micromol/L; and bile acids, 43 +/- 18 micromol/L. These results provide reliable reference values for the clinical interpretation of hematologic and plasma biochemistry results for the species. PMID:25055626

  5. Hunting Increases Phosphorylation of Calcium/Calmodulin-Dependent Protein Kinase Type II in Adult Barn Owls

    PubMed Central

    Nichols, Grant S.; DeBello, William M.

    2015-01-01

    Juvenile barn owls readily adapt to prismatic spectacles, whereas adult owls living under standard aviary conditions do not. We previously demonstrated that phosphorylation of the cyclic-AMP response element-binding protein (CREB) provides a readout of the instructive signals that guide plasticity in juveniles. Here we investigated phosphorylation of calcium/calmodulin-dependent protein kinase II (pCaMKII) in both juveniles and adults. In contrast to CREB, we found no differences in pCaMKII expression between prism-wearing and control juveniles within the external nucleus of the inferior colliculus (ICX), the major site of plasticity. For prism-wearing adults that hunted live mice and are capable of adaptation, expression of pCaMKII was increased relative to prism-wearing adults that fed passively on dead mice and are not capable of adaptation. This effect did not bear the hallmarks of instructive information: it was not localized to rostral ICX and did not exhibit a patchy distribution reflecting discrete bimodal stimuli. These data are consistent with a role for CaMKII as a permissive rather than an instructive factor. In addition, the paucity of pCaMKII expression in passively fed adults suggests that the permissive default setting is “off” in adults. PMID:25789177

  6. A link between eumelanism and calcium physiology in the barn owl

    NASA Astrophysics Data System (ADS)

    Roulin, Alexandre; Dauwe, Tom; Blust, Ronny; Eens, Marcel; Beaud, Michel

    2006-09-01

    In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium.

  7. Modeling the Nucleus Laminaris of the Barn Owl: Achieving 20 ps Resolution on a 85-MHz-Clocked Digital Device.

    PubMed

    Salomon, Ralf; Heinrich, Enrico; Joost, Ralf

    2012-01-01

    The nucleus laminaris of the barn owl auditory system is quite impressive, since its underlying time estimation is much better than the processing speed of the involved neurons. Since precise localization is also very important in many technical applications, this paper explores to what extent the main principles of the nucleus laminaris can be implemented in digital hardware. The first prototypical implementation yields a time resolution of about 20 ps, even though the chosen standard, low-cost device is clocked at only 85 MHz, which leads to an internal duty cycle of approximately 12 ns. In addition, this paper also explores the utility of an advanced sampling scheme, known as unfolding-in-time. It turns out that with this sampling method, the prototype can easily process input signals of up to 300 MHz, which is almost four times higher than the sampling rate. PMID:22347179

  8. Modeling the Nucleus Laminaris of the Barn Owl: Achieving 20 ps Resolution on a 85-MHz-Clocked Digital Device

    PubMed Central

    Salomon, Ralf; Heinrich, Enrico; Joost, Ralf

    2012-01-01

    The nucleus laminaris of the barn owl auditory system is quite impressive, since its underlying time estimation is much better than the processing speed of the involved neurons. Since precise localization is also very important in many technical applications, this paper explores to what extent the main principles of the nucleus laminaris can be implemented in digital hardware. The first prototypical implementation yields a time resolution of about 20 ps, even though the chosen standard, low-cost device is clocked at only 85 MHz, which leads to an internal duty cycle of approximately 12 ns. In addition, this paper also explores the utility of an advanced sampling scheme, known as unfolding-in-time. It turns out that with this sampling method, the prototype can easily process input signals of up to 300 MHz, which is almost four times higher than the sampling rate. PMID:22347179

  9. Muscular Arrangement and Muscle Attachment Sites in the Cervical Region of the American Barn Owl (Tyto furcata pratincola).

    PubMed

    Boumans, Mark L L M; Krings, Markus; Wagner, Hermann

    2015-01-01

    Owls have the largest head rotation capability amongst vertebrates. Anatomical knowledge of the cervical region is needed to understand the mechanics of these extreme head movements. While data on the morphology of the cervical vertebrae of the barn owl have been provided, this study is aimed to provide an extensive description of the muscle arrangement and the attachment sites of the muscles on the owl's head-neck region. The major cervical muscles were identified by gross dissection of cadavers of the American barn owl (Tyto furcata pratincola), and their origin, courses, and insertion were traced. In the head-neck region nine superficial larger cervical muscles of the craniocervical, dorsal and ventral subsystems were selected for analysis, and the muscle attachment sites were illustrated in digital models of the skull and cervical vertebrae of the same species as well as visualised in a two-dimensional sketch. In addition, fibre orientation and lengths of the muscles and the nature (fleshy or tendinous) of the attachment sites were determined. Myological data from this study were combined with osteological data of the same species. This improved the anatomical description of the cervical region of this species. The myological description provided in this study is to our best knowledge the most detailed documentation of the cervical muscles in a strigiform species presented so far. Our results show useful information for researchers in the field of functional anatomy, biomechanical modelling and for evolutionary and comparative studies. PMID:26222908

  10. Legacy and current-use brominated flame retardants in the Barn Owl.

    PubMed

    Eulaers, Igor; Jaspers, Veerle L B; Pinxten, Rianne; Covaci, Adrian; Eens, Marcel

    2014-02-15

    The present study investigated the current-use brominated flame retardants (BFRs) tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCD), simultaneously with legacy polybrominated diphenyl ethers (PBDEs), in Barn Owls (Tyto alba) collected from two regions with a contrasting degree of urbanisation and vicinity to point sources (Flanders in Belgium versus Normandy in France). Both tissues (muscle, liver, adipose and preen gland) and feathers (primary, tail and body feathers) showed elevated HBCD concentrations in Flanders, close to Europe's sole HBCD production plant in the Netherlands, and identified Normandy as a historical source region for PBDEs. In sharp contrast, the reactive BFR TBBPA bioaccumulated poorly (2.3%) in tissue samples, but was present in 96% of all body feather samples (0.36-7.07ngg(-1)dw), equally in both regions. PBDE concentrations in tissues (7.46-903 ng g(-1)lw) were considerably lower in the investigated Flemish Barn Owls, collected in 2008/2009, compared to specimens collected in 2003/2004 (46-11,000 ng g(-1)lw), possibly suggesting the effectiveness of the 2004 European ban of Penta- and Octa-BDE mixtures. Feathers showed a similar trend and additionally exhibited HBCD concentrations (0.02-333 ng g(-1)dw) surpassing those of PBDEs (0.50-10.4 ng g(-1)dw). While body feathers were a reliable matrix to predict both internal PBDE (0.21 ≤ R(2)≤ 0.67) and HBCD body burdens (0.20 ≤ R(2) ≤ 0.37), the suitability of primary and tail feathers appeared to be confounded by external contamination and moult. In conclusion, the present study clearly showed that the reactive versus additive use of BFRs results in contrasting exposure scenarios in a species higher up the food chain, and therefore may have profound implications for environmental health. In addition, the presented results extend the promising use of feathers as a non-destructive sampling strategy for current-use BFRs, and show that birds of prey are valid early

  11. A circuit for detection of interaural time differences in the brain stem of the barn owl.

    PubMed

    Carr, C E; Konishi, M

    1990-10-01

    Detection of interaural time differences underlies azimuthal sound localization in the barn owl Tyto alba. Axons of the cochlear nucleus magnocellularis, and their targets in the binaural nucleus laminaris, form the circuit responsible for encoding these interaural time differences. The nucleus laminaris receives bilateral inputs from the cochlear nucleus magnocellularis such that axons from the ipsilateral cochlear nucleus enter the nucleus laminaris dorsally, while contralateral axons enter from the ventral side. This interdigitating projection to the nucleus laminaris is tonotopic, and the afferents are both sharply tuned and matched in frequency to the neighboring afferents. Recordings of phase-locked spikes in the afferents show an orderly change in the arrival time of the spikes as a function of distance from the point of their entry into the nucleus laminaris. The same range of conduction time (160 mu sec) was found over the 700-mu m depth of the nucleus laminaris for all frequencies examined (4-7.5 kHz) and corresponds to the range of interaural time differences available to the barn owl. The estimated conduction velocity in the axons is low (3-5 m/sec) and may be regulated by short internodal distances (60 mu m) within the nucleus laminaris. Neurons of the nucleus laminaris have large somata and very short dendrites. These cells are frequency selective and phase-lock to both monaural and binaural stimuli. The arrival time of phase-locked spikes in many of these neurons differs between the ipsilateral and contralateral inputs. When this disparity is nullified by imposition of an appropriate interaural time difference, the neurons respond maximally. The number of spikes elicited in response to a favorable interaural time difference is roughly double that elicited by a monaural stimulus. Spike counts for unfavorable interaural time differences fall well below monaural response levels. These findings indicate that the magnocellular afferents work as delay

  12. Orienting head movements resulting from electrical microstimulation of the brainstem tegmentum in the barn owl.

    PubMed

    Masino, T; Knudsen, E I

    1993-01-01

    The size and direction of orienting movements are represented systematically as a motor map in the optic tectum of the barn owl (du Lac and Knudsen, 1990). The optic tectum projects to several distinct regions in the medial brainstem tegmentum, which in turn project to the spinal cord (Masino and Knudsen, 1992). This study explores the hypothesis that a fundamental transformation in the neural representation of orienting movements takes place in the brainstem tegmentum. Head movements evoked by electrical microstimulation in the brainstem tegmentum of the alert barn owl were cataloged and the sites of stimulation were reconstructed histologically. Movements elicited from the brainstem tegmentum were categorized into one of six different classes: saccadic head rotations, head translations, facial movements, vocalizations, limb movements, and twitches. Saccadic head rotations could be further subdivided into two general categories: fixed-direction saccades and goal-directed saccades. Fixed-direction saccades, those whose direction was independent of initial head position, were elicited from the midbrain tegmentum. Goal-directed saccades, those whose direction changed with initial head position, were elicited from the central rhombencephalic reticular formation and from the efferent pathway of the cerebellum. Particular attention was paid to sites from which fixed-direction saccadic movements were elicited, as these movements appeared to represent components of orienting movements. Microstimulation in the medial midbrain tegmentum elicited fixed-direction saccades in one of six directions: rightward, leftward, upward, downward, clockwise roll, and counterclockwise roll. Stimulation in and around the interstitial nucleus of Cajal (InC; a complete list of anatomical abbreviations is given in the Appendix) produced ipsiversive horizontal saccades. Stimulation in the ventral InC and near the dorsal and medial edges of the red nucleus produced upward saccades. Stimulation

  13. Maps of ITD in the nucleus laminaris of the barn owl.

    PubMed

    Carr, Catherine; Shah, Sahil; Ashida, Go; McColgan, Thomas; Wagner, Hermann; Kuokkanen, Paula T; Kempter, Richard; Köppl, Christine

    2013-01-01

    Axons from the nucleus magnocellularis (NM) and their targets in nucleus laminaris (NL) form the circuit responsible for encoding interaural time differences (ITDs). In barn owls, NL receives bilateral inputs from NM such that axons from the ipsilateral NM enter NL dorsally, while contralateral axons enter from the ventral side. These afferents and their synapses on NL neurons generate a tone-induced local field potential, or neurophonic, that varies systematically with position in NL. From dorsal to ventral within the nucleus, the best interaural time difference (ITD) of the neurophonic shifts from contralateral space to best ITDs around 0 µs. Earlier recordings suggested that in NL, iso-delay contours ran parallel to the dorsal and ventral borders of NL (Sullivan WE, Konishi M. Proc Natl Acad Sci U S A 83:8400-8404, 1986). This axis is orthogonal to that seen in chicken NL, where a single map of ITD runs from around 0 µs ITD medially to contralateral space laterally (Köppl C, Carr CE. Biol Cyber 98:541-559, 2008). Yet the trajectories of the NM axons are similar in owl and chicken (Seidl AH, Rubel EW, Harris DM, J Neurosci 30:70-80, 2010). We therefore used clicks to measure conduction time in NL and made lesions to mark the 0 µs iso-delay contour in multiple penetrations along an isofrequency slab. Iso-delay contours were not parallel to the dorsal and ventral borders of NL; instead the 0 µs iso-delay contour shifted systematically from a dorsal position in medial NL to a ventral position in lateral NL. Could different conduction delays account for the mediolateral shift in the representation of 0 µs ITD? We measured conduction delays using the neurophonic potential and developed a simple linear model of the delay-line conduction velocity. We then raised young owls with time-delaying earplugs in one ear (Gold JI, Knudsen EI, J Neurophysiol 82:2197-2209, 1999) to examine map plasticity. PMID:23716226

  14. Linear summation in the barn owl's brainstem underlies responses to interaural time differences.

    PubMed

    Kuokkanen, Paula T; Ashida, Go; Carr, Catherine E; Wagner, Hermann; Kempter, Richard

    2013-07-01

    The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274-2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic. PMID:23554438

  15. Reciprocal preening and food sharing in colour-polymorphic nestling barn owls.

    PubMed

    Roulin, A; Des Monstiers, B; Ifrid, E; Da Silva, A; Genzoni, E; Dreiss, A N

    2016-02-01

    Barn owl (Tyto alba) siblings preen and offer food items to one another, behaviours that can be considered prosocial because they benefit a conspecific by relieving distress or need. In experimental broods, we analysed whether such behaviours were reciprocated, preferentially exchanged between specific phenotypes, performed to avoid harassment and food theft or signals of hierarchy status. Three of the results are consistent with the hypothesis of direct reciprocity. First, food sharing was reciprocated in three-chick broods but not in pairs of siblings, that is when nestlings could choose a partner with whom to develop a reciprocating interaction. Second, a nestling was more likely to give a prey item to its sibling if the latter individual had preened the former. Third, siblings matched their investment in preening each other. Manipulation of age hierarchy showed that food stealing was directed towards older siblings but was not performed to compensate for a low level of cooperation received. Social behaviours were related to melanin-based coloration, suggesting that animals may signal their propensity to interact socially. The most prosocial phenotype (darker reddish) was also the phenotype that stole more food, and the effect of coloration on prosocial behaviour depended upon rank and sex, suggesting that colour-related prosociality is state dependent. PMID:26563617

  16. Linear summation in the barn owl's brainstem underlies responses to interaural time differences

    PubMed Central

    Kuokkanen, Paula T.; Ashida, Go; Carr, Catherine E.; Wagner, Hermann

    2013-01-01

    The neurophonic potential is a synchronized frequency-following extracellular field potential that can be recorded in the nucleus laminaris (NL) in the brainstem of the barn owl. Putative generators of the neurophonic are the afferent axons from the nucleus magnocellularis, synapses onto NL neurons, and spikes of NL neurons. The outputs of NL, i.e., action potentials of NL neurons, are only weakly represented in the neurophonic. Instead, the inputs to NL, i.e., afferent axons and their synaptic potentials, are the predominant origin of the neurophonic (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010). Thus in NL the monaural inputs from the two brain sides converge and create a binaural neurophonic. If these monaural inputs contribute independently to the extracellular field, the response to binaural stimulation can be predicted from the sum of the responses to ipsi- and contralateral stimulation. We found that a linear summation model explains the dependence of the responses on interaural time difference as measured experimentally with binaural stimulation. The fit between model predictions and data was excellent, even without taking into account the nonlinear responses of NL coincidence detector neurons, although their firing rate and synchrony strongly depend on the interaural time difference. These results are consistent with the view that the afferent axons and their synaptic potentials in NL are the primary origin of the neurophonic. PMID:23554438

  17. Input clustering in the normal and learned circuits of adult barn owls

    PubMed Central

    McBride, Thomas J; DeBello, William M

    2015-01-01

    Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95–99% of contacts resided within clusters (<10–20 microns from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60d ~ 250d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. PMID:25701706

  18. Inhibition sensitive to interaural time difference in the barn owl's inferior colliculus.

    PubMed

    Albeck, Y

    1997-07-01

    In spontaneously active neurons in the external nucleus of the inferior colliculus of the barn owl, a stimulus-driven discharge was followed by a quiescent period lasting tens of milliseconds before the spontaneous activity resumed. The more favorable the interaural time difference, the longer the quiet period. The duration of the quiescent period also depended on stimulus frequency. Frequencies different from the neuron's best frequency induced shorter quiescent periods, although they could elicit similar rates of impulses. Also, the duration of the quiescent period was independent of interaural intensity difference. Thus, the quiet period is not due to an after-hyperpolarization but was an inhibitory effect that depended on the activity of other neurons. In some neurons, discharge continued after the stimulus without a quiescent period and gradually decayed over a period of 50-100 ms past the stimulus offset. The similarity between the quiescent period of the neurons mentioned above and the time course of the poststimulus discharge in these neurons suggests that these neurons serve as inhibitory interneurons. PMID:9259240

  19. Input clustering in the normal and learned circuits of adult barn owls.

    PubMed

    McBride, Thomas J; DeBello, William M

    2015-05-01

    Experience-dependent formation of synaptic input clusters can occur in juvenile brains. Whether this also occurs in adults is largely unknown. We previously reconstructed the normal and learned circuits of prism-adapted barn owls and found that changes in clustering of axo-dendritic contacts (putative synapses) predicted functional circuit strength. Here we asked whether comparable changes occurred in normal and prism-removed adults. Across all anatomical zones, no systematic differences in the primary metrics for within-branch or between-branch clustering were observed: 95-99% of contacts resided within clusters (<10-20 μm from nearest neighbor) regardless of circuit strength. Bouton volumes, a proxy measure of synaptic strength, were on average larger in the functionally strong zones, indicating that changes in synaptic efficacy contributed to the differences in circuit strength. Bootstrap analysis showed that the distribution of inter-contact distances strongly deviated from random not in the functionally strong zones but in those that had been strong during the sensitive period (60-250 d), indicating that clusters formed early in life were preserved regardless of current value. While cluster formation in juveniles appeared to require the production of new synapses, cluster formation in adults did not. In total, these results support a model in which high cluster dynamics in juveniles sculpt a potential connectivity map that is refined in adulthood. We propose that preservation of clusters in functionally weak adult circuits provides a storage mechanism for disused but potentially useful pathways. PMID:25701706

  20. Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba.

    PubMed

    Wathey, J C; Pettigrew, J D

    1989-01-01

    The visual capacity of the common barn owl (Tyto alba) was studied by quantitative analysis of the retina and optic nerve. Cell counts in the ganglion cell layer of the whole-mounted retina revealed a temporal area centralis with peak cell density of 12,500 cells/mm2 and a horizontal streak of high cell density extending from the area centralis into the nasal retina. Integration of the ganglion cell density map gave an estimated total of 1.4 million cells for the ganglion cell layer. Electron microscopy of a single, complete section of the optic nerve revealed a bimodal fiber diameter spectrum (modes at 0.3 and 0.9 microns; bin width = 0.2 microns), with diameters ranging from 0.15 microns (unmyelinated) to 6.05 microns (myelinated, sheath included). The total axon count for the optic nerve was estimated from sample counts to be about 680,000 axons (25% unmyelinated). Therefore, roughly half of the cells in the retinal ganglion cell layer do not send axons into the optic nerve. With certain assumptions, the data predict a visual spatial acuity for barn owls on the order of 8 cycles/degree, a value similar to the known behaviorally measured acuities of masked owls (10 cycles/degree) and domestic cats (6 cycles/degree). PMID:2758316

  1. Muscular Arrangement and Muscle Attachment Sites in the Cervical Region of the American Barn Owl (Tyto furcata pratincola)

    PubMed Central

    Boumans, Mark L. L. M.; Krings, Markus; Wagner, Hermann

    2015-01-01

    Owls have the largest head rotation capability amongst vertebrates. Anatomical knowledge of the cervical region is needed to understand the mechanics of these extreme head movements. While data on the morphology of the cervical vertebrae of the barn owl have been provided, this study is aimed to provide an extensive description of the muscle arrangement and the attachment sites of the muscles on the owl’s head-neck region. The major cervical muscles were identified by gross dissection of cadavers of the American barn owl (Tyto furcata pratincola), and their origin, courses, and insertion were traced. In the head-neck region nine superficial larger cervical muscles of the craniocervical, dorsal and ventral subsystems were selected for analysis, and the muscle attachment sites were illustrated in digital models of the skull and cervical vertebrae of the same species as well as visualised in a two-dimensional sketch. In addition, fibre orientation and lengths of the muscles and the nature (fleshy or tendinous) of the attachment sites were determined. Myological data from this study were combined with osteological data of the same species. This improved the anatomical description of the cervical region of this species. The myological description provided in this study is to our best knowledge the most detailed documentation of the cervical muscles in a strigiform species presented so far. Our results show useful information for researchers in the field of functional anatomy, biomechanical modelling and for evolutionary and comparative studies. PMID:26222908

  2. Natural selection in a postglacial range expansion: the case of the colour cline in the European barn owl.

    PubMed

    Antoniazza, Sylvain; Kanitz, Ricardo; Neuenschwander, Samuel; Burri, Reto; Gaigher, Arnaud; Roulin, Alexandre; Goudet, Jérôme

    2014-11-01

    Gradients of variation--or clines--have always intrigued biologists. Classically, they have been interpreted as the outcomes of antagonistic interactions between selection and gene flow. Alternatively, clines may also establish neutrally with isolation by distance (IBD) or secondary contact between previously isolated populations. The relative importance of natural selection and these two neutral processes in the establishment of clinal variation can be tested by comparing genetic differentiation at neutral genetic markers and at the studied trait. A third neutral process, surfing of a newly arisen mutation during the colonization of a new habitat, is more difficult to test. Here, we designed a spatially explicit approximate Bayesian computation (ABC) simulation framework to evaluate whether the strong cline in the genetically based reddish coloration observed in the European barn owl (Tyto alba) arose as a by-product of a range expansion or whether selection has to be invoked to explain this colour cline, for which we have previously ruled out the actions of IBD or secondary contact. Using ABC simulations and genetic data on 390 individuals from 20 locations genotyped at 22 microsatellites loci, we first determined how barn owls colonized Europe after the last glaciation. Using these results in new simulations on the evolution of the colour phenotype, and assuming various genetic architectures for the colour trait, we demonstrate that the observed colour cline cannot be due to the surfing of a neutral mutation. Taking advantage of spatially explicit ABC, which proved to be a powerful method to disentangle the respective roles of selection and drift in range expansions, we conclude that the formation of the colour cline observed in the barn owl must be due to natural selection. PMID:25294501

  3. Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl.

    PubMed

    Zahar, Yael; Wagner, Hermann; Gutfreund, Yoram

    2012-01-01

    The saliency of visual objects is based on the center to background contrast. Particularly objects differing in one feature from the background may be perceived as more salient. It is not clear to what extent this so called "pop-out" effect observed in humans and primates governs saliency perception in non-primates as well. In this study we searched for neural-correlates of pop-out perception in neurons located in the optic tectum of the barn owl. We measured the responses of tectal neurons to stimuli appearing within the visual receptive field, embedded in a large array of additional stimuli (the background). Responses were compared between contrasting and uniform conditions. In a contrasting condition the center was different from the background while in the uniform condition it was identical to the background. Most tectal neurons responded better to stimuli in the contrsating condition compared to the uniform condition when the contrast between center and background was the direction of motion but not when it was the orientation of a bar. Tectal neurons also preferred contrasting over uniform stimuli when the center was looming and the background receding but not when the center was receding and the background looming. Therefore, our results do not support the hypothesis that tectal neurons are sensitive to pop-out per-se. The specific sensitivity to the motion contrasting stimulus is consistent with the idea that object motion and not large field motion (e.g., self-induced motion) is coded in the neural responses of tectal neurons. PMID:22745787

  4. Projections of the cochlear nuclei and nucleus laminaris to the inferior colliculus of the barn owl.

    PubMed

    Takahashi, T T; Konishi, M

    1988-08-01

    The barn owl determines the directions from which sounds emanate by computing the interaural differences in the timing and intensity of sounds. These cues for sound localization are processed in independent channels originating at nucleus magnocellularis (NM) and nucleus angularis (NA), the cochlear nuclei. The cells of NM are specialized for encoding the phase of sounds in the ipsilateral ear. The cells of NA are specialized for encoding the intensity of sounds in the ipsilateral ear. NM projects solely, bilaterally, and tonotopically to nucleus laminaris (NL). NL and NA project to largely nonoverlapping zones in the central nucleus of the inferior colliculus (ICc), thus forming hodological subdivisions in which time and intensity information may be processed. The terminal field of NL occupies a discrete zone in the rostromedial portion of the contralateral ICc, which we have termed the "core" of ICc. The terminal field of NA surrounds the core of ICc and thus forms a "shell" around it. The projection from NL to the core conserves tonotopy. Low-frequency regions of NL project to the dorsal portions of the core whereas higher-frequency regions project to more ventral portions. This innervation pattern is consistent with earlier physiological studies of tonotopy. Physiological studies have also suggested that NL and the core of ICs contain a representation of the location of a sound source along the horizontal axis. Our data suggest that the projection from NL to the core preserves spatiotopy. Thus, the dorsal portion of NL on the left, which contains a representation of eccentric loci in the right hemifield, innervates the area of the right ICc core that represents eccentric right loci. The more ventral portion of the left NL, which represents loci close to the vertical meridian, innervates the more rostral portions of the right core, which also represents loci near the vertical meridian. PMID:2463286

  5. Barn owl feathers as biomonitors of mercury: sources of variation in sampling procedures.

    PubMed

    Roque, Inês; Lourenço, Rui; Marques, Ana; Coelho, João Pedro; Coelho, Cláudia; Pereira, Eduarda; Rabaça, João E; Roulin, Alexandre

    2016-04-01

    Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios. PMID:26718850

  6. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl.

    PubMed

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1-8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz). PMID:24265616

  7. Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Carr, Catherine E.

    2013-01-01

    A wide variety of neurons encode temporal information via phase-locked spikes. In the avian auditory brainstem, neurons in the cochlear nucleus magnocellularis (NM) send phase-locked synaptic inputs to coincidence detector neurons in the nucleus laminaris (NL) that mediate sound localization. Previous modeling studies suggested that converging phase-locked synaptic inputs may give rise to a periodic oscillation in the membrane potential of their target neuron. Recent physiological recordings in vivo revealed that owl NL neurons changed their spike rates almost linearly with the amplitude of this oscillatory potential. The oscillatory potential was termed the sound analog potential, because of its resemblance to the waveform of the stimulus tone. The amplitude of the sound analog potential recorded in NL varied systematically with the interaural time difference (ITD), which is one of the most important cues for sound localization. In order to investigate the mechanisms underlying ITD computation in the NM-NL circuit, we provide detailed theoretical descriptions of how phase-locked inputs form oscillating membrane potentials. We derive analytical expressions that relate presynaptic, synaptic, and postsynaptic factors to the signal and noise components of the oscillation in both the synaptic conductance and the membrane potential. Numerical simulations demonstrate the validity of the theoretical formulations for the entire frequency ranges tested (1–8 kHz) and potential effects of higher harmonics on NL neurons with low best frequencies (<2 kHz). PMID:24265616

  8. Space coding by gamma oscillations in the barn owl optic tectum

    PubMed Central

    Boahen, Kwabena; Knudsen, Eric I.

    2011-01-01

    Gamma-band (25–140 Hz) oscillations of the local field potential (LFP) are evoked by sensory stimuli in the mammalian forebrain and may be strongly modulated in amplitude when animals attend to these stimuli. The optic tectum (OT) is a midbrain structure known to contribute to multimodal sensory processing, gaze control, and attention. We found that presentation of spatially localized stimuli, either visual or auditory, evoked robust gamma oscillations with distinctive properties in the superficial (visual) layers and in the deep (multimodal) layers of the owl's OT. Across layers, gamma power was tuned sharply for stimulus location and represented space topographically. In the superficial layers, induced LFP power peaked strongly in the low-gamma band (25–90 Hz) and increased gradually with visual contrast across a wide range of contrasts. Spikes recorded in these layers included presumptive axonal (input) spikes that encoded stimulus properties nearly identically with gamma oscillations and were tightly phase locked with the oscillations, suggesting that they contribute to the LFP oscillations. In the deep layers, induced LFP power was distributed across the low and high (90–140 Hz) gamma-bands and tended to reach its maximum value at relatively low visual contrasts. In these layers, gamma power was more sharply tuned for stimulus location, on average, than were somatic spike rates, and somatic spikes synchronized with gamma oscillations. Such gamma synchronized discharges of deep-layer neurons could provide a high-resolution temporal code for signaling the location of salient sensory stimuli. PMID:21325681

  9. The role of GABAergic inhibition in processing of interaural time difference in the owl's auditory system.

    PubMed

    Fujita, I; Konishi, M

    1991-03-01

    The barn owl uses interaural time differences (ITDs) to localize the azimuthal position of sound. ITDs are processed by an anatomically distinct pathway in the brainstem. Neuronal selectivity for ITD is generated in the nucleus laminaris (NL) and conveyed to both the anterior portion of the ventral nucleus of the lateral lemniscus (VLVa) and the central (ICc) and external (ICx) nuclei of the inferior colliculus. With tonal stimuli, neurons in all regions are found to respond maximally not only to the real ITD, but also to ITDs that differ by integer multiples of the tonal period. This phenomenon, phase ambiguity, does not occur when ICx neurons are stimulated with noise. The main aim of this study was to determine the role of GABAergic inhibition in the processing of ITDs. Selectivity for ITD is similar in the NL and VLVa and improves in the ICc and ICx. Iontophoresis of bicuculline methiodide (BMI), a selective GABAA antagonist, decreased the ITD selectivity of ICc and ICx neurons, but did not affect that of VLVa neurons. Responses of VLVa and ICc neurons to unfavorable ITDs were below the monaural response levels. BMI raised both binaural responses to unfavorable ITDs and monaural responses, though the former remained smaller than the latter. During BMI application, ICx neurons showed phase ambiguity to noise stimuli and no longer responded to a unique ITD. BMI increased the response magnitude and changed the temporal discharge patterns in the VLVa, ICc, and ICx. Iontophoretically applied GABA exerted effects opposite to those of BMI, and the effects could be antagonized with simultaneous application of BMI. These results suggest that GABAergic inhibition (1) sharpens ITD selectivity in the ICc and ICx, (2) contributes to the elimination of phase ambiguity in the ICx, and (3) controls response magnitude and temporal characteristics in the VLVa, ICc, and ICx. Through these actions, GABAergic inhibition shapes the horizontal dimension of the auditory receptive

  10. Spike timing precision changes with spike rate adaptation in the owl's auditory space map.

    PubMed

    Keller, Clifford H; Takahashi, Terry T

    2015-10-01

    Spike rate adaptation (SRA) is a continuing change of responsiveness to ongoing stimuli, which is ubiquitous across species and levels of sensory systems. Under SRA, auditory responses to constant stimuli change over time, relaxing toward a long-term rate often over multiple timescales. With more variable stimuli, SRA causes the dependence of spike rate on sound pressure level to shift toward the mean level of recent stimulus history. A model based on subtractive adaptation (Benda J, Hennig RM. J Comput Neurosci 24: 113-136, 2008) shows that changes in spike rate and level dependence are mechanistically linked. Space-specific neurons in the barn owl's midbrain, when recorded under ketamine-diazepam anesthesia, showed these classical characteristics of SRA, while at the same time exhibiting changes in spike timing precision. Abrupt level increases of sinusoidally amplitude-modulated (SAM) noise initially led to spiking at higher rates with lower temporal precision. Spike rate and precision relaxed toward their long-term values with a time course similar to SRA, results that were also replicated by the subtractive model. Stimuli whose amplitude modulations (AMs) were not synchronous across carrier frequency evoked spikes in response to stimulus envelopes of a particular shape, characterized by the spectrotemporal receptive field (STRF). Again, abrupt stimulus level changes initially disrupted the temporal precision of spiking, which then relaxed along with SRA. We suggest that shifts in latency associated with stimulus level changes may differ between carrier frequency bands and underlie decreased spike precision. Thus SRA is manifest not simply as a change in spike rate but also as a change in the temporal precision of spiking. PMID:26269555

  11. Sex-linked inheritance, genetic correlations and sexual dimorphism in three melanin-based colour traits in the barn owl.

    PubMed

    Roulin, A; Jensen, H

    2015-03-01

    Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex-linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin-based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex-linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin-based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex-linked genes generate variation in sexual dimorphism in melanin-based traits. PMID:25656218

  12. Melanin-based coloration covaries with ovary size in an age-specific manner in the barn owl

    NASA Astrophysics Data System (ADS)

    Roulin, Alexandre

    2009-10-01

    While the adaptive function of black eumelanin-based coloration is relatively well known, the function of reddish-brown pheomelanin-based coloration is still unclear. Only a few studies have shown or suggested that the degree of reddish-brownness is associated with predator-prey relationships, reproductive parameters, growth rate and immunity. To gain insight into the physiological correlates of melanin-based coloration, I collected barn owl ( Tyto alba) cadavers and examined the covariation between this colour trait and ovary size, an organ that increases in size before reproduction. A relationship is expected because melanin-based coloration often covaries with sexual activity. The results showed that reddish-brown juveniles had larger ovaries than whiter juveniles particularly in individuals in poor condition and outside the breeding season, while in birds older than 2 years lightly coloured females had larger ovaries than reddish-brown conspecifics. As barn owls become less reddish-brown between the first and second year of age, the present study suggests that reddish-brown pheomelanic and whitish colorations are associated with juvenile- and adult-specific adaptations, respectively.

  13. Rodents in open space adjust their behavioral response to the different risk levels during barn-owl attack

    PubMed Central

    Edut, Shahaf; Eilam, David

    2003-01-01

    Background Previous studies have revealed that the response of prey species to predatory risk comprised either freezing (when the prey remained immobile), or fleeing (when it ran frantically in order to remove itself from the vicinity of the predator). Other studies, however, have suggested that the prey will adjust its behavior to risk level. The present study was designed to follow the attacks of a barn owl (Tyto alba) on common spiny mice (Acomys cahirinus) and social voles (Microtus socialis guntherei), in order to reveal the correspondence between the behavior of the owl, the risk level at each phase of the owl's attack, and the defensive behavior of the rodents. Results Spiny mice dramatically increased the traveled distance upon the appearance of the owl, and kept moving during its attack while taking long trajectories of locomotion. Defensive response in voles dichotomized: in some voles traveled distance dropped when the owl appeared, reaching zero during its attack. In other voles, traveled distance dramatically increased once the owl appeared and further increased under its attack. These defensive responses developed by gradual tuning of normal locomotor behavior in accordance with the level of risk. Conclusions The phenotypic difference in defensive behavior between voles and spiny mice probably stems from their different habitats and motor capacities. Agility and running capacity, together with a relatively sheltered natural habitat, make fleeing the most appropriate response for spiny mice during owl attack. Clumsiness and relatively limited motor capacities, together with an open natural habitat, account for the dichotomy to freezing or fleeing in voles. Thus, the apparent species-specific anti-predator response in spiny mice and voles is based on species-specific normal locomotor behavior, which depends on the species-specific ecology and motor capacity, and behaviors like defensive attack or escape jump that are specific to life threat. The latter

  14. Stimulus encoding within the barn owl optic tectum using gamma oscillations vs. spike rate: a modeling approach.

    PubMed

    Patel, Mainak; Reed, Mike

    2013-01-01

    The optic tectum of the barn owl is a multimodal structure with multiple layers, with each layer topographically organized according to spatial receptive field. The response of a site to a stimulus can be measured as either spike rate or local field potential (LFP) gamma (25-90 Hz) power; within superficial layers, spike rate and gamma power spatial tuning curves are narrow and contrast-response functions rise slowly. Within deeper layers, however, spike rate tuning curves broaden and gamma power contrast-response functions sharpen. In this work, we employ a computational model to describe the inputs required to generate these transformations from superficial to deep layers and show that gamma power and spike rate can act as parallel information processing streams. PMID:23406211

  15. Characterization of a forebrain gaze field in the archistriatum of the barn owl: microstimulation and anatomical connections.

    PubMed

    Knudsen, E I; Cohen, Y E; Masino, T

    1995-07-01

    We present evidence that the archistriatum in the forebrain of the barn owl participates in gaze control, that it can mediate gaze changes independently of the optic tectum (OT), and that it projects in parallel to both the OT and to saccade-generating circuitry in the brainstem tegmentum. These properties are similar to those of the frontal eye fields (FEF) in the prefrontal cortex of primates. The forebrain was surveyed for sites where electrical microstimulation would induce head saccades. Head (and eye) saccades were elicited from the anterior 70% of the archistriatum, a region that we refer to as the archistriatal gaze fields (AGF). At single stimulation sites in the AGF, saccade amplitude tended to vary as a function of stimulation parameters (current strength, pulse frequency, and train duration) and starting head position. In contrast, saccade direction was largely independent of these parameters. Saccade direction did vary over a wide range of primarily contraversive directions with the site of stimulation in the AGF. Using anatomical pathway tracing techniques, we found that the archistriatum projects strongly and in parallel to the deep layers of the OT and to nuclei in the midline brainstem tegmentum. Previous work has shown that electrical microstimulation of either of these brainstem regions evokes saccadic movements of the head and/or eyes (du Lac and Knudsen, 1990; Masino and Knudsen, 1992b). Inactivation of the OT with lidocaine reduced the size but did not eliminate (or change the direction of) the saccades evoked by AGF stimulation. The direct anatomical pathway from the archistriatum to the midline tegmental nuclei can account for saccades that persist following OT inactivation. The similarities between the AGF in barn owls and the FEF in primates suggest that the same general plan of anatomical and functional organization supports the contribution of the forebrain to gaze control in a wide variety of species. PMID:7623141

  16. Comparative physiology of sound localization in four species of owls.

    PubMed

    Volman, S F; Konishi, M

    1990-01-01

    Bilateral ear asymmetry is found in some, but not all, species of owls. We investigated the neural basis of sound localization in symmetrical and asymmetrical species, to deduce how ear asymmetry might have evolved from the ancestral condition, by comparing the response properties of neurons in the external nucleus of the inferior colliculus (ICx) of the symmetrical burrowing owl and asymmetrical long-eared owl with previous findings in the symmetrical great horned owl and asymmetrical barn owl. In the ICx of all of these owls, the neurons had spatially restricted receptive fields, and auditory space was topographically mapped. In the symmetrical owls, ICx units were not restricted in elevation, and only azimuth was mapped in ICx. In the barn owl, the space map is two-dimensional, with elevation forming the second dimension. Receptive fields in the long-eared owl were somewhat restricted in elevation, but their tuning was not sharp enough to determine if elevation is mapped. In every species, the primary cue for azimuth was interaural time difference, although ICx units were also tuned for interaural intensity difference (IID). In the barn owl, the IIDs of sounds with frequencies between about 5 and 8 kHz vary systematically with elevation, and the IID selectivity of ICx neurons primarily encodes elevation. In the symmetrical owls, whose ICx neurons do not respond to frequencies above about 5 kHz, IID appears to be a supplementary cue for azimuth. We hypothesize that ear asymmetry can be exploited by owls that have evolved the higher-frequency hearing necessary to generate elevation cues. Thus, the IID selectivity of ICx neurons in symmetrical owls may preadapt them for asymmetry; the neural circuitry that underlies IID selectivity is already present in symmetrical owls, but because IID is not absolutely required to encode azimuth it can come to encode elevation in asymmetrical owls. PMID:2279234

  17. Increased rodenticide exposure rate and risk of toxicosis in barn owls (Tyto alba) from southwestern Canada and linkage with demographic but not genetic factors.

    PubMed

    Huang, Andrew C; Elliott, John E; Hindmarch, Sofi; Lee, Sandi L; Maisonneuve, France; Bowes, Victoria; Cheng, Kimberly M; Martin, Kathy

    2016-08-01

    Among many anthropogenic drivers of population decline, continual rapid urbanization and industrialization pose major challenges for the survival of wildlife species. Barn owls (Tyto alba) in southwestern British Columbia (BC) face a multitude of threats ranging from habitat fragmentation to vehicle strikes. They are also at risk from secondary poisoning of second-generation anticoagulant rodenticides (SGARs), a suite of toxic compounds which at high doses results in a depletion of blood clotting factors leading to internal bleeding and death. Here, using long-term data (N = 119) for the hepatic residue levels of SGAR, we assessed the risk of toxicosis from SGAR for the BC barn owl population over the past two decades. We also investigated whether sensitivity to SGAR is associated with genetic factors, namely Single Nucleotide Polymorphisms (SNPs) found in the CYP2C45 gene of barn owls. We found that residue concentration for total SGAR was significantly higher in 2006-2013 (141 ng/g) relative to 1992-2003 (57 ng/g). The proportion of owls exposed to multiple SGAR types was also significantly higher in 2006-2013. Those measures accordingly translate directly into an increase in toxicosis risk level. We also detected demographic differences, where adult females showed on average lower concentration of total SGAR (64 ng/g) when compared to adult males (106 ng/g). Juveniles were overall more likely to show signs of toxicosis than adults (33.3 and 6.9 %, respectively), and those symptoms were positively predicted by SGAR concentrations. We found no evidence that SNPs in the CYP2C45 gene of barn owls were associated with intraspecific variation in SGAR sensitivity. We recommend several preventative measures be taken to minimize wildlife exposure to SGAR. PMID:27151403

  18. The Cervical Spine of the American Barn Owl (Tyto furcata pratincola): I. Anatomy of the Vertebrae and Regionalization in Their S-Shaped Arrangement

    PubMed Central

    Krings, Markus; Nyakatura, John A.; Fischer, Martin S.; Wagner, Hermann

    2014-01-01

    Background Owls possess an extraordinary neck and head mobility. To understand this mobility it is necessary to have an anatomical description of cervical vertebrae with an emphasis on those criteria that are relevant for head positioning. No functional description specific to owls is available. Methodology/Principal findings X-ray films and micro-CT scans were recorded from American barn owls (Tyto furcata pratincola) and used to obtain three-dimensional head movements and three-dimensional models of the 14 cervical vertebrae (C1−C14). The diameter of the vertebral canal, the zygapophyseal protrusion, the distance between joint centers, and the pitching angle were quantified. Whereas the first two variables are purely osteological characteristics of single vertebrae, the latter two take into account interactions between vertebrae. These variables change in characteristic ways from cranial to caudal. The vertebral canal is wide in the cranial and caudal neck regions, but narrow in the middle, where both the zygapophyseal protrusion and the distance between joint centers are large. Pitching angles are more negative in the cranial and caudal neck regions than in the middle region. Cluster analysis suggested a complex regionalization. Whereas the borders (C1 and C13/C14) formed stable clusters, the other cervical vertebrae were sorted into 4 or 5 additional clusters. The borders of the clusters were influenced by the variables analyzed. Conclusions/Significance A statistical analysis was used to evaluate the regionalization of the cervical spine in the barn owl. While earlier measurements have shown that there appear to be three regions of flexibility of the neck, our indicators suggest 3–7 regions. These many regions allow a high degree of flexibility, potentially facilitating the large head turns that barn owls are able to make. The cervical vertebral series of other species should also be investigated using statistical criteria to further characterize

  19. Horizontal and vertical components of head movement are controlled by distinct neural circuits in the barn owl.

    PubMed

    Masino, T; Knudsen, E I

    1990-05-31

    To generate behaviour, the brain must transform sensory information into signals that are appropriate to control movement. Sensory and motor coordinate frames are fundamentally different, however: sensory coordinates are based on the spatiotemporal patterns of activity arising from the various sense organs, whereas motor coordinates are based on the pulling directions of muscles or groups of muscles. Results from psychophysical experiments suggest that in the process of transforming sensory information into motor control signals, the brain encodes movements in abstract or extrinsic coordinate frames, that is ones not closely related to the geometry of the sensory apparatus or of the skeletomusculature. Here we show that an abstract code underlies movements of the head by the barn owl. Specifically, the data show that subsequent to the retinotopic code for space in the optic tectum yet before the motor neuron code for muscle tensions there exists a code for head movement in which upward, downward, leftward and rightward components of movement are controlled by four functionally distinct neural circuits. Such independent coding of orthogonal components of movement may be a common intermediate step in the transformation of sensation into behaviour. PMID:2342573

  20. Individual vocal signatures in barn owl nestlings: does individual recognition have an adaptive role in sibling vocal competition?

    PubMed

    Dreiss, A N; Ruppli, C A; Roulin, A

    2014-01-01

    To compete over limited parental resources, young animals communicate with their parents and siblings by producing honest vocal signals of need. Components of begging calls that are sensitive to food deprivation may honestly signal need, whereas other components may be associated with individual-specific attributes that do not change with time such as identity, sex, absolute age and hierarchy. In a sib-sib communication system where barn owl (Tyto alba) nestlings vocally negotiate priority access to food resources, we show that calls have individual signatures that are used by nestlings to recognize which siblings are motivated to compete, even if most vocalization features vary with hunger level. Nestlings were more identifiable when food-deprived than food-satiated, suggesting that vocal identity is emphasized when the benefit of winning a vocal contest is higher. In broods where siblings interact iteratively, we speculate that individual-specific signature permits siblings to verify that the most vocal individual in the absence of parents is the one that indeed perceived the food brought by parents. Individual recognition may also allow nestlings to associate identity with individual-specific characteristics such as position in the within-brood dominance hierarchy. Calls indeed revealed age hierarchy and to a lower extent sex and absolute age. Using a cross-fostering experimental design, we show that most acoustic features were related to the nest of origin (but not the nest of rearing), suggesting a genetic or an early developmental effect on the ontogeny of vocal signatures. To conclude, our study suggests that sibling competition has promoted the evolution of vocal behaviours that signal not only hunger level but also intrinsic individual characteristics such as identity, family, sex and age. PMID:24266879

  1. Coloration signals the ability to cope with elevated stress hormones: effects of corticosterone on growth of barn owls are associated with melanism.

    PubMed

    Almasi, B; Roulin, A; Korner-Nievergelt, F; Jenni-Eiermann, S; Jenni, L

    2012-06-01

    Stressful situations during development can shape the phenotype for life by provoking a trade-off between development and survival. Stress hormones, mainly glucocorticoids, play an important orchestrating role in this trade-off. Hence, how stress sensitive an animal is critically determines the phenotype and ultimately fitness. In several species, darker eumelanic individuals are less sensitive to stressful conditions than less eumelanic conspecifics, which may be due to the pleiotropic effects of genes affecting both coloration and physiological traits. We experimentally tested whether the degree of melanin-based coloration is associated with the sensitivity to an endocrine response to stressful situations in the barn owl. We artificially administered the mediator of a hormonal stress response, corticosterone, to nestlings to examine the prediction that corticosterone-induced reduction in growth rate is more pronounced in light eumelanic nestlings than in darker nest mates. To examine whether such an effect may be genetically determined, we swapped hatchlings between randomly chosen pairs of nests. We first showed that corticosterone affects growth and, thus, shapes the phenotype. Second, we found that under corticosterone administration, nestlings with large black spots grew better than nestlings with small black spots. As in the barn owl the expression of eumelanin-based coloration is heritable and not sensitive to environmental conditions, it is therefore a reliable, genetically based sign of the ability to cope with an increase in blood corticosterone level. PMID:22530630

  2. What do predators really want? The role of gerbil energetic state in determining prey choice by Barn Owls.

    PubMed

    Embar, Keren; Mukherjee, Shomen; Kotler, Burt P

    2014-02-01

    In predator-prey foraging games, predators should respond to variations in prey state. The value of energy for the prey changes depending on season. Prey in a low energetic state and/or in a reproductive state should invest more in foraging and tolerate higher predation risk. This should make the prey more catchable, and thereby, more preferable to predators. We ask, can predators respond to prey state? How does season and state affect the foraging game from the predator's perspective? By letting owls choose between gerbils whose states we experimentally manipulated, we could demonstrate predator sensitivity to prey state and predator selectivity that otherwise may be obscured by the foraging game. During spring, owls invested more time and attacks in the patch with well-fed gerbils. During summer, owls attacked both patches equally, yet allocated more time to the patch with hungry gerbils. Energetic state per se does not seem to be the basis of owl choice. The owls strongly responded to these subtle differences. In summer, gerbils managed their behavior primarily for survival, and the owls equalized capture opportunities by attacking both patches equally. PMID:24669722

  3. Barn Again! Indiana Barns.

    ERIC Educational Resources Information Center

    Bennett, Pamela J., Ed.

    2001-01-01

    This final issue of the "Indiana History Bulletin" focuses on Indiana barns. Four articles feature the barn theme: (1) "Smithsonian Exhibit on Barns Will Tour Indiana in 2001-2002"; (2) "Indiana Barns," which contains several photographs of old barns; (3) "Indiana Barn Types," which contains drawings of different barn types; and (4) "Preserving…

  4. [Importance of Shaw's Jird Meriones shawii within the trophic components of the Barn Owl Tyto alba in steppic areas of Algeria].

    PubMed

    Sekour, Makhlouf; Souttou, Karim; Guerzou, Ahlem; Benbouzid, Noureddine; Guezoul, Omar; Ababsa, Labed; Denys, Christiane; Doumandji, Salaheddine

    2014-06-01

    The study of the diet of the Barn Owl in two steppic regions (M'Sila and Djelfa) located in the Algerian highlands is based on the analysis of the pellets of rejections collected in six stations. The analysis of 706 pellets resulting from the various stations made it possible to count 1380 individuals, represented by seven classes, 12 orders, 32 families, and 76 species of preys. The mammals are consumed with variable abundance rates between 59.1 % and 90.0 % whose predominance is assigned to the rodents (relative abundance: AR > 58 %). The latter constitute the most advantageous preys in biomass (61.4 ≤ B % ≤ 99.2). The most consumed prey is Meriones shawii, with variable rates between 31.9 % and 76.6 %. Generally, Tyto alba presents a diversified diet in the majority of the stations (0.69 ≤ E ≤ 0.76), except the station of Ain El-Hadjel (E = 0.35), with a low diversity and dominance of M. shawii (AR = 76.6 %). PMID:24961561

  5. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings.

    PubMed

    Almasi, Bettina; Béziers, Paul; Roulin, Alexandre; Jenni, Lukas

    2015-09-01

    Human activities can have a suite of positive and negative effects on animals and thus can affect various life history parameters. Human presence and agricultural practice can be perceived as stressors to which animals react with the secretion of glucocorticoids. The acute short-term secretion of glucocorticoids is considered beneficial and helps an animal to redirect energy and behaviour to cope with a critical situation. However, a long-term increase of glucocorticoids can impair e.g. growth and immune functions. We investigated how nestling barn owls (Tyto alba) are affected by the surrounding landscape and by human activities around their nest sites. We studied these effects on two response levels: (a) the physiological level of the hypothalamus-pituitary-adrenal axis, represented by baseline concentrations of corticosterone and the concentration attained by a standardized stressor; (b) fitness parameters: growth of the nestlings and breeding performance. Nestlings growing up in intensively cultivated areas showed increased baseline corticosterone levels late in the season and had an increased corticosterone release after a stressful event, while their body mass was decreased. Nestlings experiencing frequent anthropogenic disturbance had elevated baseline corticosterone levels, an increased corticosterone stress response and a lower body mass. Finally, breeding performance was better in structurally more diverse landscapes. In conclusion, anthropogenic disturbance affects offspring quality rather than quantity, whereas agricultural practices affect both life history traits. PMID:25903390

  6. On estimation and identifiability issues of sex-linked inheritance with a case study of pigmentation in Swiss barn owl (Tyto alba).

    PubMed

    Larsen, Camilla T; Holand, Anna M; Jensen, Henrik; Steinsland, Ingelin; Roulin, Alexandre

    2014-05-01

    Genetic evaluation using animal models or pedigree-based models generally assume only autosomal inheritance. Bayesian animal models provide a flexible framework for genetic evaluation, and we show how the model readily can accommodate situations where the trait of interest is influenced by both autosomal and sex-linked inheritance. This allows for simultaneous calculation of autosomal and sex-chromosomal additive genetic effects. Inferences were performed using integrated nested Laplace approximations (INLA), a nonsampling-based Bayesian inference methodology. We provide a detailed description of how to calculate the inverse of the X- or Z-chromosomal additive genetic relationship matrix, needed for inference. The case study of eumelanic spot diameter in a Swiss barn owl (Tyto alba) population shows that this trait is substantially influenced by variation in genes on the Z-chromosome ([Formula: see text] and [Formula: see text]). Further, a simulation study for this study system shows that the animal model accounting for both autosomal and sex-chromosome-linked inheritance is identifiable, that is, the two effects can be distinguished, and provides accurate inference on the variance components. PMID:24967075

  7. The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications

    PubMed Central

    Bachmann, Thomas; Wagner, Hermann

    2011-01-01

    Barn owl feathers at the leading edge of the wing are equipped with comb-like structures termed serrations on their outer vanes. Each serration is formed by one barb ending that separates and bends upwards. This structure is considered to play a role in air-flow control and noise reduction during flight. Hence, it has considerable potential for engineering applications, particularly in the aviation industry. Several publications have reported possible functions of serrations at artificial airfoils. However, only crude approximations of natural serrations have so far been investigated. We refer to these attempts as zero-order approximations of serrations. It was the goal of this study to present a quantitative three-dimensional characterization of natural serrations as first-order approximations (mean values) and second-order approximations (listed differences depending on the position of the serration along the leading edge). Confocal laser scanning microscopy was used for a three-dimensional reconstruction and investigation with high spatial resolution. Each serration was defined by its length, profile geometry and curvature. Furthermore, the orientation of the serrations at the leading edge was characterized by the inclination angle, the tilt angle and the separation distance of neighboring serrations. These data are discussed with respect to possible applications of serration-like structures for noise suppression and air-flow control. PMID:21507001

  8. On estimation and identifiability issues of sex-linked inheritance with a case study of pigmentation in Swiss barn owl (Tyto alba)

    PubMed Central

    Larsen, Camilla T; Holand, Anna M; Jensen, Henrik; Steinsland, Ingelin; Roulin, Alexandre

    2014-01-01

    Genetic evaluation using animal models or pedigree-based models generally assume only autosomal inheritance. Bayesian animal models provide a flexible framework for genetic evaluation, and we show how the model readily can accommodate situations where the trait of interest is influenced by both autosomal and sex-linked inheritance. This allows for simultaneous calculation of autosomal and sex-chromosomal additive genetic effects. Inferences were performed using integrated nested Laplace approximations (INLA), a nonsampling-based Bayesian inference methodology. We provide a detailed description of how to calculate the inverse of the X- or Z-chromosomal additive genetic relationship matrix, needed for inference. The case study of eumelanic spot diameter in a Swiss barn owl (Tyto alba) population shows that this trait is substantially influenced by variation in genes on the Z-chromosome ( and ). Further, a simulation study for this study system shows that the animal model accounting for both autosomal and sex-chromosome-linked inheritance is identifiable, that is, the two effects can be distinguished, and provides accurate inference on the variance components. PMID:24967075

  9. Spatial selectivity and binaural responses in the inferior colliculus of the great horned owl.

    PubMed

    Volman, S F; Konishi, M

    1989-09-01

    In this study we have investigated the processing of auditory cues for sound localization in the great horned owl (Bubo virginianus). Previous studies have shown that the barn owl, whose ears are asymmetrically oriented in the vertical plane, has a 2-dimensional, topographic representation of auditory space in the external division of the inferior colliculus (ICx). As in the barn owl, the great horned owl's ICx is anatomically distinct and projects to the optic tectum. Neurons in ICx respond over only a small range of azimuths (mean = 32 degrees), and azimuth is topographically mapped. In contrast to the barn owl, the great horned owl has bilaterally symmetrical ears and its receptive fields are not restricted in elevation. The binaural cues available for sound localization were measured both with cochlear microphonic recordings and with a microphone attached to a probe tube in the auditory canal. Interaural time disparity (ITD) varied monotonically with azimuth. Interaural intensity differences (IID) also changed with azimuth, but the largest IIDs were less than 15 dB, and the variation was not monotonic. Neither ITD nor IID varied systematically with changes in the vertical position of a sound source. We used dichotic stimulation to determine the sensitivity of ICx neurons to these binaural cues. Best ITD of ICx units was topographically mapped and strongly correlated with receptive-field azimuth. The width of ITD tuning curves, measured at 50% of the maximum response, averaged 72 microseconds. All ICx neurons responded only to binaural stimulation and had nonmonotonic IID tuning curves. Best IID was weakly, but significantly, correlated with best ITD (r = 0.39, p less than 0.05). The IID tuning curves, however, were broad (mean 50% width = 24 dB), and 67% of the units had best IIDs within 5 dB of 0 dB IID. ITD tuning was sensitive to variations in IID in the direction opposite to that expected for time-intensity trading, but the magnitude of this effect was only

  10. Perfluoroalkyl substances in soft tissues and tail feathers of Belgian barn owls (Tyto alba) using statistical methods for left-censored data to handle non-detects.

    PubMed

    Jaspers, Veerle L B; Herzke, Dorte; Eulaers, Igor; Gillespie, Brenda W; Eens, Marcel

    2013-02-01

    Perfluoroalkyl substances (PFASs) were investigated in tail feathers and soft tissues (liver, muscle, preen gland and adipose tissue) of barn owl (Tyto alba) road-kill victims (n=15) collected in the province of Antwerp (Belgium). A major PFAS producing facility is located in the Antwerp area and levels of PFASs in biota from that region have been found to be very high in previous studies. We aimed to investigate for the first time the main sources of PFASs in feathers of a terrestrial bird species. Throughout this study, we have used statistical methods for left-censored data to cope with levels below the limit of detection (LOD), instead of traditional, potentially biased, substitution methods. Perfluorooctane sulfonate (PFOS) was detected in all tissues (range: 11ng/g ww in muscle-1208ng/g ww in preen oil) and in tail feathers (<2.2-56.6ng/g ww). Perfluorooctanoate (PFOA) was measured at high levels in feathers (<14-670ng/g ww), but not in tissues (more than 50%

  11. Corticosterone shifts reproductive behaviour towards self-maintenance in the barn owl and is linked to melanin-based coloration in females.

    PubMed

    Almasi, Bettina; Roulin, Alexandre; Jenni, Lukas

    2013-06-01

    Trade-offs between the benefits of current reproduction and the costs to future reproduction and survival are widely recognized. However, such trade-offs might only be detected when resources become limited to the point where investment in one activity jeopardizes investment in others. The resolution of the trade-off between reproduction and self-maintenance is mediated by hormones such as glucocorticoids which direct behaviour and physiology towards self-maintenance under stressful situations. We investigated this trade-off in male and female barn owls in relation to the degree of heritable melanin-based coloration, a trait that reflects the ability to cope with various sources of stress in nestlings. We increased circulating corticosterone in breeding adults by implanting a corticosterone-releasing-pellet, using birds implanted with a placebo-pellet as controls. In males, elevated corticosterone reduced the activity (i.e. reduced home-range size and distance covered within the home-range) independently of coloration, while we could not detect any effect on hunting efficiency. The effect of experimentally elevated corticosterone on female behaviour was correlated with their melanin-based coloration. Corticosterone (cort-) induced an increase in brooding behaviour in small-spotted females, while this hormone had no detectable effect in large-spotted females. Cort-females with small eumelanic spots showed the normal body-mass loss during the early nestling period, while large spotted cort-females did not lose body mass. This indicates that corticosterone induced a shift towards self-maintenance in males independently on their plumage, whereas in females this shift was observed only in large-spotted females. PMID:23583559

  12. Divorce in the barn owl: securing a compatible or better mate entails the cost of re-pairing with a less ornamented female mate.

    PubMed

    Dreiss, A N; Roulin, A

    2014-06-01

    Two nonmutually exclusive hypotheses can explain why divorce is an adaptive strategy to improve reproductive success. Under the 'better option hypothesis', only one of the two partners initiates divorce to secure a higher-quality partner and increases reproductive success after divorce. Under the 'incompatibility hypothesis', partners are incompatible and hence they may both increase reproductive success after divorce. In a long-term study of the barn owl (Tyto alba), we address the question of whether one or the two partners derive fitness benefits by divorcing. Our results support the hypothesis that divorce is adaptive: after a poor reproductive season, at least one of the two divorcees increase breeding success up to the level of faithful pairs. By breeding more often together, faithful pairs improve coordination and thereby gain in their efficiency to produce successful fledglings. Males would divorce to obtain a compatible mate rather than a mate of higher quality: a heritable melanin-based signal of female quality did not predict divorce (indicating that female absolute quality may not be the cause of divorce), but the new mate of divorced males was less melanic than their previous mate. This suggests that, at least for males, a cost of divorce may be to secure a lower-quality but compatible mate. The better option hypothesis could not be formally rejected, as only one of the two divorcing partners commonly succeeded in obtaining a higher reproductive success after divorce. In conclusion, incompatible partners divorce to restore reproductive success, and by breeding more often together, faithful partners improve coordination. PMID:24773174

  13. Linking melanism to brain development: expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny

    PubMed Central

    2013-01-01

    Background Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). Results As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. Conclusions We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism. PMID:23886007

  14. Bigger Brains or Bigger Nuclei? Regulating the Size of Auditory Structures in Birds

    PubMed Central

    Kubke, M. Fabiana; Massoglia, Dino P.; Carr, Catherine E.

    2012-01-01

    Increases in the size of the neuronal structures that mediate specific behaviors are believed to be related to enhanced computational performance. It is not clear, however, what developmental and evolutionary mechanisms mediate these changes, nor whether an increase in the size of a given neuronal population is a general mechanism to achieve enhanced computational ability. We addressed the issue of size by analyzing the variation in the relative number of cells of auditory structures in auditory specialists and generalists. We show that bird species with different auditory specializations exhibit variation in the relative size of their hindbrain auditory nuclei. In the barn owl, an auditory specialist, the hind-brain auditory nuclei involved in the computation of sound location show hyperplasia. This hyperplasia was also found in songbirds, but not in non-auditory specialists. The hyperplasia of auditory nuclei was also not seen in birds with large body weight suggesting that the total number of cells is selected for in auditory specialists. In barn owls, differences observed in the relative size of the auditory nuclei might be attributed to modifications in neurogenesis and cell death. Thus, hyperplasia of circuits used for auditory computation accompanies auditory specialization in different orders of birds. PMID:14726625

  15. Connect Them Bones! An Interdisciplinary Study of Owl Pellets.

    ERIC Educational Resources Information Center

    Zipko, Stephen J.

    1983-01-01

    Discusses a field/laboratory study of the barn owl in which students collect and dissect owl pellets. Interdisciplinary lessons focus on eco-politics, reconstruction of owl prey skeletons, studies of predator-prey relationships, and construction/installation of nest boxes for owls and other birds. The unit begins and ends with an attitude…

  16. A topographic instructive signal guides the adjustment of the auditory space map in the optic tectum.

    PubMed

    Hyde, P S; Knudsen, E I

    2001-11-01

    Maps of auditory space in the midbrain of the barn owl (Tyto alba) are calibrated by visual experience. When owls are raised wearing prismatic spectacles that displace the visual field in azimuth, the auditory receptive fields of neurons in the optic tectum shift to compensate for the optical displacement of the visual field. This shift results primarily from a shift in the tuning of tectal neurons for interaural time difference. The visually based instructive signal that guides this plasticity could be based on a topographic, point-by-point comparison between auditory and visual space maps or on a foveation-dependent visual assessment of the accuracy of auditory orienting responses. To distinguish between these two possibilities, we subjected owls to optical conditions that differed in the center of gaze and the visual periphery. A topographic signal would cause the portions of the space map representing the central and peripheral regions of visual space to adjust differently, according to the optical conditions that exist in each region. In contrast, a foveation-based signal would cause both portions of the map to adjust similarly, according to the optical conditions that exist at the center of gaze. In six of seven experiments, adaptive changes were as predicted by a topographic instructive signal. Although the results do not rule out the possible contribution of a foveation-based signal, they demonstrate that a topographic instructive signal is, indeed, involved in the calibration of the auditory space map in the barn owl optic tectum. PMID:11606646

  17. Causes of owl mortality in Hawaii, 1992-1994

    USGS Publications Warehouse

    Work, T.M.; Hale, J.

    1996-01-01

    Eighty-one barn owls (Tyto alba) and five Hawaiian owls or pueo (Asio flammeus sandwichensis) from Kauai, Oahu, Lanai, Molokai, Maui and Hawaii (USA) were evaluated for cause of death, November 1992 through August 1994. The most common cause of death in barn owls was trauma (50%) followed by infectious disease (28%) and emaciation (22%). Most traumas apparently resulted from vehicular collisions. Trichomoniasis was the predominant infectious disease and appeared to be a significant cause of death in barn owls in Hawaii. Pasteurellosis and aspergillosis were encountered less commonly. No predisposing cause of emaciation was detected. Stomach contents from 28 barn owls contained mainly insects (64%) of the family Tetigoniidae and Gryllidae, and rodents (18%); the remainder had mixtures of rodents and insects or grass. Three pueo died from trauma and one each died from emaciation and pasteurellosis. We found no evidence of organochlorine, organophosphorus, or carbamate pesticides as causes of death in pueo or barn owls.

  18. Signal-to-noise ratio in the membrane potential of the owl's auditory coincidence detectors

    PubMed Central

    Funabiki, Kazuo; Kuokkanen, Paula T.; Kempter, Richard; Carr, Catherine E.

    2012-01-01

    Owls use interaural time differences (ITDs) to locate a sound source. They compute ITD in a specialized neural circuit that consists of axonal delay lines from the cochlear nucleus magnocellularis (NM) and coincidence detectors in the nucleus laminaris (NL). Recent physiological recordings have shown that tonal stimuli induce oscillatory membrane potentials in NL neurons (Funabiki K, Ashida G, Konishi M. J Neurosci 31: 15245–15256, 2011). The amplitude of these oscillations varies with ITD and is strongly correlated to the firing rate. The oscillation, termed the sound analog potential, has the same frequency as the stimulus tone and is presumed to originate from phase-locked synaptic inputs from NM fibers. To investigate how these oscillatory membrane potentials are generated, we applied recently developed signal-to-noise ratio (SNR) analysis techniques (Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R. J Neurophysiol 104: 2274–2290, 2010) to the intracellular waveforms obtained in vivo. Our theoretical prediction of the band-limited SNRs agreed with experimental data for mid- to high-frequency (>2 kHz) NL neurons. For low-frequency (≤2 kHz) NL neurons, however, measured SNRs were lower than theoretical predictions. These results suggest that the number of independent NM fibers converging onto each NL neuron and/or the population-averaged degree of phase-locking of the NM fibers could be significantly smaller in the low-frequency NL region than estimated for higher best-frequency NL. PMID:22933726

  19. Comparative study of visual pathways in owls (Aves: Strigiformes).

    PubMed

    Gutiérrez-Ibáñez, Cristián; Iwaniuk, Andrew N; Lisney, Thomas J; Wylie, Douglas R

    2013-01-01

    Although they are usually regarded as nocturnal, owls exhibit a wide range of activity patterns, from strictly nocturnal, to crepuscular or cathemeral, to diurnal. Several studies have shown that these differences in the activity pattern are reflected in differences in eye morphology and retinal organization. Despite the evidence that differences in activity pattern among owl species are reflected in the peripheral visual system, there has been no attempt to correlate these differences with changes in the visual regions in the brain. In this study, we compare the relative size of nuclei in the main visual pathways in nine species of owl that exhibit a wide range of activity patterns. We found marked differences in the relative size of all visual structures among the species studied, both in the tectofugal and the thalamofugal pathway, as well in other retinorecipient nuclei, including the nucleus lentiformis mesencephali, the nucleus of the basal optic root and the nucleus geniculatus lateralis, pars ventralis. We show that the barn owl (Tyto alba), a species widely used in the study of the integration of visual and auditory processing, has reduced visual pathways compared to strigid owls. Our results also suggest there could be a trade-off between the relative size of visual pathways and auditory pathways, similar to that reported in mammals. Finally, our results show that although there is no relationship between activity pattern and the relative size of either the tectofugal or the thalamofugal pathway, there is a positive correlation between the relative size of both visual pathways and the relative number of cells in the retinal ganglion layer. PMID:23296024

  20. Spatial hearing in echoic environments: The role of the envelope in owls

    PubMed Central

    Nelson, Brian S.; Takahashi, Terry T.

    2010-01-01

    Summary In the precedence effect, sounds emanating directly from the source are localized preferentially over their reflections. Although most studies have focused on the delay between the onset of a sound and its echo, humans still experience the precedence effect when this onset delay is removed. We tested in barn owls the hypothesis that an ongoing delay, equivalent to the onset delay, is discernible from the envelope features of amplitude-modulated stimuli and may be sufficient to evoke this effect. With sound pairs having only envelope cues, owls localized direct sounds preferentially and neurons in their auditory space-maps discharged more vigorously to them, but only if the sounds were amplitude modulated. Under conditions that yielded the precedence effect, acoustical features known to evoke neuronal discharges were more abundant in the envelopes of the direct sounds than of the echoes, suggesting that specialized neural mechanisms for echo suppression were unnecessary. PMID:20797540

  1. Vision-independent adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum.

    PubMed

    Knudsen, E I; Mogdans, J

    1992-09-01

    Neurons in the developing optic tectum adjust their tuning to auditory localization cues in response to chronic monaural occlusion so that auditory spatial fields align with visual receptive fields (VRFs). We tested whether this adaptive adjustment of auditory tuning requires visual instruction. Both eyelids were sutured closed at the same time that one ear was occluded in two barn owls that were 1 month old. After 70 and 100 d, respectively, the tuning of units to interaural level difference (ILD) and to interaural time difference (ITD) was measured. These data were compared with equivalent data from 15 normal owls. Unit tuning to ITD was shifted from normal in both of the monaurally occluded owls. In one owl, ILD tuning was also clearly shifted. In the other owl, the map of ILD was flipped upside down and adaptive adjustments in ILD tuning could not be assessed. Instead, adjustments in ILD tuning were observed following removal of the earplug with the eyelids kept closed. Unit tuning was monitored at several sites in the tectum for 1 month after earplug removal using chronically implanted electrodes. Then, ILD tuning was resampled across the entire tectum. Both measures indicated shifts in ILD tuning in response to removal of the earplug in the second blind owl. In both animals, the magnitude of the shifts in ILD tuning and ITD tuning was smaller than has been observed previously in monaurally occluded but sighted owls. The results demonstrate that the brain can make adaptive adjustments in ILD and ITD tuning in response to early monaural occlusion even without the guiding influence of vision. PMID:1527592

  2. The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl, Tyto alba, and the burrowing owl, Speotyto cunicularia.

    PubMed

    Bravo, H; Pettigrew, J D

    1981-07-01

    Using the HRP retrograde transport technique in two different genera of owls (Speotyto and Tyto), we have studied the distribution of neurons projecting to the optic tectum and the visual thalamus. Small injections of HRP were made into these structures from the pial surface after they had been visualized directly by dissection of the overlying bone. In contrast to the findings in mammals, retinal ganglion cells were labeled only in the eye contralateral to the injection site, whether this was in the thalamus or tectum, and the labeled ganglion cells were found on both nasal and temporal sides of the vertical retinal meridian through the fovea. After thalamic injections, labeling was prominent in temporal retina representing the binocular field, temporal to the optic nerve head. Retinothalamic ganglion cells formed roughly concentric lines of isodensity centered on the fovea (Speotyto) or area centralis (Tyto); labeling from thalamic injections involved both large and medium-sized neurons, but did not involve the smallest nor a conspicuous class of very large neurons. Tectal injections led to prominent labeling along the horizontal streak region, with horizontally elongated isodensity contours in both Tyto and Speotyto; retinotectal ganglion cells were heterogeneous and included a group of very large neurons and anther group of small neurons, neither of which was labeled from the thalamus. In the visual Wulst, labeled neurons were confined to the supragranular layers after both tectal and thalamic injections. Corticotectal neurons were found in both ipsilateral and contralateral visual Wulst. They were characterized by large cell bodies and prominent dendrites. Corticotectal neurons were distributed throughout the mediolateral extent of the ipsilateral Wulst and therefore involved both the monocular and binocular representations of the visual field. Corticothalamic neurons, found only in the ipsilateral Wulst, were characterized by smaller cell bodies and fine

  3. Owls as biomonitors of environmental contamination

    SciTech Connect

    Sheffield, S.R.

    1995-12-31

    Exposure and effects of environmental contaminants on owls has been largely understudied. Research primarily has focused on two species, the eastern screech owl (Otus asio) and barn owl (Tyto alba). Most of this work has been conducted with captive populations at the Patuxent Wildlife Research Center in Laurel, MD. In the wild, work has been, or is currently being, conducted with great-horned owls (Bubo virginianus) at a Superfund site in Colorado and in agricultural croplands in Iowa, and barn owls at a Superfund site in Texas and in metal-contaminated regions of the Netherlands. As higher order consumers, owls bioconcentrate many different environmental contaminants through their prey. Owls have proven to be sensitive to a wide variety of toxic compounds, including PCB`s, metals, and fluoride. Endpoints examined include reproductive effects, eggshell thickness, residue analyses, cholinesterase inhibition, and induction of liver MFO`s. Much more work remains to be done using owls as biomonitors of environmental contamination, particularly with captive populations, salvaged individuals, raptor rehabilitation center birds, and with wild populations in areas around hazardous waste sites, smelters, landfills, agricultural croplands, and other major sources of environmental contamination.

  4. Hypopi (Acari:Hypoderatidae) from owls (Aves:Strigiformes:Strigidae).

    PubMed

    Pence, D B; Bergan, J F

    1996-09-01

    Hypopi (deutonymphs) of the family Hypoderatidae were found in a barn owl, Tyto alba (Scopoli), and a burrowing owl, Speotyto cunicularia (Molina), from Texas. A redescription is provided for mature specimens of the hypopus of Tytodectes (Tytodectes) tyto Fain from the subcutaneous adipose tissues of the pelvic region in the barn owl. The hypopus of Tytodectes (Tytodectes) speotyto n. sp. is described from specimens in the subcutaneous adipose tissues of the pelvic region and in the adipose tissues of the intermuscular fasciae of the ankle in the burrowing owl. T. (T.) speotyto appears most similar in size and chaetotaxy to T. (T.) glaucidii Cerný described from the Cuban pygmy owl, Glaucidium siju (d'Orbigny), in Cuba, but differs in the presence of a spine on tibia IV, which also occurs in T. (T.) tyto. Both of the former species have the anterior apodemes of coxae I fused in a simple V and lack a sternum. They differ from T. (T.) tyto which has the anterior apodemes of coxae I fused in a Y and there is a well developed sternum. Based on the above 3 described hypopi, the hypoderatids of owls represent an assemblage of small closely related, but easily differentiated, species. The occurrence of a few specimens of Neottialges evansi Fain in the barn owl and Hypodectes (Hypodectoides) propus (Nitzsch) in the burrowing owl probably represent examples of host capture by hypopi that normally occur in cormorants and pigeons, herons or egrets, respectively. PMID:8840691

  5. Outrageous Owls

    ERIC Educational Resources Information Center

    Walkup, Nancy

    2007-01-01

    The author's encounter with a live owl and her purchase of a Peruvian folk art gourd inspired a new interdisciplinary experience for the author's fourth grade students. In this article, she describes how her students explored owls through clay sculpture. (Contains 2 resources and 1 online resource.)

  6. Owl Pellets.

    ERIC Educational Resources Information Center

    Thompson, Craig D.

    1987-01-01

    Provides complete Project WILD lesson plans for 20-45-minute experiential science learning activity for grades 3-7 students. Describes how students construct a simple food chain through examination of owl pellets. Includes lesson objective, method, background information, materials, procedure, evaluation, and sources of owl pellets and posters.…

  7. Cue Reliability Represented in the Shape of Tuning Curves in the Owl's Sound Localization System

    PubMed Central

    Fischer, Brian J.; Peña, Jose L.

    2016-01-01

    Optimal use of sensory information requires that the brain estimates the reliability of sensory cues, but the neural correlate of cue reliability relevant for behavior is not well defined. Here, we addressed this issue by examining how the reliability of spatial cue influences neuronal responses and behavior in the owl's auditory system. We show that the firing rate and spatial selectivity changed with cue reliability due to the mechanisms generating the tuning to the sound localization cue. We found that the correlated variability among neurons strongly depended on the shape of the tuning curves. Finally, we demonstrated that the change in the neurons' selectivity was necessary and sufficient for a network of stochastic neurons to predict behavior when sensory cues were corrupted with noise. This study demonstrates that the shape of tuning curves can stand alone as a coding dimension of environmental statistics. SIGNIFICANCE STATEMENT In natural environments, sensory cues are often corrupted by noise and are therefore unreliable. To make the best decisions, the brain must estimate the degree to which a cue can be trusted. The behaviorally relevant neural correlates of cue reliability are debated. In this study, we used the barn owl's sound localization system to address this question. We demonstrated that the mechanisms that account for spatial selectivity also explained how neural responses changed with degraded signals. This allowed for the neurons' selectivity to capture cue reliability, influencing the population readout commanding the owl's sound-orienting behavior. PMID:26888922

  8. Snowy owl

    USGS Publications Warehouse

    Smith, D.G.; Ellis, D.H.

    1989-01-01

    The snowy owl is a rare to uncommon, irregular winter visitor in the northeastern United States, decreasing southward in abundance except during incursion years, when it is more common and widely distributed. Although snowy owls are recorded in northern New England every winter, major incursions occur at approximately three to four year intervals. Limiting factors include food, habitat and human interference. Research is needed on the population ecology of this species and, perhaps more important, management goals must be directed towards public education emphasizing the value of snowy owls.

  9. Adaptive adjustment of unit tuning to sound localization cues in response to monaural occlusion in developing owl optic tectum.

    PubMed

    Mogdans, J; Knudsen, E I

    1992-09-01

    Bimodal units in the barn owl's optic tectum are tuned to the location of auditory and visual stimuli, and are systematically organized according to their spatial tuning to form mutually aligned maps of auditory and visual space. Map alignment results from the fact that, normally, units are tuned to the values of interaural level difference (ILD) and interaural time difference (ITD) produced by a sound source at the location of their visual receptive fields (VRFs). Monaural occlusion alters the correspondence of ILD and ITD values with locations in space. We investigated the effect that raising owls with a chronic monaural occlusion has on the tuning of tectal units to ILD and ITD. Owls were monaurally occluded beginning at 1 month of age. The effects of monaural occlusion were assessed 2-4 months later by comparing the ILD and ITD tuning of units in monaurally occluded owls with the ILD and ITD tuning of units with equivalent VRFs in normal owls. ILD and ITD tuning was shifted substantially and in the direction of the unoccluded ear (the adaptive direction) in owls raised with a monaural occlusion. In most tecta, the mapped representations of ILD and ITD were shifted systematically. In addition, in some tecta, monaural occlusion induced a change in the topography of the ILD map such that ILD tuning remained essentially constant at values near 0 dB over abnormally large portions of the tectum. Across all recording sites, the average shift in ILD tuning was 9 dB (n = 396) and the average shift in ITD tuning was 40 microseconds (n = 414). In four of five animals, the magnitude of the effect was not equivalent on the two sides of the brain, the adjustments being significantly larger and more systematic on the side ipsilateral to the occlusion. Such differences in the altered ILD and ITD maps on the two sides of the brain in individual animals indicate that, although a component of the adaptive adjustment might be due to regulation of the gain and phase response of the

  10. Anticoagulant rodenticides in three owl species from Western Canada, 1988-2003.

    PubMed

    Albert, Courtney A; Wilson, Laurie K; Mineau, Pierre; Trudeau, Suzanne; Elliott, John E

    2010-02-01

    Anticoagulant rodenticides are widely used to control rodent infestations. Previous studies have shown that nontarget organisms, such as birds, are at risk for both primary and secondary poisoning. This paper presents rodenticide residue information on the livers from 164 strigiformes which included barn owls (Tyto alba), barred owls (Strix varia), and great horned owls (Bubo virginianus), collected from 1988 to 2003 in the province of British Columbia and the Yukon Territory, Canada. Livers were analyzed for brodifacoum, bromadiolone, chlorophacinone, diphacinone, difethialone, and warfarin. Our results show that, of the 164 owl livers analyzed, 70% had residues of at least one rodenticide, and of these 41% had more than one rodenticide detected. Of the three species of owls examined, barred owls were most frequently exposed (92%, n = 23); brodifacoum and bromadiolone were most often detected, with liver concentrations ranging from 0.001 to 0.927 mg/kg brodifacoum, and 0.002 to 1.012 mg/kg bromadiolone. Six of the owls (three barred owls, two barn owls, and one great horned owl) were diagnosed as having died from anticoagulant poisoning; all six owls had brodifacoum residues in the liver. PMID:19826750

  11. Multiplicative auditory spatial receptive fields created by a hierarchy of population codes.

    PubMed

    Fischer, Brian J; Anderson, Charles H; Peña, José Luis

    2009-01-01

    A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl's midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl's inferior colliculus which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD, and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not. Nonlinear responses in the owl's inferior colliculus can thus be generated using a combination of cellular and network mechanisms, showing that multiple elements of previous theories can be combined in a single system. PMID:19956693

  12. Effects of pesticides on owls in North America

    USGS Publications Warehouse

    Blus, L.J.

    1996-01-01

    A literature review of the effects of pesticides on owls in North America showed that relatively few studies have been undertaken. Owls used in experiments seem as sensitive to organochlorine pesticides (OCs) as other birds of prey, but wild owls experienced few serious problems, primarily because they were exposed to lower residues in their predominately mammalian or invertebrate prey. For example, the great horned owl ( Bubo virginianus ) and the common barn-owl ( Tyto alba ) neither experienced marked changes in mortality or recruitment rates nor was there any evidence of population decreases even during the maximum period of OC pesticide use. Also, eggshell thinning was not a widespread problem. There were adverse effects on individual owls including verified records of 74 owls of six species that died from secondary or tertiary poisoning related to strychnine, organochlorines, anticholinesterases (antiChEs) and anticoagulants in 16 states within the U.S. and one province in Canada. Most of the pesticide-related deaths occurred during the 1980s, although this probably does not represent a true temporal distribution. Verified mortalities of owls probably represent a small fraction of the actual number that died from pesticides. Incidence of mortality seems biased geographically toward areas such as New York that have active ecotoxicological programs. Burrowing owl ( Speotyto cunicularia ) populations currently are decreasing throughout much of the range in the U.S. and Canada. Studies in Canada indicate that antiChE pesticides, particularly carbofuran, were responsible for the declines there.

  13. 1. Barn 3. NW corner. Border shed (Barn A) in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Barn 3. NW corner. Border shed (Barn A) in distance marks southern boundary of the original north barn area. Camera pointed SE. - Longacres, Barn 3, 1621 Southwest Sixteenth Street, Renton, King County, WA

  14. Predator facilitation or interference: a game of vipers and owls.

    PubMed

    Embar, Keren; Raveh, Ashael; Hoffmann, Ishai; Kotler, Burt P

    2014-04-01

    In predator-prey foraging games, the prey's reaction to one type of predator may either facilitate or hinder the success of another predator. We ask, do different predator species affect each other's patch selection? If the predators facilitate each other, they should prefer to hunt in the same patch; if they interfere, they should prefer to hunt alone. We performed an experiment in a large outdoor vivarium where we presented barn owls (Tyto alba) with a choice of hunting greater Egyptian gerbils (Gerbillus pyramidum) in patches with or without Saharan horned vipers (Cerastes cerastes). Gerbils foraged on feeding trays set under bushes or in the open. We monitored owl location, activity, and hunting attempts, viper activity and ambush site location, and the foraging behavior of the gerbils in bush and open microhabitats. Owls directed more attacks towards patches with vipers, and vipers were more active in the presence of owls. Owls and vipers facilitated each other's hunting through their combined effect on gerbil behavior, especially on full moon nights when vipers are more active. Owls forced gerbils into the bushes where vipers preferred to ambush, while viper presence chased gerbils into the open where they were exposed to owls. Owls and vipers took advantage of their indirect positive effect on each other. In the foraging game context, they improve each other's patch quality and hunting success. PMID:24481981

  15. Axonal delay lines for time measurement in the owl's brainstem.

    PubMed

    Carr, C E; Konishi, M

    1988-11-01

    Interaural time difference is an important cue for sound localization. In the barn owl (Tyto alba) neuronal sensitivity to this disparity originates in the brainstem nucleus laminaris. Afferents from the ipsilateral and contralateral magnocellular cochlear nuclei enter the nucleus laminaris through its dorsal and ventral surfaces, respectively, and interdigitate in the nucleus. Intracellular recordings from these afferents show orderly changes in conduction delay with depth in the nucleus. These changes are comparable to the range of interaural time differences available to the owl. Thus, these afferent axons act as delay lines and provide anatomical and physiological bases for a neuronal map of interaural time differences in the nucleus laminaris. PMID:3186725

  16. Owls On Silent Wings. The Wonder Series.

    ERIC Educational Resources Information Center

    Cooper, Ann C.

    This curriculum guide is all about owls and provides information on the folklore related to owls, present populations, explanations of physical characteristics, exploring owl pellets, burrowing owls, snowy owls, and great horned owls. Included are eight activities using owl cards, owl pellets, puzzles, and origami. This guide aims to increase…

  17. How do owls localize interaurally phase-ambiguous signals?

    PubMed

    Saberi, K; Farahbod, H; Konishi, M

    1998-05-26

    Owls and other animals, including humans, use the difference in arrival time of sounds between the ears to determine the direction of a sound source in the horizontal plane. When an interaural time difference (ITD) is conveyed by a narrowband signal such as a tone, human beings may fail to derive the direction represented by that ITD. This is because they cannot distinguish the true ITD contained in the signal from its phase equivalents that are ITD +/- nT, where T is the period of the stimulus tone and n is an integer. This uncertainty is called phase-ambiguity. All ITD-sensitive neurons in birds and mammals respond to an ITD and its phase equivalents when the ITD is contained in narrowband signals. It is not known, however, if these animals show phase-ambiguity in the localization of narrowband signals. The present work shows that barn owls (Tyto alba) experience phase-ambiguity in the localization of tones delivered by earphones. We used sound-induced head-turning responses to measure the sound-source directions perceived by two owls. In both owls, head-turning angles varied as a sinusoidal function of ITD. One owl always pointed to the direction represented by the smaller of the two ITDs, whereas a second owl always chose the direction represented by the larger ITD (i.e., ITD - T). PMID:9600989

  18. Minimal Conductance-Based Model of Auditory Coincidence Detector Neurons

    PubMed Central

    Ashida, Go; Funabiki, Kazuo; Kretzberg, Jutta

    2015-01-01

    Sound localization is a fundamental sensory function of a wide variety of animals. The interaural time difference (ITD), an important cue for sound localization, is computed in the auditory brainstem. In our previous modeling study, we introduced a two-compartment Hodgkin-Huxley type model to investigate how cellular and synaptic specializations may contribute to precise ITD computation of the barn owl's auditory coincidence detector neuron. Although our model successfully reproduced fundamental physiological properties observed in vivo, it was unsuitable for mathematical analyses and large scale simulations because of a number of nonlinear variables. In the present study, we reduce our former model into three types of conductance-based integrate-and-fire (IF) models. We test their electrophysiological properties using data from published in vivo and in vitro studies. Their robustness to parameter changes and computational efficiencies are also examined. Our numerical results suggest that the single-compartment active IF model is superior to other reduced models in terms of physiological reproducibility and computational performance. This model will allow future theoretical studies that use more rigorous mathematical analysis and network simulations. PMID:25844803

  19. View south, barn, north elevation Woods Homestead, Barn, County ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south, barn, north elevation - Woods Homestead, Barn, County Route 12 on north side of North Fork of Hughes River, 2.2 miles north & east of Goose Run Road intersection, Harrisville, Ritchie County, WV

  20. View north, barn, south elevation Woods Homestead, Barn, County ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View north, barn, south elevation - Woods Homestead, Barn, County Route 12 on north side of North Fork of Hughes River, 2.2 miles north & east of Goose Run Road intersection, Harrisville, Ritchie County, WV

  1. View west, barn, east elevation Woods Homestead, Barn, County ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west, barn, east elevation - Woods Homestead, Barn, County Route 12 on north side of North Fork of Hughes River, 2.2 miles north & east of Goose Run Road intersection, Harrisville, Ritchie County, WV

  2. View east, barn, west elevation Woods Homestead, Barn, County ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View east, barn, west elevation - Woods Homestead, Barn, County Route 12 on north side of North Fork of Hughes River, 2.2 miles north & east of Goose Run Road intersection, Harrisville, Ritchie County, WV

  3. 3. GENERAL VIEW OF FEED BARN (STRUCTURE 1), MILKING BARN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW OF FEED BARN (STRUCTURE 1), MILKING BARN (CENTER) (STRUCTURE 2) AND CORNER OF MILK HOUSE (STRUCTURE 3) FROM SOUTHEAST - Twin Oaks Dairy, Northwest of Metcalfe Road, off State Route 101 (Monterey Road), Coyote, Santa Clara County, CA

  4. LOWER LEVEL OF CROCKETT BARN, LOOKING SOUTH. The barn is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOWER LEVEL OF CROCKETT BARN, LOOKING SOUTH. The barn is built on a fieldstone foundation with a heavy-timber, mortise and tenon wood construction. A bank of window openings spans the south and east walls. Every other opening is covered with an operable shutter that is hinged to the window header above. - Crockett Farm, Barn, 1056 Fort Casey Road, Coupeville, Island County, WA

  5. 6. Livestock barn (far left), log drafthorse barn (left of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Livestock barn (far left), log draft-horse barn (left of center), loafing shed (center), log calving barn (right of center). View to west-northwest. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  6. 1. VIEW OF JAMES H. LANE BARN (HEREAFTER LANE BARN) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF JAMES H. LANE BARN (HEREAFTER LANE BARN) FROM L.D.S. CHURCH GROUNDS ON IDAHO HIGHWAY 26, APPROXIMATELY 1/4 MILE EAST OF THE MAIN INTERSECTION OF RICHFIELD, IDAHO. CAMERA IS POINTING SOUTH. - James H. Lane Ranch, Barn, One Mile South of Richfield on Highway 26, Richfield, Lincoln County, ID

  7. Keeping Barns in Perspective

    ERIC Educational Resources Information Center

    Tomash, Lisa

    2010-01-01

    In this article, the author describes a landscape project using Grant Wood's paintings as an example. As part of the project, the students are required to include a barn in their picture. This project is a great opportunity to study an Iowa artist who did landscape painting and to study perspective. This is also an excellent project for teaching…

  8. Experimental analysis of the flow field over a novel owl based airfoil

    NASA Astrophysics Data System (ADS)

    Klän, Stephan; Bachmann, Thomas; Klaas, Michael; Wagner, Hermann; Schröder, Wolfgang

    2009-05-01

    The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated. Several barn owl wings are scanned to obtain three-dimensional surface models of natural wings. A rectangular wing model with the general geometry of the barn owl but without any owl-specific structure being the reference case for all subsequent measurements is investigated using pressure tabs, oil flow pattern technique, and particle-image velocimetry. The main flow feature of the clean wing is a transitional separation bubble on the suction side. The size of the bubble depends on the Reynolds number and the angle of attack, whereas the location is mainly influenced by the angle of attack. Next, a second model with a modified surface is considered and its influence on the flow field is analyzed. Applying a velvet onto the suction side drastically reduces the size of this separation at moderate angles of attack and higher Reynolds numbers.

  9. Mixed-Media Owls

    ERIC Educational Resources Information Center

    Schultz, Kathy

    2010-01-01

    The fun of creating collages is there are unlimited possibilities for the different kinds of materials one can use. In this article, the author describes how her eighth-grade students created an owl using mixed media.

  10. Learning from an Owl.

    ERIC Educational Resources Information Center

    Greeves, Adrian

    1988-01-01

    Describes one creative writing teacher's use of an owl as a focal point for writing activities and how the writing activities aided the students' personal and creative development. Provides samples of student writing. (ARH)

  11. Density and habitat associations of Barred Owls at the edge of their range in Oklahoma

    USGS Publications Warehouse

    Winton, Brian R.; Leslie, David M., Jr.

    2004-01-01

    We assessed breeding-pair density and habitat associations of Barred Owls (Strix varia) at the edge of their range in north-central Oklahoma in 1995-1996. We played taped calls of Barred Owls to solicit and record responses (visual and auditory) and thereby determine density in our 1155-ha study area. Numbers of owls ranged from 7 pairs in 1995 to 11 pairs in 1996, or 1 Barred Owl pair/105-165 ha in a relatively contiguous bottomland forest. To assess habitat associations, we overlaid core areas of owl activity, as inferred from the locations of Barred Owl responses, on aerial photographs and quantified habitats in a 0.65-km2 cell surrounding owl core areas. Barred owl pairs were associated with closed-canopy forest (62.8%), fallow agricultural fields (10.6%), water (8.1%), and treeless (open) areas (6.2%), which differed from single owls (presumed nonbreeders) that showed a greater affinity for open-canopy forest and agricultural fields.

  12. Transformation from a pure time delay to a mixed time and phase delay representation in the auditory forebrain pathway.

    PubMed

    Vonderschen, Katrin; Wagner, Hermann

    2012-04-25

    Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output. PMID:22539852

  13. Demographic response of northern spotted owls to barred owl removal

    USGS Publications Warehouse

    Diller, V. Lowell; Hamm, Keith A; Early, Desiree A; Lamphear, David W; Katie Dugger; Yackulic, Charles B.; Schwarz, Carl J.; Carlson, Peter C.; McDonald, Trent L.

    2016-01-01

    Federally listed as threatened in 1990 primarily because of habitat loss, the northern spotted owl (Strix occidentalis caurina) has continued to decline despite conservation efforts resulting in forested habitat being reserved throughout its range. Recently, there is growing evidence the congeneric invasive barred owl (Strix varia) may be responsible for the continued decline primarily by excluding spotted owls from their preferred habitat. We used a long-term demographic study for spotted owls in coastal northern California as the basis for a pilot barred owl removal experiment. Our demography study used capture–recapture, reproductive output, and territory occupancy data collected from 1990 to 2013 to evaluate trends in vital rates and populations. We used a classic before-after-control-impact (BACI) experimental design to investigate the demographic response of northern spotted owls to the lethal removal of barred owls. According to the best 2-species dynamic occupancy model, there was no evidence of differences in barred or northern spotted owl occupancy prior to the initiation of the treatment (barred owl removal). After treatment, barred owl occupancy was lower in the treated relative to the untreated areas and spotted owl occupancy was higher relative to the untreated areas. Barred owl removal decreased spotted owl territory extinction rates but did not affect territory colonization rates. As a result, spotted owl occupancy increased in the treated area and continued to decline in the untreated areas. Prior to and after barred owl removal, there was no evidence that average fecundity differed on the 2 study areas. However, the greater number of occupied spotted owl sites on the treated areas resulted in greater productivity in the treated areas based on empirical counts of fledged young. Prior to removal, survival was declining at a rate of approximately 0.2% per year for treated and untreated areas. Following treatment, estimated survival was 0.859 for

  14. Eye shape and retinal topography in owls (Aves: Strigiformes).

    PubMed

    Lisney, Thomas J; Iwaniuk, Andrew N; Bandet, Mischa V; Wylie, Douglas R

    2012-01-01

    The eyes of vertebrates show adaptations to the visual environments in which they evolve. For example, eye shape is associated with activity pattern, while retinal topography is related to the symmetry or 'openness' of the habitat of a species. Although these relationships are well documented in many vertebrates including birds, the extent to which they hold true for species within the same avian order is not well understood. Owls (Strigiformes) represent an ideal group for the study of interspecific variation in the avian visual system because they are one of very few avian orders to contain species that vary in both activity pattern and habitat preference. Here, we examined interspecific variation in eye shape and retinal topography in nine species of owl. Eye shape (the ratio of corneal diameter to eye axial length) differed among species, with nocturnal species having relatively larger corneal diameters than diurnal species. All the owl species have an area of high retinal ganglion cell (RGC) density in the temporal retina and a visual streak of increased cell density extending across the central retina from temporal to nasal. However, the organization and degree of elongation of the visual streak varied considerably among species and this variation was quantified using H:V ratios. Species that live in open habitats and/or that are more diurnally active have well-defined, elongated visual streaks and high H:V ratios (3.88-2.33). In contrast, most nocturnal and/or forest-dwelling owls have a poorly defined visual streak, a more radially symmetrical arrangement of RGCs and lower H:V ratios (1.77-1.27). The results of a hierarchical cluster analysis indicate that the apparent interspecific variation is associated with activity pattern and habitat as opposed to the phylogenetic relationships among species. In seven species, the presence of a fovea was confirmed and it is suggested that all strigid owls may possess a fovea, whereas the tytonid barn owl (Tyto alba

  15. Experimental analysis of the flow field over a novel owl based airfoil

    NASA Astrophysics Data System (ADS)

    Klän, Stephan; Bachmann, Thomas; Klaas, Michael; Wagner, Hermann; Schröder, Wolfgang

    The aerodynamics of a newly constructed wing model the geometry of which is related to the wing of a barn owl is experimentally investigated. Several barn owl wings are scanned to obtain three-dimensional surface models of natural wings. A rectangular wing model with the general geometry of the barn owl but without any owlspecific structure being the reference case for all subsequent measurements is investigated using pressure tabs, oil flow pattern technique, and particle-image velocimetry. The main flow feature of the clean wing is a transitional separation bubble on the suction side. The size of the bubble depends on the Reynolds number and the angle of attack, whereas the location is mainly influenced by the angle of attack. Next, a second model with a modified surface is considered and its influence on the flow field is analyzed. Applying a velvet onto the suction side drastically reduces the size of this separation at moderate angles of attack and higher Reynolds numbers.

  16. Owl Pellet Paleontology

    ERIC Educational Resources Information Center

    McAlpine, Lisa K.

    2013-01-01

    In this activity for the beginning of a high school Biology 1 evolution unit, students are challenged to reconstruct organisms found in an owl pellet as a model for fossil reconstruction. They work in groups to develop hypotheses about what animal they have found, what environment it inhabited, and what niche it filled. At the end of the activity,…

  17. Owl Research that's Good for the Birds.

    ERIC Educational Resources Information Center

    Cristol, Daniel A.

    1986-01-01

    Describes and illustrates how to build nest boxes to provide city homes for screech owls to reestablish a healthy ecological balance. Outlines how to conduct a pellet analysis of an owl's diet and how to study screech owl territoriality. (NEC)

  18. All about Owls: Studying Owls, State Birds, and Endangered Species.

    ERIC Educational Resources Information Center

    Rivard, Leonard P.

    1991-01-01

    Activities are included that acquaint students with the parts of birds and the structure of feathers; that identify the prey of owls by opening owl pellets; working with information about threatened and endangered species of birds; and follow-up activities for bird study. A list of state and provincial birds of the United States and Canada and…

  19. Owl Pellets and Crisis Management.

    ERIC Educational Resources Information Center

    Anderson, Tom

    2002-01-01

    Describes a press conference that was used as a "teachable moment" when owl pellets being used for instructional purposes were found to be contaminated with Salmonella. The incident highlighted the need for safe handling of owl pellets, having a crisis management plan, and the importance of conveying accurate information to concerned parents.…

  20. DNA barcoding as a tool for elucidating species delineation in wide-ranging species as illustrated by owls (Tytonidae and Strigidae).

    PubMed

    Nijman, Vincent; Aliabadian, Mansour

    2013-11-01

    The mitochondrial cytochrome c-oxidase subunit I (cox1) can serve as a fast and accurate marker for the identification of animal species, and for the discovery of new species across the tree of life. Distinguishing species using this universal molecular marker, a technique known as DNA barcoding, relies on the identifying the gap between intra- and interspecific divergence. One of the difficulties could be wide-ranging, cosmopolitan species that show large amounts of morphological variation. The barn owl Tyto alba is a case in point. It occurs worldwide and varies morphologically, leading to the recognition of many subspecies or, more recently, species. We analysed data from the cox1 gene for 31 individuals of seven subspecies, and compared this with 214 sequences from 29 other owl species. Phylogenetic analysis of the T. alba samples gives very strong support for an Old World alba-clade (three subspecies) and a New World furcata-clade (four subspecies) that are genetically equidistant. The amount of intraspecific variation within each of these clades ranges from 0.66-0.99%, but variation among these clades ranges from 5.33-6.20%. Combined these data suggest that barn owl of the Old World is indeed best considered a separate species different from that of the New World. For combined dataset, sample size of owl species (n between 1 and 21 sequences) increased with geographic range size but we did not find significant relationships between interspecific divergence and sample size or between interspecific divergence and geographic range. For 21/24 species of owls with sample sizes of n ≥4 the maximum interspecific divergences was ≤ 3.00%. However, similar to those found in barn owls, the largest amount of divergence (3.23-4.09%) was present in two other wide-ranging species (Strix nebulosa and Aegolius funereus) raising the possibility of multiple species in other wide-ranging owls as well. PMID:24199866

  1. GROUND FLOOR OF JENNE BARN LOOKING EAST. (The barn’s ground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GROUND FLOOR OF JENNE BARN LOOKING EAST. (The barn’s ground floor is used for animal pens. On the left is an area enclosed for chickens. The Jenne milking stanchions remain along the south end of the barn.) - Jenne Farm, Barn, 538 Engle Road, Coupeville, Island County, WA

  2. To dare or not to dare? Risk management by owls in a predator-prey foraging game.

    PubMed

    Embar, Keren; Raveh, Ashael; Burns, Darren; Kotler, Burt P

    2014-07-01

    In a foraging game, predators must catch elusive prey while avoiding injury. Predators manage their hunting success with behavioral tools such as habitat selection, time allocation, and perhaps daring-the willingness to risk injury to increase hunting success. A predator's level of daring should be state dependent: the hungrier it is, the more it should be willing to risk injury to better capture prey. We ask, in a foraging game, will a hungry predator be more willing to risk injury while hunting? We performed an experiment in an outdoor vivarium in which barn owls (Tyto alba) were allowed to hunt Allenby's gerbils (Gerbillus andersoni allenbyi) from a choice of safe and risky patches. Owls were either well fed or hungry, representing the high and low state, respectively. We quantified the owls' patch use behavior. We predicted that hungry owls would be more daring and allocate more time to the risky patches. Owls preferred to hunt in the safe patches. This indicates that owls manage risk of injury by avoiding the risky patches. Hungry owls doubled their attacks on gerbils, but directed the added effort mostly toward the safe patch and the safer, open areas in the risky patch. Thus, owls dared by performing a risky action-the attack maneuver-more times, but only in the safest places-the open areas. We conclude that daring can be used to manage risk of injury and owls implement it strategically, in ways we did not foresee, to minimize risk of injury while maximizing hunting success. PMID:24810326

  3. The contributions of onset and offset echo delays to auditory spatial perception in human listeners.

    PubMed

    Donovan, Jeff M; Nelson, Brian S; Takahashi, Terry T

    2012-12-01

    In echoic environments, direct sounds dominate perception even when followed by their reflections. As the delay between the direct (lead) source and the reflection (lag) increases, the reflection starts to become localizable. Although this phenomenon, which is part of the precedence effect, is typically studied with brief transients, leading and lagging sounds often overlap in time and are thus composed of three distinct segments: the "superposed" segment, when both sounds are present together, and the "lead-alone" and "lag-alone" segments, when leading and lagging sounds are present alone, respectively. Recently, it was shown that the barn owl (Tyto alba) localizes the lagging sound when the lag-alone segment, not the lead-alone segment, is lengthened. This was unexpected given the prevailing hypothesis that a leading sound may briefly desensitize the auditory system to sounds arriving later. The present study confirms this finding in humans under conditions that minimized the role of the superposed segment in the localization of either source. Just as lengthening the lag-alone segment caused the lagging sound to become more salient, lengthening the lead-alone segment caused the leading sound to become more salient. These results suggest that the neural representations of the lead and lag are independent of one another. PMID:23231121

  4. The Barnes Foundation: A Place for Teaching

    ERIC Educational Resources Information Center

    Burnham, Rika

    2007-01-01

    This article tells the story of the author's invitation to teach at the Barnes Foundation, and her transformative experience as a teacher in this extraordinary place. The author comes to realize that the Barnes is the physical realization of a philosophical dream, and progresses to an understanding of how Albert C. Barnes collected and assembled…

  5. Blood parasites in Owls with conservation implications for the Spotted Owl (Strix occidentalis)

    USGS Publications Warehouse

    Ishak, H.D.; Dumbacher, J.P.; Anderson, N.L.; Keane, J.J.; Valkiunas, G.; Haig, S.M.; Tell, L.A.; Sehgal, R.N.M.

    2008-01-01

    The three subspecies of Spotted Owl (Northern, Strix occidentalis courina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n=17) and unique lineages (n=12). This high level of sequence diversity is significant because only one leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls. ?? 2008 Ishak et al.

  6. Blood Parasites in Owls with Conservation Implications for the Spotted Owl (Strix occidentalis)

    PubMed Central

    Ishak, Heather D.; Dumbacher, John P.; Anderson, Nancy L.; Keane, John J.; Valkiūnas, Gediminas; Haig, Susan M.; Tell, Lisa A.; Sehgal, Ravinder N. M.

    2008-01-01

    The three subspecies of Spotted Owl (Northern, Strix occidentalis caurina; California, S. o. occidentalis; and Mexican, S. o. lucida) are all threatened by habitat loss and range expansion of the Barred Owl (S. varia). An unaddressed threat is whether Barred Owls could be a source of novel strains of disease such as avian malaria (Plasmodium spp.) or other blood parasites potentially harmful for Spotted Owls. Although Barred Owls commonly harbor Plasmodium infections, these parasites have not been documented in the Spotted Owl. We screened 111 Spotted Owls, 44 Barred Owls, and 387 owls of nine other species for haemosporidian parasites (Leucocytozoon, Plasmodium, and Haemoproteus spp.). California Spotted Owls had the greatest number of simultaneous multi-species infections (44%). Additionally, sequencing results revealed that the Northern and California Spotted Owl subspecies together had the highest number of Leucocytozoon parasite lineages (n = 17) and unique lineages (n = 12). This high level of sequence diversity is significant because only one Leucocytozoon species (L. danilewskyi) has been accepted as valid among all owls, suggesting that L. danilewskyi is a cryptic species. Furthermore, a Plasmodium parasite was documented in a Northern Spotted Owl for the first time. West Coast Barred Owls had a lower prevalence of infection (15%) when compared to sympatric Spotted Owls (S. o. caurina 52%, S. o. occidentalis 79%) and Barred Owls from the historic range (61%). Consequently, Barred Owls on the West Coast may have a competitive advantage over the potentially immune compromised Spotted Owls. PMID:18509541

  7. Maps of interaural delay in the owl's nucleus laminaris.

    PubMed

    Carr, Catherine E; Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-09-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  8. Signaling of the strongest stimulus in the owl optic tectum.

    PubMed

    Mysore, Shreesh P; Asadollahi, Ali; Knudsen, Eric I

    2011-04-01

    Essential to the selection of the next target for gaze or attention is the ability to compare the strengths of multiple competing stimuli (bottom-up information) and to signal the strongest one. Although the optic tectum (OT) has been causally implicated in stimulus selection, how it computes the strongest stimulus is unknown. Here, we demonstrate that OT neurons in the barn owl systematically encode the relative strengths of simultaneously occurring stimuli independently of sensory modality. Moreover, special "switch-like" responses of a subset of neurons abruptly increase when the stimulus inside their receptive field becomes the strongest one. Such responses are not predicted by responses to single stimuli and, indeed, are eliminated in the absence of competitive interactions. We demonstrate that this sensory transformation substantially boosts the representation of the strongest stimulus by creating a binary discrimination signal, thereby setting the stage for potential winner-take-all target selection for gaze and attention. PMID:21471353

  9. Maps of interaural delay in the owl's nucleus laminaris

    PubMed Central

    Shah, Sahil; McColgan, Thomas; Ashida, Go; Kuokkanen, Paula T.; Brill, Sandra; Kempter, Richard; Wagner, Hermann

    2015-01-01

    Axons from the nucleus magnocellularis form a presynaptic map of interaural time differences (ITDs) in the nucleus laminaris (NL). These inputs generate a field potential that varies systematically with recording position and can be used to measure the map of ITDs. In the barn owl, the representation of best ITD shifts with mediolateral position in NL, so as to form continuous, smoothly overlapping maps of ITD with iso-ITD contours that are not parallel to the NL border. Frontal space (0°) is, however, represented throughout and thus overrepresented with respect to the periphery. Measurements of presynaptic conduction delay, combined with a model of delay line conduction velocity, reveal that conduction delays can account for the mediolateral shifts in the map of ITD. PMID:26224776

  10. Burrowing Owls, Pulex irritans, and Plague.

    PubMed

    Belthoff, James R; Bernhardt, Scott A; Ball, Christopher L; Gregg, Michael; Johnson, David H; Ketterling, Rachel; Price, Emily; Tinker, Juliette K

    2015-09-01

    Western Burrowing Owls (Athene cunicularia hypugaea) are small, ground-dwelling owls of western North America that frequent prairie dog (Cynomys spp.) towns and other grasslands. Because they rely on rodent prey and occupy burrows once or concurrently inhabited by fossorial mammals, the owls often harbor fleas. We examined the potential role of fleas found on burrowing owls in plague dynamics by evaluating prevalence of Yersinia pestis in fleas collected from burrowing owls and in owl blood. During 2012-2013, fleas and blood were collected from burrowing owls in portions of five states with endemic plague-Idaho, Oregon, Washington, Colorado, and South Dakota. Fleas were enumerated, taxonomically identified, pooled by nest, and assayed for Y. pestis using culturing and molecular (PCR) approaches. Owl blood underwent serological analysis for plague antibodies and nested PCR for detection of Y. pestis. Of more than 4750 fleas collected from owls, Pulex irritans, a known plague vector in portions of its range, comprised more than 99.4%. However, diagnostic tests for Y. pestis of flea pools (culturing and PCR) and owl blood (PCR and serology) were negative. Thus, even though fleas were prevalent on burrowing owls and the potential for a relationship with burrowing owls as a phoretic host of infected fleas exists, we found no evidence of Y. pestis in sampled fleas or in owls that harbored them. We suggest that studies similar to those reported here during plague epizootics will be especially useful for confirming these results. PMID:26367482

  11. Optimal Prediction of Moving Sound Source Direction in the Owl.

    PubMed

    Cox, Weston; Fischer, Brian J

    2015-07-01

    Capturing nature's statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl's midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions. PMID:26226048

  12. 2. Barn 41. North side. 'Butterfly' roof line is similar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Barn 41. North side. 'Butterfly' roof line is similar to those of barns in middle barn area (Barns 1A through 8B). Part of 'panorama' with photo WA-201-13-1. - Longacres, Barn 41, 1621 Southwest Sixteenth Street, Renton, King County, WA

  13. DETAIL OF CROCKETT BARN WALL CONSTRUCTION, UPPER LEVEL. The wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CROCKETT BARN WALL CONSTRUCTION, UPPER LEVEL. The wall construction of the Crockett barn includes a layer of diagonal sheathing that is exposed on the interior. - Crockett Farm, Barn, 1056 Fort Casey Road, Coupeville, Island County, WA

  14. 12. Dairy barn, east and north sides, milk house to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Dairy barn, east and north sides, milk house to left and barn ramp at center - A. I. Du Pont Estate, Blue Ball Dairy Barn, Junction of U.S. Route 202 & Rockland Road, Wilmington, New Castle County, DE

  15. Elevation view of front (east) side of milk barn includes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of front (east) side of milk barn includes portion of creamery on left and main barn on right. - Kosai Farm, Milk Barn, B Street north of Northwest Twenty-ninth Street, Auburn, King County, WA

  16. Barred owls and landscape attributes influence territory occupancy of northern spotted owls

    PubMed Central

    Sovern, Stan G; Forsman, Eric D; Olson, Gail S; Biswell, Brian L; Taylor, Margaret; Anthony, Robert G

    2014-01-01

    We used multi-season occupancy analyses to model 2 fates of northern spotted owl territories in relation to habitat amount, habitat fragmentation, and the presence of barred owls in Washington State, USA, 1989–2005. Local colonization is the probability a territory unoccupied by a spotted owl in year i would be occupied in year i + 1, and local extinction is the probability a territory that was occupied by a spotted owl in year i would be unoccupied in year i + 1. We found a negative relationship between local extinction probability and amount of late-seral forest edge. We found a negative relationship between colonization probability and the number of late-seral forest patches (higher fragmentation), and a negative relationship between colonization probability and the amount of non-habitat within 600 m of a spotted owl territory center (Akaike weight = 0.59). The presence of barred owls was positively related to extinction probability and negatively related to detection probability of spotted owls. The negative relationship between presence of barred owls and detectability of spotted owls indicated that spotted owls could be modifying their calling behavior in the presence of barred owls. The positive relationship between barred owl detections and local extinction probability suggests that because of competition with barred owls, spotted owls are being displaced. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. PMID:25558093

  17. Comparative ecology of the Flammulated Owl and Northern Saw-whet Owl during fall migration

    USGS Publications Warehouse

    Stock, S.L.; Heglund, P.J.; Kaltenecker, G.S.; Carlisle, J.D.; Leppert, L.

    2006-01-01

    We compared the migration ecology of two owl species that exhibit different migration strategies: the Flammulated Owl (Otus flammeolus) and the Northern Saw-whet Owl (Aegolius acadicus). During fall 1999-2004, we captured 117 Flammulated Owls and 1433 Northern Saw-whet Owls in the southern Boise Mountains of southwestern Idaho. These owl species exhibited contrasting seasonal timing and body condition. Flammulated Owl captures peaked in mid-September and Northern Saw-whet Owl captures peaked in early to mid-October. Flammulated Owls displayed greater body condition than Northern Saw-whet Owls and increasing condition scores during the season, whereas Northern Saw-whet Owls had no apparent seasonal condition patterns. Based on seasonal timing of captures, both species showed unimodal movement patterns characteristic of fall migrants. However, in 1999 both species' capture rates were at least double those in other years of this study. Flammulated Owls' earlier arrival and departure, coupled with superior body condition, were consistent among years and typical of a long-distance migration strategy. In contrast, the Northern Saw-whet Owls' later arrival, more lengthy passage, and variable body condition were more characteristic of a short-distance migrant strategy. Furthermore, Northern Saw-whet Owls' body condition was significantly lower during the irruptive year than during nonirruptive years, supporting the notion that population density affects their migratory condition. ?? 2006 The Raptor Research Foundation, Inc.

  18. Acanthocephalans of the genus Centrorhynchus (Palaeacanthocephala: Centrorhynchidae) of birds of prey (Falconiformes) and owls (Strigiformes) in Slovakia.

    PubMed

    Komorová, P; Špakulová, M; Hurníková, Z; Uhrín, M

    2015-06-01

    Three species of thorny-headed worms of the genus Centrorhynchus were found to parasitize birds of prey and owls in the territory of the Slovakia during the years 2012-2014. Out of 286 examined bird individuals belonging to 23 species, only Buteo buteo, Buteo rufinus, Falco tinnunculus (Falconiformes), Asio otus, Strix aluco, Strix uralensis and Tyto alba (Strigiformes) were infected by acanthocephalans. All the bird species except for S. aluco represent new host records for Slovakia. The most prevalent acanthocephalan Centrorhynchus aluconis was detected in all 15 examined birds of non-migratory Ural owl S. uralensis (P = 100%); however, it was found occasionally also in two individuals of the tawny owl S. aluco (P = 20%), one long-eared owl A. otus (P = 7.7%), one barn owl T. alba (P = 33.3%) and the common buzzard B. buteo (P = 0.8%). Two other thorny-headed worms occurred exclusively in Falconiformes in raw or mixed infections: Centrorhynchus buteonis was found in 11 individuals of B. buteo (P = 9.2%), and two birds (B. buteo and B. rufinus) were parasitized simultaneously by C. buteonis and the species Centrorhynchus globocaudatus. Moreover, the latest, relatively rare acanthocephalan was found alone in two common kestrels F. tinnunculus (P = 2.7%). Regarding intensity of infection, it ranged from a single female of C. buteonis, C. globocaudatus or C. aluconis per host (four cases) to a maximum of 82 C. aluconis per an Ural owl. The difference in acanthocephalan species spectrum between birds of prey and owls in Slovakia was apparent. PMID:25786606

  19. The humeroscapular bone of the great horned owl (Bubo virginianus) and other raptors.

    PubMed

    Smith, B J; Smith, S A

    1992-03-01

    A small, separate, bony density dorsal to the shoulder joint is radiographically visible in several species of large hawks and owls. Gross dissection and histological examination show the bone to lie on the deep surface of the major deltoid muscle in intimate association with the dorsal coracohumeral ligament of the shoulder joint. The tendon of the supracoracoideus muscle passes immediately cranial to the humeroscapular bone. Two ligaments distinct from the shoulder joint capsule attach the humeroscapular bone to the proximal humerus: one passes to the proximal edge of the pectoral crest of the humerus, and the other passes to the ventral tubercle of the humerus. The bone was described as the humeroscapular bone in reference to a similar fibrocartilaginous structure possessed by some birds. The humeroscapular bone is present in the great horned owl (Bubo virginianus), the screech owl (Otus asio), the barred owl (Strix varia), the red-tailed hawk (Buteo jamaicencis), the Cooper's hawk (Accipiter cooperii), and the sharp-shinned hawk (Accipiter striatus). The bone is absent in the barn owl (Tyto alba), the osprey (Pandion haliaetus), the golden eagle (Aquila chysaetos), and the turkey vulture (Cathartes aura), though some of these species possessed a similar fibrocartilaginous structure. Whether the humeroscapular structure develops as bone or cartilage in a given species may be related to other morphological features of the wing, and/or to characteristics of the predatory behavior of the species. Clinicians and anatomists dealing with birds of prey must be aware of the presence of the humeroscapular bone to avoid misinterpreting it as a fracture fragment. PMID:1585989

  20. Trichomoniasis in great horned owls.

    PubMed

    Jessup, D A

    1980-07-01

    Three cases of Trichomonas gallinae infection of deep tissues of the skull or of unusual tissues in great horned owls (Bubo virginianus), refractory to recommended doses but responsive to higher doses of dimetridazole, are discussed. Trichomonads were isolated from the lesions. PMID:7432340

  1. Auditory agnosia.

    PubMed

    Slevc, L Robert; Shell, Alison R

    2015-01-01

    Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. PMID:25726291

  2. 5. View southwest within dairy barn and milk house yard, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View southwest within dairy barn and milk house yard, milk house to left, barn ramp at center, and east side of dairy barn at center right - A. I. Du Pont Estate, Blue Ball Dairy Barn, Junction of U.S. Route 202 & Rockland Road, Wilmington, New Castle County, DE

  3. INTERIOR OF BARN HAYLOFT, LOOKING WEST (Charles Arnold added a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF BARN HAYLOFT, LOOKING WEST (Charles Arnold added a Cleaning Mill to the barn's hayloft c. 1960. This photograph shows the elevator, chaff shoot, and metal funnel that still remain. The barn's gambrel roof is supported by a three-hinged arch truss system) - Arnold Farm, Barn, 1948 Arnold Road, Coupeville, Island County, WA

  4. A baby owl is found at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A baby owl, possibly a screech owl, shows its fear and resentment of the photographer snapping its picture. The owl was found on the stairs inside Hangar G, Cape Canaveral Air Force Station. It had apparently tried to fly from a nest near the ceiling but couldn't get back to it. Workers called an Audubon rescue center near Orlando, which captured it and will ensure the bird is returned to the wild when it's ready.

  5. A baby owl is found at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A baby owl, possibly a screech owl, displays its wings at the photographer snapping its picture. The owl was found on the stairs inside Hangar G, Cape Canaveral Air Force Station. It had apparently tried to fly from a nest near the ceiling but couldn't get back to it. Workers called an Audubon rescue center near Orlando, which captured it and will ensure the bird is returned to the wild when it's ready.

  6. A baby owl is found at CCAFS

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A baby owl, possibly a screech owl, stares at the photographer snapping its picture. The owl was found on the stairs inside Hangar G, Cape Canaveral Air Force Station. It had apparently tried to fly from a nest near the ceiling but couldn't get back to it. Workers called an Audubon rescue center near Orlando, which captured it and will ensure the bird is returned to the wild when it's ready.

  7. INTERIOR OF HOG BARN SHOWING MILKING STANCHIONS AND DIAGONAL SHEATHING, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR OF HOG BARN SHOWING MILKING STANCHIONS AND DIAGONAL SHEATHING, LOOKING EAST. (In the 1940s the hog barn was converted to a calf barn to service the growing dairy. After a fire on the property took the Engle’s main barn in 1954, the building was converted into a milking parlor.) - Engle Farm, Barn, 89 South Ebey Road, Coupeville, Island County, WA

  8. Secondary poisoning of owls by anticoagulant rodenticides

    USGS Publications Warehouse

    Mendenhall, V.M.; Pank, L.F.

    1980-01-01

    Anticoagulants-compounds that prevent clotting of the blood-are extensively used for control of small mammal pests. The potential secondary hazards of 6 anticoagulant rodenticides to birds of prey were examined in this study. Whole rats or mice were killed with each anticoagulant and were fed to 1-3 species of owls. Owls died of hemorrhaging after feeding on rats killed with bromadiolone, brodifacoum, or diphacinone; sublethal hemorrhaging occurred in owls fed rats killed with difenacoum. These results demonstrate potential secondary hazards of 4 anticoagulants to avian predators. No abnormalities were observed in owls fed rats killed with fumarin and chlorophacinone

  9. Particle-image velocimetry investigation of the fluid-structure interaction mechanisms of a natural owl wing.

    PubMed

    Winzen, A; Roidl, B; Schröder, W

    2015-10-01

    The increasing interest in the development of small flying air vehicles has given rise to a strong need to thoroughly understand low-speed aerodynamics. The barn owl is a well-known example of a biological system that possesses a high level of adaptation to its habitat and as such can inspire future small-scale air vehicle design. The combination of the owl-specific wing geometry and plumage adaptations with the flexibility of the wing structure yields a highly complex flow field, still enabling the owl to perform stable and at the same time silent low-speed gliding flight. To investigate the effects leading to such a characteristic flight, time-resolved stereoscopic particle-image velocimetry (TR-SPIV) measurements are performed on a prepared natural owl wing in a range of angles of attack 0° ≤ α ≤ 6° and Reynolds numbers 40,000 ≤ Re(c) ≤ 120,000 based on the chord length at a position located at 30% of the halfspan from the owl's body. The flow field does not show any flow separation on the suction side, whereas flow separation is found on the pressure side for all investigated cases. The flow field on the pressure side is characterized by large-scale vortices which interact with the flexible wing structure. The good agreement of the shedding frequency of the pressure side vortices with the frequency of the trailing-edge deflection indicates that the structural deformation is induced by the flow field on the pressure side. Additionally, the reduction of the time-averaged mean wing curvature at high Reynolds numbers indicates a passive lift-control mechanism that provides constant lift in the entire flight envelope of the owl. PMID:26372422

  10. Noninvasive measures of reproductive function and disturbance in the barred owl, great horned owl, and northern spotted owl.

    PubMed

    Wasser, Samuel K; Hunt, Kathleen E

    2005-06-01

    There is an urgent need for noninvasive methods to study reproduction and environmental stress in at-risk species such as the northern spotted owl (Strix occidentalis caurina). Two related owl species (barred owl and great horned owl) were used as surrogates to validate hormone assays for fecal metabolites of progesterone, 17beta-estradiol, testosterone, and corticosterone. Infusions of radiolabeled hormones showed that the owls excreted most hormone within 6 h. Feces and urine contained roughly equal amounts of hormone, and most fecal hormone metabolites were quite polar. The testosterone and corticosterone assays in this study bound to the major excreted metabolites of these hormones, but two progesterone assays did not appreciably bind to the major progesterone metabolites. All assays showed excellent parallelism with hydrolyzed and unhydrolyzed samples and with previously dried or undried fecal samples. Thus, samples do not require hydrolysis or prior drying. Samples from a female barred owl had significantly higher fecal estrogen, lower fecal testosterone, and higher fecal estrogen/testosterone ratio than samples from two male barred owls. The fecal estrogen/testosterone ratio was the most accurate predictor of owl gender, particularly if two or more samples are available from the same individual. Fecal corticosterone metabolites also demonstrated considerable utility for wild northern spotted owls. Fecal glucocorticoid levels varied by gender and breeding stage, being highest in male northern spotted owls early in the breeding season and highest in females when nestlings were fledging. Collectively, these studies show that noninvasive fecal hormone measurements show great promise for noninvasive assessment of reproduction and stress in wild owls. PMID:16055847

  11. Direction Selectivity Mediated by Adaptation in the Owl's Inferior Colliculus

    PubMed Central

    Peña, José Luis

    2013-01-01

    Motion direction is a crucial cue for predicting future states in natural scenes. In the auditory system, the mechanisms that confer direction selectivity to neurons are not well understood. Neither is it known whether sound motion is encoded independently of stationary sound location. Here we investigated these questions in neurons of the owl's external nucleus of the inferior colliculus, where auditory space is represented in a map. Using a high-density speaker array, we show that the preferred direction and the degree of direction selectivity can be predicted by response adaptation to sounds moving over asymmetric spatial receptive fields. At the population level, we found that preference for sounds moving toward frontal space increased with eccentricity in spatial tuning. This distribution was consistent with larger receptive-field asymmetry in neurons tuned to more peripheral auditory space. A model of suppression based on spatiotemporal summation predicted the observations. Thus, response adaptation and receptive-field shape can explain direction selectivity to acoustic motion and an orderly distribution of preferred direction. PMID:24305813

  12. Hearing in the crepuscular owl butterfly (Caligo eurilochus, Nymphalidae).

    PubMed

    Lucas, Kathleen M; Mongrain, Jennifer K; Windmill, James F C; Robert, Daniel; Yack, Jayne E

    2014-10-01

    Tympanal organs are widespread in Nymphalidae butterflies, with a great deal of variability in the morphology of these ears. How this variation reflects differences in hearing physiology is not currently understood. This study provides the first examination of hearing organs in the crepuscular owl butterfly, Caligo eurilochus. We examined the tuning and sensitivity of the C. eurilochus hearing organ, called Vogel's organ, using laser Doppler vibrometry and extracellular neurophysiology. We show that the C. eurilochus ear responds to sound and is most sensitive to frequencies between 1 and 4 kHz, as confirmed by both the vibration of the tympanal membrane and the physiological response of the associated nerve branches. In comparison to the hearing of its diurnally active relative, Morpho peleides, C. eurilochus has a narrower frequency range with higher auditory thresholds. Hypotheses explaining the function of hearing in this crepuscular butterfly are discussed. PMID:25173833

  13. What Do Great Horned Owls Eat?

    ERIC Educational Resources Information Center

    Bandelier, Kenneth J.

    1993-01-01

    Presents an activity to determine the identity of animals that owls ingest. Students dissect and examine the contents of "owl pellets" which are the indigestible parts of animals that are regurgitated after eating. Provides instructions for implementing and extending the activity. (MDH)

  14. Visualization of OWL DL using ORM

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Lin; Liu, Da-Xin

    2011-12-01

    The OWL (Web Ontology Language) is the de facto standard ontology description language used by the Semantic Web. Because OWL is mainly designed for use by applications that need to process the content of information, it is difficult to read and understand by domain experts to build or verify domain ontologies expressed by OWL. ORM (Object Role Modeling) is a conceptual modeling language with graphical notations, its models/schemas can be translated into pseudo natural language that make it easier, also for domain experts who is a non-IT specialist, to create, check and adapt the knowledge about the UoD (Universe of Domain). Based on formal logic analysis of OWL DL and ORM and extending ORM notations, mapping rules has been presented to visualize OWL DL ontologies with ORM.

  15. Visualization of OWL DL using ORM

    NASA Astrophysics Data System (ADS)

    Pan, Wen-lin; Liu, Da-xin

    2012-01-01

    The OWL (Web Ontology Language) is the de facto standard ontology description language used by the Semantic Web. Because OWL is mainly designed for use by applications that need to process the content of information, it is difficult to read and understand by domain experts to build or verify domain ontologies expressed by OWL. ORM (Object Role Modeling) is a conceptual modeling language with graphical notations, its models/schemas can be translated into pseudo natural language that make it easier, also for domain experts who is a non-IT specialist, to create, check and adapt the knowledge about the UoD (Universe of Domain). Based on formal logic analysis of OWL DL and ORM and extending ORM notations, mapping rules has been presented to visualize OWL DL ontologies with ORM.

  16. Optimal Prediction of Moving Sound Source Direction in the Owl

    PubMed Central

    Cox, Weston; Fischer, Brian J.

    2015-01-01

    Capturing nature’s statistical structure in behavioral responses is at the core of the ability to function adaptively in the environment. Bayesian statistical inference describes how sensory and prior information can be combined optimally to guide behavior. An outstanding open question of how neural coding supports Bayesian inference includes how sensory cues are optimally integrated over time. Here we address what neural response properties allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be in the near future given sensory information and prior assumptions. The work here shows that the population vector decoder will perform Bayesian prediction when the receptive fields of the neurons encode the target dynamics with shifting receptive fields. We test the model using the system that underlies sound localization in barn owls. Neurons in the owl’s midbrain show shifting receptive fields for moving sources that are consistent with the predictions of the model. We predict that neural populations can be specialized to represent the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions. PMID:26226048

  17. Competitive interactions and resource partitioning between northern spotted owls and barred owls in western Oregon

    USGS Publications Warehouse

    Wiens, J. David; Anthony, Robert G.; Forsman, Eric D.

    2014-01-01

    The federally threatened northern spotted owl (Strix occidentalis caurina) is the focus of intensive conservation efforts that have led to much forested land being reserved as habitat for the owl and associated wildlife species throughout the Pacific Northwest of the United States. Recently, however, a relatively new threat to spotted owls has emerged in the form of an invasive competitor: the congeneric barred owl (S. varia). As barred owls have rapidly expanded their populations into the entire range of the northern spotted owl, mounting evidence indicates that they are displacing, hybridizing with, and even killing spotted owls. The range expansion by barred owls into western North America has made an already complex conservation issue even more contentious, and a lack of information on the ecological relationships between the 2 species has hampered recovery efforts for northern spotted owls. We investigated spatial relationships, habitat use, diets, survival, and reproduction of sympatric spotted owls and barred owls in western Oregon, USA, during 2007–2009. Our overall objective was to determine the potential for and possible consequences of competition for space, habitat, and food between these previously allopatric owl species. Our study included 29 spotted owls and 28 barred owls that were radio-marked in 36 neighboring territories and monitored over a 24-month period. Based on repeated surveys of both species, the number of territories occupied by pairs of barred owls in the 745-km2 study area (82) greatly outnumbered those occupied by pairs of spotted owls (15). Estimates of mean size of home ranges and core-use areas of spotted owls (1,843 ha and 305 ha, respectively) were 2–4 times larger than those of barred owls (581 ha and 188 ha, respectively). Individual spotted and barred owls in adjacent territories often had overlapping home ranges, but interspecific space sharing was largely restricted to broader foraging areas in the home range

  18. 8. Double crib barn, south corner, log section, loft area, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Double crib barn, south corner, log section, loft area, detail of log construction - Wilkins Farm, Barn, South side of Dove Hollow Road, 6000 feet east of State Route 259, Lost City, Hardy County, WV

  19. 5. Log calving barn. Detail of wall corner showing half ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Log calving barn. Detail of wall corner showing half dovetail notching on hand-hewn logs. - William & Lucina Bowe Ranch, Log Calving Barn, 230 feet south-southwest of House, Melrose, Silver Bow County, MT

  20. 5. Log draft horse barn. Detail of west side showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Log draft horse barn. Detail of west side showing Dutch door and square notching at wall corner. View to east. - William & Lucina Bowe Ranch, Log Draft Horse Barn, 290 feet southwest of House, Melrose, Silver Bow County, MT

  1. 9. Dairy barn and milk house yard wall, detail of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Dairy barn and milk house yard wall, detail of construction near southeast corner - A. I. Du Pont Estate, Blue Ball Dairy Barn, Junction of U.S. Route 202 & Rockland Road, Wilmington, New Castle County, DE

  2. 4. BARN. INTERIOR VIEW LOOKING SOUTH. THREE HORSE STALLS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BARN. INTERIOR VIEW LOOKING SOUTH. THREE HORSE STALLS ARE AT THE FAR RIGHT, AND THE STORE ROOM DOOR IS AT THE NEAR RIGHT. - Tonto Ranger Station, Barn, Forest Service Road 65 at Tonto Wash, Skull Valley, Yavapai County, AZ

  3. 2. BARN. VIEW LOOKING NORTHWEST. THE ROLLING DOOR PROBABLY REPLACES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. BARN. VIEW LOOKING NORTHWEST. THE ROLLING DOOR PROBABLY REPLACES AN ORIGINAL 4/4 DOUBLE-HUNG WINDOW. - Tonto Ranger Station, Barn, Forest Service Road 65 at Tonto Wash, Skull Valley, Yavapai County, AZ

  4. 5. FEED BARN (STRUCTURE 1) SOUTHEAST END WITH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. FEED BARN (STRUCTURE 1) SOUTHEAST END WITH WALL OF MILKING BARN (STRUCTURE 2) IN FOREGROUND - Twin Oaks Dairy, Northwest of Metcalfe Road, off State Route 101 (Monterey Road), Coyote, Santa Clara County, CA

  5. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  6. 31. REAR OF CAR BARN DURING RECONSTRUCTION: Photocopy of July ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. REAR OF CAR BARN DURING RECONSTRUCTION: Photocopy of July 1908 photograph showing west rear of powerhouse and car barn. View from the north. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  7. Interior view of main section of milk barn. Opening overhead ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of main section of milk barn. Opening overhead leads to attic crawl space. Camera is pointed SW. - Kosai Farm, Milk Barn, B Street north of Northwest Twenty-ninth Street, Auburn, King County, WA

  8. 3. MILK BARN, INTERIOR VIEW OF GROUND FLOOR, LOOKING 132 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. MILK BARN, INTERIOR VIEW OF GROUND FLOOR, LOOKING 132 DEGREES SOUTHEAST, SHOWING RAISED FLOOR OF CENTRAL AISLE. - Hudson-Cippa-Wolf Ranch, Milk Barn, Sorento Road, Sacramento, Sacramento County, CA

  9. 3. VIEW OF LANE BARN WITH LITTLE WOOD RIVER AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF LANE BARN WITH LITTLE WOOD RIVER AND IDAHO IRRIGATION COMPANY PUMP HOUSE ON RIGHT. CAMERA POINTED NORTHEAST. - James H. Lane Ranch, Barn, One Mile South of Richfield on Highway 26, Richfield, Lincoln County, ID

  10. 6. Log calving barn. Interior view showing log postandbeam support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Log calving barn. Interior view showing log post-and-beam support system and animal stalls. - William & Lucina Bowe Ranch, Log Calving Barn, 230 feet south-southwest of House, Melrose, Silver Bow County, MT