Science.gov

Sample records for barred galaxy ngc

  1. Magnetic Fields in Barred Spiral Galaxies: NGC 2442 & NGC 7552

    NASA Astrophysics Data System (ADS)

    Ehle, M.; Harnett, J. I.; Beck, R.; Haynes, R. F.; Gray, A.

    2002-12-01

    We report on the total and polarised radio continuum emission of the southern barred galaxies NGC 2442 and NGC 7552 observed with the ATCA at λ6 cm (cf. Harnett et al. 2002). These galaxies form part of a sample of 20 barred galaxies mapped at several wavelengths with the ATCA and VLA (Beck et al. 2002) to study the role of magnetic fields in the bar with respect to the gas flow and star formation.

  2. Face on Barred and Ringed Spiral Galaxy NGC 3351

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the face on barred and ringed spiral galaxy NGC 3351 (M95). The morphological appearance of a galaxy can change dramatically between visual and ultraviolet wavelengths. In the case of M95, the nucleus and bar dominate the visual image. In the ultraviolet, the bar is not even visible and the ring and spiral arms dominate.

  3. Magnetic Fields in the Barred Galaxies NGC 1097 and NGC 1365

    NASA Astrophysics Data System (ADS)

    Shoutenkov, V.; Beck, R.; Shukurov, A.; Sokoloff, D.

    New polarization observations of the barred galaxies NGC 1097 and NGC 1365 have been made with the VLA at 6.2 and 3.5 cm. At both frequencies, NGC 1097 shows a strip of depolarization along the bar where the magnetic field is deflected by almost 90 degrees. Beck et al. (Nature, Vol. 397, p. 324) interpreted this strip as the location of a shear shock front which does not coincide with the dust lanes. Similar depolarized strips, also shifted from the dust lanes, are seen in NGC 1365. However, the magnetic field in this galaxy reveals a much smoother change in orientation than in NGC1097. Furthermore, high-resolution images of central ring in NGC 1097 have been obtained. The total power image shows individual blobs which correspond to magnetic field concentrations, not to star-formation regions in the ring. The magnetic field in the ring has a complex structure with a dominant spiral component. This may lead to mass inflow towards the active nucleus.

  4. A High-Resolution Color Image of the Prototypical Barred Spiral Galaxy NGC 1300

    NASA Astrophysics Data System (ADS)

    Levay, Z. G.; Bond, H. E.; Christian, C. A.; Frattare, L. M.; Hamilton, F.; Mutchler, M.; Noll, K. S.; Royle, P.; Knezek, P. M.

    2004-12-01

    The Hubble Heritage Project presents an image of the prototypical barred spiral galaxy NGC 1300. This image is constructed from exposures in four filters made at two adjacent pointings by the Advanced Camera for Surveys on the Hubble Space Telescope. Fine detail in the arms, disk, bar, bulge and completely across the nucleus are clearly apparent. Numerous more distant galaxies may be seen beyond NGC 1300, even through the densest regions of the disk and bulge. Clusters of blue supergiant stars and HII regions are well resolved in the spiral arms, and dust lanes trace out structure in the disk and bar, highlighting asymmetry between the two halves of the galaxy. NGC 1300, like many barred spiral galaxies, has a small, well defined, "grand design" spiral disk visible around the nucleus. Only galaxies with large-scale bars appear to have these "grand design" inner spiral disks. Models indicate that gas in a bar can be funneled towards the center of the galaxy, where it can then spiral into the center through the "grand design" spiral disk, and potentially fuel a central black hole. NGC 1300 does not have an active nucleus, however, indicating either that there is no black hole present, or that the black hole is currently in a quiescent state. The data, obtained in B, V, I and H-alpha, are available to the science community and the public through the HST archive. Since its inception in 1998, the Heritage Project has produced more than 77 images of dazzling celestial objects released on the first Thursday of every month. The Heritage website can be found at: http://heritage.stsci.edu.

  5. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  6. NGC 3124: A Resonance Ring Disk Galaxy with a Skewed Bar

    NASA Astrophysics Data System (ADS)

    Treuthardt, P.; Seigar, M. S.; Salo, H.; Kennefick, D.; Kennefick, J.; Lacy, C. H. S.

    2014-03-01

    NGC 3124 is a highly regular SB(r)bc galaxy harboring a skewed bar that appears to be a very open spiral, counter-winding relative to the outer spiral arms. We investigate whether such bar morphology can be due to secular processes or if a more violent interaction is necessary. We find that the dust morphology observed in the bar region has the same sense of winding as the outer spiral arms. We also find that the gas kinematics are consistent across the galaxy. Finally, we attempt to recreate the observed stellar morphology by simulating the behavior of a large number of stellar test particles in a rigidly rotating gravitational potential. We are able to reproduce the skewed stellar bar but find that it is transient in nature. This evidence is a strong indication that secular processes are responsible for this unusual bar morphology.

  7. A double molecular disc in the triple-barred starburst galaxy NGC 6946: structure and stability

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2015-08-01

    The late-type spiral galaxy NGC 6946 is a prime example of molecular gas dynamics driven by `bars within bars'. Here, we use data from the BIMA Survey of Nearby Galaxies and HERA CO-Line Extragalactic Survey to analyse the structure and stability of its molecular disc. Our radial profiles exhibit a clear transition at distance R 1 kpc from the galaxy centre. In particular, the surface density profile breaks at R ? 0.8 kpc and is well fitted by a double exponential distribution with scalelengths R1 ? 200 pc and R2 ? 3 kpc, while the 1D velocity dispersion ? decreases steeply in the central kpc and is approximately constant at larger radii. The fact that we derive and use the full radial profile of ? rather than a constant value is perhaps the most novel feature of our stability analysis. We show that the profile of the Q stability parameter traced by CO emission is remarkably flat and well above unity, while the characteristic instability wavelength exhibits clear signatures of the nuclear starburst and inner bar within bar. We also show that CO-dark molecular gas, stars and other factors can play a significant role in the stability scenario of NGC 6946. Our results provide strong evidence that gravitational instability, radial inflow and disc heating have driven the formation of the inner structures and the dynamics of molecular gas in the central kpc.

  8. The near-infrared structure of the barred galaxy NGC 253 from VISTA⋆

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Arnaboldi, M.; Rejkuba, M.; Neeser, M. J.; Greggio, L.; Gonzalez, O. A.; Irwin, M.; Emerson, J. P.

    2014-07-01

    Context. The presence of a bar affects the distribution and dynamics of a stellar disk at all scales, from a fraction of a kpc in the inner central region to tens of kpc at the disk's edge. The quantitative study of the disk response to a bar can be hampered by the presence of dust, which is common in late type spirals. Aims: We want to quantify the structures in the stellar disk of the barred Sc galaxy NGC 253 located in the Sculptor group, at 3.47 Mpc distance. Methods: We use J and Ks band images acquired with the VISTA telescope as part of the Science Verification. The wide field of view and the high angular resolution of this survey facility allow the mapping of the large and small scale structure of the stellar disk in NGC 253. We use unsharp masking and two dimensional modelling of the smooth light distribution in the disk to identify and measure the sub-structures induced by the bar in the stellar disk of NGC 253. We build azimuthally-averaged profiles in the J and Ks bands to measure the radial surface brightness profile of the central bulge, bar and disk. Results: Moving outward from the galaxy center, we find a nuclear ring within the bright 1 kpc diameter nucleus, then a bar, a ring with 2.9 kpc radius, and spiral arms in the outer disk. From the Ks image we obtain a new measure of the de-projected length of the bar of 2.5 kpc. The bar's strength, as derived from the curvature of the dust lanes in the J-Ks image, is typical of weak bars with Δα = 25 degree/kpc. From the de-projected length of the bar, we establish the co-rotation radius (RCR = 3 kpc) and bar pattern speed (Ωb = 61.3 km s-1 kpc-1), which provides the connection between the high frequency structures in the disk and the orbital resonances induced by the bar. The nuclear ring is located at the Inner Lindblad resonance. The second ring (at 2.9 kpc) does not have a resonant origin, but it could be a merger remnant or a transient structure formed during an intermediate stage of the bar formation. The inferred bar pattern speed places the Outer Lindblad resonance within the optical disk at 4.9 kpc, in the same radial range as the peak in the HI surface density. The disk of NGC 253 has a down-bending profile with a break at R ~ 9.3 kpc, which corresponds to about 3 times the scale length of the inner disk. We discuss the evidence for a threshold in star formation efficiency as a possible explanation for the steep gradient in the surface brightness profile at large radii. Conclusions: The near-infrared photometry unveils the dynamical response of the NGC 253 stellar disk to its central bar. The formation of the bar may be related to the merger event that determined the truncation of stars and gas at large radii and the perturbation of the disk's outer edge. This work is based on observations taken at the ESO La Silla Paranal Observatory within the VISTA Science Verification Program ID 60.A-9285(A). The full set of OBs for the NGC 253 deep and shallow images are available on the ESO archive on the VISTA SV page, at the following link http://www.eso.org/sci/activities/vistasv/VISTA_SV.html

  9. Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672

    NASA Technical Reports Server (NTRS)

    Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2011-01-01

    We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.

  10. THE BULGELESS SEYFERT/LINER GALAXY NGC 3367: DISK, BAR, LOPSIDEDNESS, AND ENVIRONMENT

    SciTech Connect

    Hernandez-Toledo, H. M.; Cano-Diaz, M.; Valenzuela, O.; Garcia-Barreto, J. A; Moreno-Diaz, E.; Puerari, I.; Bravo-Alfaro, H.

    2011-12-15

    NGC 3367 is a nearby isolated active galaxy that shows a radio jet, a strong bar, and evidence of lopsidedness. We present a quantitative analysis of the stellar and gaseous structure of the galaxy disk and search for evidence of recent interaction. Our study is based on new UBVRI H{alpha} and JHK images and on archive H{alpha} Fabry-Perot and H I Very Large Array data. From a coupled one-dimensional/two-dimensional GALFIT bulge/bar/disk decomposition a (B/D {approx} 0.07-0.1) exponential pseudobulge is inferred in all the observed bands. A near-infrared (NIR) estimate of the bar strength Q{sup max}{sub T}(R) = 0.44 places NGC 3367 bar among the strongest ones. The asymmetry properties were studied using (1) the optical and NIR concentration-asymmetry-clumpiness indices, (2) the stellar (NIR) and gaseous (H{alpha}, H I) A{sub 1} Fourier mode amplitudes, and (3) the H I-integrated profile and H I mean intensity distribution. While the average stellar component shows asymmetry values close to the average found in the local universe for isolated galaxies, the young stellar component and gas values are largely decoupled showing significantly larger A{sub 1} mode amplitudes suggesting that the gas has been recently perturbed and placing NGC 3367 in a global starburst phase. NGC 3367 is devoid of H I gas in the central regions where a significant amount of molecular CO gas exists instead. Our search for (1) faint stellar structures in the outer regions (up to {mu}{sub R} {approx} 26 mag arcsec{sup -2}), (2) (H{alpha}) star-forming satellite galaxies, and (3) regions with different colors (stellar populations) along the disk all failed. Such an absence is interpreted by using results from recent numerical simulations to constrain either a possible tidal event with an LMC like galaxy to some dynamical times in the past or a very low mass but perhaps gas rich recent encounter. We conclude that a cold flow accretion mode (gas and small/dark galaxies) may be responsible for the nuclear activity and peculiar (young stars and gas) morphology regardless of the highly isolated environment. Black hole growth in bulgeless galaxies may be triggered by smooth mass accretion.

  11. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ∼ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (∼100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ∼ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (∼107 M ⊙) core. Two systemic velocities, 998 km s‑1 for the CND and 964 km s‑1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s‑1 kpc‑1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}∼ 0.2 in the case of optically thin CO (1–0) emission in the outflow, suggesting low efficiency of star formation quenching.

  12. A Compton-thick AGN in the barred spiral galaxy NGC 4785

    NASA Astrophysics Data System (ADS)

    Gandhi, P.; Yamada, S.; Ricci, C.; Asmus, D.; Mushotzky, R. F.; Ueda, Y.; Terashima, Y.; La Parola, V.

    2015-05-01

    We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66-month Swift/BAT (Burst Array Telescope) all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width ≳1 keV. Fitting the broad-band spectra with physical reflection models shows the source to be a Compton-thick AGN with NH of at least 2 × 1024 cm-2 and absorption-corrected 2-10 keV X-ray power L2-10 ˜ few times 1042 erg s-1. Realistic uncertainties on L2-10 computed from the joint confidence interval on the intrinsic power-law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton-thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton-thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disc, adding to the list of known Compton-thick AGN in barred host galaxies.

  13. The ALMA and HST Views of the Molecular Gas and Star Formation in the Prototypical Barred Spiral Galaxy NGC 1097

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Regan, Michael W.; Kim, Taehyun; Kohno, Kotaro; Martin, Sergio; Villard, Eric; Onishi, Kyoko

    2016-01-01

    We mapped the entire inner disk of NGC 1097 (the circumnuclear ring, bar ends, the bar and inner spiral arms) using ALMA in the CO J=1-0 line at resolution of 1" (~65 pc). We also mapped the northern half of the bar in every other common molecular gas tracer at 3mm (HCN, HCO+, C18O, 13CO, C34S). Together these data provide the most detailed and highest resolution map of the molecular gas distribution and kinematics in a nearby barred spiral, rivalling the incredible maps seen for galaxies like M51 in the northern hemisphere. The data show the impact of the different environments in the galaxy as well as evidence for a multi-phased molecular medium. The data also evidence how the shear induced by the bar shock completely inhibits the star formation activity in the inner ends of the bar (clearly showing an anti-correlation between the strength of the CO line emission and Halpha emission). We will also present multiwavelength HST observations of the galaxy which are used to identify and map star clusters across the inner disk of the galaxy. We use these data to understand how star formation proceeds from one environment to the next across the galaxy.

  14. PHYSICAL PROPERTIES OF THE CIRCUMNUCLEAR STARBURST RING IN THE BARRED GALAXY NGC 1097

    SciTech Connect

    Hsieh, Pei-Ying; Matsushita, Satoki; Ho, Paul T. P.; Wu, Ya-Lin; Liu, Guilin; Oi, Nagisa

    2011-08-01

    We report high-resolution {sup 12}CO(J = 2-1), {sup 13}CO(J = 2-1), and {sup 12}CO(J = 3-2) imaging of the Seyfert 1/starburst ring galaxy NGC 1097 with the Submillimeter Array for the purpose of studying the physical and kinematic properties of the 1 kpc circumnuclear starburst ring. Individual star clusters as detected in the Hubble Space Telescope map of Pa{alpha} line emission have been used to determine the star formation rate (SFR), and are compared with the properties of the molecular gas. The molecular ring has been resolved into individual clumps at the giant molecular cloud association (GMA) scale of 200-300 pc in all three CO lines. The intersection between the dust lanes and the starburst ring, which is associated with the orbit-crowding region, is resolved into two physically/kinematically distinct features in the 1.''5 x 1.''0 (105 x 70 pc) {sup 12}CO(J = 2-1) map. The clumps associated with the dust lanes have broader line widths, higher surface gas densities, and lower SFRs, while the narrow line clumps associated with the starburst ring have opposite characteristics. A Toomre-Q value lower than unity at the radius of the ring suggests that the molecular ring is gravitationally unstable to fragmentation at GMA scale. The line widths and surface density of the gas mass of the clumps show an azimuthal variation related to the large-scale dynamics. The SFR, on the other hand, is not significantly affected by the dynamics, but has a correlation with the intensity ratio of {sup 12}CO (J = 3-2) and {sup 12}CO(J = 2-1), which traces the denser gas associated with star formation. Our resolved CO map, especially in the orbit-crowding region, observationally demonstrates for the first time that the physical/kinematic properties of GMAs are affected by the large-scale bar-potential dynamics in NGC 1097.

  15. The structure of the barred galaxy NGC253: target of the VISTA and VST Science Verification extragalactic mini-survey.

    NASA Astrophysics Data System (ADS)

    Iodice, E.; VISTA Team; VST SV Team; Pompei, E.; Mieske, S.; Szeifert, T.; Ivanov, V.; Arnaboldi M.; Battaglia, G.; Bilbao, L.; Freudling, W.; Hatziminaoglou, E.; Hilker, M.; Hummel, W.; Melnick, J.; Misgeld, I.; Moller, P.; Neeser, M.; Nadine, N.; Nilsson, K.; Rejkuba, M.; Retzlaff, J.; Romaniello, M.; Slijkhuis, R.; Venemans, B.; Ziegler, B.; Harald, K.; Iodice E.; Greggio L.; Emerson, J.; Sutherland, W.; Irwin, M.; J., Lewis; Hodgkin, S.; Gonzalez-Solares, E.; Capaccioli, M.; Grado, A.; Limatola, L.

    The Sculptor Galaxy NGC253 is a nearby barred Sc galaxy seen nearly edge-on and it has been the target of the Science Verification (SV) for the new ESO survey telescopes VST and VISTA: SV have been defined by teams of astronomers from ESO and the community, including the Italian National Institute for Astrophysics. On the behalf of the VISTA and VST SV Team, I will present in this paper the first results on the NGC253 structure by the new NIR VISTA and optical VST images. These data have emphasized the huge potentiality of the VISTA and VST telescopes to study the structure of galaxies with a detail and accuracy comparable to higher class telescopes, i.e. VLT and HST, with the advantage of the large Field of View (FoV): i) the high angular resolution let to detect and study the sub-structures towards the nuclear regions; ii) the large FoV let to ''correlate'' the inner features to the structure of the outer galaxy disk and to map the surface brightness and colors out to the very faint outskirts.

  16. A new model for barred spiral galaxies

    NASA Astrophysics Data System (ADS)

    Oldershaw, R. L.

    1983-05-01

    A simple heuristic model for warping in the arms of spiral galaxies is presented to describe the structures of barred galaxies. A simulation for a microcomputer was developed by approximating the basic large-scale features of a normal spiral galaxy in Cartesian coordinates. Warping was introduced along the z-axis and the projection was rotated to detect changes with the orientation of viewing. The warping patterns selected were within the constraints of observational data on spiral galaxies, and bar structures were found that corresponded with those seen, e.g., with NGC 1300, NGC 2523, NGC 1398, and NGC 4394.

  17. Galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the nearby edge-on spiral galaxy NGC 55 was taken by Galaxy Evolution Explorer on September 14, 2003, during 2 orbits. This galaxy lies 5.4 million light years from our Milky Way galaxy and is a member of the 'local group' of galaxies that also includes the Andromeda galaxy (M31), the Magellanic clouds, and 40 other galaxies. The spiral disk of NGC 55 is inclined to our line of sight by approximately 80 degrees and so this galaxy looks cigar-shaped. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors, (colored red). The bright blue regions in this image are areas of active star formation detected in the ultraviolet by Galaxy Evolution Explorer. The red stars in this image are foreground stars in our own Milky Way galaxy.

  18. Galaxy NGC 1512

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A rainbow of colors is captured in the center of a magnificent barred spiral galaxy, as witnessed by the three cameras of NASA's Hubble Space Telescope.

    The color-composite image of the galaxy NGC 1512 was created from seven images taken with the JPL-designed and built Wide Field and Planetary Camera 2 (WFPC-2), along with the Faint Object Camera and the Near Infrared Camera and Multi-Object Spectrometer. Hubble's unique vantage point high above the atmosphere allows astronomers to see objects over a broad range of wavelengths from the ultraviolet to the infrared and to detect differences in the regions around newly born stars.

    The new image is online at http://oposite.stsci.edu/pubinfo/pr/2001/16 and http://www.jpl.nasa.gov/images/wfpc .

    The image reveals a stunning 2,400 light-year-wide circle of infant star clusters in the center of NGC 1512. Located 30 million light-years away in the southern constellation of Horologium, NGC 1512 is a neighbor of our Milky Way galaxy.

    With the Hubble data, a team of Israeli and American astronomers performed one of the broadest, most detailed studies ever of such star-forming regions. Results will appear in the June issue of the Astronomical Journal. The team includes Dr. Dan Maoz, Tel-Aviv University, Israel and Columbia University, New York, N.Y.; Dr. Aaron J. Barth, Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass.; Dr. Luis C. Ho, The Observatories of the Carnegie Institution of Washington; Dr. Amiel Sternberg, Tel-Aviv University, Israel; and Dr. Alexei V. Filippenko, University of California, Berkeley.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

    Additional information about the Hubble Space Telescope is online at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

  19. Galaxy NGC5474

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA's Galaxy Evolution Explorer took this ultraviolet color image of the galaxy NGC5474 on June 7, 2003. NGC5474 is located 20 million light-years from Earth and is within a group of galaxies dominated by the Messier 101 galaxy. Star formation in this galaxy shows some evidence of a disturbed spiral pattern, which may have been induced by tidal interactions with Messier 101.

    The Galaxy Evolution Explorer mission is led by the California Institute of Technology, which is also responsible for the science operations and data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., a division of Caltech, manages the mission and built the science instrument. The mission was developed under NASA's Explorers Program, managed by the Goddard Space Flight Center, Greenbelt, Md. The mission's international partners include South Korea and France.

  20. KINEMATIC AND PHOTOMETRIC EVIDENCE FOR A BAR IN NGC 2683

    SciTech Connect

    Kuzio de Naray, Rachel; Zagursky, Matthew J.; McGaugh, Stacy S. E-mail: mzagursk@umd.edu

    2009-10-15

    We present optical long-slit and SparsePak Integral Field Unit emission line spectroscopy along with optical broadband and near-IR images of the edge-on spiral galaxy NGC 2683. We find a multi-valued, figure-of-eight velocity structure in the inner 45'' of the long-slit spectrum and twisted isovelocity contours in the velocity field. We also find, regardless of wavelength, that the galaxy isophotes are boxy. We argue that taken together, these kinematic and photometric features are evidence for the presence of a bar in NGC 2683. We use our data to constrain the orientation and strength of the bar.

  1. Pseudobulges in the Disk Galaxies NGC 7690 and NGC 4593

    NASA Astrophysics Data System (ADS)

    Kormendy, John; Cornell, Mark E.; Block, David L.; Knapen, Johan H.; Allard, Emma L.

    2006-05-01

    We present Ks-band surface photometry of NGC 7690 (Hubble type Sab) and NGC 4593 (SBb). We find that, in both galaxies, a major part of the ``bulge'' is as flat as the disk and has approximately the same color as the inner disk. In other words, the ``bulges'' of these galaxies have disklike properties. We conclude that these are examples of ``pseudobulges,'' that is, products of secular dynamical evolution. Nonaxisymmetries such as bars and oval disks transport disk gas toward the center. There star formation builds dense stellar components that look like-and often are mistaken for-merger-built bulges, but that were constructed slowly out of disk material. These pseudobulges can most easily be recognized when, as in the present galaxies, they retain disklike properties. NGC 7690 and NGC 4593 therefore contribute to the growing evidence that secular processes help to shape galaxies. NGC 4593 contains a nuclear ring of dust that is morphologically similar to nuclear rings of star formation that are seen in many barred and oval galaxies. The nuclear dust ring is connected to nearly radial dust lanes in the galaxy's bar. Such dust lanes are a signature of gas inflow. We suggest that gas is currently accumulating in the dust ring and hypothesize that the gas ring will starburst in the future. The observations of NGC 4593 therefore suggest that major starburst events that contribute to pseudobulge growth can be episodic. Based on observations made with the Anglo-Australian Telescope. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. The observations of NGC 7690 are associated with program IDs 7331 (NICMOS: M. Stiavelli) and 6359 (WFPC2: M. Stiavelli). The observations of NGC 4593 are associated with program IDs 7330 (NICMOS: J. Mulchaey), and 5479 (WFPC2: M. Malkan).

  2. Magnetic Fields in Irregular Galaxies: NGC 4214

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Wilcots, E. M.; Robishaw, T.; Heiles, C.; Zweibel, E.

    2006-12-01

    Magnetic fields are an important component of the interstellar medium of galaxies. They provide support, transfer energy from supernovae, provide a possible heating mechanism, and channel gas flows (Beck 2004). Despite the importance of magnetic fields in the ISM, it is not well known what generates and sustains galactic magnetic fields or how magnetic fields, gas, and stars interact in galaxies. The magnetic fields may be especially important in low-mass galaxies like irregulars where the magnetic pressure may be great enough for the field to be dynamically important. However, only four irregular galaxies besides the LMC and the SMC have observed magnetic field structures. The goal of our project is to significantly increase the number of irregular galaxies with observed magnetic field structure. Here we present preliminary results for one of the galaxies in our sample: NGC 4214. Using the VLA and the GBT, we have obtained 3cm, 6cm, and 20cm radio continuum polarization observations of this well-studied galaxy. Our observations allow us to investigate the effects of NGC 4214's high star formation rate, slow rotation rate, and weak bar on the structure of its magnetic field. We find that NGC 4214's magnetic field has an S-shaped structure, with the central field following the bar and the outer edges curving to follow the shape of the arms. The mechanism for generating these fields is still uncertain. A. Kepley is funded by an NSF Graduate Research Fellowship.

  3. Starburst Galaxy NGC 3310

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Scientists using NASA's Hubble Space Telescope are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings.

    This month's Hubble Heritage image showcases the galaxy NGC 3310. It is one of several starburst galaxies, which are hotbeds of star formation, being studied by Dr. Gerhardt Meurer and a team of scientists at Johns Hopkins University, Laurel, Md.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://heritage.stsci.edu and http://oposite.stsci.edu/pubinfo/pr/2001/26 and http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Most galaxies form new stars at a fairly slow rate, but starburst galaxies blaze with extremely active star formation. Measuring the clusters' colors yields information about stellar temperatures. Since young stars are blue and older stars redder, the colors relate to their ages.

    NGC 3310 is forming clusters of new stars at a prodigious rate. The new image shows several hundred star clusters, visible as the bright blue, diffuse objects that trace the galaxy's spiral arms. Each of these star clusters represents the formation of up to about a million stars, a process that takes less than 100,000 years. In addition, hundreds of individual young, luminous stars can be seen throughout the galaxy.

    The star clusters become redder with age as the most massive and bluest stars exhaust their fuel and burn out. Measurements in this image of the wide range of cluster colors show their ages range between about one million and more than one hundred million years. This suggests that the starburst 'turned on' more than 100 million years ago. It may have been triggered when NGC 3310 collided with a companion galaxy.

    These observations may change astronomers' view of starbursts. Starbursts were once thought to be brief episodes, resulting from catastrophic events like a galactic collision. However, the wide range of cluster ages in NGC 3310 suggests that, once triggered, the starbursting can continue for a long time.

    Located in the direction of the constellation Ursa Major, NGC 3310 is about 59 million light years from Earth. The image is based on observations made by the Wide Field and Planetary Camera 2 in March 1997 and September 2000. The Hubble Heritage Team created the color rendition of the combined images.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

    Additional information about the Hubble Space Telescope is available at http://hubble.stsci.edu. More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.gov

  4. Galaxy NGC 1850

    NASA Technical Reports Server (NTRS)

    1999-01-01

    By spying on a neighboring galaxy, NASA's Hubble Space Telescope has captured an image of a young, globular-like star cluster -- a type of object unknown in our Milky Way Galaxy.

    The image, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://oposite.stsci.edu/pubinfo/pr/2001/25 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The double cluster NGC 1850 lies in a neighboring satellite galaxy, the Large Magellanic Cloud. It has two relatively young components. The main, globular-like cluster is in the center. A smaller cluster is seen below and to the right, composed of extremely hot, blue stars and fainter red T-Tauri stars. The main cluster is about 50 million years old; the smaller one is 4 million years old.

    A filigree pattern of diffuse gas surrounds NGC 1850. Scientists believe the pattern formed millions of years ago when massive stars in the main cluster exploded as supernovas.

    Hubble can observe a range of star types in NGC 1850, including the faint, low-mass T-Tauri stars, which are difficult to distinguish with ground-based telescopes. Hubble's fine angular resolution can pick out these stars, even in other galaxies. Massive stars of the OB type emit large amounts of energetic ultraviolet radiation, which is absorbed by the Earth's atmosphere. From Hubble's position above the atmosphere, it can detect this ultraviolet light.

    NGC 1850, the brightest star cluster in the Large Magellanic Cloud, is in the southern constellation of Dorado, called the Goldfish or the Swordfish. This image was created from five archival exposures taken by the Wide Field Planetary Camera 2 between April 3, 1994 and February 6, 1996. More information about the Hubble Space Telescope is online at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

  5. Galaxy NGC 4013

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An amazing 'edge-on' view of a spiral galaxy 55 million light years from Earth has been captured by the Hubble Space Telescope. The image, available at http://www.jpl.nasa.gov/pictures/wfpc , reveals in great detail huge clouds of dust and gas extending along and above the galaxy's main disk.

    The image was taken by Hubble's Wide Field and Planetary Camera 2, which was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The galaxy, called NGC 4013, lies in the direction of the constellation Ursa Major. If we could see it pole-on, it would look like a nearly circular pinwheel. In this Hubble image, NGC 4013 is seen edge-on, from our vantage point. Because the galaxy is larger than Hubble's field of view, the image shows only a little more than half the object, but with unprecedented detail.

    Dark clouds of interstellar dust stand out, since they absorb the light of background stars. Most of the clouds lie in the galaxy's plane and form the dark band, about 500 light years thick, that appears to cut the galaxy in two from upper right to lower left. Scientists believe that new stars form in dark interstellar clouds. NGC 4013 shows several examples of these stellar kindergartens near the center of the image, in front of the dark band along the galaxy's equator. One extremely bright star near the upper left corner is merely a nearby foreground star that lies in our Milky Way and happened to be in the line of sight.

    This new picture was constructed from Hubble images taken in January 2000 by Dr. J. Christopher Howk of Johns Hopkins University, Baltimore, Md., and Dr. Blair D. Savage of the University of Wisconsin-Madison. Images taken through three different filters have been combined into a color composite covering the region of the galaxy nucleus (behind the bright foreground star at the upper left) and extending along one edge of the galaxy to the lower right.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for the Hubble Space Telescope for NASA's Office of Space Science, Washington, D.C. The Institute is operated by the Association of Universities for Research in Astronomy Inc., for NASA under contract with NASA's Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

    Additional information about the Hubble Space Telescope is available at http://www.stsci.edu . More information about the Wide Field and Planetary Camera 2 is available at http://wfpc2.jpl.nasa.gov.

  6. The ringed X-galaxy NGC 7020

    NASA Technical Reports Server (NTRS)

    Buta, Ronald

    1990-01-01

    The southern SO (sup +) galaxy NGC 7020 presents an unusual morphology: it includes a very regular outer ring which is completely detached and which envelops an inner ring/lens zone with a hexagon surrounding an X shape. The outer ring has a high contrast compared to those usually observed in barred galaxies, yet NGC 7020 is not obviously barred. The morphology of this galaxy poses an interesting puzzle in that the hexagonal/X zone is not a typical type of feature to find in the interior of such a regular ring. Instead, the zone bears a striking resemblance to the edge-on galaxy IC 4767, recently studied by Whitmore and Bell (1988 = WB88) and dubbed by them as the X-galaxy because its inner regions appear to be crossed by two distinct enhancements lined at plus or minus 22 deg with respect to the major axis. The observation of a similar phenomenon in NGC 7020 is interesting because of the suggestion by WB88 that X structures could be related to accretion of matter associated with a merger or tidal encounter between an SO and a small satellite galaxy. If this interpretation is correct for NGC 7020, then it has important implications for the nature of the outer ring. An alternative interpretation is that the inner hexagonal/X zone is a region where resonant periodic orbits in a weak bi-symmetric potential perturbation are influencing the morphology more strongly than might be expected. A brief summary of a more extensive paper (Buta 1990c = B90c) and a few other details concerning this interesting galaxy are given.

  7. New Portraits of Spiral Galaxies NGC 613, NGC 1792 and NGC 3627

    NASA Astrophysics Data System (ADS)

    2003-12-01

    Not so long ago, the real nature of the "spiral nebulae", spiral-shaped objects observed in the sky through telescopes, was still unknown. This long-standing issue was finally settled in 1924 when the famous American astronomer Edwin Hubble provided conclusive evidence that they are located outside our own galaxy and are in fact "island universes" of their own. Nowadays, we know that the Milky Way is just one of billions of galaxies in the Universe. They come in vastly different shapes - spiral, elliptical, irregular - and many of them are simply beautiful, especially the spiral ones. Astronomers Mark Neeser from the Universitäts-Sternwarte München (Germany) and Peter Barthel from the Kapteyn Institute in Groningen (The Netherlands) were clearly not insensitive to this when they obtained images of three beautiful spiral galaxies with ESO's Very Large Telescope (VLT). They did this in twilight during the early morning when they had to stop their normal observing programme, searching for very distant and faint quasars. The resulting colour images ( ESO PR Photos 33a-c/03 ) were produced by combining several CCD images in three different wavebands from the FORS multi-mode instruments. The three galaxies are known as NGC 613, NGC 1792 and NGC 3627 . They are characterized by strong far-infrared, as well as radio emission, indicative of substantial ongoing star-formation activity. Indeed, these images all display prominent dust as well as features related to young stars, clear signs of intensive star-formation. NGC 613 ESO PR Photo 33a/03 ESO PR Photo 33a/03 [Preview - JPEG: 470 x 400 pix - 25k] [Normal - JPEG: 939 x 800 pix - 416k] [Full Res - JPEG: 2702 x 2301 pix - 3.4M] PR Photo 33a/03 of the barred spiral galaxy NGC 613 was obtained with the FORS1 and FORS2 multi-mode instruments (at VLT MELIPAL and YEPUN, respectively) on December 16-18, 2001. It is a composite of three exposures in different wavebands, cf. the technical note below. The full-resolution version of this photo retains the original pixels. Note the many arms and the pronounced dust bands. North is up and East is left. NGC 613 is a beautiful barred spiral galaxy in the southern constellation Sculptor. This galaxy is inclined by 32 degrees and, contrary to most barred spirals, has many arms that give it a tentacular appearance. Prominent dust lanes are visible along the large-scale bar. Extensive star-formation occurs in this area, at the ends of the bar, and also in the nuclear regions of the galaxy. The gas at the centre, as well as the radio properties are indicative of the presence of a massive black hole in the centre of NGC 613. NGC 1792 ESO PR Photo 33b/03 ESO PR Photo 33b/03 [Preview - JPEG: 473 x 400 pix - 26k] [Normal - JPEG: 946 x 800 pix - 376k] [Full Res - JPEG: 2716 x 2297 pix - 3.2M] PR Photo 33b/03 shows the starburst spiral galaxy NGC 1792 . Note the numerous background galaxies in this sky field. North is up and East is to the left. NGC 1792 is located in the southern constellation Columba (The Dove) - almost on the border with the constellation Caelum (The Graving Tool) - and is a so-called starburst spiral galaxy. Its optical appearance is quite chaotic, due to the patchy distribution of dust throughout the disc of this galaxy. It is very rich in neutral hydrogen gas - fuel for the formation of new stars - and is indeed rapidly forming such stars. The galaxy is characterized by unusually luminous far-infrared radiation; this is due to dust heated by young stars. M 66 (NGC 3627) ESO PR Photo 33c/03 ESO PR Photo 33c/03 [Preview - JPEG: 469 x 400 pix - 24k] [Normal - JPEG: 938 x 800 pix - 383k] [Full Res - JPEG: 2698 x 2300 pix - 3.0M] PR Photo 33c/03 of the spiral galaxy M 66 (or NGC 3627). North towards upper left, West towards upper right. The third galaxy is NGC 3627 , also known as Messier 66, i.e. it is the 66th object in the famous catalogue of nebulae by French astronomer Charles Messier (1730 - 1817). It is located in the constellation Leo (The Lion). NGC 3627 is a beautiful spiral with a well-developed central bulge. It also displays large-scale dust lanes. Many regions of warm hydrogen gas are seen throughout the disc of this galaxy. The latter regions are being ionised by radiation from clusters of newborn stars. Very active star-formation is most likely also occurring in the nuclear regions of NGC 3627. The galaxy forms, together with its neighbours M 65 and NGC 3628, the so-called "Leo Triplet" ; they are located at a distance of about 35 million light-years. M 66 is the largest of the three. Its spiral arms appear distorted and displaced above the main plane of the galaxy. The asymmetric appearance is most likely due to gravitational interaction with its neighbours.

  8. Galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.

    The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars.

    Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars.

    Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away.

    The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

  9. A Kinematic Link Between Boxy Bulges, Stellar Bars, and Nuclear Activity in NGC 3079 and NGC 4388

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Bland-Hawthrorn, J.; Cecil, Gerald

    1999-01-01

    We present direct kinematic evidence for bar streaming in two active galaxies with boxy stellar bulges. The Hawaii Imaging Fabry-Perot Interferometer was used on the Canada-France-Hawaii 3.6-m telescope and the University of Hawaii 2.2-m telescope to derive the two-dimensional velocity field of the line-emitting gas in the disks of the Sc galaxy NGC 3079 and the Sb galaxy NGC 4388. In contrast to previous work based on long-slit data, the detection of the bar potential from the Fabry-Perot data does not rely on the existence of inner Lindblad resonances or strong bar-induced shocks. Simple kinematic models which approximate the intrinsic gas orbits as nonintersecting, inclined elliptical annuli that conserve angular momentum characterize the observed velocity fields. In NGC 3079, bar streaming motions with moderately eccentric orbits (e = b/a approx. 0.7) aligned along PA = 130 deg. intrinsic to the disk (PA = 97 deg. on the sky) are detected out to R(sub b) = 3.6 kpc. The orbits become increasingly circular beyond that radius (e = 1 at R(sub d) approx. = 6 kpc). The best model for NGC 4388 includes highly eccentric orbits (e approx. 0.3) for R(sub) less than or equal to 1.5 kpc which are aligned along PA = 135 deg. intrinsic to the disk (PA = 100 deg. on the sky). The observed "spiral arms" are produced by having the orbits become increasingly circular from the ends of the bar to the edge of the disk (R(sub d) approx. = 5 kpc), and the intrinsic bar PA shifting from 135 deg. to 90 deg.. Box-shaped bulges in both NGC 3079 and NGC 4388 are confirmed using new near-infrared images to reduce dust obscuration. Morphological analysis of starlight in these galaxies is combined with the gas kinematics derived from the Fabry-Perot spectra to test evolutionary models of stellar bars that involve transitory boxy bulges, and to quantify the importance of such bars in fueling active nuclei. Our data support the evolutionary bar models, but fail to prove convincingly that the stellar bars in NGC 3079 and NGC 4388 directly trigger or sustain the nuclear activity.

  10. BVRI photometric analysis for the galaxy group NGC 4410

    NASA Astrophysics Data System (ADS)

    Pérez Grana, J. A.; Kemp, S. N.; Katsiyannis, A. C.; Franco-Balderas, A.; de La Fuente, E.; Meaburn, J.; Khosroshahi, H. G.

    2008-07-01

    We present a BVRI CCD (Charge Coupled Device) surface photometry analysis of the galaxy group NGC 4410, which contains four galaxies in interaction. Along with our photometric study, we show residual images (after subtracting isophotal models) and unsharp masked images to uncover any hidden structures in this system of galaxies; we have also performed a two-dimensional bulge-disk decomposition for NGC 4410C and D, and a major axis sector profile for NGC 4410A. We have calculated BVRI surface brightnesses and colors within regions such as galaxy centers, bridges, tails and optical knots in the NGC 4410 system, generating B-V color maps and color profiles. The information obtained was used to discover the predominant stellar populations. The colors of the galaxies imply ages of ~2×109 to ~2×1010 years for models using a range of metallicities. The bluer knots and H II regions have colors implying ages of a minimum of 5×108 years, but possibly as high as 3×109 years for stellar populations formed in the interaction. These results lead us to conclude that there is a moderate star formation rate and a tranquil evolving state of the system with a long timescale for interaction, much longer than the typical dynamical timescales of 108 years. Although we note that NGC 4410D has a blue nucleus (possible nuclear starburst?), bulge, bar, and short spiral arms, and may be interacting with a H I gas cloud. Some observed structures in NGC 4410A are coincident with previously studied H II regions, a tidal arm and optical/radio knots found in this galaxy. An optical knot E coincident with a radio knot may be an optical synchrotron emission or an H II region. The galaxy NGC 4410B appears to be a boxy giant elliptical with a possible dusty disk embedded (similar to Cen A?) and NGC 4410C is confirmed as a lenticular galaxy.

  11. Bars Triggered By Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2015-05-01

    Galaxy mergers drive galaxy evolution and are a key mechanism by which galaxies grow and transform. Unlike galaxy mergers where two galaxies combine into one remnant, galaxy flybys occur when two independent galaxy halos interpenetrate but detach at a later time; these one-time events are surprisingly common and can even out-number galaxy mergers at low redshift for massive halos. Although these interactions are transient and occur far outside the galaxy disk, flybys can still drive a rapid and large pertubations within both the intruder and victim halos. We explored how flyby encounters can transform each galaxy using a suite of N-body simulations. We present results from three co-planar flybys between disk galaxies, demonstrating that flybys can both trigger strong bar formation and can spin-up dark matter halos.

  12. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of astronomical objects, researchers must study them at several wavelengths. This is because light of different wavelengths can tell us about different physical processes taking place. In this case the Wide Field Imager (WFI) [1] observations were made in visible light to further investigate these serendipitously detected X-ray objects - a good example of how astronomers using different telescopes work together to explore the Universe. Notes [1] The WFI is a joint project between the European Southern Observatory (ESO), the Max-Planck-Institut für Astronomie (MPIA) in Heidelberg (Germany) and the Osservatorio Astronomico di Capodimonte (OAC) in Naples (Italy). More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ≳ 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ∼5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  14. Bar Formation from Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2016-05-01

    Both simulations and observations reveal that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar; bars form in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities >0.5, sizes on the order of the scale length of the disk, and persist to the end of our simulations, ~5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with flyby interactions than previously thought.

  15. Shocked magnetic fields in the perturbed galaxies NGC 3627 and NGC 4254

    NASA Astrophysics Data System (ADS)

    Chyży, K. T.; Soida, M.; Urbanik, M.; Beck, R.

    Normal spiral galaxies usually show magnetic fields well aligned with spiral arms. However, recently Beck et al. (1999, Nature 397, 324) discovered a sudden magnetic field jump in the barred spiral NGC~1097 associated (but not coincident) with the bar-driven shock. To study such phenomena in detail we performed a VLA study at 8.44~GHz and 4.85~GHz of two perturbed galaxies: the tidally interacting NGC~3627 and the wind-swept NGC~4254. NGC~3627 shows a sudden jump of magnetic field direction close to a heavy dust lane in the western arm. However, contrary to predictions of the density wave shock models, the magnetic "shock" is displaced by about 1~kpc upstream from the dust lane. In the eastern arm, the magnetic field ignores the region of strong gas compression, running across the heavy dust lane at a high angle. Such behaviour was never seen before in spiral galaxies. NGC~4254 shows a bright narrow polarized ridge along its southern edge, suggestive for a shock caused by the intergalactic wind. However, against classical shock models the magnetic field shows a shock-like, sudden deviation along the line perpendicular to the ridge. Strong gradients of Faraday rotation in this region imply a complex, three dimensional magnetic field twisting.

  16. MASSIVE BLACK HOLES IN GALAXIES NGC 3377, NGC 3379 AND NGC 4486B

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The three galaxies above are believed to contain central, supermassive black holes. The galaxy NGC 4486B (lower-left) shows a double nucleus (lower-right). The images of NGC 3377 and NGC 4486B are 2.7 arcseconds on a side, and for NGC 3379 the size is 5.4 arcseconds; the lower-right is a blow-up of the central 0.5 arcseconds of NGC 4486B. Credit: Karl Gebhardt (University of Michigan) and Tod Lauer (NOAO)

  17. Hα Velocity Fields and Galaxy Interaction in the Quartet of Galaxies NGC 7769, 7770, 7771 and 7771A

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, A. A.; Nazaryan, T. A.; Hakobyan, A. A.

    2016-03-01

    The quartet of galaxies NGC 7769, 7770, 7771 and 7771A is a system of interacting galaxies. Close interaction between galaxies caused characteristic morphological features: tidal arms and bars, as well as an induced star formation. In this study, we performed the Fabry-Perot scanning interferometry of the system in Hα line and studied the velocity fields of the galaxies. We found that the rotation curve of NGC 7769 is weakly distorted. The rotation curve of NGC 7771 is strongly distorted with the tidal arms caused by direct flyby of NGC 7769 and flyby of a smaller neighbor NGC 7770. The rotation curve of NGC 7770 is significantly skewed because of the interaction with the much massive NGC 7771. The rotation curves and morphological disturbances suggest that the NGC 7769 and NGC 7771 have passed the first pericenter stage, however, probably the second encounter has not happened yet. Profiles of surface brightness of NGC 7769 have a characteristic break, and profiles of color indices have a minimum at a radius of intensive star formation induced by the interaction with NGC 7771.

  18. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  19. Spectrophotometry of the Seyfert galaxy NGC 4593

    NASA Technical Reports Server (NTRS)

    Macalpine, G. M.; Williams, G. A.; Lewis, D. W.

    1980-01-01

    Spectrophotometry of the bright class 1 Seyfert galaxy NGC 4593 is presented. The emission-line characteristics are briefly discussed and compared with those of other Seyfert galaxies. The measured hydrogen Balmer-line ratios are reasonably consistent with expected recombination values, and the emission intensities of Fe II, He I 5876, and forbidden O III 4363 relative to other lines are stronger than average in NGC 4593.

  20. Starlight morphology of the interacting galaxy NGC 5195

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gehrz, R. D.; Grasdalen, G. L.; Hackwell, John A.; Dietz, R. D.; Friedman, Scott D.

    1990-10-01

    We present near-infrared, red, and optical observations of NGC 5195, the interacting companion of NGC 5194 (M51). Three intrinsic components are suggested by the near-infrared data: a bright nuclear maximum, a low-contrast bar centered symmetrically on the nucleus, and a nearly face-on exponential disk. This organized near-infrared morphology contrasts strongly with the irregular appearance of optical images. Neither dust nor hot stars contribute much to the near-infrared emission, leaving cool stars probably of an evolved population as the main near-infrared sources. Optical (V) and red (R, I) images confirm the near-infrared morphology and imply that obscuration by an irregular distribution of dust causes the great difference between optical and near-infrared morphologies. Dust within a foreground spiral arm of M51 is an important source of obscuration. Dust internal to NGC 5195 gives an observed quantity of reradiation and perhaps contributes significant obscuration within 10" of the galactic nucleus. The nucleus itself lies at or near a local minimum in color produced by small obscuration or possibly hot emission from the galaxy's nuclear emission-line region or X-ray medium. When corrected for all spatial components of extinction, the body of NGC 5195 becomes much bluer and has a mean B - H color common to normal disk galaxies. Observations lead consistently to SB, but no further, as the best description of the NGC 5195 morphology. Images reveal no evidence of spiral arms which alone would imply a lenticular subtype. Yet the bulge-to-disk ratio of NGC 5195, evaluated from near-infrared observations, is far smaller than values inferred for noninteracting lenticular galaxies. Motivated by these difficulties in conventional classification, we proceed to discuss the possibility that certain attributes of NGC 5195, including its bar, are transient manifestations of the interaction with M51. Presented measurements support the galaxy mass ratio and type of NGC 5195 morphology assumed in a successful model of the gravitational interaction between stars of M51 and NGC 5195. Encouraged by this agreement between theory and experiment, we explore the consequences of an expanded version of the model, still premised on interaction via gravity but now including dynamics of both stars and interstellar clouds. Working within this theoretical context, we identify an interaction-induced component of star formation, an incipient starburst, within the disk of M51.

  1. Gas-phase Oxygen Abundances and Radial Metallicity Gradients in the Two nearby Spiral Galaxies NGC 7793 and NGC 4945

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia; Magrini, Laura; Casasola, Viviana

    2015-10-01

    Gas-phase abundances in H ii regions of two spiral galaxies, NGC 7793 and NGC 4945, have been studied to determine their radial metallicity gradients. We used the strong-line method to derive oxygen abundances from spectra acquired with GMOS-S, the multi-object spectrograph on the 8 m Gemini South telescope. We found that NGC 7793 has a well-defined gas-phase radial oxygen gradient of -0.321 ± 0.112 dex {R}25-1 (or -0.054 ± 0.019 dex kpc-1) in the galactocentric range 0.17 < RG/R25 < 0.82, not dissimilar from gradients calculated with direct abundance methods in galaxies of similar mass and morphology. We also determined a shallow radial oxygen gradient in NGC 4945, -0.253 ± 0.149 dex {R}25-1 (or -0.019 ± 0.011 dex kpc-1) for 0.04 < RG/R25 < 0.51, where the larger relative uncertainty derives mostly from the larger inclination of this galaxy. NGC 7793 and NGC 4945 have been selected for this study because they are similar, in mass and morphology, to M33 and the Milky Way, respectively. Since at zeroth order we expect the radial metallicity gradients to depend on mass and galaxy type, we compared our galaxies in the framework of radial metallicity models best suited for M33 and the Galaxy. We found a good agreement between M33 and NGC 7793, pointing toward similar evolution for the two galaxies. We notice instead differences between NGC 4945 and the radial metallicity gradient model that best fits the Milky Way. We found that these differences are likely related to the presence of an active galactic nucleus combined with a bar in the central regions of NGC 4945, and to its interacting environment.

  2. Galaxy Zoo: Observing Secular Evolution Through Bars

    NASA Astrophysics Data System (ADS)

    Cheung, E.; Athanassoula, E.; Masters, K. L.; Nichol, R. C.; Bosma, A.; Bell, E. F.; Faber, S. M.; Koo, D. C.; Lintott, C.; Melvin, T.; Schawinski, K.; Skibba, R. A.; Willett, K. W.

    2014-03-01

    Although often seen in galaxies, the role that bars play in galaxy evolution has been largely overlooked. Observations show that bars — stellar linear-shaped structures — have been present in galaxies since z ˜ 1, about 8 billion years ago, and that more and more galaxies are becoming barred with time. This trend has continued to the present, where about two-thirds of all disk galaxies are barred. Observations have also shown that there is a connection between the presence of a bar and the properties of a galaxy, including morphology, star formation, chemical abundance gradients, and nuclear activity. These trends are consistent with the predicted effects of bars on galaxy evolution, i.e., secular evolution. Thus, observations and simulations indicate that bars are important drivers of galaxy evolution. But despite these evidence, bars are still commonly omitted in the lore of galaxy evolution. This proceeding briefly highlights work by Cheung et al. (2013), which tries to change this common omission by presenting the best evidence of bar-driven secular evolution yet. This work implies that bars are not stagnant structures within galaxies, but are instead, critical drivers of galaxy evolution.

  3. TESTING THEORIES IN BARRED-SPIRAL GALAXIES

    SciTech Connect

    Martinez-Garcia, Eric E.

    2012-01-10

    According to one version of the recently proposed 'manifold' theory that explains the origin of spirals and rings in relation to chaotic orbits, galaxies with stronger bars should have a higher spiral arms pitch angle when compared to galaxies with weaker bars. A subsample of barred-spiral galaxies in the Ohio State University Bright Galaxy Survey was used to analyze the spiral arms pitch angle. These were compared with bar strengths taken from the literature. It was found that the galaxies in which the spiral arms maintain a logarithmic shape for more than 70 Degree-Sign seem to corroborate the predicted trend.

  4. ASCA observation of three bright early-type galaxies: NGC 4472, NGC 4406, and NGC 4636

    NASA Technical Reports Server (NTRS)

    Awaki, Hisamitsu; Mushotzky, Richard; Tsuru, Takeshi; Fabian, Andrew C.; Fukazawa, Yasushi; Loewenstein, Michael; Makishima, Kazuo; Matsumoto, Hironori; Matsushita, Kyoko; Mihara, Tatehiro

    1994-01-01

    We report Advanced Satellite for Cosmology and Astrophysics (ASCA) 0.3-10 keV and X-ray observations of three early type galaxies, NGC 4472, NGC 4406, and NGC 4636. The extended mission in these galaxies is well described by thin thermal eimssion from hot gas. The gas temperature is 0.92 +/- 0.02 keV for NGC 4472, 0.79 +/- 0.01 keV for NGC 4406, and 0.73 +/- 0.02 keV for NGC 4636. The metal abundance for NGC 4472, NGC 4406, and NGC 4636 are, under the assumption of solar ratios, 0.63 +/- 0.15, 0.45 +/- 0.10, and 0.38 +/- 0.07, respectively. Detailed analysis has allowed determination of the abundances of oxygen, silicon, sulfur, and iron. The observed abundances are consistent with the solar ratios. For NGC 4472 and NGC 4406 we also determined the mean temperature of the gas producing the Si lines from the ratio of the Si H to He-like lines and find it to be consistent with the continuum temperature. The X-ray temperature is in good agreement with the observed optical velocity dispersion, stellar density profile, and gas density profile. Our data indicates that the supernova rate should be less than one fifth of the nominal rate in early type galaxies. We derive the mass of these systems within fixed angular scales and find that M/L greater than 40, confirming that elliptical galaxies are dark matter dominated at large radii.

  5. New, Faint Satellite Galaxies of NGC253

    NASA Astrophysics Data System (ADS)

    Sand, David J.; Crnojevic, Denija; Caldwell, Nelson; Guhathakurta, Puragra; McLeod, Brian A.; Seth, Anil; Simon, Joshua D.; Strader, Jay

    2015-01-01

    As part of the Panoramic Imaging Survey of Centaurus and Sculptor (PISCeS), we present our initial search for faint dwarf galaxies around the nearby spiral galaxy NGC253 (D~3.5 Mpc). While simulations of structure formation match observational constraints on the largest scales, they struggle to reproduce observations below that of individual galaxies. For a point of comparison, and to extend the search for faint dwarf galaxies beyond the Local Group, we have begun a search for faint dwarfs around two of our nearest galaxy neighbors: Centaurus A and NGC253. Here we present five new dwarf galaxy candidates to NGC253, all in resolved stellar light. We summarize their basic properties including their structure, star formation history and distances. When complete, the PISCeS survey will provide a complete census of dwarf satellites around NGC253 down to M_V~-8, allowing for direct comparisons with simulations and recent work around both the Milky Way and M31.

  6. Galaxy Zoo: Observing secular evolution through bars

    SciTech Connect

    Cheung, Edmond; Faber, S. M.; Koo, David C.; Athanassoula, E.; Bosma, A.; Masters, Karen L.; Nichol, Robert C.; Melvin, Thomas; Bell, Eric F.; Lintott, Chris; Schawinski, Kevin; Skibba, Ramin A.; Willett, Kyle W.

    2013-12-20

    In this paper, we use the Galaxy Zoo 2 data set to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR) and bulge prominence. Our sample consists of 13,295 disk galaxies, with an overall (strong) bar fraction of 23.6% ± 0.4%, of which 1154 barred galaxies also have bar length (BL) measurements. These samples are the largest ever used to study the role of bars in galaxy evolution. We find that the likelihood of a galaxy hosting a bar is anticorrelated with SSFR, regardless of stellar mass or bulge prominence. We find that the trends of bar likelihood and BL with bulge prominence are bimodal with SSFR. We interpret these observations using state-of-the-art simulations of bar evolution that include live halos and the effects of gas and star formation. We suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks, a factor demonstrated to significantly retard both bar formation and evolution in models. We interpret the bimodal relationship between bulge prominence and bar properties as being due to the complicated effects of classical bulges and central mass concentrations on bar evolution and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  7. The Collisional Ring Galaxy NGC922

    NASA Astrophysics Data System (ADS)

    Meurer, Gerhardt

    2007-07-01

    We request WFPC2 images of the newly recognized collisional ring galaxy NGC922 which will become the nearest such system observed by HST. These will be used to get a clear understanding of the geometry of the interaction and the induced star formation in this system. Quantitive modeling of the colors of the star clusters and stellar populations will be used to constrain the star formation history of the system. They will also be used to test the "infant mortality" scenario for star cluster evolution. The derived population ages will test predictions of how star formation evolves in the various components {ring, core, spokes} of collisional rings, and will improve our own simulations of this system. These will be used to determine the final fate of the stars formed in the present burst - some will end up in a central bar or bulge while others will become part of a thickened disk. By analogy this will tell us how similar collisions enrich stellar populations in the early universe. This is especially relevant since the number density of collisional rings increases rapidly with redshift.

  8. Galaxy Zoo: Observing Secular Evolution Through Bars

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Athanassoula, L.; Masters, K.; Faber, S. M.; Koo, D. C.; Zoo, Galaxy

    2014-01-01

    In this talk, I use the Galaxy Zoo 2 dataset to study the behavior of bars in disk galaxies as a function of specific star formation rate (SSFR), and inner galactic structure, i.e., the prominence of the bulge as parameterized by Sérsic index and central surface stellar mass density. Our sample consists of 13,295 disk galaxies, with an overall bar fraction of 23.6 ± 0.4%, of which 1,154 barred galaxies also have bar length measurements. These samples are the largest ever used to study the role of bars in disk galaxy evolution. I find that the likelihood of a galaxy hosting a bar is anti-correlated with SSFR, regardless of stellar mass or bulge prominence. I find that the trends of bar likelihood with bulge prominence are bimodal with SSFR, i.e., in star-forming galaxies, bulges are more prominent in galaxies more likely to host bars, while in quiescent disk galaxies, bars are less frequent where there are prominent bulges. Our observations of bar length reveal a complex picture. In star-forming disks, longer bars are found where the bulges are more prominent, while in quiescent disks there is a maximum in the average bar length as a function of bulge prominence. I interpret these observations using state-of-the-art simulations of bar evolution which include live halos and the effects of gas and star formation. I suggest our observed trends of bar likelihood with SSFR are driven by the gas fraction of the disks; a factor demonstrated to significantly retard both bar formation and evolution in models. I interpret the bimodal relationship between bulge prominence and bar properties as due to the complicated effects of classical bulges and central mass concentrations on bar evolution, and also to the growth of disky pseudobulges by bar evolution. These results represent empirical evidence for secular evolution driven by bars in disk galaxies. This work suggests that bars are not stagnant structures within disk galaxies, but are a critical evolutionary driver of their host galaxies in the local universe (z < 1).

  9. Galaxy Zoo: CANDELS barred discs and bar fractions

    NASA Astrophysics Data System (ADS)

    Simmons, B. D.; Melvin, Thomas; Lintott, Chris; Masters, Karen L.; Willett, Kyle W.; Keel, William C.; Smethurst, R. J.; Cheung, Edmond; Nichol, Robert C.; Schawinski, Kevin; Rutkowski, Michael; Kartaltepe, Jeyhan S.; Bell, Eric F.; Casteels, Kevin R. V.; Conselice, Christopher J.; Almaini, Omar; Ferguson, Henry C.; Fortson, Lucy; Hartley, William; Kocevski, Dale; Koekemoer, Anton M.; McIntosh, Daniel H.; Mortlock, Alice; Newman, Jeffrey A.; Ownsworth, Jamie; Bamford, Steven; Dahlen, Tomas; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Galametz, Audrey; Grogin, N. A.; Grützbauch, Ruth; Guo, Yicheng; Häußler, Boris; Jek, Kian J.; Kaviraj, Sugata; Lucas, Ray A.; Peth, Michael; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2014-12-01

    The formation of bars in disc galaxies is a tracer of the dynamical maturity of the population. Previous studies have found that the incidence of bars in discs decreases from the local Universe to z ˜ 1, and by z > 1 simulations predict that bar features in dynamically mature discs should be extremely rare. Here, we report the discovery of strong barred structures in massive disc galaxies at z ˜ 1.5 in deep rest-frame optical images from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey. From within a sample of 876 disc galaxies identified by visual classification in Galaxy Zoo, we identify 123 barred galaxies. Selecting a subsample within the same region of the evolving galaxy luminosity function (brighter than L*), we find that the bar fraction across the redshift range 0.5 ≤ z ≤ 2 ( f_{bar} = 10.7^{+6.3}_{-3.5} per cent after correcting for incompleteness) does not significantly evolve. We discuss the implications of this discovery in the context of existing simulations and our current understanding of the way disc galaxies have evolved over the last 11 billion years.

  10. Black Hole Ejected from the Nucleus of Galaxy NGC 5236

    NASA Astrophysics Data System (ADS)

    Dottori, H.; Díaz, R.; Albacete-Colombo, J. F.; Mast, D.

    The Fanaroff-Riley II-type radiosource J 133658.3-295105, which is also an X-ray source, appears to be projected onto the disc of the barred-spiral galaxy NGC 5236 (M 83) at about 1.2 kiloparsecs from the galaxy's optical nucleus. J 133658.3-295105, its radio-lobes, and two other radiosources, neither of which are supernovae remnants or HII regions, are aligned with the optical nucleus of NGC 5236. Due to this peculiar on-the-sky projection, we studied J 133658.3-295105 using GEMINI+GMOS optical spectroscopy and also reanalyzed Chandra spectroscopy which was carried out in 2000. We marginally detected the Hα emission line receding at 130 km/sec with respect to the optical nucleus. We also demostrate that J 133658.3-295105 presents the Fe-Kα emission line at a redshift z = 0.018 ± 0.01. Both, Hα and Fe-Kα present redshifts that are compatible with the distance of NGC 5236. That findings reinforce the scenario of a local object for J 133658.3-295105, which could have been ejected from the nucleus of NGC 5236.

  11. ON THE FRACTION OF BARRED SPIRAL GALAXIES

    SciTech Connect

    Nair, Preethi B.; Abraham, Roberto G. E-mail: abraham@astro.utoronto.c

    2010-05-10

    We investigate the stellar masses of strongly barred spiral galaxies. Our analysis is based on a sample of {approx}14,000 visually classified nearby galaxies given by Nair and Abraham. The fraction of barred spiral galaxies is found to be a strong function of stellar mass and star formation history, with a minimum near the characteristic mass at which bimodality is seen in the stellar populations of galaxies. We also find that bar fractions are very sensitive to the central concentration of galaxies below the transition mass but not above it. This suggests that whatever process is causing the creation of the red and blue sequences is either influencing, or being influenced by, structural changes which manifest themselves in the absence of bars. As a consequence of strong bar fractions being sensitive to the mass range probed, our analysis helps resolve discrepant results on the reported evolution of bar fractions with redshift.

  12. Arecibo Galaxy Environment Survey: NGC 3193

    NASA Astrophysics Data System (ADS)

    Rodriguez, Roberto; Minchin, R. F.; Taylor, R.

    2013-01-01

    The Arecibo Galaxy Environment Survey (AGES) is a neutral hydrogen galaxy survey. It is searching for galaxies by 21cm emission from neutral hydrogen gas in their interstellar media. I analyzed the AGES NGC 3193 region, a 20 square degrees field obtained with the Wideband Arecibo Pulsar Processor (WAPP) correlators covering a redshift range of z ~ 0 - 0.06. I produced a catalogue containing measured parameters such as flux, HI mass, velocity width, position fitting, mass-to-light ratios and gas deficiencies for the detected sources. Among the relevant results found was the evidence of possible HI stripping in an interacting galaxy group that included a galactic merger.

  13. Diverse Group of Galaxy Types, NGC 3190 Field

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image of a diverse group of galaxy types. NGC 3190 is a dusty edge on spiral galaxy. NGC 3187 is highly distorted. The two are separated by only 35 kilo-parsecs (about half the diameter of our own Milky Way galaxy). A ring, elliptical, and other irregular galaxies are also present.

  14. Hyperactive galaxy NGC 7673 [heic0205

    NASA Astrophysics Data System (ADS)

    2002-03-01

    Hyperactive galaxy NGC 7673 hi-res Size hi-res: 116 kb Credits: European Space Agency & Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison) Hyperactive galaxy NGC 7673 The disturbed spiral galaxy NGC 7673 is ablaze with the light from millions of new stars. Each of its infant giant blue star clusters shines 100 times as brightly in the ultraviolet as similar immense star clusters in our own Galaxy. Scientists studying this object have two pressing questions: "What has triggered this enormous burst of star formation and how will this galaxy evolve in the future?" Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image, to the left and right of NGC 7673. These galaxies are further away and so appear redder, due to their higher redshift, an effect caused by the expansion of the Universe. The youngest blue stars in NGC 7673 are blazing with intense ultraviolet radiation. Each star cluster radiates 100 times more ultraviolet light than the famous Tarantula Nebula (30 Doradus), the largest star-forming region known in the local group of galaxies. Telltale patches of blue light are signs of the formation of millions of new stars in the tangled spiral galaxy NGC 7673. Each of the bluish areas in this image consists of immense star clusters containing thousands of young stars. These clusters lie on the spiral arms of NGC 7673 and so emphasise its somewhat ragged look. This image, taken from Earth orbit by the ESA/NASA Hubble Space Telescope in 1996 and 1997, also shows two other galaxies seen in the background of the image, to the left and right of NGC 7673. These galaxies are further away and so appear redder, due to their higher redshift, an effect caused by the expansion of the Universe. The youngest blue stars in NGC 7673 are blazing with intense ultraviolet radiation. Each star cluster radiates 100 times more ultraviolet light than the famous Tarantula Nebula (30 Doradus), the largest star-forming region known in the local group of galaxies. Although this image is another attractive example of 'space art' from Hubble, there is also a purpose behind the beauty. Extracting the secrets of NGC 7673 According to Nicole Homeier from the European Southern Observatory in Munich, Germany and the University of Wisconsin-Madison, USA, "NGC 7673 is a nearby example of the type of vigorous star formation that we think may have taken place in the early Universe. Our most pressing questions are: What has triggered this enormous burst of star formation and how will the galaxy evolve in the future?" There are two possible causes for this remarkable flurry of star formation: either a near miss or a collision between NGC 7673 and a nearby galaxy, or some unusual circumstances within the spiral galaxy itself - for example, there may have been an overabundance of gas in the galaxy's disc that became gravitationally unstable, forming huge gas clumps that then burst into stellar 'flame'. For Homeier and her collaborators in America and Europe, the Hubble image offers new opportunities. "For many years we have only been able to see the star-forming regions as fuzzy clumps from ground-based telescopes. Now, with Hubble we can study how these clumps may have originated and how this 'starburst galaxy' relates to the younger star-forming galaxies we see in the early Universe", she says. "We hope to find the answer to our questions in the next few years." NGC 7673 is located in the constellation of Pegasus at an approximate distance of 150 million light-years. This picture is composed of three images obtained with Hubble's Wide Field Planetary Camera 2 on 15 October 1996 and 11 October 1997. The three images were taken through a red filter (800 seconds), a green filter (1200 seconds) and an ultraviolet filter (2300 seconds) - shown in blue. Members of the team of scientists include: Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison), Jay Gallagher (University of Wisconsin-Madison) and Anna Pasquali (European Southern Observatory and Space Telescope-European Coordinating Facility). The Hubble Space Telescope is a project of international co-operation between ESA and NASA. Image credit: European Space Agency & Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison) Notes for editors Members of the team of scientists include: Nicole Homeier (European Southern Observatory and University of Wisconsin-Madison), Jay Gallagher (University of Wisconsin-Madison) and Anna Pasquali (European Southern Observatory and Space Telescope-European Coordinating Facility).

  15. The NGC 1961 group of galaxies

    NASA Astrophysics Data System (ADS)

    Gottesman, S. T.; Hunter, J. H., Jr.; Shostak, G. S.

    1983-02-01

    Methods of determining the mass of the peculiar disc galaxy NGC 1961, alternative to those discussed by Shostak et al. (1982), are considered. If NGC 1961 is part of a stable group of galaxies seen in its proximity, its mass (within a radius of 244 kpc) must be approximately 10 to the 13th solar masses. If it is an interloper in this group, on the other hand, then at least 10 to the 12th solar masses of unseen matter is necessary to stabilize the reduce group. Furthermore, if the peculiar morphology of NGC 1961 is to be understood as the result of stripping by intergalactic material, this unseen matter must be distributed in an unusual fashion.

  16. The Nature of the Peculiar Virgo Cluster Galaxies NGC 4064 and NGC 4424

    NASA Astrophysics Data System (ADS)

    Cortés, Juan R.; Kenney, Jeffrey D. P.; Hardy, Eduardo

    2006-02-01

    Using extensive kinematical and morphological data on two Virgo Cluster galaxies undergoing strong nuclear star formation, we show that ram pressure stripping and gravitational interactions can act together on galaxies that have recently fallen into clusters. We present a detailed study of the peculiar H I-deficient Virgo Cluster spiral galaxies NGC 4064 and NGC 4424 using 12CO 1-0 interferometry, optical imaging, and integral field spectroscopic observations in order to learn what type of environmental interactions have affected these galaxies. Optical imaging reveals that NGC 4424 has a strongly disturbed stellar disk, with banana-shaped isophotes and shells. NGC 4064, which lies in the cluster outskirts, possesses a relatively undisturbed outer stellar disk and a central bar. In both galaxies Hα emission is confined to the central kiloparsec and originates in barlike strings of luminous star-forming complexes surrounded by fainter filaments. Complexes of young blue stars exist beyond the present location of ongoing star formation, indicating rapidly shrinking star-forming disks. Disturbed dust lanes extend out to a radius of 2-3 kpc, much farther than the Hα and CO emission detected by us but similar to the blue stellar complexes. CO observations reveal bilobal molecular gas morphologies, with Hα emission peaking inside the CO lobes, implying a time sequence in the star formation process. Gas kinematics reveals strong barlike noncircular motions in the molecular gas in both galaxies, suggesting that the material is radially infalling. In NGC 4064 the stellar kinematics reveals strong barlike noncircular motions in the central 1 kpc and stars supported by rotation with V/σ>1 beyond a radius of 15" (1.2 kpc). On the other hand, NGC 4424 has extremely modest stellar rotation velocities (Vmax~30 km s-1), and stars are supported by random motions as far out as we can measure, with V/σ=0.6 at r=18'' (1.4 kpc). The ionized gas kinematics in the core are disturbed and possibly counterrotating. The observations suggest that the peculiarities of NGC 4424 are the result of an intermediate-mass merger plus ram pressure stripping. In the case of NGC 4064, the evidence suggests an already stripped ``truncated/normal'' galaxy that recently suffered a minor merger or tidal interaction with another galaxy. Observations of the present star formation rate and gas content suggest that these galaxies will become small-bulge S0s within the next 3 Gyr. We propose that galaxies with ``truncated/compact'' Hα morphologies such as these are the result of the independent effects of ram pressure stripping, which removes gas from the outer disk, and gravitational interactions such as mergers, which heat stellar disks, drive gas to the central kiloparsec, and increase the central mass concentrations. Together these effects transform the morphology of these galaxies.

  17. Radial migration in barred galaxies

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.; Haywood, M.; Combes, F.; Semelin, B.; Babusiaux, C.; Gomez, A.

    2015-03-01

    In this talk, I will present the result of high resolution numerical simulations of disk galaxies with various bulge/disk ratios evolving isolated, showing that: • Most of migration takes place when the bar strength is high and decreases in the phases of low activity (in agreement with the results by Brunetti et el. 2011, Minchev et al. 2011). • Most of the stars inside the corotation radius (CR) do not migrate in the outer regions, but stay confined in the inner disk, while stars outside CR can migrate either inwards or outwards, diffusing over the whole disk. • Migration is accompanied by significative azimuthal variations in the metallicity distribution, of the order of 0.1 dex for an initial gradient of ~-0.07 dex/kpc. • Boxy bulges are an example of stellar structures whose properties (stellar content, vertical metallicity, [α/Fe] and age gradients, ..) are affected by radial migration (see also Fig. 1).

  18. DEPENDENCE OF BARRED GALAXY FRACTION ON GALAXY PROPERTIES AND ENVIRONMENT

    SciTech Connect

    Lee, Gwang-Ho; Lee, Myung Gyoon; Park, Changbom; Choi, Yun-Young E-mail: mglee@astro.snu.ac.kr E-mail: yy.choi@khu.ac.kr

    2012-02-01

    We investigate the dependence of the occurrence of bars in galaxies on galaxy properties and environment. We use a volume-limited sample of 33,391 galaxies brighter than M{sub r} = -19.5 + 5logh at 0.02 {<=} z {<=} 0.05489, drawn from the Sloan Digital Sky Survey Data Release 7. We classify the galaxies into early and late types, and identify bars by visual inspection. Among 10,674 late-type galaxies with axis ratio b/a > 0.60, we find 3240 barred galaxies (f{sub bar} = 30.4%) which divide into 2542 strong bars (f{sub SB1} = 23.8%) and 698 weak bars (f{sub SB2} = 6.5%). We find that f{sub SB1} increases as u - r color becomes redder and that it has a maximum value at intermediate velocity dispersion ({sigma} {approx_equal}150 km s{sup -1}). This trend suggests that strong bars are dominantly hosted by intermediate-mass systems. Weak bars prefer bluer galaxies with lower mass and lower concentration. In the case of strong bars, their dependence on the concentration index appears only for massive galaxies with {sigma} > 150 km s{sup -1}. We also find that f{sub bar} does not directly depend on the large-scale background density when other physical parameters (u - r color or {sigma}) are fixed. We discover that f{sub SB1} decreases as the separation to the nearest neighbor galaxy becomes smaller than 0.1 times the virial radius of the neighbor regardless of neighbor's morphology. These results imply that strong bars are likely to be destroyed during strong tidal interactions and that the mechanism for this phenomenon is gravitational and not hydrodynamical. The fraction of weak bars has no correlation with environmental parameters. We do not find any direct evidence for environmental stimulation of bar formation.

  19. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar regions, magnetic fields reduce density compression in the dust-lane shocks, while removing angular momentum further from the gas at the shocks. This evidently results in a smaller and more distributed ring, and a larger mass inflows rate to the galaxy center in models with stronger magnetic fields. In the outer regions, an MHD dynamo due to the combined action of the bar potential and background shear operates, amplifying magnetic fields near the corotation resonance. In the absence of spiral arms, the amplified fields naturally shape into trailing magnetic arms with strong fields and low density. The reader is refereed to Kim & Stone (2012) for a detailed presentation of the simulation outcomes.

  20. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  1. TWO PSEUDOBULGES IN THE 'BOXY BULGE' GALAXY NGC 5746

    SciTech Connect

    Barentine, John C.; Kormendy, John

    2012-08-01

    Galaxy formation and growth under the {Lambda}CDM paradigm is expected to proceed in a hierarchical, bottom-up fashion by which small galaxies grow into large galaxies; this mechanism leaves behind large 'classical bulges' kinematically distinct from 'pseudobulges' grown by internal, secular processes. We use archival data (Spitzer Space Telescope 3.6 {mu}m wavelength, Hubble Space Telescope H-band, Two Micron All Sky Survey K{sub s} -band, and Sloan Digital Sky Survey gri-band) to measure composite minor- and major-axis surface brightness profiles of the almost-edge-on spiral galaxy NGC 5746. These light profiles span a large range of radii and surface brightnesses to reveal an inner, high surface brightness stellar component that is distinct from the well-known boxy bulge. It is well fitted by Sersic functions with indices n = 0.99 {+-} 0.08 and 1.17 {+-} 0.24 along the minor and major axes, respectively. Since n < 2, we conclude that this innermost component is a secularly evolved pseudobulge that is distinct from the boxy pseudobulge. This inner pseudobulge makes up 0.136 {+-} 0.019 of the total light of the galaxy. It is therefore considerably less luminous than the boxy structure, which is now understood to be a bar seen nearly end-on. The infrared imagery shows further evidence for secular evolution in the form of a bright inner ring of inner radius 9.1 kpc and width 1.6 kpc. NGC 5746 is therefore a giant, pure-disk SB(r)bc galaxy with no sign of a merger-built bulge. We do not understand how such galaxies form in a {Lambda}CDM universe.

  2. Observations of CO in the Magellanic irregular galaxy NGC 55

    NASA Astrophysics Data System (ADS)

    Heithausen, Andreas; Dettmar, Ralf-Juergen

    1990-07-01

    The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 107 solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.

  3. Observations of CO in the Magellanic irregular galaxy NGC 55

    NASA Technical Reports Server (NTRS)

    Heithausen, Andreas; Dettmar, Ralf-Juergen

    1990-01-01

    The content of molecular gas in galaxies, mainly H2, is one of the key observations necessary for the understanding of star formation processes and history. As the CO molecule is the most widely distributed molecule after H2 and has easily observable mm lines, it is used as a tracer for the molecular gas. CO was detected towards the direction where the H alpha and 6 cm radio continuum emission is strongest (Hummel et al. 1986). Here, researchers present the Gaussian line parameters in tabular form. The distribution of CO corresponds well with the intense HI cloud near the bar of NGC 55. The extent of the CO cloud is about 975 pc perpendicular to the major axis. As the radio continuum and the H alpha emission also peaks in this region, it is most probably associated with the star forming region in NGC 55. Assuming that the molecular gas is in virial equilibrium, researchers derive a mass of about 8 times 10(exp 7) solar magnitude. The molecular mass found indicates that the conversion factor for the molecular mass in Irr galaxies as inferred from CO line emission is indeed higher by up to a factor of 20 compared to the canonical value for the Galaxy.

  4. GLOBULAR CLUSTER SYSTEMS OF SPIRAL AND S0 GALAXIES: RESULTS FROM WIYN IMAGING OF NGC 1023, NGC 1055, NGC 7332, AND NGC 7339

    SciTech Connect

    Young, Michael D.; Dowell, Jessica L.; Rhode, Katherine L. E-mail: jlwind@astro.indiana.edu

    2012-10-01

    We present results from a study of the globular cluster (GC) systems of four spiral and S0 galaxies imaged as part of an ongoing wide-field survey of the GC systems of giant galaxies. The target galaxies-the SB0 galaxy NGC 1023, the SBb galaxy NGC 1055, and an isolated pair comprised of the Sbc galaxy NGC 7339 and the S0 galaxy NGC 7332-were observed in BVR filters with the WIYN 3.5 m telescope and Minimosaic camera. For two of the galaxies, we combined the WIYN imaging with previously published data from the Hubble Space Telescope and the Keck Observatory to help characterize the GC distribution in the central few kiloparsecs. We determine the radial distribution (surface density of GCs versus projected radius) of each galaxy's GC system and use it to calculate the total number of GCs (N{sub GC}). We find N{sub GC} = 490 {+-} 30, 210 {+-} 40, 175 {+-} 15, and 75 {+-} 10 for NGC 1023, NGC 1055, NGC 7332, and NGC 7339, respectively. We also calculate the GC specific frequency (N{sub GC} normalized by host galaxy luminosity or mass) and find values typical of those of the other spiral and E/S0 galaxies in the survey. The two lenticular galaxies have sufficient numbers of GC candidates for us to perform statistical tests for bimodality in the GC color distributions. We find evidence at a high confidence level (>95%) for two populations in the B - R distribution of the GC system of NGC 1023. We find weaker evidence for bimodality (>81% confidence) in the GC color distribution of NGC 7332. Finally, we identify eight GC candidates that may be associated with the Magellanic dwarf galaxy NGC 1023A, which is a satellite of NGC 1023.

  5. The Dynamical Relationship Between the Bar and Spiral Patterns of NGC 1365

    NASA Astrophysics Data System (ADS)

    Speights, Jason

    2016-01-01

    Theories describing the dynamical relationship between bar and spiral patterns in galaxy disks make different predictions about the radial profile of the pattern speed. The purpose of this poster is to test these predictions for the bar and spiral patterns of NGC 1365. The pattern speed is measured by fitting different forms of the Tremaine-Weinberg equations to H-alpha intensity and velocity maps. The results are the most consistent with the currently observed bar and spiral patterns being dynamically distinct features. They show compelling evidence for the bar rotating faster than the spiral pattern, inconsistent with a global wave mode or a manifold. The evidence for mode coupling of the bar and spiral patterns is weak due to inconsistencies in the results for different solution methods. The bar pattern speed is approximately constant between the inner Lindblad and corotation resonances, demonstrating that the solutions can detect large-scale, rigid patterns. Beyond the bar, the results resemble what is expected for coupled spiral modes and tidal interactions.

  6. Stellar Populations of Barred Quiescent Galaxies

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Conroy, Charlie; Athanassoula, E.; Bell, Eric F.; Bosma, A.; Cardamone, Carolin N.; Faber, S. M.; Koo, David C.; Lintott, Chris; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke; Willett, Kyle W.

    2015-07-01

    Selecting centrally quiescent galaxies from the Sloan Digital Sky Survey (SDSS) to create high signal-to-noise ratio (≳ 100 Å-1) stacked spectra with minimal emission-line contamination, we accurately and precisely model the central stellar populations of barred and unbarred quiescent disk galaxies. By splitting our sample by redshift, we can use the fixed size of the SDSS fiber to model the stellar populations at different radii within galaxies. At 0.02\\lt z\\lt 0.04, the SDSS fiber radius corresponds to ≈1 kpc, which is the typical half-light radii of both classical bulges and disky pseudobulges. Assuming that the SDSS fiber primarily covers the bulges at these redshifts, our analysis shows that there are no significant differences in the stellar populations, i.e., stellar age, [Fe/H], [Mg/Fe], and [N/Fe], of the bulges of barred versus unbarred quiescent disk galaxies. Modeling the stellar populations at different redshift intervals from z = 0.020 to z = 0.085 at fixed stellar masses produces an estimate of the stellar population gradients out to about half the typical effective radius of our sample, assuming null evolution over this ≈1 Gyr epoch. We find that there are no noticeable differences in the slopes of the azimuthally averaged gradients of barred versus unbarred quiescent disk galaxies. These results suggest that bars are not a strong influence on the chemical evolution of quiescent disk galaxies.

  7. Molecular Gas and Star-formation Properties in the Central and Bar Regions of NGC 6946

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Kuno, Nario; Koda, Jin; Hirota, Akihiko; Sorai, Kazuo; Kaneko, Hiroyuki

    2015-12-01

    In this work, we investigate the molecular gas and star-formation properties in the barred spiral galaxy NGC 6946 using multiple molecular lines and star-formation tracers. A high-resolution image (100 pc) of 13CO (1-0) is created for the inner 2 kpc disk by the single-dish Nobeyama Radio Observatory 45 m telescope and interferometer Combined Array for Research in Millimeter-wave Astronomy, including the central region (nuclear ring and bar) and the offset ridges of the primary bar. Single-dish HCN (1-0) observations were also made to constrain the amount of dense gas. The physical properties of molecular gas are inferred from (1) the large velocity gradient calculations using our observations and archival 12CO (1-0), 12CO(2-1) data, (2) the dense gas fraction suggested by the luminosity ratio of HCN to 12CO (1-0), and (3) the infrared color. The results show that the molecular gas in the central region is warmer and denser than that of the offset ridges. The dense gas fraction of the central region is similar to that of luminous infrared galaxies/ultraluminous infrared galaxies, whereas the offset ridges are close to the global average of normal galaxies. The coolest and least-dense region is found in a spiral-like structure, which was misunderstood to be part of the southern primary bar in previous low-resolution observations. The star-formation efficiency (SFE) changes by about five times in the inner disk. The variation of SFE agrees with the prediction in terms of star formation regulated by the galactic bar. We find a consistency between the star-forming region and the temperature inferred by the infrared color, suggesting that the distribution of subkiloparsec-scale temperature is driven by star formation.

  8. XMM-Newton observations of the interacting galaxy pairs NGC 7771/0 and NGC 2342/1

    NASA Astrophysics Data System (ADS)

    Jenkins, L. P.; Roberts, T. P.; Ward, M. J.; Zezas, A.

    2005-02-01

    We present XMM-Newton X-ray observations of the interacting galaxy pairs NGC 7771/7770 and NGC 2342/2341. In NGC 7771, for the first time we are able to resolve the X-ray emission into a bright central source plus two bright (LX > 1040 erg s-1) ultraluminous X-ray sources (ULXs) located either end of the bar. In the bright central source (LX~ 1041 erg s-1), the soft emission is well-modelled by a two-temperature thermal plasma with kT= 0.4/0.7 keV. The hard emission is modelled with a flat absorbed power-law (Γ~ 1.7, NH~ 1022 cm-2), and this together with a low-significance (1.7σ) ~ 300 eV equivalent width emission line at ~6 keV are the first indications that NGC 7771 may host a low-luminosity AGN. For the bar ULXs, a power-law fit to X-1 is improved at the 2.5σ level with the addition of a thermal plasma component (kT~ 0.3 keV), while X-2 is improved only at the 1.3σ level with the addition of a disc blackbody component with Tin~ 0.2 keV. Both sources are variable on short time-scales implying that their emission is dominated by single accreting X-ray binaries (XRBs). The three remaining galaxies, NGC 7770, NGC 2342 and NGC 2341, have observed X-ray luminosities of 0.2, 1.8 and 0.9 × 1041 erg s-1, respectively (0.3-10 keV). Their integrated spectra are also well-modelled by multi-temperature thermal plasma components with kT= 0.2-0.7 keV, plus power-law continua with slopes of Γ= 1.8-2.3 that are likely to represent the integrated emission of populations of XRBs as observed in other nearby merger systems. A comparison with other isolated, interacting and merging systems shows that all four galaxies follow the established correlations for starburst galaxies between X-ray, far-infrared and radio luminosities, demonstrating that their X-ray outputs are dominated by their starburst components.

  9. A GMRT study of Seyfert galaxies NGC 4235 and NGC 4594: evidence of episodic activity?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Ananda, Hota

    2016-06-01

    Low-frequency observations at 325 and 610 MHz have been carried out for two `radio-loud' Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325-610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a `relic' radio lobe, most likely from a previous episode of active galactic nucleus (AGN) activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the CLUMPYDREAM code predicts star formation rates (SFRs) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13-0.23 M⊙ yr-1 compared to the required SFR of ˜2.0-2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN powered. SED modelling supports the `true' type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  10. A GMRT Study of Seyfert Galaxies NGC 4235 & NGC 4594: Evidence of Episodic Activity ?

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Srivastava, S.; Singh, V.; Gallimore, J. F.; Ishwara-Chandra, C. H.; Hota, Ananda

    2016-03-01

    Low frequency observations at 325 and 610 MHz have been carried out for two "radio-loud" Seyfert galaxies, NGC 4235 and NGC 4594 (Sombrero galaxy), using the Giant Meterwave Radio Telescope (GMRT). The 610 MHz total intensity and 325 - 610 MHz spectral index images of NGC 4235 tentatively suggest the presence of a "relic" radio lobe, most likely from a previous episode of AGN activity. This makes NGC 4235 only the second known Seyfert galaxy after Mrk 6 to show signatures of episodic activity. Spitzer and Herschel infrared spectral energy distribution (SED) modelling using the clumpyDREAM code predicts star formation rates (SFR) that are an order of magnitude lower than those required to power the radio lobes in these Seyferts (˜0.13 - 0.23 M⊙ yr-1 compared to the required SFR of ˜2.0 - 2.7 M⊙ yr-1 in NGC 4594 and NGC 4235, respectively). This finding along with the detection of parsec and sub-kpc radio jets in both Seyfert galaxies, that are roughly along the same position angles as the radio lobes, strongly support the suggestion that Seyfert lobes are AGN-powered. SED modelling supports the "true" type 2 classification of NGC 4594: this galaxy lacks significant dust obscuration as well as a prominent broad-line region. Between the two Seyfert galaxies, there is an inverse relation between their radio-loudness and Eddington ratio and a direct relation between their Eddington-scaled jet power and bolometric power.

  11. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, M. Carmen; Alfaro, Emilio J.; Pérez, Enrique

    2015-12-01

    We address the study of the H α vertical velocity field in a sample of four nearly face-on galaxies using long-slit spectroscopy taken with the Intermediate dispersion Spectrograph and Imaging System (ISIS), attached to the William Herschel Telescope (WHT) at the Roque de los Muchachos Observatory (Spain). The spatial structure of the velocity vertical component shows a radial corrugated pattern with spatial scales higher or within the order of 1 kpc. The gas is mainly ionized by high-energy photons: only in some locations of NGC 278 and NGC 1058 is there some evidence of ionization by low-velocity shocks, which, in the case of NGC 278, could be due to minor mergers. The behaviour of the gas in the neighbourhood of the spiral arms fits, in the majority of the observed cases, with that predicted by the so-called hydraulic bore mechanism, where a thick magnetized disc encounters a spiral density perturbation. The results obtained show that it is difficult to explain the H α large-scale velocity field without the presence of a magnetized, thick galactic disc. Larger samples and spatial covering of the galaxy discs are needed to provide further insight into this problem.

  12. The interacting galaxy pair NGC 4485 and NGC 4490 - Star formation and the interstellar medium

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A., Jr.; Hunter, Deidre A.; Casey, Sean; Harper, D. A.; Latter, William B.

    1989-01-01

    The 100- and 160-micron continuum emission from cool dust in the interacting gas-rich pair of galaxies, NGC 4490 and NGC 4485, was mapped. Visual continuum and H-alpha images of the pair were obtained. The state of the interstellar medium and the rate and efficiency of star formation are investigated.

  13. ON THE GALACTIC SPIN OF BARRED DISK GALAXIES

    SciTech Connect

    Cervantes-Sodi, Bernardo; Li, Cheng; Wang, Lixin; Park, Changbom

    2013-09-20

    We present a study of the connection between the galactic spin parameter (λ{sub d}) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λ{sub d} values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λ{sub d} values for the case of long bars, while the maximum for short bars is at high λ{sub d}. This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λ{sub d}, within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  14. On the Galactic Spin of Barred Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Cervantes-Sodi, Bernardo; Li, Cheng; Park, Changbom; Wang, Lixin

    2013-09-01

    We present a study of the connection between the galactic spin parameter (λ d ) and the bar fraction in a volume-limited sample of 10,674 disk galaxies drawn from the Sloan Digital Sky Survey Data Release 7. The galaxies in our sample are visually classified into one of three groups: non-barred galaxies and galaxies hosting long or short bars, respectively. We find that the spin distributions of these three classes are statistically different, with galaxies hosting long bars having the lowest λ d values, followed by non-barred galaxies, while galaxies with short bars present typically high spin parameters. The bar fraction presents its maximum at low to intermediate λ d values for the case of long bars, while the maximum for short bars is at high λ d . This bimodality is in good agreement with previous studies finding longer bars hosted by luminous, massive, red galaxies with a low content of cold gas, while short bars were found in low luminosity, low mass, blue galaxies that were typically gas rich. In addition, the rise and fall of the bar fraction as a function of λ d , within the long-bar sample shown in our results, can be explained as a result of two competing factors: the self-gravity of the disk that enhances bar instabilities and the support by random motions, instead of ordered rotational motion, that prevents the formation/growth of bars.

  15. FISICA observations of the starburst galaxy, NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Raines, S. N.; Gruel, N.; Elston, R.; Guzman, R.; Julian, J.; Boreman, G.; Glenn, P. E.; Hull-Allen, C. G.; Hoffman, J.; Rodgers, M.; Thompson, K.; Flint, S.; Comstock, L.; Myrick, B.

    2006-06-01

    Using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) we obtained observations of the dwarf starburst galaxy NGC 1569. We present our JH band spectra, particularly noting the existence of extended emission in Paschen β and He I.

  16. Observational study of the candidate polar-ring galaxies NGC 304 and NGC 7625

    NASA Astrophysics Data System (ADS)

    Karataeva, G. M.; Kuznetsov, A. N.

    2008-09-01

    We present the results of our photometric ( BV R) and spectroscopic CCD observations of NGC 304 and NGC 7625, candidate polar-ring galaxies, performed with the 6-m Special Astrophysical Observatory telescope. For NGC 304, such a study has been carried out for the first time. We have obtained basic integrated characteristics of the galaxies and determined their morphological types (S0 for NGC 304 and Sa for NGC 7625). The absolute magnitudes of the galaxies, M B = -20m.81 for NGC 304 and M B = -19m.34 for NGC7625, are indicative of their fairly high luminosities. The disk and bulge parameters have been determined forNGC 304 (µ0 = 20m.60, h = 3.86 kpc, µ e = 21m.59, r e = 1.26 kpc in the B band); these correspond to the parameters of S0-type objects. The rotation velocity for NGC 304 (200 km s-1) reaches its maximum at a galactocentric distance of 3.1 kpc, which yields a mass estimate for the galaxy of 2.8 × 1010 mathcal{M}_ odot . The observed photometric features at the center of NGC 304 indicate that it may have an inner ring structure, although we have failed to confirm the existence of two kinematic systems based on our spectroscopic observations. In NGC 7625, the disk makes a dominant contribution to the total brightness. The derived integrated color indices ( B-V = 0m.81 and V-R = 0m.61) agree with previous determinations of other authors. We have estimated the учештсешщт in the inner galactic regions. In the outer regions, we have detected structures with bluer colors ( B-V = 0m.60), which may be indicative of a polar ring with a minor stellar component.

  17. HST/ACS Direct Ages of the Dwarf Elliptical Galaxies NGC 147 and NGC 185

    NASA Astrophysics Data System (ADS)

    Geha, M.; Weisz, D.; Grocholski, A.; Dolphin, A.; van der Marel, R. P.; Guhathakurta, P.

    2015-10-01

    We present the deepest optical photometry for any dwarf elliptical (dE) galaxy based on Hubble Space Telescope Advanced Camera for Surveys (ACS) observations of the Local Group dE galaxies NGC 147 and NGC 185. Our F606W and F814W color-magnitude diagrams are the first to reach below the oldest main sequence turnoff in a dE galaxy, allowing us to determine full star formation histories in these systems. The ACS fields are located roughly ˜1.5 effective radii from the galaxy center to avoid photometric crowding. While both ACS fields show unambiguous evidence for old and intermediate age stars, the mean age of NGC 147 is ˜4-5 Gyr younger as compared to NGC 185. In NGC 147, only 40% of stars were in place 12.5 Gyr ago (z ˜ 5), with the bulk of the remaining stellar population forming between 5 to 7 Gyr. In contrast, 70% of stars were formed in NGC 185 prior to 12.5 Gyr ago with the majority of the remaining population forming between 8 to 10 Gyr ago. Star formation has ceased in both ACS fields for at least 3 Gyr. Previous observations in the central regions of NGC 185 show evidence for star formation as recent as 100 Myr ago, and a strong metallicity gradient with radius. This implies a lack of radial mixing between the center of NGC 185 and our ACS field. The lack of radial gradients in NGC 147 suggests that our inferred SFHs are more representative of its global history. We interpret the inferred differences in star formation histories to imply an earlier infall time into the M31 environment for NGC 185 as compared to NGC 147.

  18. A Stellar Tidal Stream Around the Whale Galaxy, NGC 4631

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; D'Onghia, Elena; Chonis, Taylor S.; Beaton, Rachael L.; Teuwen, Karel; GaBany, R. Jay; Grebel, Eva K.; Morales, Gustavo

    2015-10-01

    We report the discovery of a giant stellar tidal stream in the halo of NGC 4631, a nearby edge-on spiral galaxy interacting with the spiral NGC 4656, in deep images taken with a 40 cm aperture robotic telescope. The stream has two components: a bridge-like feature extending between NGC 4631 and NGC 4656 (streamSE) and an overdensity with extended features on the opposite side of the NGC 4631 disk (streamNW). Together, these features extend more than 85 kpc in projection. The orientation of streamSE relative to the orientations of NGC 4631 and NGC 4656 is not consistent with an origin from an interaction between these two spirals, and is more likely debris from a satellite encounter. The stellar tidal features can be qualitatively reproduced in an N-body model of the tidal disruption of a single, massive dwarf satellite on a moderately eccentric orbit (e = 0.6) around NGC 4631 over ˜3.5 Gyr. Both modeling and inferences from the morphology of the streams indicate these are not associated with the complex HI tidal features observed between both spirals, which likely originate from a more recent, gas-rich accretion event. The structure of streamNW suggests that it may contain the progenitor of the stream, in agreement with the N-body model. However, we cannot exclude other possibilities such as the satellite dwarf galaxy NGC 4627 being the progenitor based on these data. In addition, streamNW is roughly aligned with two very faint dwarf spheroidal candidates. The system of dwarf galaxies and the tidal stream around NGC 4631 can provide an additional interesting case for exploring the anisotropy distribution of satellite galaxies recently reported around Local Group spiral galaxies by means of future follow-up observations.

  19. Dense gas and HII regions in the starburst galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Carlstrom, J. E.; Jackson, James M.; Ho, Paul T. P.; Turner, J. L.

    1990-01-01

    The energetic activity in the nuclear barred region of NGC 253 is attributable to a burst of star formation. NGC 253 is in many ways a twin of the prototypical starburst galaxy M82; the strong non-thermal radio continuum, high far-infrared luminosity, and bright molecular emission of the central 1 Kpc parallel the morphology of the M82 starburst. Furthermore, the filamentary low ionization optical emission and extended x ray emission along the minor axis in NGC 253 is similar to a scaled down version of the well developed galactic bipolar wind in M82. The infrared luminosity of NGC 253, 3(exp 10) solar luminosity, is comparable to M82 but is emitted from a smaller region (Telesco and Harper 1980). This suggests that the NGC 253 starburst may be more intense and at an earlier evolutionary stage than M82. However, the presence of a non-stellar AGN in NGC 253 may complicate the comparison (Turner and Ho, 1985). Researchers used the Hat Creek millimeter interferometer to map emission from the J = 1 to 0 transitions of HCN and HCO(+) as well as 3 mm continuum emission, toward the nuclear region of NGC 253. The HCO(+) and continuum observations are sensitive to spatial scales from 6 to 45 seconds. The 2 minute field of view comfortably includes the entire starburst region (about 40 seconds; 650 pc). Because the longer baseline HCN observations are not yet complete, they are only sensitive to spatial scales from 15 to 45 seconds.

  20. Submillimeter Observations of the Low-Metallicity Galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Kiuchi, Gaku; Ohta, Kouji; Sawicki, Marcin; Allen, Michael

    2004-12-01

    Results of submillimeter (450 and 850 μm) observations of a nearby dwarf irregular galaxy NGC 4214 with SCUBA on JCMT are presented. We aimed at examining the far-infrared-to-submillimeter spectral energy distribution (SED) and properties of dust thermal emission in a low-metallicity environment by choosing NGC 4214, in which the gas metallicity (logO/H+12) is 8.34. We found that the SED is quite similar to those of the IRAS Bright Galaxies Sample (IBGS), which are local bright star-forming galaxies with metallicities comparable to the solar abundance. The dust temperature and emissivity index for NGC 4214 obtained by a fitting to the single temperature graybody model are Td=35+/-0.8 K and β=1.4+/-0.1, respectively, which are typical values for IBGS galaxies. Compiling the previous studies on similar nearby dwarf irregular galaxies, we found that NGC 1569 shows similar results to those of NGC 4214, while NGC 4449 and IC 10 SE show different SEDs and low emissivity indices. There seems to be a variety of SEDs among metal-poor dwarf irregular galaxies. We examined the dependence on the intensity of interstellar radiation field, as well as a two-temperature model, but the origin of the difference is not clear. Some mechanism(s) other than metallicity and the interstellar radiation field must be responsible for controlling dust emission properties.

  1. Estimating non-circular motions in barred galaxies using numerical N-body simulations

    NASA Astrophysics Data System (ADS)

    Randriamampandry, T. H.; Combes, F.; Carignan, C.; Deg, N.

    2015-12-01

    The observed velocities of the gas in barred galaxies are a combination of the azimuthally averaged circular velocity and non-circular motions, primarily caused by gas streaming along the bar. These non-circular flows must be accounted for before the observed velocities can be used in mass modelling. In this work, we examine the performance of the tilted-ring method and the DISKFIT algorithm for transforming velocity maps of barred spiral galaxies into rotation curves (RCs) using simulated data. We find that the tilted-ring method, which does not account for streaming motions, under-/overestimates the circular motions when the bar is parallel/perpendicular to the projected major axis. DISKFIT, which does include streaming motions, is limited to orientations where the bar is not aligned with either the major or minor axis of the image. Therefore, we propose a method of correcting RCs based on numerical simulations of galaxies. We correct the RC derived from the tilted-ring method based on a numerical simulation of a galaxy with similar properties and projections as the observed galaxy. Using observations of NGC 3319, which has a bar aligned with the major axis, as a test case, we show that the inferred mass models from the uncorrected and corrected RCs are significantly different. These results show the importance of correcting for the non-circular motions and demonstrate that new methods of accounting for these motions are necessary as current methods fail for specific bar alignments.

  2. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  3. The polar-ring galaxies NGC 2685 and NGC 3808B (VV 300)

    NASA Technical Reports Server (NTRS)

    Reshetnikov, V. P.; Yakovleva, V. A.

    1990-01-01

    Polar-ring galaxies (PRG) are among the most interesting examples of interaction between galaxies. A PRG is a galaxy with an elongated main body surrounded by a ring (or a disk) of stars, gas, and dust rotating in a near-polar plane (Schweizer, Whitmore, and Rubin, 1983). Accretion of matter by a massive lenticular galaxy from either intergalactic medium or a companion galaxy is usually considered as an explanation of the observed structure of PRG. In the latter case there are two possibilities: capture and merging of a neighbor galaxy, and accretion of mass from a companion galaxy during a close encounter. Two PRG formation scenarios just mentioned are illustrated here by the results of our observations of the peculiar galaxies NGC 2685 and NGC 3808B.

  4. Ionized gas kinematics within the inner kiloparsec of the Seyfert galaxy NGC 1365

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Storchi-Bergmann, Thaisa; Couto, Guilherme S.; Schnorr-Müller, Allan; Riffel, Rogemar A.

    2016-04-01

    We observed the nuclear region of the galaxy NGC 1365 with the integral field unit of the Gemini Multi Object Spectrograph mounted on the GEMINI-South telescope. The field of view covers 13″ × 6″ (1173 × 541 pc2) centered on the nucleus, at a spatial resolution of 52 pc. The spectral coverage extends from 5600 Å to 7000 Å, at a spectral resolution R = 1918. NGC 1365 hosts a Seyfert 1.8 nucleus, and exhibits a prominent bar extending out to 100″ (9 kpc) from the nucleus. The field of view lies within the inner Lindblad resonance. Within this region, we found that the kinematics of the ionized gas (as traced by [OI], [NII], Hα, and [SII]) is consistent with rotation in the large-scale plane of the galaxy. While rotation dominates the kinematics, there is also evidence for a fan-shaped outflow, as found in other studies based on the [OIII] emission lines. Although evidence for gas inflowing along nuclear spirals has been found in a few barred galaxies, we find no obvious signs of such features in the inner kiloparsec of NGC 1365. However, the emission lines exhibit a puzzling asymmetry that could originate from gas which is slower than the gas responsible for the bulk of the narrow-line emission. We speculate that it could be tracing gas which lost angular momentum, and is slowly migrating from the inner Lindblad resonance towards the nucleus of the galaxy.

  5. Dynamical modelling of the elliptical galaxy NGC 2974

    NASA Astrophysics Data System (ADS)

    Jiang, Zhenglu

    2009-01-01

    In this paper we analyse the relations between a previously described oblate Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974, and obtain the length and velocity scales for a relevant elliptical galaxy model. We then derive the finite total mass of the model from these scales, and finally find a good fit of an isotropic oblate Jaffe model by using the Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC 2974. The model is also used to predict the total luminous mass of NGC 2974, assuming that the influence of dark matter in this galaxy on the image, ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible within the central region, of radius 0.5 R e.

  6. Dissipative Cloud Collissions in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Palous, Jan

    1995-08-01

    The evolution of a system of dissipative giant molecular clouds (GMC) moving in a galaxy is investigated using an N-body code. The GMC may collide when close enough and dissipate certain amount of their kinetic energy. The observed large scale structures are compared with simulations. In particular, we attack the problem of molecular rings in barred galaxies. The simulations showing multiple rings connected to different resonances are discussed. The inelastic collisions play the key role, thus we are able to investigate the importance of viscosity.

  7. CHANDRA OBSERVATIONS OF THE COLLISIONAL RING GALAXY NGC 922

    SciTech Connect

    Prestwich, A. H.; Galache, J. L.; Zezas, A.; Linden, T.; Kalogera, V.; Roberts, T. P.; Kilgard, R.; Wolter, A.; Trinchieri, G.

    2012-03-10

    In this paper, we report on Chandra observations of the starburst galaxy NGC 922. NGC 922 is a drop-through ring galaxy with an expanding ring of star formation, similar in many respects to the Cartwheel galaxy. The Cartwheel galaxy is famous for hosting 12 ultraluminous X-ray sources (ULXs), most of which are in the star-forming ring. This is the largest number of ULXs seen in a single system and has led to speculation that the low metallicity of the Cartwheel (0.3 Z{sub Sun }) may optimize the conditions for ULX formation. In contrast, NGC 922 has metallicity near solar. The Chandra observations reveal a population of bright X-ray sources, including seven ULXs. The number of ULXs in NGC 922 and the Cartwheel scales with the star formation rate: we do not find any evidence for an excess of sources in the Cartwheel. Simulations of the binary population in these galaxies suggest that the ULX population in both systems is dominated by systems with strong wind accretion from supergiant donors onto direct-collapse black holes. The simulations correctly predict the ratio of the number of sources in NGC 922 and the Cartwheel. Thus, it would appear that the metallicity of the Cartwheel is not low enough to see a difference in the ULX population compared to NGC 922.

  8. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    SciTech Connect

    Binney, J.J.; Davies, R.L.; Illingworth, G.D. Oxford Univ. National Optical Astronomy Observatories, Tucson, AZ California Univ., Santa Cruz )

    1990-09-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure. 48 refs.

  9. Velocity mapping and models of the elliptical galaxies NGC 720, NGC 1052, and NGC 4697

    NASA Technical Reports Server (NTRS)

    Binney, J. J.; Davies, Roger L.; Illingworth, Garth D.

    1990-01-01

    CCD surface photometry and extensive long-slit spectroscopy are used to construct detailed models of the flattened ellipticals NGC 720, 1052, and 4697. The models are combined with the Jeans equations to yield predicted fields of line-of-sight velocity dispersion and streaming velocity. By comparing these fields with observed velocities, it is concluded that none of these systems can have isotropic velocity dispersion tensors, and diminishing the assumed inclination of any given galaxy tends to decrease the line-of-sight velocity dispersion and, counterintuitively, to increase the line-of-sight rotation speeds. The ratio of the line-of-sight velocity dispersion along the minor axis to that along the major axis is found to be a sensitive diagnostic of the importance of a third integral for the galaxy's structure.

  10. Corrugated velocity patterns in the spiral galaxies: NGC 278, NGC 1058, NGC 2500 & UGC 3574 .

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    In this work we address the study of the detection in Halpha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (eg Vaucoleurs & de Vaucaleurs 1963, Pismis 1965), but it was not until 2001 that Alfaro et al. analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  11. The properties of NGC 2777 - Are companion galaxies young

    SciTech Connect

    Arp, H.; Sulentic, J.W. Alabama, University, Tuscaloosa )

    1991-07-01

    NGC 2777 is shown to be typical of a class of galaxies that are composed predominantly of recently formed stars and that are companions to larger galaxies. It is argued that star formation activity is not stimulated by gravitational or collisional encounter with the main galaxy. Evidence is discussed which suggests that these kinds of companions are formed in ejection events from older galaxies and that they are more recently created galaxies. Star formation in jets is proposed as the explanation for the strong, general correlation between nonthermal and infrared emission in galaxies. 81 refs.

  12. Star formation and the interstellar medium in two peculiar, nonspiral galaxies - NGC 1569 and NGC 3593

    NASA Technical Reports Server (NTRS)

    Hunter, Deidre A.; Thronson, Harley A., Jr.; Casey, Sean; Harper, D. A.

    1989-01-01

    This paper discusses far-IR and optical observations aimed at investigating the far-IR energy distribution of two peculiar galaxies without spiral arms which are actively forming stars: NGC 1569, a Magellanic irregular galaxy, and NGC 3593, a dusty S0/a galaxy. The data are used to determine the characteristic temperatures of the dust and to infer dust and molecular gas masses which are combined with other data to explore the characteristics of the interstellar media. Visual-wavelength continuum and H-alpha images are presented and used to estimate current and past star formation rates and the efficiency of stellar creation.

  13. Optical polarization of the Seyfert galaxies Mrk 3, Mrk 231, NGC 3227 and NGC 3516

    NASA Technical Reports Server (NTRS)

    Thompson, I.; Stockman, H. S.; Angel, J. R. P.; Beaver, E. A.

    1980-01-01

    The paper presents intermediate resolution observations of the emission line and continuum polarization of the Seyfert galaxies Mrk 3, Mrk 231, NGC 3227, and NGC 3516. The polarization shows a strong wavelength dependence with the polarization increasing smoothly into the blue for each galaxy. This wavelength dependence, together with the presence of polarized H(alpha) emission, indicates that the polarization of each galaxy is caused by an asymmetric dust envelope surrounding the nucleus. Observations of the polarization of the /O III/ lambda 5007 emission in Mrk 3 and NGC 3227, and the polarization through the nonstellar Na ID line absorption in Mrk 231 are used to place constraints on the extent of the polarizing clouds in these galaxies. No polarization variability was detected with time-bases ranging from a few weeks to three years.

  14. Detection of Infalling Hydrogen in Transfer between the Interacting Galaxies NGC 5426 and NGC 5427

    NASA Astrophysics Data System (ADS)

    Font, Joan; Beckman, John E.; Rosado, Margarita; Epinat, Benot; Fathi, Kambiz; Hernandez, Olivier; Carignan, Claude; Gutirrez, Leonel; Relao, Monica; Blasco-Herrera, Javier; Fuentes-Carrera, Isaura

    2011-10-01

    Using velocity tagging we have detected hydrogen from NGC 5426 falling onto its interacting partner NGC 5427. Our observations, with the GHaFaS Fabry-Perot spectrometer, produced maps of the two galaxies in H? surface brightness and radial velocity. We found emission with the range of velocities associated with NGC 5426 along lines of sight apparently emanating from NGC 5427, superposed on the velocity map of the latter. After excluding instrumental effects we assign the anomalous emission to gas pulled from NGC 5426 during its passage close to NGC 5427. Its distribution, more intense between the arms and just outside the disk of NGC 5427, and weak, or absent, in the arms, suggests that the infalling gas is behind the disk, ionized by Lyman continuum photons escaping from NGC 5427. Modeling this, we estimate the distances of these gas clouds behind the plane: a few hundred parsecs to a few kiloparsecs. We also estimate the mass of the infalling (ionized plus neutral) gas, finding an infall rate of 10 M sun per year, consistent with the high measured star formation rate across the disk of NGC 5427 and with the detected circumnuclear galactic wind.

  15. DETECTION OF INFALLING HYDROGEN IN TRANSFER BETWEEN THE INTERACTING GALAXIES NGC 5426 AND NGC 5427

    SciTech Connect

    Font, Joan; Beckman, John E.; Fathi, Kambiz; Gutierrez, Leonel E-mail: jeb@iac.es E-mail: leonel@astrosen.unam.mx

    2011-10-10

    Using velocity tagging we have detected hydrogen from NGC 5426 falling onto its interacting partner NGC 5427. Our observations, with the GHaFaS Fabry-Perot spectrometer, produced maps of the two galaxies in H{alpha} surface brightness and radial velocity. We found emission with the range of velocities associated with NGC 5426 along lines of sight apparently emanating from NGC 5427, superposed on the velocity map of the latter. After excluding instrumental effects we assign the anomalous emission to gas pulled from NGC 5426 during its passage close to NGC 5427. Its distribution, more intense between the arms and just outside the disk of NGC 5427, and weak, or absent, in the arms, suggests that the infalling gas is behind the disk, ionized by Lyman continuum photons escaping from NGC 5427. Modeling this, we estimate the distances of these gas clouds behind the plane: a few hundred parsecs to a few kiloparsecs. We also estimate the mass of the infalling (ionized plus neutral) gas, finding an infall rate of 10 M{sub sun} per year, consistent with the high measured star formation rate across the disk of NGC 5427 and with the detected circumnuclear galactic wind.

  16. A tidally distorted dwarf galaxy near NGC 4449.

    PubMed

    Rich, R M; Collins, M L M; Black, C M; Longstaff, F A; Koch, A; Benson, A; Reitzel, D B

    2012-02-01

    NGC 4449 is a nearby Magellanic irregular starburst galaxy with a B-band absolute magnitude of -18 and a prominent, massive, intermediate-age nucleus at a distance from Earth of 3.8 megaparsecs (ref. 3). It is wreathed in an extraordinary neutral hydrogen (H I) complex, which includes rings, shells and a counter-rotating core, spanning ∼90 kiloparsecs (kpc; refs 1, 4). NGC 4449 is relatively isolated, although an interaction with its nearest known companion--the galaxy DDO 125, some 40 kpc to the south--has been proposed as being responsible for the complexity of its H I structure. Here we report the presence of a dwarf galaxy companion to NGC 4449, namely NGC 4449B. This companion has a V-band absolute magnitude of -13.4 and a half-light radius of 2.7 kpc, with a full extent of around 8 kpc. It is in a transient stage of tidal disruption, similar to that of the Sagittarius dwarf near the Milky Way. NGC 4449B exhibits a striking S-shaped morphology that has been predicted for disrupting galaxies but has hitherto been seen only in a dissolving globular cluster. We also detect an additional arc or disk ripple embedded in a two-component stellar halo, including a component extending twice as far as previously known, to about 20 kpc from the galaxy's centre. PMID:22318602

  17. Line Ratio Diagnostics Along the Disc of Two Edge-on Lenticular Galaxies, NGC 4710 and NGC 5866

    NASA Astrophysics Data System (ADS)

    Topal, Selcuk; Bureau, Martin; Davis, Timothy A.; Young, Lisa; Krips, Melanie

    2015-01-01

    We present interferometric observations of a multitude of CO lines [12CO(1-0), 12CO(2-1), 13CO(1-0) and 13CO(2-1)] and dense gas tracers [HCN(1-0), HCO+(1-0), HNC(1-0) and HNCO(4-3)] in two nearby edge-on lenticular galaxies, NGC 4710 and NGC 5866. The position-velocity diagrams of both galaxies are X-shaped, revealing that the galaxies are barred, with most of the gas concentrated in a nuclear disc and an inner ring in each galaxy. Relatively tenuous (CO) molecular gas is present in both kinematic components, while dense gas is generally only detected in the nuclear discs. We probe the physical conditions of a two-component molecular interstellar medium in each galaxy and each kinematic component by using molecular line ratio diagnostics in three complementary ways. First, we measure the ratios of the position-velocity diagrams of different lines, second we measure the ratios of the integrated line intensities as a function of projected position in each kinematic component taken separately, and third we model the line ratios using a non-local thermodynamic equilibrium radiative transfer code characterising the kinetic temperature, volume density and column density of the molecular gas. Overall, the nuclear discs appear to have a tenuous molecular gas component that is hotter and optically thinner than that in the inner rings, with a larger dense gas fraction, suggesting more dense clumps immersed in a hotter more diffuse molecular medium. This is consistent with evidence that the physical conditions in the nuclear discs are similar to those in photo-dissociation regions, with intense UV radiation from young stars and few cosmic rays. A similar picture emerges when comparing the observed molecular line ratios with those of other galaxy types and spatially-resolved giant molecular clouds. While there are a number of similarities and differences, the physical conditions of the molecular gas in the nuclear discs of NGC 4710 and NGC 5866 appear intermediate between those of spiral galaxies and starbursts, with intense but not extreme star-formation activity, while the star formation in the inner rings is even milder.

  18. Stellar populations and Star Formation Rates in NGC 6872, the Condor galaxy

    NASA Astrophysics Data System (ADS)

    Eufrasio, Rafael T.; De Mello, D. F.; Dwek, E.; Arendt, R. G.; Gadotti, D. A.

    2014-01-01

    We present a detailed analysis of the Spectral Energy Distributions (SEDs) of 10 kpc regions across the giant spiral galaxy NGC 6872, the Condor galaxy. We made use of archival data from the FUV (GALEX) to 22 ?m (WISE). In order to find any signature of the recent interaction 130 Myr) with its companion, the S0 galaxy IC 4970, we inspected the SED of Condor's bar. One possibility is that is would have been formed by passage of the companion. We find that it is a particularly long bar (9 kpc semi-major axis), with a size almost twice as large as the average found in other barred galaxies (4.5 kpc median in the local universe, Gadotti 2011). A bulge/bar/disk 2D decomposition using the Spitzer 3.6 ?m image and the budda package (de Souza et al. 2004; Gadotti 2008) reveals that the ratio of the bar semi-major axis to the disk scale-length is 1.4, which is a value typically found in other barred galaxies (see Fig. 1 in Gadotti 2011). The disk scale-length is ~ 7 kpc, which is extremely large (2.8 kpc median in local galaxies, Gadotti 2009). Our analysis also shows that there are no signs of recent star formation along the bar. We find no signs of a box-peanut structure near the central regions, which is also another signature of an evolved bar. Taken altogether, the evidence points to a bar formed at least a few billion years ago and the stars in the bar seem to be a fossil record of the stellar population in the galaxy before the interaction with its companion. Then, we modeled the SFH of each 10 kpc region as constant Star Formation Rate (SFR) for the past 100 Myr superposed on an exponentially decaying, longstanding SFR. We find a single exponential SFH to account for all the recent SFR of the galaxy, with no need for an additional SFR due to the interaction. Av is low all across the galaxy 0.25), but increases near 0.7) the point of collision. The SFH of the arms are asymmetric. The northeastern arm having older ages 5 Gyr) and SFH closer to constant, while the southwestern one has much younger age 1.5 Gyr) and SFR closer to a single burst. The derived total stellar mass of each region correlates linearly with the Spitzer 4.5 ?m fluxes and non-linearly with the derived bolometric luminosity.

  19. The lenticular NGC 3115 - A standard for galaxy photometry

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Held, E. V.; Nieto, J.-L.

    NGC 3115, a lenticular galaxy that is seen edge-on, is an ideal candidate for surface photometry in virtue of its proximity and absence of close prominent companions. An independent two-dimensional study of NGC 3115 has been made using the high resolution CFH telescope, as well as the ESO and UK Schmidt telescopes (for the outer regions). Light profiles along both main axes were produced for each intensity frame; the results obtained are presented in graphical form.

  20. The effect of supernova rate on the magnetic field evolution in barred galaxies

    NASA Astrophysics Data System (ADS)

    Kulpa-Dybeł, K.; Nowak, N.; Otmianowska-Mazur, K.; Hanasz, M.; Siejkowski, H.; Kulesza-Żydzik, B.

    2015-03-01

    Context. For the first time, our magnetohydrodynamical numerical calculations provide results for a three-dimensional model of barred galaxies involving a cosmic-ray driven dynamo process that depends on star formation rates. Furthermore, we argue that the cosmic-ray driven dynamo can account for a number of magnetic features in barred galaxies, such as magnetic arms observed along the gaseous arms, magnetic arms in the inter-arm regions, polarized emission that is at the strongest in the central part of the galaxy, where the bar is situated, polarized emission that forms ridges coinciding with the dust lanes along the leading edges of the bar, as well as their very strong total radio intensity. Aims: Our numerical model probes what kind of physical processes could be responsible for the magnetic field topology observed in barred galaxies (modes, etc.). We compare our modelled results directly with observations, constructing models of high-frequency (Faraday rotation-free) polarized radio emission maps out of the simulated magnetic field and cosmic ray pattern in our modeled galaxy. We also take the effects of projection into account as well as the limited resolution. Methods: We applied global 3D numerical calculations of a cosmic-ray driven dynamo in barred galaxies with different physical input parameters such as the supernova (SN) rate. Results: Our simulation results lead to the modelled magnetic field structure similar to the one observed on the radio maps of barred galaxies. Moreover, they cast new light on a number of properties in barred and spiral galaxies, such as fast exponential growth of the total magnetic energy to the present values. The quadrupole modes of magnetic field are often identified in barred galaxies, but the dipole modes (e.g., in NGC 4631) are found very seldom. In our simulations the quadrupole configuration dominates and the dipole configuration only appears once in the case of model S100, apparently as a consequence of the choice of the random number seed. Synthetic radio maps of our models display X-type structure similar to what is observed in real galaxies. Conclusions: We conclude that a cosmic-ray driven dynamo process in barred galaxies can amplify magnetic fields efficiently. The fastest rate of magnetic field increase is 195 yr for a SN frequency of 1/50 yr-1.The obtained strength of magnetic field corresponds to the observational values (a few in spiral arms). The polarization and rotation measure maps also agree with observations. We found the effect of shifting magnetic arms in 4 models (out of the sample of 5).

  1. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    SciTech Connect

    Monje, R. R.; Lis, D. C.; Phillips, T. G.; Lord, S.; Falgarone, E.; Güsten, R.

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  2. LENTICULAR GALAXIES AT THE OUTSKIRTS OF THE LEO II GROUP: NGC 3599 AND NGC 3626

    SciTech Connect

    Sil'chenko, O. K.; Shulga, A. P.; Moiseev, A. V. E-mail: alina.shulga@gmail.co

    2010-11-15

    We have studied unbarred S0 galaxies, NGC 3599 and NGC 3626, the members of the X-ray bright group Leo II, by means of three-dimensional spectroscopy, long-slit spectroscopy, and imaging, with the aim of identifying the epoch and mechanisms of their transformation from spirals. Both galaxies have appeared to bear complex features obviously resulting from minor merging: decoupled gas kinematics, nuclear star-forming rings, and multi-tiered oval large-scale stellar disks. The weak emission line nucleus of NGC 3599 bears all signs of Seyfert activity, according to the line-ratio diagnostics of the gas excitation mechanism. We conclude that the transformation of these lenticular galaxies took place about 1-2 Gyr ago, through gravitational mechanisms unrelated to the hot intragroup medium of Leo II.

  3. Near-infrared mapping of spiral barred galaxies

    NASA Technical Reports Server (NTRS)

    Gallais, P.; Rouan, D.; Lacombe, F.

    1990-01-01

    In external galaxies, near-infrared emission originates from stellar populations, hot dust, free-free emission from H+ regions, gaseous emission, non-thermal nucleus if any. Because of the low extinction compared to the visible, infrared wavelengths are useful to probe regions obscured by dust such as central parts where starburst phenomena can occur because of the large quantity of matter. The results presented were obtained with a 32 x 32 InSb charge injection device (CID) array cooled at 4K, at the f/36 cassegrain focus of the 3m60 Canada-France-Hawaii telescope with a spatial resolution of 0.5 inches per pixel. The objects presented are spiral barred galaxies mapped at J(1.25 microns), H(1.65 microns) and K(2.2 microns). The non-axisymetric potential due to the presence of a bar induces dynamical processes leading to the confinement of matter and peculiar morphologies. Infrared imaging is used to study the link between various components. Correlations with other wavelengths ranges and 2-colors diagrams ((J-H), (H-K)) lead to the identification of star forming regions, nucleus. Maps show structures connected to the central core. The question is, are they flowing away or toward the nucleus. Observations of M83 lead to several conclusions. The star forming region, detected in the visible and the infrared cannot be very compact and must extend to the edge of the matter concentration. The general shape of the near-infrared emission and the location of radio and 10 micron peaks suggest the confinement of matter between the inner Linblad resonances localized from CO measurements about 100 and 400 pc. The distribution of color indices in the arc from southern part to the star forming region suggests an increasing amount of gas and a time evolution eventually triggered by supernova explosions. Close to the direction of the bar, a bridge-like structure connects the arc to the nucleus with peculiar color indices. Perhaps, this structure can be linked to a height velocity component seen in UV and we can attribute it to a jet and/or a matter flow along the bar toward the nucleus, fuelling it. NGC 1068 is the nearest Seyfert 2 galaxy. It has been a subject of many studies at all wavelengths. This object was mapped at J, H, K, L and M, and in polaro-imagery. Results are given.

  4. THE STAR CLUSTER POPULATION OF THE COLLISIONAL RING GALAXY NGC 922

    SciTech Connect

    Pellerin, Anne; Meurer, Gerhardt R.; Bekki, Kenji; Elmegreen, Debra M.; Wong, O. Ivy; Knezek, Patricia M. E-mail: Gerhardt.Meurer@icrar.org E-mail: elmegreen@vassar.edu E-mail: knezek@noao.edu

    2010-04-15

    We present a detailed study of the star cluster population detected in the galaxy NGC 922, one of the closest collisional ring galaxies known to date, using Hubble Space Telescope/Wide Field Planetary Camera 2 UBVI photometry, population synthesis models, and N-body/smoothed particle hydrodynamics simulations. We find that 69% of the clusters are younger than 7 Myr, and that most of them are located in the ring or along the bar, consistent with the strong H{alpha} emission. The cluster luminosity function slope of 2.1-2.3 for NGC 922 is in agreement with those of young clusters in nearby galaxies. Models of the cluster age distribution match the observations best when cluster disruption is considered. We also find clusters with ages (>50 Myr) and masses (>10{sup 5} M {sub sun}) that are excellent progenitors for faint fuzzy clusters. The images also show a tidal plume pointing toward the companion. Its stellar age from our analysis is consistent with pre-existing stars that were stripped off during the passage of the companion. Finally, a comparison of the star-forming complexes observed in NGC 922 with those of a distant ring galaxy from the GOODS field indicates very similar masses and sizes, suggesting similar origins.

  5. Is There Evidence for Flat Cores in the Halos of Dwarf Galaxies? The Case of NGC 3109 and NGC 6822

    NASA Astrophysics Data System (ADS)

    Valenzuela, Octavio; Rhee, George; Klypin, Anatoly; Governato, Fabio; Stinson, Gregory; Quinn, Thomas; Wadsley, James

    2007-03-01

    Two well-studied dwarf galaxies, NGC 3109 and NGC 6822, present some of the strongest observational support for a flat core at the center of galactic dark matter (DM) halos. We use detailed, cosmologically motivated numerical models to investigate the systematic effects and the accuracy of recovering parameters of the galaxies. Some of our models match the observed structure of the two galaxies remarkably well. Our analysis shows that the rotation curves of these two galaxies are instead quite compatible with their DM halos having steep cuspy density profiles. The rotation curves in our models are measured using standard observational techniques, projecting velocities along the line of sight of an imaginary observer and performing a tilted-ring analysis. The models reproduce the rotation curves of both galaxies and the disk surface brightness profiles, as well as the profile of isophotal ellipticity and position angle. The models are centrally dominated by baryons; however, the DM component is globally dominant. The simulated disk mass is marginally consistent with a stellar mass-to-light ratio, in agreement with the observed colors and the detected gaseous mass. We show that noncircular motions, combined with gas pressure support and projection effects, result in a large underestimation of the circular velocity in the central ~1 kpc region, creating the illusion of a constant-density core. Although the systematic effects mentioned above are stronger in barred systems, they are also present in axisymmetric disks. Our results strongly suggest that there is no contradiction between the observed rotation curves in dwarf galaxies and the cuspy central DM density profiles predicted by cold dark matter models.

  6. Corrugated velocity patterns in the spiral galaxies NGC 278, NGC 1058, NGC 2500 & UGC 3574

    NASA Astrophysics Data System (ADS)

    Sánchez Gil, M. C.; Alfaro, E. J.; Pérez, E.

    2013-05-01

    In this work we address the study of the detection in Ha of a radial corrugation in the vertical velocity field in a sample of four nearly face-on, spiral galaxies. The geometry of the problem is a main criterion in the selection of the sample as well as of the azimuthal angle of the slits. These spatial corrugations must be equally associated with wavy vertical motions in the galactic plane with a strong large-scale consistency. Evidence of these kinematic waves were first detected in the analysis of the rotation curves of spiral galaxies (e.g. te{1963ApJ...137..363D,1965BOTT....4....8P}), but it was not until 2001 that te{2001ApJ...550..253A} analyzed in more detail the velocity corrugations in NGC 5427 and a possible physical mechanism for their origin. The aim of this study is to analyze the corrugated velocity pattern in terms of the star formation processes. We describe the geometry of the problem and establish its fundamental relationships.

  7. Polar ring spiral galaxy NGC 660

    NASA Astrophysics Data System (ADS)

    van Driel, W.; Combes, F.; Casoli, F.; Gerin, M.; Nakai, N.; Miyaji, T.; Hamabe, M.; Sofue, Y.; Ichikawa, T.; Yoshida, S.; Kobayashi, Y.; Geng, F.; Minezaki, T.; Arimoto, N.; Kodama, T.; Goudfrooij, P.; Mulder, P. S.; Wakamatsu, K.; Yanagisawa, K.

    1995-03-01

    NGC 660 is a unique, nearby, peculiar polar ring spiral LINER galaxy with two distinct morphological and kinematic components: a spiral disk, seen almost edge on (i approximately 70 deg),with a major axis position angle of 45deg and a diameter of approximately 11 kpc (D = 13 x 60 arcsec and in the CO(1-0) and CO(2-1) lines with a 12-22 arcsec beam. B,V,I,J,H,K'-band images, and a long-slit H-alpha spectrum along the disk major axis were obtained as well. It has been morphologically classified as SBa, but our data show it has the global characteristics of a later-type (Sc?), gas-rich disk. The disk and the polar ring both have an exponential luminosity profile, with scale lengths of 1.3 and 3.9 kpc, respectively. The polar ring is blue (V - I approximately 1.0), indicating a stellar population age of a few billion years, according to our stellar population synthesis model and the nucleus is red (V-I approximately 1.8). H-alpha images show H II regions throughout the polar ring. The near-infrared images show a boxy/X shape of the bulge and 1.4 kpc long linear features along the disk major axis on both sides of the bulge. The disk was detected in radio continuum at 21 cm. It has a compact 300 mJy nuclear source and an extended (7.5 kpc diameter) component of 80 mJy. The central source has a very high radio power for a spiral galaxy, while the disk has a normal radio power. The radio spectral index is -0.57, indicating an important contribution from thermal radiation. The H I line observations show absorption against the nuclear source, and both H I and CO line data show emission from the disk and the polar ring. The H I and CO data indicate a rather flat disk rotation curve, with a rotation velocity of approximately 150 km/s. From our H-alpha spectrum, taken close to the major axis, a steeper inner gradient and a consideraably lower rotation velocity (approximately 110 kms/s) is derived in the outer parts than from that of Benvenuti et al. (l976), if one assumes the disk to be flat and in circular rotation.

  8. Dynamics of the interstellar matter in galaxies : isolated barred spiral galaxies : cloud formation processes

    NASA Astrophysics Data System (ADS)

    Helmuth, Kristen

    1998-12-01

    The dynamical components of six isolated barred spiral (SB) galaxies are investigated. No evidence is found supporting the hypothesis of a low amount of dark matter being characteristic of SB galaxies. The presence of companion galaxies is found to correlate with an increased statistical spread in the neutral hydrogen (HI) extent. It is concluded that the selection of galaxies with large HI extent may introduce a bias towards tidally interacting systems. The circumnuclear region of the SB galaxy NGC 1365 is studied with the Hubble Space Telescope (HST). Numerous bright "super star clusters" (SSCs) are detected, surrounding the active nucleus. The bright compact radio source NGC 1365:A is found to coincide spatially with one of the SSCs. We conclude that the source is a "radio supernova". In the [OIII] l 5007 line, the HST resolves individual clouds within the conical outflow from the nucleus, some of which gather in larger agglomerations. An in-depth study of the dynamics of the SB galaxy NGC 1300 is presented. Multi-wavelength data yield an estimate of the velocity field and gravitational potential. Subsequent hydrodynamical simulations are able to reproduce the morphology and kinematics in the bar region using a pure bar perturbing potential. To reproduce the spiral structure a weak spiral component has to be added, indicative of stellar spiral response to the bar and/or self-gravitating gas in the arms. Two separate models, differing mainly with respect to pattern speed and associated resonance structure, are found to reproduce the observations. We study numerically the linear polarization and extinction of light from background stars passing through molecular clouds, illuminating the intricacies of the derivation of the magnetic-field-line pattern in a cloud from the observed polarization pattern: Due to a higher gas-grain collision frequency within the cloud, the polarization caused by the cloud may well be dominated by background/foreground polarization. Furthermore, variations in field-orientation along the line-of-sight may cause notable differences between the observed polarization vectors and the true magnetic-field-line pattern. Small-scale, helical, interstellar filaments are discussed on the basis of optical observations of an "elephant trunk" structure in the Rosette nebula. The observed sinusoidal filaments are suggested to be helices lined up by magnetic fields. We propose that the Rosette elephant trunks form an interconnected system of rope-like structures which are relics from filamentary skeletons of magnetic fields in the primordial cloud. Stochastic mass fractionation of a molecular cloud is simulated numerically. It is found that geometry alone may constrain the resulting mass spectrum of molecular cloud clumps. We demonstrate that further fragmentation of the cloud clumps, under the assumption of a lower limit of the self-similar regime, produces a mass spectrum that has qualitative and quantitative similarities with the empirically determined stellar initial mass function.

  9. Revealing galactic scale bars with the help of Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We use visual classifications of the brightest 250,000 galaxies in the Sloan Digital Sky Survey Main Galaxy Sample provided by citizen scientists via the Galaxy Zoo project (www.galaxyzoo.org, Lintott et al. 2008) to identify a sample of local disc galaxies with reliable bar identifications. These data, combined with information on the atomic gas content from the ALFALFA survey (Haynes et al. 2011) show that disc galaxies with higher gas content have lower bar fractions. We use a gas deficiency parameter to show that disc galaxies with more/less gas than expected for their stellar mass are less/more likely to host bars. Furthermore, we see that at a fixed gas content there is no residual correlation between bar fraction and stellar mass. We argue that this suggests previously observed correlations between galaxy colour/stellar mass and (strong) bar fraction (e.g. from the sample in Masters et al. 2011, and also see Nair & Abraham 2010) could be driven by the interaction between bars and the gas content of the disc, since more massive, optically redder disc galaxies are observed to have lower gas contents. Furthermore we see evidence that at a fixed gas content the global colours of barred galaxies are redder than those of unbarred galaxies. We suggest that this could be due to the exchange of angular momentum beyond co-rotation which might stop a replenishment of gas from external sources, and act as a source of feedback to temporarily halt or reduce the star formation in the outer parts of barred discs. These results (published as Masters et al. 2012) combined with those of Skibba et al. (2012), who use the same sample to show a clear (but subtle and complicated) environmental dependence of the bar fraction in disc galaxies, suggest that bars are intimately linked to the evolution of disc galaxies.

  10. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536

    NASA Technical Reports Server (NTRS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2012-01-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536

  11. Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 and NGC 4536

    NASA Astrophysics Data System (ADS)

    McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael

    2011-02-01

    The vast majority of optically identified active galactic nuclei (AGNs) in the local universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the buildup of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal, remarkably, the presence of high-ionization [Ne V] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L 2-10 keV ~ 1039-1040 erg s-1 range, consistent with low-luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the mid-infrared [Ne V] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range 105-107 M sun for NGC 3367 and 104-106 M sun for NGC 4536.

  12. Observational effects of interaction in the Seyfert galaxy NGC 7469

    NASA Technical Reports Server (NTRS)

    Pronik, I. I.; Metik, L.

    1990-01-01

    Some pecularities of the circummucleus of the Seyfert galaxy NGC 7469 were revealed, plausibly caused by interaction with the satellite IC 5283 and a starlike detail, situated on the edge of the west spiral branch 14 seconds from the nucleus. Shock excited H II regions were noted in the part of NGC 7469 turned toward the satellite IC 5283. The galaxy's central radio structure (lambda approx. 6 cm) stretches in the direction toward the satellite IC 5283 and the starlike detail. The spectum and color index of the starlike detail suggest that it is a cluster of early type stars (M sub V = -19 sup m) and dust clouds (A sub V = 3 sup m), in NGC 7469.

  13. The infrared emission from the elliptical galaxy NGC 1052

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Tokunaga, A. T.; Wynn-Williams, C. G.

    1982-01-01

    Multi-aperture IR photometry of the elliptical galaxy NGC 1052 shows that its IR excess is confined to a region smaller than 2 arc sec (300 pc) in diameter coincident with the visible nucleus. It is suggested that the emission in the 5-20 micron range arises from dust heated by the nonthermal source seen at other wavelengths.

  14. Dwarf galaxies in the halo of NGC 891

    SciTech Connect

    Schulz, Earl

    2014-07-20

    We report the results of a survey of the region within 40 arcmin of NGC 891, a nearby nearly perfectly edge-on spiral galaxy. Candidate 'non-stars' with diameters greater than 15 arcsec were selected from the GSC 2.3.2 catalog and cross-comparison of observations in several bands using archived GALEX, DSS2, WISE, and Two Micron All Sky Survey images identified contaminating stars, artifacts, and background galaxies, all of which were excluded. The resulting 71 galaxies, many of which were previously uncataloged, comprise a size-limited survey of the region. A majority of the galaxies are in the background of NGC 891 and are for the most part members of the A347 cluster at a distance of about 75 Mpc. The new finds approximately double the known membership of A347, previously thought to be relatively sparse. We identify a total of seven dwarf galaxies, most of which are new discoveries. The newly discovered dwarf galaxies are dim and gas-poor and may be associated with the previously observed arcs of red giant branch halo stars in the halo and the prominent H I filament and the lopsided features in the disk of NGC 891. Several of the dwarfs show signs of disruption, consistent with being remnants of an ancient collision.

  15. THE ARECIBO GALAXY ENVIRONMENT SURVEY. III. OBSERVATIONS TOWARD THE GALAXY PAIR NGC 7332/7339 AND THE ISOLATED GALAXY NGC 1156

    SciTech Connect

    Minchin, R. F.; Momjian, E.; Auld, R.; Davies, J. I.; Smith, M. W. L.; Taylor, R.; Valls-Gabaud, D.; Van Driel, W.; Karachentsev, I. D.; Henning, P. A.; O'Neil, K. L.

    2010-10-15

    Two 5 deg{sup 2} regions around the NGC 7332/9 galaxy pair and the isolated galaxy NGC 1156 have been mapped in the 21 cm line of neutral hydrogen (H I) with the Arecibo L-band Feed Array out to a redshift of {approx}0.065 ({approx}20,000 km s{sup -1}) as part of the Arecibo Galaxy Environment Survey. One of the aims of this survey is to investigate the environment of galaxies by identifying dwarf companions and interaction remnants; both of these areas provide the potential for such discoveries. The neutral hydrogen observations were complemented by optical and radio follow-up observations with a number of telescopes. A total of 87 galaxies were found, of which 39 (45%) were previously cataloged and 15 (17%) have prior redshifts. Two dwarf galaxies have been discovered in the NGC 7332 group and a single dwarf galaxy in the vicinity of NGC 1156. A parallel optical search of the area revealed one further possible dwarf galaxy near NGC 7332.

  16. Barred S0 galaxies in the Coma cluster

    NASA Astrophysics Data System (ADS)

    Lansbury, George B.; Lucey, John R.; Smith, Russell J.

    2014-04-01

    This study uses r-band images from the Eighth Data Release of the Sloan Digital Sky Survey (SDSS DR8) to study bars in lenticular (S0) galaxies in one of the nearest rich cluster environments, the Coma cluster. We develop techniques for bar detection and assess their success when applied to SDSS image data. To detect and characterize bars, we perform 2D bulge+disc+bar light decompositions of galaxy images with GALFIT. Using a sample of artificial galaxy images, we determine the faintest magnitude at which bars can be successfully measured at the depth and resolution of SDSS. We perform detailed decompositions of 83 S0 galaxies in Coma, 64 from a central sample, and 19 from a cluster outskirt sample. For the central sample, the S0 bar fraction is 72^{+5}_{-6} per cent. This value is significantly higher than that obtained using an ellipse-fitting method for bar detection, 48^{+6}_{-6} per cent. At a fixed luminosity, barred S0s are redder in g - r colour than unbarred S0s by 0.02 mag. The frequency and strength of bars increase towards fainter luminosities. Neither central metallicity nor stellar age distributions differ significantly between barred and unbarred S0s. There is an increase in the bar fraction towards the cluster core, but this is at a low significance level. Bars have at most a weak correlation with cluster-centric radius.

  17. Is NGC 3108 transforming itself from an early- to late-type galaxy - an astronomical hermaphrodite?

    NASA Astrophysics Data System (ADS)

    Hau, George K. T.; Bower, Richard G.; Kilborn, Virginia; Forbes, Duncan A.; Balogh, Michael L.; Oosterloo, Tom

    2008-04-01

    A common feature of hierarchical galaxy formation models is the process of `inverse' morphological transformation: a bulge dominated galaxy accretes a gas disc, dramatically reducing the system's bulge-to-disc mass ratio. During their formation, present-day galaxies may execute many such cycles across the Hubble diagram. A good candidate for such a `hermaphrodite' galaxy is NGC 3108: a dust-lane early-type galaxy which has a large amount of HI gas distributed in a large-scale disc. We present narrow-band Hα and R-band imaging, and compare the results with the HI distribution from the literature. The emission is in two components: a nuclear bar and an extended disc component which coincides with the HI distribution. This suggests that a stellar disc is currently being formed out of the HI gas. The spatial distributions of the Hα and HI emission and the HII regions are consistent with a barred spiral structure, extending some 20 kpc in radius. We measure an extinction-corrected star formation rate (SFR) of 0.42Msolaryr-1. The luminosity function of the HII regions is similar to other spiral galaxies, with a power-law index of -2.1, suggesting that the star formation mechanism is similar to other spiral galaxies. We measured the current disc mass and find that it is too massive to have been formed by the current SFR over the last few Gyr. It is likely that the SFR in NGC 3108 was higher in the past. With the current SFR, the disc in NGC 3108 will grow to be ~6.2 × 109Msolar in stellar mass within the next 5.5 Gyr. While this is substantial, the disc will be insignificant compared with the large bulge mass: the final stellar mass disc-to-bulge ratio will be ~0.02. NGC 3108 will fail to transform into anything resembling a spiral without a boost in the SFR and additional supply of gas.

  18. Current star formation in S0 galaxies: NGC 4710

    NASA Technical Reports Server (NTRS)

    Wrobel, J. M.

    1990-01-01

    Elliptical (E) and lenticular (S0) galaxies lack the substantial interstellar medium (ISM) found in the star-forming spiral galaxies. However, significant numbers of E and S0 galaxies are known to contain detectable amounts of interstellar matter (e.g., Jura 1988). Thus, it is worth investigating whether these galaxies are currently able to form stars from their ISM, or whether they should be consigned to the dustbin of inert objects (Thronson and Bally 1987). The results strongly imply that current star formation is responsible for NGC 4710's far infrared and radio continuum properties. If this is indeed the case, then one expects this star formation to be fueled by molecular gas, which is presumably dominated by H2 and can be traced by the CO-12 J=1 to 0 line. Both Kenney and Young (1988) and Sage and Wrobel (1989) have detected such an emission line from NGC 4710, and infer the presence of more than 10(exp 8) solar mass of H2. The origin of the molecular gas in NGC 4710 remains a mystery. The galaxy is very deficient in HI (Kenney and Young, in preparation), suggesting that it originally was a spiral galaxy from which the outer, mainly atomic, gas was stripped by the ram pressure of the Virgo Cluster's intracluster medium, leaving only a central interstellar medium (ISM) rich in molecular gas. Alternatively, the CO may have originated via stellar mass loss with subsequent cooling, cooling flows, or capture from a gas-rich companion. Information on the morphology and kinematics of the CO can be compared with that of the galaxy's other gases and stars to distinguish among these various possible origins for the molecular gas. Major axis CO mapping with single dishes indicate an unresolved source. Thus, a millimeter array is currently being used to image NGC 4710 in CO to provide the needed morphological and kinematical data.

  19. The optical morphology of the kinematically peculiar galaxy NGC 4826

    NASA Astrophysics Data System (ADS)

    Walterbos, R. A. M.; Braun, R.; Kennicutt, R. C., Jr.

    1994-01-01

    We present charge coupled device (CCD) BVI photometry of the galaxy NGC 4826, the Evil- or Black-Eye galaxy, which was recently found to have two counter-rotating gas disks. We study the extinction in the inner gas disk, which gives NGC 4826 its nickname, and find that this disk can be coplanar or close to coplanar with the stellar disk and still cause the strong absorption that is seen on one side of the galaxy. We try to constrain the orientation of the outer gas disk by looking for a small overall asymmetry in the light distribution which would be present if there is dust in this disk, and if it is significantly tilted with respect to the main body of the galaxy. The test shows that the light distribution does not preclude the outer gas disk from being coplanar with the stellar disk as well. NGC 4826 has a small bulge, with a bulge to total light ratio of 0.17 in B. We confirm that this galaxy is indeed a spiral, with a perfect exponential disk down to 27 mag/sq arcsec in B. The close to coplanar orientation of the gas disks is one aspect which is in good agreement with what is expected on the basis of a merger model for the counter-rotating gas. The rotation direction of the inner gas disk with respect to the stars, however, is not. In addition, the existence of a well defined exponential disk probably implies that if a merger did occur it must have been between a gas-rich dwarf and a spiral, not between two equal mass spirals. The stellar spiral arms of NGC 4826 are trailing over part of the disk and leading in the outer disk. Recent numerical calculations by Byrd et al. for NGC 4622 suggest that long lasting leading arms could be formed by a close retrograde passage of a small companion. In this scenario, the outer counter-rotating gas disk in NGC 4826 might be the tidally stripped gas from the dwarf. However, in NGC 4826 the outer arms are leading, while it appears that in NGC 4622 the inner arms are leading. A realistic N-body/hydro simulation of a dwarf-spiral encounter is clearly needed. It may also be possible that the counter-rotating outer gas disk is due to gradual infall of gas from the halo, rather than from a discrete merger event.

  20. Central regions of the early-type galaxies in the NGC 3169 group

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.; Afanasiev, V. L.

    2006-08-01

    We have investigated the central regions of the galaxies in the NGC 3169/NGC 3166/NGC 3156 group with the multipupil fiber spectrograph of the 6-m telescope; the first (central) galaxy in the group is a spiral (Sa) one and the other two galaxies are lenticular ones. The group is known to have an extended HI cloud with a size of more than 100 kpc that is associated in its position, orientation, and rotation with the central galaxy NGC 3169. The mean age of the stellar populations in the centers of all three galaxies has been found to be approximately the same, ˜1 Gyr. Since the galaxies are early-type ones and since NGC 3166 and NGC 3156 show no global star formation, we are dealing here with a synchronous star formation burst in the centers of all three galaxies.

  1. ORBITAL SUPPORT OF FAST AND SLOW INNER BARS IN DOUBLE-BARRED GALAXIES

    SciTech Connect

    Maciejewski, Witold; Small, Emma E.

    2010-08-10

    We analyze how the orbital support of the inner bar in a double-barred galaxy (nested bars) depends on the angular velocity (i.e., pattern speed) of this bar. We study orbits in seven models of double bars using the method of invariant loops. The range of pattern speed is covered exhaustively. We find that not all pattern speeds are allowed when the inner bar rotates in the same direction as the outer bar. Below a certain minimum pattern speed orbital support for the inner bar abruptly disappears, while at high values of this speed the orbits indicate an increasingly round bar that looks more like a twist in the nuclear isophotes than a dynamically independent component. For values between these two extremes, orbits supporting the inner bar extend further out as the bar's pattern speed decreases, their corresponding loops become more eccentric, pulsate more, and their rotation becomes increasingly non-uniform, as they speed up and slow down in their motion. Lower pattern speeds also lead to a less coherent bar, as the pulsation and acceleration increasingly varies among the loops supporting the inner bar. The morphologies of fast and slow inner bars expected from the orbital structure studied here have been recently recovered observationally by decomposition of double-barred galaxies. Our findings allow us to link the observed morphology to the dynamics of the inner bar.

  2. How can double-barred galaxies be long-lived?

    NASA Astrophysics Data System (ADS)

    Wozniak, Herv

    2015-03-01

    Context. Double-barred galaxies account for almost one third of all barred galaxies, suggesting that secondary stellar bars, which are embedded in large-scale primary bars, are long-lived structures. However, up to now it has been hard to self-consistently simulate a disc galaxy that sustains two nested stellar bars for longer than a few rotation periods. Aims: The dynamical and physical requirements for long-lived triaxiality in the central region of galaxies still need to be clarified. Methods: N-body/hydrodynamical simulations including star formation recipes have been performed. Their properties (bar lengths, pattern speeds, age of stellar population, and gas content) have been compared with the most recent observational data in order to prove that they are representative of double-barred galaxies, even SB0. Overlaps in dynamical resonances and bar modes have been looked for using Fourier spectrograms. Results: Double-barred galaxies have been successfully simulated with lifetimes as long as 7 Gyr. The stellar and gaseous distributions in the central regions are time dependent and display many observed morphological features (circumnuclear rings, pseudo-bulges, triaxial bulges, ovals, etc.) typical of barred galaxies, even early-type. The stellar population of the secondary bar is younger on average than for the primary large-scale bar. An important feature of these simulations is the absence of any resonance overlap for several Gyr. In particular, there is no overlap between the primary bar inner Lindblad resonance and the secondary bar corotation. Therefore, mode coupling cannot sustain the secondary bar mode. Star formation is identified here as possibly being responsible for bringing energy to the nuclear mode. Star formation is also responsible for limiting the amount of gas in the central region which prevents the orbits sustaining the secondary bar from being destroyed. Therefore, the secondary bar can dissolve but reappear after ?1 Gyr as the associated wave is persistent as long as central star formation is active. When star formation is switched off the dynamical perturbation associated with the secondary bar needs several Gyr to fully vanish, although the central morphological signature is almost undetectable after 2 Gyr. Conclusions: Double-bars can be long-lived in numerical simulations with a gaseous component, even in the absence of overlap of resonances or mode coupling, provided that star formation remains active, even moderately, in the central region where the nuclear bar lies.

  3. Galactic rings and secular evolution in barred galaxies

    NASA Astrophysics Data System (ADS)

    Knapen, Johan H.

    2015-03-01

    Rings are common in galaxies. Several kinds of rings are known: collisional, polar, and resonance rings, of which the latter is by far most common. Resonance rings are prime tracers of the underlying dynamical structure of disk galaxies, in particular of orbital resonances and of manifolds. Rings are also indicators of angular momentum transport, and this is a key factor in secular evolution (see the various reviews in Falcón-Barroso & Knapen 2012). Resonance rings come in three flavours, primarily defined by their size, namely nuclear, inner, and outer rings. From studies like those of Buta (1995), Knapen (2005) and Comerón et al. (2010, 2013) we know that the radii of nuclear rings range from a few tens of parsec to some 3.5 kpc, while inner rings and outer rings have typical radii of 1.2 and 2.5-3 times the length of the bar. Many host galaxies of rings are barred, but so are most galaxies in general. Some 20% of all rings occur in non-barred galaxies, which implies that rings do not, or hardly, occur preferentially in barred galaxies (Knapen 2005, Comerón et al. 2010, 2013). In most non-barred ringed galaxies an oval, a past interaction, or even a prominent spiral pattern lies at the dynamical origin of the ring, but this needs additional scrutiny. From an inventory of all known nuclear rings, Comerón et al. (2010) reach the following conclusions. Star-forming nuclear rings occur in 20 +/- 2% of disk galaxies with -3 < T < 7; 18/96 occur in disk galaxies without a bar (19%); they are found in S0 to Sd galaxies, peaking in types Sab Sb; when nuclear rings occur in barred galaxies, the ring radius is limited to one quarter of the bar radius; and stronger bars host smaller rings (cf. Knapen 2005). We are now using the Spitzer Survey of Spiral Structure in Galaxies (S4G; Sheth et al. 2010) to expand our survey to inner and outer rings (Comerón et al. 2013). We aim to study the relations between ring and host properties - as we did before for nuclear rings. We will use the S4G sample size and image depth to reach further insight into the secular evolution of galaxies by measuring structural properties of rings, as well as those of components like bars and disks. We will then be able to tackle outstanding questions such as the origin of rings in non-barred galaxies, and how exactly ring properties are determined by the bar.

  4. Star formation in the merging Galaxy NGC3256

    NASA Technical Reports Server (NTRS)

    Graham, James R.; Wright, G. S.; Joseph, R. D.; Frogel, J. A.; Phillips, M. M.; Meikle, W. P. S.

    1987-01-01

    The central 5 kpc of the ultra-luminous merging galaxy NGC 3256 was mapped at J, H, K, L, and 10 micrometer, and a 2 micrometer spectra of the nuclear region was obtained. This data was used to identify and characterize the super starburst which has apparently been triggered and fuelled by the merger of two gas rich galaxies. It is also shown that the old stellar population has relaxed into a single spheroidal system, and that a supernova driven wind might eventually drive any remaining gas from the system to leave a relic which will be indistinguishable from an elliptical galaxy.

  5. The Distribution of Bar Strengths in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Buta, R.; Laurikainen, E.; Salo, H.; Knapen, J. H.; Block, D. L.

    2007-05-01

    The distribution of bar strengths in disk galaxies is of fundamental importance in studies of galaxy evolution for two reasons. First, bars are the most important morphological features of galaxies that cross the spiral-S0 divide. They are a potentially fruitful way of comparing these two classes of disk galaxies and perhaps for better understanding the relation between them. Secondly, recent theoretical studies by Athanassoula show how a live halo can strongly impact the bar strength, while studies by Bournaud and Combes have shown that gas accretion can cause bar strength to be periodically variable over a Hubble time. The distribution of bar strengths should be a complex combination of halo-bar-disk angular momentum exchanges, external gas accretions, and possible effects of interactions, all over a Hubble time. The recent development of the gravitational torque method for quantifying bar strength, in conjunction with the availability of statistically well-defined image databases such as the Ohio State survey, has led to the first measures of the distribution of bar strengths in normal disk galaxies. After removal of the effects of spiral arm torques, the distribution of maximum relative bar torques in normal, massive spiral galaxies shows an approximately exponential decline with increasing bar strength. There are three issues that will be addressed in this presentation: (1) How do uncertainties in the assumed vertical scale heights, orientation parameters, and the dark matter affect this distribution? (2) Which of the above physical effects might have the greatest impact on the observed distribution? and (3) How do early-type galaxy bars compare with those seen in spirals, based on Fourier dissection studies and the same kind of bar strength analysis? This work has been supported by NSF grants AST020-5143 and AST050-7140, the Academy of Finland, the Magnus Ehrnrooth Foundation, the Leverhulme Trust, and the Anglo-American Chairman's Fund.

  6. Circumnuclear molecular gas in megamaser disk galaxies NGC 4388 and NGC 1194

    SciTech Connect

    Greene, Jenny E.; Seth, Anil; Lyubenova, Mariya; Van de Ven, Glenn; Läsker, Ronald; Walsh, Jonelle

    2014-06-20

    We explore the warm molecular and ionized gas in the centers of two megamaser disk galaxies using K-band spectroscopy. Our ultimate goal is to determine how gas is funneled onto the accretion disk, here traced by megamaser spots on sub-parsec scales. We present NIR IFU data with a resolution of ∼50 pc for two galaxies: NGC 4388 with VLT/SINFONI and NGC 1194 with Keck/OSIRIS+AO. The high spatial resolution and rich spectral diagnostics allow us to study both the stellar and gas kinematics as well as gas excitation on scales only an order of magnitude larger than the maser disk. We find a drop in the stellar velocity dispersion in the inner ∼100 pc of NGC 4388, a common signature of a dynamically cold central component seen in many active nuclei. We also see evidence for noncircular gas motions in the molecular hydrogen on similar scales, with the gas kinematics on 100 parsec scales aligned with the megamaser disk. In contrast, the high ionization lines and Brγ trace outflow along the 100 parsec-scale jet. In NGC 1194, the continuum from the accreting black hole is very strong, making it difficult to measure robust two-dimensional kinematics, but the spatial distribution and line ratios of the molecular hydrogen and Brγ have consistent properties between the two galaxies.

  7. MERGING COLD FRONTS IN THE GALAXY PAIR NGC 7619 AND NGC 7626

    SciTech Connect

    Randall, S. W.; Jones, C.; Kraft, R.; Forman, W. R.; O'Sullivan, E.

    2009-05-10

    We present results from Chandra observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly antiparallel, suggesting that these galaxies are falling toward one another in the plane of the sky. The detection of merger cold fronts in each of the two dominant member galaxies implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a preexisting {approx}1 keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the three-dimensional velocities from the cold fronts and, using the observed radial velocities of the galaxies, show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of {approx}1190 km s{sup -1}. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is most likely currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, consisting of a core with two symmetric jets, and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and possibly an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure encountered by the forward jet.

  8. The H II regions of the irregular galaxy, NGC 3239

    SciTech Connect

    Krienke, K.; Hodge, P. Washington, University, Seattle )

    1991-03-01

    The luminosities of the 88 H II regions of NGC 3239, very likely a merging galaxy system, were measured by digital analysis of a photographic plate (20 A bandwidth filter). Despite evidence for earlier starburst activity, the present H II luminosity function is very similar to that for the LMC, including a supergiant H II region of 0.76 the luminosity of 30 Dor. The measured H II regions of NGC 3239 have an H-alpha total luminosity of 1.3 x 10 to the 40th erg/s. 13 refs.

  9. Testing MOND gravity in the shell galaxy NGC 3923

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Jungwiert, B.; Jílková, L.; Ebrová, I.; Bartošková, K.; Křížek, M.

    2013-11-01

    Context. The elliptical galaxy NGC 3923 is surrounded by numerous stellar shells that are concentric arcs centered on the Galactic core. They are very likely a result of a minor merger and they consist of stars in nearly radial orbits. For a given potential, the shell radii at a given time after the merger can be calculated and compared to observations. The MOdified Newtonian Dynamics (MOND) is a theory that aims to solve the missing mass problem by modifying the laws of classical dynamics in the limit of small accelerations. Hernquist & Quinn (1987, ApJ, 312, 1) claimed that the shell distribution of NGC 3923 contradicted MOND, but Milgrom (1988, ApJ, 332, 86) found several substantial insufficiencies in their work. Aims: We test whether the observed shell distribution in NGC 3923 is consistent with MOND using the current observational knowledge of the shell number and positions and of the host galaxy surface brightness profile, which supersede the data available in the 1980s when the last (and negative) tests of MOND viability were performed on NGC 3923. Methods: Using the 3.6 μm bandpass image of NGC 3923 from the Spitzer space telescope we construct the mass profile of the galaxy. The evolution of shell radii in MOND is then computed using analytical formulae. We use 27 currently observed shells and allow for their multi-generation formation, unlike the Hernquist & Quinn one-generation model that used the 18 shells known at the time. Results: Our model reproduces the observed shell radii with a maximum deviation of ~5% for 25 out of 27 known shells while keeping a reasonable formation scenario. A multi-generation nature of the shell system, resulting from successive passages of the surviving core of the tidally disrupted dwarf galaxy, is one of key ingredients of our scenario supported by the extreme shell radial range. The 25 reproduced shells are interpreted as belonging to three generations.

  10. Constraints on the minor merging and star formation history of the Wolf-Rayet galaxy NGC 5430 through observations

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Kuno, Nario; Sorai, Kazuo; Umei, Michiko

    2015-12-01

    We used multi-wavelength analysis of the newly observed molecular gas [12CO and 13CO(1-0)] with interferometer CARMA and archival star formation tracers to constrain the interaction, merging, and star formation history of an off-center minor merger, a three-spiral barred galaxy NGC 5430 and its satellite embedded in the bar. Morphology of the molecular gas in the bar of NGC 5430 shows minimal signs of recent interactions with our resolution. The apparent morphological remnant of the past galaxy interaction is an asymmetric spiral arm, containing more molecular gas and exhibiting higher star formation rate (SFR) surface density than the two primary arms. Rotation curve analysis suggests that NGC 5430 collided with its satellite several Gyr ago. History of star formation was constrained by using SFRs that trace different timescales (infrared, radio continuum, and Hα). The collision occurred 5-10 Myr ago, triggering a transient off-center starburst of Wolf-Rayet stars at the eastern bar end. In the past, the global SFR during the Wolf-Rayet starburst peaked at 35 M⊙ yr-1. At present, the merger-driven starburst is rapidly decaying and the current global SFR has decreased to the Galactic value. The SFR will continue to decay as suggested by the present amount of dense gas [traced by HCN(1-0)]. Nonetheless, the global SFR is still dominated by the Wolf-Rayet region rather than the circumnuclear region. Compared with other barred galaxies, the circumnuclear region exhibits a particularly low dense gas fraction, low star formation activity, and high concentration of gas. Physical properties of the molecular gas are inferred by using the large velocity gradient calculations. The initial mass ratio of NGC 5430 to its satellite is suggested to be in an intermediate ratio range of 7:1-20:1.

  11. Intrinsic shapes of elliptical galaxy: NGC 1052 using modified prior

    NASA Astrophysics Data System (ADS)

    Kumar Singh, Arun; Chakraborty, D. K.

    Determination of intrinsic shapes of the individual elliptical galaxies using photometry is an important problem because the number of galaxies with good photometry is many more than those with good kinematics. We determine the intrinsic shapes of the light distribution of elliptical galaxies by combining the profiles of photometric data from the literature with triaxial models. We use ensembles of models so that the shape estimates are largely model independent. We follow the methodology as described in Statler (1994) which is modified to suit our requirements. We find that short to long axial ratios at very small radii and at very large radii, and the absolute value of the triaxiality difference are the best constrained shape parameters. Using a flat prior, the shapes of elliptical galaxies are reported by Chakraborty et al (2008) and Singh & Chakraborty (2009). The flat prior of 20 galaxies are superimposed over EAC-Ph other to obtain the distribution. This distribution is regarded as a prior (a modified prior) and shapes of 20 galaxies are again recalculated by using such modified prior. We determine the intrinsic shapes of the elliptical galaxy NGC 1052 using modified prior should be more reliable. These results are compared with the previous estimates which are determined by using flat prior. The plot shows the intrinsic shapes of the NGC 1052 as a function of (q0,q∞) for two dimensional shapes and (q0,q∞, |Td|) for three dimensional shapes, where q0 and q∞(=q) are the short to long axial ratios at small and at large radii and |Td| is the absolute values of the triaxiality difference, defined as |Td|= |T∞ - T0|. The probability is shown in the dark gray region: darker is the region higher is the probability. We find that the galaxy NGC 1052 is flatter inside and flatter outside.

  12. NGC 5291: Implications for the Formation of Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Malphrus, Benjamin K.; Simpson, Caroline E.; Gottesman, S. T.; Hawarden, Timothy G.

    1997-01-01

    The possible formation and evolution of dwarf irregular galaxies from material derived from perturbed evolved galaxies is addressed via an H I study of a likely example, the peculiar system NGC 5291. This system, located in the western outskirts of the cluster Abell 3574, contains the lenticular galaxy NGC 5291 which is in close proximity to a disturbed companion and is flanked by an extensive complex of numerous knots extending roughly 4 min north and 4 min south of the galaxy. In an initial optical and radio study, Longmore et al. (1979, MNRAS, 188, 285) showed that these knots have the spectra of vigorous star-forming regions, and suggested that some may in fact be young dwarf irregular galaxies. High resolution 21-cm line observations taken with the VLA are presented here and reveal that the H I distribution associated with this system encompasses not only the entire N-S complex of optical knots, but also forms an incomplete ring or tail that extends approximately 3 min to the west. The H I associated with NGC 5291 itself shows a high velocity range; the Seashell is not detected. The formation mechanism for this unusual system is unclear and two models - a large, low-luminosity ram-swept disk, and a ram-swept interaction-are discussed. The H I in the system contains numerous concentrations, mostly along the N-S arc of the star-forming complexes, which generally coincide with one or more optical knots; the larger H I features contain several x 10(exp 9) solar mass of gas. Each of the knots is compared to a set of criteria designed to determine if these objects are bound against their own internal kinetic energy and are tidally stable relative to the host galaxy. An analysis of the properties of the H I concentrations surrounding the optical star-forming complexes indicates that at least the largest of these is a bound system; it also possesses a stellar component. It is suggested that this object is a genuinely young dwarf irregular galaxy that has evolved from the material associated with the system and that this entire complex contains several proto- or young dwarf irregular galaxies in various stages of development. We are therefore witnessing the early evolution of a number of genuinely young galaxies. Given the evident importance of the NGC 5291 system as a 'nursery' for young galaxies, careful modeling is required if we are to understand this remarkable galaxy.

  13. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  14. The Arecibo Galaxy Environment Survey: Observations towards the NGC 7817/7798 Galaxy Pair

    NASA Astrophysics Data System (ADS)

    Harrison, Amanda; Robert Minchin

    2016-01-01

    The Arecibo Galaxy Environment Survey (AGES) examines the environment of neutral hydrogen gas in the interstellar medium. AGES uses the 305m Arecibo Radio Telescope and the Arecibo L-Band Feed Array to create a deep field neutral hydrogen survey which we used to detect galaxies in an area five square degrees around the galaxy pair NGC 7817/7798. By finding and investigating hydrogen rich galaxies we hope to gain a better understanding of how the environment affects galaxy evolution. H1 line profiles were made for the detected H1 emission and ten galaxies which had the characteristic double-horned feature were found. NGC 7798 was not detected, but NGC 7817 and the other galaxies were cross-identified in NASA/IPAC Extragalactic Database as well as in Sloan Digital Sky Survey to obtain optical data. Out of the ten, two of the sources were uncatalogued. We analyzed the hydrogen spectra and aperture photometry to learn about the characteristics of these galaxies such as their heliocentric velocity, flux, and mass of the neutral hydrogen. Furthermore, we graphed the Tully-Fisher and the Baryonic Tully-Fisher of the ten sources and found that most followed the relation. One that is the biggest outlier is suspected be a galaxy cluster while other outliers may be caused by ram pressure stripping deforming the galaxy.

  15. MASSIVE CLUSTERS IN THE INNER REGIONS OF NGC 1365: CLUSTER FORMATION AND GAS DYNAMICS IN GALACTIC BARS

    SciTech Connect

    Elmegreen, Bruce G.; Galliano, Emmanuel; Alloin, Danielle E-mail: egallian@on.b

    2009-10-01

    Cluster formation and gas dynamics in the central regions of barred galaxies are not well understood. This paper reviews the environment of three 10{sup 7} M {sub sun} clusters near the inner Lindblad resonance (ILR) of the barred spiral NGC 1365. The morphology, mass, and flow of H I and CO gas in the spiral and barred regions are examined for evidence of the location and mechanism of cluster formation. The accretion rate is compared with the star formation rate to infer the lifetime of the starburst. The gas appears to move from inside corotation in the spiral region to looping filaments in the interbar region at a rate of approx6 M {sub sun} yr{sup -1} before impacting the bar dustlane somewhere along its length. The gas in this dustlane moves inward, growing in flux as a result of the accretion to approx40 M {sub sun} yr{sup -1} near the ILR. This inner rate exceeds the current nuclear star formation rate by a factor of 4, suggesting continued buildup of nuclear mass for another approx0.5 Gyr. The bar may be only 1-2 Gyr old. Extrapolating the bar flow back in time, we infer that the clusters formed in the bar dustlane outside the central dust ring at a position where an interbar filament currently impacts the lane. The ram pressure from this impact is comparable to the pressure in the bar dustlane, and both are comparable to the pressure in the massive clusters. Impact triggering is suggested. The isothermal assumption in numerical simulations seems inappropriate for the rarefaction parts of spiral and bar gas flows. The clusters have enough lower-mass counterparts to suggest they are part of a normal power-law mass distribution. Gas trapping in the most massive clusters could explain their [Ne II] emission, which is not evident from the lower-mass clusters nearby.

  16. A survey of satellite galaxies around NGC 4258

    SciTech Connect

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-20

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 × 10{sup 12} M {sub ☉} within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u–r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  17. A Survey of Satellite Galaxies around NGC 4258

    NASA Astrophysics Data System (ADS)

    Spencer, Meghin; Loebman, Sarah; Yoachim, Peter

    2014-06-01

    We conduct a survey of satellite galaxies around the nearby spiral NGC 4258 by combining spectroscopic observations from the Apache Point Observatory 3.5 m telescope with Sloan Digital Sky Survey (SDSS) spectra. New spectroscopy is obtained for 15 galaxies. Of the 47 observed objects, we categorize 8 of them as probable satellites, 8 as possible satellites, and 17 as unlikely to be satellites. We do not speculate on the membership of the remaining 14 galaxies due to a lack of velocity and distance information. Radially integrating our best-fit NFW profile for NGC 4258 yields a total mass of 1.8 1012 M ? within 200 kpc. We find that the angular distribution of the satellites appears to be random, and not preferentially aligned with the disk of NGC 4258. In addition, many of the probable satellite galaxies have blue u-r colors and appear to be star-forming irregulars in SDSS images; this stands in contrast to the low number of blue satellites in the Milky Way and M31 systems at comparable distances.

  18. Ultraviolet imaging of the AGN+starburst galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Neff, Susan G.; Fanelli, Michael N.; Roberts, Laura J.; O'Connell, Robert W.; Bohlin, Ralph; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1994-01-01

    Images of the Seyfert 2 galaxy NGC 1068 were obtained at two ultraviolet wavelengths by the Ultraviolet Imaging Telescope (UIT). These data represent the first detailed UV imagery of a composite (active galactic nucleus + starburst) disk galaxy. NGC 1068 cotains multiple components at UV wavelengths: the central active galactic nucleus; a population of very luminous starburst knots; a bright oval inner disk; and a fainter, more circular halo. The most luminous knot, which is located approximately 750 pc from the nucleus at PA 315 deg, is approximately 80 times the luminosity of 30 Doradus and gives NGC 1068 a 'double nucleus' appearance in the UV. Significant extended emission is observed throughout the disk, unlike other disk galaxies so far observed in the UV. The radial brightness profile in both UV bandpasses generally follows an exponential decline to approximately 5 kpc. A faint halo extending to approximately 13 kpc is likely to be a galaxian-sized reflection nebula where ambient dust scatters the intense UV continuum from the inner galaxy. UV colors show a striking asymmetric morphology, which is correlated with the observed molecular CO emission.

  19. The Arecibo Galaxy Environment Survey-Data of NGC7448

    NASA Astrophysics Data System (ADS)

    Vázquez Colón, Clarissa; Taylor, R.; Minchin, R. F.

    2013-01-01

    The Arecibo Galaxy Environment Survey (AGES) is a neutral hydrogen galaxy survey. It is searching for galaxies by 21cm emission from neutral hydrogen gas in their interstellar media. I studied the area within NGC 7448; with a 7.5 square degrees field detected with the Mock spectrometer and covering a redshift range of z ~0.03 - 0.15. A catalogue of 88 sources was obtained. I analyzed and compared the data with the SDSS for optical counterparts. The catalogue includes measured parameters such as HI mass, velocity width, and mass-to-light ratios for the sources. The results include a ring galaxy, galaxies with high redshifts, high HI masses and high mass-to-light ratios.

  20. Giant Galaxies, Dwarfs, and Debris Survey. I. Dwarf Galaxies and Tidal Features around NGC 7331

    NASA Astrophysics Data System (ADS)

    Ludwig, Johannes; Pasquali, Anna; Grebel, Eva K.; Gallagher, John S., III

    2012-12-01

    The Giant GAlaxies, Dwarfs, and Debris Survey (GGADDS) concentrates on the nearby universe to study how galaxies have interacted in groups of different morphology, density, and richness. In these groups, we select the dominant spiral galaxy and search its surroundings for dwarf galaxies and tidal interactions. This paper presents the first results from deep wide-field imaging of NGC 7331, where we detect only four low-luminosity candidate dwarf companions and a stellar stream that may be evidence of a past tidal interaction. The dwarf galaxy candidates have surface brightnesses of μ r ≈ 23-25 mag arcsec-2 with (g - r)0 colors of 0.57-0.75 mag in the Sloan Digital Sky Survey filter system, consistent with their being dwarf spheroidal (dSph) galaxies. A faint stellar stream structure on the western edge of NGC 7331 has μ g ≈ 27 mag arcsec-2 and a relatively blue color of (g - r)0 = 0.15 mag. If it is tidal debris, then this stream could have formed from a rare type of interaction between NGC 7331 and a dwarf irregular or transition-type dwarf galaxy. We compare the structure and local environments of NGC 7331 to those of other nearby giant spirals in small galaxy groups. NGC 7331 has a much lower (~2%) stellar mass in the form of early-type satellites than found for M31 and lacks the presence of nearby companions like luminous dwarf elliptical galaxies or the Magellanic Clouds. However, our detection of a few dSph candidates suggests that it is not deficient in low-luminosity satellites.

  1. GIANT GALAXIES, DWARFS, AND DEBRIS SURVEY. I. DWARF GALAXIES AND TIDAL FEATURES AROUND NGC 7331

    SciTech Connect

    Ludwig, Johannes; Pasquali, Anna; Grebel, Eva K.; Gallagher, John S. III

    2012-12-01

    The Giant GAlaxies, Dwarfs, and Debris Survey (GGADDS) concentrates on the nearby universe to study how galaxies have interacted in groups of different morphology, density, and richness. In these groups, we select the dominant spiral galaxy and search its surroundings for dwarf galaxies and tidal interactions. This paper presents the first results from deep wide-field imaging of NGC 7331, where we detect only four low-luminosity candidate dwarf companions and a stellar stream that may be evidence of a past tidal interaction. The dwarf galaxy candidates have surface brightnesses of {mu}{sub r} Almost-Equal-To 23-25 mag arcsec{sup -2} with (g - r){sub 0} colors of 0.57-0.75 mag in the Sloan Digital Sky Survey filter system, consistent with their being dwarf spheroidal (dSph) galaxies. A faint stellar stream structure on the western edge of NGC 7331 has {mu}{sub g} Almost-Equal-To 27 mag arcsec{sup -2} and a relatively blue color of (g - r){sub 0} = 0.15 mag. If it is tidal debris, then this stream could have formed from a rare type of interaction between NGC 7331 and a dwarf irregular or transition-type dwarf galaxy. We compare the structure and local environments of NGC 7331 to those of other nearby giant spirals in small galaxy groups. NGC 7331 has a much lower ({approx}2%) stellar mass in the form of early-type satellites than found for M31 and lacks the presence of nearby companions like luminous dwarf elliptical galaxies or the Magellanic Clouds. However, our detection of a few dSph candidates suggests that it is not deficient in low-luminosity satellites.

  2. XMM-NEWTON OBSERVATIONS OF LUMINOUS SOURCES IN NEARBY GALAXIES NGC 4395, NGC 4736, AND NGC 4258

    SciTech Connect

    Akyuz, A.; Avdan, H.; Kayaci, S.; Ozel, M. E.; Sonbas, E.; Balman, S.

    2013-03-15

    We present the results of a study of non-nuclear discrete sources in a sample of three nearby spiral galaxies (NGC 4395, NGC 4736, and NGC 4258) based on XMM-Newton archival data supplemented with Chandra data for spectral and timing analyses. A total of 75 X-ray sources have been detected within the D{sub 25} regions of the target galaxies. The large collecting area of XMM-Newton makes the statistics sufficient to obtain spectral fitting for 16 (about 20%) of these sources. Compiling the extensive archival exposures available, we were able to obtain the detailed spectral shapes of diverse classes of point sources. We have also studied temporal properties of these luminous sources. Eleven of them are found to show short-term (less than 80 ks) variation while eight of them show long-term variation within factors of {approx}2-5 during a time interval of {approx}2-12 years. Timing analysis provides strong evidence that most of these sources are accreting X-ray binary systems. One source that has properties different from others was suspected to be a supernova remnant, and our follow-up optical observation confirmed this. Our results indicate that sources within the three nearby galaxies are showing a variety of source populations, including several ultraluminous X-ray sources, X-ray binaries, transients together with a super soft source, and a background active galactic nucleus candidate.

  3. Noncircular outer disks in unbarred S0 galaxies: NGC 502 and NGC 5485

    NASA Astrophysics Data System (ADS)

    Sil'chenko, O. K.

    2016-03-01

    Highly noncircular outer stellar disks have been detected in two SA0 (unbarred) galaxies by comparing the spectroscopic data on the rotation of stars and the photometric data on the shape and orientation of isophotes. In NGC 502, the oval distortion of the disk is manifested in the shape of the inner and outer elliptical rings occupying wide radial zones between the bulge and the disk and at the outer disk edge; such a structure can be a consequence of the so-called "dry minor merger," multiple cannibalization of gas-free satellites. In NGC 5485, the stellar kinematics is absolutely unrelated to the orientation of isophotes in the disk region, and for this galaxy the conclusion about its global triaxial structure is unavoidable.

  4. The Dynamical State of the Telescopium Galaxy Group - Deep Chandra Observations of NGC 6868 and NGC 6861

    NASA Astrophysics Data System (ADS)

    Ward-Duong, Kimberly; Randall, S. W.; Machacek, M. E.

    2011-01-01

    We present results from deep Chandra observations of NGC 6868 and NGC 6861, the two dominant elliptical galaxies in the Telescopium galaxy group (Abell S0851). We examine the diffuse gas in and around these galaxies to establish the possible interactions occurring within the group. Surface brightness images exhibit bright edges and tails, which indicate that the galaxy group is not dynamically relaxed. Spectral analysis reveals a spiral of cool gas with an associated cold front edge in NGC 6868, indicative of gas sloshing initiated by a passing galaxy or subgroup. NGC 6861 shows bright, swept back arms and a broad tail of emission, both to the northwest, suggesting that it is being ram pressure stripped due to interactions with a diffuse intracluster medium as it moves to the southeast. We find evidence that the arms are composed of cool gas originating from the galaxy core, and propose that, as seen in other systems, they may be filaments that have been buoyantly lifted by putative radio lobes inflated by the central AGN. Our results are consistent with previous suggestions that NGC 6868 and NGC 6861 are the central dominant members of two distinct subgroups, which are currently merging to form the Telescopium galaxy group. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 0754568, by Chandra grant GO0-1009X issued under NASA contract NAS8-03060, and by the Smithsonian Institution.

  5. IUE observations of NGC 4649, an elliptical galaxy with a strong ultraviolet flux

    NASA Technical Reports Server (NTRS)

    Bertola, F.; Capaccioli, M.; Oke, J. B.

    1982-01-01

    As in the previously studied elliptical galaxies, the flux f(lambda) in NGC 4649 has a minimum at 2500 A followed by a rapid increase towards shorter wavelengths. In NGC 4649, the flux level of this rising branch is the highest so far observed and seems not to be correlated with the luminosity or activity in the galaxy. The excess shortward of 4000 A, observed in M87, another high level rising branch galaxy, is not present in NGC 4649. The UV spectrum of NGC 4649 down to 2500 A matches closely those of NGC 3379 and NGC 4472. The implications of the UV properties of elliptical galaxies on the stellar content as well as on magnitudes and colors of distant galaxies are discussed

  6. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-04-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25″. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  7. CO(J = 3-2) on-the-fly mapping of the nearby spiral galaxies NGC 628 and NGC 7793: Spatially resolved CO(J = 3-2) star-formation law

    NASA Astrophysics Data System (ADS)

    Muraoka, Kazuyuki; Takeda, Miho; Yanagitani, Kazuki; Kaneko, Hiroyuki; Nakanishi, Kouichiro; Kuno, Nario; Sorai, Kazuo; Tosaki, Tomoka; Kohno, Kotaro

    2016-01-01

    We present the results of CO(J = 3-2) on-the-fly mappings of two nearby non-barred spiral galaxies, NGC 628 and NGC 7793, with the Atacama Submillimeter Telescope Experiment at an effective angular resolution of 25'. We successfully obtained global distributions of CO(J = 3-2) emission over the entire disks at a sub-kpc resolution for both galaxies. We examined the spatially resolved (sub-kpc) relationship between CO(J = 3-2) luminosities (L^' }_CO(3-2)) and infrared (IR) luminosities (LIR) for NGC 628, NGC 7793, and M 83, and compared it with global luminosities of a JCMT (James Clerk Maxwell Telescope) Nearby Galaxy Legacy Survey sample. We found a striking linear L^' }_CO(3-2)-LIR correlation over the four orders of magnitude, and the correlation is consistent even with that for ultraluminous IR galaxies and submillimeter-selected galaxies. In addition, we examined the spatially resolved relationship between CO(J = 3-2) intensities (ICO(3-2)) and extinction-corrected star formation rates (SFRs) for NGC 628, NGC 7793, and M 83, and compared it with that for Giant Molecular Clouds in M 33 and 14 nearby galaxy centers. We found a linear ICO(3-2)-SFR correlation with ˜1 dex scatter. We conclude that the CO(J = 3-2) star-formation law (i.e., linear L^' }_CO(3-2)-LIR and ICO(3-2)-SFR correlations) is universally applicable to various types and spatial scales of galaxies; from spatially resolved nearby galaxy disks to distant IR-luminous galaxies, within ˜1 dex scatter.

  8. Deficiency of ''Thin'' Stellar Bars in Seyfert Host Galaxies

    NASA Technical Reports Server (NTRS)

    Shlosman, Isaac; Peletier, Reynier F.; Knapen, Johan

    1999-01-01

    Using all available major samples of Seyfert galaxies and their corresponding control samples of closely matched non-active galaxies, we find that the bar ellipticities (or axial ratios) in Seyfert galaxies are systematically different from those in non-active galaxies. Overall, there is a deficiency of bars with large ellipticities (i.e., 'fat' or 'weak' bars) in Seyferts, compared to non-active galaxies. Accompanied with a large dispersion due to small number statistics, this effect is strictly speaking at the 2 sigma level. To obtain this result, the active galaxy samples of near-infrared surface photometry were matched to those of normal galaxies in type, host galaxy ellipticity, absolute magnitude, and, to some extent, in redshift. We discuss possible theoretical explanations of this phenomenon within the framework of galactic evolution, and, in particular, of radial gas redistribution in barred galaxies. Our conclusions provide further evidence that Seyfert hosts differ systematically from their non-active counterparts on scales of a few kpc.

  9. Gas flow and dark matter in the inner parts of early-type barred galaxies. I. SPH simulations and comparison with the observed kinematics

    NASA Astrophysics Data System (ADS)

    Prez, I.; Fux, R.; Freeman, K.

    2004-09-01

    This paper presents the dynamical simulations run in the potential derived from the light distribution of 5 late-type barred spiral galaxies (IC 5186, NGC 5728, NGC 7267, NGC 7483 and NGC 5505). The aim is to determine whether the mass distribution together with the hydrodynamical simulations can reproduce the observed line-of-sight velocity curves and the gas morphology in the inner regions of these barred galaxies. The light distribution is obtained from the H-band and the I-band combined. The M/L is determined using population synthesis models. The observations and the methodology of the mass distribution modelling are presented in a companion paper. The SPH models using the stellar mass models obtained directly from the H-band light distributions give a good representation of the gas distribution and dynamics of the modelled galaxies, supporting the maximum disk assumption. This result indicates that the gravitational field in the inner region is mostly provided by the stellar luminous component. When 40% of the total mass is transferred to an axisymmetric dark halo, the modelled kinematics clearly depart from the observed kinematics, whereas the departures are negligible for dark mass halos of 5% and 20% of the total mass. This result sets a lower limit for the contribution of the luminous component of about 80%, which is in agreement with the maximum disk definition of the stellar mass contribution to the rotation curve (about 85% 10). This result is in agreement with the results found by \\citet{weiner01} for NGC 4123 using a similar methodology. For two galaxies, NGC 7483 and IC 5186, a very good agreement with the observed data is found. In these cases the non-circular motions can help to break the disk-halo degeneracy. For the other three galaxies (NGC 5728, NGC 7267 and NGC 5505) no definite results are found: for NGC 7267 and NGC 5505 no steady state is reached in the simulations and for NGC 5728 there is no good agreement with the observed kinematics, possibly due to the presence of a secondary bar decoupled from the primary. However, for this latter galaxy the M/L ratio used gives the right amplitude of the rotation curve, in further support of the M/L calculation method used throughout this work. Fast bars give the best fit to the observed kinematics for NGC 7483 and IC 5186 with corotation at the end of the bar for NGC 7483 and at 1.4 Rbar for IC 5186. For NGC 5505 for which no steady state configuration is found, the addition of a rigid halo stabilises the gas flows but the derived kinematics does not fit well the observations. Figures \\ref{fig:vel1}-\\ref{fig:Lz_IC5186}, \\ref{fig:mask_height}, \\ref{fig:height_rc}, \\ref{fig:rc_NGC5728}, \\ref{fig:pv_NGC7483}, \\ref{fig:substract_NGC7483}, \\ref{fig:mask_dm}, \\ref{fig:dm_rc} and \\ref{fig:ngc5505_dm_rc} are only available in electronic form at http://www.edpsciences.org}

  10. ALMA-backed NIR high resolution integral field spectroscopy of the NUGA galaxy NGC 1433

    NASA Astrophysics Data System (ADS)

    Smajić, Semir; Moser, Lydia; Eckart, Andreas; Valencia-S., Mónica; Combes, Françoise; Horrobin, Matthew; García-Burillo, Santiago; García-Marín, Macarena; Fischer, Sebastian; Zuther, Jens

    2014-07-01

    Aims: We present the results of near-infrared (NIR) H- and K-band European Southern Observatory SINFONI integral field spectroscopy (IFS) of the Seyfert 2 galaxy NGC 1433. We investigate the central 500 pc of this nearby galaxy, concentrating on excitation conditions, morphology, and stellar content. NGC 1433 was selected from our extended NUGA(-south) sample, which was additionally observed with the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 1433 is a ringed, spiral galaxy with a main stellar bar in roughly east-west direction (PA 94°) and a secondary bar in the nuclear region (PA 31°). Several dusty filaments are detected in the nuclear region with the Hubble Space Telescope. ALMA detects molecular CO emission coinciding with these filaments. The active galactic nucleus is not strong and the galaxy is also classified as a low-ionization emission-line region (LINER). Methods: The NIR is less affected by dust extinction than optical light and is sensitive to the mass-dominating stellar populations. SINFONI integral field spectroscopy combines NIR imaging and spectroscopy, allowing us to analyse several emission and absorption lines to investigate the stellar populations and ionization mechanisms over the 10″ × 10″ field of view (FOV). Results: We present emission and absorption line measurements in the central kpc of NGC 1433. We detect a narrow Balmer line and several H2 lines. We find that the stellar continuum peaks in the optical and NIR in the same position, indicating that there is no covering of the center by a nuclear dust lane. A strong velocity gradient is detected in all emission lines at that position. The position angle of this gradient is at 155° whereas the galactic rotation is at a position angle of 201°. Our measures of the molecular hydrogen lines, hydrogen recombination lines, and [Fe ii] indicate that the excitation at the nucleus is caused by thermal excitation, i.e., shocks that can be associated with active galactic nuclei emission, supernovae, or outflows. The line ratios [Fe ii]/Paβ and H2/Brγ show a Seyfert to LINER identification of the nucleus. We do not detect high star formation rates in our FOV. The stellar continuum is dominated by spectral signatures of red-giant M stars. The stellar line-of-sight velocity follows the galactic field whereas the light continuum follows the nuclear bar. Conclusions: The dynamical center of NGC 1433 coincides with the optical and NIR center of the galaxy and the black hole position. Within the central arcsecond, the molecular hydrogen and the 12CO(3-2) emissions - observed in the NIR and in the submillimeter with SINFONI and ALMA, respectively - are indicative for a nuclear outflow originating from the galaxy's SMBH. A small circum-nuclear disk cannot be fully excluded. Derived gravitational torques show that the nuclear bar is able to drive gas inward to scales where viscosity torques and dynamical friction become important. The black hole mass, derived using stellar velocity dispersion, is ~107M⊙. Based on the ESO-VLT proposal ID: 090.B-0657(A) and on observations carried out with ALMA in cycle 0.Appendix A is available in electronic form at http://www.aanda.org

  11. Kinematics and stellar population of the lenticular galaxy NGC 4124

    NASA Astrophysics Data System (ADS)

    Zasov, A. V.; Sil'chenko, O. K.; Katkov, I. Yu.; Dodonov, S. N.

    2013-01-01

    Results of spectroscopic and photometric studies for the locally isolated lenticular galaxy NGC 4124 are presented. A model of the mass distribution consistent with photometric data has been constructed on the basis of a kinematic analysis. In this model, the halo mass within the optical radius is almost half the diskmass. The disk is shown to be in a dynamical state close to amarginally stable one. This rules out dynamical disk heating for the galaxy through a strong external action or a merger with a massive system. However, the presence of a gaseous disk inclined to the main plane of the galaxy in the central kiloparsec region suggests probable cannibalization of a small satellite that also produced a late starburst in the central region. This is confirmed by the younger mean age (˜2 Gyr) of the stellar population in the galaxy's central region than the disk age (5-7 Gyr).

  12. NGC 4438: Ram pressure sweeping of a tidally disrupted galaxy

    NASA Technical Reports Server (NTRS)

    Hibbard, J. E.; Vangorkom, Jacqueline H.

    1990-01-01

    NGC 4438 is the highly HI deficient peculiar spiral in the center of the Virgo cluster. Observations are given of the neutral hydrogen emission obtained with the Very Large Array (VLA) in the D-array configuration. These observations map out the total HI as determined from single dish measurements, and show the hydrogen to be confined to a region about one third the size of the optical disk and displaced to the side of the galaxy opposite M87. The hydrogen content of the galaxy is over an order of magnitude less than that expected for a galaxy of its type. The data suggest that the HI deficiency is a result of ram pressure stripping of the gas in the outer regions of the galaxy by the hot intracluster medium after being tidally perturbed.

  13. Age dating Star Clusters in Starburst Galaxy Merger NGC3256

    NASA Astrophysics Data System (ADS)

    Lambert-Brown, Tamar

    2015-01-01

    Luminous infrared galaxies are systems undergoing rapid bursts of star formation triggered by the merging of molecular gas-rich galaxies. These galaxies can form more than 100 solar masses of stars per year. Here, an HST ACS/WFC study of optically-visible star formation in the late-stage merger NGC3256 is presented. This galaxy is clearly undergoing a starburst, with many young clusters visible in the HST far-ultraviolet and optical (F140LP, F435W and F814W) images of the merger. Estimates of optically-visible star cluster ages are summarized. These broad-band photometric age estimates are compared with those determined spectroscopically with Keck LRIS.

  14. An extremely optically dim tidal feature in the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Cuillandre, J.-C.; Cannon, J.; Haynes, M. P.; Sick, J.; Chandra, P.; Patra, N.; Stierwalt, S.; Giovanelli, R.

    2014-10-01

    We present Giant Metrewave Radio Telescope H I observations and deep Canada-France-Hawaii Telescope (CFHT) MegaCam optical images of the gas-rich interacting galaxy group NGC 871/NGC 876/NGC 877 (hereafter NGC 871/6/7). Our high-resolution data sets provide a census of the H I and stellar properties of the detected gas-rich group members. In addition to a handful of spiral, irregular and dwarf galaxies, this group harbours an intriguing H I feature, AGC 749170, that has a gas mass of ˜109.3 M⊙, a dynamical-to-gas mass ratio of ˜1 (assuming that the cloud is rotating and in dynamical equilibrium) and no optical counterpart in previous imaging. Our observations have revealed a faint feature in the CFHT g' and r' bands; if it is physically associated with AGC 749170, the latter has M/L_g >1000 M_{{⊙}}/L_{{⊙}} as well as a higher metallicity (estimated using photometric colours) and a significantly younger stellar population than the other low-mass gas-rich group members. These properties, as well as its spectral and spatial location with respect to its suspected parent galaxies, strongly indicate a tidal origin for AGC 749170. Overall, the H I properties of AGC 749170 resemble those of other optically dark/dim clouds that have been found in groups. These clouds could represent a class of relatively long-lived H I-rich tidal remnants that survive in intermediate-density environments.

  15. Galaxy Zoo and ALFALFA: atomic gas and the regulation of star formation in barred disc galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.; Nichol, Robert C.; Haynes, Martha P.; Keel, William C.; Lintott, Chris; Simmons, Brooke; Skibba, Ramin; Bamford, Steven; Giovanelli, Riccardo; Schawinski, Kevin

    2012-08-01

    We study the observed correlation between atomic gas content and the likelihood of hosting a large-scale bar in a sample of 2090 disc galaxies. Such a test has never been done before on this scale. We use data on morphologies from the Galaxy Zoo project and information on the galaxies' H I content from the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA) blind H I survey. Our main result is that the bar fraction is significantly lower among gas-rich disc galaxies than gas-poor ones. This is not explained by known trends for more massive (stellar) and redder disc galaxies to host more bars and have lower gas fractions: we still see at fixed stellar mass a residual correlation between gas content and bar fraction. We discuss three possible causal explanations: (1) bars in disc galaxies cause atomic gas to be used up more quickly, (2) increasing the atomic gas content in a disc galaxy inhibits bar formation and (3) bar fraction and gas content are both driven by correlation with environmental effects (e.g. tidal triggering of bars, combined with strangulation removing gas). All three explanations are consistent with the observed correlations. In addition our observations suggest bars may reduce or halt star formation in the outer parts of discs by holding back the infall of external gas beyond bar co-rotation, reddening the global colours of barred disc galaxies. This suggests that secular evolution driven by the exchange of angular momentum between stars in the bar, and gas in the disc, acts as a feedback mechanism to regulate star formation in intermediate-mass disc galaxies. This publication has been made possible by the participation of more than 200 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at South East Physics Network, E-mail: karen.masters@port.ac.ukEinstein fellow.

  16. XMM-Newton observation of the interacting galaxies NGC 1512 and NGC 1510

    NASA Astrophysics Data System (ADS)

    Ducci, L.; Kavanagh, P. J.; Sasaki, M.; Koribalski, B. S.

    2014-06-01

    Context. The galaxy NGC 1512 is interacting with the smaller galaxy NGC 1510 and shows a peculiar morphology, characterised by two extended arms immersed in an HI disc whose size is about four times larger than the optical diameter of NGC 1512. Aims: For the first time we performed a deep X-ray observation of the galaxies NGC 1512 and NGC 1510 with XMM-Newton to gain information on the population of X-ray sources and diffuse emission in a system of interacting galaxies. Methods: We identified and classified the sources detected in the XMM-Newton field of view by means of spectral analysis, hardness-ratios calculated with a Bayesian method, X-ray variability, and cross-correlations with catalogues in optical, infrared, and radio wavelengths. We also made use of archival Swift (X-ray) and Australia Telescope Compact Array (radio) data to better constrain the nature of the sources detected with XMM-Newton. Results: We detected 106 sources in the energy range of 0.2-12 keV, out of which 15 are located within the D25 regions of NGC 1512 and NGC 1510 and at least six sources coincide with the extended arms. We identified and classified six background objects and six foreground stars. We discussed the nature of a source within the D25 ellipse of NGC 1512, whose properties indicate a quasi-stellar object or an intermediate ultra-luminous X-ray source. Taking into account the contribution of low-mass X-ray binaries and active galactic nuclei, the number of high-mass X-ray binaries detected within the D25 region of NGC 1512 is consistent with the star formation rate obtained in previous works based on radio, infrared optical, and UV wavelengths. We detected diffuse X-ray emission from the interior region of NGC 1512 with a plasma temperature of kT = 0.68 (0.31-0.87) keV and a 0.3-10 keV X-ray luminosity of 1.3 × 1038 erg s-1, after correcting for unresolved discrete sources. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. The radio observations were obtained with the Australia Telescope Compact Array, which is part of the Australia Telescope National Facility funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO.Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A115

  17. The interstellar halo of spiral galaxies: NGC 891

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.; Rand, R. J.; Hester, J. Jeff

    1990-01-01

    Researchers have detected the Warm Ionized Medium (WIM) phase in the galaxy NGC 891. They found that the radial distribution of the WIM follows the molecular or young star distribution - an expected dependence. The amount of the WIM in this galaxy exceeds that in our Galaxy. The major surprize is the large thickness of the WIM phase - about 9 kpc instead 3 kpc as in our Galaxy. Clearly, this is the most significant result of the observations. The presence of low ionization gas at high z as well as at large galactocentric radii (where young stars are rare) is an important clue to the origin of the halo and observations such as the one reported here provide important data on this crucial question. In particular, the ionization of gas at high absolute z implies that either the UV photons manage to escape from the disk of the galaxy or that the extragalactic UV background plays an important role. The bulk of the WIM in spiral galaxies is a result of star-formation activity and thus these results can be understood by invoking a high star formation rate in NGC 891. Only the concerted action of supernovae can get the gas to the large z-heights as is observed in this galaxy. Support for this view comes from our detection of many worms i.e., bits and pieces of supershells in the form of kilo-parsec long vertical filaments. Researchers also saw a 600-pc size supershell located nearly one kpc above the plane of the galaxy.

  18. Dynamical simulations of the interacting galaxies in the NGC 520/UGC 957 system

    NASA Technical Reports Server (NTRS)

    Stanford, S. A.; Balcells, Marc

    1991-01-01

    Numerical simulations of the interacting galaxies in the NGC 520/UGC 957 system are presented. Two sets of models were produced to investigate the postulated three-galaxy system of two colliding disk galaxies within NGC 520 and the dwarf galaxy UGC 957. The first set of models simulated a dwarf perturbing one-disk galaxy, which tested the possibility that NGC 520 contains only one galaxy disturbed by the passage of UGC 957. The resulting morphology of the perturbed single disk in the simulation fails to reproduce the observed tidal tails and northwest mass condensation of NGC 520. A second set of models simulated two colliding disks, which tested the hypothesis that NGC 520 itself contains two galaxies in a strong collision and UGC 957 is unimportant to the interaction. These disk-disk models produced a good match to the morphology of the present NGC 520. It is concluded that (1) NGC 520 contains two colliding disk galaxies which have produced the brighter southern half of the long tidal tail and (2) UGC 957, which may originally have been a satellite of one of the disk galaxies, formed the diffuse northern tail as it orbited NGC 520.

  19. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture of gamma-ray acceleration by supernovae.

  20. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor, it is at odds with predictions from current ΛCDM cosmological simulations. It may be possible that the observed velocity dispersions could be reproduced if the galaxy is significantly flattened along the line of sight (e.g. due to rotation); however, invoking this flattening is problematic. Based on observations taken at the Gemini Observatory, operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and SECYT (Argentina).

  1. HUBBLE SPACE TELESCOPE Imaging of Globular Clusters in the Edge-on Spiral Galaxies NGC 4565 and NGC 5907

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus; Ashman, Keith M.; Zepf, Stephen E.; Freeman, Kenneth C.

    1999-07-01

    We present a study of the globular cluster systems of two edge-on spiral galaxies, NGC 4565 and NGC 5907, from WFPC2 images in the F450W and F814W filters. The globular cluster systems of both galaxies appear to be similar to the Galactic globular cluster system. In particular, we derive total numbers of globular clusters of N_GC(4565)=204+/-38^+87_-53 and N_GC(5907)=170+/-41^+47_-72 (where the first are statistical, the second potential systematic errors) for NGC 4565 and NGC 5907, respectively. This determination is based on a comparison with the Milky Way system, for which we adopt a total number of globular clusters of 180+/-20. The specific frequency of both galaxies is S_N~=0.6, indistinguishable from the value for the Milky Way. The similarity in the globular cluster systems of the two galaxies is noteworthy, since they have significantly different thick disks and bulge-to-disk ratios. This would suggest that these two components do not play a major role in the building up of a globular cluster system around late-type galaxies.

  2. The early-type galaxies NGC 1407 and NGC 1400 - II. Star formation and chemical evolutionary history

    NASA Astrophysics Data System (ADS)

    Spolaor, Max; Forbes, Duncan A.; Proctor, Robert N.; Hau, George K. T.; Brough, Sarah

    2008-04-01

    We present a possible star formation and chemical evolutionary history for two early-type galaxies NGC 1407 and NGC 1400. They are the two brightest galaxies of the NGC 1407 (or Eridanus-A) group, one of the 60 groups studied as part of the Group Evolution Multi-wavelength Study. Our analysis is based on new high signal-to-noise ratio spatially resolved integrated spectra obtained at the ESO 3.6-m telescope, out to ~0.6 (NGC 1407) and ~1.3(NGC 1400) effective radii. Using Lick/IDS indices, we estimate luminosity-weighted ages, metallicities and α-element abundance ratios. Colour radial distributions from HST/ACS and Subaru Suprime-Cam multiband wide-field imaging are compared to colours predicted from spectroscopically determined ages and metallicities using single stellar population (SSP) models. The galaxies formed over half of their mass in a single short-lived burst of star formation (>=100Msolaryr-1) at redshift z >= 5. This likely involved an outside-in mechanism with supernova-driven galactic winds, as suggested by the flatness of the α-element radial profiles and the strong negative metallicity gradients. Our results support the predictions of the revised version of the monolithic collapse model for galaxy formation and evolution. We speculate that, since formation, the galaxies have evolved quiescently and that we are witnessing the first infall of NGC 1400 in the group.

  3. Interacting binary galaxies. III - Observations of NGC 1587/1588 and NGC 7236/7237

    NASA Astrophysics Data System (ADS)

    Borne, Kirk D.; Hoessel, John G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum.

  4. Interacting binary galaxies. III. Observations of NGC 1587/1588 and NGC 7236/7237

    SciTech Connect

    Borne, K.D.; Hoessel, J.G.

    1988-07-01

    The catalog of isolated galaxy pairs prepared by Karachentsev has been culled for its E-E constituents, and the results are reported. Radial variations of rotation velocity and velocity dispersion are extracted from the spectroscopic data for each of the two galaxies of a given pair. Such observations are described for two Karachentsev pairs, Nos. 99 and 564. The observed disturbances in rotation velocity and luminosity distribution are discussed in terms of the gravitational interaction hypothesis. It is argued that observational evidence of tidal friction in action is evidenced by these findings. One of the highest rotation rates known for an E2 galaxy of average luminosity is found in NGC 1587, the brighter component of K99. Because this rotation is in the same sense as the binary orbital motion, the net angular momentum in this isolated binary system is large, challenging simple tidal torque theories to identify the source of the momentum. 62 references.

  5. Reverberation mapping of the Seyfert 1 galaxy NGC 7469

    SciTech Connect

    Peterson, B. M.; Grier, C. J.; Pogge, R. W.; De Rosa, G.; Denney, K. D.; Martini, Paul; Zu, Y.; Kochanek, C. S.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Horne, Keith; Bentz, M. C.; Sergeev, S. G.; Borman, G. A.; Minezaki, T.; Siverd, R. J.; Bord, D. J.; and others

    2014-11-10

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M {sub BH} ≈ 1 × 10{sup 7} M {sub ☉}, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  6. Stellar populations in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Lee, Myung G.; Freedman, Wendy L.; Madore, Barry F.

    1993-01-01

    The study presents BVRI CCD photometry of about 5300 stars in the central area of the dwarf elliptical galaxy NGC 185 in the Local Group. The color-magnitude diagram shows three distinct stellar populations: a dominant RGB population, AGB stars located above the tip of the RGB stars, and a small number of young stars having blue to yellow colors. The foreground reddening is estimated to be 0.19 +/- 0.03 mag using the (B - V) - (V - I) diagram for the bright foreground stars with good photometry. Surface photometry of the central area of NGC 185 is presented; it shows that the colors become rapidly bluer inside R of about 10 arcsec. Structural parameters indicate that the mass-to-luminosity ratio ranges from 3 to 5.

  7. Reverberation Mapping of the Seyfert 1 Galaxy NGC 7469

    NASA Astrophysics Data System (ADS)

    Peterson, B. M.; Grier, C. J.; Horne, Keith; Pogge, R. W.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Martini, Paul; Sergeev, S. G.; Kaspi, S.; Minezaki, T.; Zu, Y.; Kochanek, C. S.; Siverd, R. J.; Shappee, B.; Araya Salvo, C.; Beatty, T. G.; Bird, J. C.; Bord, D. J.; Borman, G. A.; Che, X.; Chen, C.-T.; Cohen, S. A.; Dietrich, M.; Doroshenko, V. T.; Drake, T.; Efimov, Yu. S.; Free, N.; Ginsburg, I.; Henderson, C. B.; King, A. L.; Koshida, S.; Mogren, K.; Molina, M.; Mosquera, A. M.; Motohara, K.; Nazarov, S. V.; Okhmat, D. N.; Pejcha, O.; Rafter, S.; Shields, J. C.; Skowron, D. M.; Skowron, J.; Valluri, M.; van Saders, J. L.; Yoshii, Y.

    2014-11-01

    A large reverberation-mapping study of the Seyfert 1 galaxy NGC 7469 has yielded emission-line lags for Hβ λ4861 and He II λ4686 and a central black hole mass measurement M BH ≈ 1 × 107 M ⊙, consistent with previous measurements. A very low level of variability during the monitoring campaign precluded meeting our original goal of recovering velocity-delay maps from the data, but with the new Hβ measurement, NGC 7469 is no longer an outlier in the relationship between the size of the Hβ-emitting broad-line region and the luminosity of the active galactic nucleus. It was necessary to detrend the continuum and Hβ and He II λ4686 line light curves and those from archival UV data for different time-series analysis methods to yield consistent results.

  8. The flaring Hi disk of the nearby spiral galaxy NGC 2683

    NASA Astrophysics Data System (ADS)

    Vollmer, B.; Nehlig, F.; Ibata, R.

    2016-02-01

    New deep VLA D array Hi observations of the highly inclined nearby spiral galaxy NGC 2683 are presented. Archival C array data were processed and added to the new observations. To investigate the 3D structure of the atomic gas disk, we made different 3D models for which we produced model Hi data cubes. The main ingredients of our best-fit model are (i) a thin disk inclined by 80°; (ii) a crude approximation of a spiral and/or bar structure by an elliptical surface density distribution of the gas disk; (iii) a slight warp in inclination between 10 kpc ≤ R ≤ 20 kpc (decreasing by 10°); (iv) an exponential flare that rises from 0.5 kpc at R = 9 kpc to 4 kpc at R = 15 kpc, stays constant until R = 22 kpc, and decreases its height for R> 22 kpc; and (v) a low surface-density gas ring with a vertical offset of 1.3 kpc. The slope of NGC 2683's flare is comparable, but somewhat steeper than those of other spiral galaxies. NGC 2683's maximum height of the flare is also comparable to those of other galaxies. On the other hand, a saturation of the flare is only observed in NGC 2683. Based on the comparison between the high resolution model and observations, we exclude the existence of an extended atomic gas halo around the optical and thin gas disk. Under the assumption of vertical hydrostatic equilibrium we derive the vertical velocity dispersion of the gas. The high turbulent velocity dispersion in the flare can be explained by energy injection by (i) supernovae; (ii) magneto-rotational instabilities; (iii) interstellar medium stirring by dark matter substructure; or (iv) external gas accretion. The existence of the complex large-scale warping and asymmetries favors external gas accretion as one of the major energy sources that drives turbulence in the outer gas disk. We propose a scenario where this external accretion leads to turbulent adiabatic compression that enhances the turbulent velocity dispersion and might quench star formation in the outer gas disk of NGC 2683. Based on NRAO VLA observations (AI134). The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.The reduced data cube as a FITS file is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A98

  9. Star Formation Color-Time Sequence and ``Anti-Spiral" Wagon-Spoke Perturbation in Resonance Ring Galaxies: NGC3081

    NASA Astrophysics Data System (ADS)

    Ousley, D.; Byrd, G. G.

    1998-12-01

    Byrd, Ousley, and Dalla Piazza(1998a, MNRAS, 298, 78) described a hybrid analytic/computer formulation of periodic interstellar cloud orbits which explains morphologies of resonance rings in SB galaxies. Byrd, Ousley, Dalla Piazza, and Domingue (1998b, Dynamics of Galaxies conf.) applied the formulation to NGC 3081 to show how ring morphology and rotation curve can give the two-fold perturbation strength and pattern speed plus the disk inclination and line of nodes. Using the perturbation in Poisson's equation with the outer disk isophote ellipticity gives the disk surface mass density as a function of radius. Within errors, the density is sufficient to explain the NGC 3081 rotation curve i.e. no halo is required. Disk density/surface brightness at each radius gives the NGC 3081 M/L, indicating a large amount of dark matter in its outer disk plane possibly eliminating certain galaxy dark matter candidates. In this poster, we study how star formation in inner resonance rings occurs where gas clouds are crowded near the end of the bar of NGC 3081. As these orbit in position angle away from the end, they age and their B-I colors change. Using the above formulation, color indexes of stellar associations can thus be empirically calibrated in years, to serve in age estimates of associations in other galaxies and as an observational test of association models. Our morphological match for NGC 3081 is excellent from the nuclear ring through the outer rings. The perturbation potential must also be valid indicating it is the radial ``wagon-spoke" type descried by Shu (1970) with two spokes. Thus NGC 3081's disk must be non-dissipational (stellar) with a stabilizing velocity dispersion. Globally, gas must be gravitationally unimportant. We explore the possibility that the elongated ``bar" of NGC3081 may only be a minority of luminous resonance ring stars superposed on a gentler global old disk star perturbation. Ousley was supported by a McWane Undergraduate Research Fellowship. We thank R. Buta and G. Purcell for use of figures.

  10. Surprising Cyclic Eclipse-like Events in the Recent UBVRI Photometry of the Seyfert/AGN Galaxy NGC 4151

    NASA Astrophysics Data System (ADS)

    Marcy, J. T.; Stegman, S. G.; Guinan, E. F.; Engle, S. G.; McCook, G. P.

    2005-05-01

    NGC 4151 is one of the brightest and best studied Seyfert-1/AGN galaxies. NGC 4151 is a ˜12th (V)mag Barred Spiral galaxy (d ˜16 Mpc) with a highly luminous and active nucleus. Because of its brightness and complex variability at all wavelengths, NGC 4151 has become the ``Posterchild Galaxy'' for Active Galactic Nucleus (AGN) galaxies and has been the subject of numerous studies that cover wavelengths from gamma rays to radio. These studies show variability on all time scales, from minutes to years. Like other AGN, NGC 4151 is a powerful X-ray source with very strong UV, and radio emissions that are best explained by accretion processes occurring in the disk in proximity to its assumed super-massive ˜109 M⊙ blackhole nucleus. We report on intensive UVBRI photoelectric photometry being carried out on NGC 4151 since February 2001. The photometry is being conducted with the 0.8m Four College Automatic Photoelectric Telescope (FCAPT) located in southern Arizona. Observations have been obtained on over 260 nights so far. Examination of the photometry reveals surprising eclipse-like decreases in brightness that are especially prominent in the U- and B-bands. Fast Fourier Transform (FFT) and periodogram analyses of the photometry were carried out. These reveal a prominent period of P ≈ 294 ± 8 days. One of several possibilities being explored to explain this behavior is that the eclipse-like events (if confirmed by observations during the next few months) could arise from recently accreted absorbing material orbiting in the outer region of the nuclei's inner accretion disk. We are carrying out a global analysis of all available observations to investigate possible correlations of our photometry with contemporaneous X-ray, UV, and ground-based spectroscopy. The results of this study are discussed. This research is supported by RUI/NSF Grants to Villanova University.

  11. Fast-moving knot of radio emission in the active galaxy NGC 1275

    SciTech Connect

    Marr, J.M.; Backer, D.C.; Wright, M.C.H.; Readhead, A.C.S.; Moore, R.

    1989-02-01

    Five succeeding 1.3 cm VLBI images of the nearby active galaxy NGC 1275 are presented. The time series displays the movement of the smaller and higher opacity regions of the galaxy. The identification and movement of a compact knot in the galaxy are presented, and the relation of this knot to a jet in the galaxy is discussed. 23 references.

  12. The ULX Population in the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-05-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253.

  13. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  14. Stellar Clusters Forming in the Blue Dwarf Galaxy NGC 5253

    NASA Astrophysics Data System (ADS)

    2004-11-01

    Star formation is one of the most basic phenomena in the Universe. Inside stars, primordial material from the Big Bang is processed into heavier elements that we observe today. In the extended atmospheres of certain types of stars, these elements combine into more complex systems like molecules and dust grains, the building blocks for new planets, stars and galaxies and, ultimately, for life. Violent star-forming processes let otherwise dull galaxies shine in the darkness of deep space and make them visible to us over large distances. Star formation begins with the collapse of the densest parts of interstellar clouds, regions that are characterized by comparatively high concentration of molecular gas and dust like the Orion complex (ESO PR Photo 20/04) and the Galactic Centre region (ESO Press Release 26/03). Since this gas and dust are products of earlier star formation, there must have been an early epoch when they did not yet exist. But how did the first stars then form? Indeed, to describe and explain "primordial star formation" - without molecular gas and dust - is a major challenge in modern Astrophysics. A particular class of relatively small galaxies, known as "Blue Dwarf Galaxies", possibly provide nearby and contemporary examples of what may have occurred in the early Universe during the formation of the first stars. These galaxies are poor in dust and heavier elements. They contain interstellar clouds which, in some cases, appear to be quite similar to those primordial clouds from which the first stars were formed. And yet, despite the relative lack of the dust and molecular gas that form the basic ingredients for star formation as we know it from the Milky Way, those Blue Dwarf Galaxies sometimes harbour very active star-forming regions. Thus, by studying those areas, we may hope to better understand the star-forming processes in the early Universe. Very active star formation in NGC 5253 NGC 5253 is one of the nearest of the known Blue Dwarf Galaxies; it is located at a distance of about 11 million light-years in the direction of the southern constellation Centaurus. Some time ago a group of European astronomers [1] decided to take a closer look at this object and to study star-forming processes in the primordial-like environment of this galaxy. True, NGC 5253 does contains some dust and heavier elements, but significantly less than our own Milky Way galaxy. However, it is quite extreme as a site of intense star formation, a profuse "starburst galaxy" in astronomical terminology, and a prime object for detailed studies of large-scale star formation. ESO PR Photo 31a/04 provides an impressive view of NGC 5253. This composite image is based on a near-infrared exposure obtained with the multi-mode ISAAC instrument mounted on the 8.2-m VLT Antu telescope at the ESO Paranal Observatory (Chile), as well as two images in the optical waveband obtained from the Hubble Space Telescope data archive (located at ESO Garching). The VLT image (in the K-band at wavelength 2.16 μm) is coded red, the HST images are blue (V-band at 0.55 μm) and green (I-band at 0.79 μm), respectively. The enormous light-gathering capability and the fine optical quality of the VLT made it possible to obtain the very detailed near-infrared image (cf. PR Photo 31b/04) during an exposure lasting only 5 min. The excellent atmospheric conditions of Paranal at the time of the observation (seeing 0.4 arcsec) allow the combination of space- and ground-based data into a colour photo of this interesting object. A major dust lane is visible at the western (right) side of the galaxy, but patches of dust are visible all over, together with a large number of colourful stars and stellar clusters. The different colour shades are indicative of the ages of the objects and the degree of obscuration by interstellar dust. The near-infrared VLT image penetrates the dust clouds much better than the optical HST images, and some deeply embedded objects that are not detected in the optical therefore appear as red in the combined image. Measuring the size and infrared brightness of each of these "hidden" objects, the astronomers were able to distinguish stars from stellar clusters; they count no less than 115 clusters. It was also possible to derive their ages - about 50 of them are very young in astronomical terms, less than 20 million years. The distribution of the masses of the cluster stars ressembles that observed in clusters in other starburst galaxies, but the large number of young clusters and stars is extraordinary in a galaxy as small as NGC 5253. When images are obtained of NGC 5253 at progressively longer wavelengths, cf. ESO PR Photo 31c/04 which was taken with the VLT in the L-band (wavelength 3.7 μm), the galaxy looks quite different. It no longer displays the richness of sources seen in the K-band image and is now dominated by a single bright object. By means of a large number of observations in different wavelength regions, from the optical to the radio, the astronomers find that this single object emits as much energy in the infrared part of the spectrum as does the entire galaxy in the optical region. The amount of energy radiated at different wavelengths shows that it is a young (a few million years), very massive (more than one million solar masses) stellar cluster, embedded in a dense and heavy dust cloud (more than 100,000 solar masses of dust; the emission seen in PR Photo 31c/04 comes from this dust). A view towards the beginnings These results show that a galaxy as tiny as NGC 5253, almost 100 times smaller than our own Milky Way galaxy, can produce hundreds of compact stellar clusters. The youngest of these clusters are still deeply embedded in their natal clouds, but when observed with infrared-sensitive instruments like ISAAC at the VLT, they stand out as very bright objects indeed. The most massive of these clusters holds about one million solar masses and shines as much as 5000 very bright massive stars. It may well be very similar to the progenitors in the early Universe of the old globular clusters we now observe in large galaxies like the Milky Way. In this sense, NGC 5253 provides us with a direct view towards our own beginnings. Note [1] The group consists of Giovanni Cresci (University of Florence, Italy), Leonardo Vanzi (ESO-Chile) and Marc Sauvage (CEA/DSN/DAPNIA, Saclay, France). More details about the present investigation is available in a research paper ("The Star Cluster population of NGC 5253" by G. Cresci et al.) to appear soon in the leading research journal Astronomy & Astrophysics (a preprint is available as astro-ph/0411486).

  15. Peculiarities in the optical variability of the galaxy NGC 4151

    SciTech Connect

    Lyutyi, V.M.; Oknyanskii, V.L.

    1981-11-01

    Photographic and photoelectric observations of the optical variability of the nucleus of the Seyfert galaxy NGC 4151 are analyzed. The presence of a quasiperiodic 126/sup d/ component is confirmed. The 126/sup d/ period varies in cycles of roughly-equal20 yr. If these fluctuations represent orbital motion about a central body (such as a supermassive black hole), its mass would be roughly-equal10/sup 8/ M/sub sun/ and the orbital velocity would be roughly-equal10/sup 4/ km/sec.

  16. The circumnuclear environment of the Seyfert 1 galaxy NGC 3516

    SciTech Connect

    Pogge, R.W.; McDonald Observatory, Austin, TX )

    1989-07-01

    Results of an emission-line imaging and spectrophotometric study of the ionized gas in the circumnuclear regions of the Seyfert 1 galaxy NGC 3516 are reported. The morphology and ionization of the gas are consistent with excitation by the power law continuum from the active nucleus. The optical emission-line gas is well aligned with the extended 6 cm radio-continuum emission. The ionization, structure, and published kinematical data are strongly suggestive of an outflow origin for the circumnuclear gas, although important details are missing to firmly establish outflow as the origin of all of the ionized gas. 31 refs.

  17. The Warm Absorber of the Seyfert Galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Krongold, Y.; Elvis, M.; Nicastro, F.; Binette, L.; Brickhouse, N.

    2008-04-01

    We present a spectral analysis of the X-ray Chandraof the Seyfert 1 Galaxy NGC 5548. The warm absorber present in this object was modeled with the code PHASE. We detected two different outflow velocity systems in this source. One of the absorbing systems has outflow velocity of -1091+/-63 km s(-1) and the other of -568+/-49 km s(-1) . Each system required two absorption components with different ionization level to fit the observed features. Each velocity system may consist of a multi-phase medium.

  18. New SNR candidates in nearby spiral galaxy NGC 3344

    NASA Astrophysics Data System (ADS)

    Akyuz, Aysun

    We present a SNR survey using optical imaging in the nearby spiral galaxy NGC3344.Observations have been carried out with the 1.5m telescope at TUG (Tubitak National Observatory, Antalya-Turkey). We identified new SNR candidates using basic criterion [SII]/Hα ¿= 0.4. We also present spectral follow up observations of the new set of SNR candidates. In addition, we dis-cuss a search for the X-ray counterparts to these new SNRs using archival Chandra Observatory data.

  19. RR Lyrae stars in local group galaxies. II - NGC 147

    NASA Technical Reports Server (NTRS)

    Saha, A.; Hoessel, John G.; Mossman, Amy E.

    1990-01-01

    Deep CCD images of NGC 147 taken with the '4-shooter' on the Hale 5 m telescope have been processed to find and photometrically measure RR Lyrae stars. 36 variable stars have been found, of which 32 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The mean magnitude of the RR Lyraes is determined to be 25.25 mag. A distance modulus 23.92 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars. A wide range of periods is seen for the RR Lyrae stars, indicating a correspondingly wide range of metallicities for the stars in NGC 147. The distance modulus derived here places NGC 147 at a distance of 154 kpc from the center of M31, and in conjunction with the line sight velocities of these two galaxies, this implies a lower limit of 7.2 x 10 to the 11th solar masses for the mass of M31.

  20. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from fragmentation. The observations of both galaxies indicate that PAHs can survive in violent events. We discuss these results in relation to the PAH formation and destruction.

  1. Wind and Reflections From Black Hole in Galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Chandra X-Ray Observatory provided this composite X-ray (blue and green) and optical (red) image of the active galaxy NGC 1068 showing gas blowing away in a high-speed wind from the vicinity of a central supermassive black hole. Regions of intense star formation in the irner spiral arms of the galaxy are highlighted by both optical and x-ray emissions. A doughnut shaped cloud of cool gas and dust surrounding the black hole, known as the torus, appears as the elongated white spot . It has has a mass of about 5 million suns and is estimated to extend from within a few light years of the black hole out to about 300 light years.

  2. Discovery of GeV emission from the direction of the luminous infrared galaxy NGC 2146

    SciTech Connect

    Tang, Qing-Wen; Wang, Xiang-Yu; Thomas Tam, Pak-Hin E-mail: phtam@phys.nthu.edu.tw

    2014-10-10

    Recent detections of high-energy gamma-ray emission from starburst galaxies M82 and NGC 253 suggest that starburst galaxies are huge reservoirs of cosmic rays and these cosmic rays convert a significant fraction of their energy into gamma-rays by colliding with the dense interstellar medium. In this paper, we report the search for high-energy gamma-ray emission from several nearby star-forming and starburst galaxies using the 68 month data obtained with the Fermi Large Area Telescope. We found a ∼5.5σ detection of gamma-ray emission above 200 MeV from a source spatially coincident with the location of the luminous infrared galaxy NGC 2146. Also taking into account the temporal and spectral properties of the gamma-ray emission, we suggest that the gamma-ray source is likely to be the counterpart of NGC 2146. The gamma-ray luminosity suggests that cosmic rays in NGC 2146 convert most of their energy into secondary pions, so NGC 2146 is a 'proton calorimeter'. It is also found that NGC 2146 obeys the quasi-linear scaling relation between gamma-ray luminosity and total infrared luminosity for star-forming galaxies, strengthening the connection between massive star formation and gamma-ray emission of star-forming galaxies. Possible TeV emission from NGC 2146 is predicted and the implications for high-energy neutrino emission from starburst galaxies are discussed.

  3. A violent interaction between the dwarf galaxy UGC 7636 and the giant elliptical galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Mcnamara, Brian R.; Sancisi, Renzo; Henning, Patricia A.; Junor, William

    1994-01-01

    We present new U, B, R, and H I imagery of the Virgo Cluster giant elliptical galaxy NGC 4472 and its interacting dwarf companion galaxy UGC 7636. Using a composite image reconstruction technique, we show that a trail of debris approx. 5 arcmin in length and approx. 1 arcmin in width (30x6 kpc for a Virgo cluster distance of 20 Mpc) is projected northward from the dwarf galaxy. A cloud of H I is projected along the northwest edge of the debris between the dwarf and gE. The dwarf's nuclear morphology is irregular and bow-shaped on what appears to be its leading edge. Apart from a number of isolated blue regions, most of of the trailing debris is similar in color to the dwarf's nucleus. Only a modest enhancement of star formation appears to have been induced by the interaction. Although separated by 15 kpc, the H I and stellar morphologies are remarkably similar. The stars and H I appear to have been tidally distorted in situ, prior to the cloud's removal by ram pressure. If the H I has maintained its shape by magnetic support, a magnetic field strength an order of magnitude larger than the galaxy's is required. Ram pressure deceleration due to the cloud's motion through NGC 4472's x-ray-emitting interstellar medium shold be sufficient for the cloud to become gravitationally bound to NGC 4472. The H I cloud is not self-gravitating and may fragment and be destroyed in the interaction. UGC 7636 will probably be disrupted by NGC 4472's strong tidal forces; the stellar debris will disperse into the Virgo cluster or become bound to NGC 4472's halo on eccentric orbits. The debris captured in the collision will have a negligible impact on NGC 4472's stellar and gaseous content. On the other hand, if similar interactions are common in giant elliptical galaxies, they could alter or deplete surrounding dwarf galaxy populations, fuel bursts of nuclear activity, and perhaps provide a source of magnetic energy to their interstellar media.

  4. Arecibo Galaxy Environment Survey: Visualizing the Volumes of Isolated Galaxies NGC 5523 & UGC 2082

    NASA Astrophysics Data System (ADS)

    Rodriguez, Roberto A.; Minchin, R. F.; Taylor, R.

    2014-01-01

    The Arecibo Galaxy Environment Survey (AGES) is a neutral hydrogen galaxy survey. It is searching for galaxies by 21cm emission from neutral hydrogen gas in their interstellar media. I analyzed the isolated NGC 5523 & UGC 2082 regions, two 5 square degrees fields obtained with the Wideband Arecibo Pulsar Processor (WAPP) correlators covering a redshift range of z ~ 0 - 0.06. A number of possibly interacting galactic systems were identified by their HI structure. Particularly, a lack of companions to NGC 5523 was found to a lower limit of 9*10^6 solar masses (NGC 5523 is at a distance of approximately 20 Mpc). Additionally, I studied the reliability and completeness of automated source extraction techniques. Finally, I employed novel forms of data visualisation in order to investigate the volume behind these two isolated galaxies, which resulted in the production a catalogue containing measured parameters such as flux, HI mass, velocity width, position fitting, mass-to-light ratios and gas deficiencies for the detected sources.

  5. Secular- and merger-built bulges in barred galaxies

    NASA Astrophysics Data System (ADS)

    Méndez-Abreu, J.; Debattista, V. P.; Corsini, E. M.; Aguerri, J. A. L.

    2014-12-01

    Context. Historically, galaxy bulges were thought to be single-component objects at the center of galaxies. However, this picture is now questioned since different bulge types with different formation paths, namely classical and pseudobulges, have been found coexisting within the same galaxy. Aims: We study the incidence and nature of composite bulges in a sample of 10 face-on barred galaxies to constrain the formation and evolutionary processes of the central regions of disk galaxies. Methods: We analyze the morphological, photometric, and kinematic properties of each bulge. Then, by using a case-by-case analysis we identify composite bulges and classify every component into a classical or pseudobulge. In addition, bar-related boxy/peanut (B/P) structures were also identified and characterized. Results: We find only three galaxies hosting a single-component bulge (two pseudobulges and one classical bulge). Thus, we demonstrate the high incidence of composite bulges (70%) in barred galaxies. We find evidence of composite bulges coming in two main types based on their formation: secular-built and merger- and secular-built. We denote as secular-built those composite bulges that are made up of structures associated with secular processes, such as pseudobulges, central disks, or B/P bulges. We find four composite bulges of this kind in our sample. On the other hand, merger- and secular-built bulges are those where structures with different formation paths coexist within the same galaxy, i.e., a classical bulge coexisting with a secular-built structure (pseudobulge, central disk, or B/P). Three bulges of this kind were found in the sample. We notice the importance of detecting kinematic structures such as σ-drops to identify composite bulges. A high percentage (~80%) of galaxies were found to host σ-drops or σ-plateaus in our sample, revealing their high incidence in barred galaxies. Conclusions: The high frequency of composite bulges in barred galaxies points toward a complex formation and evolutionary scenario. Moreover, the evidence of coexisting merger- and secular-built bulges reinforce this idea. We discuss how the presence of different bulge types with different formation histories and timescales can constrain current models of bulge formation.

  6. A supernova distance to the anchor galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Polshaw, J.; Kotak, R.; Chambers, K. C.; Smartt, S. J.; Taubenberger, S.; Kromer, M.; Gall, E. E. E.; Hillebrandt, W.; Huber, M.; Smith, K. W.; Wainscoat, R. J.

    2015-08-01

    The fortuitous occurrence of a type II-Plateau (IIP) supernova, SN 2014bc, in a galaxy for which distance estimates from a number of primary distance indicators are available provides a means with which to cross-calibrate the standardised candle method (SCM) for type IIP SNe. By applying calibrations from the literature we find distance estimates in line with the most precise measurement to NGC 4258 based on the Keplerian motion of masers (7.6 ± 0.23 Mpc), albeit with significant scatter. We provide an alternative local SCM calibration by only considering type IIP SNe that have occurred in galaxies for which a Cepheid distance estimate is available. We find a considerable reduction in scatter (σI = 0.16 mag), but note that the current sample size is limited. Applying this calibration, we estimate a distance to NGC 4258 of 7.08 ± 0.86 Mpc. Appendix A is available in electronic form at http://www.aanda.org

  7. Hydrodynamical Simulations of Nuclear Rings in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Shen, Juntai; Kim, Woong-Tae

    2015-08-01

    Dust lanes, nuclear rings, and nuclear spirals are typical gas structures in the inner region of barred galaxies. Their shapes and properties are linked to the physical parameters of the host galaxy. We use high-resolution hydrodynamical simulations to study 2D gas flows in simple barred galaxy models. The nuclear rings formed in our simulations can be divided into two groups: one group is nearly round and the other is highly elongated. We find that roundish rings may not form when the bar pattern speed is too high or the bulge central density is too low. We also study the periodic orbits in our galaxy models, and find that the concept of inner Lindblad resonance (ILR) may be generalized by the extent of x2 orbits. All roundish nuclear rings in our simulations settle in the range of x2 orbits (or ILRs). However, knowing the resonances is insufficient to pin down the exact location of these nuclear rings. We suggest that the backbone of round nuclear rings is the x2 orbital family, i.e. round nuclear rings are allowed only in the radial range of x2 orbits. A round nuclear ring forms exactly at the radius where the residual angular momentum of infalling gas balances the centrifugal force, which can be described by a parameter f_ring measured from the rotation curve. We find an empirical relation between the bar parameters and f_ring, and apply it to measure bar pattern speed in a sample of barred galaxies with nuclear rings.

  8. Globular Cluster Systems in Brightest Cluster Galaxies. II. NGC 6166

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Whitmore, Bradley C.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry

    2016-01-01

    We present new deep photometry of the globular cluster system (GCS) around NGC 6166, the central supergiant galaxy in Abell 2199. Hubble Space Telescope data from the Advanced Camera for Surveys and WFC3 cameras in F475W and F814W are used to determine the spatial distribution of the GCS, its metallicity distribution function (MDF), and the dependence of the MDF on galactocentric radius and on GC luminosity. The MDF is extremely broad, with the classic red and blue subpopulations heavily overlapped, but a double-Gaussian model can still formally match the MDF closely. The spatial distribution follows a Sérsic-like profile detectably to a projected radius of at least Rgc = 250 kpc. To that radius, the total number of clusters in the system is NGC = 39000 ± 2000, the global specific frequency is SN = 11.2 ± 0.6, and 57% of the total are blue, metal-poor clusters. The GCS may fade smoothly into the intracluster medium (ICM) of A2199; we see no clear transition from the core of the galaxy to the cD halo or the ICM. The radial distribution, projected ellipticity, and mean metallicity of the red (metal-richer) clusters match the halo light extremely well for {R}{gc}≳ 15 {{kpc}}, both of them varying as {σ }{MRGC}∼ {σ }{light}∼ {R}-1.8. By comparison, the blue (metal-poor) GC component has a much shallower falloff {σ }{MPGC}∼ {R}-1.0 and a more nearly spherical distribution. This strong difference in their density distributions produces a net metallicity gradient in the GCS as a whole that is primarily generated by the population gradient. With NGC 6166 we appear to be penetrating into a regime of high enough galaxy mass and rich enough environment that the bimodal two-phase description of GC formation is no longer as clear or effective as it has been in smaller galaxies.

  9. AN IONIZATION CONE IN THE DWARF STARBURST GALAXY NGC 5253

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael; Martin, Crystal L.

    2011-11-01

    There are few observational constraints on how the escape of ionizing photons from starburst galaxies depends on galactic parameters. Here we report on the first major detection of an ionization cone in NGC 5253, a nearby starburst galaxy. This high-excitation feature is identified by mapping the emission-line ratios in the galaxy using [S III] {lambda}9069, [S II] {lambda}6716, and H{alpha} narrowband images from the Maryland-Magellan Tunable Filter at Las Campanas Observatory. The ionization cone appears optically thin, which suggests the escape of ionizing photons. The cone morphology is narrow with an estimated solid angle covering just 3% of 4{pi} steradians, and the young, massive clusters of the nuclear starburst can easily generate the radiation required to ionize the cone. Although less likely, we cannot rule out the possibility of an obscured active galactic nucleus source. An echelle spectrum along the minor axis shows complex kinematics that are consistent with outflow activity. The narrow morphology of the ionization cone supports the scenario that an orientation bias contributes to the difficulty in detecting Lyman continuum emission from starbursts and Lyman break galaxies.

  10. Rotation of classical bulges during secular evolution of barred galaxies

    NASA Astrophysics Data System (ADS)

    Saha, Kanak; Gerhard, Ortwin

    2015-03-01

    Bar driven secular evolution plays a key role in changing the morphology and kinematics of disk galaxies, leading to the formation of rapidly rotating boxy/peanut bulges. If these disk galaxies also hosted a preexisting classical bulge, how would the secular evolution influence the classical bulge, and also the observational properties. We first study the co-evolution of a bar and a preexisting non-rotating low-mass classical bulge such as might be present in galaxies like the Milky Way. It is shown with N-body simulations that during the secular evolution, such a bulge can gain significant angular momentum emitted by the bar through resonant and stochastic orbits. Thereby it transforms into a cylindrically rotating, anisotropic and triaxial object, embedded in the fast rotating boxy bulge that forms via disk instability (Saha et al. 2012). The composite boxy/peanut bulge also rotates cylindrically. We then show that the growth of the bar depends only slightly on the rotation properties of the preexisting classical bulge. For the initially rotating small classical bulge, cylindrical rotation in the resulting composite boxy/peanut bulge extends to lower heights (Saha & Gerhard 2013). More massive classical bulges also gain angular momentum emitted by the bar, inducing surprisingly large rotational support within about 4 Gyrs (Saha et al. in prep).

  11. HUBBLE SPACE TELESCOPE PIXEL ANALYSIS OF THE INTERACTING S0 GALAXY NGC 5195 (M51B)

    SciTech Connect

    Lee, Joon Hyeop; Kim, Sang Chul; Ree, Chang Hee; Kim, Minjin; Jeong, Hyunjin; Lee, Jong Chul; Kyeong, Jaemann E-mail: sckim@kasi.re.kr E-mail: mkim@kasi.re.kr E-mail: jclee@kasi.re.kr

    2012-08-01

    We report the properties of the interacting S0 galaxy NGC 5195 (M51B), revealed in a pixel analysis using the Hubble Space Telescope/Advanced Camera for Surveys images in the F435W, F555W, and F814W (BVI) bands. We analyze the pixel color-magnitude diagram (pCMD) of NGC 5195, focusing on the properties of its red and blue pixel sequences and the difference from the pCMD of NGC 5194 (M51A; the spiral galaxy interacting with NGC 5195). The red pixel sequence of NGC 5195 is redder than that of NGC 5194, which corresponds to the difference in the dust optical depth of 2 < {Delta}{tau}{sub V} < 4 at fixed age and metallicity. The blue pixel sequence of NGC 5195 is very weak and spatially corresponds to the tidal bridge between the two interacting galaxies. This implies that the blue pixel sequence is not an ordinary feature in the pCMD of an early-type galaxy, but that it is a transient feature of star formation caused by the galaxy-galaxy interaction. We also find a difference in the shapes of the red pixel sequences on the pixel color-color diagrams (pCCDs) of NGC 5194 and NGC 5195. We investigate the spatial distributions of the pCCD-based pixel stellar populations. The young population fraction in the tidal bridge area is larger than that in other areas by a factor >15. Along the tidal bridge, young populations seem to be clumped particularly at the middle point of the bridge. On the other hand, the dusty population shows a relatively wide distribution between the tidal bridge and the center of NGC 5195.

  12. XMM-Newton observations of the hot spot galaxy NGC 2903

    NASA Astrophysics Data System (ADS)

    Pérez-Ramírez, D.; Caballero-García, M. D.; Ebrero, J.; Leon, S.

    2010-11-01

    We report on the first deeper X-ray broad-band observation of the hot spot galaxy NGC 2903 obtained with XMM-Newton. X-ray imaging and spectra of the spiral barred galaxy NGC 2903 were obtained from XMM-Newton archival data to study its X-ray population and the conditions of the hot gas in its central region. We investigate the spectral properties of the discrete point-source population and give estimates of their X-ray spectral parameters. By analysing the RGS spectra, we derive temperature and abundances for the hot gas located in its central region. A total of six X-ray point sources (four of them ULX candidates) were detected in the energy range of 0.3-10.0 keV located within the galaxy D25 optical disk. Three of these sources are detected for the first time, and one of them, XMM-NGC2903 X2 with a luminosity of higher than 1039 erg s-1. After fitting three different models, we were able to estimate their luminosities, which are compatible with those of binaries with a compact object in the form of black holes (BHs) rather than neutron stars (NSs). We extracted the combined first-order RGS1 and RGS2 spectra of its central region, which display several emission lines. The spectrum is dominated by a strong O viii Lyα emission line along with Ne x Lyα and several Fe xvii features. The O vii complex is also significantly detected, although only the forbidden and resonance lines could be resolved. Both O vii f and r lines seem to be of similar strength, which is consistent with the presence of the collisionally ionized gas that is typical of starburst galaxies. We fitted the spectrum to a model for a plasma in collisional ionization equilibrium (CIE) and the continuum was modelled with a power law, resulting in a plasma temperature of T = 0.31 ± 0.01 keV and an emission measure EM ≡ nHneV = 6.4-0.4+0.5 × 1061 cm-3. We also estimated abundances that are consistent with solar values.

  13. ROSAT PSPC observations of the early-type galaxies NGC 507 and NGC 499: Central cooling and mass determination

    NASA Technical Reports Server (NTRS)

    Kim, Dong-Woo; Fabbiano, G.

    1995-01-01

    We present the results of a deep observation of NGC 507 and NGC 499 with the ROSAT Position Sensitive Proportional Counter (PSPC). The X-ray emission of NGC 507 is extended at least out to 1000 sec (458 kpc at a distance of 94.5 Mpc). The radial profile of X-ray surface brightness goes as Sigma(sub x) is approximately r(exp -1.8) outside the core region. The radial profile is a function of energy such that the softer X-rays have a smaller core radius and a flatter slope. Spectral analysis reveals that the emission temperature, with an average of 1 keV, peaks at an intermediate radius of 2-3 min and falls toward the center (possibly decreases outward as well). The absorption column density is consistent with the Galactic line-of-sight value. The X-ray emission of NGC 499 is extended to 300 sec and suggests a similarly cooler core. The cooler cores of NGC 507 and NGC 499 are strong evidence of the presence of cooling flows in these galaxies. Assuming hydrostatic equilibrium outside the cooling radius, the estimated mass-to-light ratio of NGC 507 is 97 +/- 16 within 458 kpc, indicative of the presence of a heavy halo. Similarly, the mass-to-light ratio of NGC 499 is 89 +/- 14 within 137 kpc. Near the edge of the X-ray-emitting region of NGC 507 we detect 19 soft, unresolved sources. These sources do not have optical counterparts and are significantly in excess of the expected number of background serendipitous sources. We speculate that they may represent cooling clumps in the halo of NGC 507. If there are many undetected cooling clumps distributed at large radii, then the radial profile of the X-ray surface brightness does not directly reflect the potential, adding uncertainty to the measurement of the binding mass; the gas mass could also be overestimated.

  14. Measuring the Fraction of Bars and Offset Bars Using the Spitzer Survey of Stellar Structure in Galaxies

    NASA Astrophysics Data System (ADS)

    Ross, Alexa

    2012-01-01

    Using the Spitzer Survey of Stellar Structure in Galaxies at 3.6 and 4.5μm, I have measured a preliminary bar fraction and offset bar fraction in the local universe by visually identifying bar structure within a sample of 2,140 local galaxies. A sample this large has not been used since 1963, when Gerard de Vaucouleurs found the bar fraction to be roughly fbar ˜ 0.6 in the Third Reference Catalog of Bright Galaxies. Since then, there has been much debate over the true value of the bar fraction. The purpose of finding a bar fraction using S4G is to provide a final say in this debate. I have found that the bar fraction in the local universe is fbar = 0.69 when including both definite bars (SB) and candidate bars (SAB). I have also measured a preliminary value for the fraction of offset bars using the same sample. Offset bars are a very rare phenomenon. Of the sample used, 91 galaxies are found to be definite offset bars while an additional 39 are found to be candidate offset bars. When including both definite offset bars and candidate offset bars, the offset bar fraction in the local universe becomes fob = 0.12. I also measure the fraction of offset bars as a function of Hubble type and stellar mass. We find that 54% of offset bars are found in disks having a stellar mass of M ≤ 108 M⊙. Late-type disks possess significantly more offset bars than early-type with 60% of offset bars being found in disks having a Hubble type t ≥ 6.

  15. Diffuse Ionized Gas inside the Dwarf Irregular Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gámez, A. M.; Peimbert, A.

    2007-05-01

    We have studied the differences between the diffuse ionized gas (DIG) and the H II regions along a slit position in the local dwarf irregular galaxy NGC 6822. The slit position passes through the two most prominent H II regions: Hubble V and Hubble X. Important differences have been found in the excitation, ionization, and [N II] λ6584/Hα and [S II] λ6717/Hα line ratios between the DIG and the H II locations. Moreover, the values of all the line ratios are not similar to those in the DIG locations of spiral galaxies but are very similar to the values in other irregular galaxies, such as IC 10. We also determined the rate of recombination using the He I λ5875 line. Finally, we obtained a picture of the ionization sources of the DIG. We consider that the leakage of photons from the H II regions might explain most of the line ratios, except [N II]/Hα, which might be explained by turbulence. Based on observations collected at the European Southern Observatory, Chile, proposal 69.C-0203(A).

  16. On wave dark matter in spiral and barred galaxies

    NASA Astrophysics Data System (ADS)

    Martinez-Medina, Luis A.; Bray, Hubert L.; Matos, Tonatiuh

    2015-12-01

    We recover spiral and barred spiral patterns in disk galaxy simulations with a Wave Dark Matter (WDM) background (also known as Scalar Field Dark Matter (SFDM), Ultra-Light Axion (ULA) dark matter, and Bose-Einstein Condensate (BEC) dark matter). Here we show how the interaction between a baryonic disk and its Dark Matter Halo triggers the formation of spiral structures when the halo is allowed to have a triaxial shape and angular momentum. This is a more realistic picture within the WDM model since a non-spherical rotating halo seems to be more natural. By performing hydrodynamic simulations, along with earlier test particles simulations, we demonstrate another important way in which wave dark matter is consistent with observations. The common existence of bars in these simulations is particularly noteworthy. This may have consequences when trying to obtain information about the dark matter distribution in a galaxy, the mere presence of spiral arms or a bar usually indicates that baryonic matter dominates the central region and therefore observations, like rotation curves, may not tell us what the DM distribution is at the halo center. But here we show that spiral arms and bars can develop in DM dominated galaxies with a central density core without supposing its origin on mechanisms intrinsic to the baryonic matter.

  17. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  18. DUST DISK AROUND A BLACK HOLE IN GALAXY NGC 4261

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a Hubble Space Telescope image of an 800-light-year-wide spiral-shaped disk of dust fueling a massive black hole in the center of galaxy, NGC 4261, located 100 million light-years away in the direction of the constellation Virgo. By measuring the speed of gas swirling around the black hole, astronomers calculate that the object at the center of the disk is 1.2 billion times the mass of our Sun, yet concentrated into a region of space not much larger than our solar system. The strikingly geometric disk -- which contains enough mass to make 100,000 stars like our Sun -- was first identified in Hubble observations made in 1992. These new Hubble images reveal for the first time structure in the disk, which may be produced by waves or instabilities in the disk. Hubble also reveals that the disk and black hole are offset from the center of NGC 4261, implying some sort of dynamical interaction is taking place, that has yet to be fully explained. Credit: L. Ferrarese (Johns Hopkins University) and NASA Image files in GIF and JPEG format, captions, and press release text may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo:

  19. RR Lyrae stars in local group galaxies. I - NGC 185

    NASA Technical Reports Server (NTRS)

    Saha, A.; Hoessel, John G.

    1990-01-01

    Deep CCD images of NGC 185 taken with the '4-shooter' on the Hale 5-m telescope have been processed to find and photometrically measure RR Lyrae stars. 176 variable stars have been found, of which 151 are surmised to be RR Lyrae stars. Finding charts, periods, and light curves are presented. The RR Lyrae stars in this galaxy have a very wide distribution of periods indicating a wide range of metallicity. The mean magnitudes of the RR Lyraes is determined to be 25.20 mag. A distance modulus of 23.79 is derived, based on the best currently available values of foreground extinction and mean absolute magnitudes of RR Lyrae stars.

  20. Line asymmetry in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Ramirez, J. M.; Bautista, Manuel; Kallman, Timothy

    2005-01-01

    We have reanalyzed the 900 ks Chandra X-ray spectrum of NGC 3783, finding evidence on the asymmetry of the spectral absorption lines. The lines are fitted with a parametric expression that results from an analytical treatment of radiatively driven winds. The line asymmetry distribution derived from the spectrum is consistent with a non-spherical outflow with a finite optical depth. Within this scenario, our model explains the observed correlations between the line velocity shifts and the ionization parameter and between the line velocity shift and the line asymmetry. The present results may provide a framework for detailed testing of models for the dynamic and physical properties of warm absorber in Seyfert galaxies.

  1. Self-gravitating gas flow in barred spiral galaxies

    NASA Technical Reports Server (NTRS)

    Huntley, J. M.

    1980-01-01

    A series of two-dimensional numerical experiments is performed in order to test the response of an isothermal, self-gravitating gas disk to a uniformly rotating, barlike gravitational potential. The barlike potential is an equilibrium stellar model from the n-body calculations of Miller and Smith (1979). In the bar-dominated, central regions of the disk, a gas bar whose phase depends primarily on the location of principal resonances in the disk is formed. This response can be understood in terms of orbit-crowding effects. In the gas-dominated outer regions of the disk, two-armed trailing spiral waves are formed. The local pitch angle of these waves increases with increasing fractional gas mass. These self-gravitating gas waves are not self-sustaining. They are driven from the ends of equilibrium stellar bars, and their phase does not depend on the location of resonances in the disk. The relevance of these self-gravitating waves to observations and models of barred spiral galaxies is discussed. It is concluded that these waves and their associated ringlike structures may be consistent with the morphological distribution of gas features in barred spiral galaxies.

  2. Chandra observations of the luminous infrared galaxy NGC 3256

    NASA Astrophysics Data System (ADS)

    Lira, P.; Ward, M.; Zezas, A.; Alonso-Herrero, A.; Ueno, S.

    2002-02-01

    We present a detailed analysis of high-resolution Chandra observations of the merger system NGC 3256, the most infrared-luminous galaxy in the nearby universe. The X-ray data show that several discrete sources embedded in complex diffuse emission contribute >~20 per cent of the total emission (LtotX\\sim 8\\times 1041\\,erg\\,s-1 in the 0.5-10keV energy range). The compact sources are hard and extremely bright and their emission is probably dominated by accretion-driven processes. Both galaxy nuclei are detected with LX~3-10×1040ergs-1. No evidence is found for the presence of an active nucleus in the southern nucleus, contrary to previous speculation. Once the discrete sources are removed, the diffuse component has a soft spectrum that can be modelled by the superposition of three thermal plasma components with temperatures kT=0.6, 0.9 and 3.9keV. Alternatively, the latter component can be described as a power law with index Γ~3. Some evidence is found for a radial gradient of the amount of absorption and temperature of the diffuse component. We compare the X-ray emission with optical, Hα and NICMOS images of NGC 3256 and find a good correlation between the inferred optical/near-infrared and X-ray extinctions. Although inverse Compton scattering could be important in explaining the hard X-rays seen in the compact sources associated with the nuclei, the observed diffuse emission is probably of thermal origin. The observed X-ray characteristics support a scenario in which the powerful X-ray emission is driven solely by the current episode of star formation.

  3. THE FORMATION OF SHELL GALAXIES SIMILAR TO NGC 7600 IN THE COLD DARK MATTER COSMOGONY

    SciTech Connect

    Cooper, Andrew P.; Martinez-Delgado, David; Helly, John; Frenk, Carlos; Cole, Shaun; Crawford, Ken; Zibetti, Stefano; Carballo-Bello, Julio A.

    2011-12-10

    We present new deep observations of 'shell' structures in the halo of the nearby elliptical galaxy NGC 7600, alongside a movie of galaxy formation in a cold dark matter (CDM) universe. The movie, based on an ab initio cosmological simulation, shows how continuous accretion of clumps of dark matter and stars creates a swath of diffuse circumgalactic structures. The disruption of a massive clump on a near-radial orbit creates a complex system of transient concentric shells which bare a striking resemblance to those of NGC 7600. With the aid of the simulation we interpret NGC 7600 in the context of the CDM model.

  4. A radio study of the superwind galaxy NGC 1482

    NASA Astrophysics Data System (ADS)

    Hota, Ananda; Saikia, D. J.

    2005-01-01

    We present multifrequency radio continuum as well as HI observations of the superwind galaxy NGC 1482, with both the Giant Metrewave Radio Telescope (GMRT) and the Very Large Array (VLA). This galaxy has a remarkable hourglass-shaped optical emission-line outflow as well as bipolar soft X-ray bubbles on opposite sides of the galactic disc. The low-frequency, lower-resolution radio observations show a smooth structure. From the non-thermal emission, we estimate the available energy in supernovae, and examine whether this would be adequate to drive the observed superwind outflow. The high-frequency, high-resolution radio image of the central starburst region located at the base of the superwind bi-cone shows one prominent peak and more extended emission with substructure. This image has been compared with the infrared, optical red continuum, Hα, and soft and hard X-ray images from Chandra to understand the nature and relationship of the various features seen at different wavelengths. The peak of the infrared emission is the only feature that is coincident with the prominent radio peak, and possibly defines the centre of the galaxy. The HI observations with the GMRT show two blobs of emission on opposite sides of the central region. These are rotating about the centre of the galaxy and are located at ~2.4 kpc from it. In addition, these observations also reveal a multicomponent HI absorption profile against the central region of the radio source, with a total width of ~250 km s-1. The extreme blue- and redshifted absorption components are at 1688 and 1942 km s-1, respectively, while the peak absorption is at 1836 km s-1. This is consistent with the heliocentric systemic velocity of 1850 +/- 20 km s-1, estimated from a variety of observations. We discuss possible implications of these results.

  5. How to recover both velocity components in discs of barred galaxies with integral-field spectroscopy

    NASA Astrophysics Data System (ADS)

    Maciejewski, Witold; Emsellem, Eric; Krajnović, Davor

    2012-12-01

    We present a new method that derives both velocity components in the equatorial plane of a barred stellar disc from the observed line-of-sight velocity, assuming the geometry of a thin disc. The method can be applied to large departures from circular motion, and does not require multipole decomposition. It is based on assumptions that the bar is close to steady state (i.e. does not evolve fast) and that both morphology and kinematics are symmetrical with respect to the major axis of the bar. We derive the equations used in the method and analyse the effect of observational errors on the inferred velocity fields. We show that this method produces meaningful results via a simple schematic model. We also apply the method on integral-field data of NGC 936, for which we recover both velocity components in the disc. Knowing both velocity components in the disc, i.e. the non-observable transverse velocity in addition to the line-of-sight velocity, puts additional constraints on dynamical models and allows for new ways of determining parameters that are crucial in characterizing galaxies.

  6. Introducing a New 3D Dynamical Model for Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Jung, Christof; Zotos, Euaggelos E.

    2015-11-01

    The regular or chaotic dynamics of an analytical realistic three dimensional model composed of a spherically symmetric central nucleus, a bar and a flat disk is investigated. For describing the properties of the bar, we introduce a new simple dynamical model and we explore the influence on the character of orbits of all the involved parameters of it, such as the mass and the scale length of the bar, the major semi-axis and the angular velocity of the bar, as well as the energy. Regions of phase space with ordered and chaotic motion are identified in dependence on these parameters and for breaking the rotational symmetry. First, we study in detail the dynamics in the invariant plane z = pz = 0 using the Poincaré map as a basic tool and then study the full three-dimensional case using the Smaller Alignment index method as principal tool for distinguishing between order and chaos. We also present strong evidence obtained through the numerical simulations that our new bar model can realistically describe the formation and the evolution of the observed twin spiral structure in barred galaxies.

  7. Star formation in nuclear rings of barred-spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Seo, Woo-Young

    2015-08-01

    Barred-spiral galaxies contain star-forming nuclear rings at their centers. Some rings show a well-defined azimuthal age gradient of star clusters along a ring, while others do not. Using hydrodynamic simulations with the prescriptions of star formation and feedback included, we study what control star formation occurring in the nuclear rings. In models without spiral arms, the star formation rate (SFR) in a ring exhibits a strong burst at early time and declines to small values at late time. The early burst is caused by a rapid gas infall along due to the bar growth, consuming most of the gas inside the bar region. On the other hand, models with spiral arms outside the bar region show multiple starburst activities at late time caused by arm-induced gas inflows, provided that the arm pattern speed is slower than that of the bar. The SFR in models with spirals is larger by a factor of ~ 1.4-4.0 than that in the bar-only models, with larger values corresponding to stronger and slower arms. In all models, young star clusters in nuclear ring show an azimuthal age gradient only when the SFR is small, such that younger clusters tend to locate closer to the contact points, since star formation occurs preferentially in the contact points between a ring and dust lanes.

  8. Star formation properties in barred galaxies. III. Statistical study of bar-driven secular evolution using a sample of nearby barred spirals

    SciTech Connect

    Zhou, Zhi-Min; Wu, Hong; Cao, Chen E-mail: hwu@bao.ac.cn

    2015-01-01

    Stellar bars are important internal drivers of secular evolution in disk galaxies. Using a sample of nearby spiral galaxies with weak and strong bars, we explore the relationships between the star formation feature and stellar bars in galaxies. We find that galaxies with weak bars tend coincide with low concentrical star formation activity, while those with strong bars show a large scatter in the distribution of star formation activity. We find enhanced star formation activity in bulges toward stronger bars, although not predominantly, consistent with previous studies. Our results suggest that different stages of the secular process and many other factors may contribute to the complexity of the secular evolution. In addition, barred galaxies with intense star formation in bars tend to have active star formation in their bulges and disks, and bulges have higher star formation densities than bars and disks, indicating the evolutionary effects of bars. We then derived a possible criterion to quantify the different stages of the bar-driven physical process, while future work is needed because of the uncertainties.

  9. VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418

    SciTech Connect

    Sakamoto, Kazushi; Aalto, Susanne; Evans, Aaron S.; Wiedner, Martina C.; Wilner, David J.

    2010-12-20

    Infrared pumping and its effect on the excitation of HCN molecules can be important when using rotational lines of HCN to probe dense molecular gas in galaxy nuclei. We report the first extragalactic detection of (sub)millimeter rotational lines of vibrationally excited HCN, in the dust-enshrouded nucleus of the luminous infrared galaxy NGC 4418. We estimate the excitation temperature of T{sub vib} {approx} 230 K between the vibrational ground and excited (v{sub 2} = 1) states. This excitation is most likely due to infrared radiation. At this high vibrational temperature the path through the v{sub 2} = 1 state must have a strong impact on the rotational excitation in the vibrational ground level, although it may not be dominant for all rotational levels. Our observations also revealed nearly confusion-limited lines of CO, HCN, HCO{sup +}, H{sup 13}CN, HC{sup 15}N, CS, N{sub 2}H{sup +}, and HC{sub 3}N at {lambda} {approx} 1 mm. Their relative intensities may also be affected by the infrared pumping.

  10. ALMA observations of feeding and feedback in nearby Seyfert galaxies: an AGN-driven outflow in NGC 1433

    NASA Astrophysics Data System (ADS)

    Combes, F.; García-Burillo, S.; Casasola, V.; Hunt, L.; Krips, M.; Baker, A. J.; Boone, F.; Eckart, A.; Marquez, I.; Neri, R.; Schinnerer, E.; Tacconi, L. J.

    2013-10-01

    We report ALMA observations of CO(3-2) emission in the Seyfert 2 galaxy NGC 1433 at the unprecedented spatial resolution of 0.''5 = 24 pc. Our aim is to probe active galactic nucleus (AGN) feeding and feedback phenomena through the morphology and dynamics of the gas inside the central kpc. The galaxy NGC 1433 is a strongly barred spiral with three resonant rings: one at the ultra-harmonic resonance near corotation, and the others at the outer and inner Lindblad resonances (OLR and ILR). A nuclear bar of 400 pc radius is embedded in the large-scale primary bar. The CO map, which covers the whole nuclear region (nuclear bar and ring), reveals a nuclear gaseous spiral structure, inside the nuclear ring encircling the nuclear stellar bar. This gaseous spiral is well correlated with the dusty spiral seen in Hubble Space Telescope (HST) images. The nuclear spiral winds up in a pseudo-ring at ~200 pc radius, which might correspond to the inner ILR. Continuum emission is detected at 0.87 mm only at the very centre, and its origin is more likely thermal dust emission than non-thermal emission from the AGN. It might correspond to the molecular torus expected to exist in this Seyfert 2 galaxy. The HCN(4-3) and HCO+(4-3) lines were observed simultaneously, but only upper limits are derived, with a ratio to the CO(3-2) line lower than 1/60 at 3σ, indicating a relatively low abundance of very dense gas. The kinematics of the gas over the nuclear disk reveal rather regular rotation only slightly perturbed by streaming motions due to the spiral; the primary and secondary bars are too closely aligned with the galaxy major or minor axis to leave a signature in the projected velocities. Near the nucleus, there is an intense high-velocity CO emission feature redshifted to 200 km s-1 (if located in the plane), with a blue-shifted counterpart, at 2'' (100 pc) from the centre. While the CO spectra are quite narrow in the centre, this wide component is interpreted as an outflow involving a molecular mass of 3.6 × 106 M⊙ and a flow rate ~7 M⊙/yr. The flow could be in part driven by the central star formation, but is mainly boosted by the AGN through its radio jets. Based on observations carried out with ALMA in Cycle 0.

  11. STAR FORMATION IN NUCLEAR RINGS OF BARRED GALAXIES

    SciTech Connect

    Seo, Woo-Young; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  12. Star Formation in Nuclear Rings of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Woo-Young; Kim, Woong-Tae

    2013-06-01

    Nuclear rings in barred galaxies are sites of active star formation. We use hydrodynamic simulations to study the temporal and spatial behavior of star formation occurring in nuclear rings of barred galaxies where radial gas inflows are triggered solely by a bar potential. The star formation recipes include a density threshold, an efficiency, conversion of gas to star particles, and delayed momentum feedback via supernova explosions. We find that the star formation rate (SFR) in a nuclear ring is roughly equal to the mass inflow rate to the ring, while it has a weak dependence on the total gas mass in the ring. The SFR typically exhibits a strong primary burst followed by weak secondary bursts before declining to very small values. The primary burst is associated with the rapid gas infall to the ring due to the bar growth, while the secondary bursts are caused by re-infall of the ejected gas from the primary burst. While star formation in observed rings persists episodically over a few Gyr, the duration of active star formation in our models lasts for only about half of the bar growth time, suggesting that the bar potential alone is unlikely to be responsible for gas supply to the rings. When the SFR is low, most star formation occurs at the contact points between the ring and the dust lanes, leading to an azimuthal age gradient of young star clusters. When the SFR is large, on the other hand, star formation is randomly distributed over the whole circumference of the ring, resulting in no apparent azimuthal age gradient. Since the ring shrinks in size with time, star clusters also exhibit a radial age gradient, with younger clusters found closer to the ring. The cluster mass function is well described by a power law, with a slope depending on the SFR. Giant gas clouds in the rings have supersonic internal velocity dispersions and are gravitationally bound.

  13. Non-axisymmetric structure in the satellite dwarf galaxy NGC 2976: Implications for its dark/bright mass distribution and evolution

    SciTech Connect

    Valenzuela, Octavio; Hernandez-Toledo, Hector; Cano, Mariana; Pichardo, Bárbara; Puerari, Ivanio; Buta, Ronald; Groess, Robert

    2014-02-01

    We present the result of an extensive search for non-axisymmetric structures in the dwarf satellite galaxy of M81, NGC 2976, using multiwavelength archival observations. The galaxy is known to present kinematic evidence for a bisymmetric distortion; however, the stellar bar presence is controversial. This controversy motivated the possible interpretation of NGC 2976 as presenting an elliptical disk triggered by a prolate dark matter halo. We applied diagnostics used in spiral galaxies in order to detect stellar bars or spiral arms. The m = 2 Fourier phase has a jump around 60 arcsec, consistent with a central bar and bisymmetric arms. The CO, 3.6 μm surface brightness, and the dust lanes are consistent with a gas-rich central bar and possibly with gaseous spiral arms. The bar-like feature is offset close to 20° from the disk position angle, in agreement with kinematic estimations. The kinematic jumps related to the dust lanes suggest that the bar perturbation in the disk kinematics is non-negligible and the reported non-circular motions, the central gas excess, and the nuclear X-ray source (active galactic nucleus/starburst) might be produced by the central bar. Smoothed particle hydrodynamics simulations of disks inside triaxial dark halos suggest that the two symmetric spots at 130 arcsec and the narrow arms may be produced by gas at turning points in an elliptical disk, or, alternatively, the potential ellipticity can be produced by a tidally induced strong stellar bar/arms; in both cases the rotation curve interpretation is, importantly, biased. The M81 group is a natural candidate to trigger the bisymmetric distortion and the related evolution as suggested by the H I tidal bridge detected by Chynoweth et al. We conclude that both mechanisms, the gas-rich bar and spiral arms triggered by the environment (tidal stirring) and primordial halo triaxiality, can explain most of the NGC 2976 non-circular motions, mass redistribution, and nuclear activity. Distinguishing between them requires detailed modeling of environmental effects. A similar analysis to ours may reveal such structures in other nearby dwarf satellite galaxies; if this is confirmed, the same evolutionary scenario will be applicable to them. This implies biases in constraining their dark matter distribution and also in making comparisons against theoretical predictions for isolated galaxies.

  14. Ionized gas outflow in the isolated S0 galaxy NGC 4460

    NASA Astrophysics Data System (ADS)

    Moiseev, Alexei; Karachentsev, Igor; Kaisin, Serafim

    2010-04-01

    We used integral-field and long-slit spectroscopy to study a bright extended nebulosity recently discovered in the isolated lenticular galaxy NGC 4460 during an Hα survey of nearby galaxies. An analysis of archival Sloan Digital Sky Survey, GALEX and Hubble Space Telescope images indicates that current star formation is entirely concentrated in the central kiloparsec of the galaxy disc. The observed ionized gas parameters (morphology, kinematics and ionization state) can be explained by a gas outflow above the plane of the galaxy, caused by star formation in the circumnuclear region. Galactic wind parameters in NGC 4460 (outflow velocity, total kinetic energy) are several times smaller, compared with the known galactic wind in NGC 253, which is explained by the substantially lower total star formation rate. We discuss the cause of the star formation processes in NGC 4460 and in two other known isolated lenticular (S0) and elliptical (E) galaxies of the Local Volume: NGC 404 and 855. We provide evidence suggesting that the feeding of isolated galaxies by intergalactic gas on a cosmological time-scale is a steady process without significant variations. Based on observations collected with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences, which is operated under the financial support of the Science Department of Russia (registration number 01-43). E-mail: moisav@gmail.com

  15. Counter-rotating gaseous disks in the 'Evil Eye' galaxy NGC4826

    NASA Astrophysics Data System (ADS)

    Braun, Robert; Walterbos, Rene A. M.; Kennicutt, Robert C., Jr.

    1992-12-01

    The discovery of two counterrotating gaseous disks in the otherwise normal early-type spiral NGC4826 is reported. This is the most disklike galaxy in which any kinematic substructure has yet been found. This discovery raises the possibility that even spiral galaxies may have undergone a significant degree of structural evolution due to mergers.

  16. NGC 4656UV: A UV-SELECTED TIDAL DWARF GALAXY CANDIDATE

    SciTech Connect

    Schechtman-Rook, Andrew; Hess, Kelley M. E-mail: hess@ast.uct.ac.za

    2012-05-10

    We report the discovery of a UV-bright tidal dwarf galaxy (TDG) candidate in the NGC 4631/4656 galaxy group, which we designate NGC 4656UV. Using survey and archival data spanning from 1.4 GHz to the ultraviolet, we investigate the gas kinematics and stellar properties of this system. The H I morphologies of NGC 4656UV and its parent galaxy NGC 4656 are extremely disturbed, with significant amounts of counterrotating and extraplanar gas. From UV-FIR photometry, computed using a new method to correct for surface gradients on faint objects, we find that NGC 4656UV has no significant dust opacity and a blue spectral energy distribution. We compute a star formation rate of 0.027 M{sub Sun} yr{sup -1} from the far-ultraviolet flux and measure a total H I mass of 3.8 Multiplication-Sign 10{sup 8} M{sub Sun} for the object. Evolutionary synthesis modeling indicates that NGC 4656UV is a low-metallicity system whose only major burst of star formation occurred within the last {approx}260-290 Myr. The age of the stellar population is consistent with a rough timescale for a recent tidal interaction between NGC 4656 and NGC 4631, although we discuss the true nature of the object-whether it is tidal or pre-existing in origin-in the context of its metallicity being a factor of 10 lower than its parent galaxy. We estimate that NGC 4656UV is either marginally bound or unbound. If bound, it contains relatively low amounts of dark matter. The abundance of archival data allows for a deeper investigation into this dynamic system than is currently possible for most TDG candidates.

  17. The M bh-σ Diagram and the Offset Nature of Barred Active Galaxies

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Li, I.-hui

    2009-06-01

    From a sample of 50 predominantly inactive galaxies with direct supermassive black hole mass measurements, it has recently been established that barred galaxies tend to reside rightward of the M bh-σ relation defined by nonbarred galaxies. Either black holes in barred galaxies tend to be anemic or the central velocity dispersions in these galaxies have a tendency to be elevated by the presence of the bar. The latter option is in accord with studies connecting larger velocity dispersions in galaxies with old bars, while the former scenario is at odds with the observation that barred galaxies do not deviate from the M bh-luminosity relation. Using a sample of 88 galaxies with active galactic nuclei, whose supermassive black hole masses have been estimated from their associated emission lines, we reveal for the first time that they also display this same general behavior in the M bh-σ diagram depending on the presence of a bar or not. A new symmetrical and nonsymmetrical "barless" M bh-σ relation is derived using 82 nonbarred galaxies. The barred galaxies are shown to reside on or up to ~1 dex below this relation. This may explain why narrow-line Seyfert 1 galaxies appear offset from the "barless" M bh-σ relation, and has far-reaching implications given that over half of the disk galaxy population are barred.

  18. Model of outgrowths in the spiral galaxies NGC 4921 and NGC 7049 and the origin of spiral arms

    NASA Astrophysics Data System (ADS)

    Carlqvist, Per

    2013-02-01

    NGC 4921 and 7049 are two spiral galaxies presenting narrow, distinct dust features. A detailed study of the morphology of those features has been carried out using Hubble Space Telescope archival images. NGC 4921 shows a few but well-defined dust arms midway to its centre while NGC 7049 displays many more dusty features, mainly collected within a ring-shaped formation. Numerous dark and filamentary structures, called outgrowths, are found to protrude from the dusty arms in both galaxies. The outgrowths point both outwards and inwards in the galaxies. Mostly they are found to be V-shaped or Y-shaped with the branches connected to dark arm filaments. Often the stem of the Y appears to consist of intertwined filaments. Remarkably, the outgrowths show considerable similarities to elephant trunks in H ii regions. A model of the outgrowths, based on magnetized filaments, is proposed. The model provides explanations of both the shapes and orientations of the outgrowths. Most important, it can also give an account for their intertwined structures. It is found that the longest outgrowths are confusingly similar to dusty spiral arms. This suggests that some of the outgrowths can develop into such arms. The time-scale of the development is estimated to be on the order of the rotation period of the arms or shorter. Similar processes may also take place in other spiral galaxies. If so, the model of the outgrowths can offer a new approach to the old winding problem of spiral arms.

  19. NGC 2276: a remarkable galaxy with a large number of ultraluminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Wolter, Anna; Esposito, Paolo; Mapelli, Michela; Pizzolato, Fabio; Ripamonti, Emanuele

    2015-03-01

    The starbusting, nearby (D = 32.9 Mpc) spiral (Sc) galaxy NGC 2276 belongs to the sparse group dominated by the elliptical galaxy NGC 2300. NGC 2276 is a remarkable galaxy, as it displays a disturbed morphology at many wavelengths. This is possibly due to gravitational interaction with the central elliptical galaxy of the group. Previous ROSAT and XMM-Newton observations resulted in the detection of extended hot gas emission and of a single very bright (˜1041 erg s-1) ultraluminous X-ray source (ULX) candidate. Here, we report on a study of the X-ray sources of NGC 2276 based on Chandra data taken in 2004. Chandra was able to resolve 16 sources, 8 of which are ULXs, and to reveal that the previous ULX candidate is actually composed of a few distinct objects. We construct the luminosity function of NGC 2276, which can be interpreted as dominated by high-mass X-ray binaries, and estimate the star formation rate (SFR) to be ˜5-15 M⊙ yr-1, consistent with the values derived from optical and infrared observations. By means of numerical simulations, we show that both ram pressure and viscous transfer effects are necessary to produce the distorted morphology and the high SFR observed in NGC 2276, while tidal interaction have a marginal effect.

  20. Triple Scoop from Galaxy Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    Silver Dollar Galaxy: NGC 253 (figure 1) Located 10 million light-years away in the southern constellation Sculptor, the Silver Dollar galaxy, or NGC 253, is one of the brightest spiral galaxies in the night sky. In this edge-on view from NASA's Galaxy Evolution Explorer, the wisps of blue represent relatively dustless areas of the galaxy that are actively forming stars. Areas of the galaxy with a soft golden glow indicate regions where the far-ultraviolet is heavily obscured by dust particles.

    Gravitational Dance: NGC 1512 and NGC 1510 (figure 2) In this image, the wide ultraviolet eyes of NASA's Galaxy Evolution Explorer show spiral galaxy NGC 1512 sitting slightly northwest of elliptical galaxy NGC 1510. The two galaxies are currently separated by a mere 68,000 light-years, leading many astronomers to suspect that a close encounter is currently in progress.

    The overlapping of two tightly wound spiral arm segments makes up the light blue inner ring of NGC 1512. Meanwhile, the galaxy's outer spiral arm is being distorted by strong gravitational interactions with NGC 1510.

    Galaxy Trio: NGC 5566, NGC 5560, and NGC 5569 (figure 3) NASA's Galaxy Evolution Explorer shows a triplet of galaxies in the Virgo cluster: NGC 5560 (top galaxy), NGC 5566 (middle galaxy), and NGC 5569 (bottom galaxy).

    The inner ring in NGC 5566 is formed by two nearly overlapping bright arms, which themselves spring from the ends of a central bar. The bar is not visible in ultraviolet because it consists of older stars or low mass stars that do not emit energy at ultraviolet wavelengths. The outer disk of NGC 5566 appears warped, and the disk of NGC 5560 is clearly disturbed. Unlike its galactic neighbors, the disk of NGC 5569 does not appear to have been distorted by any passing galaxies.

  1. Signs of gas flows in the variable Balmer line profiles of the Seyfert galaxy nuclei NGC 3227 and NGC 7469

    NASA Astrophysics Data System (ADS)

    Pronik, I. I.

    2009-03-01

    The data on the variable Balmer line profiles obtained by us for the Seyfert galaxy NGC 3227 and NGC 7469 nuclei and published separately during 1975-2006, were combined with the data compiled from literature, and reviewed in this paper. We hypothesize that the profile variations are connected with three independent regions of different physical conditions: 1) Classical broad line region (BLR) of size ~4.5 × 1016 cm is ionized and excited by the central source radiation. The central source brightness variations in 1971-1972 produced gas parameter variations of 109 cm-3 ≥ ne ≥ 108 cm-3 and 2 × 104 K ≤ Te ≤ 4 × 104 K. 2) The profiles of the Balmer lines contain narrow components that have retained their positions (radial velocities) over 25 and 17 years in NGC 3227 and NGC 7469, respectively. These components are supposed to be caused by long-lived gas flows in the nuclei of the galaxies. Observational data acquired by Rubin and Ford allow us to assume that gas in the flows can be explained by models of collision ionization and excitation of gas with self-absorption. It is dense and hot plasma with ne = 108-1012 cm-3 and Te = (1-2.5) × 104 K. 3) Broad blue bumps of radial velocities between -4000 km s-1 and -5000 km s-1 were detected in the Hγ profile during a several day flare twice in NGC 3227 nucleus and once in NGC 7469. One can speculate that the flares are connected with short-lived ejections. The gas in the ejections was ionized and excited by collision processes with ne ~ 1014 cm-3 and Te ~ 25 000 K.

  2. Dark matter in early-type spiral galaxies: the case of NGC 2179 and of NGC 2775

    NASA Astrophysics Data System (ADS)

    Corsini, E. M.; Pizzella, A.; Sarzi, M.; Cinzano, P.; Vega Beltrn, J. C.; Funes, J. G.; Bertola, F.; Persic, M.; Salucci, P.

    1999-02-01

    We present the stellar and ionized-gas velocity curves and velocity-dispersion profiles along the major axis for six early-type spiral galaxies. Two of these galaxies, namely NGC 2179 and NGC 2775, are particularly suited for the study of dark matter halos. Using their luminosity profiles and modeling their stellar and gaseous kinematics, we derive the mass contributions of the luminous and the dark matter to the total potential. In NGC 2179 we find that the data (measured out to about the optical radius R_opt) unambiguously require the presence of a massive dark halo. For the brighter and bigger object NGC 2775, we can rule out a significant halo contribution at radii R <~ 0.6 R_opt. Although preliminary, these results agree with the familiar mass distribution trend known for late-type spirals of comparable mass. Based on observations carried out at ESO, La Silla (Chile) (ESO N. 52, 1-020) and on observations obtained with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility. Tables 4 to 42 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html.

  3. A GIANT STAR FACTORY IN NEIGHBORING GALAXY NGC 6822

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Resembling curling flames from a campfire, this magnificent nebula in a neighboring galaxy is giving astronomers new insight into the fierce birth of stars as it may have more commonly happened in the early universe. The glowing gas cloud, called Hubble-V, has a diameter of about 200 light-years. A faint tail of nebulosity trailing off the top of the image sits opposite a dense cluster of bright stars at the bottom of the irregularly shaped nebula. NASA's Hubble Space Telescope's resolution and ultraviolet sensitivity reveals a dense knot of dozens of ultra-hot stars nestled in the nebula, each glowing 100,000 times brighter than our Sun. These youthful 4-million-year-old stars are too distant and crowded together to be resolved from ground-based telescopes. The small, irregular host galaxy, called NGC 6822, is one of the Milky Way's closest neighbors and is considered prototypical of the earliest fragmentary galaxies that inhabited the young universe. The galaxy is 1.6 million light-years away in the constellation Sagittarius. The Hubble-V image data was taken with Hubble's Wide Field Planetary Camera 2 (WFPC2) by two science teams: C. Robert O'Dell of Vanderbilt University and collaborators, and Luciana Bianchi of Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy, and collaborators. This color image was produced by The Hubble Heritage Team (STScI). A Hubble image of Hubble-X, another intense star-forming region in NGC 6822, was released by The Heritage Team in January 2001. Credits: NASA, ESA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: C. R. O'Dell (Vanderbilt University) and L. Bianchi (Johns Hopkins University and Osservatorio Astronomico, Torinese, Italy) NOTE TO EDITORS: For additional information, please contact C. R. O'Dell, Vanderbilt University, Physics and Astronomy Dept., Box 1807 Station B, Nashville, TN 37235, (phone) 615-343-1779, (fax) 615-343-7263, (e-mail) cr.odell@vanderbilt.edu or Luciana Bianchi, Johns Hopkins University, Physics and Astronomy Dept., Baltimore, MD 21218, (phone) 410-516-4009, (fax) 410-516-7239, (e-mail) bianchi@pha.jhu.edu or Keith Noll, Space Telescope Science Institute, Baltimore, MD 21218, (phone) 410-338-1828, (fax) 410-338-4579, (e-mail) noll@stsci.edu. Electronic images and additional information are available at: http://heritage.stsci.edu http://oposite.stsci.edu/pubinfo/pr/2001/39 and via links in http://oposite.stsci.edu/pubinfo/latest.html http://oposite.stsci.edu/pubinfo/pictures.html http://hubble.stsci.edu/go/news To receive STScI press releases electronically, send an Internet electronic mail message to public-request@stsci.edu. Leave the subject line blank, and type the word subscribe in the body of the message. The system will respond with a confirmation of the subscription, and you will receive new press releases as they are issued. Please subscribe using the email account with which you would like to receive list messages. To unsubscribe, send mail to public-request@stsci.edu. Leave the subject line blank, and type the word unsubscribe in the body of the message. Please unsubscribe using the email account that you used to subscribe to the list.

  4. Hierarchical star formation across the ring galaxy NGC 6503

    NASA Astrophysics Data System (ADS)

    Gouliermis, Dimitrios A.; Thilker, David; Elmegreen, Bruce G.; Elmegreen, Debra M.; Calzetti, Daniela; Lee, Janice C.; Adamo, Angela; Aloisi, Alessandra; Cignoni, Michele; Cook, David O.; Dale, Daniel A.; Gallagher, John S.; Grasha, Kathryn; Grebel, Eva K.; Davó, Artemio Herrero; Hunter, Deidre A.; Johnson, Kelsey E.; Kim, Hwihyun; Nair, Preethi; Nota, Antonella; Pellerin, Anne; Ryon, Jenna; Sabbi, Elena; Sacchi, Elena; Smith, Linda J.; Tosi, Monica; Ubeda, Leonardo; Whitmore, Brad

    2015-10-01

    We present a detailed clustering analysis of the young stellar population across the star-forming ring galaxy NGC 6503, based on the deep Hubble Space Telescope photometry obtained with the Legacy ExtraGalactic UV Survey. We apply a contour-based map analysis technique and identify in the stellar surface density map 244 distinct star-forming structures at various levels of significance. These stellar complexes are found to be organized in a hierarchical fashion with 95 per cent being members of three dominant super-structures located along the star-forming ring. The size distribution of the identified structures and the correlation between their radii and numbers of stellar members show power-law behaviours, as expected from scale-free processes. The self-similar distribution of young stars is further quantified from their autocorrelation function, with a fractal dimension of ˜1.7 for length-scales between ˜20 pc and 2.5 kpc. The young stellar radial distribution sets the extent of the star-forming ring at radial distances between 1 and 2.5 kpc. About 60 per cent of the young stars belong to the detected stellar structures, while the remaining stars are distributed among the complexes, still inside the ring of the galaxy. The analysis of the time-dependent clustering of young populations shows a significant change from a more clustered to a more distributed behaviour in a time-scale of ˜60 Myr. The observed hierarchy in stellar clustering is consistent with star formation being regulated by turbulence across the ring. The rotational velocity difference between the edges of the ring suggests shear as the driving mechanism for this process. Our findings reveal the interesting case of an inner ring forming stars in a hierarchical fashion.

  5. Optical and x-ray variability of seyfert galaxies NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, Akn 564.

    NASA Astrophysics Data System (ADS)

    Chesnok, Nadya; Sergeev, Sergey; Vavilova, Irina

    We present the results of a study of the optical and X-ray variability properties of sample of AGNs: NGC 5548, NGC 7469, NGC 3227, NGC 4051, NGC 4151, Mrk 509, Mrk 79, Akn 564. Tte results of simultaneous BVRI observations were carried out at the Crimean Astrophysical Observatory with the 70-cm telescope and RXTE observations. We used the structure function (SF) and auto-correlation function (ACF) as the tools to characterize the AGN variability at the base of long, high-quality light curves. One of the most notable features in the AGN light curves is the presence of two components of variability with very different time-scales: slow brightness variation with time-scale from tens to thousand of days and the fast flares (less ten of days), S and F components. The S component has amplitude significantly less then the F does. We concluded that F component appears in X-ray light curve and then in optical light curve with time delays about ten of days. The S component appears in optical light curve and then in X-ray light curve with time delays about thousand of days. We have computed the cross-correlation function (CCF) between variations in the optical light curve (B filter) and variations in the X-ray light curve and found the lags from the CCF peak and CCF centroid. There is strong correlation for two objects: NGC 5548 and NGC 7469. This suggests that some fraction of the primary emission from one band is reprocessed to some other bands allowing us to separate S and F conponents of nucleus variability.

  6. The ionized gas in the CALIFA early-type galaxies. I. Mapping two representative cases: NGC 6762 and NGC 5966

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Monreal-Ibero, A.; Papaderos, P.; Vílchez, J. M.; Gomes, J. M.; Masegosa, J.; Sánchez, S. F.; Lehnert, M. D.; Cid Fernandes, R.; Bland-Hawthorn, J.; Bomans, D. J.; Marquez, I.; Mast, D.; Aguerri, J. A. L.; López-Sánchez, Á. R.; Marino, R. A.; Pasquali, A.; Perez, I.; Roth, M. M.; Sánchez-Blázquez, P.; Ziegler, B.

    2012-04-01

    As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745-7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1' × 1') covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an "ionization cone" are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first "ionization cone" of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([Oiii]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([Oiii]λ5007/Hβ, [Nii]λ6584/Hα, [Sii]λ6717, 6731/Hα, [Oi]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the "ionization cone" scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  7. Discovery of New Dwarf Galaxy Near the Isolated Spiral Galaxy NGC 6503

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Yagi, Masafumi; Komiyama, Yutaka; Boissier, Samuel; Boselli, Alessandro; Bouquin, Alexandre Y. K.; Donovan Meyer, Jennifer; Gil de Paz, Armando; Imanishi, Masatoshi; Madore, Barry F.; Thilker, David A.

    2015-04-01

    We report the discovery of a new dwarf galaxy (NGC 6503-d1) during the Subaru extended ultraviolet disk survey. It is a likely companion of the spiral galaxy NGC 6503. The resolved images, in the B, V, R, i, and Hα bands, show an irregular appearance due to bright stars with underlying, smooth and unresolved stellar emission. It is classified as the transition type (dwarf irregular (dIrr)/dwarf spheroidal (dSph)) between the dIrr and dSph types. Its structural properties are similar to those of the dwarfs in the Local Group, with an absolute magnitude {{M}V}˜ -10.5, half-light radius {{r}e}˜ 400 pc, and central surface brightness {{μ }0,V}˜ 25.2. Despite the low stellar surface brightness environment, one H ii region was detected, though its Hα luminosity is low, indicating an absence of any appreciable O-stars at the current epoch. The presence of multiple stellar populations is indicated by the color-magnitude diagram of ˜300 bright resolved stars and the total colors of the dwarf, with the majority of its total stellar mass ˜ 4× {{10}6} {{M}⊙ } in an old stellar population.

  8. Extended Red Emission in the Evil Eye Galaxy (NGC 4826)

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2002-04-01

    NGC 4826 (M64) is a nearby Sab galaxy with an outstanding, absorbing dust lane (called the Evil Eye) asymmetrically placed across its prominent bulge. In addition, its central region is associated with several regions of ongoing star formation activity. We obtained accurate low-resolution (4.3 Å pixel-1) long-slit spectroscopy (KPNO 4 m) of NGC 4826 in the 5300-9100 Å spectral range, with a slit of 4.4‧ length, encompassing the galaxy's bulge size, positioned across its nucleus. The wavelength-dependent effects of absorption and scattering by the dust in the Evil Eye are evident when comparing the observed stellar spectral energy distributions (SEDs) of pairs of positions symmetrically located with respect to the nucleus, one on the dust lane side and one on the symmetrically opposite side of the bulge, under the assumption that the intrinsic (i.e., unobscured) radiation field is to first-order axisymmetric. We analyzed the SED ratios for a given number of pairs of positions through the multiple-scattering radiative transfer model of Witt & Gordon. As a main result, we discovered strong residual extended red emission (ERE) from a region of the Evil Eye within a projected distance of about 13" from the nucleus, adjacent to a broad, bright H II region, intercepted by the spectrograph slit. ERE is an established phenomenon well-covered in the literature and interpreted as originating from photoluminescence by nanometer-sized clusters, illuminated by UV/optical photons of the local radiation field. In the innermost part of the Evil Eye, the ERE band extends from about 5700 to 9100 Å, with an estimated peak intensity of ~3.7×10-6 ergs s -1 Å-1 cm-2 sr-1 near 8300 Å and with an ERE to scattered light band integrated intensity ratio, I(ERE)/I(sca), of about 0.7. At farther distances, approaching the broad, bright H II region, the ERE band and peak intensity shift toward longer wavelengths, while the ERE band-integrated intensity, I(ERE), diminishes and, eventually, vanishes at the inner edge of this H II region. The radial variation of I(ERE) and I(ERE)/I(sca) does not match that of the optical depth of the model derived for the dust lane. By contrast, the radial variation of I(ERE), I(ERE)/I(sca) and of the ERE spectral domain seems to depend strongly on the strength and hardness of the illuminating radiation field. In fact, I(ERE) and I(ERE)/I(sca) diminish and the ERE band shifts toward longer wavelengths when both the total integrated Lyman continuum photon rate, Q(H0)TOT, and the characteristic effective temperature, Teff, of the illuminating OB stars increase. Q(H0)TOT and Teff are estimated from the extinction-corrected Hα (λ=6563 Å) line intensity and line intensity ratios [N II] (λ6583)/Hα and [S II](λλ6716+6731)/Hα, respectively, and are consistent with model and observed values typical of OB associations. Unfortunately, we do not have data shortward of 5300 Å, so that the census of the UV/optical flux is incomplete. The complex radial variation of the ERE peak intensity and peak wavelength of I(ERE) and I(ERE)/I(sca) with optical depth and strength of the UV/optical radiation field is reproduced in a consistent way through the theoretical interpretation of the photophysics of the ERE carrier by Smith & Witt, which attributes a key role to the experimentally established recognition that photoionization quenches the luminescence of nanoparticles. When examined within the context of ERE observations in the diffuse interstellar medium (ISM) of our Galaxy and in a variety of other dusty environments, such as reflection nebulae, planetary nebulae, and the Orion Nebula, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere but that the size of the actively luminescing nanoparticles in NGC 4826 is about twice as large as those thought to exist in the diffuse ISM of our Galaxy.

  9. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  10. THE ACS NEARBY GALAXY SURVEY TREASURY. XI. THE REMARKABLY UNDISTURBED NGC 2403 DISK

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Stilp, Adrienne; Radburn-Smith, David; Dolphin, Andrew; Skillman, Evan D. E-mail: jd@astro.washington.edu E-mail: dolphin@raytheon.com

    2013-03-10

    We present detailed analysis of color-magnitude diagrams of NGC 2403, obtained from a deep (m {approx}< 28) Hubble Space Telescope (HST) Wide Field Planetary Camera 2 observation of the outer disk of NGC 2403, supplemented by several shallow (m {approx}< 26) HST Advanced Camera for Surveys fields. We derive the spatially resolved star formation history of NGC 2403 out to 11 disk scale lengths. In the inner portions of the galaxy, we compare the recent star formation rates (SFRs) we derive from the resolved stars with those measured using GALEX FUV + Spitzer 24{mu} fluxes, finding excellent agreement between the methods. Our measurements also show that the radial gradient in recent SFR mirrors the disk exponential profile to 11 scale lengths with no break, extending to SFR densities a factor of {approx}100 lower than those that can be measured with GALEX and Spitzer ({approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} kpc{sup -2}). Furthermore, we find that the cumulative stellar mass of the disk was formed at similar times at all radii. We compare these characteristics of NGC 2403 to those of its ''morphological twins'', NGC 300 and M 33, showing that the structure and age distributions of the NGC 2403 disk are more similar to those of the relatively isolated system NGC 300 than to those of the Local Group analog M 33. We also discuss the environments and HI morphologies of these three nearby galaxies, comparing them to integrated light studies of larger samples of more distant galaxy disks. Taken together, the physical properties and evolutionary history of NGC 2403 suggest that the galaxy has had no close encounters with other M 81 group members and may be falling into the group for the first time.

  11. A Study of the X-ray Source Population in the Dwarf Galaxy NGC 6822

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Swartz, Douglas A.; Ghosh, Kajal K.; Wu, Kinwah

    2003-01-01

    The dlrr galaxy NGC 6822 is a distant member of the Local Group. It is a site of recent star formation, rich in HII regions and OB associations, as well as containing an older globular cluster population. We present results of a deep Chandra observation of NGC 6822. The brightest source is extended and most likely a SNR. In addition to spectral analysis of the brightest sources, we extend the luminosity function down to the 10(sup)35 erg/s range.

  12. DETERMINING THE NATURE OF THE EXTENDED H I STRUCTURE AROUND LITTLE THINGS DWARF GALAXY NGC 1569

    SciTech Connect

    Johnson, Megan

    2013-06-15

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9 Degree-Sign Multiplication-Sign 2 Degree-Sign region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1. Degree-Sign 5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0. Degree-Sign 5 H I cloud, filaments, and main body of the galaxy. The 0. Degree-Sign 5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.

  13. Determining the Nature of the Extended H I Structure around LITTLE THINGS Dwarf Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Johnson, Megan

    2013-06-01

    This work presents an extended, neutral hydrogen emission map around Magellanic-type dwarf irregular galaxy (dIm) NGC 1569. In the spring of 2010, the Robert C. Byrd Green Bank Telescope was used to map a 9° × 2° region in H I line emission that includes NGC 1569 and IC 342 as well as two other dwarf galaxies. The primary objective for these observations was to search for structures potentially connecting NGC 1569 with IC 342 group members in order to trace previous interactions and thus, provide an explanation for the starburst and peculiar kinematics prevalent in NGC 1569. A large, half-degree diameter H I cloud was detected that shares the same position and velocity as NGC 1569. Also, two long structures were discovered that are reminiscent of intergalactic filaments extending out in a V-shaped manner from NGC 1569 toward UGCA 92, a nearby dwarf galaxy. These filamentary structures extend for about 1.°5, which is 77 kpc at NGC 1569. There is a continuous velocity succession with the 0.°5 H I cloud, filaments, and main body of the galaxy. The 0.°5 H I cloud and filamentary structures may be foreground Milky Way, but are suggestive as possible remnants of an interaction between NGC 1569 and UGCA 92. The data also show two tidal tails extending from UGCA 86 and IC 342, respectively. These structures may be part of a continuous H I bridge but more data are needed to determine if this is the case.

  14. The environment of barred galaxies in the low-redshift universe

    SciTech Connect

    Lin, Ye; Sodi, Bernardo Cervantes; Li, Cheng; Wang, Lixin; Wang, Enci E-mail: leech@shao.ac.cn

    2014-12-01

    We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ∼50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  15. The Environment of Barred Galaxies in the Low-redshift Universe

    NASA Astrophysics Data System (ADS)

    Lin, Ye; Cervantes Sodi, Bernardo; Li, Cheng; Wang, Lixin; Wang, Enci

    2014-12-01

    We present a study of the environment of barred galaxies using a volume-limited sample of over 30,000 galaxies drawn from the Sloan Digital Sky Survey. We use four different statistics to quantify the environment: the projected two-point cross-correlation function, the background-subtracted number count of neighbor galaxies, the overdensity of the local environment, and the membership of our galaxies to galaxy groups to segregate central and satellite systems. For barred galaxies as a whole, we find a very weak difference in all the quantities compared to unbarred galaxies of the control sample. When we split our sample into early- and late-type galaxies, we see a weak but significant trend for early-type galaxies with a bar to be more strongly clustered on scales from a few 100 kpc to 1 Mpc when compared to unbarred early-type galaxies. This indicates that the presence of a bar in early-type galaxies depends on the location within their host dark matter halos. This is confirmed by the group catalog in the sense that for early-types, the fraction of central galaxies is smaller if they have a bar. For late-type galaxies, we find fewer neighbors within ~50 kpc around the barred galaxies when compared to unbarred galaxies from the control sample, suggesting that tidal forces from close companions suppress the formation/growth of bars. Finally, we find no obvious correlation between overdensity and the bars in our sample, showing that galactic bars are not obviously linked to the large-scale structure of the universe.

  16. Compact stellar systems in the polar ring galaxies NGC 4650A and NGC 3808B: Clues to polar disk formation

    NASA Astrophysics Data System (ADS)

    Ordenes-Briceño, Yasna; Georgiev, Iskren Y.; Puzia, Thomas H.; Goudfrooij, Paul; Arnaboldi, Magda

    2016-01-01

    Context. Polar ring galaxies (PRGs) are composed of two kinematically distinct and nearly orthogonal components, a host galaxy (HG) and a polar ring/disk (PR). The HG usually contains an older stellar population than the PR. The suggested formation channel of PRGs is still poorly constrained. Suggested options are merger, gas accretion, tidal interaction, or a combination of both. Aims: To constrain the formation scenario of PRGs, we study the compact stellar systems (CSSs) in two PRGs at different evolutionary stages: NGC 4650A with well-defined PR, and NGC 3808 B, which is in the process of PR formation. Methods: We use archival HST/WFPC2 imaging in the F450W, F555W, or F606W and F814W filters. Extensive completeness tests, PSF-fitting techniques, and color selection criteria are used to select cluster candidates. Photometric analysis of the CSSs was performed to determine their ages and masses using stellar population models at a fixed metallicity. Results: Both PRGs contain young CSSs (<1 Gyr) with masses of up to 5 × 106M⊙, mostly located in the PR and along the tidal debris. The most massive CSSs may be progenitors of metal-rich globular clusters or ultra compact dwarf (UCD) galaxies. We identify one such young UCD candidate, NGC 3808 B-8, and measure its size of reff = 25.23+1.43-2.01 pc. We reconstruct the star formation history of the two PRGs and find strong peaks in the star formation rate (SFR, ≃200 M⊙/yr) in NGC 3808 B, while NGC 4650 A shows milder (declining) star formation (SFR< 10 M⊙/yr). This difference may support different evolutionary paths between these PRGs. Conclusions: The spatial distribution, masses, and peak star formation epoch of the clusters in NGC 3808 suggest for a tidally triggered star formation. Incompleteness at old ages prevents us from probing the SFR at earlier epochs of NGC 4650 A, where we observe the fading tail of CSS formation. This also impedes us from testing the formation scenarios of this PRG.

  17. Bar slowdown and the distribution of dark matter in barred galaxies

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.

    2014-02-01

    `Conspiracy' between the dark and the baryonic matter prohibits an unambiguous decomposition of disc galaxy rotation curves into the corresponding components. Several methods have been proposed to counter this difficulty, but their results are widely discrepant. In this paper, I revisit one of these methods, which relies on the relation between the halo density and the decrease of the bar pattern speed. The latter is routinely characterized by the ratio R of the corotation radius RCR to the bar length Lb, R = R_CR/L_b. I use a set of N-body+SPH simulations, including subgrid physics, whose initial conditions cover a range of gas fractions and halo shapes. The models, by construction, have roughly the same azimuthally averaged circular velocity curve and halo density and they are all submaximal, i.e. according to previous works, they are expected to have all roughly the same R value, well outside the fast bar range (1.2 ± 0.2). Contrary to these expectations, however, these simulations end up having widely different R values, either within the fast bar range or well outside it. This shows that the R value cannot constrain the halo density, nor determine whether galactic discs are maximal or submaximal. I argue that this is true even for early-type discs (S0s and Sas).

  18. NGC 5011C: An Overlooked Dwarf Galaxy in the Centaurus A Group

    NASA Astrophysics Data System (ADS)

    Saviane, Ivo; Jerjen, Helmut

    2007-04-01

    A critical study of the properties of groups of galaxies can be done only once a complete census of group members is available. Despite extensive surveys, even nearby groups can lead to surprises. Indeed, we report the discovery of a previously unnoticed member of the Centaurus A Group, NGC 5011C. While the galaxy is a well-known stellar system listed with a NGC number, its true identity has remained hidden because of coordinate confusion and wrong redshifts in the literature. NGC 5011C attracted our attention since, at a putative distance of 45.3 Mpc, it would be a peculiar object with a very low surface brightness typical of a dwarf galaxy and, at the same time, a size typical of an early-type spiral or S0 galaxy. To confirm or reject this peculiarity, our immediate objective was to have the first reliable measurement of its recession velocity. The observations were carried out with EFOSC2 at the 3.6 m European Southern Observatory (ESO) telescope, and the spectra were obtained with the instrument in long-slit mode. The redshifts of both NGC 5011C and its neighbor NGC 5011B were computed by cross-correlating their spectra with that of a radial velocity standard star. We found that NGC 5011C indeed has a low redshift of vodot = 647 ± 96 km s-1 and thus is a nearby dwarf galaxy rather than a member of the distant Centaurus cluster, as believed for the past 23 years. Rough distance estimates based on photometric parameters also favor this scenario. As a by-product of our study we update the redshift for NGC 5011B to vodot = 3227 ± 50 km s-1. Applying population synthesis techniques, we find that NGC 5011B has a luminosity-weighted age of 4 ± 1 Gyr and a solar metallicity, and that the luminosity-weighted age and metallicity of NGC 5011C are 0.9 ± 0.1 Gyr and 1/5 solar. Finally, we estimate a stellar mass of NGC 5011C comparable to that of dwarf spheroidal galaxies in the Local Group. Based on observations made with European Southern Observatory telescopes at the La Silla Observatory.

  19. The Effect of a Bar on a Minor-Merger Interpretation of NGC 1097's Optical "Jets"

    NASA Astrophysics Data System (ADS)

    Morris, Aaron; Heller, C.

    2007-12-01

    A previous work by Higdon & Wallin (2003 ApJ, 535, 281: HW) has demonstrated by means of numerical simulations that the optical jets detected in NGC 1097 are consistent with having been formed by a minor-merger. However, this work neglected a significant bar component in the disk which could affect this conclusion. In this work we reproduce the results of HW and then continue further by including a bar component in the disk estimated from K-band observations. Through additional simulations we investigate the overall effect on the jets and whether inclusion of the bar strengthens or weakens support for the minor-merger interpretation.

  20. Rapid X-ray variability from the Seyfert 1 Galaxy NGC 4051

    NASA Technical Reports Server (NTRS)

    Marshall, F. E.; Holt, S. S.; Mushotzky, R. F.; Becker, R. H.

    1983-01-01

    Strong variable X-ray emission from the nearby low luminosity Seyfert 1 galaxy NGC 4051 was discovered during observations with the imaging proportional counter of the Einstein Observatory. During one 2304 second observation, the X-ray flux more than doubled in an approximately linear fashion, and a 70% increase for 150 seconds was seen during another 968 second observation. Evidence is presented which demonstrates that the X-ray spectrum of NGC 4051 is unusually soft compared to Seyfert 1 galaxies or QSOs. The emission mechanism is probably not synchrotron or synchrotron self-Compton, but the emission can be plausibly explained by various black hole accretion models.

  1. The `shook up' galaxy NGC 3079: the complex interplay between H I, activity and environment

    NASA Astrophysics Data System (ADS)

    Shafi, N.; Oosterloo, T. A.; Morganti, R.; Colafrancesco, S.; Booth, R.

    2015-12-01

    We present deep neutral hydrogen (H I) observations of the starburst/Seyfert galaxy NGC 3079 and its environment, obtained with the Westerbork Synthesis Radio Telescope. Our observations reveal previously unknown components, both in H I emission and in absorption, that show that NGC 3079 is going through a hectic phase in its evolution. The H I disc appears much more extended than previously observed and is morphologically and kinematically lopsided on all scales with evidence for strong non-circular motions in the central regions. Our data reveal prominent gas streams encircling the entire galaxy suggesting strong interaction with its neighbours. A 33 kpc long H I bridge is detected between NGC 3079 and MCG 9-17-9, likely caused by ram-pressure stripping of MGC 9-17-9 by the halo of hot gas of NGC 3079. The cometary H I tail of the companion NGC 3073, earlier discovered by Irwin et al., extends about twice as long in our data, while a shorter, second tail is also found. This tail is likely caused by ram-pressure stripping by the strong, starburst-driven wind coming from NGC 3079. We also detect, in absorption, a nuclear H I outflow extending to velocities well outside what expected for gravitational motion. This is likely an atomic counterpart of the well-studied outflow of ionized gas present in this galaxy. This may indicate that also large amounts of cold gas are blown out of NGC 3079 by the starburst/AGN. Our estimates of the jet energy and kinetic power suggest that both the AGN and the starburst in NGC 3079 are powerful enough to drive the atomic outflow.

  2. Is the giant elliptical galaxy NGC 5018 a post-merger remnant?

    NASA Astrophysics Data System (ADS)

    Buson, L. M.; Bertola, F.; Bressan, A.; Burstein, D.; Cappellari, M.

    2004-09-01

    NGC 5018, one of the weakest UV emitters among giant ellipticals (gE) observed with IUE, appears to consist of an optical stellar population very similar to that of the compact, dwarf elliptical M 32, which is several magnitudes fainter in luminosity than NGC 5018 and whose stellar population is known to be ˜3 Gyr old. Here we show that the mid-UV spectra of these two galaxies are also very similar down to an angular scale hundreds times smaller than the IUE large aperture (as probed by HST/FOS UV spectra obtained through 0.86'' apertures). This implies a reasonably close match of the populations dominating their mid-UV light (namely, their main-sequence turnoff stars). These data indicate that NGC 5018 has, in its inner regions, a rather uniform dominance of a ˜3 Gyr-old stellar population, probably a bit different in metallicity from M 32. Combined with the various structures that indicate that NGC 5018 is the result of a recent major merger, it appears that almost all of stars we see in its center regions were formed about 3 Gyr ago, in that merger event. NGC 5018 is likely the older brother of NGC 7252, the canonical gE-in-formation merger. As such, NGC 5018 is perhaps the best galaxy which can tell us how a merger works, after the fireworks subside, to form a gE galaxy today. For this reason alone, the stellar populations in NGC 5018 at all radii are worth studying in detail.

  3. The star formation history of low-mass disk galaxies: A case study of NGC 300

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu; Zhang, Fenghui; Chang, Ruixiang; Wang, Lang; Cheng, Liantao

    2016-01-01

    Context. Since NGC 300 is a bulgeless, isolated low-mass galaxy and it has not experienced radial migration during its evolution history, it can be treated as an ideal laboratory to test the simple galactic chemical evolution model. Aims: Our main aim is to investigate the main properties of the star formation history (SFH) of NGC 300 and compare its SFH with that of M 33 to explore the common properties and differences between these two nearby low-mass systems. Methods: We construct a simple chemical evolution model for NGC 300, assuming its disk forms gradually from continuous accretion of primordial gas and including the gas-outflow process. The model allows us to build a bridge between the SFH and observed data of NGC 300, in particular, the present-day radial profiles and global observed properties (e.g., cold gas mass, star formation rate, and metallicity). By means of comparing the model predictions with the corresponding observations, we adopt the classical χ2 methodology to find out the best combination of free parameters a, b, and bout. Results: Our results show that by assuming an inside-out formation scenario and an appropriate outflow rate, our model reproduces well most of the present-day observational values. The model not only reproduces well the radial profiles, but also the global observational data for the NGC 300 disk. Our results suggest that NGC 300 may experience a rapid growth of its disk. Through comparing the best-fitting, model-predicted SFH of NGC 300 with that of M 33, we find that the mean stellar age of NGC 300 is older than that of M 33 and there is a recent lack of primordial gas infall onto the disk of NGC 300. Our results also imply that the local environment may play a key role in the secular evolution of galaxy disks.

  4. Revealing Galactic scale bars with the help of Galaxy Zoo and ALFALFA .

    NASA Astrophysics Data System (ADS)

    Masters, K. L.; the Galaxy Zoo Team

    We use visual classifications of the brightest 250,000 galaxies in the Sloan Digital Sky Survey Main Galaxy Sample provided by citizen scientists via the Galaxy Zoo project (www.galaxyzoo.org, Lintott et al. 2008) to identify a sample of local disc galaxies with reliable bar identifications. These data, combined with information on the atomic gas content from the ALFALFA survey (Haynes et al. 2011) show that disc galaxies with higher gas content have lower bar fractions. We use a gas deficiency parameter to show that disc galaxies with more/less gas than expected for their stellar mass are less/more likely to host bars. Furthermore, we see that at a fixed gas content there is no residual correlation between bar fraction and stellar mass. We argue that this suggests previously observed correlations between galaxy colour/stellar mass and (strong) bar fraction (e.g. from the sample in Masters et al. 2011, and also see Nair & Abraham 2010) could be driven by the interaction between bars and the gas content of the disc, since more massive, optically redder disc galaxies are observed to have lower gas contents. Furthermore we see evidence that at a fixed gas content the global colours of barred galaxies are redder than those of unbarred galaxies. We suggest that this could be due to the exchange of angular momentum beyond co-rotation which might stop a replenishment of gas from external sources, and act as a source of feedback to temporarily halt or reduce the star formation in the outer parts of barred discs. These results (published as Masters et al. 2012) combined with those of Skibba et al. (2012), who use the same sample to show a clear (but subtle and complicated) environmental dependence of the bar fraction in disc galaxies, suggest that bars are intimately linked to the evolution of disc galaxies.

  5. The SLUGGS survey: chromodynamical modelling of the lenticular galaxy NGC 1023

    NASA Astrophysics Data System (ADS)

    Cortesi, Arianna; Chies-Santos, Ana L.; Pota, Vincenzo; Foster, Caroline; Coccato, Lodovico; Mendes de Oliveira, Claudia; Forbes, Duncan A.; Merrifield, Michael M.; Bamford, Steven P.; Romanowsky, Aaron J.; Brodie, Jean P.; Kartha, Sreeja S.; Alabi, Adebusola B.; Proctor, Robert N.; Almeida, Andres

    2016-03-01

    Globular clusters (GCs) can be considered discrete, long-lived, dynamical tracers that retain crucial information about the assembly history of their parent galaxy. In this paper, we present a new catalogue of GC velocities and colours for the lenticular galaxy NGC 1023, we study their kinematics and spatial distribution, in comparison with the underlying stellar kinematics and surface brightness profile, and we test a new method for studying GC properties. Specifically, we decompose the galaxy light into its spheroid (assumed to represent the bulge+halo components) and disc components and use it to assign to each GC a probability of belonging to one of the two components. Then we model the galaxy kinematics, assuming a disc and spheroidal component, using planetary nebulae and integrated stellar light. We use this kinematic model and the probability previously obtained from the photometry to recalculate for each GC its likelihood of being associated with the disc, the spheroid, or neither. We find that the reddest GCs are likely to be associated with the disc, as found for faint fuzzies in this same galaxy, suggesting that the disc of this S0 galaxy originated at z ≃ 2. The majority of blue GCs are found likely to be associated with the spheroidal (hot) component. The method also allows us to identify objects that are unlikely to be in equilibrium with the system. In NGC 1023 some of the rejected GCs form a substructure in phase space that is connected with NGC 1023 companion galaxy.

  6. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    SciTech Connect

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J.; Sanchez, S. F.

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  7. A state-of-the-art analysis of the dwarf irregular galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Fusco, F.; Buonanno, R.; Hidalgo, S. L.; Aparicio, A.; Pietrinferni, A.; Bono, G.; Monelli, M.; Cassisi, S.

    2014-12-01

    We present a detailed photometric study of the dwarf irregular galaxy NGC 6822 aimed at investigating the properties of its stellar populations and, in particular, the presence of stellar radial gradients. Our goal is to analyse the stellar populations in six fields, which cover the whole bar of this dwarf galaxy. We derived the quantitative star formation history (SFH) of the six fields using the IAC method, involving IAC-pop/MinnIAC codes. The solutions we derived show an enhanced star formation rate (SFR) in Fields 1 and 3 during the past 500 Myr. The SFRs of the other fields are almost extinguished at very recent epochs and. We study the radial gradients of the SFR and consider the total mass converted into stars in two time intervals (between 0 and 0.5 Gyr ago and between 0.5 and 13.5 Gyr ago). We find that the scale lengths of the young and intermediate-to-old populations are perfectly compatible, with the exception of the young populations in Fields 1 and 3. The recent SF in these two fields is greater than in the other ones. This might be an indication that in these two fields we are sampling incipient spiral arms. Further evidence and new observations are required to prove this hypothesis. In addition, we derived the age-metallicity relations. As expected, the metallicity increases with time for all of the fields. We do not observe any radial gradient in the metallicity. Based on observations collected with the ACS on board the NASA/ESA HST.The photometric catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A26

  8. CO (J = 3 → 2) observations of the starburst galaxy NGC 1808 with ASTE

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Kitamoto, Shoko

    2014-10-01

    We present the first map of 12CO (J = 3 → 2) and the first detection of 13CO (J = 3 → 2) in the nearby starburst galaxy with a superwind, NGC 1808. The molecular gas is concentrated in the inner 2 kpc region of the galaxy with extended structure along the galactic bar and along the minor galactic axis. The minor-axis structure can be explained as molecular gas entrained in a galactic wind observed as a dust outflow at optical wavelengths. We have carried out a radiative transfer analysis of the excitation conditions of molecular gas in the starburst region (radius 550 pc) by using the ratios of J = 1 → 0, J = 2 → 1, and J = 3 → 2 emission lines of 12CO and 13CO, and the large velocity gradient approximation. The beam-averaged density and kinetic temperature of molecular gas can be fitted at n H2 ≃ 103.5 cm-3 and Tk ≃ 35 K, indicating the presence of warm molecular gas, close to the estimated dust temperature of Td ≃ 34-37 K. The abundance ratio of the CO isotopologues is found to be [12CO]/[13CO] ≃ 34. The calculations show that, for the derived physical parameters, J = 2 → 1 and J = 3 → 2 transitions of 12CO are optically thick, 12CO J = 1 → 0 is moderately optically thick, and all transitions of 13CO are optically thin. We have estimated an average CO-H2 conversion factor of XCO ≃ 0.8 × 1020 cm-2 (K km s-1)-1 in the central 550 pc by using a simple theoretical model assuming homogeneous, gravitationally bound gas clouds with turbulent velocities. In the same region the molecular gas mass is 3.0 × 108 M⊙ available to fuel the nuclear starburst.

  9. Galaxy Zoo: AGN may be fueled by stellar bars in the local Universe

    NASA Astrophysics Data System (ADS)

    Galloway, Melanie; Willett, Kyle; Fortson, Lucy; Galaxy Zoo Science Team

    2015-01-01

    Bars are a mechanism that have been proposed to explain how gas in the outer regions of a galaxy can be channeled inward and fuel AGN. Multiple observational studies have reported a significantly higher bar fraction in AGN than non-AGN. To accurately probe whether an excess of bars in AGN host galaxies exists because the galaxies host a bar, it is necessary to compare bar and AGN fractions at fixed mass and color, because the presence of bars strongly correlates with both. Thus, a sufficiently large sample is necessary to maintain adequate numbers in subsets of fixed mass and color. We have created a large, volume-limited sample of 19,765 disc galaxies using data from the Sloan Digital Sky Survey. By using morphological classifications from the Galaxy Zoo 2 project, we identify stellar bars in 51.8% of AGN hosts and 37.1% of star-forming disk galaxies. Once mass and color are fixed, there remains a statistically significant increase in the fraction of barred AGN over their unbarred counterparts. Using the L[O III]/MBH ratio as a measure of accretion efficiency, we also show that barred AGN do not exhibit stronger accretion than unbarred AGN at fixed mass or color. The data are consistent with a model in which bar-driven fueling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to AGN fueling via smaller, non-axisymmetric perturbations.

  10. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind

    NASA Astrophysics Data System (ADS)

    Warren, Steven R.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Veilleux, S.; Ostriker, E. C.; Ott, J.; Zwaan, M.; Fisher, D. B.; Weiss, A.; Rosolowsky, E.; Hodge, J.

    2014-01-01

    We present Atacama Large (Sub)Millimeter Array (ALMA) CO (J=1-0) observations of the nearby, nuclear starburst galaxy NGC 253. NGC 253 is host to a "superwind" emanating from the central ~200 pc. Galaxy superwinds are thought to help shape the galactic mass function, play a critical role in galaxy evolution, and pollute the intergalactic medium with heavy metals. Detailed studies of nearby systems frequently focus on the warm or hot phases of the wind, visible in X-ray or Halpha emission. However, most of the mass in the outflowing material is thought to be in the form of neutral atomic and molecular gas. We use the observed CO luminosities and velocities to estimate the mass, mass loss rate, and energetics of the molecular wind. We compute an outflow mass of M_mo 6.6x10^6 Msun. The observed projected velocities of the CO filaments range from ~30-60 km s^-1 resulting in a mass loss rate of ~9 Msun yr^-1. The nuclear region of NGC 253 has a star formation rate of ~3 Msun yr^-1 resulting in a mass loading parameter 1-3. It is not immediately clear if the outflowing gas will escape the halo or eventually rain back onto the disk. What is clear is that NGC 253 will exhaust its nuclear star forming gas in ~60-120 Myr at its current mass loss rate, cementing the superwind as an important contributor in the evolution of NGC 253.

  11. The evolutionary history of the interacting Galaxy system NGC 7714/7715 (Arp 284)

    NASA Technical Reports Server (NTRS)

    Smith, Beverly J.; Wallin, John F.

    1992-01-01

    The distribution and kinematics of atomic hydrogen in an interacting galaxy pair are studied to develop a model of its formation and assess its implications. H I gas peaks, bridges, and tails for NGC 7714/7715 (Arp 284) are identified with the VLA observations, and the velocity field appears to indicate that of an inclined rotating disk. A parabolic off-center collision is modeled for two disk galaxies with different masses, and formation scenario leads to results consistent with the observations. The point of closest approach occurred 1.1 x 10 exp 8 years ago, and the inclination angle for NGC 7714 is given at around 30 deg. This ring galaxy's lack of star formation is attributed to the large impact parameter associated with the parabolic off-center collision considered for Arp 284. Star formation and the initial mass function of the interacting galaxy pair are studied to assess the age and composition of the objects.

  12. Short-term dynamical evolution of grand-design spirals in barred galaxies

    NASA Astrophysics Data System (ADS)

    Baba, Junichi

    2015-12-01

    We investigate the short-term dynamical evolution of stellar grand-design spiral arms in barred spiral galaxiesusing a three-dimensional (3D) N-body/hydrodynamic simulation. Similar to previous numerical simulations of unbarred, multiple-arm spirals, we find that grand-design spiral arms in barred galaxies are not stationary, but rather dynamic. This means that the amplitudes, pitch angles, and rotational frequencies of the spiral arms are not constant, but change within a few hundred million years (i.e. the typical rotational period of a galaxy). We also find that the clear grand-design spirals in barred galaxies appear only when the spirals connect with the ends of the bar. Furthermore, we find that the short-term behaviour of spiral arms in the outer regions (R > 1.5-2 bar radius) can be explained by the swing amplification theory and that the effects of the bar are not negligible in the inner regions (R < 1.5-2 bar radius). These results suggest that although grand-design spiral arms in barred galaxies are affected by the stellar bar, the grand-design spiral arms essentially originate not as bar-driven stationary density waves, but rather as self-excited dynamic patterns. We imply that a rigidly rotating grand-design spiral could not be a reasonable dynamical model for investigating gas flows and cloud formation even in barred spiral galaxies.

  13. VERITAS UPPER LIMIT ON THE VERY HIGH ENERGY EMISSION FROM THE RADIO GALAXY NGC 1275

    SciTech Connect

    Acciari, V. A.; Benbow, W.; Aliu, E.; Boltuch, D.; Arlen, T.; Celik, O.; Aune, T.; Bautista, M.; Cogan, P.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Dickherber, R.; Bradbury, S. M.; Byrum, K.; Cannon, A.; Cesarini, A.; Ciupik, L.; Cui, W.; Duke, C.

    2009-12-01

    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E>100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hr. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope result.

  14. Stellar kinematics in the nucleus of NGC 6240: A massive galaxy revealed

    NASA Technical Reports Server (NTRS)

    Lester, Dan F.; Gaffney, Niall I.

    1994-01-01

    We have used the 2.3 micron bandhead of CO to measure the kinematics of the red stellar population in the nucleus of the luminous galaxy NGC 6240, the near-infrared spectrum of which is dominated by lines of shocked gas. With this manifest evidence for dissipative effects in the gas, it is such stellar velocity dispersion that is most unambiguously indicative of gravitational potential. We find a nuclear velocity dispersion sigma = 350 km/sec which is considerably larger than that seen in any gaseous component of this galaxy. At least one partner in this merger must therefore have been very massive, with M(sub B) approximately -23. In view of conventional wisdom that the high luminosity of NGC 6240 derives from star formation, it is suprising that we find M/L to be of order unity. While there seems to be little question that star formation is taking place in this interacting system, this high M/L calls into question the importance of star formation in the luminosity budget of the galaxy. In particular, it seems likely that the red starlight in NGC 6240 is produced by giants rather than a population of young red supergiants. This brings into question the (now reflexive) association of relatively deep CO bands in galaxies (which are conspicuously strong in NGC 6240) with recent star formation.

  15. Evidence for a dynamical halo around the edge-on galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Lerche, I.; Schlickeiser, R.

    1985-01-01

    Radio continuum observations at five frequencies between 327 MHz and 10.7 GHz of the edge on galaxy NGC 4631 confirm the prediction concerning the frequency dependence of the halo extent and the spatial variations of the radio spectral indices in the dynamical halo model made by Lerche and Schlickeiser. The measurements are presented, and a detailed comparison with theoretical predictions is made.

  16. Antlia B: A Faint Dwarf Galaxy Member of the NGC 3109 Association

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Spekkens, K.; Crnojević, D.; Hargis, J. R.; Willman, B.; Strader, J.; Grillmair, C. J.

    2015-10-01

    We report the discovery of Antlia B, a faint dwarf galaxy at a projected distance of ˜72 kpc from NGC 3109 ({M}V ˜ -15 {mag}), the primary galaxy of the NGC 3109 dwarf association at the edge of the Local Group. The tip of the red giant branch distance to Antlia B is D = 1.29 ± 0.10 Mpc, which is consistent with the distance to NGC 3109. A qualitative analysis indicates the new dwarf's stellar population has both an old, metal-poor red giant branch (≳ 10 {{Gyr}}, [Fe/H] ˜ -2), and a younger blue population with an age of ˜200-400 Myr, analogous to the original Antlia dwarf, another likely satellite of NGC 3109. Antlia B has H i gas at a velocity of {v}{helio,{{H}} {{I}}} = 376 km s-1, confirming the association with NGC 3109 (vhelio = 403 km s-1). The H i gas mass (MH i = 2.8 ± 0.2 × 105 {M}⊙ ), stellar luminosity (MV = -9.7 ± 0.6 mag) and half light radius (rh = 273 ± 29 pc) are all consistent with the properties of dwarf irregular and dwarf spheroidal galaxies in the Local Volume, and is most similar to the Leo P dwarf galaxy. The discovery of Antlia B is the initial result from a Dark Energy Camera survey for halo substructure and faint dwarf companions to NGC 3109 with the goal of comparing observed substructure with expectations from the Λ+Cold Dark Matter model in the sub-Milky Way regime.

  17. Young tidal dwarf galaxies around the gas-rich disturbed lenticular NGC 5291

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Mirabel, I. F.

    1998-05-01

    NGC 5291 is an early type galaxy at the edge of the cluster Abell 3574 which drew the attention because of the unusual high amount of atomic gas ( ~ 5 x 10(10) {M_{\\odot}}) found associated to it. The HI is distributed along a huge and fragmented ring, possibly formed after a tidal interaction with a companion galaxy. We present multi-slit optical spectroscopic observations and optical/near-infrared images of the system. We show that NGC 5291 is a LINER galaxy exhibiting several remnants of previous merging events, in particular a curved dust lane and a counter-rotation of the gas with respect to the stars. The atomic hydrogen has undoubtly an external origin and was probably accreted by the galaxy from a gas-rich object in the cluster. It is unlikely that the HI comes from the closest companion of NGC 5291, the so-called ``Seashell'' galaxy, which appears to be a fly-by object at a velocity greater than 400 km s(-1) . We have analyzed the properties of 11 optical counterparts to the clumps observed in the HI ring. The brightest knots show strong similarities with classical blue compact dwarf galaxies. They are dominated by active star forming regions; their most recent starburst is younger than 5 Myr; we did not find evidences for the presence of an old underlying stellar population. NGC 5291 appears to be a maternity of extremely young objects most probably forming their first generation of stars. Born in pre-enriched gas clouds, these recycled galaxies have an oxygen abundance which is higher than BCDGs ({Z_{\\odot}}/3 on average) and which departs from the luminosity-metallicity relation observed for typical dwarf and giant galaxies. We propose this property as a tool to identify tidal dwarf galaxies (TDGs) among the dwarf galaxy population. Several TDGs in NGC 5291 exhibit strong velocity gradients in their ionized gas and may already be dynamically independent galaxies. Based on observations collected at the European Southern Observatory, La Silla, Chile. ESO N$^{o

  18. Chandra Observations of NGC 4438: An Environmentally Damaged Galaxy in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Machacek, Marie E.; Jones, Christine; Forman, William R.

    2004-07-01

    We present results from a 25 ks Chandra ACIS-S observation of galaxies NGC 4438 and NGC 4435 in the Virgo Cluster. X-ray emission in NGC 4438 is observed in a ~700 pc nuclear region, a ~2.3 kpc spherical bulge, and a network of filaments extending 4-10 kpc to the west and southwest of the galaxy. The X-ray emission in all three regions is highly correlated to similar features observed in Hα. Spectra of the filaments and bulge are well represented by a 0.4 keV MEKAL model with combined 0.3-2 keV intrinsic luminosity LX=1.24×1040 ergs s-1, electron densities ~0.02-0.04 cm-3, cooling times of 400-700 Myr, and X-ray gas mass <~3.7×108 Msolar. In the nuclear region of NGC 4438 X-ray emission is seen from the nucleus and from two outflow bubbles extending 360 pc (730 pc) to the northwest (southeast) of the nucleus. The spectrum of the northwest outflow bubble plus nucleus is well fitted by an absorbed (nH=1.9+1.0-0.4×1021 cm-2) 0.58+0.04-0.10 keV MEKAL plasma model plus a heavily absorbed (nH=2.9+3.1-2.0×1022 cm-2) Γ=2, power-law component. The electron density, cooling time, and X-ray gas mass in the northwest outflow are ~0.5 cm-3, 30 Myr, and 3.5×106 Msolar, respectively. Weak X-ray emission is observed in the central region of NGC 4435 with the peak of the hard emission coincident with the galaxy's optical center, while the peak of the soft X-ray emission is displaced 316 pc to the northeast. The spectrum of NGC 4435 is well fitted by a nonthermal power law plus a thermal component from 0.2-0.3 keV diffuse interstellar medium gas. We argue that the X-ray properties of gas outside the nuclear region in NGC 4438 and NGC 4435 favor a high-velocity, off-center collision between these galaxies ~100 Myr ago, while the nuclear X-ray-emitting outflow gas in NGC 4438 has been heated only recently (within ~1-2 Myr) by shocks (vs~600 km s-1) possibly powered by a central active galactic nucleus.

  19. ROSAT PSPC observations of two X-ray-faint early-type galaxies: NGC 4365 and NGC 4382

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Kim, D.-W.; Trinchieri, G.

    1994-01-01

    We present the results of ROSAT Positive Sensitive Proportional Counter (PSPC) observations of the two early-type galaxies NGC 4365 and NGC 4382. These galaxies are among those observed with Einstein to have the lowest X-ray to optical flux ratios of early-type galaxies. The PSCP data show that for radii r greater than 50 arcsec the radial distributions of the X-ray surface brightness are consistent with the optical distributions of King (1978). We also find that these galaxies have X-ray spectra significantly different from those observed in X-ray-bright ellipticals, with a relative excess of counts detected in the softest spectral channels. This confirms earlier Einstein results. The characteristics of the ROSAT PSPC do not allow us to discriminate between possible spectral models. If we adopt a two-component thermal model on the grounds of physical plausibility, we find that the spectral data can be fitted with a very soft optically thin component, with kT approximately 0.2 keV, and a hard component with kT greater than (1.0-1.5) keV. The hard component has a luminosity consistent with that expected from the integrated emission of a population of low mass-X-ray binaries in these galaxies; the nature of the very soft component is more speculative. Candidates include the coronal emission of late-type stars, supersoft X-ray sources, RS CVn, and perhaps a hot Interstellar Medium (ISM). Alternatively, the spectal data may be fitted with a 0.6-1 keV bremsstrahlung spectrum (expontential plus Gaunt), and may suggest the presence of a totally new population of X-ray sources.

  20. Velocity dispersions in galaxies. I - The E7 galaxy NGC 7332.

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Chevalier, R. A.

    1972-01-01

    A coude spectrum of the E7 galaxy NGC 7332 with 0.9 A-resolution from 4186 to 4364 A was obtained with the Princeton SEC vidicon television camera and the Hale telescope. Comparisons with spectra of G and K giant stars, numerically broadened for various Maxwellian velocity distributions, give a dispersion velocity in the line of sight of 160 (plus or minus 20) km/sec with the best fit at G8 III. The dispersion appears to be constant within plus or minus 35 km/sec out to 1.4 kpc. After correction for projection, the rotation curve has a slope of 0.18 km/sec per pc at the center and a velocity of 130 km/sec at 1.4 kpc where it is still increasing. For an estimated effective radius of 3.5 kpc enclosing half the light, the virial theorem gives a mass of 140 billion solar masses if the mass-to-light ratio is constant throughout the galaxy.

  1. DECREASED FREQUENCY OF STRONG BARS IN S0 GALAXIES: EVIDENCE FOR SECULAR EVOLUTION?

    SciTech Connect

    Buta, R.; Laurikainen, E.; Salo, H.

    2010-09-20

    Using data from the Near-Infrared S0 Survey of nearby, early-type galaxies, we examine the distribution of bar strengths in S0 galaxies as compared to S0/a and Sa galaxies, and as compared to previously published bar strength data for Ohio State University Bright Spiral Galaxy Survey spiral galaxies. Bar strengths based on the gravitational torque method are derived from 2.2 {mu}m K{sub s} -band images for a statistical sample of 138 (98 S0, 40 S0/a,Sa) galaxies having a mean total blue magnitude (B{sub T}) {<=} 12.5 and generally inclined less than 65{sup 0}. We find that S0 galaxies have weaker bars on average than spiral galaxies in general, even compared to their closest spiral counterparts, S0/a and Sa galaxies. The differences are significant and cannot be entirely due to uncertainties in the assumed vertical scale heights or in the assumption of constant mass-to-light ratios. Part of the difference is likely simply due to the dilution of the bar torques by the higher mass bulges seen in S0s. If spiral galaxies accrete external gas, as advocated by Bournaud and Combes, then the fewer strong bars found among S0s imply a lack of gas accretion according to this theory. If S0s are stripped former spirals, or else are evolved from former spirals due to internal secular dynamical processes which deplete the gas as well as grow the bulges, then the weaker bars and the prevalence of lenses in S0 galaxies could further indicate that bar evolution continues to proceed during and even after gas depletion.

  2. Seeking large-scale magnetic fields in a pure-disk dwarf galaxy NGC 2976

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Heald, G. H.; Elstner, D.; Gallagher, J. S.

    2016-04-01

    Aims: It is still unknown how magnetic field-generation mechanisms could operate in low-mass dwarf galaxies. Here, we present a detailed study of a nearby pure-disk dwarf galaxy NGC 2976. Unlike previously observed dwarf objects, this galaxy possesses a clearly defined disk. We also discuss whether NGC 2976 could serve as a potential source of the intergalactic magnetic field. Methods: For the purpose of our studies, we performed deep multi-frequency polarimetric observations of NGC 2976 with the VLA and Effelsberg radio telescopes. Additionally, we supplement them with re-imaged data from the WSRT-SINGS survey for which a rotation measure (RM) synthesis was performed. A new weighting scheme for the RM synthesis algorithm, consisting of including information about the quality of data in individual frequency channels, was proposed and investigated. Application of this new weighting to the simulated data, as well as to the observed data, results in an improvement of the signal-to-noise ratio in the Faraday depth space. Results: The magnetic field morphology discovered in NGC 2976 consists of a southern polarized ridge. This structure does not seem to be due to just a pure large-scale dynamo process (possibly cosmic-ray driven) at work in this object, as indicated by the RM data and dynamo number calculations. Instead, the field of NGC 2976 is modified by past gravitational interactions and possibly also by ram pressure inside the M 81 galaxy group environment. The estimates of total (7 μG) and ordered (3 μG) magnetic field strengths, as well as degree of field order (0.46), which is similar to those observed in spirals, suggest that tidally generated magnetized gas flows can further enhance dynamo action in the object. NGC 2976 is apparently a good candidate for the efficient magnetization of its neighbourhood. It is able to provide an ordered (perhaps also regular) magnetic field into the intergalactic space up to a distance of about 5 kpc. Conclusions: Tidal interactions (and possibly also ram pressure) can lead to the formation of unusual magnetic field morphologies (like polarized ridges) in galaxies out of the star-forming disks, which do not follow any observed component of the interstellar medium (ISM), as observed in NGC 2976. These galaxies are able to provide ordered magnetic fields far out of their main disks.

  3. 2-D spectroscopy of polar-ring galaxies candidates. II. The peculiar galaxies NGC 2748 and UGC 4385

    NASA Astrophysics Data System (ADS)

    Merkulova, O. A.; Shalyapina, L. V.; Yakovleva, V. A.

    2009-09-01

    This article is devoted to the analysis of new observational data obtained on the 6-m telescope using multimode instrument SCORPIO for two peculiar galaxies NGC 2748 and UGC 4385. Using scanning Fabry-Perot interferometer (FPI) large-scale velocity fields of ionized gas in lines H α and [N II] λ6584 Å for NGC 2748 and in line H α for UGC 4385 and the maps of brightness distribution in continuum and in corresponding lines for both galaxies were constructed. Observational data obtained in the long-slit mode of spectroscopy gave information about the kinematics of stellar component. The analysis of the received materials for NGC 2748 have shown that this object is a disky galaxy with stellar shell which rotates around the major axis of main body. The origin of such shell is most likely connected with the capture and disruption of dwarf companion. The structure of ionized gas velocity field of UGC 4385 appeared to be very complex. The most regular part of the field which concerns the supposed ring is best represented by the model of circular rotation with expansion. In addition long-slit observations showed that the optical spectra of two bright in the infrared region condensations resemble the spectra of galaxies’ nuclei. A supposition was made that UGC 4385 is two galaxies in the stage of head-on collision.

  4. COLD DUST BUT WARM GAS IN THE UNUSUAL ELLIPTICAL GALAXY NGC 4125

    SciTech Connect

    Wilson, C. D.; Cridland, A.; Foyle, K.; Parkin, T. J.; Cooper, E. Mentuch; Roussel, H.; Sauvage, M.; Lebouteiller, V.; Madden, S.; Baes, M.; De Looze, I.; Bendo, G.; Boquien, M.; Boselli, A.; Ciesla, L.; Clements, D. L.; Cooray, A.; Galametz, M.; and others

    2013-10-20

    Data from the Herschel Space Observatory have revealed an unusual elliptical galaxy, NGC 4125, which has strong and extended submillimeter emission from cold dust but only very strict upper limits to its CO and H I emission. Depending on the dust emissivity, the total dust mass is 2-5 × 10{sup 6} M {sub ☉}. While the neutral gas-to-dust mass ratio is extremely low (<12-30), including the ionized gas traced by [C II] emission raises this limit to <39-100. The dust emission follows a similar r {sup 1/4} profile to the stellar light and the dust to stellar mass ratio is toward the high end of what is found in nearby elliptical galaxies. We suggest that NGC 4125 is currently in an unusual phase where evolved stars produced in a merger-triggered burst of star formation are pumping large amounts of gas and dust into the interstellar medium. In this scenario, the low neutral gas-to-dust mass ratio is explained by the gas being heated to temperatures ≥10{sup 4} K faster than the dust is evaporated. If galaxies like NGC 4125, where the far-infrared emission does not trace neutral gas in the usual manner, are common at higher redshift, this could have significant implications for our understanding of high redshift galaxies and galaxy evolution.

  5. Optical rotation velocities and images of the spiral galaxy NGC 3198

    NASA Technical Reports Server (NTRS)

    Hunter, D. A.; Rubin, V. C.; Gallagher, J. S., III

    1986-01-01

    H-alpha rotation velocities obtained from an echelle spectrogram to a radius of 2 arcmin for the spiral galaxy NGC 3198 agree well with the 21 cm rotation velocities of van Albada et al. (1985). The rotation curve is typical of Sc type galaxies in spite of NGC 3198's extended H I disk. From optical R and H-alpha-emission images, used to search for star-forming regions in the outer parts of this galaxy, several H-alpha knots are identified as far out as the Holmberg radius. With increasing radial distance out to 2 arcmin, the R-band surface brightness falls, the H-alpha is approximately constant, and the H I surface brightness rises.

  6. Tracing of the chemical evolution of the massive elliptical galaxy NGC 3377 using a merger scenario

    NASA Astrophysics Data System (ADS)

    Nykytyuk, T.

    2015-05-01

    Mergers are thought to play a significant role in the formation of galaxies in clusters. The chemical evolution of the halo of the massive elliptical galaxy NGC 3377, a member of the Leo cluster, is considered in the framework of such a merger scenario. An open chemical evolution model is set up to calculate the metallicity distributions of pre-merging fragments. The model assumes that pristine gas was accreted onto the fragments during their whole evolution before their merger. The metallicity distribution resulting from the overlay of a variable number of fragments is then compared to observational data for NGC 3377. It was found that the observed metallicity distribution function of this elliptical galaxy is reproduced by merging at least five fragments from two different groups, namely low-and high-metallicity fragments.

  7. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  8. Velocity field and physical conditions in the active lenticular galaxy NGC 3998

    NASA Technical Reports Server (NTRS)

    Blackman, C. P.; Wilson, A. S.; Ward, M. J.

    1983-01-01

    A rotating and expanding flattened distribution of gas is suggested by measurements of the emission line velocity field for the line elliptical/lenticular galaxy NGC 3998, using seven long slit spectrograms in five position angles. Expanding material kinetic energy values of 10 to the 53rd to 10 to the 54th ergs, together with the flat spectrum radio source and nucleus X-ray emission, indicate pronounced nuclear activity. Spectrophotometry of the galactic nucleus shows emission line strengths typical of shocks rather than of photoionization, and line ratios indicate a postshock temperature of 60,000 K and a preshock density of 25 particles/cu cm. Both the stars and the ionized gas of the galaxy have central velocity dispersions of 260 km/s. In view of the high rotational velocity of the stars, NGC 3998 is a lenticular rather than elliptical galaxy.

  9. Extended soft X-ray emission in Seyfert galaxies: ROSAT HRI observations of NGC 3516, NGC 4151, and Markarian 3

    NASA Technical Reports Server (NTRS)

    Morse, Jon A.; Wilson, Andrew S.; Elvis, Martin; Weaver, Kimberly A.

    1995-01-01

    We have used the ROSAT High Resolution Imager (HRI) to examine the distribution of soft X-rays in three nearby Seyfert galaxies with approximately 4 to 5 arcsecs FWHM spatial resolution. A feature of our analysis is an attempt to remove errors in the aspect solution using a method developed by one of us (J.M.). NGC 4151 shows resolved X-ray emission that is spatially correlated with the optical extended narrow-line region (ENLR), confirming the results obtained with the Einstein HRI by Elvis, Briel, & Henry. NGC 3516 is elongated along a position angle of approximately 40 to 220 deg, similar to the direction of the Z-shaped narrow-line region. MRK 3 is very faint in our HRI image and is probably spatially unresolved. We detect the faint X-ray source approximately 2 arcmins west of the MRK 3 nucleus previously found by Turner, Urry, & Mushotzky. We also detected the BL Lac object BL 1207 + 39 approximately 5 arcmins north-northwest of NGC 4151. This object appears spatially unresolved, but some excess X-ray emission may be observed in the azimuthally averaged radial brightness profile of BL 1207 + 39 between radii of 10 arcsecs and 30 arcsecs when compared to a calibration source. A much deeper image is necessary to confirm this result.

  10. The Local Group Dwarf Irregular Galaxy NGC 6822: new insight on its star formation history .

    NASA Astrophysics Data System (ADS)

    Fusco, F.; Buonanno, R.; Bono, G.; Cassisi, S.; Monelli, M.; Pietrinferni, A.; Hidalgo, S. L.; Aparicio, A.

    We present a new photometric analysis of the Local Group Dwarf Irregular Galaxy NGC 6822 based on archival Hubble Space Telescope Advanced Camera for Surveys images. The data correspond to three fields covering the south-east region of the galaxy; for each field F475W and F814W HST bands are available. For each field an accurate color magnitude diagram (F814W, F475W-F814W) has been obtained. Preliminary hints on the galaxy star formation history are presented based on the comparison with isochrones from "A Bag of Stellar Tracks and Isochrones" (BaSTI) database.

  11. The core of the nearby S0 galaxy NGC 7457 imaged with the HST planetary camera

    NASA Technical Reports Server (NTRS)

    Lauer, Tod R.; Faber, S. M.; Holtzman, Jon A.; Baum, William A.; Currie, Douglas G.; Ewald, S. P.; Groth, Edward J.; Hester, J. Jeff; Kelsall, T.

    1991-01-01

    A brief analysis is presented of images of the nearby S0 galaxy NGC 7457 obtained with the HST Planetary Camera. While the galaxy remains unresolved with the HST, the images reveal that any core most likely has r(c) less than 0.052 arcsec. The light distribution is consistent with a gamma = -1.0 power law inward to the resolution limit, with a possible stellar nucleus with luminosity of 10 million solar. This result represents the first observation outside the Local Group of a galaxy nucleus at this spatial resolution, and it suggests that such small, high surface brightness cores may be common.

  12. Ionized gas and planetary nebulae in the bulge of the blue S0 galaxy NGC 5102

    NASA Technical Reports Server (NTRS)

    Mcmillan, Russet; Ciardullo, Robin; Jacoby, George H.

    1994-01-01

    We present the results of an investigation into the morphology and dynamics of ionized gas in the bulge of the gas-rich S0 galaxy NGC 5102. We show that the bulge of NGC 5102 contains a ring of ionized gas, approximately 1.3 kpc in diameter, which is centered well away from the nucleus. Through spectroscopy and (O III) lambda-5007 imaging, we show that the gas is excited by a low-velocity shock, which varies from approximately 50 to approximately 70 km/s along the ring. Fabry-Perot images in H-alpha confirm that the gas is moving slowly, and suggest that the structure is a supershell, approximately 10(exp 7) yr old. This age is significantly younger than the galaxy's nuclear starburst, which is approximately 2 x 10(exp 8) yr old. We also use our (O III) lambda-5007 images to identify planetary nebulae (PNs) in the bulge and inner disk of NGC 5102. Using the planetary nebula luminosity function, we derive a distance modulus to the galaxy of (m - M)(sub 0) = 27.47(sup +0.18)(sub -0.27), or 3.1(sup +0.3)(sub -0.4) Mpc, confirming its membership in the NGC 5128 group. Our derived value of 47.2(sup +12.2)(sub -9.2) x 10(exp -9) for the bolometric luminosity-specific PN density, alpha(sub 2.5), is higher than that observed for the bulge of M31 or the giant ellipticals of the Virgo Cluster, but not significantly different from that found for the small, normal ellipticals NGC 3377 or M32. The high value for alpha(sub 2.5) suggests that virtually all of NGC 5102's stars will someday evolve through the planetary nebula stage.

  13. Ionized gas and planetary nebulae in the bulge of the blue S0 galaxy NGC 5102

    NASA Astrophysics Data System (ADS)

    McMillan, R.; Ciardullo, R.; Jacoby, G. H.

    1994-11-01

    We present the results of an investigation into the morphology and dynamics of ionized gas in the bulge of the gas-rich S0 galaxy NGC 5102. We show that the bulge of NGC 5102 contains a ring of ionized gas, approximately 1.3 kpc in diameter, which is centered well away from the nucleus. Through spectroscopy and (O III) lambda-5007 imaging, we show that the gas is excited by a low-velocity shock, which varies from approximately 50 to approximately 70 km/s along the ring. Fabry-Perot images in H-alpha confirm that the gas is moving slowly, and suggest that the structure is a supershell, approximately 107 yr old. This age is significantly younger than the galaxy's nuclear starburst, which is approximately 2 x 108 yr old. We also use our (O III) lambda-5007 images to identify planetary nebulae (PNs) in the bulge and inner disk of NGC 5102. Using the planetary nebula luminosity function, we derive a distance modulus to the galaxy of (m - M)0 = 27.47+0.18-0.27, or 3.1+0.3-0.4 Mpc, confirming its membership in the NGC 5128 group. Our derived value of 47.2+12.2-9.2 x 10-9 for the bolometric luminosity-specific PN density, alpha2.5, is higher than that observed for the bulge of M31 or the giant ellipticals of the Virgo Cluster, but not significantly different from that found for the small, normal ellipticals NGC 3377 or M32. The high value for alpha2.5 suggests that virtually all of NGC 5102's stars will someday evolve through the planetary nebula stage.

  14. High-energy monitoring of Seyfert galaxies: the case of NGC 5548 and NGC 4593

    NASA Astrophysics Data System (ADS)

    Ursini, F.

    2015-07-01

    We discuss results of broad-band monitoring programs on the active galactic nuclei (AGNs) NGC 5548 and NGC 4593, focusing on the high-energy view with XMM, NuSTAR and INTEGRAL. NGC 5548 was the object of a successful multi-satellite campaign conducted from May 2013 to February 2014, during which the source appeared unusually obscured by a clumpy stream of ionized gas, causing strong absorption in the X-ray band and simultaneous deep, broad UV absorption troughs (Kaastra et al. 2014). A talk giving an overview of the campaign on NGC 5548 is also proposed at this conference (Cappi et al.). Concerning NGC 4593, it was the object of a monitoring program of 5 × 20 ks joint XMM/NuSTAR observations in January 2015, spaced by two days. In both cases, the availability of multiple, broad-band observations with a high signal-to-noise ratio allows us to disentangle the different spectral components present in the high-energy spectrum and properly study their variability. The use of realistic Comptonization models provides good constraints on the physical parameters of the hot corona responsible for the hard X-ray emission.

  15. The Ghost of a Dwarf Galaxy: Fossils of the Hierarchical Formation of the Nearby Spiral Galaxy NGC 5907

    NASA Astrophysics Data System (ADS)

    Martínez-Delgado, David; Peñarrubia, Jorge; Gabany, R. Jay; Trujillo, Ignacio; Majewski, Steven R.; Pohlen, M.

    2008-12-01

    We present an extragalactic perspective of an extended stellar tidal stream wrapping around the edge-on spiral galaxy NGC 5907. Our deep images reveal for the first time a large-scale complex of arcing loops that is an excellent example of how low-mass satellite accretion can produce an interwoven, rosette-like structure of debris dispersed in the halo of its host galaxy. The existence of this structure, which has probably formed and survived for several gigayears, confirms that halos of spiral galaxies in the local universe may still contain a significant number of galactic fossils from their hierarchical formation. To examine the validity of the external accretion scenario, we present N-body simulations of the tidal disruption of a dwarf galaxy-like system in a disk galaxy plus dark halo potential that demonstrate that most of the tidal features observed in NGC 5907 can be explained by a single accretion event. Unfortunately, with no kinematic data and only the projected geometry of the stream as a constraint, the parameters of our model are considerably degenerate and, for now, must be considered illustrative only. Interestingly, NGC 5907 has long been considered a prototypical example of a warped spiral in relative isolation. The presence of an extended tidal stream challenges this picture and suggests that the gravitational perturbations induced by the stream progenitor must be considered as a possible cause for the warp. The detection of an old, complex tidal stream in a nearby galaxy with rather modest instrumentation points to the viability of surveys to find extragalactic tidal substructures around spiral galaxies in the Local Volume (<15 Mpc), with the prospect of obtaining a census with enough statistical significance to be compared with cosmological simulations.

  16. Giant Molecular Clouds in the Early-type Galaxy NGC 4526

    NASA Astrophysics Data System (ADS)

    Utomo, Dyas; Blitz, Leo; Davis, Timothy; Rosolowsky, Erik; Bureau, Martin; Cappellari, Michele; Sarzi, Marc

    2015-04-01

    We present a high spatial resolution (≈20 pc) of 12CO(2 -1) observations of the lenticular galaxy NGC 4526. We identify 103 resolved giant molecular clouds (GMCs) and measure their properties: size R, velocity dispersion σv, and luminosity L. This is the first GMC catalog of an early-type galaxy. We find that the GMC population in NGC 4526 is gravitationally bound, with a virial parameter α ˜ 1. The mass distribution, dN/dM ∝ M-2.39 ± 0.03, is steeper than that for GMCs in the inner Milky Way, but comparable to that found in some late-type galaxies. We find no size-line width correlation for the NGC 4526 clouds, in contradiction to the expectation from Larson’s relation. In general, the GMCs in NGC 4526 are more luminous, denser, and have a higher velocity dispersion than equal-size GMCs in the Milky Way and other galaxies in the Local Group. These may be due to higher interstellar radiation field than in the Milky Way disk and weaker external pressure than in the Galactic center. In addition, a kinematic measurement of cloud rotation shows that the rotation is driven by the galactic shear. For the vast majority of the clouds, the rotational energy is less than the turbulent and gravitational energy, while the four innermost clouds are unbound and will likely be torn apart by the strong shear at the galactic center. We combine our data with the archival data of other galaxies to show that the surface density Σ of GMCs is not approximately constant, as previously believed, but varies by ˜3 orders of magnitude. We also show that the size and velocity dispersion of the GMC population across galaxies are related to the surface density, as expected from the gravitational and pressure equilibrium, i.e., σv R-1/2 ∝ Σ1/2.

  17. On the offset of barred galaxies from the black hole M {sub BH}-σ relationship

    SciTech Connect

    Brown, Jonathan S.; Valluri, Monica; Shen, Juntai; Debattista, Victor P. E-mail: mvalluri@umich.edu

    2013-12-01

    We use collisionless N-body simulations to determine how the growth of a supermassive black hole (SMBH) influences the nuclear kinematics in both barred and unbarred galaxies. In the presence of a bar, the increase in the velocity dispersion σ (within the effective radius) due to the growth of an SMBH is on average ≲ 10%, whereas the increase is only ≲ 4% in an unbarred galaxy. In a barred galaxy, the increase results from a combination of three separate factors: (1) orientation and inclination effects; (2) angular momentum transport by the bar that results in an increase in the central mass density; and (3) an increase in the vertical and radial velocity anisotropy of stars in the vicinity of the SMBH. In contrast, the growth of the SMBH in an unbarred galaxy causes the velocity distribution in the inner part of the nucleus to become less radially anisotropic. The increase in σ following the growth of the SMBH is insensitive to a variation of a factor of 10 in the final mass of the SMBH, showing that it is the growth process rather than the actual SMBH mass that alters bar evolution in a way that increases σ. We argue that using an axisymmetric stellar dynamical modeling code to measure SMBH masses in barred galaxies could result in a slight overestimate of the derived M {sub BH}, especially if a constant M/L ratio is assumed. We conclude that the growth of a black hole in the presence of a bar could result in an increase in σ that is roughly 4%-8% larger than the increase that occurs in an axisymmetric system. While the increase in σ due to SMBH growth in a barred galaxy might partially account for the claimed offset of barred galaxies and pseudo bulges from the M {sub BH}-σ relation obtained for elliptical galaxies and classical bulges in unbarred galaxies, it is inadequate to account for all of the offset.

  18. Multiwavelength Study of the Bright X-ray Source Population in the Interacting Galaxies NGC 5774/NGC 5775

    NASA Technical Reports Server (NTRS)

    Ghosh, Kajal K.; Swartz, Douglas A.; Tennant, Allyn F.; Saripalli, Lakshmi; Gandhi, Poshak; Foellmi, Cedric; Gutierrez, Carlos M.; Lopez-Corredoira, Martin

    2006-01-01

    The X-ray source population in the field of the interacting pair of galaxies NGC 5774/5775 is reported. A total of 49 discrete sources are detected, including 12 ultraluminous X-ray source candidates with lum inosities above 10(exp 39)erg/s in the 0.5 - 8.0 keV X-ray band. Several of these latter are transient X-ray sources that fall below detect ion levels in one of two X-ray observations spaced 15 months apart. X-ray source positions are mapped onto optical and radio images to sear ch for potential counterparts. Eleven sources have optically-bright c ounterparts. Optical colors are used to differentiate these sources, which are mostly located outside the optical extent of the interacting galaxies, as potential globular clusters (3 sources) and quasars (5) . Follow-up optical spectroscopy confirms two of the latter are background quasars.

  19. Mapping the inner regions of the polar disk galaxy NGC 4650A with MUSE

    NASA Astrophysics Data System (ADS)

    Iodice, E.; Coccato, L.; Combes, F.; de Zeeuw, T.; Arnaboldi, M.; Weilbacher, P. M.; Bacon, R.; Kuntschner, H.; Spavone, M.

    2015-11-01

    The polar disk galaxy NGC 4650A was observed during the commissioning of the Multi Unit Spectroscopic Explorer (MUSE) at the ESO Very Large Telescope to obtain the first 2D map of the velocity and velocity dispersion for both stars and gas. The new MUSE data allow the analysis of the structure and kinematics towards the central regions of NGC 4650A, where the two components co-exist. These regions were unexplored by the previous long-slit literature data available for this galaxy. The stellar velocity field shows that there are two main directions of rotation, one along the host galaxy major axis (PA = 67 deg) and the other along the polar disk (PA = 160 deg). The host galaxy has, on average, the typical pattern of a rotating disk, with receding velocities on the SW side and approaching velocities on the NE side, and a velocity dispersion that remains constant at all radii (σstar ~ 50-60 km s-1). The polar disk shows a large amount of differential rotation from the centre up to the outer regions, reaching V ~ 100-120 km s-1 at R ~ 75 arcsec ~ 16 kpc. Inside the host galaxy, a velocity gradient is measured along the photometric minor axis. Close to the centre, for R ≤ 2 arcsec the velocity profile of the gas suggests a decoupled component and the velocity dispersion increases up to ~110 km s-1, while at larger distances it remains almost constant (σgas ~ 30-40 km s-1). The extended view of NGC 4650A given by the MUSE data is a galaxy made of two perpendicular disks that remain distinct and drive the kinematics right into the very centre of this object. In order to match this observed structure for NGC 4650A, we constructed a multicomponent mass model made by the combined projection of two disks. By comparing the observations with the 2D kinematics derived from the model, we found that the modelled mass distribution in these two disks can, on average, account for the complex kinematics revealed by the MUSE data, also in the central regions of the galaxy where the two components coexist. This result is a strong constraint on the dynamics and formation history of this galaxy; it further supports the idea that polar disk galaxies like NGC 4650A were formed through the accretion of material that has different angular momentum. This work is based on observations taken at the ESO La Silla Paranal Observatory within the MUSE Commissioning.

  20. The Mg II line profile in the Seyfert galaxy NGC 4151: A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T.

    1986-01-01

    The Mg II 2795, 2802A doublet in the Seyfert galaxy NGC 4151 was examined to search for velocity systems in absorption and emission. Evidence for a narrow, outflowing absorption system in Mg II having a velocity of +825 km/sec relative to the Sun, -165 km/sec relative to the systemic velocity of NGC 4151 is presented. This feature is not present in Ly alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines a model decomposition of the line profile is shown.

  1. The Mg II line profile in the Seyfert galaxy NGC 4151 - A new outflowing component

    NASA Technical Reports Server (NTRS)

    Leech, Kieron J.; Penston, M. V.; Snijders, M. A. J.; Gull, T. R.

    1987-01-01

    This paper examines the Mg II 2795-2802 A doublet in the Seyfert galaxy NGC 4151 at a higher resolution than has previously been used, searching for velocity systems in absorption and emission. Evidence is presented for a new, narrow, outflowing absorption system in Mg II having a velocity of 825 km/s relative to the sun, and -165 km/s relative to the systemic velocity of NGC 4151. This feature is not present in Ly-alpha or C IV and possible explanations for this are considered. For the Mg II and C IV lines, a model decomposition of the line profile is presented.

  2. The internal dynamics of the Local Group dwarf elliptical galaxies NGC 147, 185 and 205

    NASA Astrophysics Data System (ADS)

    De Rijcke, S.; Prugniel, P.; Simien, F.; Dejonghe, H.

    2006-07-01

    We present three-integral dynamical models for the three Local Group dwarf elliptical galaxies: NGC 147, 185 and 205. These models are fitted to the Two-Micron All-Sky Survey (2MASS) J-band surface-brightness distribution and the major-axis kinematics (mean streaming velocity and velocity dispersion) and, in the case of NGC 205, also to the minor-axis kinematics. The kinematical information extends out to 2Re in the case of NGC 205 and out to about 1Re in the case of NGC 147 and 185. It is the first time models are constructed for the Local Group dwarf ellipticals (dEs) that allow for the presence of dark matter at large radii and that are constrained by kinematics out to at least one half-light radius. The B-band mass-to-light ratios of all the three galaxies are rather similar, (M/L)B ~ 3-4Msolar/Lsolar,B. Within the inner two half-light radii, about 40-50 per cent of the mass is in the form of dark matter, so dEs contain about as much dark matter as bright ellipticals. Based on their appreciable apparent flattening, we modelled NGC 205 and 147 as being viewed edge-on. For NGC 185, having a much rounder appearance on the sky, we produced models for different inclinations. NGC 205 and 147 have a relatively isotropic velocity dispersion tensor within the region where the internal dynamics are strongly constrained by the data. Our estimated inclination for NGC 185 is i ~ 50° because in that case the model has an intrinsic flattening close to the peak of the intrinsic shape distribution of dEs and it, like the best-fitting models for NGC 147 and 205, is nearly isotropic. We also show that the dynamical properties of the bright nucleus of NGC 205 are not unlike those of a massive globular cluster. Based on observations collected at the Observatoire de Haute-Provence. E-mail: sven.derijcke@UGent.be (SDR) ‡ Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium)(F.W.O).

  3. Bar formation and evolution in disc galaxies with gas and a triaxial halo: morphology, bar strength and halo properties

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Machado, Rubens E. G.; Rodionov, S. A.

    2013-03-01

    We follow the formation and evolution of bars in N-body simulations of disc galaxies with gas and/or a triaxial halo. We find that both the relative gas fraction and the halo shape play a major role in the formation and evolution of the bar. In gas-rich simulations, the disc stays near-axisymmetric much longer than in gas-poor ones, and, when the bar starts growing, it does so at a much slower rate. Because of these two effects combined, large-scale bars form much later in gas-rich than in gas-poor discs. This can explain the observation that bars are in place earlier in massive red disc galaxies than in blue spirals. We also find that the morphological characteristics in the bar region are strongly influenced by the gas fraction. In particular, the bar at the end of the simulation is much weaker in gas-rich cases. The quality of our simulations is such as to allow us to discuss the question of bar longevity because the resonances are well resolved and the number of gas particles is sufficient to describe the gas flow adequately. In no case did we find a bar which was destroyed. Halo triaxiality has a dual influence on bar strength. In the very early stages of the simulation it induces bar formation to start earlier. On the other hand, during the later, secular evolution phase, triaxial haloes lead to considerably less increase of the bar strength than spherical ones. The shape of the halo evolves considerably with time. We confirm previous results of gas-less simulations that find that the inner part of an initially spherical halo can become elongated and develop a halo bar. However we also show that, on the contrary, in gas-rich simulations, the inner parts of an initially triaxial halo can become rounder with time. The main body of initially triaxial haloes evolves towards sphericity, but in initially strongly triaxial cases it stops well short of becoming spherical. Part of the angular momentum absorbed by the halo generates considerable rotation of the halo particles that stay located relatively near the disc for long periods of time. Another part generates halo bulk rotation, which, contrary to that of the bar, increases with time but stays small. Thus, in our models there are two non-axisymmetric components rotating with different pattern speeds, namely the halo and the bar, so that the resulting dynamics have strong similarities to the dynamics of double bar systems.

  4. The Rings Survey. I. Hα and H I Velocity Maps of Galaxy NGC 2280

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl J.; Williams, T. B.; Spekkens, Kristine; Lee-Waddell, K.; Kuzio de Naray, Rachel; Sellwood, J. A.

    2015-03-01

    Precise measurements of gas kinematics in the disk of a spiral galaxy can be used to estimate its mass distribution. The Southern African Large Telescope has a large collecting area and field of view, and is equipped with a Fabry-Pérot (FP) interferometer that can measure gas kinematics in a galaxy from the Hα line. To take advantage of this capability, we have constructed a sample of 19 nearby spiral galaxies, the RSS Imaging and Spectroscopy Nearby Galaxy Survey, as targets for detailed study of their mass distributions and have collected much of the needed data. In this paper, we present velocity maps produced from Hα FP interferometry and H i aperture synthesis for one of these galaxies, NGC 2280, and show that the two velocity measurements are generally in excellent agreement. Minor differences can mostly be attributed to the different spatial distributions of the excited and neutral gas in this galaxy, but we do detect some anomalous velocities in our Hα velocity map of the kind that have previously been detected in other galaxies. Models produced from our two velocity maps agree well with each other and our estimates of the systemic velocity and projection angles confirm previous measurements of these quantities for NGC 2280. Based in part on observations obtained with the Southern African Large Telescope (SALT) program 2011-3-RU-003.

  5. Deep imaging of the shell elliptical galaxy NGC 3923 with MegaCam

    NASA Astrophysics Data System (ADS)

    Bílek, M.; Cuillandre, J.-C.; Gwyn, S.; Ebrová, I.; Bartošková, K.; Jungwiert, B.; Jílková, L.

    2016-04-01

    Context. The elliptical galaxy NGC 3923 is known to be surrounded by a number of stellar shells, probable remnants of an accreted galaxy. Despite its uniqueness, the deepest images of its outskirts come from the 1980s. On the basis of the modified Newtonian dynamics (MOND), it has recently been predicted that a new shell lies in this region. Aims: We obtain the deepest image ever of the galaxy, map the tidal features in it, and search for the predicted shell. Methods: The image of the galaxy was taken by the MegaCam camera at the Canada-France-Hawaii Telescope in the g'-band. It reached the surface-brightness limit of 29 mag arcsec-2. In addition, we reanalyzed an archival HST image of the galaxy. Results: We detected up to 42 shells in NGC 3923. This is by far the highest number among all shell galaxies. We present the description of the shells and other tidal features in the galaxy. A probable progenitor of some of these features was discovered. The shell system likely originates from two or more progenitors. The predicted shell was not detected, but the new image revealed that the prediction was based on incorrect assumptions and poor data. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A77

  6. Behavior of Neutral Hydrogen in the NGC 877/6 Galaxy Group

    NASA Astrophysics Data System (ADS)

    Manning Hall, Porter; Minchin, Robert F.; Taylor, Rhys

    2015-01-01

    We observed a 5 square degree area centered on -02:17:31, 14:32:00 at 21-cm as part of the Arecibo Galaxy Environment Survey (AGES) with the NGC 877/6 galaxy group at a velocity of 4000 km/s as the primary target. Our observations covered the redshift range -5,000 < cz < 20,000 km/s allowing for a large volume in front and behind the complex to be analyzed. The NGC 877/6 group contains 8 galaxies inside a common HI envelope with a total neutral hydrogen mass of LogMHI = 10.73. HI is detected outside of the optically-identified galaxies and there are a number of tidal features within the complex. These include AGC 749170, a possible tidal remnant identified by ALFALFA and whose detection we confirm here. Another, smaller group associated with UGC 1742 (LogMHI = 9.95; cz = 6900 km/s) was identified as showing signs of galaxy interaction as well as the possibility of a tidal formation not catalogued in NED as a galaxy. Of the 44 HI sources identified in the data cube, 12 (27%) were not previously recorded in the NED database as galaxies. We will continue our analysis with data from the Mock spectrometers which will extend the redshift range to 45000 km/s.

  7. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  8. THE MASS PROFILE AND SHAPE OF BARS IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): SEARCH FOR AN AGE INDICATOR FOR BARS

    SciTech Connect

    Kim, Taehyun; Lee, Myung Gyoon; Sheth, Kartik; Muñoz-Mateos, Juan-Carlos; Zaritsky, Dennis; Elmegreen, Bruce G.; Athanassoula, E.; Bosma, Albert; Holwerda, Benne; Ho, Luis C.; Comerón, Sébastien; Laurikainen, Eija; Salo, Heikki; Knapen, Johan H.; Erroz-Ferrer, Santiago; Hinz, Joannah L.; Buta, Ronald J.; Kim, Minjin; Madore, Barry F.; and others

    2015-01-20

    We have measured the radial light profiles and global shapes of bars using two-dimensional 3.6 μm image decompositions for 144 face-on barred galaxies from the Spitzer Survey of Stellar Structure in Galaxies. The bar surface brightness profile is correlated with the stellar mass and bulge-to-total (B/T) ratio of their host galaxies. Bars in massive and bulge-dominated galaxies (B/T > 0.2) show a flat profile, while bars in less massive, disk-dominated galaxies (B/T ∼ 0) show an exponential, disk-like profile with a wider spread in the radial profile than in the bulge-dominated galaxies. The global two-dimensional shapes of bars, however, are rectangular/boxy, independent of the bulge or disk properties. We speculate that because bars are formed out of disks, bars initially have an exponential (disk-like) profile that evolves over time, trapping more disk stars to boxy bar orbits. This leads bars to become stronger and have flatter profiles. The narrow spread of bar radial profiles in more massive disks suggests that these bars formed earlier (z > 1), while the disk-like profiles and a larger spread in the radial profile in less massive systems imply a later and more gradual evolution, consistent with the cosmological evolution of bars inferred from observational studies. Therefore, we expect that the flatness of the bar profile can be used as a dynamical age indicator of the bar to measure the time elapsed since the bar formation. We argue that cosmic gas accretion is required to explain our results on bar profile and the presence of gas within the bar region.

  9. Galaxy evolution in nearby galaxy groups. III. A GALEX view of NGC 5846, the largest group in the local universe

    NASA Astrophysics Data System (ADS)

    Marino, Antonietta; Mazzei, Paola; Rampazzo, Roberto; Bianchi, Luciana

    2016-04-01

    We explore the co-evolution of galaxies in nearby groups (Vhel ≤ 3000 km s-1) with a multi-wavelength approach. We analyze GALEX far-UV (FUV) and near-UV (NUV) imaging, and SDSS u,g,r,i,z data of groups spanning a large range of dynamical phases. We characterize the photometric properties of spectroscopically-confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here we focus on NGC 5846, the third most massive association of Early-Type Galaxies (ETG) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40 per cent are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star-formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r vs. Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC 5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.

  10. Galaxy evolution in nearby galaxy groups - III. A GALEX view of NGC 5846, the largest group in the local universe

    NASA Astrophysics Data System (ADS)

    Marino, Antonietta; Mazzei, Paola; Rampazzo, Roberto; Bianchi, Luciana

    2016-06-01

    We explore the co-evolution of galaxies in nearby groups (Vhel ≤ 3000 km s-1) with a multiwavelength approach. We analyse GALEX far-UV (FUV) and near-UV (NUV) imaging, and Sloan Digital Sky Survey u, g, r, i, z data of groups spanning a large range of dynamical phases. We characterize the photometric properties of spectroscopically confirmed galaxy members and investigate the global properties of the groups through a dynamical analysis. Here, we focus on NGC 5846, the third most massive association of early-type galaxies (ETGs) after the Virgo and Fornax clusters. The group, composed of 90 members, is dominated by ETGs (about 80 per cent), and among ETGs about 40 per cent are dwarfs. Results are compared with those obtained for three groups in the LeoII cloud, which are radically different both in member-galaxy population and dynamical properties. The FUV-NUV cumulative colour distribution and the normalized UV luminosity function (LF) significantly differ due to the different fraction of late-type galaxy population. The UV LF of NGC 5846 resembles that of the Virgo cluster, however our analysis suggests that star formation episodes are still occurring in most of the group galaxies, including ETGs. The NUV-i colour distribution, the optical-UV colour-colour diagram, and NUV-r versus Mr colour-magnitude relation suggest that the gas contribution cannot be neglected in the evolution of ETG-type group members. Our analysis highlights that NGC 5846 is still in an active phase of its evolution, notwithstanding the dominance of dwarf and bright ETGs and its virialized configuration.

  11. Quantifying the Bias in the Masses of Supermassive Black Holes in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2014-10-01

    Recent studies of simulations of barred galaxies with supermassive black holes {BH} show that a bar can cause an increase in the central line-of-sight velocity dispersion {sigma} of about 7-12% - an increase that is consistent with the average offset observed for barred galaxies relative to unbarred ones. A more serious consequence of the presence of a bar is that its unique orbital structure {the combination of the radially biased bar orbits and the high bar pattern speed}, results in a high central velocity dispersion but negative 4th Gauss-Hermite parameters, even in the vicinity of the BH. This unique combination of kinematical parameters can result in a systematic over-estimate of the BH mass - if the bar is modelled as axisymmetric. Although nearly 60% of spiral/SO galaxies with existing stellar dynamically BH masses are in barred galaxies, their masses have been derived using axisymmetric models! An overestimate of BH mass in barred disks would erase morphological differences between the BH scaling relations of disks and ellipticals, which could be crucial to understanding the co-evolution of BHs and their host galaxies. In this theory proposal we will use N-body simulations to generate mock kinematic datasets {STIS, FOS and ground based IFU} for barred disk galaxies, model them with an axisymmetric orbit superposition code, and thereby quantify the magnitude of the bias in existing BH mass measurements. This analysis will provide crucial input for developing new and accurate methods for determining BH masses in galaxies of different morphological types, thereby revealing the true extent of intrinsic differences in the supermassive BH scaling relationships.

  12. A Study of Bar Strengths in Early-Type Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Buta, Ronald J.; Laurikainen, Eija; Salo, Heikki; Knapen, Johan H.

    2009-02-01

    Angular momentum exchange between a bar and a massive halo is thought to be responsible for producing strong bars in disk galaxies (Athanassoula, 2003), while gas transport to the center is believed to weaken or even dissolve bars (Bournaud and Combes 2002). We are carrying out a systematic survey of early-type disk galaxies with the main emphasis to derive the distribution of their bar strengths and to examine their Fourier amplitude properties. We propose to use FLAMINGOS with the KPNO 2.1m to obtain 2.2(micron) K_s-band observations of 16 galaxies for the ``Near-Infrared S0 Survey", a project already in progress to measure the bulge, disk, and bar properties of a statistically well-defined sample of 184 galaxies in the type range S0^- to Sa, including some possibly mis-classified elliptical galaxies. The principal goals of the survey, which was started 5 years ago and is now 90% completed, are to allow us to (1) compare relative Fourier near- IR intensity profiles of observed early-type galaxy bars with equivalent Fourier mass profiles of various Athanassoula models; (2) derive the distribution of bar strengths for the early-type sample and compare it with the known distribution for spirals; and (3) examine the properties of bulges and disks in early-type galaxies in order to better understand the origin of bulges (classical verus pseudo) in such galaxies. Our study is the first attempt to quantify bar strength in S0 galaxies. We are asking for enough KPNO 2.1m time to help complete our survey.

  13. Kinematics of NGC 4826: A sleeping beauty galaxy, not an evil eye

    NASA Technical Reports Server (NTRS)

    Rubin, Vera C.

    1994-01-01

    A recent high resolution H I study of the Sab galaxy NGC 4826 (1992) reveals that the sense of rotation of the neutral gas reverses from the inner to the outer disk. The present paper reports on optical spectra at high velocity resolution in four position angles in NGC 4826, which cover the region of the gas reversal and which reveal a high degree of complexity. In the inner disk, which includes the prominent dusty lane, the stars and gas rotate in concert, and the spiral arms trail (for the adopted geometry). Arcs of ionized gas are observed partially encircling the nucleus; expansion velocities reach 400 km/s. At distances just beyond the prominent dust lane, the ionized gas exhibits a rapid, orderly velocity fall and within 500 parsecs it has reversed from 180 km/s prograde to 200 km/s retrograde; it also has a component radial toward the nucleus of over 100 km/s. The stars, however, continue their prograde rotation. Beyond this transition zone, the neutral gas continues its retrograde rotation, stellar velocities are prograde, but the sense of the almost circular arms is not established. Because of its kinematical complexity as well as its proximity, NGC 4826 is an excellent early-type galaxy in which to observe the long term effects of gas acquistion or a galaxy merger on a disk galaxy.

  14. The young nuclear stellar disc in the SB0 galaxy NGC 1023

    NASA Astrophysics Data System (ADS)

    Corsini, E. M.; Morelli, L.; Pastorello, N.; Bontà, E. Dalla; Pizzella, A.; Portaluri, E.

    2016-04-01

    Small kinematically decoupled stellar discs with scalelengths of a few tens of parsec are known to reside in the centre of galaxies. Different mechanisms have been proposed to explain how they form, including gas dissipation and merging of globular clusters. Using archival Hubble Space Telescope imaging and ground-based integral-field spectroscopy, we investigated the structure and stellar populations of the nuclear stellar disc hosted in the interacting SB0 galaxy NGC 1023. The stars of the nuclear disc are remarkably younger and more metal rich with respect to the host bulge. These findings support a scenario in which the nuclear disc is the end result of star formation in metal enriched gas piled up in the galaxy centre. The gas can be of either internal or external origin, i.e. from either the main disc of NGC 1023 or the nearby satellite galaxy NGC 1023A. The dissipationless formation of the nuclear disc from already formed stars, through the migration and accretion of star clusters into the galactic centre, is rejected.

  15. Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Martínez-Delgado, David; Martin, Nicolas F.; Morales, Gustavo; Jennings, Zachary G.; GaBany, R. Jay; Brodie, Jean P.; Grebel, Eva K.; Schedler, Johannes; Sidonio, Michael

    2016-03-01

    We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and Rc-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ˜3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semimajor axis half-light radius of (2 ± 0.4) kpc. Star counts also yield a luminosity estimate of ˜2 × 106 L⊙,V (MV ˜ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ˜50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continuously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics. We also note the continued efficacy of small telescopes for making big discoveries.

  16. Galaxy Zoo: the effect of bar-driven fuelling on the presence of an active galactic nucleus in disc galaxies

    NASA Astrophysics Data System (ADS)

    Galloway, Melanie A.; Willett, Kyle W.; Fortson, Lucy F.; Cardamone, Carolin N.; Schawinski, Kevin; Cheung, Edmond; Lintott, Chris J.; Masters, Karen L.; Melvin, Thomas; Simmons, Brooke D.

    2015-04-01

    We study the influence of the presence of a strong bar in disc galaxies which host an active galactic nucleus (AGN). Using data from the Sloan Digital Sky Survey and morphological classifications from the Galaxy Zoo 2 project, we create a volume-limited sample of 19 756 disc galaxies at 0.01 < z < 0.05 which have been visually examined for the presence of a bar. Within this sample, AGN host galaxies have a higher overall percentage of bars (51.8 per cent) than inactive galaxies exhibiting central star formation (37.1 per cent). This difference is primarily due to known effects: that the presence of both AGN and galactic bars is strongly correlated with both the stellar mass and integrated colour of the host galaxy. We control for this effect by examining the difference in AGN fraction between barred and unbarred galaxies in fixed bins of mass and colour. Once this effect is accounted for, there remains a small but statistically significant increase that represents 16 per cent of the average barred AGN fraction. Using the L_{[O III]}/MBH ratio as a measure of AGN strength, we show that barred AGNs do not exhibit stronger accretion than unbarred AGNs at a fixed mass and colour. The data are consistent with a model in which bar-driven fuelling does contribute to the probability of an actively growing black hole, but in which other dynamical mechanisms must contribute to the direct AGN fuelling via smaller, non-axisymmetric perturbations.

  17. Central enhancement of the nitrogen-to-oxygen abundance ratio in barred galaxies

    NASA Astrophysics Data System (ADS)

    Florido, E.; Zurita, A.; Pérez, I.; Pérez-Montero, E.; Coelho, P. R. T.; Gadotti, D. A.

    2015-12-01

    Context. Bar-induced gas inflows towards galaxy centres are recognised as a key agent for the secular evolution of galaxies. One immediate consequence of this inflow is the accumulation of gas in the centre of galaxies where it can form stars and alter the chemical and physical properties. Aims: Our aim is to study whether the properties of the ionised gas in the central parts of barred galaxies are altered by the presence of a bar and whether the change in central properties is related to bar and/or parent galaxy properties. Methods: We use a sample of nearby face-on disc galaxies with available SDSS spectra, morphological decomposition, and information on the stellar population of their bulges, to measure the internal Balmer extinction from the Hα to Hβ line ratio, star formation rate, and relevant line ratios to diagnose chemical abundances and gas density. Results: The distributions of all the parameters analysed (internal Balmer extinction at Hβ (c(Hβ)), star formation rate per unit area, electron density, [N ii]λ6583/Hα emission-line ratio, ionisation parameter, and nitrogen-to-oxygen (N/O) abundance ratio) are different for barred and unbarred galaxies, except for the R23 metallicity tracer and the oxygen abundance obtained from photoionisation models. The median values of the distributions of these parameters point towards (marginally) larger dust content, star formation rate per unit area, electron density, and ionisation parameter in the centres of barred galaxies than in their unbarred counterparts. The most remarkable difference between barred and unbarred galaxies appears in the [N ii]λ6583/Hα line ratio that is, on average, ~25% higher in barred galaxies, due to an increased N/O abundance ratio in the centres of these galaxies compared to the unbarred ones. We analyse these differences as a function of galaxy morphological type (as traced by bulge-to-disc light ratios and bulge mass), total stellar mass, and bulge Sérsic index. We observe an enhancement of the differences between central gas properties in barred and unbarred galaxies in later-type galaxies or galaxies with less massive bulges. However, the bar seems to have a lower impact on the central gas properties for galaxies with bulges above ~1010 M⊙ or total mass M⋆ ≳ 1010.8 M⊙. Conclusions: We find observational evidence that the presence of a galactic bar affects the properties of the ionised gas in the central parts of disc galaxies (radii ≲0.6-2.1 kpc). The most striking effect is an enhancement in the N/O abundance ratio. This can be interpreted qualitatively in terms of our current knowledge of bar formation and evolution, and of chemical evolution models, as being the result of a different star formation history in the centres of barred galaxies caused by the gas inflow induced by the bar. Our results lend support to the scenario in which less massive and more massive bulges have different origins or evolutionary processes, with the gaseous phase of the former currently having a closer relation to the bars. Appendix A is available in electronic form at http://www.aanda.orgExtinction-corrected line fluxes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http:// http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A88

  18. A Constant Bar Fraction out to Redshift z ~ 1 in the Advanced Camera for Surveys Field of the Tadpole Galaxy

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Hirst, Amelia C.

    2004-09-01

    Barlike structures were investigated in a sample of 186 disk galaxies larger than 0.5" that are in the I-band image of the Tadpole galaxy taken with the Hubble Space Telescope Advanced Camera for Surveys. We found 22 clear cases of barred galaxies, 21 galaxies with small bars that appear primarily as isophotal twists in a contour plot, and 11 cases of peculiar bars in clump-cluster galaxies, which are face-on versions of chain galaxies. The latter bars are probably young, as the galaxies contain only weak interclump emission. Four of the clearly barred galaxies at z~0.8-1.2 have grand-design spirals. The bar fraction was determined as a function of galaxy inclination and compared with the analogous distribution in the local universe. The bar fraction was also determined as a function of galaxy angular size. These distributions suggest that inclination and resolution effects obscure nearly half of the bars in our sample. The bar fraction was also determined as a function of redshift. We found a nearly constant bar fraction of 0.23+/-0.03 from z~0 to z=1.1. When corrected for inclination and size effects, this fraction is comparable to the bar fraction in the local universe, ~0.4, which we tabulated for all bar and Hubble types in the Third Reference Catalogue of Bright Galaxies. The average major axis of a barred galaxy in our sample is ~10 kpc after correcting for redshift with a Λ-dominated cold dark matter cosmology. The average exponential scale length is ~2 kpc. These are half the sizes of local barred galaxies and not likely to be influenced much by cosmological dimming, because the high-z galaxies are intrinsically brighter. We conclude that galaxy bars were present in normal abundance at least ~8 Gyr ago (z~1) the bars in clump-cluster galaxies may have formed from gaseous disk instabilities and star formation rather than stellar disk instabilities, and bar dissolution cannot be common during a Hubble time unless the bar formation rate is comparable to the dissolution rate. If galaxy interactions trigger bar formation more than bar destruction, then the higher interaction rate in the past suggests relatively few bars actually dissolved in a Hubble time.

  19. Distribution and motions of atomic hydrogen in lenticular galaxies. X - The blue S0 galaxy NGC 5102

    NASA Technical Reports Server (NTRS)

    Van Woerden, H.; Van Driel, W.; Braun, R.; Rots, A. H.

    1993-01-01

    Results of the mapping of the blue gas-rich S0 galaxy NGC 5102 in the 21-cm H I line with a spatial resolution of 34 x 37 arcsec (delta(alpha) x Delta(delta)) and a velocity resolution of 12 km/s are presented. The H I distribution has a pronounced central depression of 1.9 kpc radius, and most of the H I is concentrated in a 3.6 kpc wide ring with an average radius of 3.7 kpc, assuming a distance of 4 Mpc for NGC 5102. The maximum azimuthally averaged H I surface density in the ring is 1.4 solar mass/sq pc, comparable to that found in other S0 galaxies. The HI velocity field is quite regular, showing no evidence for large-scale deviations from circular rotation, and the H I is found to rotate in the plane of the stellar disk. Both the H I mass/blue luminosity ratio and the radial H I distribution are similar to those in early-type spirals. The H I may be an old disk or it may have been acquired through capture of a gas-rich smaller galaxy. The recent starburst in the nuclear region, which gave the galaxy its blue color, may have been caused by partial radial collapse of the gas disk, or by infall of a gas-rich dwarf galaxy.

  20. Bar formation as driver of gas inflows in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Fanali, R.; Dotti, M.; Fiacconi, D.; Haardt, F.

    2015-12-01

    Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ˜1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such `dead zone' inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

  1. UBVRI Light Curves of the Seyfert Galaxy NGC 7469 During 1990-1998: Microvariability

    NASA Astrophysics Data System (ADS)

    Merkulova, N. I.

    2000-02-01

    Observations of the nuclear region of the Seyfert galaxy NGC 7469 obtained at Crimean Astrophysical Observatory with the 1.25 m telescope are presented. During 64 nights on nine observational runs between 1990 September 24 and 1998 October 22 in each spectral band of the Johnson UBVRI system, about 1500 measurements have been performed simultaneously through the round aperture 20" in diameter using differential photometry techniques. The estimated accuracy of each measurement is about 0.01 mag. During the observing period 1990-1996 the mean luminosity of the nucleus was almost constant; only overlapping brightness fluctuations were observed. The mean luminosity level has been raised in 1996 October. The peak amplitude (maximum flux/minimum flux) Fmax/Fmin=2.09 on the light curves was observed in the U band, while the minimum amplitude Fmax/Fmin=1.32 was in the I band for the entire observation period. Using structure function (SF) analysis, the following conclusions have been made: (1) Long-term variability is caused by the same processes in the optical, because the slope b of the SF is approximately equal for all wave bands, except for the I band the slope is appreciably distinguished from the others. This would be an indication of the presence of an independent IR energy source in NGC 7469. (2) Considering the same time interval (from 6 minutes to 2 hr) for intranight variability on SFs at different wave bands, one can conclude that flicker noise causes variations observed on the light curve at the UV region (U and B bands), while at the near-IR region the light curve is formed by mixed shot noise and flicker noise-the greater the wavelength, the more the contribution of shot noise processes. (3) On intranight light curves of the NGC 7469 there exist rapid flares with durations ~25 minutes at U band, ~55 minutes at B, V bands, and ~2 hr at R, I bands-a typical timescale of intranight variability increasing with the increasing wavelength. In order to examine the intranight variations of the nucleus of NGC 7469, standard deviations (SDs) of the nightly averaged flux, F, and a measure of intranight variability, SD/F, were calculated for each night of observations. The ratios P=Ni/Ntot of number of nights with SD/F>=1%, 2%, 3%, and so forth (Ni) to all 64 observational nights (Ntot) were expressed as a percentage of probability to detect variability at a given level; they were plotted versus the appropriate parameter SD/F. It is interesting that a probability to detect intranight variability at a level given by a parameter SD/F may be fitted well by a ``probability curve'' for a given galaxy. The homogeneity of data obtained with the same telescope using the same technique has made statistical comparisons possible among different galaxies and different wave bands. Therefore, analogous curves for the Seyfert galaxies NGC 1275 and NGC 4151 were plotted and were averaged by bands. Probability curves for the two galaxies of the same type (Seyfert 1; NGC 4151 and NGC 7469) coincided well. The probability curve for the galaxy NGC 1275 of BL Lacertae type shows more nights with variations of amplitude less than 7%. The probability to observe intranight variations with an amplitude of more than 7% is approximately equal for both types of objects. An excess of nights with intranight variability parameter SD/F in the range of ~4%-8% is a common characteristic of the two Seyfert 1 galaxies (NGC 4151 and NGC 7469) and of the BL Lac object (NGC 1275) studied in this paper. This excess may be connected with a specific type of intranight galaxy variability. All probability curves are fitted best by the second-order exponential decay. As a result, one can conclude that intranight variability is really transient in character and has manifested itself with different probabilities for different galaxies. The efficiency of the energy source for every galaxy to produce intranight variability on a given level (duty cycle of the central energy engine) was estimated using these probability curves. For a given threshold of detection estimated as an error of a given technique (for instance, 1% for observations presented in this paper), one can conclude that duty cycle of NGC 1275 is about 100%. Vice versa, NGC 4151 has a more quiet energy source: only ~60% of nights show intranight variability on a level greater than 1%. The efficiency of the energy source producing the near-IR radiation of NGC 7469 is more than 0.9, while at the optical bands it is equal to ~0.7+/-0.1. It may be an indication of the presence of an independent IR energy source, too.

  2. Optical observations of NGC 2915: A nearby blue compact dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Meurer, G. R.; Mackie, G.; Carignan, C.

    1994-06-01

    This paper presents B and R band Charge Coupled Device (CCD) images and medium resolution spectroscopy of NGC 2915, a relatively isolated BCD (blue compact dwarf) galaxy at a distance of approximately 5 Mpc. NGC 2915 contains two stellar populations: a high surface brightness blue core population and a red diffuse population. The core population contains all of the H II, and numerous embedded objects. It is the locus of current high mass star formation. The brightest embedded objects are likely to be young ionizing clusters, while many of the fainter objects are likely to be individual supergiant stars with masses up to approximately 25 solar mass, or blends of a few such stars. Curious aligned structures on the SE side of the galaxy are seen and their nature discussed. The spectrum of the core is dominated by bright narrow emission lines like that of a high excitation and low metallicity (less than half solar) H II region. The continuum is flat, with Balmer and Ca II features seen in absorption. The velocity of the Ca II features suggest contamination by galactic interstellar absorption. There is a significant velocity gradient in the spectra, probably indicative of rotation. Outside of its core, NGC 2915 resembles a dE (dwarf elliptical) galaxy, in that it has an exponential surface brightness profile, is red ((B-R)0 = 1.65), and has a low extrapolated central surface brightness (B(0)c = 22.44). NGC 2915's properties are compared with other BCDs, concentrating on two morphologically similar BCDs that are near enough to resolve into stars: NGC 1705 and NGC 5253. It is noted that the presence of winds in BCDs invalidates closed box chemical evolution models and the remaining constraints on star formation duration are relatively weak. Some BCDs, including NGC 2915, may be able to maintain their present star formation rate for Gyr time scales. This suggests that the overall evolution of these BCDs may be much slower than the approximately 10 Myr burst time scales commonly quoted. However, shortly after the formation of a massive (106 solar mass) cluster a BCD will have all the properties of strong starburst galaxy).

  3. Optical observations of NGC 2915: A nearby blue compact dwarf galaxy

    NASA Technical Reports Server (NTRS)

    Meurer, G. R.; Mackie, G.; Carignan, C.

    1994-01-01

    This paper presents B and R band Charge Coupled Device (CCD) images and medium resolution spectroscopy of NGC 2915, a relatively isolated BCD (blue compact dwarf) galaxy at a distance of approximately 5 Mpc. NGC 2915 contains two stellar populations: a high surface brightness blue core population and a red diffuse population. The core population contains all of the H II, and numerous embedded objects. It is the locus of current high mass star formation. The brightest embedded objects are likely to be young ionizing clusters, while many of the fainter objects are likely to be individual supergiant stars with masses up to approximately 25 solar mass, or blends of a few such stars. Curious aligned structures on the SE side of the galaxy are seen and their nature discussed. The spectrum of the core is dominated by bright narrow emission lines like that of a high excitation and low metallicity (less than half solar) H II region. The continuum is flat, with Balmer and Ca II features seen in absorption. The velocity of the Ca II features suggest contamination by galactic interstellar absorption. There is a significant velocity gradient in the spectra, probably indicative of rotation. Outside of its core, NGC 2915 resembles a dE (dwarf elliptical) galaxy, in that it has an exponential surface brightness profile, is red ((B-R)(sub 0) = 1.65), and has a low extrapolated central surface brightness (B(0)(sub c) = 22.44). NGC 2915's properties are compared with other BCDs, concentrating on two morphologically similar BCDs that are near enough to resolve into stars: NGC 1705 and NGC 5253. It is noted that the presence of winds in BCDs invalidates closed box chemical evolution models and the remaining constraints on star formation duration are relatively weak. Some BCDs, including NGC 2915, may be able to maintain their present star formation rate for Gyr time scales. This suggests that the overall evolution of these BCDs may be much slower than the approximately 10 Myr burst time scales commonly quoted. However, shortly after the formation of a massive (10(exp 6) solar mass) cluster a BCD will have all the properties of strong starburst galaxy).

  4. Star Formation Rates in Resolved Galaxies: Calibrations with Near- and Far-infrared Data for NGC 5055 and NGC 6946

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Crocker, Alison F.; Calzetti, Daniela; Wilson, Christine D.; Kennicutt, Robert C.; Murphy, Eric J.; Brandl, Bernhard R.; Draine, B. T.; Galametz, M.; Johnson, B. D.; Armus, L.; Gordon, K. D.; Croxall, K.; Dale, D. A.; Engelbracht, C. W.; Groves, B.; Hao, C.-N.; Helou, G.; Hinz, J.; Hunt, L. K.; Krause, O.; Roussel, H.; Sauvage, M.; Smith, J. D. T.

    2013-05-01

    We use the near-infrared Brγ hydrogen recombination line as a reference star formation rate (SFR) indicator to test the validity and establish the calibration of the Herschel/PACS 70 μm emission as a SFR tracer for sub-galactic regions in external galaxies. Brγ offers the double advantage of directly tracing ionizing photons and of being relatively insensitive to the effects of dust attenuation. For our first experiment, we use archival Canada-France-Hawaii Telescope Brγ and Ks images of two nearby galaxies: NGC 5055 and NGC 6946, which are also part of the Herschel program KINGFISH (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel). We use the extinction corrected Brγ emission to derive the SFR(70) calibration for H II regions in these two galaxies. A comparison of the SFR(70) calibrations at different spatial scales, from 200 pc to the size of the whole galaxy, reveals that about 50% of the total 70 μm emission is due to dust heated by stellar populations that are unrelated to the current star formation. We use a simple model to qualitatively relate the increase of the SFR(70) calibration coefficient with decreasing region size to the star formation timescale. We provide a calibration for an unbiased SFR indicator that combines the observed Hα with the 70 μm emission, also for use in H II regions. We briefly analyze the PACS 100 and 160 μm maps and find that longer wavelengths are not as good SFR indicators as 70 μm, in agreement with previous results. We find that the calibrations show about 50% difference between the two galaxies, possibly due to effects of inclination. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, and the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  5. Nuclear Gas Dynamics of NGC2110: A Black Hole Offset from the Host Galaxy Mass Center?

    NASA Technical Reports Server (NTRS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2004-01-01

    It has been suggested that the central regions of many galaxies are unlikely to be in a static steady state, with instabilities caused by sinking satellites, the influence of a supermassive black hole or residuals of galaxy formation, resulting in the nuclear black hole orbiting the galaxy center. The observational signature of such an orbiting black hole is an offset of the active nucleus (AGN) from the kinematic center defined by the galaxy rotation curve. This orbital motion may provide fuel for the AGN, as the hole 'grazes' on the ISM, and bent radio jets, due to the motion of their source. The early type (E/SO) Seyfert galaxy, NGC2210, with its striking twin, 'S'-shaped radio jets, is a unique and valuable test case for the offset-nucleus phenomenon since, despite its remarkably normal rotation curve, its kinematically-measured mass center is displaced both spatially (260 pc) and kinematically (170 km/s) from the active nucleus located in optical and radio studies. However, the central kinematics, where the rotation curve rises most steeply, have been inaccessible with ground-based resolutions. We present new, high resolution WFPC2 imaging and long-slit STIS spectroscopy of the central 300 pc of NGC2110. We discuss the structure and kinematics of gas moving in the galactic potential on subarcsecond scales and the reality of the offset between the black hole and the galaxy mass center.

  6. Clouds in Context: The Cycle of Gas and Stars in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles; Forbrich, Jan

    2015-08-01

    The physical process by which gas is converted into stars takes place on small scales within Giant Molecular Clouds (GMCs), while the formation and evolution of these GMCs is influenced by global, galactic-scale processes. It is thus of key importance to connect GMC (~10 pc) and galaxy (~10 kpc) scales in order to approach a fundamental understanding of the star formation process. With this goal in mind, we have conducted a multiscale, comprehensive, multiwavelength study of the interstellar medium and star formation in the nearby (d~1.9 Mpc) spiral galaxy NGC 300. We have fully mapped the dust content within this star-forming galaxy with the Herschel Space Observatory, combining these observations with archival Spitzer data to construct a high-sensitivity, ~250 pc-scale map of the column density and dust temperature across the entire NGC 300 disk. We find that peaks in the dust temperature generally correspond with active star-forming regions, and use our Herschel data along with pointed CO(2-1) observations from APEX to characterize the ISM in these regions. To derive star formation rates from ultraviolet, visible, and infrared photometry, we have developed a new method that utilizes population synthesis modeling of individual stellar populations and accounts for both the presence of extinction and the short (< 10 Myr) timescales appropriate for cloud-scale star formation. We find that the average molecular gas depletion time at GMC complex scales in NGC 300 is similar to that of Milky Way clouds, but significantly shorter than depletion times measured over kpc-sized regions in nearby galaxies. This difference likely reflects the presence of a diffuse, non-star-forming component of molecular gas between GMCs, as well as the fact that star formation is strongly concentrated in discrete regions within galaxies. I will also present first results from follow-up interferometric observations with the SMA and ALMA that resolve individual GMCs in NGC 300 for the first time, connecting GMC and galaxy scales. Finally, I will compare GMC properties between NGC 300 and other galaxies including the Milky Way.

  7. The mass of the central black hole in the nearby Seyfert galaxy NGC 5273

    SciTech Connect

    Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay

    2014-11-20

    We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.

  8. HDI in Action: Comparison Imaging of the Interacting Starburst Galaxy NGC 3310

    NASA Astrophysics Data System (ADS)

    Wehner, Elizabeth

    2015-01-01

    NGC 3310 is an interacting starburst galaxy located approximately 18 Mpc away. Previous studies reveal a circumnuclear starburst, substantial star formation in its spiral arms, and an extensive system of tidal debris likely induced from the collision with and subsequent merger of a now-destroyed companion galaxy. A study by Wehner et al. in 2006 revealed the presence of a previously undetected tidal loop in the Northeast quadrant of the system. We have obtained follow up observations of this system using the newly-built Half Degree Imager (HDI) recently mounted on the WIYN 0.9m telescope in Kitt Peak, Arizaon. We present a comparison of deep imaging of NGC 3310 from HDI and from S2KB, the former primary CCD camera on the 0.9m. We present our results for comparison of image depth and image quality in order to assess the new HDI camera for future low surface brightness observations.

  9. High-resolution Observations of Molecular Gas in the Early-type Dwarf Galaxy NGC 404

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher L.; Petitpas, Glen R.; del Rio, M. S.

    2015-06-01

    We present Berkeley-Illinois-Maryland Association CO (1-0) observations of the nearby dwarf elliptical galaxy NGC 404. The detected CO emission is concentrated in a small feature, slightly larger than the beam size, at the center of the optical galaxy. For an assumed CO-to-H2 conversion factor of 2.3 {{10}20} (K km s-1)-1, the molecular gas mass is 9.0 {{10}6} M?. The velocity field suggests rotation, with a position angle 90 different from previous single-dish observations. Both position angles are different from that of the extended H i distribution detected by del Ri et al. The lack of agreement between the postion angle of the CO velocity field and other position angles suggests an external origin for the central molecular gas clump in NGC 404.

  10. Carbon abundances and radial gradients in NGC 300 and other nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Toribio San Cipriano, L.; García-Rojas, J.; Esteban, C.

    2015-05-01

    We present preliminary results of deep echelle spectrophotometry of a sample of HII regions along the disk of the Scd galaxy NGC 300 obtained with the Ultraviolet and Visual Echelle Spectrograph (UVES) at the Very Large Telescope (VLT) with the aim of detect and measure very faint oii\\ and χ permitted lines. We focus this study on the C and O abundances obtained from faint optical recombination lines (ORLs) instead of the most commonly used collisionally excited lines (CELs). We have derived the ionic abundances of C^{2+} from the χ 4267Å RL and O^{2+} from the multiplet 1 of oii\\ around 4649Å in several objects. Finally, we have computed the radial gradients of C/H, O/H and C/O ratios in NGC 300 from RLs, which has allowed the comparison with similar data obtained by our group in other nearby spiral galaxies.

  11. The SLUGGS survey: globular cluster kinematics in a `double sigma' galaxy - NGC 4473

    NASA Astrophysics Data System (ADS)

    Alabi, Adebusola B.; Foster, Caroline; Forbes, Duncan A.; Romanowsky, Aaron J.; Pastorello, Nicola; Brodie, Jean P.; Spitler, Lee R.; Strader, Jay; Usher, Christopher

    2015-09-01

    NGC 4473 is a so-called double sigma (2σ) galaxy, i.e. a galaxy with rare, double peaks in its 2D stellar velocity dispersion. Here, we present the globular cluster (GC) kinematics in NGC 4473 out to ˜10Re (effective radii) using data from combined Hubble Space Telescope/Advanced Camera for Surveys and Subaru/Suprime-Cam imaging and Keck/Deep Imaging Multi-Object Spectrograph. We find that the 2σ nature of NGC 4473 persists up to 3Re, though it becomes misaligned to the photometric major axis. We also observe a significant offset between the stellar and GC rotation amplitudes. This offset can be understood as a co-addition of counter-rotating stars producing little net stellar rotation. We identify a sharp radial transition in the GC kinematics at ˜4Re suggesting a well defined kinematically distinct halo. In the inner region (<4Re), the blue GCs rotate along the photometric major axis, but in an opposite direction to the galaxy stars and red GCs. In the outer region (>4Re), the red GCs rotate in an opposite direction compared to the inner region red GCs, along the photometric major axis, while the blue GCs rotate along an axis intermediate between the major and minor photometric axes. We also find a kinematically distinct population of very red GCs in the inner region with elevated rotation amplitude and velocity dispersion. The multiple kinematic components in NGC 4473 highlight the complex formation and evolutionary history of this 2σ galaxy, as well as a distinct transition between the inner and outer components.

  12. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  13. The Hubble Heritage Image of the Polar-Ring Galaxy NGC 4650A

    NASA Astrophysics Data System (ADS)

    Kinney, A. L.; Gallagher, J.; Matthews, L.; Sparke, L.; Bond, H. E.; Christian, C. A.; English, J.; Frattare, L.; Hamilton, F.; Levay, Z.; Noll, K.; Hubble Heritage Team

    1999-05-01

    The Hubble Heritage Project has the aim of providing the public with pictorially striking images of celestial objects obtained with the Hubble Space Telescope. As part of the Heritage Project, we have used HST to obtain a multi-color image of the peculiar galaxy NGC 4650A. This was the first Heritage observation for which the public joined in the target selection. NGC 4650A was chosen in the winter of 1998-99 from among several candidate objects by over 8,000 members of the public, who used the Heritage web site (heritage.stsci.edu) to register their votes. The WFPC2 observations were obtained in April 1999, in the wide B (F450W), wide V (F606W), and I (F814W) bands. The resulting full-color image will be presented at the AAS meeting and on our web site, and the actual data frames are available publicly in the HST archive for use by interested scientists. NGC 4650A, located at a distance of about 40 Mpc, is the best-known and most spectacular example of the rare class of ``polar-ring'' galaxies. These objects are probably the remnants of collisions, in which the debris from a disrupted, gas-rich smaller galaxy has gone into orbit around a larger galaxy. The HST image of NGC 4650A shows a rotating, almost edge-on inner disk of old red stars, around which orbits a younger ring of dust, gas, and stars, in a plane that is nearly perpendicular to that of the old disk. Numerous young blue star clusters reveal that active star formation is occurring within the polar ring, triggered by the collision process. Polar rings are particularly useful for probing the distribution of dark matter in galactic halos.

  14. The 0.3-30 keV Spectra of Powerful Starburst Galaxies: NuSTAR and Chandra Observations of NGC 3256 and NGC 3310

    NASA Astrophysics Data System (ADS)

    Lehmer, B. D.; Tyler, J. B.; Hornschemeier, A. E.; Wik, D. R.; Yukita, M.; Antoniou, V.; Boggs, S.; Christensen, F. E.; Craig, W. W.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Ptak, A.; Stern, D.; Zezas, A.; Zhang, W. W.

    2015-06-01

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3-30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1-3 keV emission while ultraluminous X-ray sources (ULXs) provide majority contributions to the emission at E > 1-3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Γ ≈ 2.6 at E > 5-7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGNs (L2-10 keV/LEdd ≲ 10-5) or non-AGNs in nature (e.g., ULXs or crowded X-ray sources that reach L2-10 keV ˜ 1040 erg s-1 cannot be ruled out). Combining our constraints on the 0.3-30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3-6 keV primarily due to ULX populations. Our observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that NGC 3310 exhibits a factor of ≈3-10 elevation of X-ray emission over the other star-forming galaxies due to a corresponding overabundance of ULXs. We argue that the excess of ULXs in NGC 3310 is most likely explained by the relatively low metallicity of the young stellar population in this galaxy, a property that is expected to produce an excess of luminous X-ray binaries for a given SFR.

  15. Chandra and Very Large Array Observations of the Nearby Sd Galaxy NGC 45

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas G.; Swartz, Douglas A.; Laine, Seppo; Schlegel, Eric M.; Lacey, Christina K.; Moffitt, William P.; Sharma, Biswas; Lackey-Stewart, Aaron M.; Kosakowski, Alekzander R.; Filipović, Miroslav D.; Payne, Jeffrey L.

    2015-09-01

    We present an analysis of high angular resolution observations made in the X-ray and the radio with the Chandra X-ray Observatory and the Karl Jansky Very Large Array (VLA), respectively, of the nearby spiral galaxy NGC 45. This galaxy is the third that we have considered in a study of the supernova remnant (SNR) populations of nearby spiral galaxies and the present work represents the first detailed analysis of the discrete X-ray and radio source populations of this galaxy. We analyzed data sets from the three pointed observations made of this galaxy with Chandra along with a merged data set obtained from combining these data sets: the total effective exposure time of the merged data set is 63515 s. A total of 25 discrete X-ray sources are found in the entire field of view of the ACIS-S3 chip, with 16 sources found within the visual extent of the galaxy. We estimate that as many as half of the sources detected in the entire field of view of the ACIS-S3 chip and seven of the sources detected in the optical extent of NGC 45 may be background sources. We analyzed the spectral properties of the discrete X-ray sources within the galaxy and conclude that the majority of these sources are X-ray binaries. We have searched for counterparts at different wavelengths to the discrete X-ray sources and we find two associations: one with a star cluster and the other with a background galaxy. We have found one source that is clearly variable within one observation and seven that are seen to vary from one observation to another. We also conduct a photometric analysis to determine the near-infrared fluxes of the discrete X-ray sources in Spitzer Infrared Array Camera channels. We constructed a cumulative luminosity function of the discrete X-ray sources seen toward NGC 45: taking into account simultaneously the luminosity function of background sources, the fitted slope of the cumulative luminosity function Γ = -1.3{}-1.6+0.7 (all error bounds correspond to 90% confidence intervals). The VLA observations reveal seven discrete radio sources: we find no overlaps between these sources and the X-ray detected sources. Based on their measured spectral indices and their locations with respect to the visible extent of NGC 45, we classify one source as a candidate radio SNR associated with the galaxy and the others as likely background galaxies seen in projection toward NGC 45. Finally, we discuss the properties of a background cluster of galaxies (denoted as CXOU J001354.2-231254.7) seen in projection toward NGC 45 and detected by the Chandra observations. The fit parameters to the extracted Chandra spectra of this cluster are a column density {N}{{H}} = 0.07(<0.14) × 1022 cm-2, a temperature kT = 4.22{}-1.42+2.08 keV, an abundance Z = 0.30(<0.75) relative to solar and a redshift z = 0.28 ± 0.14. From the fit parameters we derive an electron number density {n}{{e}} = 4(±1) × 10-3 cm-3, an unabsorbed X-ray luminosity {L}0.5-7.0 {keV} ˜ 8.77(±0.96) × 1043 erg s-1 for the cluster and an X-ray emitting mass M = 2.32(±1.75) × 1012 {M}⊙ .

  16. NGC 2110 - An X-ray/radio galaxy with elliptical morphology

    NASA Technical Reports Server (NTRS)

    Bradt, H. V.; Burke, B. F.; Canizares, C. R.; Greenfield, P. E.; Kelley, R. L.; Mcclintock, J. E.; Koski, A. T.; Van Paradijs, J.

    1978-01-01

    The detection of X-ray emission from NGC 2110, a narrow-emission-line galaxy of apparently elliptical morphology, is reported. A relatively hard 2-11-keV energy spectrum with an index of 0.1 + or - 0.3 is obtained, and the X-ray luminosity in this energy band is shown to be 1.2 x 10 to the 43rd erg/s for the redshift distance of 43 Mpc. Optical and radio observations are discussed which indicate a galactocentric redshift of approximately 0.0071, a resolved nonstellar optical nucleus about 4 arcsec in extent, Seyfert type 2 emission lines from the nucleus, and a nonthermal radio source located 3.0 arcsec from the position of the optical nucleus. No evidence is found for X-ray source variability in NGC 2110. It is suggested that the four to seven known X-ray-emitting high-excitation narrow-emission-line galaxies appear to be nearby examples of the Seyfert type 2 phenomenon and that the elliptical morphology of NGC 2110, if confirmed, may be unique among known Seyfert galaxies.

  17. The ionization cone, obscured nucleus, and gaseous outflow in NGC 3281 - A prototypical Seyfert 2 galaxy?

    NASA Technical Reports Server (NTRS)

    Storchi-Bergmann, Thaisa; Wilson, Andrew S.; Baldwin, Jack A.

    1992-01-01

    Narrow-band images and long-slit spectroscopy of the central region of the highly inclined Seyfert galaxy NGC 3281 are presented. The image of the continuum-subtracted forbidden 4959 emission line shows a very clear conical morphology for the high-excitation gas. A possible similar structure can also be seen on the other side of the nucleus, but is dimmed by patchy obscuration in the dusk. The continuum images and long-slit spectroscopy are used to derive and map the extinction in the inner regions of NGC 3281; heavy obscuration is found along the present line of sight to the apex of the cone, suggesting that the true nucleus is located at the apex and is obscured. Low-resolution long-slit spectra are used to study the stellar population, which is found to be old, uniform within 2.5 kpc of the nucleus, and typical of the bulges of early-type galaxies. It is suggested that NGC3281 may be another example of a 'hidden' Seyfert 1, even though there is no direct evidence for a broad-line region in this particular galaxy.

  18. A Supermassive Black Hole in the Seyfert 1 Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, C. A.; Peterson, B. M.

    2004-01-01

    Updated analysis techniques and recalibrated archival monitoring data for the Seyfert 1 galaxy NGC 3783 indicated the presence of a supermassive black hole in this galaxy. Using UV data from the International Ultraviolet Explorer satellite and ground-based optical spectra, we have measured more precise emission line reverberation in response to continuum variations. The stratification of the broad line region (BLR) suggested by our results, combined with estimates of the line velocity widths, is consistent with a gravitationally-dominated BLR and allows us to derive a mass for the central black hole.

  19. X-ray emission from the edge-on spiral galaxy NGC 4631

    NASA Technical Reports Server (NTRS)

    Walterbos, R. A. M.

    1994-01-01

    This grant supported research of the X-ray emission from the disk and halo of the edge-on spiral galaxy NGC 4631, using data from the ROSAT satellite. The data were obtained on the basis of a proposal submitted by the PI, which was highly ranked in the peer review. It is a pleasure to say that the goals of the project, imaging and spectroscopy of hot gas in the disk and halo of a vigorously star forming galaxy, have been achieved. The results of the project have been submitted for publication, and are in press. A list of the publications is included.

  20. Stellar populations in edge-on galaxies from deep CCD surface photometry, 1: NGC 5907

    NASA Technical Reports Server (NTRS)

    Morrison, Heather L.; Boroson, Todd A.; Harding, Paul

    1994-01-01

    We present extremely deep charge coupled device (CCD) surface photometry of the edge-on Sc galaxy NGC 5907. Our data reach reliably to a surface brightness of R=27 mag/sq arcsec, some two magnitudes fainter than any previous work. We obtained this improvement using a 2048X2048 CCD with a wide (approximately 24 min) field, which made it possible to sky subtract directly from the galaxy frame, and by taking many dark sky flatfields. Our analysis of these data, using a full 2D model fitting procedure with a detailed error model, confirm the thin disk parameters of van der Kruit & Searle (1981). In particular, we confirm that the galaxy's disk has a radial cutoff and a constant scale height with radius. We find evidence for a stellar warp in this system, which has the same orientation as the H I warp. Our deep data also confirm that NGC 5907 has no thick disk. This suggests that theories of thick disk formation from star formation in the early stages of disk collapse, or by secular heating mechanisms, are unlikely to be correct, because they would predict that every galaxy would have a thick disk. Thick disk formation from the accretion of satellite galaxies is more likely.

  1. HUBBLE PROBES THE VIOLENT BIRTH OF STARS IN GALAXY NGC 253 [Left

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An image of the spiral galaxy NGC 253, taken with a ground-based telescope. The galaxy is located about 8 million light-years away in the constellation Sculptor. Credit: Jay Gallagher (University of Wisconsin-Madison), Alan Watson (Lowell Observatory, Flagstaff, AZ), and NASA [Right] This NASA Hubble Space Telescope image of the core of the nearest starburst spiral galaxy, NGC 253, reveals violent star formation within a region 1,000 light-years across. A starburst galaxy has an exceptionally high rate of star birth, first identified by its excess of infrared radiation from warm dust. Hubble's high resolution allows astronomers to quantify complex structures in the starburst core of the galaxy for the first time, including luminous star clusters, dust lanes which trace regions of dense gas and filaments of glowing gas. Hubble identifies several regions of intense star formation, which include a bright, super-compact star cluster. These observations confirm that stars are often born in dense clusters within starbursts, and that dense gas coexists with and obscures the starburst core. This image was taken with Hubble's Wide Field Planetary Camera 2 (in PC mode). Credit: Carnegie Institution of Washington

  2. 3D evolution of barred galaxies based on the cosmic-ray driven dynamo

    NASA Astrophysics Data System (ADS)

    Nowak, Natalia; Otmianowska-Mazur, Katarzyna; Hanasz, Michal

    2015-08-01

    Our MHD numerical calculations provide results for a three-dimensional model of barred galaxies involving a cosmic-ray driven dynamo process that depends on star formation rates. We applied global 3D numerical calculations of a cosmic-ray driven dynamo in barred galaxies with different physical input parameters such as the supernova (SN) rate.Furthermore, we argue that the cosmic-ray driven dynamo can account for a number of magnetic features in barred galaxies, such as magnetic arms observed along the gaseous arms, magnetic arms in the inter-arm regions, polarized emission that is at the strongest in the central part of the galaxy, where the bar is situated, polarized emission that forms ridges coinciding with the dust lanes along the leading edges of the bar, as well as their very strong total radio intensity. Our results give the modelled magnetic field topology similar to the observational maps of polarized intensity in barred galaxies. Moreover, they cast a new light on a number of polarization properties observed in barred or even spiral galaxies, like fast exponential growth of the total magnetic energy to the present values, stochastic nature of magnetic field reversals (for instance: in the Milky Way).We concluded that a cosmic-ray driven dynamo process in barred galaxies could boost magnetic fields efficiently. The fastest rate of magnetic field increase is 195 yr for SN frequency 1/50 yr-1.The obtained intensity of magnetic field corresponds to the observational values (few μG in spiral arms). We also found the effect of shifting magnetic arms.

  3. X-ray study of NGC 1399 in the Fornax cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Ikebe, Y.; Ohashi, T.; Makishima, K.; Tsuru, T.; Fabbiano, G.; Kim, D.-W.; Trinchieri, G.; Hatsukade, I.; Yamashita, K.; Kondo, H.

    1992-01-01

    Observations of the cD galaxy NGC 1399 in the Fornax cluster of galaxies with Ginga have detected extended X-ray emission out to a radius of more than about 360 kpc. The energy spectrum of this emission is well fitted with an optically thin thermal spectrum with kT = 1.46 +0.05/-0.21 keV with a strong iron emission line corresponding to an iron abundance of 1.1 +1.3/-0.5 times solar. The mass of the hot gas responsible for X-ray emission is nearly the same as the total stellar mass of the cluster. Therefore the presence of iron at near-solar abundance suggests that the mass of the hot gas ejected from galaxies is comparable to the total stellar mass. This result indicates that most of the hot gas in a very poor cluster is created through ejections from galaxies, rather than being primordial.

  4. Studying nearby disk galaxies:NGC 3982 a case for the CALIFA survey

    NASA Astrophysics Data System (ADS)

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Sánchez, S. F.; Muñoz-Mateos, J. C.; Rosales-Ortega, F. F.; Zamorano, J.; Sánchez-Moreno, F.,; Gallego, J.; The Califa Team

    2013-05-01

    CALIFA, the Calar Alto Legacy Integral Field Area survey, will provide the largest and most comprehensive wide-field IFU survey of galaxies carried out to date, combining the advantages of imaging and spectroscopy we will able to understand the origin for the observed diversity of galaxies, and the physical mechanisms -intrinsic and environmental- that are responsible for the differences as well as similarities between them. We will observe a statistically well-defined sample of ˜600 galaxies in the local universe (0.005 < z < 0.03) using 210 observing nights already awarded with the PMAS/PPAK integral field spectrophotometer, mounted on the Calar Alto 3.5m telescope. PPAK offers a combination of extremely wide field-of-view (>1arcmin^{2}) with a high filling factor in one single pointing (65%), good spectral resolution, and wavelength sensitivity across the optical spectrum. The spectra will be covering the range 3700-7000Å in two overlapping setups, one in the red (4300-7000Å) at a spectral resolution of R˜1000 and one in the blue (3700-5000Å) at R˜2000. Some of defining science drivers for the CALIFA project are the star formation and the chemical history of galaxies; improve our knowledge on the stellar and gas kinematics in galaxies, and understand the influence of the AGNs on galaxy evolution. Our effort is committed to add another dimension to the study of nearby disk galaxies thanks to the use of 3D data. For this reason and as part of the preparatory science of CALIFA we are carrying out an extensive and detailed study of the chemical and photometric properties of a sample of galaxies previously observed with PPAK. In this poster we present the case of NGC 3982 that demonstrates the strength of the combination of IFU and multi-wavelength imaging data, a continuation of the work done for NGC 5668 (described in Marino et al. 2012).

  5. Escape fraction of ionizing photons from a dwarf galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    Choi, Yumi; Fouesneau, Morgan; Gordon, Karl D.; Williams, Benjamin F.; Dalcanton, Julianne; Weisz, Daniel R.; Arab, Heddy; Sandstrom, Karin; Dolphin, Andrew E.

    2015-01-01

    Recent studies suggest that starburst dwarf galaxies played an important role in the early universe. Because these galaxies dominate by number, their leaked ionizing photons are likely main contributors to the reionization of the intergalactic medium (IGM). However, the complex structure of the interstellar medium (ISM) even at the pc scale makes it hard to predict the escape fraction of ionizing photons from high-redshift galaxies accurately. Analogues to their high-redshift counterparts, nearby starburst dwarf galaxies provide excellent laboratories to study the impact of star formation on the surrounding ISM and IGM in detail. Thanks to its proximity, the dwarf galaxy, NGC 4214, has been imaged with the high-resolution of WFC3 on HST from the near-UV to the near-IR (F225W, F336W, F438W, F814W, F110W, and F160W). These observations yielded measurements of the broad spectral energy distributions (SEDs) for 36,000 resolved stars within this galaxy. We developed a probabilistic tool (Bayesian Extinction and Stellar Tool, a.k.a. BEAST) to simultaneously infer from their SEDs the stellar properties of individual stars and the intervening dust properties along the line of sight to each star. With the aid of BEAST, we are able to infer the intrinsic ionizing flux produced by individual stars. By comparing this intrinsic ionizing flux with the flux that is used to ionize the ISM in the galaxy, derived based on the extinction-corrected H? emission, we can estimate the escape fraction and its local variation within the galaxy. Our preliminary results show that the global UV leakage of NGC 4214 is 10%.

  6. CONTINUUM HALOS IN NEARBY GALAXIES: AN EVLA SURVEY (CHANG-ES). II. FIRST RESULTS ON NGC 4631

    SciTech Connect

    Irwin, Judith; Henriksen, Richard N.; Beck, Rainer; Krause, Marita; Mora, Silvia Carolina; Schmidt, Philip; Benjamin, R. A.; Dettmar, Ralf-Juergen; Miskolczi, Arpad; English, Jayanne; Heald, George; Oosterloo, Tom; Johnson, Megan; Li, Jiang-Tao; Murphy, E. J.; Porter, Troy A.; Rand, Richard J.; Saikia, D. J.; Strong, A. W.; Walterbos, Rene E-mail: henriksn@astro.queensu.ca E-mail: rbeck@mpifr-bonn.mpg.de E-mail: cmora@mpifr-bonn.mpg.de; and others

    2012-08-15

    We present the first results from the Continuum Halos in Nearby Galaxies-an EVLA Survey (CHANG-ES), a new survey of 35 edge-on galaxies to search for both in-disk and extraplanar radio continuum emission. CHANG-ES is exploiting the new wide-band, multi-channel capabilities of the Karl G. Jansky Very Large Array (i.e., the Expanded Very Large Array or EVLA) with observations in two bands centered at 1.5 and 6 GHz in a variety of array configurations with full polarization. The motivation and science case for the survey are presented in a companion paper (Paper I). These first results are based on C-array test observations in both observing bands of the well-known radio halo galaxy, NGC 4631. In this paper, we outline the observations and the data reduction steps that are required for wide-band calibration and mapping of EVLA data, including polarization. With modest on-source observing times (30 minutes at 1.5 GHz and 75 minutes at 6 GHz for the test data), we have achieved best rms noise levels of 22 and 3.5 {mu}Jy beam{sup -1} at 1.5 GHz and 6 GHz, respectively. New disk-halo features have been detected, among them two at 1.5 GHz that appear as loops in projection. We present the first 1.5 GHz spectral index map of NGC 4631 to be formed from a single wide-band observation in a single array configuration. This map represents tangent slopes to the intensities within the band centered at 1.5 GHz, rather than fits across widely separated frequencies as has been done in the past and is also the highest spatial resolution spectral index map yet presented for this galaxy. The average spectral index in the disk is {alpha}-bar{sub 1.5GHz} = -0.84 {+-} 0.05 indicating that the emission is largely non-thermal, but a small global thermal contribution is sufficient to explain a positive curvature term in the spectral index over the band. Two specific star-forming regions have spectral indices that are consistent with thermal emission. Polarization results (uncorrected for internal Faraday rotation) are consistent with previous observations and also reveal some new features. On broad scales, we find strong support for the notion that magnetic fields constrain the X-ray-emitting hot gas.

  7. Globular Clusters as Dynamical Probes of the s0 Galaxy NGC 3115

    NASA Astrophysics Data System (ADS)

    Kavelaars, J. J.

    This thesis presents a photometric and spectroscopic investigation of the globular cluster system (GCS) of the S0 galaxy NGC 3115. Photometric observations, obtained at the CFHT, were made in V and I. The limiting magnitude in both filters is approximately at the level of the peak of the globular cluster luminosity function, determined to be mVTO = 22.8 ± 0.2. This turnover value, when compared with that of the Milky Way, implies a distance modulus of (m - M)VTO = 30.2 ± 0.3 which is consistent with distance estimates based on the magnitude of the red giant branch tip. Analysis of the integrated V - I colours of the clusters indicates that the GCS contains multiple population components. The red clusters appear more concentrated towards the plane of NGC 3115 than do the blue clusters. From the spectroscopic observations, obtained at the WHT using the LDSS, we find that the cluster system is rapidly rotating and that the velocity dispersion of the cluster system implies M/L = 19-3+10 at a distance of R = 15kpc from the center of NGC 3115. This value of M/L is larger than that found at smaller radii suggesting that NGC 3115 possesses a dark matter halo. By combining the spectral and photometric data we find very strong evidence that NGC 3115 possesses two separate and distinct cluster populations, one a metal-rich thick disk system and the other a metal-poor halo system. This is the first detection of a disk system of clusters in a non-Local Group galaxy.

  8. Bar properties as seen in the Spitzer Survey of Stellar Structure in Galaxies

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik

    2015-03-01

    Bars serve a crucial signpost in galaxy evolution because they form quickly once a disk is sufficiently massive and dynamically cold. Although the bar fraction in the local Universe is well-established since the mid-60s, a variety of studies have concluded varying bar fractions due to different definitions of bars, use of low quality data or different sample selection. The Spitzer Survey of Stellar Structure in Galaxies (S4G) offers us the ideal data set for resolving this outstanding issue once and for all. S4G consists of over 2000 nearby galaxies chosen based on optical brightness, distance, galactic latitude and size in a 40 Mpc volume. With a 4 minute integration time per pixel over >1.5 × D25 diameter for each galaxy, the data provide the deepest, homogenous, mid-infrared (3.6 and 4.5 microns) data on the nearby Universe. The data are so deep that we are tracing stellar surface densities << 1 solar mass per square parsec. With these data we can confidently constrain the bar fraction and thus shed important light on the evolutionary state of galaxies as a function of mass, environment and other galaxy host properties.

  9. Spectroscopic study of extended star clusters in dwarf galaxy NGC 6822

    SciTech Connect

    Hwang, Narae; Kim, Sang Chul; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Weisz, Daniel; Miller, Bryan

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from –61.2 ± 20.4 km s{sup –1} (for C1) to –115.34 ± 57.9 km s{sup –1} (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (≥8 Gyr) and metal poor ([Fe/H] ≲ –1.5). NGC 6822 is found to have both metal poor ([Fe/H] ≈–2.0) and metal rich ([Fe/H] ≈–0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r ≥ 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M{sub N6822}=7.5{sub −0.1}{sup +4.5}×10{sup 9} M{sub ⊙} and (M/L){sub N6822}=75{sub −1}{sup +45}(M/L){sub ⊙}. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group.

  10. The Complex Gas Kinematics in the Nucleus of the Seyfert 2 Galaxy NGC 1386: Rotation, Outflows, and Inflows

    NASA Astrophysics Data System (ADS)

    Lena, D.; Robinson, A.; Storchi-Bergman, T.; Schnorr-Müller, A.; Seelig, T.; Riffel, R. A.; Nagar, N. M.; Couto, G. S.; Shadler, L.

    2015-06-01

    We present optical integral field spectroscopy of the circum-nuclear gas of the Seyfert 2 galaxy NGC 1386. The data cover the central 7″ × 9″ (530 × 680 pc) at a spatial resolution of 0.″ 9 (68 pc), and the spectral range 5700-7000 Å at a resolution of 66 km s-1. The line emission is dominated by a bright central component, with two lobes extending ≈3″ north and south of the nucleus. We identify three main kinematic components. The first has low velocity dispersion (\\bar{σ } ≈ 90 km s-1), extends over the whole field of view, and has a velocity field consistent with gas rotating in the galaxy disk. We interpret the lobes as resulting from photoionization of disk gas in regions where the active galactic nucleus radiation cones intercept the disk. The second has higher velocity dispersion (\\bar{σ } ≈ 200 km s-1) and is observed in the inner 150 pc around the continuum peak. This component is double peaked, with redshifted and blueshifted components separated by ≈500 km s-1. Together with previous Hubble Space Telescope imaging, these features suggest the presence of a bipolar outflow for which we estimate a mass outflow rate of \\dot{M} ≳ 0.1 {{M}⊙ } yr-1. The third component is revealed by velocity residuals associated with enhanced velocity dispersion and suggests that outflow and/or rotation is occurring approximately in the equatorial plane of the torus. A second system of velocity residuals may indicate the presence of streaming motions along dusty spirals in the disk.

  11. A JET MODEL FOR THE BROADBAND SPECTRUM OF THE SEYFERT 1 GALAXY NGC 4051

    SciTech Connect

    Maitra, Dipankar; Miller, Jon M.; King, Ashley; Markoff, Sera

    2011-07-10

    Recent radio very long baseline interferometry observations of the {approx} parsec-scale nuclear region of the narrow line Seyfert 1 galaxy NGC 4051 hint toward the presence of outflowing plasma. From available literature we have collected high-quality, high-resolution broadband spectral energy distribution (SED) data of the nuclear region of NGC 4051 spanning from radio through X-rays, to test whether the broadband SED can be explained within the framework of a relativistically outflowing jet model. We show that once the contribution from the host galaxy is taken into account, the broadband emission from the active galactic nucleus (AGN) of NGC 4051 can be well described by the jet model. Contributions from dust and ongoing star formation in the nuclear region tend to dominate the IR emission even at the highest resolutions. In the framework of the jet model, the correlated high variability of the extreme-ultraviolet and X-rays compared to other wavelengths suggests that the emission at these wavelengths is optically thin synchrotron originating in the particle acceleration site(s) in the jet very close (few r{sub g}= GM{sub BH}/c{sup 2}) to the central supermassive black hole of mass M{sub BH}. Our conclusions support the hypothesis that narrow line Seyfert 1 galaxies (which NGC 4051 is a member of) harbor a 'jetted' outflow with properties similar to what has already been seen in low-luminosity AGNs and stellar mass black holes in hard X-ray state.

  12. Kinematics of Superbubbles and Supershells in the Irregular Galaxy, NGC 1569

    NASA Astrophysics Data System (ADS)

    Sánchez-Cruces, M.; Rosado, M.; Rodríguez-González, A.; Reyes-Iturbide, J.

    2015-02-01

    We present observations in the optical lines of Hα and [S II] (λλ6717, 6731 Å) and in X-rays of the irregular galaxy, NGC 1569. The observations in Hα and [S II] were made with the UNAM scanning Fabry-Perot interferometer (PUMA) and the X-ray data were obtained from the Chandra data archive. We detected several superbubbles, filaments, and supershells in NGC 1569 for which we determined size as well as their kinematic properties. We present a catalog of expansion velocities of 12 superbubbles, listing their positions, diameters, and physical parameters. Likewise, we present a catalog of 15 filaments and 4 supershells. In order to identify possible X-ray emission from the superbubbles in this galaxy, we analyzed the X-ray emission of NGC 1569 in two energy bands: 0.2-2.0 keV (soft X-rays) and 2.0-8.0 keV (hard X-rays). Based on X-ray images, we detected X-ray emission that could possibly be related to some of the superbubbles. The spectrum of the X-ray superbubbles can be described by an optically thin thermal plasma model. In order to identify the possible coexistence of galactic super winds and superbubbles we have performed adiabatic three-dimensional N-body/smoothed particle hydrodynamics simulations to follow the evolution of the most important stellar clusters in this galaxy, SSC A and SSC B, using the GADGET-2 code. Those simulations demonstrate that depending on the specific initial conditions, the formation of superbubbles or a galactic superwind can result in NGC 1569.

  13. The role of interactions in triggering bars, spiral arms and AGN in disk galaxies

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara L.; Patton, David R.

    2016-01-01

    The role of secular structures like bars, rings and spiral arms in triggering star formation and AGN activity in disk galaxies are not well understood. In addition, the mechanisms which create and destroy these structures are not well characterized. Mergers are considered to be one of the main mechanisms which can trigger bars in massive disk galaxies. Using a sample of ~8000 close pair galaxies at 0.02 < z < 0.06 from the Sloan Digital Sky Survey, I will present results illustrating the role of mergers in triggering bars, rings, spiral arms and AGN as a function of close pair separation and merger ratios as well as their dependence on morphology and other physical properties of the galaxies. Time permitting, I will show how resolved IFU observations from SDSS MaNGA will help to place stronger constraints on the role of these structures in triggering star formation and AGN.

  14. The Hydra I cluster core. I. Stellar populations in the cD galaxy NGC 3311

    NASA Astrophysics Data System (ADS)

    Barbosa, C. E.; Arnaboldi, M.; Coccato, L.; Hilker, M.; Mendes de Oliveira, C.; Richtler, T.

    2016-04-01

    Context. The history of the mass assembly of brightest cluster galaxies may be studied by mapping the stellar populations at large radial distances from the galaxy centre, where the dynamical times are long and preserve the chemodynamical signatures of the accretion events. Aims: We provide extended and robust measurements of the stellar population parameters in NGC 3311, the cD galaxy at the centre of the Hydra I cluster, and out to three effective radii. We wish to characterize the processes that drove the build-up of the stellar light at all these radii. Methods: We obtained the spectra from several regions in NGC 3311 covering an area of ~3 arcmin2 in the wavelength range 4800 ≲ λ(Å) ≲ 5800, using the FORS2 spectrograph at the Very Large Telescope in the MXU mode. We measured the equivalent widths of seven absorption-features defined in the Lick/IDS system, which were modelled by single stellar populations, to provide luminosity-weighted ages, metallicities, and alpha element abundances. Results: The trends in the Lick indices and the distribution of the stellar population parameters indicate that the stars of NGC 3311 may be divided in two radial regimes, one within and the another beyond one effective radius, Re = 8.4 kpc, similar to the distinction between the inner galaxy and the external halo derived from the NGC 3311 velocity dispersion profile. The inner galaxy (R ≤ Re) is old (age ~14 Gyr), has negative metallicity gradients and positive alpha element gradients. The external halo is also very old, but has a negative age gradient. The metal and element abundances of the external halo both have a large scatter, indicating that stars from a variety of satellites with different masses have been accreted. The region in the extended halo associated with the off-centred envelope at 0°< PA < 90° has higher metallicity with respect to the symmetric external halo. Conclusions: The different stellar populations in the inner galaxy and extended halo reflect the dominance of in situ stars in the former and the accreted origin for the large majority of the stars in the latter. The low value of the velocity dispersion in the inner galaxy indicates that its stars are bound to the galaxy's gravitational potential, and the abundances and gradients suggest that the inner galaxy is formed in an outside-in scenario of merging gas-rich lumps, reminiscent of the first phase of galaxy formation. The external halo has a higher velocity dispersion, it is dynamically hotter than the galaxy and its stars are gravitationally driven by the cluster's gravitational potential. The stars in the external halo were removed from their parent galaxies, either disks with truncated star formation, or the outer regions of early-type galaxies. Late mass accretion at large radii is now coming from the tidal stripping of stars from dwarfs and S0 galaxies. These results provide supporting evidence for the recent theoretical models of formation of massive ellipticals as a two-phase process. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 088.B-0448(B) PI Richtler.Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A139

  15. Determining the type of orbits in the central regions of barred galaxies

    NASA Astrophysics Data System (ADS)

    Zotos, Euaggelos E.; Caranicolas, Nicolaos D.

    2016-02-01

    We use a simple dynamical model which consists of a harmonic oscillator and a spherical component, in order to investigate the regular or chaotic character of orbits in a barred galaxy with a central spherically symmetric nucleus. Our aim is to explore how the basic parameters of the galactic system influence the nature of orbits, by computing in each case the percentage of chaotic orbits, as well as the percentages of different types of regular orbits. We also give emphasis to the types of regular orbits that support either the formation of nuclear rings or the barred structure of the galaxy. We provide evidence that the traditional x1 orbital family does not always dominate in barred galaxy models since we found several other types of resonant orbits which can also support the barred structure. We also found that sparse enough nuclei, fast rotating bars and high energy models can support the galactic bars. On the other hand, weak bars, dense central nuclei, slowly rotating bars and low energy models favor the formation of nuclear rings. We also compare our results with previous related work.

  16. NGC 1365

    NASA Astrophysics Data System (ADS)

    Lindblad, Per Olof

    The aim of the present review is to give a global picture of the supergiant barred galaxy NGC 1365. This galaxy with its strong bar and prominent spiral structure displays a variety of nuclear activity and ongoing star formation. The kinematics of the galaxy has been mapped in detail by optical long slit and Fabry-Perot observations as well as radio observations of Hi and CO interstellar lines. From these observations a combined velocity field has been derived, describing the circulation of interstellar gas in the symmetry plane of the galaxy. With a gravitational potential based on near infrared photometry of the bar and the shape of the apparent rotation curve, computer simulations of the dynamics of the interstellar gas have been made with the aim to reproduce both the morphology of the interstellar matter as well as the observed velocity field. The simulations demonstrate the role of the bar and the importance of resonances between the bar rotation and the rotation of the galaxy for the formation of the spiral structure. Polarization of radio radiation reveals magnetic fields concentrated to the dust lanes along and across the bar, where they are aligned with the flow pattern of the gas, and along the spiral arms. The kinematics of the outer region of the galaxy with a fairly unique decline of the rotation curve leads to the conclusion that NGC 1365 lacks a very massive dark matter halo, which may permit the formation of a very strong bar. The galaxy contains an active nucleus with both broad and narrow components of the permitted spectral emission lines. The nucleus is surrounded by a molecular torus, numerous star forming regions and continuum radio sources. The star forming regions are, as seen with the Hubble Space Telescope (HST), resolved into a large number of super star clusters suggested to be young globular clusters. A very compact radio source, seen at high spatial resolution with the Very Large Array (VLA), has been claimed to coincide with one of the super star clusters. This compact source has a radio brightness of the order of 100 times that of the bright galactic supernova remnant Cas A and is suggested to be a so called `radio supernova'. Two other such compact radio sources, positioned in the prominent dark dust lane penetrating the nuclear region, are identified as strong infrared sources by observations with the Very Large Telescope (VLT). The cause of this infrared radiation may be dust heated by the objects that drive the radio sources. The X-ray radiation from the nucleus is interpreted to consist of hard continuum radiation from the active nucleus itself, Fe-K line emission from a rotating disk, and thermal emission from the surrounding star burst activity. A secondary, highly variable source has been discovered close to the nuclear region. It seems to be one of the most luminous and most highly variable off-nuclear X-ray sources known. The higher excitation optical emission lines in the nuclear region, primarily from [Oiii], reveal a velocity field quite different from that described by the galactic rotation. The deviating [Oiii] morphology and velocity field in the nuclear region is interpreted in terms of a high excitation outflow double-cone with its apex at the nucleus and symmetry axis perpendicular to the symmetry plane of the galaxy. One of the circumnuclear radio sources seems to be a one-sided jet emerging from the nucleus aligned with the cone axis. According to the model, the outward flow within the cone is accelerated and the flow velocity highest at the cone axis.

  17. A close nuclear black-hole pair in the spiral galaxy NGC 3393.

    PubMed

    Fabbiano, G; Wang, Junfeng; Elvis, M; Risaliti, G

    2011-09-22

    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes, through accretion and galactic merging. Pairs of quasars, each with a massive black hole at the centre of its galaxy, have separations of 6,000 to 300,000 light years (refs 2 and 3; 1 parsec = 3.26 light years) and exemplify the first stages of this gravitational interaction. The final stages of the black-hole merging process, through binary black holes and final collapse into a single black hole with gravitational wave emission, are consistent with the sub-light-year separation inferred from the optical spectra and light-variability of two such quasars. The double active nuclei of a few nearby galaxies with disrupted morphology and intense star formation (such as NGC 6240 with a separation of about 2,600 light years and Mrk 463 with a separation of about 13,000 light years between the nuclei) demonstrate the importance of major mergers of equal-mass spiral galaxies in this evolution; such mergers lead to an elliptical galaxy, as in the case of the double-radio-nucleus elliptical galaxy 0402+379 (with a separation of about 24 light years between the nuclei). Minor mergers of a spiral galaxy with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active massive black-hole pairs, but have hitherto not been seen. Here we report the presence of two active massive black holes, separated by about 490 light years, in the Seyfert galaxy NGC 3393 (50 Mpc, about 160 million light years). The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the black holes embedded in the bulge, provide a hitherto missing observational point to the study of galaxy/black hole evolution. Comparison of our observations with current theoretical models of mergers suggests that they are the result of minor merger evolution. PMID:21881560

  18. ROSAT HRI Observations of NGC 4038/4039, ``The Antennae'' Galaxies

    NASA Astrophysics Data System (ADS)

    Fabbiano, G.; Schweizer, Franois; Mackie, G.

    1997-03-01

    This paper presents data extracted from an image of the merging galaxies NGC 4038/39 obtained with the ROSAT High-Resolution Imager (HRI). This 5"-resolution image reveals complex and intricate X-ray emission associated with both galaxies, including: (1) regions of almost filamentary emission, closely following the H? distribution and generally related with star-forming regions; (2) emission peaks coincident with H II regions; (3) three possibly pointlike super-Eddington sources with LX >~ 4 1039 ergs s-1 and (4) prominent nuclear emission peaks with LX near ~1040 ergs s-1. Estimates suggest that X-ray emission from early-type stars in these galaxies is a small component of the total emission. Most of the observed X-ray emission can probably be explained as a combination of emission from discrete luminous evolved X-ray sources (binaries and supernova remnants) and from a diffuse hot interstellar medium (ISM). The morphology of the image suggests that there may be both nuclear outflows analogous to those observed in other starburst galaxies (e.g., NGC 253) and superbubbles (as, e.g., in LMC). The latter, however, would be 100-400 times more luminous than analogous features observed in the LMC and in M101.

  19. The most recent burst of star formation in the massive elliptical galaxy NGC 1052

    NASA Astrophysics Data System (ADS)

    Fernández-Ontiveros, J. A.; López-Sanjuan, C.; Montes, M.; Prieto, M. A.; Acosta-Pulido, J. A.

    2011-02-01

    High spatial resolution near-infrared (NIR) images of the central 24 × 24 arcsec2 (˜2 × 2 kpc2) of the elliptical galaxy NGC 1052 reveal a total of 25 compact sources randomly distributed in the region. 15 of them exhibit Hα luminosities an order of magnitude above the estimate for an evolved population of extreme horizontal branch stars. Their Hα equivalent widths and optical-to-NIR spectral energy distributions are consistent with them being young stellar clusters aged <7 Myr. We consider this to be the first direct observation of spatially resolved star-forming regions in the central kiloparsecs of an elliptical galaxy. The sizes of these regions are ≲11 pc and their median reddening is E(B-V) ˜ 1 mag. According to previous works, NGC 1052 may have experienced a merger event about 1 Gyr ago. On the assumption that these clusters are spread with a similar density over the whole galaxy, the fraction of galaxy mass (5 × 10-5) and rate of star formation (0.01 M⊙ yr-1) involved suggest the merger event as the possible cause for the star formation we see today. Based on European Southern Observatory (ESO) Very Large Telescope (VLT) program 076.B-0493 and Hubble Space Telescope (HST) program IDs 3639, 6286, 7403 and 7886.

  20. Serendipitous discovery of a dying Giant Radio Galaxy associated with NGC 1534, using the Murchison Widefield Array

    NASA Astrophysics Data System (ADS)

    Hurley-Walker, Natasha; Johnston-Hollitt, Melanie; Ekers, Ron; Hunstead, Richard; Sadler, Elaine M.; Hindson, Luke; Hancock, Paul; Bernardi, Gianni; Bowman, Judd D.; Briggs, Frank; Cappallo, Roger; Corey, Brian; Deshpande, Avinash A.; Emrich, David; Gaensler, Bryan M.; Goeke, Robert; Greenhill, Lincoln; Hazelton, Bryna J.; Hewitt, Jacqueline; Kaplan, David L.; Kasper, Justin; Kratzenberg, Eric; Lonsdale, Colin; Lynch, Mervyn; Mitchell, Daniel; McWhirter, Russell; Morales, Miguel; Morgan, Edward; Oberoi, Divya; Offringa, André; Ord, Stephen; Prabu, Thiagaraj; Rogers, Alan; Roshi, Anish; Shankar, Udaya; Srivani, K.; Subrahmanyan, Ravi; Tingay, Steven; Waterson, Mark; Wayth, Randall B.; Webster, Rachel; Whitney, Alan; Williams, Andrew; Williams, Chris

    2015-03-01

    Recent observations with the Murchison Widefield Array at 185 MHz have serendipitously unveiled a heretofore unknown giant and relatively nearby (z = 0.0178) radio galaxy associated with NGC 1534. The diffuse emission presented here is the first indication that NGC 1534 is one of a rare class of objects (along with NGC 5128 and NGC 612) in which a galaxy with a prominent dust lane hosts radio emission on scales of ˜700 kpc. We present details of the radio emission along with a detailed comparison with other radio galaxies with discs. NGC 1534 is the lowest surface brightness radio galaxy known with an estimated scaled 1.4-GHz surface brightness of just 0.2 mJy arcmin-2. The radio lobes have one of the steepest spectral indices yet observed: α = -2.1 ± 0.1, and the core to lobe luminosity ratio is <0.1 per cent. We estimate the space density of this low brightness (dying) phase of radio galaxy evolution as 7 × 10-7 Mpc-3 and argue that normal AGN cannot spend more than 6 per cent of their lifetime in this phase if they all go through the same cycle.

  1. SPECTRAL TYPES OF RED SUPERGIANTS IN NGC 6822 AND THE WOLF-LUNDMARK-MELOTTE GALAXY

    SciTech Connect

    Levesque, Emily M.; Massey, Philip

    2012-07-15

    We present moderate-resolution spectroscopic observations of red supergiants (RSGs) in the low-metallicity Local Group galaxies NGC 6822 (Z = 0.4 Z{sub Sun} ) and Wolf-Lundmark-Melotte (WLM; Z = 0.1 Z{sub Sun} ). By combining these observations with reduction techniques for multislit data reduction and flux calibration, we are able to analyze spectroscopic data of 16 RSGs in NGC 6822 and spectrophotometric data of 11 RSGs in WLM. Using these observations, we determine spectral types for these massive stars, comparing them to Milky Way and Magellanic Cloud RSGs and thus extending observational evidence of the abundance-dependent shift of RSG spectral types to lower metallicities. In addition, we have uncovered two RSGs with unusually late spectral types (J000158.14-152332.2 in WLM, with a spectral type of M3 I, and J194453.46-144552.6 in NGC 6822, with a spectral type of M4.5 I) and a third RSG (J194449.96-144333.5 in NGC 6822) whose spectral type has varied from an M2.5 in 1997 to a K5 in 2008. All three of these stars could potentially be members of a recently discovered class of extreme RSG variables.

  2. An Off-nucleus Nonstellar Black Hole in the Seyfert Galaxy NGC 5252

    NASA Astrophysics Data System (ADS)

    Kim, Minjin; Ho, Luis C.; Wang, Junfeng; Fabbiano, Giuseppina; Bianchi, Stefano; Cappi, Massimo; Dadina, Mauro; Malaguti, Giuseppe; Wang, Chen

    2015-11-01

    We report the discovery of an ultraluminous X-ray source (ULX; CXO J133815.6+043255) in NGC 5252. This ULX is an off-nuclear point source, which is 22″ away from the center of NGC 5252, and has an X-ray luminosity of 1.5 × 1040 erg s-1. It is one of the rare examples of a ULX, which exhibits clear counterparts in radio, optical, and UV bands. A follow-up optical spectrum of the ULX shows strong emission lines. The redshift of the [O iii] emission line coincides with the systematic velocity of NGC 5252, suggesting that the ULX is gravitationally bound to NGC 5252. The flux of [O iii] appears to be correlated with both X-ray and radio luminosity in the same manner as ordinary active galactic nuclei (AGNs), indicating that the [O iii] emission is intrinsically associated with the ULX. Based on the multiwavelength data, we argue that the ULX is unlikely to be a background AGN. A more likely option is an accreting black hole with a mass of ≥slant {10}4 {M}⊙ , which might be a stripped remnant of a merging dwarf galaxy.

  3. RR LYRAE VARIABLES IN THE LOCAL GROUP DWARF GALAXY NGC 147

    SciTech Connect

    Yang, S-C.; Sarajedini, Ata E-mail: ata@astro.ufl.ed

    2010-01-01

    We investigate the RR Lyrae (RRL) population in NGC 147, a dwarf satellite galaxy of M31 (Andromeda). We used both Thuan-Gunn g-band ground-based photometry from the literature and Hubble Space Telescope Wide Field Planetary Camera 2 archival data in the F555W and F814W passbands to investigate the pulsation properties of RRL variable candidates in NGC 147. These data sets represent the two extreme cases often found in RRL studies with respect to the phase coverage of the observations and the quality of the photometric measurements. Extensive artificial variable star tests for both cases were performed. We conclude that neither data set is sufficient to confidently determine the pulsation properties of the NGC 147 RRLs. Thus, while we can assert that NGC 147 contains RRL variables, and therefore a population older than approx10 Gyr, it is not possible at this time to use the pulsation properties of these RRLs to study other aspects of this old population. Our results provide a good reference for gauging the completeness of RRL variable detection in future studies.

  4. Gas Kinematics and the Black Hole Mass at the Center of the Radio Galaxy NGC 4335

    NASA Astrophysics Data System (ADS)

    Verdoes Kleijn, Gijs A.; van der Marel, Roeland P.; de Zeeuw, P. Tim; Noel-Storr, Jacob; Baum, Stefi A.

    2002-11-01

    We investigate the kinematics of the central gas disk of the radio-loud elliptical galaxy NGC 4335, derived from Hubble Space Telescope (HST) long-slit spectroscopic observations of Hα+[N II] along three parallel slit positions. The observed mean velocities are consistent with a rotating thin disk. We model the gas disk in the customary way, taking into account the combined potential of the galaxy and a putative black hole with mass M•, as well as the influence on the observed kinematics of the point-spread function and finite slit width. This sets a 3 σ upper limit of 108 Msolar on M•. The velocity dispersion at r<~0.5" is in excess of that predicted by the thin rotating disk model. This does not invalidate the model if the excess dispersion is caused by localized turbulent motion in addition to bulk circular rotation. However, if instead the dispersion is caused by the black hole (BH) potential then the thin disk model provides an underestimate of M•. A BH mass M•~6×108 Msolar is inferred by modeling the central gas dispersion as due to an isotropic spherical distribution of collisionless gas cloudlets. The stellar kinematics for NGC 4335 are derived from a ground-based (William Herschel Telescope/ISIS) long-slit observation along the galaxy major axis. A two-integral model of the stellar dynamics yields M•>~3×109 Msolar. However, there is reason to believe that this model overestimates M•. Reported correlations between black hole mass and inner stellar velocity dispersion σ predict M• to be >=5.4×108 Msolar in NGC 4335. If our standard thin disk modeling of the gas kinematics is valid, then NGC 4335 has an unusually low M• for its velocity dispersion. If, on the other hand, this approach is flawed and provides an underestimate of M•, then black hole masses for other galaxies derived from HST gas kinematics with the same assumptions should be treated with caution. In general, a precise determination of the M•-σ relation and its scatter will benefit from (1) joint measurements of M• from gas and stellar kinematics in the same galaxies and (2) a better understanding of the physical origin of the excess velocity dispersion commonly observed in nuclear gas disks of elliptical galaxies. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. The James Clerk Maxwell Telescope Nearby Galaxies Legacy Survey - IX. 12CO J = 3→2 observations of NGC 2976 and NGC 3351

    NASA Astrophysics Data System (ADS)

    Tan, Boon-Kok; Leech, J.; Rigopoulou, D.; Warren, B. E.; Wilson, C. D.; Attewell, D.; Azimlu, M.; Bendo, G. J.; Butner, H. M.; Brinks, E.; Chanial, P.; Clements, D. L.; Heesen, V.; Israel, F.; Knapen, J. H.; Matthews, H. E.; Mortier, A. M. J.; Mühle, S.; Sánchez-Gallego, J. R.; Tilanus, R. P. J.; Usero, A.; van der Werf, P.; Zhu, M.

    2013-11-01

    We present 12CO J = 3→2 maps of NGC 2976 and NGC 3351 obtained with the James Clerk Maxwell Telescope (JCMT), both early targets of the JCMT Nearby Galaxy Legacy Survey (NGLS). We combine the present observations with 12CO J = 1→0 data and find that the computed 12CO J = 3→2 to 12CO J = 1→0 line ratio (R31) agrees with values measured in other NGLS field galaxies. We compute the MH2 value and find that it is robust against the value of R31 used. Using H I data from The H I Nearby Galaxy Survey, we find a tight correlation between the surface density of H2 and star formation rate density for NGC 3351 when 12CO J = 3→2 data are used. Finally, we compare the 12CO J = 3→2 intensity with the polycyclic aromatic hydrocarbon (PAH) 8 μm surface brightness and find a good correlation in the high surface brightness regions. We extend this study to include all 25 Spitzer Infrared Nearby Galaxies Survey galaxies within the NGLS sample and find a tight correlation at large spatial scales. We suggest that both PAH 8 μm and 12CO J = 3→2 are likely to originate in regions of active star formation.

  6. Hot gas in the center of the Seyfert galaxy NGC 3079

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yusuke; Nakai, Naomasa; Seta, Masumichi; Salak, Dragan; Nagai, Makoto; Ishii, Shun; Yamauchi, Aya

    2015-08-01

    The nearby (d = 19.7 Mpc) Seyfert galaxy NGC 3079 exhibits a prominent bubble emerging from the nucleus. In order to investigate the nuclear power source, we carried out ammonia observations toward the center of NGC 3079 with the Tsukuba 32-m telescope and the JVLA. The NH3 (J, K) = (1, 1) through (6,6) lines were detected in absorption at the center of NGC 3079 with the JVLA, although the profile of NH3(3,3) was in emission in contrast to the other transitions. All ammonia absorption lines have two distinct velocity components: one is at the systemic velocity (Vsys ~ 1116 km s-1) and the other is blueshifted (Vsys ~ 1020 km s-1), and both components are aligned along the nuclear jets. The blueshifted NH3(3,3) emission can be regarded as ammonia masers associated with shocks by strong winds probably from newly formed massive stars or supernova explosions in the nuclear megamaser disk. The derived rotational temperature, Trot = 120±12 K for the systemic component and Trot = 157±19 K for the blueshifted component, and fractional abundance of NH3 relative to molecular hydrogen H2 are higher than those in other galaxies reported. The high temperature environment at the center may be mainly attributed to heating by the nuclear jets.

  7. A CHANDRA OBSERVATION OF THE NEARBY SCULPTOR GROUP Sd GALAXY NGC 7793

    SciTech Connect

    Pannuti, Thomas G.; Staggs, Wayne D.; Schlegel, Eric M.; Filipovic, Miroslav D.; Payne, Jeffrey L.; Petre, Robert

    2011-07-15

    We conducted a Chandra ACIS observation of the nearby Sculptor Group Sd galaxy NGC 7793 as part of a multiwavelength study of supernova remnants (SNRs) in nearby galaxies. At the assumed distance to NGC 7793 of 3.91 Mpc, the limiting unabsorbed luminosity of the detected discrete X-ray sources is L{sub X} (0.2-10.0 keV) {approx}3x10{sup 36} erg s{sup -1}. A total of 22 discrete sources were detected at the {approx}3{sigma} level or greater including one ultraluminous X-ray source (ULX). Based on multiwavelength comparisons, we identify X-ray sources coincident with one SNR, the candidate microquasar N7793-S26, one H II region, and two foreground Galactic stars. We also find that the X-ray counterpart to the candidate radio SNR R3 is time variable in its X-ray emission: we therefore rule out the possibility that this source is a single SNR. A marked asymmetry is seen in the distribution of the discrete sources with the majority lying in the eastern half of this galaxy. All of the sources were analyzed using quantiles to estimate spectral properties and spectra of the four brightest sources (including the ULX) were extracted and analyzed. We searched for time variability in the X-ray emission of the detected discrete sources using our measured fluxes along with fluxes measured from prior Einstein and Roentgensatellit observations. From this study, three discrete X-ray sources are established to be significantly variable. A spectral analysis of the galaxy's diffuse emission is characterized by a temperature of kT = 0.19-0.25 keV. The luminosity function of the discrete sources shows a slope with an absolute value of {Gamma} = -0.65 {+-} 0.11 if we exclude the ULX. If the ULX is included, the luminosity function has a long tail to high L{sub X} with a poor-fitting slope of {Gamma} = -0.62 {+-} 0.2. The ULX-less slope is comparable to the slopes measured for the distributions of NGC 6946 and NGC 2403 but much shallower than the slopes measured for the distributions of IC 5332 and M83. Lastly, we comment on the multiwavelength properties of the SNR population of NGC 7793.

  8. A search for Wolf-Rayet stars in active star forming regions of low mass galaxies - GR8, NGC 2366, IC 2574, and NGC 1569

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Roy, Jean-Rene; Moffat, Anthony F. J.

    1993-10-01

    We report the detection, via narrow-band 4686 A filter imagery, of possible new Wolf-Rayet stars in the most massive giant H II regions of the irregular galaxies NGC 2366 and IC 2574. One stellar knot in the post-starburst galaxy NGC 1569 also appears to contain a weak excess of light at 4686 A. A similar search yielded negative results in the very low mass galaxy GR8. The strongest 4686 A excess is located close to the secondary eastern knot in the core of NGC 2366-I (NGC 2363). If this excess is of stellar origin, about five Wolf-Rayet stars of the luminous late-type can account for the excess emission. Nebular emission wraps around this cluster in the form of a shell. The putative Wolf-Rayet stars appear to be close to the center of the large expanding H II bubble discovered by Roy et al. (1991). A possible nebular origin of the 4686 A excess is also discussed.

  9. The extent of CO in the early-type galaxy NGC 4472

    NASA Technical Reports Server (NTRS)

    Hutchtmeier, W. K.; Bregman, J. N.; Hogg, D. E.; Roberts, M. S.

    1994-01-01

    NGC 4472, and E/SO system, is the earliest type normal galaxy with detected CO emission, and here we present additional radio observations in the lines of CO(1-0) and CO(2-1) to determine the distribution and internal properties of this gas. The original detection is reconfirmed, but observations at five surrounding locations and at two other locations in the galaxy do not show the gas to be extended; the total H2 gas mass is estimated to be 4 x 10(exp 7) solar mass. A high CO(1-0)/CO(2-1) brightness temperature ratio is found (greater than 3), which is indicative of subthermal excitation of the CO(2-1) line that can occur at low gas temperatures and low gas densities. Also, upper limits are given for the CO(2-1) fluxes in four other early-type galaxies.

  10. The Mass of the Central Black Hole in the Seyfert Galaxy NGC 3783

    NASA Technical Reports Server (NTRS)

    Onken, Christopher A.; Peterson, Bradley M.

    2004-01-01

    Improved analysis of ultraviolet and optical monitoring data on the Seyfert 1 galaxy NGC 3783 provides evidence for the existence of a supermassive, (8.7 +/- 1.1) x 10(exp 6) solar mass, black hole in this galaxy. By using recalibrated spectra from the International Ultraviolet Explorer satellite and ground-based optical data, as well as refined techniques of reverberation mapping analysis, we have reduced the statistical uncertainties in the response of the emission lines to variations in the ionizing continuum. The different time lags in the emission-line responses indicate a stratification in the ionization structure of the broad-line region and are consistent with the virial relationship suggested by the analysis of similar active galaxies.

  11. Distribution and kinematics of H I in the active elliptical galaxy NGC 1052

    SciTech Connect

    van Gorkom, J.H.; Knapp, G.R.; Raimond, E.; Faber, S.M.; Gallagher, J.S.

    1986-04-01

    The H I distribution in the active elliptical galaxy NGC 1052 has been mapped at a resolution of 1 arcmin with the VLA. The H I structure is about three times the size of the optical galaxy and is roughly perpendicular to its major axis. The H I has a circular velocity of approx.200 km/s, roughly constant with radius; the mass of the galaxy is 1.5 x 10/sup 11/ M/sub sun/ at a radius of 16 kpc (D = 13.4 Mpc), and the mass to blue luminosity ratio at this radius is M/L/sub B/ approx.15 M/sub sun//L/sub sun/. H I absorption is seen against the central radio continuum source, at both the systemic velocity and at redshifted velocities. The gas in NGC 1052, as in other ellipticals, has a rotation axis that is not aligned with the stellar rotation axis (the difference is 63/sup 0/) and a mean specific angular momentum that is considerably larger than that of the stars. The H I distribution is unusually irregular. In the southwest region of the galaxy, the distribution shows what appears to be a tidal tail, suggesting that the H I may have been acquired about 10/sup 9/ years ago. The presence of dust associated with the H I and the distribution and kinematics of the H I are consistent with capture of gas from a gas-rich dwarf or spiral. In the inner regions of the galaxy (r<5 kpc) the H I velocity field shows evidence of noncircular orbits and therefore possibly of a triaxial mass distribution for the galaxy. Alternatively the gas could be falling in toward the center.

  12. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  13. The radio source and bipolar nebulosity in the Seyfert galaxy NGC 3516

    NASA Technical Reports Server (NTRS)

    Miyaji, Takamitsu; Wilson, Andrew S.; Perez-Fournon, Ismael

    1992-01-01

    Results of radio continuum and optical emission-line observations of the type 1 Seyfert galaxy NGC 3516 are presented. The radio maps reveal an elongated one-sided curved structure, which comprises a series of small-scale 'blobs' and extends up to 4 kpc from the nucleus. This radio structure is aligned and cospatial with one side of the double-sided and highly symmetric Z-shaped emission-line structure. It is argued that these morphological features are associated with a bipolar gaseous outflow from the nucleus of NGC 3516. The radio 'blobs' are elongated roughly perpendicular to the apparent local direction of the outflow, a result which is interpreted in terms of synchrotron emission from outflow-driven shock waves.

  14. HIERARCHICAL STELLAR STRUCTURES IN THE LOCAL GROUP DWARF GALAXY NGC 6822

    SciTech Connect

    Gouliermis, Dimitrios A.; Walter, Fabian; Schmeja, Stefan; Klessen, Ralf S.; De Blok, W. J. G. E-mail: walter@mpia-hd.mpg.d E-mail: rklessen@ita.uni-heidelberg.d

    2010-12-20

    We present a comprehensive study of the star cluster population and the hierarchical structure in the clustering of blue stars with ages {approx}<500 Myr in the Local Group dwarf irregular galaxy NGC 6822. Our observational material comprises the most complete optical stellar catalog of the galaxy from imaging with the Suprime-Cam at the 8.2 m Subaru Telescope. We identify 47 distinct star clusters with the application of the nearest-neighbor density method to this catalog for a detection threshold of 3{sigma} above the average stellar density. The size distribution of the detected clusters can be very well approximated by a Gaussian with a peak at {approx}68 pc. The total stellar masses of the clusters are estimated by extrapolating the cumulative observed stellar mass function of all clusters to be in the range 10{sup 3}-10{sup 4} M{sub sun}. Their number distribution is fitted very well by a power law with index {alpha} {approx} 1.5 {+-} 0.7, which is consistent with the cluster mass functions of other Local Group galaxies and the cluster initial mass function. In addition to the detected star clusters of the galaxy, the application of the nearest-neighbor density method for various density thresholds, other than 3{sigma}, enabled the identification of stellar concentrations in various lengthscales. The stellar density maps constructed with this technique provide a direct proof of hierarchically structured stellar concentrations in NGC 6822, in the sense that smaller dense stellar concentrations are located inside larger and looser ones. We illustrate this hierarchy by the so-called dendrogram, or structure tree of the detected stellar structures, which demonstrates that most of the detected structures split up into several substructures over at least three levels. We quantify the hierarchy of these structures with the use of the minimum spanning tree method. We find that structures detected at 1, 2, and 3{sigma} density thresholds are hierarchically constructed with a fractal dimension of D {approx} 1.8. Some of the larger stellar concentrations, particularly in the northern part of the central star-forming portion of the galaxy, coincide with IR-bright complexes previously identified with Spitzer and associated with high column density neutral gas, indicating structures that currently form stars. The morphological hierarchy in stellar clustering, which we observe in NGC 6822, resembles that of the turbulent interstellar matter, suggesting that turbulence on pc and kpc scales has been probably the major agent that regulated clustered star formation in NGC 6822.

  15. The STIS GTO Galaxy Nuclear Dynamics Project: The Stellar Dynamics in the Center of the Galaxy NGC 1023

    NASA Astrophysics Data System (ADS)

    Bower, G. A.; Green, R. F.; Gebhardt, K.; Bender, R.; STIS Team

    1999-12-01

    The STIS Investigation Definition Team is conducting a long-term program to confirm the presence of dark compact objects (presumably supermassive black holes, hereafter BHs) in the nuclei of several galaxies based on preliminary evidence from earlier studies, and to search for evidence of BHs in a sample of galaxies where the ground-based dynamical evidence for a BH is non-existent or weak. Through this program, we will contribute to the effort toward understanding the demographics of BHs, which are interesting for two reasons. Firstly, present data indicate a possible relationship between the mass of a BH and the mass of the galaxy spheroid within which it is embedded, thus suggesting that BH formation may be closely linked to the formation of galaxy bulges. Secondly, the demographics of local BHs provide a constraint on the accretion properties of quasars at earlier cosmological epochs. In this talk and others by our team in this session, we present preliminary results from our STIS spectroscopy of a selection of galaxies from our program. The primary observational diagnostic of a dark compact mass is measuring and interpreting the nuclear stellar dynamics in the sphere of influence of the candidate BH. The observations involve long-slit spectroscopy of a galaxy nucleus with the wavelength coverage including the strong Ca II triplet absorption lines near 8600 Angstroms. After calibrating the spectrum, we measure the stellar dynamics using the Fourier Correlation Quotient method. These measurements map the nuclear gravitational potential. Using the observed stellar dynamics and surface brightness distribution as input, we fit galaxy dynamical models to these observations to determine if there is evidence for a dark compact object. This talk presents this methodology applied to NGC 1023, which was the first galaxy observed in our program. Support for this work was provided to the STIS IDT by NASA.

  16. DEEP CHANDRA OBSERVATIONS OF EDGES AND BUBBLES IN THE NGC 5846 GALAXY GROUP

    SciTech Connect

    Machacek, Marie E.; Jerius, Diab; Kraft, Ralph; Forman, William R.; Jones, Christine; Randall, Scott; Giacintucci, Simona; Sun Ming

    2011-12-10

    We use a combined 120 ks Chandra exposure to analyze X-ray edges produced by non-hydrostatic gas motions (sloshing) from galaxy collisions, and cavities formed by active galactic nucleus (AGN) activity. Evidence for gas sloshing is seen in the spiral morphology and multiple cold front edges in NGC 5846's X-ray surface brightness distribution, while the lack of spiral structure in the temperature map suggests that the perturbing interaction was not in the plane of the sky. Density and spectral modeling across the edges indicate that the relative motion of gas in the cold fronts is at most transonic. Evidence for AGN activity is seen in two inner bubbles at 0.6 kpc, filled with 5 GHz and 1.5 GHz radio plasma and coincident with H{alpha} emission, and in a ghost bubble at 5.2 kpc west of NGC 5846's nucleus. The outburst energy and ages for the inner (ghost) bubbles are {approx}10{sup 55} erg and {approx}2 Myr ({approx}5 Multiplication-Sign 10{sup 55} erg and 12 Myr), respectively, implying an AGN duty cycle of 10 Myr. The inner bubble rims are threaded with nine knots, whose total 0.5-2 keV X-ray luminosity is 0.3 Multiplication-Sign 10{sup 40} erg s{sup -1}, a factor {approx}2-3 less than that of the surrounding rims, and 0.7 keV mean temperature is indistinguishable from that of the rims. We suggest that the knots may be transient clouds heated by the recent passage of a shock from the last AGN outburst. We also observe gas stripping from a cE galaxy, NGC 5846A, in a 0.5 kpc long ({approx}10{sup 5} M{sub Sun }) hot gas tail, as it falls toward NGC 5846.

  17. The Massive Black Hole in the Dwarf Galaxy NGC 4486B

    NASA Astrophysics Data System (ADS)

    Bender, A.; Green, R. F.; Gebhardt, K.; Bower, G. A.; Kormendy, J.; Lauer, T.; Richstone, D. O.; STIS IDT Galaxy Nuclei Team; Nuker Team

    2003-12-01

    We report results from the application of a three-integral galactic dynamical model to NGC 4486B. This dwarf E1 companion to M87 has long been known to be an outlier in the Fundamental Plane. Kormendy and Magorrian et al. found a substantial central black hole mass, making it an outlier in the MBH to Lbulge relationship as well. From the modeling we are able to determine the extent to which NGC 4486B follows the MBH - sigma relation more closely than the other bulge galaxy relationships. The other unique feature NGC 4486B exhibits is a double nucleus structure, the second of only two observed. We combine the high resolution of STIS spectra with ground based data to form a more complete description of the line-of-sight velocity distributions (LOSVDs) in the nuclear region of NGC 4486B. Through the increased resolution of the dynamics and the three-integral model, we place an improved constraint on the mass-to-light ratio and black hole mass. Bender's research was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation through Scientific Program Order No. 3 (AST-0243875) of the Cooperative Agreement No. AST-0132798 between the Association of Universities for Research in Astronomy (AURA) and the NSF. RG and GB were supported by NASA for the STIS Instrument Definition Team. This work is a collaboration with the STIS Instrument Definition Team galaxy nuclei group, which also includes John Hutchings, Charles Joseph, Mary Elizabeth Kaiser, Charles Nelson, Donna Weistrop, and Bruce Woodgate. This work is a collaboration with the Nuker Team, which also includes Ralf Bender, Alan Dressler, Sandra Faber, Alex Filippenko, Carl Grillmair, Luis Ho, John Magorrian, Jason Pinkney, Christos Siopis, and Scott Tremaine.

  18. THE YOUNG STELLAR POPULATION OF THE NEARBY LATE-TYPE GALAXY NGC 1311

    SciTech Connect

    Eskridge, Paul B.; Windhorst, Rogier A.; Jansen, Rolf A.; Mager, Violet A.

    2010-11-15

    We have extracted point-spread-function-fitted stellar photometry from near-ultraviolet, optical, and near-infrared images, obtained with the Hubble Space Telescope, of the nearby (D {approx} 5.5 Mpc) SBm galaxy NGC 1311. The ultraviolet and optical data reveal a population of hot main-sequence (MS) stars with ages of 2-10 Myr. We also find populations of blue supergiants with ages between 10 and 40 Myr and red supergiants with ages between 10 and 100 Myr. Our near-infrared data show evidence of star formation going back {approx}1 Gyr, in agreement with previous work. Fits to isochrones indicate a metallicity of Z {approx} 0.004. The ratio of blue to red supergiants is consistent with this metallicity. This indicates that NGC 1311 follows the well-known luminosity-metallicity relation for late-type dwarf galaxies. About half of the hot MS stars and blue supergiants are found in two regions in the inner part of NGC 1311. These two regions are each about 200 pc across, and thus have crossing times roughly equal to the 10 Myr age we find for the dominant young population. The luminosity functions of the supergiants indicate a slowly rising star formation rate ({approx}10{sup -3} M{sub sun} yr{sup -1}) from {approx}100 Myr ago until {approx}15 Myr ago, followed by a strong enhancement ({approx}10{sup -2} M{sub sun} yr{sup -1}) at {approx}10 Myr ago. We see no compelling evidence for gaps in the star-forming history of NGC 1311 over the last 100 Myr, and, with lower significance, none over the last Gyr. This argues against a bursting mode, and in favor of a gasping or breathing mode for the recent star formation history.

  19. Dust extinction and X-ray emission from the starburst galaxy NGC 1482

    NASA Astrophysics Data System (ADS)

    Vagshette, N. D.; Pandge, M. B.; Pandey, S. K.; Patil, M. K.

    2012-07-01

    We present the results based on multiwavelength imaging observations of the prominent dust lane starburst galaxy NGC 1482 aimed to investigate the extinction properties of dust existing in the extreme environment. (B-V) colour-index map derived for the starburst galaxy NGC 1482 confirms two prominent dust lanes running along its optical major axis and are found to extend up to ˜11 kpc. In addition to the main lanes, several filamentary structures of dust originating from the central starburst are also evident. Though, the dust is surrounded by exotic environment, the average extinction curve derived for this target galaxy is compatible with the Galactic curve, with RV = 3.05, and imply that the dust grains responsible for the optical extinction in the target galaxy are not really different than the canonical grains in the Milky Way. Our estimate of total dust content of NGC 1482 assuming screening effect of dust is ˜2.7 × 105 M⊙, and provide lower limit due to the fact that our method is not sensitive to the intermix component of dust. Comparison of the observed dust in the galaxy with that supplied by the SNe to the ISM, imply that this supply is not sufficient to account for the observed dust and hence point towards the origin of dust in this galaxy through a merger like event. Our multiband imaging analysis reveals a qualitative physical correspondence between the morphologies of the dust and Hα emission lines as well as diffuse X-ray emission in this galaxy. Spatially resolved spectral analysis of the hot gas along outflows exhibit a gradient in the temperature. Similar gradient was also noticed in the measured values of metallicity, indicating that the gas in the halo is not yet enriched. High resolution, 2-8 keV Chandra image reveals a pair of point sources in the nuclear region with their luminosities equal to 2.27 × 1039 erg s-1 and 9.34 × 1039 erg s-1, and are in excess of the Eddington-limit of 1.5 M⊙ accreting source. Spectral analysis of these sources exhibit an absorbed-power law with the hydrogen column density higher than that derived from the optical measurements.

  20. Isolated elliptical galaxies and their globular cluster systems. II. NGC 7796 - globular clusters, dynamics, companion

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Salinas, R.; Lane, R. R.; Hilker, M.; Schirmer, M.

    2015-02-01

    Context. Rich globular cluster systems, particularly the metal-poor part of them, are thought to be the visible manifestations of long-term accretion processes. The invisible part is the dark matter halo, which may show some correspondence to the globular cluster system. It is therefore interesting to investigate the globular cluster systems of isolated elliptical galaxies, which supposedly have not experienced extended accretion. Aims: We investigate the globular cluster system of the isolated elliptical NGC 7796, present new photometry of the galaxy, and use published kinematical data to constrain the dark matter content. Methods: Deep images in B and R, obtained with the VIsible MultiObject Spectrograph (VIMOS) at the VLT, form the data base. We performed photometry with DAOPHOT and constructed a spherical photometric model. We present isotropic and anisotropic Jeans-models and give a morphological description of the companion dwarf galaxy. Results: The globular cluster system has about 2000 members, so it is not as rich as those of giant ellipticals in galaxy clusters with a comparable stellar mass, but richer than many cluster systems of other isolated ellipticals. The colour distribution of globular clusters is bimodal, which does not necessarily mean a metallicity bimodality. The kinematic literature data are somewhat inconclusive. The velocity dispersion in the inner parts can be reproduced without dark matter under isotropy. Radially anisotropic models need a low stellar mass-to-light ratio, which would contrast with the old age of the galaxy. A MONDian model is supported by X-ray analysis and previous dynamical modelling, but better data are necessary for a confirmation. The dwarf companion galaxy NGC 7796-1 exhibits tidal tails, multiple nuclei, and very boxy isophotes. Conclusions: NGC 7796 is an old, massive isolated elliptical galaxy with no indications of later major star formation events as seen frequently in other isolated ellipticals. Its relatively rich globular cluster system shows that isolation does not always mean a poor cluster system. The properties of the dwarf companion might indicate a dwarf-dwarf merger. Based on observations taken at the European Southern Observatory, Cerro Paranal, Chile, under the programme 089.B-0457. Partly based on observations taken at the Las Campanas Observatory and the Gemini observatory (GS-2011B-Q83).The catalogue of the photometry is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/574/A21

  1. Probing the gas content of the dwarf galaxy NGC 3109 with background X-ray sources

    NASA Astrophysics Data System (ADS)

    Kahabka, P.; Puzia, T. H.; Pietsch, W.

    2000-09-01

    We established the catalog of X-ray point sources in the field of the Magellanic-type spiral galaxy NGC 3109 (DDO 236) from two ROSAT PSPC observations. Of the 91 X-ray sources 26 are contained within the Hi extent of NGC 3109 as derived by Jobin & Carignan (1990) with the VLA. For 10 of these we can determine accurate hardness ratios delta H R2<=0.2. We find 3 candidate AGN, 2 candidate X-ray binaries and one source which may belong to either class. We also find 2 candidate foreground stars. In a field of 8 arcmin x 8' observed with the NTT in the I-band and centered on the nucleus of NGC 3109 we determine candidates for optical counterparts in the X-ray error circle of 7 ROSAT PSPC sources. We apply a spectral fit to the ROSAT spectrum of the X-ray brightest absorbed candidate AGN behind NGC 3109, RX J1003.2-2607. Assuming a galactic foreground hydrogen column density of 4.3 1020 cm-2 we derive from the X-ray spectral fit, assuming reduced metallicities ( ~ 0.2 solar), a hydrogen column density due to NGC 3109 of 11+/-75 1020 cm-2. This value is slightly larger than the hydrogen column density derived from the 21-cm observations of ~ 8 1020 cm-2. We estimate that the molecular mass fraction of the gas is not larger than ~ 60%. Table~6 and Fig. 8 are only available electronically with the On-Line publication at http://link.springer.de/link/service/00230/

  2. Radio continuum emission and HI gas accretion in the NGC 5903/5898 compact group of galaxies

    NASA Astrophysics Data System (ADS)

    Wiita, Paul; Gopal-Krishna; Mhaskey, Mukul

    2012-03-01

    We investigate the nature of the multi-component radio continuum and HI emission associated with the nearby galaxy group comprised of two dominant ellipticals, NGC 5898 and NGC 5903 and a dwarf lenticular ESO514-G003. Striking new details of radio emission come from the ongoing TIFR.GMRT.SKY.SURVEY (TGSS) which provides images with a resolution of ˜24^'' x18^'' and rms noise of 5 mJy at 150 MHz. Previous observations of this compact triplet include images at higher frequencies of the radio continuum as well as huge HI trails originating from the vicinity of NGC 5903. The TGSS 150 MHz image has revealed a large asymmetric radio halo around NGC 5903 and also established that the dwarf SO galaxy ESO514-G003 is the host to a previously known bright double radio source. The radio emission from NGC 5903 is found to have a very steep radio spectrum (α˜-1.5) and to envelope a network of radio continuum filaments bearing a spatial relationship to the HI trails. Both its radio loud members are also the only galaxies that are seen to be connected to an HI filament. This correlation is consistent with the premise that cold gas accretion is of prime importance for triggering powerful jet activity in the nuclei of early-type galaxies.

  3. Discovery of Latent Star Formation in the Extended H I Gas around the Local Group Dwarf Irregular Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Komiyama, Yutaka; Okamura, Sadanori; Yagi, Masafumi; Furusawa, Hisanori; Doi, Mamoru; Hamabe, Masaru; Imi, Katsumi; Kimura, Masahiko; Miyazaki, Satoshi; Nakata, Fumiaki; Okada, Norio; Ouchi, Masami; Sekiguchi, Maki; Shimasaku, Kazuhiro; Yasuda, Naoki; Arimoto, Nobuo; Ikuta, Chisato

    2003-06-01

    We carried out a wide-field BRC imaging survey in the outer regions of the Local Group dwarf irregular galaxy NGC 6822 using the Subaru Prime Focus Camera. The B,RC color-magnitude diagram of stars down to MB=0.51 in the outer region shows the same features as those found for stars in the central part of NGC 6822. The distribution of blue stars (B-RC<0.5 and -3.5NGC 6822. The blue stars spread widely over about 50' from southeast to northwest far beyond the main body of NGC 6822, tracing the H I gas distribution. It is shown that blue stars in the outer region probably formed ~180 Myr ago. Our data supports the interaction scenario proposed by de Blok & Walter that a passage of the northwest H I cloud produced the ``tidal arm'' to the southeast of NCG 6822 and triggered the recent star formation activity found in the entire galaxy. We also discuss the possibility that the northwest H I cloud could be a forming dwarf galaxy or that NGC 6822 could be the nearest low surface brightness galaxy in the universe. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. STAR Formation Histories Across the Interacting Galaxy NGC 6872, the Largest-Known Spiral

    NASA Technical Reports Server (NTRS)

    Eufrasio, Rafael T.; Dwek, E.; Arendt, RIchard G.; deMello, Duilia F.; Gadotti, DImitri A.; Urrutia-Viscarra, Fernanda; deOliveira, CLaudia Mendes; Benford, Dominic J.

    2014-01-01

    NGC6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 micrometer) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  5. Star formation histories across the interacting galaxy NGC 6872, the largest-known spiral

    SciTech Connect

    Eufrasio, Rafael T.; De Mello, Duilia F.; Dwek, Eli; Arendt, Richard G.; Benford, Dominic J.; Gadotti, Dimitri A.; Urrutia-Viscarra, Fernanda; De Oliveira, Claudia Mendes

    2014-11-01

    NGC 6872, hereafter the Condor, is a large spiral galaxy that is interacting with its closest companion, the S0 galaxy IC 4970. The extent of the Condor provides an opportunity for detailed investigation of the impact of the interaction on the current star formation rate and its history across the galaxy, on the age and spatial distribution of its stellar population, and on the mechanism that drives the star formation activity. To address these issues we analyzed the far-ultraviolet (FUV) to near-infrared (near-IR) spectral energy distribution of seventeen 10 kpc diameter regions across the galaxy, and derived their star formation history, current star formation rate, and stellar population and mass. We find that most of the star formation takes place in the extended arms, with very little star formation in the central 5 kpc of the galaxy, in contrast to what was predicted from previous numerical simulations. There is a trend of increasing star formation activity with distance from the nucleus of the galaxy, and no evidence for a recent increase in the current star formation rate due to the interaction. The nucleus itself shows no significant current star formation activity. The extent of the Condor also provides an opportunity to test the applicability of a single standard prescription for conversion of the FUV + IR (22 μm) intensities to a star formation rate for all regions. We find that the conversion factor differs from region to region, arising from regional differences in the stellar populations.

  6. Structure and Formation of cD Galaxies: NGC 6166 in ABELL 2199

    NASA Astrophysics Data System (ADS)

    Bender, Ralf; Kormendy, John; Cornell, Mark E.; Fisher, David B.

    2015-07-01

     Hobby-Eberly Telescope (HET) spectroscopy is used to measure the velocity dispersion profile of the nearest prototypical cD galaxy, NGC 6166 in the cluster Abell 2199. We also present composite surface photometry from many telescopes. We confirm the defining feature of a cD galaxy; i.e., (we suggest), a halo of stars that fills the cluster center and that is controlled dynamically by cluster gravity, not by the central galaxy. Our HET spectroscopy shows that the velocity dispersion of NGC 6166 rises from σ ≃ 300 km s-1 in the inner r˜ 10\\prime\\prime to σ =865+/- 58 km s-1 at r ˜ 100″ in the cD halo. This extends published observations of an outward σ increase and shows for the first time that σ rises all the way to the cluster velocity dispersion of 819 ± 32 km s-1. We also observe that the main body of NGC 6166 moves at +206 ± 39 km s-1 with respect to the cluster mean velocity, but the velocity of the inner cD halo is ˜70 km s-1 closer to the cluster velocity. These results support our picture that cD halos consist of stars that were stripped from individual cluster galaxies by fast tidal encounters.  However, our photometry does not confirm the widespread view that cD halos are identifiable as an extra, low-surface-brightness component that is photometrically distinct from the inner, steep-Sérsic-function main body of an otherwise-normal giant elliptical galaxy. Instead, all of the brightness profile of NGC 6166 outside its core is described to ±0.037 V mag arcsec-2 by a single Sérsic function with index n≃ 8.3. The cD halo is not recognizable from photometry alone. This blurs the distinction between cluster-dominated cD halos and the similarly-large-Sérsic-index halos of giant, core-boxy-nonrotating ellipticals. These halos are believed to be accreted onto compact, high-redshift progenitors (“red nuggets”) by large numbers of minor mergers. They belong dynamically to their central galaxies. Still, cDs and core-boxy-nonrotating Es may be more similar than we think: both may have outer halos made largely via minor mergers and the accumulation of tidal debris.  We construct a main-body+cD-halo decomposition that fits both the brightness and dispersion profiles. To fit σ (r), we need to force the component Sérsic indices to be smaller than a minimum-{χ }2 photometric decomposition would suggest. The main body has {M}V≃ -22.8≃ 30% of the total galaxy light. The cD halo has {M}V≃ -23.7, ˜1/2 mag brighter than the brightest galaxy in the Virgo cluster. A mass model based on published cluster dynamics and X-ray observations fits our observations if the tangential dispersion is larger than the radial dispersion at r≃ 20\\prime\\prime -60\\prime\\prime . The cD halo is as enhanced in α element abundances as the main body of NGC 6166. Quenching of star formation in ≲1 Gyr suggests that the center of Abell 2199 has been special for a long time during which dynamical evolution has liberated a large mass of now-intracluster stars. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  7. Star formation in the outer Galaxy: the young cluster NGC 1893

    NASA Astrophysics Data System (ADS)

    Sanz-Forcada, J.; Prisinzano, L.; Micela, G.; Caramazza, M.; Sciortino, S.

    2013-05-01

    Stellar formation in the outer Galaxy is expected to be less conspicuous due to worse conditions. Several stellar forming regions in the outer Galaxy have shown similar characteristics to others in the inner Galaxy. The very recent episodes of stellar formation in NGC 1893 (age ˜1.5 Myr) demonstrates it. This cluster is an optimal laboratory to study stellar formation phenomena: it includes the presence of at least 6 O-type stars, two pennant nebulae, dark nebular clouds, and a high disc frequency among its members. We are conducting a series of papers on this cluster based on multiwavelength data, including Spitzer and Chandra observations. We study membership, morphology of the cluster, the spatial distribution of stellar ages and circumstellar discs, and the influence of the massive stars of the cluster in the evolution of circumstellar discs. NGC 1893 has shown similar characteristics to other stellar forming regions at closer distances to the Sun. The ionizing UV flux from massive stars plays an important role in the earlier dissipation of circumstellar discs in closer stars. There is a disc frequency of 52% in a sample complete in the mass range 0.35-2 M_{⊙}. This frequency is slightly lower than in clusters of similar age at closer distance. We attribute this to the faster disc evaporation by radiation of massive stars, the use of a different mass range in each case, and/or the method employed to select stars with and without discs.

  8. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  9. Analysis of Off-Nuclear X-Ray Sources in Galaxy NGC 4945

    SciTech Connect

    Harrison, Sarah M.; /MIT /SLAC

    2006-09-11

    Recently, X-ray astronomy has been used to investigate objects such as galaxies, clusters of galaxies, Active Galactic Nuclei (AGN), quasars, starburst superbubbles of hot gas, X-ray binary systems, stars, supernova remnants, and interstellar and intergalactic material. By studying the x-ray emission patterns of these objects, we can gain a greater understanding of their structure and evolution. We analyze X-ray emission from the galaxy NGC 4945 using data taken by the Chandra X-ray Observatory. The Chandra Interactive Analysis of Observations (CIAO) software package was used to extract and fit energy spectra and to extract light curves for the brightest off-nuclear sources in two different observations of NGC 4945 (January, 2000 and May, 2004). A majority of sources were closely fit by both absorbed power law and absorbed bremsstrahlung models, with a significantly poorer {chi}{sup 2}/dof for the absorbed blackbody model, and most sources had little variability. This indicates that the sources are accreting binary systems with either a neutron star or black hole as the compact object. The calculated luminosities were about 10{sup 38} erg/s, which implies that the mass of the accreting object is close to 10 solar masses and must be a black hole.

  10. A MULTI-WAVELENGTH ANALYSIS OF NGC 4178: A BULGELESS GALAXY WITH AN ACTIVE GALACTIC NUCLEUS

    SciTech Connect

    Secrest, N. J.; Satyapal, S.; Gliozzi, M.; Moran, S. M.; Cheung, C. C.; Giroletti, M.; Bergmann, M. P.; Seth, A. C.

    2013-11-10

    We present Gemini longslit optical spectroscopy and Very Large Array radio observations of the nuclear region of NGC 4178, a late-type bulgeless disk galaxy recently confirmed to host an active galactic nucleus (AGN) through infrared and X-ray observations. Our observations reveal that the dynamical center of the galaxy is coincident with the location of the Chandra X-ray point source discovered in a previous work, providing further support for the presence of an AGN. While the X-ray and IR observations provide robust evidence for an AGN, the optical spectrum shows no evidence for the AGN, underscoring the need for the penetrative power of mid-IR and X-ray observations in finding buried or weak AGNs in this class of galaxy. Finally, the upper limit to the radio flux, together with our previous X-ray and IR results, is consistent with the scenario in which NGC 4178 harbors a deeply buried AGN accreting at a high rate.

  11. The fluorescence-dominated X-ray spectrum of the spiral galaxy NGC 6552

    NASA Technical Reports Server (NTRS)

    Fukazawa, Yasushi; Makishima, Kazuo; Ebisawa, Ken; Fabian, Andrew C.; Gendreau, Keith C.; Ikebe, Yasushi; Iwasawa, Kazushi; Kii, Tsuneo; Mushotzky, Richard F.; Ohashi, Takaya

    1994-01-01

    A hard X-ray source with a 2-10 keV flux of approximately 6 x 10(exp -13) ergs/sec/sq cm was detected with ASCA in the north ecliptic pole region. It is identified with the spiral galaxy NGC 6552 at a redshift of z = 0.026, which is optically classified as a Seyfert 2 galaxy. The X-ray spectrum consists of a series of atomic K-emission lines from (nearly-) neutral species of at least seven abundant elements, and a heavily absorbed (N(sub H) approx. = 6 x 10(exp 23)/sq cm) hard continuum. The iron line has an equivalent width as large as approximately 0.9 keV. Our results show that NGC 6552 is an extreme type 2 Seyfert galaxy, in which the fluorescent lines are produced when hard X-rays from a hidden active nucleus are reflected off thick cool matter into our line of sight. The intrinsic 2-10 keV luminosity of the nucleus is estimated to be at least 6 x 10(exp 42) ergs/s.

  12. The Globular Cluster System of NGC 4636 and Formation of Globular Clusters in Giant Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Park, Hong Soo; Lee, Myung Gyoon; Hwang, Ho Seong; Kim, Sang Chul; Arimoto, Nobuo; Yamada, Yoshihiko; Tamura, Naoyuki; Onodera, Masato

    2012-11-01

    We present a spectroscopic analysis of the metallicities, ages, and alpha-elements of the globular clusters (GCs) in the giant elliptical galaxy (gE) NGC 4636 in the Virgo Cluster. Line indices of the GCs are measured from the integrated spectra obtained with Faint Object Camera and Spectrograph on the Subaru 8.2 m Telescope. We derive [Fe/H] values of 59 GCs based on the Brodie & Huchra method, and [Z/H], age, and [α/Fe] values of 33 GCs from the comparison of the Lick line indices with single stellar population models. The metallicity distribution of NGC 4636 GCs shows a hint of a bimodality with two peaks at [Fe/H] = -1.23(σ = 0.32) and -0.35(σ = 0.19). The age spread is large from 2 Gyr to 15 Gyr and the fraction of young GCs with age <5 Gyr is about 27%. The [α/Fe] of the GCs shows a broad distribution with a mean value [α/Fe] ≈0.14 dex. The dependence of these chemical properties on the galactocentric radius is weak. We also derive the metallicities, ages, and [α/Fe] values for the GCs in other nearby gEs (M87, M49, M60, NGC 5128, NGC 1399, and NGC 1407) from the line index data in the literature using the same methods as used for NGC 4636 GCs. The metallicity distribution of GCs in the combined sample of seven gEs including NGC 4636 is found to be bimodal, supported by the KMM test with a significance level of >99.9%. All these gEs harbor some young GCs with ages less than 5 Gyr. The mean age of the metal-rich GCs ([Fe/H] >-0.9) is about 3 Gyr younger than that of the metal-poor GCs. The mean value of [α/Fe] of the gE GCs is smaller than that of the Milky Way GCs. We discuss these results in the context of GC formation in gEs. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  13. THE GLOBULAR CLUSTER SYSTEM OF NGC 4636 AND FORMATION OF GLOBULAR CLUSTERS IN GIANT ELLIPTICAL GALAXIES

    SciTech Connect

    Park, Hong Soo; Lee, Myung Gyoon; Hwang, Ho Seong; Kim, Sang Chul; Arimoto, Nobuo; Yamada, Yoshihiko; Tamura, Naoyuki; Onodera, Masato E-mail: mglee@astro.snu.ac.kr E-mail: sckim@kasi.re.kr E-mail: yoshihiko.yamada@nao.ac.jp E-mail: monodera@phys.ethz.ch

    2012-11-10

    We present a spectroscopic analysis of the metallicities, ages, and alpha-elements of the globular clusters (GCs) in the giant elliptical galaxy (gE) NGC 4636 in the Virgo Cluster. Line indices of the GCs are measured from the integrated spectra obtained with Faint Object Camera and Spectrograph on the Subaru 8.2 m Telescope. We derive [Fe/H] values of 59 GCs based on the Brodie and Huchra method, and [Z/H], age, and [{alpha}/Fe] values of 33 GCs from the comparison of the Lick line indices with single stellar population models. The metallicity distribution of NGC 4636 GCs shows a hint of a bimodality with two peaks at [Fe/H] = -1.23({sigma} = 0.32) and -0.35({sigma} = 0.19). The age spread is large from 2 Gyr to 15 Gyr and the fraction of young GCs with age <5 Gyr is about 27%. The [{alpha}/Fe] of the GCs shows a broad distribution with a mean value [{alpha}/Fe] Almost-Equal-To 0.14 dex. The dependence of these chemical properties on the galactocentric radius is weak. We also derive the metallicities, ages, and [{alpha}/Fe] values for the GCs in other nearby gEs (M87, M49, M60, NGC 5128, NGC 1399, and NGC 1407) from the line index data in the literature using the same methods as used for NGC 4636 GCs. The metallicity distribution of GCs in the combined sample of seven gEs including NGC 4636 is found to be bimodal, supported by the KMM test with a significance level of >99.9%. All these gEs harbor some young GCs with ages less than 5 Gyr. The mean age of the metal-rich GCs ([Fe/H] >-0.9) is about 3 Gyr younger than that of the metal-poor GCs. The mean value of [{alpha}/Fe] of the gE GCs is smaller than that of the Milky Way GCs. We discuss these results in the context of GC formation in gEs.

  14. The Fate of Spiral Galaxies in Clusters: The Star Formation History of the Anemic Virgo Cluster Galaxy NGC 4569

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Boissier, S.; Cortese, L.; Gil de Paz, A.; Seibert, M.; Madore, B. F.; Buat, V.; Martin, D. C.

    2006-11-01

    We present a new method for studying the star formation history of late-type cluster galaxies undergoing gas starvation or a ram pressure stripping event by combining bidimensional multifrequency observations with multizone models of galactic chemical and spectrophotometric evolution. This method is applied to the Virgo Cluster anemic galaxy NGC 4569. We extract radial profiles from recently obtained UV GALEX images at 1530 and 2310 Å, from visible and near-IR narrow (Hα) and broadband images at different wavelengths (u, B, g, V, r, i, z, J, H, and K), from Spitzer IRAC and MIPS images, and from atomic and molecular gas maps. The model in the absence of interaction (characterized by its rotation velocity and spin parameter) is constrained by the unperturbed H-band light profile and by the Hα rotation curve. We can reconstruct the observed total gas radial density profile and the light surface brightness profiles at all wavelengths in a ram pressure stripping scenario by making simple assumptions about the gas removal process and the orbit of NGC 4569 inside the cluster. The observed profiles cannot be reproduced by simply stopping gas infall, thus mimicking starvation. Gas removal is required, which is more efficient in the outer disk, inducing radial quenching in the star formation activity, as observed and reproduced by the model. This observational result, consistent with theoretical predictions that a galaxy cluster-IGM interaction is able to modify structural disk parameters without gravitational perturbations, is discussed in the framework of the origin of lenticular galaxies in clusters.

  15. Near-infrared emission-line spectra of the Orion Nebula, NGC 4151, and other Seyfert galaxies

    SciTech Connect

    Osterbrock, D.E.; Shaw, R.A.; Veilleux, S. )

    1990-04-01

    Near-IR CCD moderate-resolution spectra in the 7000-11,000 wavelength range were obtained for NGC 1976 and NGC 4151 in three overlapping segments. The strongest three lines in both objects are forbidden S III 9531, He I 10830, and forbidden S III 9069. Also, lower resolution spectra of 14 additional Seyfert galaxies were obtained. In all but two of these spectra, the strongest line is forbidden S III 9531. The line strengths among these galaxies are compared to trace ionization behavior. 59 refs.

  16. Star formation and nuclear activity in the blue early-type galaxy NGC 5373

    NASA Astrophysics Data System (ADS)

    Zaidi, Tayeb; Miller, Brendan P.; Gallo, Elena; Alfvin, Erik; Martinkus, Charlotte; Molter, Edward

    2015-01-01

    We present new optical and X-ray observations of NGC 5373, an isolated star-forming elliptical that has a stellar mass of 7e10 solar and lies at a distance of 175 Mpc. Our B and R band Magellan IMACS imaging substantially improves on SDSS resolution and sensitivity, enabling accurate modeling of the galaxy surface brightness profile. As expected from its mass, NGC 5373 is a core galaxy with a best-fit Sersic profile of n~3.8; no prominent tidal tails or shells are found, although there are slight residual asymmetries. The H-alpha emission in the SDSS spectrum is narrow, and the line ratios confirm a star-forming classification in the BPT diagram, near the transition/composite line. The star formation rate is about 6 solar masses per year, making NGC 5373 an extreme outlier relative to typical local early-type galaxies of similar mass. Our 50 ks Chandra ACIS-S exposure provides a clear detection of a central X-ray source, with a hardness ratio consistent with a power-law photon index of 2.0+/-0.5. The unabsorbed luminosity is Lx = 2e40 erg/s over 0.3-8 keV. Comparison with a MARX simulated point spread function suggests the central source may be extended, for example due to contributions from one or more unresolved high-mass X-ray binaries, as might be present given the high star formation rate. For a black hole of 1.6e8 solar masses as predicted from scaling relations, Lx/Ledd is then around 1e-6 (or potentially lower).

  17. A Tidally Disrupting Dwarf Galaxy in the Halo of NGC 253

    NASA Astrophysics Data System (ADS)

    Toloba, Elisa; Sand, David J.; Spekkens, Kristine; Crnojević, Denija; Simon, Joshua D.; Guhathakurta, Puragra; Strader, Jay; Caldwell, Nelson; McLeod, Brian; Seth, Anil C.

    2016-01-01

    We report the discovery of Scl-MM-Dw2, a new dwarf galaxy at a projected separation of ˜50 kpc from NGC 253, as part of the Panoramic Imaging Survey of Centaurus and Sculptor project (PISCeS). We measure a tip of the red giant branch (RGB) distance of 3.12 ± 0.30 Mpc, suggesting that Scl-MM-Dw2 is likely a satellite of NGC 253. We qualitatively compare the distribution of RGB stars in the color-magnitude diagram with theoretical isochrones and find that it is consistent with an old, ˜12 Gyr, and metal-poor, -2.3 < [Fe/H] < -1.1, stellar population. We also detect a small number of asymptotic giant branch stars consistent with a metal-poor 2-3 Gyr population in the center of the dwarf. Our non-detection of HI in a deep Green Bank Telescope spectrum implies a gas fraction {M}{HI}/{L}V< 0.02 {M}⊙ /{L}⊙ . The stellar and gaseous properties of Scl-MM-Dw2 suggest that it is a dwarf spheroidal galaxy. Scl-MM-Dw2 has a luminosity of {M}V=-12.1+/- 0.5 mag and a half-light radius of rh =2.94+/- 0.46 {{kpc}}, which makes it moderately larger than dwarf galaxies in the Local Group of the same luminosity. However, Scl-MM-Dw2 is very elongated (ɛ =0.66+/- 0.06), and it has an extremely low surface brightness ({μ }0,V=27.7+/- 0.6 mag arcsec-2). Its elongation and diffuseness make it an outlier in the ellipticity-luminosity and surface brightness-luminosity scaling relations. These properties suggest that this dwarf is being tidally disrupted by NGC 253.

  18. Polycyclic aromatic hydrocarbon in the central region of the Seyfert 2 galaxy NGC 1808

    NASA Astrophysics Data System (ADS)

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R.; Winge, Cláudia

    2013-03-01

    We present mid-infrared spectra of the Seyfert 2 galaxy NGC 1808, obtained with the Gemini's Thermal-Region Camera Spectrograph at a spatial resolution of ˜26 pc. The high spatial resolution allowed us to detect bright polycyclic aromatic hydrocarbons (PAHs) emissions at 8.6 and 11.3 μm in the galaxy centre (˜26 pc) up to a radius of 70 pc from the nucleus. The spectra also present [Ne II]12.8 μm ionic lines, and H2 S(2) 12.27 μm molecular gas line. We found that the PAHs profiles are similar to Peeters's A class, with the line peak shifted towards the blue. The differences in the PAH line profiles also suggest that the molecules in the region located 26 pc north-east of the nucleus are more in the neutral than in the ionized state, while at 26 pc south-west of the nucleus, the molecules are mainly in ionized state. After removal of the underlying galaxy contribution, the nuclear spectrum can be represented by a Nenkova's CLUMPY torus model, indicating that the nucleus of NGC 1808 hosts a dusty toroidal structure with an angular cloud distribution of σ = 70°, observer's view angle i = 90° and an outer radius of R0 ˜ 0.55 pc. The derived column density along the line of sight is NH = 1.5 × 1024 cm2, which is sufficient to block the hard radiation from the active nucleus, and would explain the presence of PAH molecules near to the NGC 1808's active nucleus.

  19. Revisiting the Abundance Gradient in the Maser Host Galaxy NGC 4258

    NASA Astrophysics Data System (ADS)

    Bresolin, Fabio

    2011-03-01

    New spectroscopic observations of 36 H II regions in NGC 4258 obtained with the Gemini telescope are combined with existing data from the literature to measure the radial oxygen abundance gradient in this galaxy. The [O III]λ4363 auroral line was detected in four of the outermost targets (17-22 kpc from the galaxy center), allowing a determination of the electron temperature Te of the ionized gas. From the use of different calibrations of the R 23 abundance indicator, an oxygen abundance gradient of approximately -0.012 ± 0.002 dex kpc-1 is derived. Such a shallow gradient, combined with the difference in the distance moduli measured from the Cepheid period-luminosity relation by Macri et al. between two distinct fields in NGC 4258, would yield an unrealistically strong effect of metallicity on the Cepheid distances. This strengthens the suggestion that systematic biases might affect the Cepheid distance of the outer field. Evidence for a similar effect in the differential study of M33 by Scowcroft et al. is presented. A revision of the transformation between strong-line and Te -based abundances in Cepheid-host galaxies is discussed. In the Te abundance scale, the oxygen abundance of the inner field of NGC 4258 is found to be comparable with the LMC value. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  20. Effect of halo component on bar-formation in disk galaxies

    NASA Technical Reports Server (NTRS)

    Hohl, F.

    1975-01-01

    Numerical experiments are performed to determine the effect of a fixed halo component of mass on the stability of purely stellar disks. The rotation curve of the fixed halo component corresponds to the Schmidt model of the galaxy. It is found that when the stellar disk contains less than 50% of the total mass, the large-scale bar-making instability is effectively suppressed. For disks containing 50% or more of the total mass, a bar structure quickly forms.

  1. The extremely populated globular cluster system of the lenticular galaxy NGC 6861

    NASA Astrophysics Data System (ADS)

    Escudero, Carlos G.; Faifer, Favio R.; Bassino, Lilia P.; Calderón, Juan Pablo; Caso, Juan Pablo

    2015-05-01

    We present a photometric study of the globular cluster (GC) system associated with the lenticular galaxy (S0) NGC 6861, which is located in a relatively low density environment. It is based on Gemini/GMOS images in the filters g', r', i' of three fields, obtained under good seeing conditions. Analysing the colour-magnitude and colour-colour diagrams, we find a large number of GC candidates, which extend out to 100 kpc, and we estimate a total population of 3000 ± 300 GCs. Besides the well-known blue and red subpopulations, the colour distribution shows signs of the possible existence of a third subpopulation with intermediate colours. This could be interpreted as evidence of a past interaction or fusion event. Other signs of interactions presented by the galaxy are the non-concentric isophotes and the asymmetric spatial distribution of GC candidates with colours (g' - i')0 > 1.16. As observed in other galaxies, the red GCs show a steeper radial distribution than the blue GCs. In addition, the spatial distribution of these candidates exhibits strong signs of elongation. This feature is also detected in the intermediate subpopulation. On the other hand, the blue candidates show an excellent agreement with the X-ray surface brightness profile, outside 10 kpc. They also show a colour-luminosity relation (blue tilt), similar to that observed in other galaxies. A new distance modulus has been estimated through the blue subpopulation, which is in good agreement with the previous value obtained through the surface brightness fluctuation method. The specific frequency of NGC 6861 (S N = 10.6 ± 2.1) is probably one of the highest values obtained for an S0 galaxy so far.

  2. The Araucaria Project: The Distance to the Sculptor Galaxy NGC 247 from Near-Infrared Photometry of Cepheid Variables

    NASA Astrophysics Data System (ADS)

    Gieren, Wolfgang; Pietrzyński, Grzegorz; Soszyński, Igor; Szewczyk, Olaf; Bresolin, Fabio; Kudritzki, Rolf-Peter; Urbaneja, Miguel A.; Storm, Jesper; Minniti, Dante; García-Varela, Alejandro

    2009-08-01

    We have obtained deep near-infrared images in J and K filters of four fields in the Sculptor Group spiral galaxy NGC 247 with the ESO VLT and Infrared Spectrometer and Array Camera. For a sample of 10 Cepheids in these fields, previously discovered by García-Varela et al. from optical wide-field images, we have determined mean J and K magnitudes and have constructed the period-luminosity (PL) relations in these bands. Using the near-infrared PL relations together with those in the optical V and I bands, we have determined a true distance modulus for NGC 247 of 27.64 mag, with a random uncertainty of ±2% and a systematic uncertainty of ~4% which is dominated by the effect of unresolved stars on the Cepheid photometry. The mean reddening affecting the NGC 247 Cepheids of E(B - V) = 0.18 ± 0.02 mag is mostly produced in the host galaxy itself and is significantly higher than what was found in the previous optical Cepheid studies in NGC 247 of our own group, and Madore et al., leading to a 7% decrease in the previous optical Cepheid distance. As in other studies of our project, the distance modulus of NGC 247 we report is tied to an assumed Large Magellanic Cloud distance modulus of 18.50. Comparison with other distance measurements to NGC 247 shows that the present IR-based Cepheid distance is the most accurate among these determinations. With a distance of 3.4 Mpc, NGC 247 is about 1.5 Mpc more distant than NGC 55 and NGC 300, two other Sculptor Group spirals analyzed before with the same technique by our group. Based on observations obtained with the ESO VLT for Large Programme 171.D-0004.

  3. Planetary Camera imaging of the counter-rotating core galaxy NGC 4365

    NASA Technical Reports Server (NTRS)

    Forbes, Duncan A.

    1994-01-01

    We analyze F555W(V) band Planetary Camera images of NGC 4365, for which ground-based spectroscopy has revealed a misaligned, counter-rotating core. Line profile analysis by Surma indicates that the counter-rotating component has a disk structure. After deconvolution and galaxy modeling, we find photometric evidence, at small radii to support this claim. There is no indication of a central point source or dust lane. The surface brightness profile reveals a steep outer profile and shallow, by not flat, inner profile with the inflection radius occurring at 1.8 sec. The inner profile is consistent with a cusp.

  4. Chemical behavior of the dwarf irregular galaxy NGC6822. Its PN and HII region abundances

    NASA Astrophysics Data System (ADS)

    Hernández-Martínez, L.; Peña, M.; Carigi, L.; García-Rojas, J.

    2009-10-01

    Aims: We aim to derive the chemical behavior of a significant sample of PNe and HII regions in the irregular galaxy NGC 6822. The selected objects are distributed in different zones of the galaxy. Our purpose is to obtain the chemical abundances of the present interstellar medium (ISM), represented by H ii regions, and the corresponding values at the time of formation of PNe. With these data the chemical homogeneity of NGC 6822 were tested and the abundance pattern given by H ii regions and PNe used as an observational constraint for computing chemical evolution models to infer the chemical history of NGC 6822. Methods: Due to the faintness of PNe and H ii regions in NGC 6822, to gather spectroscopic data with large telescopes is necessary. We obtained a well suited sample of spectra by employing VLT-FORS 2 and Gemini-GMOS spectrographs. Ionic and total abundances were calculated for the objects where electron temperatures could determined through the detection of [O iii] λ4363 or/and [N ii] λ5755 lines. A “simple” chemical evolution model was developed and the observed data were used to compute a model for NGC 6822 in order to infer a preliminary chemical history in this galaxy. Results: Confident determinations of He, O, N, Ne, S and Ar abundances were derived for a sample of 11 PNe and one H ii region. We confirm that the present ISM is chemically homogeneous, at least in the central 2 kpc of the galaxy, showing a value 12 + log O/H = 8.06 ± 0.04. From the abundance pattern of PNe, we identified two populations: a group of young PNe with abundances similar to H ii regions and a group of older objects with abundances a factor of two lower. A pair of extreme Type I PNe were found. No third dredge-up O enrichement was detected in PNe of this galaxy. The abundance determinations allow us to discuss the chemical behavior of the present and past ISM in NGC 6822. Our preliminary chemical evolution model predicts that an important gas-mass loss occurred during the first 5.3 Gyr, that no star higher than 40 M_⊙ was formed, and that 1% of all 3-15 M_⊙ stars became binary system progenitors of SNIa. Based on observations collected at the European Southern Observatory, VLT, Paranal, Chile, program ID 077.B-0430. Based on observations obtained at the Gemini Observatory (program ID G-2005B-56), which is operated by AURA, Inc. under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (USA), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciencia e Tecnologia (Brazil) and SECYT (Argentina).

  5. The Ionized Gas Kinematics of the LMC-Type Galaxy NGC 1427A in the Fornax Cluster

    NASA Astrophysics Data System (ADS)

    Chanamé, J.; Infante, L.; Reisenegger, A.

    2000-02-01

    NGC 1427A is a LMC-like irregular galaxy in the Fornax Cluster with an extended pattern of strong star formation around one of its edges, which is probably due to some kind of interaction with the cluster environment. We present Hα velocities within NGC 1427A, obtained through long-slit spectroscopy at seven different positions, chosen to fall on the brightest H II regions of the galaxy. Because of its location very near the center of the cluster this object is an excellent candidate to study the effects that the cluster environment has on gas-rich galaxies embedded in it. The rotation of NGC 1427A is modeled in two different ways. The global ionized gas kinematics is reasonably well described by solid-body rotation, although on small scales it shows a chaotic behavior. In this simple model, the collision with a smaller member of the cluster as being responsible for the peculiar morphology of NGC 1427A is very unlikely, since the only candidate intruder falls smoothly into the general velocity pattern of the main galaxy. In a more elaborate model, for which we obtain a better solution, this object does not lie in the same plane of NGC 1427A, in which case we identify it as a satellite bound to the galaxy. These results are discussed in the context of a normal irregular versus one interacting with some external agent. Based on several arguments and quantitative estimates, we argue that the passage through the hot intracluster gas of the Fornax Cluster is a very likely scenario to explain the morphological properties of NGC 1427A, although our kinematical data are not enough to support it more firmly nor rule out the possibility of a normal irregular. Based on data collected at Las Campanas Observatory, Chile, run by the Carnegie Institution of Washington.

  6. Deriving the pattern speed using dynamical modelling of gas flows in barred galaxies .

    NASA Astrophysics Data System (ADS)

    Pérez, I.; Freeman, K. C.; Fux, R.; Zurita, A.

    In this paper we analyse the methodology to derive the bar pattern speed from dynamical simulations. The results are robust to the changes in the vertical-scale height and in the mass-to-light (M/L) ratios. There is a small range of parameters for which the kinematics can be fitted. We have also taken into account the use of different type of dynamical modelling and the effect of using 2-D vs 1-D models in deriving the pattern speeds. We conclude that the derivation of the bar streaming motions and strength and position of shocks is not greatly affected by the fluid dynamical model used. We show new results on the derivation of the pattern speed for NGC 1530. The best fit pattern speed is around 10 km s-1 kpc-1 , which corresponds to a R_cor/R_bar = 1.4, implying a slower bar than previously derived from more indirect assumptions. With this pattern speed, the global and most local kinematic features are beautifully reproduced. However, the simulations fail to reproduce the velocity gradients close to some bright HII regions in the bar. We have shown from the study of the H{alpha } equivalent widths that the HII regions that are located further away from the bar dust-lane in its leading side, downstream from the main bar dust-lane, are older than the rest by 1.5-2.5 Myr. In addition, a clear spatial correlation was found between the location of HII regions, dust spurs on the trailing side of the bar dust-lane, and the loci of maximum velocity gradients parallel to the bar major axis.

  7. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.

    2015-07-01

    Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. Appendix A is available in electronic form at http://www.aanda.orgAtomic data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/vol/A104

  8. Perseus I and the NGC 3109 association in the context of the Local Group dwarf galaxy structures

    NASA Astrophysics Data System (ADS)

    Pawlowski, Marcel S.; McGaugh, Stacy S.

    2014-05-01

    The recently discovered dwarf galaxy Perseus I appears to be associated with the dominant plane of non-satellite galaxies in the Local Group (LG). We predict its velocity dispersion and those of the other isolated dwarf spheroidals Cetus and Tucana to be 6.5, 8.2 and 5.5 km s-1, respectively. The NGC 3109 association, including the recently discovered dwarf galaxy Leo P, aligns with the dwarf galaxy structures in the LG such that all known nearby non-satellite galaxies in the northern Galactic hemisphere lie in a common thin plane (rms height 53 kpc; diameter 1.2 Mpc). This plane has an orientation similar to the preferred orbital plane of the Milky Way (MW) satellites in the vast polar structure. Five of seven of these northern galaxies were identified as possible backsplash objects, even though only about one is expected from cosmological simulations. This may pose a problem, or instead the search for local backsplash galaxies might be identifying ancient tidal dwarf galaxies expelled in a past major galaxy encounter. The NGC 3109 association supports the notion that material preferentially falls towards the MW from the Galactic south and recedes towards the north, as if the MW were moving through a stream of dwarf galaxies.

  9. An ALMA Spectral Scan of the Obscured Luminous Infrared Galaxy NGC 4418

    NASA Astrophysics Data System (ADS)

    Costagliola, F.; Sakamoto, K.; Aalto, S.; Muller, S.; Martín, S.

    2015-12-01

    Until recently, the study of the molecular interstellar medium of galaxies has been mostly focused on a few, relatively abundant, molecular species. Recent attempts at modeling the molecular emission of active galaxies have shown that standard high-density tracers do not provide univocal results and are not able to discriminate between different relevant environments (e.g., star-formation vs AGN). Spectral lines surveys allow us to explore the richness of the molecular spectrum of galaxies, provide tighter constrains to astrochemical models, and find new more sensitive tracers of specific gas properties. What started as a time-consuming pioneering work has become now routinely accessible with the advent of ALMA. Here we report the results of the first ALMA spectral scan of an obscured luminous infrared galaxy (LIRG), NGC 4418. The galaxy has a very compact IR core and narrow emission lines that make it the perfect target for the study of vibrationally excited molecules. More than 300 emission lines from 45 molecular species were identified and modeled via an LTE and NLTE analysis. The molecular excitation and abundances derived offer a unique insight into the chemistry of obscured LIRGs.

  10. An optical search for supernova remnants in the nearby spiral galaxy NGC 2903

    NASA Astrophysics Data System (ADS)

    Sonbas, E.; Akyuz, A.; Balman, S.

    2009-01-01

    Aims: We present the results of an optical search for supernova remnants (SNRs) in the nearby spiral galaxy NGC 2903. Methods: Interference filter images and spectral data were taken in March 2005 with the f/7.7 1.5 m Russian Turkish Telescope (RTT150) at TUBITAK National Observatory (TUG). Spectral data were obtained with the 6 m BTA (Bolshoi Azimuthal Telescope, Russia). We used the SNR identification criterion that consists of constructing the continuum-subtracted Hα and continuum-subtracted [SII]λλ6716, 6731 images and their ratios. Results: Five SNR candidates were identified in NGC 2903 with [SII]/Hα ratios ranging from 0.41-0.74 and Hα intensities ranging from 9.4 × 10-15 to 1.7 × 10-14 erg cm-2 s-1. This work represents the first identification of SNRs by an optical survey in NGC 2903. We present the spectrum of one of the bright candidates and derive an [SII]/Hα emission line ratio of 0.42 for this source. In addition, the weak [OIII]λ5007/Hβ emission line ratio in the spectrum of this SNR indicates an old oxygen-deficient remnant with a low propagation velocity.

  11. A MILLIMETER-WAVE INTERFEROMETRIC SEARCH FOR A MOLECULAR TORUS IN THE RADIO GALAXY NGC 4261

    SciTech Connect

    Okuda, Takeshi; Iguchi, Satoru; Kohno, Kotaro

    2013-05-01

    NGC 4261 is an elliptical galaxy with a pair of symmetric kiloparsec-scale jets. We observed a nucleus of NGC 4261 at 2.6 mm and 1.3 mm with the NRO RAINBOW interferometer, the Nobeyama Millimeter Array, and the IRAM Plateau de Bure Interferometer to determine the excitation state of molecular gas. In this observation, neither CO(J = 2-1) nor CO(J = 1-0) absorption lines were detected even at higher sensitivity than the previous work. The 3{sigma} upper limits on the optical depths of CO lines were 0.098 for J = 2-1 and 0.042 for J = 1-0, respectively. These upper limits are much smaller than the optical depth obtained from the previous claimed detection of CO(J = 2-1) absorption (0.7), indicating that the claimed CO(J = 2-1) absorption profile could be a false feature. Our results suggest that there is a possibility that CO molecules are highly excited by the active galactic nucleus, since the optical depths of low-J CO molecules in NGC 4261 are significantly low.

  12. The Black Hole in the Compact, High-dispersion Galaxy NGC 1271

    NASA Astrophysics Data System (ADS)

    Walsh, Jonelle L.; van den Bosch, Remco C. E.; Gebhardt, Karl; Yildirim, Akin; Gültekin, Kayhan; Husemann, Bernd; Richstone, Douglas O.

    2015-08-01

    Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large bulge stellar velocity dispersion of 276 km s-1 for its K-band luminosity of 8.9× {10}10 {L}⊙ . We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the Near-infrared Integral Field Spectrometer on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics both on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy’s effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of ({3.0}-1.1+1.0)× {10}9 {M}⊙ and the H-band stellar mass-to-light ratio is {1.40}-0.11+0.13 {\\Upsilon }⊙ (1σ uncertainties). NGC 1271 occupies the sparsely populated upper end of the black hole mass distribution but is very different from the brightest cluster galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy’s bulge luminosity but is consistent with the mass predicted using the galaxy’s bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.

  13. SHAKEN, NOT STIRRED: THE DISRUPTED DISK OF THE STARBURST GALAXY NGC 253

    SciTech Connect

    Davidge, T. J.

    2010-12-10

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of {approx}22-26 kpc ({approx}13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is {approx}0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past {approx}0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution of stars in and around NGC 253 suggests that the companion had an orbit that was prograde and moderately inclined to the NGC 253 disk. The star-forming history of the extraplanar stars suggests that they either originated in the NGC 253 disk, or in a gas-rich companion. In the latter case, the companion must have had an initial M{sub B} < -15 in order to produce the more-or-less continuous star-forming history that is suggested by the stellar content. The ages of the youngest extraplanar stars suggest that the event that produced the extraplanar population, and presumably induced the starburst, occurred within the past {approx}0.2 Gyr.

  14. The NGC 1614 interacting galaxy. Molecular gas feeding a "ring of fire"

    NASA Astrophysics Data System (ADS)

    König, S.; Aalto, S.; Muller, S.; Beswick, R. J.; Gallagher, J. S.

    2013-05-01

    Minor mergers frequently occur between giant and gas-rich low-mass galaxies and can provide significant amounts of interstellar matter to refuel star formation and power active galactic nuclei (AGN) in the giant systems. Major starbursts and/or AGN result when fresh gas is transported and compressed in the central regions of the giant galaxy. This is the situation in the starburst minor merger NGC 1614, whose molecular medium we explore at half-arcsecond angular resolution through our observations of 12CO (2-1) emission using the Submillimeter Array (SMA). We compare our 12CO (2-1) maps with optical and Paα, Hubble Space Telescope and high angular resolution radio continuum images to study the relationships between dense molecular gas and the NGC 1614 starburst region. The most intense 12CO emission occurs in a partial ring with ~230 pc radius around the center of NGC 1614, with an extension to the northwest into the dust lane that contains diffuse molecular gas. We resolve ten giant molecular associations (GMAs) in the ring, which has an integrated molecular mass of ~8 × 108 M⊙. Our interferometric observations filter out a large part of the 12CO (1-0) emission mapped at shorter spacings, indicating that most of the molecular gas is diffuse and that GMAs only exist near and within the circumnuclear ring. The molecular ring is uneven with most of the mass on the western side, which also contains GMAs extending into a pronounced tidal dust lane. The spatial and kinematic patterns in our data suggest that the northwest extension of the ring is a cosmic umbilical cord that is feeding molecular gas associated with the dust lane and tidal debris into the nuclear ring, which contains the bulk of the starburst activity. The astrophysical process for producing a ring structure for the final resting place of accreted gas in NGC 1614 is not fully understood, but the presence of numerous GMAs suggests an orbit-crowding or resonance phenomenon. There is some evidence that star formation is progressing radially outward within the ring, indicating that a self-triggering mechanism may also affect star formation processes. The net result of this merger therefore very likely increases the central concentration of stellar mass in the NGC 1614 remnant giant system.

  15. A Radio Continuum and Spectral Line Outburst in the Nearby Galaxy NGC 660

    NASA Astrophysics Data System (ADS)

    Minchin, Robert F.; Ghosh, T.; Momjian, E.; Salter, C. J.

    2013-01-01

    We have detected a radio continuum and spectral-line outburst in the nearby peculiar galaxy, NGC 660, using the Arecibo 305-m telescope. A new continuum component appeared between 2008.0 and 2012.0 having a GHz-Peaked Spectrum (GPS) and a peak flux density of about 0.5 Jy at 5 GHz. This continuum outburst has been paralleled by the development of OH maser emission/absortption in the 6-cm wavelength transitions of OH. H2CO absorption is also detected against the new continuum component. Such rapid change in the molecular medium of an external galaxy is very unusual, but could have been initiated by supernova shocks or the interaction of nuclear radio jets with interstellar GMCs. We have also obtained observations at 8.5 and 11.5 GHz with the VLA, and VLBI C- and X-band High Sensitivity Array (HSA) data that will provide continuum and spectral-line imaging.

  16. Compact molecular gas structure in the interacting galaxy pair Arp 299 (IC 694-NGC 3690)

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Sanders, D. B.; Scoville, N. Z.; Soifer, B. T.

    1987-01-01

    High-resolution (about 5-arcsec) CO observations of the interacting galaxy pair Arp 299 (IC 694-NGC 3690) show that about 40 percent of the total molecular gas content is concentrated in two compact regions each of mass 1.4 x 10 to the 9th solar mass. One component lies at the nucleus of IC 694, while the other spans the region of overlap between the two galaxies. The properties of the latter component are consistent with its being a region of greatly enhanced star formation. However, the unusually high L(FIR)/M(H2) ration for IC 694, together with the presence of a flat-spectrum radio source, suggest that its remarkable luminosity may be largely produced by nonthermal processes.

  17. The soft x ray halo of the spiral galaxy NGC4631

    NASA Technical Reports Server (NTRS)

    Walterbos, Rene A. M.; Steakley, Michael F.; Wang, Q. Daniel; Norman, Colin A.; Braun, Robert

    1994-01-01

    ROSAT PSPC observations of the close to edge-on spiral galaxy NGC4631 are presented. This vigorously star forming galaxy shows extented x ray emission perpendicular to the plane, out to about 6 to 8 kpc. The spatial extent is largest at soft x ray energies. The total x ray luminosity of hot gas can be easily supplied by star formation in the disk, and it is likely that the halo is due to outflow of hot gas from the inner disk. Spectral analysis of the x ray data shows that part of the halo emission may be quite cool, well below 10(exp 6)K. Implications of these results are briefly discussed.

  18. Spectroscopic Study of Extended Star Clusters in Dwarf Galaxy NGC 6822

    NASA Astrophysics Data System (ADS)

    Hwang, Narae; Park, Hong Soo; Lee, Myung Gyoon; Lim, Sungsoon; Hodge, Paul W.; Kim, Sang Chul; Miller, Bryan; Weisz, Daniel

    2014-03-01

    We present a spectroscopic study of the four extended star clusters (ESCs) in NGC 6822 based on the data obtained with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities derived from the spectra range from -61.2 ± 20.4 km s-1 (for C1) to -115.34 ± 57.9 km s-1 (for C4) and, unlike the intermediate-age carbon stars, they do not display any sign of systematic rotation around NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (>=8 Gyr) and metal poor ([Fe/H] <~ -1.5). NGC 6822 is found to have both metal poor ([Fe/H] ≈-2.0) and metal rich ([Fe/H] ≈-0.9) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r >= 20'(2.6 kpc). The kinematics, old ages, and low metallicities of ESCs suggest that ESCs may have accreted into the halo of NGC 6822. Based on the velocity distribution of ESCs, we have determined the total mass and the mass-to-light ratio of NGC 6822: M_{N6822} = 7.5^{+4.5}_{-0.1} \\times 10^{9}\\ M_{\\odot } and (M/L)_{N6822} = 75^{+45}_{-1} (M/L)_{\\odot }. It shows that NGC 6822 is one of the most dark matter dominated dwarf galaxies in the Local Group. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  19. The nature of the UV halo around the spiral galaxy NGC 3628

    NASA Astrophysics Data System (ADS)

    Baes, Maarten; Viaene, Sébastien

    2016-03-01

    Thanks to deep UV observations with GALEX and Swift, diffuse UV haloes have recently been discovered around galaxies. Based on UV-optical colours, it has been advocated that the UV haloes around spiral galaxies are due to UV radiation emitted from the disc and scattered off dust grains at high latitudes. Detailed UV radiative transfer models that take into account scattering and absorption can explain the morphology of the UV haloes, and they require the presence of an additional thick dust disc next the to traditional thin disc for half of the galaxies in their sample. We test whether such an additional thick dust disc agrees with the observed infrared emission in NGC 3628, an edge-on galaxy with a clear signature of a thick dust disc. We extend the far-ultraviolet radiative transfer models to full-scale panchromatic models. Our model, which contains no fine-tuning, can almost perfectly reproduce the observed spectral energy distribution from UV to mm wavelengths. These results corroborate the interpretation of the extended UV emission in NGC 3628 as scattering off dust grains, and hence of the presence of a substantial amount of diffuse extra-planar dust. A significant caveat, however, is the geometrical simplicity and non-uniqueness of our model: other models with a different geometrical setting could lead to a similar spectral energy distribution. More detailed radiative transfer simulations that compare the model results to images from UV to submm wavelengths are a way to break this degeneracy, as are UV polarisation measurements.

  20. Transient X-Ray Source Population in the Magellanic-type Galaxy NGC 55

    NASA Astrophysics Data System (ADS)

    Jithesh, V.; Wang, Zhongxiang

    2016-04-01

    We present the spectral and temporal properties of 15 candidate transient X-ray sources detected in archival XMM-Newton and Chandra observations of the nearby Magellanic-type, SB(s)m galaxy NGC 55. Based on an X-ray color classification scheme, the majority of the sources may be identified as X-ray binaries (XRBs), and six sources are soft, including a likely supernova remnant. We perform a detailed spectral and variability analysis of the data for two bright candidate XRBs. Both sources displayed strong short-term X-ray variability, and their X-ray spectra and hardness ratios are consistent with those of XRBs. These results, combined with their high X-ray luminosities (˜1038 erg s-1), strongly suggest that they are black hole (BH) binaries. Seven less luminous sources have spectral properties consistent with those of neutron star or BH XRBs in both normal and high-rate accretion modes, but one of them is the likely counterpart to a background galaxy (because of positional coincidence). From our spectral analysis, we find that the six soft sources are candidate super soft sources (SSSs) with dominant emission in the soft (0.3-2 keV) X-ray band. Archival Hubble Space Telescope optical images for seven sources are available, and the data suggest that most of them are likely to be high-mass XRBs. Our analysis has revealed the heterogeneous nature of the transient population in NGC 55 (six high-mass XRBs, one low-mass XRBs, six SSSs, one active galactic nucleus), helping establish the similarity of the X-ray properties of this galaxy to those of other Magellanic-type galaxies.

  1. Multiphase ISM in early type galaxies: A case study of NGC 708

    NASA Astrophysics Data System (ADS)

    Pandey, Sheo Kumar; Sahu, Sheetal Kumar; Chaware, Laxmikant; Baburao Pandge, Mahadev

    2015-08-01

    We present a multiwavelength study of a nearby radio loud elliptical galaxy NGC 708, selected from the Bologna B2 sample of radio galaxies. We obtained optical broad band and narrow images from IGO 2m telescope (Pune, India). We supplement the multiwavelength coverage of the observation by using X-ray data from Chandra, UV data from GALEX, infrared data from 2MASS, Spitzer and WISE, Very Large Array (VLA), Giant Metrewave Radio Telescope (GMRT) and IRAM for radio data.In order to investigate properties of Interstellar medium, we have generated unsharp-masked, colour, residual, quotient, dust extinction, Hα emission, CO intensity, X-ray diffuse emission maps and it is evident that cool gas, CO, dust, warm ionized Hα and hot X-ray gas are spatially associated with each other.We also made use of the HST(WFPC2, ACS, NICMOS2) archival images to investigate the properties at the central ˜10 arcsec region of NGC 708. We model the surface brightness profiles of the galaxy in different wavelengths by fitting a combination of (Power + Sersic) law and Devaucouleur’s law and it is evident that former model gives a better fit than the latter. We investigate the inner and outer photometric and kinematic properties of the galaxy using surface brightness profiles. From X-ray 2d beta model, unsharp masking, surface brightness and temperature profiles techniques it is evident that pair of X-ray cavities are present in this system and which are ˜5Kpc away from the central X-ray source.

  2. TOWARD A NEW GEOMETRIC DISTANCE TO THE ACTIVE GALAXY NGC 4258. III. FINAL RESULTS AND THE HUBBLE CONSTANT

    SciTech Connect

    Humphreys, E. M. L.; Reid, M. J.; Moran, J. M.; Greenhill, L. J.; Argon, A. L.

    2013-09-20

    We report a new geometric maser distance estimate to the active galaxy NGC 4258. The data for the new model are maser line-of-sight (LOS) velocities and sky positions from 18 epochs of very long baseline interferometry observations, and LOS accelerations measured from a 10 yr monitoring program of the 22 GHz maser emission of NGC 4258. The new model includes both disk warping and confocal elliptical maser orbits with differential precession. The distance to NGC 4258 is 7.60 {+-} 0.17 {+-} 0.15 Mpc, a 3% uncertainty including formal fitting and systematic terms. The resulting Hubble constant, based on the use of the Cepheid variables in NGC 4258 to recalibrate the Cepheid distance scale, is H{sub 0} = 72.0 {+-} 3.0 km s{sup -1} Mpc{sup -1}.

  3. Star formation in the outer Galaxy: coronal properties of NGC 1893

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Micela, G.; Prisinzano, L.; Sciortino, S.; Damiani, F.; Favata, F.; Stauffer, J. R.; Vallenari, A.; Wolk, S. J.

    2012-03-01

    Context. The outer Galaxy, where the environmental conditions are different from the solar neighborhood, is a laboratory in which it is possible to investigate the dependence of star formation process on the environmental parameters. Aims: We investigate the X-ray properties of NGC 1893, a young cluster (~1-2 Myr) in the outer part of the Galaxy (galactic radius ≥11 kpc) where we expect differences in the disk evolution and in the mass distribution of the stars, to explore the X-ray emission of its members and compare it with that of young stars in star-forming regions near to the Sun. Methods: We analyze 5 deep Chandra ACIS-I observations with a total exposure time of 450 ks. Source events of the 1021 X-ray sources have been extracted with the IDL-based routine ACIS-Extract. Using spectral fitting and quantile analysis of X-ray spectra, we derive X-ray luminosities and compare the respective properties of Class II and Class III members. We also evaluate the variability of sources using the Kolmogorov-Smirnov test and identify flares in the lightcurves. Results: The X-ray luminosity of NGC 1893 X-ray members is in the range 1029.5-1031.5 erg s-1. Diskless stars are brighter in X-rays than disk-bearing stars, given the same bolometric luminosity. We found that 34% of the 1021 lightcurves appear variable and that they show 0.16 flare per source, on average. Comparing our results with those relative to the Orion Nebula Cluster, we find that, by accounting for observational biases, the X-ray properties of NGC 1893 and the Orion ones are very similar. Conclusions: The X-ray properties in NGC 1893 are not affected by the environment and the stellar population in the outer Galaxy may have the same coronal properties of nearby star-forming regions. The X-ray luminosity properties and the X-ray luminosity function appear to be universal and can therefore be used for estimating distances and for determining stellar properties. Full Tables 1 and 3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/539/A74

  4. The Hubble Heritage Image of the Interacting Galaxies IC 2163 and NGC 2207

    NASA Astrophysics Data System (ADS)

    Elmegreen, B. G.; Elmegreen, D. M.; Kaufman, M.; Brinks, E.; Struck, C.; Thomasson, M.; Klarić, M.; Levay, Z.; Bond, H. E.; Christian, C. A.; English, J.; Frattare, L.; Hamilton, F.; Noll, K.

    1999-12-01

    The Hubble Heritage Project has the aim of providing the public with pictorially striking images of celestial objects obtained with NASA's Hubble Space Telescope. The Heritage team has made a 3-color mosaic of the interacting spiral galaxies IC 2163 and NGC 2207 from three pointings of the WFPC2 camera in UBVI passbands. The scientific investigators for this research (Elmegreen, et al. 1995, ApJ, 453, 100 and 139) previously determined that IC 2163 experienced a close, prograde, in-plane encounter with NGC 2207. Tidal forces compressed and elongated the disk of IC 2163, forming an oval ridge of star formation where the perturbed gas reached its innermost extent. The Hubble Heritage image now shows how accelerated gas flowing away from this ridge developed a peculiar structure characterized by thin parallel dust filaments transverse to the direction of the flow. The filaments thicken as the gas approaches the tidal arm, eventually forming two long thick dust lanes in the arm. A spiral arm in NGC 2207 that is backlit by IC 2163 shows similar filamentary shock structures, which in this case are presumably from the associated density wave. Blue clusters of star formation are forming inside numerous clumps along both sets of filaments. A strong radio continuum source in NGC 2207 is also now seen to be associated with a large region of star formation on a spiral arm. Support for this work was provided by NASA through grant numbers GO-06483-95A and GO-07632.01-96A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. BeppoSAX detection of the Fe K line in the starburst galaxy NGC53

    NASA Astrophysics Data System (ADS)

    Mariani, S.; Cappi, M.; Persic, M.; Bassani, L.; Palumbo, G. G. C.; Danese, L.; Dean, A. J.; Di Cocco, G.; Franceschini, A.; Hunt, L. K.; Matteucci, F.; Palazzi, E.; Rephaeli, Y.; Salucci, P.; Spizzichino, A.

    1999-01-01

    Preliminary results obtained from BeppoSAX observation of the starburst galaxy NGC53 are presented. X-ray emission from the object is clearly extended but most of the emission is concentrated on the optical nucleus. Preliminary analysis of the LECS and MECS data obtained using the central 4' region indicates that the continuum is well fitted by two thermal components at 0.9keV and 7keV. Fe K line at 6.7keV is detected for the first time in this galaxy; the line has an equivalent width of ~300eV. The line energy and the shape of the 2-10keV continuum strongly support thermal origin of the hard X-ray emission of NGC53. From the measurement of the Fe K line the abundances can be unambiguously constrained to ~0.25 the solar value. Other lines clearly detected are Si, S and FeXVIII/Ne, in agreement with ASCA results.

  6. Understanding the Puzzling X-Ray Spectrum of the SO Galaxy NGC 4382; NGC 43819: Spectral Analysis of the Prototypical Early Merger and ASCA Observations of a Dynamically Young Elliptical: NGC 4125

    NASA Technical Reports Server (NTRS)

    Fabbiano, Giuseppina

    2001-01-01

    We have analyzed the ASCA observations of NGC 4382, NGC 4038/9, NGC 4125 and produced papers for publication. NGC 4382 is one of the E and SO galaxies detected with the lowest X-ray to optical luminosity ratio. These galaxies have a peculiar X-ray (0.1-3 keV) spectrum, with a significant excess of counts in the lowest spectral channels (less than 1 keV) relative to the spectral count distributions of X-ray brihter E and SO galaxies. Analyzing the ROSAT PSPC observation of NGC 4382 it was unclear whether this soft excess was due to a real very soft component in a multi-component spectrum, or reflected an extremely low metal abundance in an isothermal hot gas. Our ASCA observations show that the low-abundance single-temperature model does not fit well to the X-ray spectrum, in agreement with our previous suggestions. A better explanation is a composite spectrum with a very soft component (0.3 keV) in addition to a harder (5 keV) component from X-ray binaries. In this model, the abundance cannot be constrained. More complex spectral models are also possible. The ASCA observations of The Antennae - (NGC4038/9) show that at least two spectral components are required to describe the emission-thermal emission from a plasma at 0.8 keV, and a component at higher energies. The hot gas contributes about half of the flux in the 0.5 to 6 keV band. If the column density to the higher energy component is greater than 2 x 10 (exp 21) per square centimeter, then the fitted abundance in the hot gas component is less than 0.2 solar. This low abundance is not expected for the hot interstellar medium in NGC4038/9 in which supernovae and star formation (expected to enrich and heat the gas) are ongoing. We do not detect any spatial variations in the spectrum. We relate these findings to data obtained by other satellites (Einstein, ROSAT) for this interacting galaxy pair. NGC4125's ASCA data was analyzed jointly with its Beppo-SAX observation. A hard component (kT /sim 4-10 keV) is observed together with a thermal component with line emission.

  7. Counter-rotating bar in a simulation of a disk galaxy

    NASA Astrophysics Data System (ADS)

    Algorry, D. G.; Abadi, M. G.

    We present a dynamical analysis of a simulated disk galaxy which has a counter-rotating stellar component. By using different dynamical parameters, such as energy or circularity, we identify an internal bar which rotates in an opposite direction to the main galactic disk.

  8. Hubble Space Telescope First Observations of the Brightest Stars in the Virgo Galaxy M100 = NGC 4321

    NASA Technical Reports Server (NTRS)

    Freedman, W. L.; Madore, B. F.; Stetson, P. B.; Hughes, S. M. G.; Holtzman, J. A.; Mould, J. R.; Trauger, J. T.; Gallagher, J. S., III; Ballester, G. E.; Burrows, C. J.; Casertano, S.; Clarke, J. T; Crisp, D.; Ferrarese, L.; Ford, H.; Graham, J. A.; Griffiths, R. E.; Hester, J. J.; Hill, R.; Hoessel, J. G.; Huchra, J.; Kennicutt, R. C.; Scowen, P. A.; Sparks, B.; Stapelfeldt, K. R.

    1994-01-01

    As part of both the Early Release Observations fromthe Hubble Space Telescope and the Key PRoject on the Extragalctic Distance Scale, we have obtained multi-wavelength BVR WFPC2 images for the face-on Virgo cluster spiral galaxy M11 = NGC 4321.

  9. Nuclear discs as clocks for the assembly history of early-type galaxies: the case of NGC 4458

    NASA Astrophysics Data System (ADS)

    Sarzi, M.; Ledo, H. R.; Coccato, L.; Corsini, E. M.; Dotti, M.; Khochfar, S.; Maraston, C.; Morelli, L.; Pizzella, A.

    2016-04-01

    Approximately 20 per cent of early-type galaxies host small nuclear stellar discs that are tens to a few hundred parsecs in size. Such discs are expected to be easily disrupted during major galactic encounters, hence their age serve to constrain their assembly history. We use VIsible MultiObject Spectrograph integral-field spectroscopic observations for the intermediate-mass E0 galaxy NGC 4458 and age-date its nuclear disc via high-resolution fitting of various model spectra. We find that the nuclear disc is at least 6 Gyr old. A clue to gain narrow limits to the stellar age is our knowledge of the nuclear disc contribution to the central surface brightness. The presence of an old nuclear disc, or the absence of disruptive encounters since z ˜ 0.6, for a small galaxy such as NGC 4458 which belongs to the Virgo cluster, may be consistent with a hierarchical picture for galaxy formation where the smallest galaxies assembles earlier and the crowded galactic environments reduce the incidence of galaxy mergers. On the other hand, NGC 4458 displays little or no bulk rotation except for a central kpc-scale kinematically decoupled core. Slow rotation and decoupled core are usually explained in terms of mergers. The presence and age of the nuclear disc constraint these mergers to have happened at high redshift.

  10. Survey of Water and Ammonia in Nearby galaxies (SWAN): Physical Conditions in NGC 253

    NASA Astrophysics Data System (ADS)

    Gorski, Mark; Ott, Jüergen; Rand, Richard J.; Meier, David S.; Momjian, Emmanuel; Walter, Fabian

    2015-01-01

    Nearby galaxies provide the vital link between local Galactic findings and integrated, galaxy-wide properties of star formation. We have observed four nearby star forming galaxies with the VLA in K and Ka bands, yielding a resolution on order of a few tens of parsecs. The sample spans a range of star formation rates and galactic environments. We present the first results from the nearby, prototypical starburst galaxy NGC 253. The K band observations cover ammonia inversion transitions from (1,1) to (5,5) in addition to the 22.3GHz water maser line with a resolution of ≈63pc. Ammonia is a known temperature probe and traces gas densities greater than 102 cm-3. We observe relatively warm and uniform temperature distribution in the inner 0.5 kpc. The (3,3) line appears to be masing in the innermost 200 pc. Furthermore, we see indications of extended H20 maser components in the direction of the galactic outflow.

  11. GHOSTS IN THE ATTIC: MAPPING THE STELLAR CONTENT OF THE S0 GALAXY NGC 5102

    SciTech Connect

    Davidge, T. J.

    2010-02-15

    The spatial distribution of stars in the nearby S0 galaxy NGC 5102 is investigated using images obtained with WIRCam and MegaCam on the Canada-France-Hawaii Telescope. With the exception of gaps between detector elements, the entire galaxy is surveyed in r' and i', while the J and Ks data extend out to R {sub GC} {approx} 6 kpc, which corresponds to almost 7 disk scale lengths. A modest population of main-sequence stars with M{sub V} < -3.5 and ages {approx}70 Myr are detected throughout the disk, with the majority located in the southern half of the galaxy. The stellar disk in the northern half of the galaxy is warped, following structure that is also seen in H I. Objects with photometric properties that are consistent with those of bright asymptotic giant branch (AGB) stars are seen throughout the disk, and the ratio of C stars to bright M giants is consistent with an overall increase in the star formation rate within the past 1 Gyr. Star-forming activity during the interval 0.1-2 Gyr was more centrally concentrated than during the past {approx}100 Myr. The structure of the disk changes near R {sub GC} {approx} 5 kpc (5.5 disk scale lengths), in the sense that the radial surface density profile defined by red supergiants (RSGs) and bright AGB stars levels off at larger radii. RSGs and bright AGB stars are traced out to a radius of 14 kpc (15.6 scale lengths) along the southern portion of the major axis, while a tentative detection is also made of bright AGB stars at a projected distance of {approx}16 kpc along the southeast minor axis. A large clump of AGB stars that subtends {approx}1 arcmin is identified to the west of the galaxy center. It is argued that this is the remnant of a companion galaxy that triggered past episodes of elevated star-forming activity.

  12. OUTFLOW VERSUS INFALL IN SPIRAL GALAXIES: METAL ABSORPTION IN THE HALO OF NGC 891

    SciTech Connect

    Bregman, Joel N.; Seitzer, Patrick; Cowley, C. R.; Miller, Matthew J.; Miller, Eric D.

    2013-03-20

    Gas accreting onto a galaxy will be of low metallicity while halo gas due to a galactic fountain will be of near-solar metallicity. We test these predictions by measuring the metal absorption line properties of halo gas 5 kpc above the plane of the edge-on galaxy NGC 891, using observations taken with HST/STIS toward a bright background quasar. Metal absorption lines of Fe II, Mg II, and Mg I in the halo of NGC 891 are clearly seen, and when combined with recent deep H I observations, we are able to place constraints on the metallicity of the halo gas for the first time. The H I line width defines the line broadening, from which we model opacity effects in these metal lines, assuming that the absorbing gas is continuously distributed in the halo. The gas-phase metallicities are [Fe/H] = -1.18 {+-} 0.07 and [Mg/H] = -0.23 + 0.36/ - 0.27 (statistical errors) and this difference is probably due to differential depletion onto grains. When corrected for such depletion using Galactic gas as a guide, both elements have approximately solar or even supersolar abundances. This suggests that the gas is from the galaxy disk, probably expelled into the halo by a galactic fountain, rather than from accretion of intergalactic gas, which would have a low metallicity. The abundances would be raised by significant amounts if the absorbing gas lies in a few clouds with thermal widths smaller than the rotational velocity of the halo. If this is the case, both the abundances and [Mg/Fe] would be supersolar.

  13. Discovery of a deep Seyfert-2 galaxy at z = 0.222 behind NGC 300

    NASA Astrophysics Data System (ADS)

    Combi, J. A.; García, F.; Rodríguez, M. J.; Gamen, R.; Cellone, S. A.

    2016-04-01

    We report on the unveiling of the nature of the unidentified X-ray source 3XMM J005450.3-373849 as a Seyfert 2 galaxy located behind the spiral galaxy NGC 300 using Hubble Space Telescope data, new spectroscopic Gemini observations and available XMM-Newton and Chandra data. We show that the X-ray source is positionally coincident with an extended optical source, composed by a marginally resolved nucleus/bulge, surrounded by an elliptical disc-like feature and two symmetrical outer rings. The optical spectrum is typical of a Seyfert 2 galaxy redshifted to z = 0.222 ± 0.001, which confirms that the source is not physically related to NGC 300. At this redshift the source would be located at 909±4 Mpc (comoving distance in the standard model). The X-ray spectra of the source are well-fitted by an absorbed power-law model. By tying NH between the six available spectra, we found a variable index Γ running from ˜2 in 2000-2001 years, to 1.4-1.6 in the 2005-2014 period. Alternatively, by tying Γ, we found variable absorption columns of NH ˜ 0.34 × 10-22 cm-2 in 2000-2001 years, and 0.54 - 0.75 × 10-22 cm-2 in the 2005-2014 period. Although we cannot distinguish between an spectral or absorption origin, from the derived unabsorbed X-ray fluxes, we are able to assure the presence of long-term X-ray variability. Furthermore, the unabsorbed X-ray luminosities of 0.8 - 2 ×1043 erg s-1 derived in the X-ray band are in agreement with a weakly obscured Seyfert-2 AGN at z ≈ 0.22.

  14. Evidence of a Supermassive Black Hole in the Galaxy NGC 1023 From The Nuclear Stellar Dynamics

    NASA Technical Reports Server (NTRS)

    Bower, G. A.; Green, R. F.; Bender, R.; Gebhardt, K.; Lauer, T. R.; Magorrian, J.; Richstone, D. O.; Danks, A.; Gull, T.; Hutchings, J.

    2000-01-01

    We analyze the nuclear stellar dynamics of the SBO galaxy NGC 1023, utilizing observational data both from the Space Telescope Imaging Spectrograph aboard the Hubble Space Telescope and from the ground. The stellar kinematics measured from these long-slit spectra show rapid rotation (V equals approx. 70 km/s at a distance of O.1 deg = 4.9 pc from the nucleus) and increasing velocity dispersion toward the nucleus (where sigma = 295 +/- 30 km/s). We model the observed stellar kinematics assuming an axisymmetric mass distribution with both two and three integrals of motion. Both modeling techniques point to the presence of a central dark compact mass (which presumably is a supermassive black hole) with confidence > 99%. The isotropic two-integral models yield a best-fitting black hole mass of (6.0 +/- 0.4) x 10(exp 7) solar masses and mass-to-light ratio (M/L(sub v)) of 5.38 +/- 0.08, and the goodness-of-fit (CHI(exp 2)) is insensitive to reasonable values for the galaxy's inclination. The three-integral models, which non-parametrically fit the observed line-of-sight velocity distribution as a function of position in the galaxy, suggest a black hole mass of (3.9 +/- 0.4) x 10(exp 7) solar masses and M/L(sub v) of 5.56 +/- 0.02 (internal errors), and the edge-on models are vastly superior fits over models at other inclinations. The internal dynamics in NGC 1023 as suggested by our best-fit three-integral model shows that the velocity distribution function at the nucleus is tangentially anisotropic, suggesting the presence of a nuclear stellar disk. The nuclear line of sight velocity distribution has enhanced wings at velocities >= 600 km/s from systemic, suggesting that perhaps we have detected a group of stars very close to the central dark mass.

  15. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  16. SAMI Galaxy Survey: Disk and Bar Kinematics, Mass Decompositions with Dark Matter

    NASA Astrophysics Data System (ADS)

    Cecil, Gerald N.; Bland-Hawthorn, Jonathan; Fogarty, Lisa; SAMI Galaxy Survey Team, GAMA Survey Team

    2015-01-01

    The SAMI Galaxy Survey (SGS, P.I. Scott Croom, U. of Sydney) uses a custom multiple-integral-field feed to the Australian Astronomical Telescope (AAT) AAOmega dual-spectrograph to map the inner 15 arcsec diameter of 3400 galaxies a dozen at a time. The SGS spans environmental densities up to clusters, out to z = 0.1. (See http://sami-survey.org/edr for ~100 galaxies in the public Early Release Data.) We discuss circular speed curves (CSCs) of gas and stars derived from non-parametric fits to a flat disk in ~130 late-type barred and unbarred galaxies across the full mass range of the SGS, and at radii up to 4 r_e. Gas and stellar rotational fields agree well, but can differ substantially in line of nodes. At least 2/3 of the fitted CSCs are compatible with the ``universal rotation curve''. Velocity model residuals are compared to residuals from single-Sersic profile fits to SDSS photometry that highlight light asymmetries. For galaxies where photometry minus model residuals delineate stellar bars, the VIKING Z-band image is fit with a dual-Sersic form, one component addressing the bulge/bar, then gas kinematics are refit to include a bisymmetric (m=2) velocity distortion in the disk. This distortion often aligns with photometric residuals, and has amplitude at most 80 km/s but usually <20 km/s in the disk plane. Thus we debias the CSC from, and map the effects of, gas streaming due to a bar/oval. Because of generally low in-plane velocity distortions, only 2 of 18 barred galaxies have shock-indicating, emission-line flux ratios that correlate with m=2 spatio-kinematical variations and concentrate near the bar ends. Each dual- or single-Sersic fit is mapped into mass using one M/L constant with radius and the non-axisymmetric or axisymmetric CSC to decompose the mass distribution into luminous bulge and disk, and dark halo components. Some fits require a maximal luminous disk, others require a non-negligible or even dominant dark halo within the SAMI aperture. We discuss interesting individual systems and statistics of our sample from the first 600 galaxies surveyed. GC was a visiting professor supported by U. of Sydney. The SAMI and GAMA surveys are supported by grants from the Australian Research Council.

  17. FIREWORKS NEAR A BLACK HOLE IN THE CORE OF SEYFERT GALAXY NGC 4151

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Space Telescope Imaging Spectrograph (STIS) simultaneously records, in unprecedented detail, the velocities of hundreds of gas knots streaming at hundreds of thousands of miles per hour from the nucleus of NGC 4151, thought to house a supermassive black hole. This is the first time the velocity structure in the heart of this object, or similar objects, has been mapped so vividly this close to its central black hole. The twin cones of gas emission are powered by the energy released from the supermassive black hole believed to reside at the heart of this Seyfert galaxy. The STIS data clearly show that the gas knots illuminated by one of these cones is rapidly moving towards us, while the gas knots illuminated by the other cone are rapidly receding. The images have been rotated to show the same orientation of NGC 4151. The figures show: WFPC2 (upper left) -- A Hubble Wide Field Planetary Camera 2 image of the oxygen emission (5007 Angstroms) from the gas at the heart of NGC 4151. Though the twin cone structure can be seen, the image does not provide any information about the motion of the oxygen gas. STIS OPTICAL (upper right) -- In this STIS spectral image of the oxygen gas, the velocities of the knots are determined by comparing the knots of gas in the stationary WFPC2 image to the horizontal location of the knots in the STIS image. STIS OPTICAL (lower right) -- In this false color image the two emission lines of oxygen gas (the weaker one at 4959 Angstroms and the stronger one at 5007 Angstroms) are clearly visible. The horizontal line passing through the image is from the light generated by the powerful black hole at the center of NGC 4151. STIS ULTRAVIOLET (lower left) -- This STIS spectral image shows the velocity distribution of the carbon emission from the gas in the core of NGC 4151. It requires more energy to make the carbon gas glow (CIV at 1549 Angstroms) than it does to ionize the oxygen gas seen in the other images. This means we expect that the carbon emitting gas is closer to the heart of the energy source. Credit: John Hutchings (Dominion Astrophysical Observatory), Bruce Woodgate (GSFC/NASA), Mary Beth Kaiser (Johns Hopkins University), Steven Kraemer (Catholic University of America), and the STIS Team. Image files in GIF and JPEG format and captions may be accessed on the Internet via anonymous ftp from ftp.stsci.edu in /pubinfo.

  18. The 'sleeping beauty' galaxy NGC 4826: an almost textbook example of the Abelian Higgs vorto-source (-sink)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod

    1995-03-01

    It is demonstrated that the kinematic 'peculiarity' of the early Sab galaxy NGC 4826 can easily be understood in terms of the Abelian Higgs (AH) model of spiral galaxies. A cylindrically symmetric AH vorto-source (-sink) with a disk-to-bulge ratio Omega greater than 1 is discussed and the distributions of the diagonal components of the corresponding stress-energy tensor Tmu,nu are presented. It is argued that the sign-changing component Tphiphi could account for the existence of two counter-rotating gas disks while negative values of Trr imply inward gas motions as observed in the outer and transition regions of the galaxy.

  19. CHANDRA OBSERVATIONS OF NGC 4342, AN OPTICALLY FAINT, X-RAY GAS-RICH EARLY-TYPE GALAXY

    SciTech Connect

    Bogdan, Akos; Forman, William R.; Kraft, Ralph P.; Jones, Christine; Randall, Scott W.; Li Zhiyuan; Nulsen, Paul E. J.; Vikhlinin, Alexey; Blom, Christina; Zhang Zhongli; Zhuravleva, Irina; Churazov, Eugene; Schindler, Sabine

    2012-08-10

    Chandra x-ray observations of NGC 4342, a low-stellar mass (M{sub K} = -22.79 mag) early-type galaxy, show luminous, diffuse x-ray emission originating from hot gas with temperature of kT {approx} 0.6 keV. The observed 0.5-2 keV band luminosity of the diffuse x-ray emission within the D{sub 25} ellipse is L{sub 0.5-2keV} = 2.7 Multiplication-Sign 10{sup 39} erg s{sup -1}. The hot gas has a significantly broader distribution than the stellar light, and shows strong hydrodynamic disturbances with a sharp surface brightness edge to the northeast and a trailing tail. We identify the edge as a cold front and conclude that the distorted morphology of the hot gas is produced by ram pressure as NGC 4342 moves through external gas. From the thermal pressure ratios inside and outside the cold front, we estimate the velocity of NGC 4342 and find that it moves supersonically (M {approx} 2.6) toward the northeast. Outside the optical extent of the galaxy, we detect {approx}17 bright (L{sub 0.5-8keV} > or approx. 3 x 10{sup 37} erg s{sup -1}) excess x-ray point sources. The excess sources are presumably LMXBs located in metal-poor globular clusters (GCs) in the extended dark matter halo of NGC 4342. Based on the number of excess sources and the average frequency of bright LMXBs in GCs, we estimate that NGC 4342 may host roughly 850-1700 GCs. In good agreement with this, optical observations hint that NGC 4342 may harbor 1200 {+-} 500 GCs. This number corresponds to a GC specific frequency of S{sub N} = 19.9 {+-} 8.3, which is among the largest values observed in full-size galaxies.

  20. Regrowth of stellar disks in mature galaxies: The two component nature of NGC 7217 revisited with VIRUS-W† ⋄

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Coccato, Lodovico; Bender, Ralf; Drory, Niv; Gössl, Claus; Landriau, Martin; Saglia, Roberto P.; Thomas, Jens; Williams, Michael J.

    2015-02-01

    We have obtained high spectral resolution (R ~ 9000), integral field observations of the three spiral galaxies NGC 3521, NGC 7217 and NGC 7331 using the new fiber-based Integral Field Unit instrument VIRUS-W at the 2.7 m telescope of the McDonald Observatory in Texas. Our data allow us to revisit previous claims of counter rotation in these objects. A detailed kinematic decomposition of NGC 7217 shows that no counter rotating stellar component is present. We find that NGC 7217 hosts a low dispersion, rotating disk that is embedded in a high velocity dispersion stellar halo or bulge that is co-rotating with the disk. Due to the very different velocity dispersions (~ 20 km s-1 vs. 150 km s-1) , we are further able to perform a Lick index analysis on both components separately which indicates that the two stellar populations are clearly separated in (Mgb,) space. The velocities and dispersions of the faster component are very similar to those of the interstellar gas as measured from the [O iii] emission. Morphological evidence of active star formation in this component further suggests that NGC 7217 may be in the process of (re)growing a disk inside a more massive and higher dispersion stellar halo.

  1. A dwarf galaxy's transformation and a massive galaxy's edge: detailed modeling of the extended stream in NGC1097

    NASA Astrophysics Data System (ADS)

    Cristiano Amorisco, Nicola; Martinez-Delgado, David

    2015-08-01

    Low surface brightness tidal features around massive galaxies are the smoking gun of hierarchical galaxy formation. These debris are informative of: (i) the evolutionary struggles of the progenitor dwarf galaxies, transformed and partially destroyed by the tides; (ii) the formation history of the massive host, its halo populations and the structure of its dark matter halo. However, extracting reliable measurements of the progenitor’s initial mass, infall time, host halo mass and density profile has so far been difficult, as the parameter space is too wide to explore with N-body simulations.We use new deep imaging data of the extended, X shaped stream in NGC1097 [1,2] and a new dynamical technique to quantitatively reconstruct: (i) the density profile of the massive spiral host (inferred virial mass M200=1012.25±0.1 M⊙) ; and (ii) the dramatic evolution of the progenitor galaxy; by modeling its stream within a fully statistical framework. I will show that the current location of the remnant coincides with a nucleated dwarf Spheroidal, with a luminosity of ~3.3x106LV,⊙ [3], and a predicted total mass of M(<0.45±0.2 kpc)=107.8±0.6 M⊙. This is the result of a strong transformation: at its first interaction with the host, 4.4±0.4 Gyr and three pericentric passages ago, the progenitor was over two orders of magnitude more massive, with Mtot(3.2±0.7 kpc)=1010.4±0.2 M⊙. Its orbit has a pericenter of a few kpc, but reaches out to 150±12 kpc. In this range the stream’s morphology allows us to see the total density slope of the host bending and steepening towards large radii. For the first time in a single galaxy (rather than on stacked data), both central and outer slope are constrained by observations and can be compared to LCDM expectations [4]. Finally, I will discuss prospects of applying this technique to more known streams, to map the structure of a wider sample of galaxy haloes and unveil the evolutionary histories of more individual dwarf galaxies.Refs.[1] Arp, 1976, ApJ, 207[2] Higdon & Wallin, 2003, ApJ, 585[3] Galianni et al., 2010, A&A, 521[4] Diemer & Kravtsov, 2014, ApJ, 789

  2. Cosmic Evolution of Barred Spiral Galaxies in the COSMOS 2degree field

    NASA Astrophysics Data System (ADS)

    Sheth, K.; Schinnerer, E.; Mobasher, B.; Scoville, N. Z.; Menendez-Delmestre, K.; Gil de Paz, A.; Koda, J.; Capak, P.; COSMOS Team

    2004-12-01

    Challenging nearly a decade of observational results, several recent studies have suggested that the fraction of bars does not decline with redshift. The first of these studies (Sheth et al. 2003) pointed out that a measurement of the bar fraction at any epoch must take into account the bar length. With the improved pixel size of the ACS, surveys such as COSMOS, GOODS and GEMS have begun to adequately resolve bars. Our preliminary analysis with the COSMOS data, consistent with other recent studies (Elmegreen et al. 2004, Jogee et al. 2004), suggests that the bar fraction is constant with redshift. This is difficult to reconcile with earlier studies which concluded that bars have undergone two or more epochs of destruction and reformation. To better understand these different evolutionary scenarios we present preliminary results from an analysis of the 2-square degree COSMOS ACS field. With this unique data we compare the evolution of the bar properties (length, ellipticity) and the properties of the host galaxies to a well-studied local sample from 2MASS (Menendez-Delmestre et al. 2004) and GALEX (Gil de Paz et al. 2004).

  3. Galaxy Zoo: Are bars responsible for the feeding of active galactic nuclei at 0.2 < z < 1.0?

    NASA Astrophysics Data System (ADS)

    Cheung, Edmond; Trump, Jonathan R.; Athanassoula, E.; Bamford, Steven P.; Bell, Eric F.; Bosma, A.; Cardamone, Carolin N.; Casteels, Kevin R. V.; Faber, S. M.; Fang, Jerome J.; Fortson, Lucy F.; Kocevski, Dale D.; Koo, David C.; Laine, Seppo; Lintott, Chris; Masters, Karen L.; Melvin, Thomas; Nichol, Robert C