Science.gov

Sample records for barred olivine chondrules

  1. Barred olivine 'chondrules' in lunar spinel troctolite 62295

    NASA Technical Reports Server (NTRS)

    Roedder, E.; Weiblen, P. W.

    1977-01-01

    Several objects have been found in sections of lunar igneous spinel troctolite 62295 that resemble certain meteoritic barred olivine chondrules. Each consists of an apparently spherical single crystal of Fo90 olivine, approximately 0.6-0.8 mm in diameter, containing a set of approximately 30-40 subparallel stringers of An95 plagioclase, whereas the stringers in ordinary meteoritic chondrules consist of glass. The olivine of the 62295 chondrules is also more magnesian, and is radially zoned, having a relatively iron-rich core and rim and an iron-poor intermediate zone. Several possible origins are proposed: impact-generated melt globules solidified in flight, spherical phenocrysts, and meteoritic chondrules, but none of these seems adequate to explain the detailed observations.

  2. Implications for the evolution of chondrules from Agglomeratic olivine chondrules

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Prinz, M.

    1994-01-01

    There is considerable evidence that chondrules formed by the melting of solid materials and, by default, the early solar nebula is the preferred location for chondrule formation. Agglomeratic olivine (AO) chondrules supply perhaps the most intriguing, direct evidence for chondrule formation from agglomeration of solids. We review the characteristics of AO chondrules and discuss their implications for understanding chondrule precursors and chondrule evolution.

  3. The origin of ferrous zoning in Allende chondrule olivines

    NASA Astrophysics Data System (ADS)

    Peck, J. A.; Wood, J. A.

    1987-06-01

    Very similar major and minor element compositions are noted in the ferrous olivine occurring in chondrules at olivine grain boundaries, along cracks in olivine grains, interleaved with enstatite, and in the inner portions of exposed olivine grain surface rims; simultaneous formation by a single process is therefore suggested. The ferrous chondrule olivine probably formed by the reaction of chondrules with very hot nebular vapors over a period of several hours, followed by the condensation of residual metal vapors onto those olivine surfaces that were in direct contact with the gas as the system cooled. The ferrous chondrule olivine that occurs interleaved with enstatite in Allende does not have a composition identical to, and is not the precursor of, matrix olivine.

  4. Experimental Reproduction of Olivine rich Type-I Chondrules

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.

    2005-01-01

    Ordinary chondritic meteorites are an abundant type of stony meteorite characterized by the presence of chondrules. Chondrules are small spheres consisting of silicate, metal, and sulfide minerals that experienced melting in the nebula before incorporation into chondritic meteorite parent bodies. Therefore, chondrules record a variety of processes that occurred in the early solar nebula. Two common types of unequilibrated chondrules with porphyritic textures include FeO-poor (type I) and FeO-rich (type II) each subdivided into an A (SiO2-poor) and B (SiO2-rich) series. Type IA chondrules include those with high proportions of olivine phenocrysts (>80% olivine) and type IB chondrules include those with high proportions of pyroxene phenocrysts (<20% olivine). An intermediate composition, type IAB chondrules include those chondrules in which the proportion of olivine phenocrysts is between 20-80%. We conducted high-temperature laboratory experiments (melting at 1550 C) to produce type I chondrules from average unequilibrated ordinary chondrite (UOC) material mixed with small amounts of additional olivine. The experiments were conducted by adding forsteritic rich olivine (San Carlos olivine, Fo 91) to UOC material (GRO 95544) in a 30/70 ratio, respectively. Results of these high temperature experiments suggest that we have replicated type IA chondrule textures and compositions with dynamic crystallization experiments in which a heterogeneous mixture of UOC (GRO 95544) and olivine (San Carlos olivine) were melted at 1550 C for 1 hr. and cooled at 5-1000 C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment.

  5. Laboratory Experiments Bearing on the Origin and Evolution of Olivine-rich Chondrules

    SciTech Connect

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Ebel, Denton; Gaffney, Amy

    2011-06-24

    Evaporation rates of K2O, Na2O, and FeO from chondrule-like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine-rich Type IA and Type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule-like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the Type IIA and Type IA chondrules compared with what is found in the vacuum and one-bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule-like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK>2-10-4cm2/s at 1650-C) that diffusion-limited evaporation cannot explain why, despite their having been molten, the Type IIA and Type IA chondrules show no systematic potassium isotopic fractionation.

  6. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    NASA Technical Reports Server (NTRS)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  7. The influence of bulk composition and dynamic melting conditions on olivine chondrule textures

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1991-01-01

    The effects of the bulk composition and the dynamic melting conditions on the texture of olivine chondrules were investigated in a series of heating experiments. It is shown that variations in the olivine chondrule textures can be produced by varying the FeO/(FeO + MgO) ratio between the average Type IA and Type II chondrule compositions, could affect the texture of a chondrule at a constant initial melting temperature and heating time. A range of the heating times and the masses of precursor spheres caused variations in the degree of melting and in chondrule textures. Chondrule textures were distributed on a graph of initial temperatures vs. FeO/(FeO + MgO) ratios as bands parallel to the olivine disappearance curve. This graph could be used to predict chondrule textures from Fe/(FeO + MgO) ratios at specific initial melting temperatures.

  8. Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines

    NASA Astrophysics Data System (ADS)

    Uehara, Minoru; Nakamura, Norihiro

    2006-10-01

    Dynamic crystallization experiments are conducted under a magnetic field to determine both magnetic and mineralogical properties of chondrules. The experiment reproduced synthetic dusty olivine samples that were formed by a high temperature reduction of an initially fayalitic olivine. Backscattered-electron microscopy observations confirmed that synthetic dusty olivine contains abundant fine, submicron-sized Ni-poor Fe inclusions in the cores of MgO-rich olivine grains, similar to that in natural chondrules. Alternating field demagnetization experiments of dusty olivine samples indicate mean destructive fields of up to 80 mT, suggesting the submicron-sized Fe inclusions are a carrier of stable remanence. In natural chondrules, fine Fe inclusions in the dusty olivine may have been armored against chemical alteration by surrounding host olivine crystals. Since the fine Fe inclusions were probably heated above the Curie temperature during the last chondrule forming events, the fine Fe inclusions in dusty olivine can acquire thermal remanent magnetization during the chondrule formation event. Theoretical time-temperature relation of such fine-grained Fe (kamacite) grains suggested that a paleomagnetic data observed above 490 °C in thermal demagnetization experiments of dusty olivines is reliable despite the low-grade metamorphism of unequilibrated ordinary chondrites (e.g., LL3.0). Therefore, the presence of fine Fe inclusions in dusty olivine in unequilibrated ordinary chondrites constrains that such dusty olivine in chondrules is a good candidate as an un-altered and stable magnetic recorder of the early solar magnetic field.

  9. Dynamic crystallization of chondrule melts of porphyritic olivine composition - Textures experimental and natural

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    1989-01-01

    A full range of textures characteristic for porphyritic olivine chondrules was reproduced in melts of the same composition, crystallized under dynamic crystallization conditions (under controlled cooling), as determined by electron microprobe analyses. The primary differences between the natural and experimentally produced porphyritic olivine textures were the nature and the extent of matrix crystallization, which reflected the subsolidus or low-temperature cooling history. The most confining limits on the chondrule-forming process were found to be the presence of crystalline precursors for the chondrule melts and the upper temperature limit of melting.

  10. Porphyritic versus nonporphyritic chondrules

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Weisberg, M. K.; Prinz, M.

    1994-01-01

    Chondrules can be divided into two broad textural types: porphyritic and nonporphyritic. Porphyritic chondrules are the most common in most chondrites and range texturally from olivine-rich (PO) to intermediate (POP) to pyroxene-rich (PP). Barred olivine (BO) chondrules can be considered a special case of porphyritic. Compositionally they can be divided into type I and II. Nonporphyritic are less abundant than porphyritic chondrules in most chondrites -- they make up approximately 125% of the chondrules in ordinary chondrites -- and range texturally from glassy (g) to cryptocrystalline (C) to radial pyroxene (RP). Compositionally nonporphyritic differ from porphyritic chondrules and within this group they are very similar to one another. Here we (1) review and contrast the characteristics of the nonporphyritic and porphyritic chondrules; (2) specify some of the problems associated with the origins of the textural and compositional differences between them; and (3) suggest a possible scenario for their origin, which may have important implications for the evolution of chondrules.

  11. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Prasad, M. Shyam; Nagashima, K.; Jones, R. H.

    2015-09-01

    Most olivine relict grains in cosmic spherules selected for the present study are pristine and have not been disturbed during their atmospheric entry, thereby preserving their chemical, mineralogical and isotopic compositions. In order to understand the origin of the particles, oxygen isotope compositions of relict olivine grains in twelve cosmic spherules collected from deep sea sediments of the Indian Ocean were studied using secondary ion mass spectrometry. Most of the data lie close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line, with Δ17O ranging from -5‰ to 0‰. The data overlap oxygen isotopic compositions of chondrules from carbonaceous chondrites such as CV, CK, CR and CM, which suggests that chondrules from carbonaceous chondrites are the source of relict grains in cosmic spherules. Chemical compositions of olivine in cosmic spherules are also very similar to chondrule olivine from carbonaceous chondrites. Several olivine relict grains in three cosmic spherules are 16O-rich (Δ17O -21.9‰ to -18.7‰), similar to oxygen isotopic compositions observed in calcium aluminum rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine grains from two cosmic spherules have δ18O values >+20‰, which could be interpreted as mixing with stratospheric oxygen during atmospheric entry.

  12. Olivine-rich rims surrounding chondrules in the Mokoia CV3 carbonaceous chondrite: Further evidence for parent-body processes

    NASA Astrophysics Data System (ADS)

    Tomeoka, Kazushige; Ohnishi, Ichiro

    2014-07-01

    Fine-grained rims surrounding chondrules and inclusions in the Mokoia CV3 carbonaceous chondrite can be divided into phyllosilicate-rich and olivine-rich types. We present a petrographic and electron microscopic study of the olivine-rich rims and their host objects (referred to as chondrules/olivine-rich rims). The olivine-rich rims consist mainly of Fe-rich olivine and very minor phyllosilicate (saponite). Their host chondrules contain minor saponite and phlogopite, which resulted from aqueous alteration of anhydrous silicates. Mineralogical and compositional characteristics of the chondrules/olivine-rich rims suggest that they experienced mild thermal metamorphic effects. The rims commonly contain veins of coarse-grained Fe-rich olivine, magnetite, and Fe-(Ni) sulfides. The chondrules show abundant evidence of alteration along their peripheries, and the alteration textures suggest a mechanism for rim formation by replacement of the chondrules. Initially, enstatite and opaque nodules preferentially reacted to form coarse, platy, Fe-rich olivine crystals, which were subsequently divided into finer grains. Forsterite was also replaced by Fe-rich olivine. As the alteration advanced, these Fe-rich olivines were disaggregated, mixed with simultaneously produced saponite, and formed rims. In contrast, the surrounding matrix shows no evidence of such alteration and metamorphism. These observations indicate that the chondrules/olivine-rich rims did not experience these secondary processes in their present setting. The results suggest that the chondrules/olivine-rich rims experienced extensive replacement reactions in an environment in which aqueous fluids existed but only in minor amounts. They have probably also undergone simultaneous and/or subsequent mild thermal metamorphism. We suggest that the chondrules/olivine-rich rims are actually clasts transported from a relatively dry region in the parent body that was different from the region where Mokoia was finally

  13. Experimental Replication of Relict "Dusty" Olivine in Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Le, L.

    2002-01-01

    Introduction: Relict "dusty" olivine is considered to be a remnants of previous chondrule forming events based on petrographic and chemical evidence. Dynamic crystallization experiments confirm that dusty olivine can be produced by reduction of FeO-rich olivine in Unequilibrated Ordinary Chondrite (UOC) material. The results of these experiments compliment those of who also produced dusty olivine, but from synthetic starting materials. Techniques: Dynamic crystallization experiments were conducted in which UOC material was reduced in presence of graphite. Starting material was coarsely ground GR095554 or WSG95300 that contained olivine of Fo 65-98. Approximately 75 mg. of UOC material was placed in a graphite crucible and sealed in an evacuated silica tube. The tube was suspended in a gas-mixing furnace operated at 1 log unit below the IW buffer. The experiments were as brief as 1.5 hrs up to 121 hrs. Results: Dusty olivine was produced readily in experiments melted at 1400 C for I hr. and cooled between 5 and 100 C/hr or melted at 1300-1400 C for 24 hours. Fe-rich olivine (dusty olivine precursors) that have been partially reduced were common in the experiments melted at 1400 C and cooled at 1000 C/hr or melted at 1200 C for 24 hrs. Relict olivine is absent in experiments melted at 1400 for 24 hrs, melted above 1400 C, or cooled more slowly than 10 C/hr. Relict olivine in the experiments has minimum Fo value of 83 . Thus even in the shortest experiments the most Fe-rich olivine has been altered significantly. The precursor olivine disappears in a few to many hours depending on temperature. The experiments show Fe-rich olivine in all stages of transition to the new dusty form. The olivine is reduced to form dusty olivine in a matter of a few hours at temperatures less than 1400 C and in minutes at higher temperatures. The reduction appears to proceed from the rim of the crystal inward with time. The reduction appears initially rectilinear as if controlled by

  14. Evidence for the three-stage cooling history of olivine-porphyritic fluid droplet chondrules

    NASA Astrophysics Data System (ADS)

    Planner, H. N.; Keil, K.

    1982-03-01

    A three-stage model for the cooling of olivine-porphyritic fluid droplet chondrules found in ordinary chondrites is proposed, in light of an experimental examination of three haplochondritic melts to determine thermal parameters in a pre-accretionary chondrule environment. The model encompasses: (1) initial continuous cooling from at least liquidus temperatures, at 300-4000 C/hour, to about 1300 C, over approximately 5-60 min; (2) interruption of the initial cooling by a short-duration isothermal event at about 1300 C; and (3) quenching. This thermal model, in which the entire history of fluid droplet chondrules is only a brief process in the early history of the solar system, suggests a specific and restricted physical origin for chondrules which is not likely to have been achieved by such repetitive, small-scale events as planetary surface impact splattering or volcanism. A single, large-scale event is postulated.

  15. Forsterite and Olivine in Sahara-97210 (LL3.2) and Chainpur (LL3.4) Chondrules: Compositional Evolution and the Influence of Melting

    NASA Technical Reports Server (NTRS)

    Ruzicka, A.; Floss, C.

    2004-01-01

    It is generally accepted that chondrules contain relict grains that did not crystallize in situ, and that forsterite is one type of relict grain which is a likely precursor for chondrules. Chemically and morphologically similar forsterite is also found as "isolated grains", especially in carbonaceous chondrites. Using SIMS, we analyzed forsterite, ferrous overgrowths around forsterite, and coexisting normal olivine in 5 chondrules and 2 isolated grains in the Sahara-97210 ('Sahara") LL3.2 chondrite. We earlier used the same methods to study olivine in 3 Chainpur chondrules that contain relict forsterite. Our new data for Sahara provide additional insight into the processes affecting chondrules and their precursors.

  16. Condensation of Chondrules: Conditions for "Fiery Rain"

    NASA Astrophysics Data System (ADS)

    Grossman, L.; Fedkin, A. V.

    2012-09-01

    Equilibrium calculations at total pressures ≥1 bar in systems with CI dust enrichments of 1000 relative to solar composition, yield condensate assemblages whose olivine and coexisting silicate liquid have compositions found in primitive chondrules.

  17. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules - Equilibrium values and kinetic effects

    NASA Technical Reports Server (NTRS)

    Kennedy, A. K.; Lofgren, G. E.; Wasserburg, G. J.

    1993-01-01

    Mineral/melt partition coefficients were measured using an ion microprobe for 32 elements in orthopyroxene and olivine in equilibrium and dynamic crystallization experiments on compositions corresponding to chondrules. The mineral/melt partition coefficients calculated from the measured concentrations for both olivine and orthopyroxene show very little change between equilibrium experiments and dynamic experiments with cooling rates of up to 100 C/h. The results provide a self-consistent set of partition coefficients that can be used in thermodynamic models of equilibrium and kinetic partitioning between olivine, orthopyroxene, and melt. These data can be used in models of partial melting and crystal fractionation in olivine- and orthopyroxene-rich systems, such as chondrules. The results may also be applicable to mantle peridotites, komatiitic and picritic lavas, and ultramafic intrusions.

  18. Amoeboid olivine aggregates with low-Ca pyroxenes: a genetic link between refractory inclusions and chondrules?

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Petaev, Michail I.; Yurimoto, Hisayoshi

    2004-04-01

    Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ 17O ˜ -20‰) and consist of forsterite (Fa <2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk <15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ˜10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules. Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg

  19. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  20. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins

    PubMed Central

    Miyahara, Masaaki; El Goresy, Ahmed; Ohtani, Eiji; Nagase, Toshiro; Nishijima, Masahiko; Vashaei, Zahra; Ferroir, Tristan; Gillet, Philippe; Dubrovinsky, Leonid; Simionovici, Alexandre

    2008-01-01

    Peace River is one of the few shocked members of the L-chondrites clan that contains both high-pressure polymorphs of olivine, ringwoodite and wadsleyite, in diverse textures and settings in fragments entrained in shock-melt veins. Among these settings are complete olivine porphyritic chondrules. We encountered few squeezed and flattened olivine porphyritic chondrules entrained in shock-melt veins of this meteorite with novel textures and composition. The former chemically unzoned (Fa24–26) olivine porphyritic crystals are heavily flattened and display a concentric intergrowth with Mg-rich wadsleyite of a very narrow compositional range (Fa6–Fa10) in the core. Wadsleyite core is surrounded by a Mg-poor and chemically stark zoned ringwoodite (Fa28–Fa38) belt. The wadsleyite–ringwoodite interface denotes a compositional gap of up to 32 mol % fayalite. A transmission electron microscopy study of focused ion beam slices in both regions indicates that the wadsleyite core and ringwoodite belt consist of granoblastic-like intergrowth of polygonal crystallites of both ringwoodite and wadsleyite, with wadsleyite crystallites dominating in the core and ringwoodite crystallites dominating in the belt. Texture and compositions of both high-pressure polymorphs are strongly suggestive of formation by a fractional crystallization of the olivine melt of a narrow composition (Fa24–26), starting with Mg-rich wadsleyite followed by the Mg-poor ringwoodite from a shock-induced melt of olivine composition (Fa24–26). Our findings could erase the possibility of the resulting unrealistic time scales of the high-pressure regime reported recently from other shocked L-6 chondrites. PMID:18562280

  1. Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation

    NASA Astrophysics Data System (ADS)

    Gooding, J. L.; Keil, K.

    1981-03-01

    A petrographic survey of > 1600 chondrules in thin-sections of 12 different mildly to highly unequilibrated H-, L-, and Li-chondrites, as well as morphological and textural study of 141 whole chondrules separated from 11 of the same chondrites, was used to determine the relative abundances of definable chondrule primary textural types. Percentage abundances of various chondrule types are remarkably similar in all chondrites studied and are ˜47-52 porphyritic olivine-pyroxene (POP), 15-27 porphyritic olivine (P 0), 9-11 porphyritic pyroxene (PP), 34 barred olivine (BO), 7-9 radial pyroxene (RP), 2-5 granular olivine-pyroxene (GOP), 3-5 cryptocrystalline (C), and ≥ 1 metallic (M). Neither chondrule size nor shape is strongly correlated with textural type. Compound and cratered chondrules, which are interpreted as products of collisions between plastic chondrules, comprise ˜2-28% of non-porphyritic (RP, GOP, C) but only ˜2-9% of porphyritic (POP, PO, PP, BO) chondrules, leading to a model-dependent implication that non-porphyritic chondrules evolved at number densities (chondrules per unit volume of space) which were 102 to 104 times greater than those which prevailed during porphyritic chondrule formation (total range of ˜1 to ˜106 m-3. Distinctive "rims" of fine-grained sulfides and/or silicates occur on both porphyritic and non-porphyritic types and appear to post-date chondrule formation. Apparently, either the same process(es) contributed chondrules to all unequilibrated ordinary chondrites or, if genetically different, the various chondrule types were well mixed before incorporation into chondrites. Melting of pre-existing materials is the mechanism favored for chondrule formation.

  2. A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine

    SciTech Connect

    Miura, H.; Yamamoto, T.

    2014-03-01

    Compositional zoning in chondrule phenocrysts records the crystallization environments in the early solar nebula. We modeled the growth of olivine phenocrysts from a silicate melt and proposed a new fractional crystallization model that provides a relation between the zoning profile and the cooling rate. In our model, we took elemental partitioning at a growing solid-liquid interface and time-dependent solute diffusion in the liquid into consideration. We assumed a local equilibrium condition, namely, that the compositions at the interface are equal to the equilibrium ones at a given temperature. We carried out numerical simulations of the fractional crystallization in one-dimensional planar geometry. The simulations revealed that under a constant cooling rate the growth velocity increases exponentially with time and a linear zoning profile forms in the solid as a result. We derived analytic formulae of the zoning profile, which reproduced the numerical results for wide ranges of crystallization conditions. The formulae provide a useful tool to estimate the cooling rate from the compositional zoning. Applying the formulae to low-FeO relict olivine grains in type II porphyritic chondrules observed by Wasson and Rubin, we estimate the cooling rate to be ∼200-2000 K s{sup –1}, which is greater than that expected from furnace-based experiments by orders of magnitude. Appropriate solar nebula environments for such rapid cooling conditions are discussed.

  3. Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi; Wasson, John T.

    2002-12-01

    We describe a phenocryst in a CO-chondrite type-II chondrule that we infer to have formed by melting an amoeboid olivine aggregate (AOA). This magnesian olivine phenocryst has an extremely 16O-rich composition Δ 17O (=δ 17O - 0.52 · δ 18O) = -23‰. It is present in one of the most pristine carbonaceous chondrites, the CO3.0 chondrite Yamato 81020. The bulk of the chondrule has a very different Δ 17O of -1‰, thus the Δ 17O range within this single chondrule is 22‰, the largest range encountered in a chondrule. We interpret the O isotopic and Fe-Mg distributions to indicate that a fine-grained AOA assemblage was incompletely melted during the flash melting that formed the chondrule. Some Fe-Mg exchange but negligible O-isotopic exchange occurred between its core and the remainder of the chondrule. A diffusional model to account for the observed Fe-Mg and O-isotopic exchange yields a cooling rate of 10 5 to 10 6 K hr -1. This estimate is much higher than the cooling rates of 10 1 to 10 3 K hr -1 inferred from furnace simulations of type-II chondrule textures (e.g. Lofgren, 1996); however, our cooling-rate applies to higher temperatures (near 1900 K) than are modeled by the crystal-growth based cooling rates. We observed a low 26Al/ 27Al initial ratio ((4.6 ± 3.0) · 10 -6) in the chondrule mesostasis, a value similar to those in ordinary chondrites (Kita et al., 2000). If the 26Al/ 27Al system is a good chronometer, then chondrule I formed about 2 Ma after the formation of refractory inclusions.

  4. The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3)

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Alard, Olivier; Gounelle, Matthieu

    2015-09-01

    We report in situ LA-ICP-MS trace element analyses of silicate phases in olivine-bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance of opaque nodules found outside them in EH chondrites. In two chondrules, olivine and enstatite exhibit negatively sloped REE patterns, which may be an extreme manifestation of a general phenomenon (possibly linked to near-liquidus partitioning) underlying the overabundance of light REE observed in most chondrule silicates relative to equilibrium predictions. The silicate phases in one of these two chondrules show complementary Eu, Yb, and Sm anomalies providing direct evidence for the postulated occurrence of the divalent state for these elements at some stage in the formation reservoir of enstatite chondrites. Our work supports the idea that the peculiarities of enstatite chondrites may not require a condensation sequence at high C/O ratios as has long been believed.

  5. Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Hellebrand, Eric

    2014-05-01

    To better understand the environment of chondrule formation and constrain the O-isotope composition of the ambient gas in the Renazzo-like carbonaceous (CR) chondrite chondrule-forming region, we studied the mineralogy, petrology, and in situ O-isotope compositions of olivine in 11 barred olivine (BO) chondrules and pyroxene and silica in three type I porphyritic chondrules from the CR chondrites Gao-Guenie (b), Graves Nunataks (GRA) 95229, Pecora Escarpment (PCA) 91082, and Shişr 033. BO chondrules experienced a higher degree of melting than porphyritic chondrules, and therefore, it has been hypothesized that they more accurately recorded the O-isotope composition of the gas in chondrule-forming regions. We studied the O-isotope composition of silica as it has been hypothesized to have formed via direct condensation from the gas.

  6. Using the Fe/Mn Ratio of FeO-Rich Olivine In WILD 2, Chondrite Matrix, and Type IIA Chondrules to Disentangle Their Histories

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Le, L.; Zolensky, M. E.

    2012-01-01

    The Stardust Mission returned a large abundance of impactors from Comet 81P/Wild2 in the 5-30 m range. The preliminary examination of just a limited number of these particles showed that the collection captured abundant crystalline grains with a diverse mineralogy [1,2]. Many of these grains resemble those found in chondrite matrix and even contain fragments of chondrules and CAIs [1-3]. In particular, the olivine found in Wild 2 exhibits a wide compositional range (Fa0-97) with minor element abundances similar to the matrix olivine found in many carbonaceous chondrites (CCs) and unequilibrated ordinary chondrites (UOCs). Despite the wide distribution of Fa content, the olivine found in the matrices of CCs, UOCs, and Wild 2 can be roughly lumped into two types based solely on fayalite content. In fact, in some cases, a distinct bi-modal distribution is observed.

  7. RELICT and other anomalous grains in chondrules - Implications for chondrule formation

    NASA Astrophysics Data System (ADS)

    Kracher, A.; Scott, E. R. D.; Keil, K.

    1984-02-01

    Relict olivine and pyroxene grains have been identified in chondrules from ordinary and carbonaceous chondrites that probably did not crystallize in situ. Some of these olivines are clear, but others contain fine-grained Fe, Ni ('dusty olivines') and resemble previously described occurrences in ordinary chondrites. There are also chondrules in which all olivine is dusty. It is concluded that: (1) not all relict olivines are dusty, (2) not all dusty olivines crystallized outside the chondrule in which they occur, and (3) some dusty olivines were produced during chondrule formation by a reduction process that affected the whole chondrule. The occurrence of dusty olivines and relict pyroxenes and olivines in chondrules from carbonaceous as well as ordinary chondrites supports the argument that chondrules from all chondrites had similar origins and histories. It is proposed that chondrules and mineral fragments were transported across f(O2) gradients in the solar nebula while they were hot, or were reheated in an environment different from the one in which they formed. Partially molten chondrules sometimes incorporated mineral grains or chondrules with different redox states, producing compound chondrules and chondrules containing anomalous grains. Dusty olivines may also have formed when hot chondrules were transported to regions of lower oxygen fugacity.

  8. Relict grains in chondrules: Evidence for chondrule recycling

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1994-01-01

    The presence of relict grains in chondrules, which offers some insight into the degree to which chondrule material was recycled in the chondrule-forming region, is discussed in this report. Relics are grains that clearly did not crystallize in situ in the host chondrule. They represent coarse-grained precursor material that did not melt during chondrule formation, and provide the only tangible record of chondrule precursor grains. Relics are commonly identified by a large difference in size, textural differences, and/or significant compositional differences compared with normal grains in the host chondrule. Two important types of relics are: (1) 'dusty,' metal-bearing grains of olivine and pyroxene; and (2) forsterite (Mg-rich olivine) grains present in FeO-rich chondrules.

  9. The Relationship Between Metal and Silicates in Type I Chondrules

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Zanda, B.

    1992-07-01

    There is wide agreement that chondrules were formed by melting of pre-existing minerals, but there is still controversy over how, when, and from exactly what they were formed. Much work on chondrules has emphasized magnesian granular/microporphyritic type I chondrules, but metal-rich type I chondrules are even more abundant in carbonaceous chondrites (McSween, 1977). The observation that metal is homogeneous within one chondrule but differs from chondrule to chondrule (Zanda et al., 1991) suggests some systematic relationship may exist between metal and silicates. It is the purpose of this paper to investigate those relationships for Renazzo and Semarkona. We observe a strong correlation between the silicate texture of chondrules, which falls in a fine-coarse granular-porphyritic-barred sequence related to degree of melting, and the nature of the metal. Where olivine grains are small and/or closely packed, metal occurs as tiny spherules. Where grain size and melt channels are larger, metal forms coalescing blebs or chains. With distinctly microporphyritic textures metal occurs mostly near the periphery of the chondrule and with truly porphyritic and barred chondrules it forms a rim or crown around the chondrule. Similar metal coalescence and expulsion textures have been observed for Bishunpur chondrules (Rambaldi and Wasson, 1981) and geochemical evidence shows that metal rims on Semarkona chondrules were derived from their interiors (Grossman and Wasson, 1987). There appears to be a continuous gradation between metal-rich and ordinary type I chondrules as a function of degree of melting, which suggests that many type I chondrules passed through a stage of being metal-rich during formation. If chondrules were manufactured from homogeneous interstellar dust, there is a very short time period for metal-silicate fractionation. If chondrules were formed from condensate aggregates, this constraint can be relaxed as condensates aggregated over different temperature

  10. Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Rubin, Alan E.

    1993-01-01

    Chromium-rich chondrules constitute less than 0.1 percent of all ordinary chondrite (OC) chondrules and comprise three groups: chromian-spinel chondrules, chromian-spinel inclusions, and chromite-rich mafic silicate (CRMS) chondrules. Chromian-spinel chondrules (typically 100-300 microns in apparent diameter) exhibit granular, porphyritic and unusual textures and occur mainly in H chondrites. Their morphologies are distinct from the irregularly shaped chromian-spinel inclusions of similar mineralogy. Chromian-spinel chondrules and inclusions consist of grains of chromian-spinel embedded in plagioclase (Pl) or mesostasis of Pl composition. Many also contain accessory ilmenite (Ilm), high-Ca pyroxene (Px), merrillite (Mer), and rare olivine (Ol); some exhibit concentric mineral and chemical zoning. CRMS chondrules (300-1100 microns in apparent diameter) are generally larger than chromian-spinel chondrules and occur in all metamorphosed OC groups. Most CRMS chondrules are nearly spherical although a few are ellipsoidal with a/b aspect ratios ranging up to 1.7. Textures include cryptocrystalline, granular, radial, barred, and porphyritic varieties; some contain apparently relict grains. The chondrules consist of chromite (Chr), Ol and Pl, along with accessory Mer, troilite (Tr), metallic Fe-Ni (Met), Px and Ilm. The mesostasis in CRMS chondrules is nearly opaque in transmitted light; thus, they can be easily recognized in the optical microscope. Based on the similarity of mineralogy and chemistry between CRMS chondrules of different textures (opaque chromite-rich mesostasis, skeletal morphology of Ol grains, similar bulk compositions) we suggest that these chondrules form a genetically related population.

  11. Chondrule synthesis using fine-grained precursors

    NASA Astrophysics Data System (ADS)

    Fox, George Ernest

    2002-11-01

    High temperature petrologic experiments have been used in order to reproduce the textures of chondrules, which are rounded to irregularly shaped ferromagnesion silicate objects. Such experiments shed light on the conditions that existed and mechanisms that operated in the early solar nebula, as natural chondrules are believed to have formed there due to some type of heating event. The exact nature of this heating event and the conditions that existed at the time of the formation of the solar nebula are not completely understood. Chondrules, which are believed to be composed of some of the oldest remnants of the solar system, nebular condensates, are the basic components of chondrites. Chondrites comprise ˜82% of all meteorites. Despite years of petrographic examination and experimental petrology, the thermal history of chondrules still remains uncertain. Natural chondrules exhibit a variety of different textures ranging from glassy, barred, porphyritic, microporphyritc to protoporphyritc. Petrologic experiments in a muffle tube furnace under controlled fugacity conditions using type IAB bulk composition analogs have been successful in reproducing each of these textures in the laboratory. Charges are prepared, heated, water quenched, mounted, polished and photographed using back-scattered electron imagery. Subsequent analysis provides numerical data, which can then be used to calculate the nominal grain size of the olivine crystals in each charge. Porphyritic chondrules are the most abundant in nature by far and any model for chondrule formation must be capable of producing porphyritic textures. To reproduce this texture in the laboratory, however, seems to require a very narrow range of maximum temperature and soak time parameters even when using a variety of different types of fine-grained and agglomerated olivine precursor material. Experiments undertaken in this study bring into question some of the basic assumptions of various classical models of chondrule

  12. Timing of Formation of a Wassonite-bearing Chondrule

    NASA Technical Reports Server (NTRS)

    Needham, A. W.; Nakamura-Messenger, K.; Rubin, A. E.; Choi, B.-G.; Messenger, S.

    2014-01-01

    Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events.

  13. The Vaguries of Pyroxene Nucleation and the Resulting Chondrule Textures

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2004-01-01

    Pyroxene is a major phase in chondrules, but often follows olivine in the crystallization sequence and depending on the melting temperature and time may not nucleate readily upon cooling. Dynamic crystallization experiments based on total or near total melting were used to study PO (porphyritic olivine) and PP (Porphyritic pyroxene) compositions as defined by. The experiments showed that pyroxene nucleated only at subliquidus temperatures in the PP melts and rarely in the PO melts. Porphyritic chondrules with phenocrysts of both olivine and pyroxene (POP chondrules) were not easily produced in the experiments. POP chondrules are common and it is important for deciphering their formation that we understand pyroxene nucleation properties of chondrule melts.

  14. The conditions of chondrule formation, Part II: Open system

    NASA Astrophysics Data System (ADS)

    Friend, Pia; Hezel, Dominik C.; Mucerschi, Daniel

    2016-01-01

    We studied the texture of 256 chondrules in thin sections of 16 different carbonaceous (CV, CR, CO, CM, CH) and Rumuruti chondrites. In a conservative count ∼75% of all chondrules are mineralogically zoned, i.e. these chondrules have an olivine core, surrounded by a low-Ca pyroxene rim. A realistic estimate pushes the fraction of zoned chondrules to >90% of all chondrules. Mineralogically zoned chondrules are the dominant and typical chondrule type in carbonaceous and Rumuruti chondrites. The formation of the mineralogical zonation represents a fundamentally important process of chondrule formation. The classic typification of chondrules into PO, POP and PP might in fact represent different sections through mineralogically zoned chondrules. On average, the low-Ca pyroxene rims occupy 30 vol.% of the entire chondrule. The low-Ca pyroxene most probably formed by reaction of an olivine rich chondrule with SiO from the surrounding gas. This reaction adds 3-15 wt.% of material, mainly SiO2, to the chondrule. Chondrules were open systems and interacted substantially with the surrounding gas. This is in agreement with many previous studies on chondrule formation. This open system behaviour and the exchange of material with the surrounding gas can explain bulk chondrule compositional variations in a single meteorite and supports the findings from complementarity that chondrules and matrix formed from the same chemical reservoir.

  15. Refractory precursor components in an Allende ferromagnesian chondrule

    NASA Technical Reports Server (NTRS)

    Misawa, Keiji; Fujita, Takashi; Kitamura, Masao; Nakamura, Noboru

    1993-01-01

    Chemical and petrological studies of chondrules revealed that they were formed through melting of pre-existing solid precursor materials, and that one of the refractory lithophile precursors was a high temperature condensate from the nebular gas and related to Ca, Al-rich inclusions (CAIs). Sheng et al. found relict spinel grains with isotopically fractionated Mg in plagioclase-olivine inclusions from CV chondrites and suggested that the major fractionation processes were common to CAIs and chondrules. We have determined the Mg isotopic compositon of five barred olivine chondrules and one coarse-grained rim from the Allende (CV3) meteorite. A reproducibility of instrumental isotope fractionation is plus or minus 2 per thousand per amu. The precision of the Mg-26/Mg-24 data after normalization for mass fractionation can be as good as 0.5 per thousand (2 sigma(mean)). The Mg analytical results are given and indicate that delta Mg-25/Mg-24 and sigma Mg-26 of the chondrules are normal within errors.

  16. Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar

    NASA Astrophysics Data System (ADS)

    Berndt, Michael E.; Allen, Douglas E.; Seyfried, William E., Jr.

    1996-04-01

    CO2 reduction processes occurring during experimental serpentinization of olivine at 300 °C and 500 bar confirm that ultramafic rocks can play an important role in the generation of abiogenic hydrocarbon gas. Data reveal that conversion of Fe(II) in olivine to Fe(III) in magnetite during serpentinization leads to production of H2 and conversion of dissolved CO2 to reduced-C species including methane, ethane, propane, and an amorphous carbonaceous phase. Hydrocarbon gases generated in the process fit a Schulz-Flory distribution consistent with catalysis by mineral reactants or products. Magnetite is inferred to be the catalyst for methanization during serpentinization, because it has been previously shown to accelerate Fischer-Tropsch synthesis of methane in industrial applications involving mixtures of H2 and CO2. The carbonaceous phase was predominantly aliphatic, but had a significant aromatic component. Although this phase should ultimately be converted to hydrocarbon gases and graphite, if full thermodynamic equilibrium were established, its formation in these experiments indicates that the pathway for reduction of CO2 during serpentinization processes is complex and involves a series of metastable intermediates.

  17. Retention of sodium during chondrule melting

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.

    1991-04-01

    Using published data, the differences in Na concentrations in different groups of porphyritic olivine chondrules are analyzed. The results show that Na was incorporated into type II chondrule precursors as albite and was not significantly lost during melting. Type I chondrules, which contain very low concentrations of Na, were also not depleted in Na during melting, as indicated by the lack of correlation between the Na/Al ratios and the liquidus temperatures in type I chondrules. It is concluded that the difference in Na concentration is caused by the abundance of precursor albite in type II chondrules, rather than the loss of Na from the melt.

  18. Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Mcsween, H. Y., Jr.

    1978-01-01

    In some cases the mechanical competence of chondrules in carbonaceous chondrites has been reduced by alteration of their mesostasis glass to friable phyllosilicate, providing a mechanism by which euhedral olivines can be separated from chondrules. Morphological features of isolate olivine grains found in carbonaceous chondrites are similar to those of olivine phenocrysts in chondrules. These observations suggest that the isolated olivine grains formed in chondrules, by crystallization from a liquid, rather than by condensation from a vapor.

  19. Congruent Melting Kinetics: Constraints on Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Greenwood, James P.; Hess, Paul C.

    1995-01-01

    The processes and mechanisms of melting and their applications to chondrule formation are discussed A model for the kinetics of congruent melting is developed and used to place constraints on the duration and maximum temperature experienced by the interiors of relict-bearing chondrules. Specifically, chondrules containing relict forsteritic olivine or enstatitic pyroxene cannot have been heated in excess of 1901 C or 1577 C, respectively, for more than a few seconds.

  20. Chondrule formation, metamorphism, brecciation, an important new primary chondrule group, and the classification of chondrules

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G.; Shaoxiong, Huang; Benoit, Paul H.

    1995-01-01

    The recently proposed compositional classification scheme for meteoritic chondrules divides the chondrules into groups depending on the composition of their two major phases, olivine (or pyroxene) and the mesostasis, both of which are genetically important. The scheme is here applied to discussions of three topics: the petrographic classification of Roosevelt County 075 (the least-metamorphosed H chondrite known), brecciation (an extremely important and ubiquitous process probably experienced by greater than 40% of all unequilibrated ordinary chondrites), and the group A5 chondrules in the least metamorphosed ordinary chondrites which have many similarities to chondrules in the highly metamorphosed 'equilibrated' chondrites. Since composition provides insights into both primary formation properties of the chondruies and the effects of metamorphism on the entire assemblage it is possible to determine the petrographic type of RC075 as 3.1 with unique certainty. Similarly, the near scheme can be applied to individual chondrules without knowledge of the petrographic type of the host chondrite, which makes it especially suitable for studying breccias. Finally, the new scheme has revealed the existence of chondrules not identified by previous techniques and which appear to be extremely important. Like group A1 and A2 chondrules (but unlike group B1 chondrules) the primitive group A5 chondruies did not supercool during formation, but unlike group A1 and A2 chondrules (and like group B1 chondrules) they did not suffer volatile loss and reduction during formation. It is concluded that the compositional classification scheme provides important new insights into the formation and history of chondrules and chondrites which would be overlooked by previous schemes.

  1. Crystal-bearing lunar spherules: Impact-melting of the Moon's crust and implications for the origin of meteoritic chondrules

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Snyder, Gregory A.; Taylor, Lawrence A.

    2000-01-01

    Crystal-bearing lunar spherules (CLSs) in lunar breccia (14313, 14315, 14318), soil (68001, 24105), and impact-melt-rock (62295) samples can be classified into two types: feldspathic and olivine-rich. Feldspathic CLSs contain equant, tabular, or acicular plagioclase grains set in glass or a pyroxene-olivine mesostasis; the less common olivine-rich CLSs contain euhedral or skeletal olivine set in glass, or possess a barred-olivine texture. Bulk-chemical and mineral-chemical data strongly suggest that feldspathic CLSs formed by impact-melting of mixtures of ferroan anorthosite and Mg-suite rocks that compose the feldspathic crust of the Moon. It is probable that olivine-rich CLSs also formed by impact-melting, but some appear to have been derived from distinctively magnesian lunar materials, atypical of the Moon's crust. Some CLSs contain reversely-zoned "relict" plagioclase grains that were not entirely melted during CLS formation, thin (?5 ?m thick) rims of troilite or phosphate, and chemical gradients in glassy mesostases attributed to metasomatism in a volatile-rich (Na-K-P-rich) environment. CLSs were rimmed and metasomatized prior to brecciation. Compound CLS objects are also present; these formed by low-velocity collisions in an environment, probably an ejecta plume, that contained numerous melt droplets. Factors other than composition were responsible for producing the crystallinity of the CLSs. We agree with previous workers that relatively slow cooling rates and long ballistic travel times were critical features that enabled these impact-melt droplets to partially or completely crystallize in free-flight. Moreover, incomplete melting of precursor materials formed nucleation sites that aided subsequent crystallization. Clearly, CLSs do not resemble meteoritic chondrules in all ways. The two types of objects had different precursors and did not experience identical rimming processes, and vapor-fractionation appears to have played a less important role in

  2. Major element chemical compositions of chondrules in unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.

    1984-01-01

    The chemical compositions (except for metals and sulfides in chondrules) of more than 500 chondrules from unequilibrated E, H, L, LL, and C chondrites were measured using a broad beam of an electron-probe microanalyzer. The compositions of chondrules can be represented by various mixtures of normative compositions of olivine, low-Ca pyroxene, plagioclase, and high-Ca pyroxene with minor amounts of spinel, feldspathoid, SiO2-minerals, etc., indicating that the chondrule precursor materials consisted of aggregates of these minerals. The Al, Na, and K contents of most chondrules reflect the compositions of the ternary feldspar (An-Ab-Kf) of the chondrule precursor materials, and chemical types of chondrules (KF, SP, IP, and CP) are defined on the basis of the atomic proportion of Al, Na, and K.

  3. Impact jetting as the origin of chondrules.

    PubMed

    Johnson, Brandon C; Minton, David A; Melosh, H J; Zuber, Maria T

    2015-01-15

    Chondrules are the millimetre-scale, previously molten, spherules found in most meteorites. Before chondrules formed, large differentiating planetesimals had already accreted. Volatile-rich olivine reveals that chondrules formed in extremely solid-rich environments, more like impact plumes than the solar nebula. The unique chondrules in CB chondrites probably formed in a vapour-melt plume produced by a hypervelocity impact with an impact velocity greater than 10 kilometres per second. An acceptable formation model for the overwhelming majority of chondrules, however, has not been established. Here we report that impacts can produce enough chondrules during the first five million years of planetary accretion to explain their observed abundance. Building on a previous study of impact jetting, we simulate protoplanetary impacts, finding that material is melted and ejected at high speed when the impact velocity exceeds 2.5 kilometres per second. Using a Monte Carlo accretion code, we estimate the location, timing, sizes, and velocities of chondrule-forming impacts. Ejecta size estimates indicate that jetted melt will form millimetre-scale droplets. Our radiative transfer models show that these droplets experience the expected cooling rates of ten to a thousand kelvin per hour. An impact origin for chondrules implies that meteorites are a byproduct of planet formation rather than leftover building material. PMID:25592538

  4. Vapor saturation of sodium: Key to unlocking the origin of chondrules

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence

    2013-07-01

    Sodium saturation of the vapor coexisting with chondrules at their liquidus temperatures implies that vapor-condensed phase equilibrium was reached at those temperatures for all elements more refractory than sodium. In order to investigate the possibility that chondrules formed in impact-generated plumes, equilibrium calculations were applied to droplets made from two different target compositions. Combinations of dust enrichment and Ptot were found that lead to sodium saturation, and the subsequent chemical and mineralogical evolution of the droplets was explored at those conditions. If an impact on a body of CI composition caused instantaneous heating, melting and devolatilization of the target rock and ejection of a plume of gaseous, liquid and solid matter that mixed with residual nebular gas at conditions where 50% or 90% of the sodium was retained by the resulting droplets at their liquidus temperature, their mineralogical and chemical properties would strongly resemble those of Type II chondrules. If the droplets cooled and equilibrated with the mixture of residual nebular gas and their devolatilized water, sulfur and alkalis, the fayalite content of the olivine and the chemical compositions of the bulk droplets and their glasses would closely resemble those of Types IIA and IIAB chondrules at CI dust enrichments between 400× and 800×. For 50% sodium retention, the corresponding values of Ptot are 2 bars (for 400×) and 1 bar (for 800×). For 90% retention, they are 25 and 10 bars, respectively. If, instead, the target has an anhydrous, ordinary chondrite-like composition, called H', the ejected droplets are bathed in a gas mix consisting mostly of devolatilized sulfur and alkalis with residual nebular gas, a much more reducing plume. If the conditions were such that sodium were retained by the resulting droplets at their liquidus temperature, the fayalite contents of the olivine and the chemical compositions of the bulk droplets and their glasses would

  5. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    suggest the occurrence of an external source of iron, very likely gaseous, during chondrule formation. We therefore propose that enrichments in sulfur (and other volatile and moderately volatile elements) from PO to PP type I bulk chondrule compositions towards chondritic values result from progressive reaction between partially depleted olivine-bearing precursors and a volatile-rich gas phase.

  6. Relationships between type I and type II chondrules: Implications on chondrule formation processes

    NASA Astrophysics Data System (ADS)

    Villeneuve, Johan; Libourel, Guy; Soulié, Camille

    2015-07-01

    In unequilibrated chondrites, the ferromagnesian silicates in chondrules exhibit wide ranges of mg# = Mg/(Mg + Fe), allowing to sub-divide porphyritic chondrules into either type I (mg# > 0.9) or type II (mg# < 0.9). Although both chondrule types formed under oxidizing conditions relative to the canonical solar nebula, it is generally inferred that type II chondrules formed in more oxidizing conditions than type I. In order to check whether this redox difference was established during chondrule formation, or reflects differences in their precursors, we have undertaken a set of experiments aimed at heating type I olivine-rich (A) chondrule proxy, i.e. forsterite + Fe metal + Ca-Mg-Si-Al glass mixtures, under oxidizing conditions. We show that high temperature (isothermal) oxidation of type IA-like assemblages is a very efficient and rapid process (e.g. few tens of minutes) to form textures similar to type IIA chondrules. Due to the rapid dissolution of Fe metal blebs, a FeO increase in the melt and in combination with the dissolution of magnesian olivine allows the melt to reach ferroan olivine saturation. Crystallization of ferroan olivine occurs either as new crystal in the mesostasis or as overgrowths on the remaining unresorbed forsterite grains (relicts). Interruption of this process at any time before its completion by rapid cooling allows to reproduce the whole range of textures and chemical diversity observed in type A chondrules, i.e. from type I to type II. Several implications on chondrule formation processes can be inferred from the presented experiments. Type I chondrules or fragments of type I chondrules are very likely the main precursor material involved in the formation of most type II chondrules. Formation of porphyritic olivine type II chondrules is very likely the result of processes generating crystal growth by chemical disequilibrium at high temperature rather than processes generating crystallization only by cooling rates. This questions the

  7. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Scott, E. R. D.

    1989-01-01

    Detailed petrologic studies have been made of 15 type IA, Fe-poor, porphyritic olivine chondrules in Semarkona (LL3.0). Major and minor element concentrations in olivines, pyroxenes, and mesostases, and bulk composition so the chondrules are measured along with zoning profiles in the olivine and pyroxene crystals. The mineral compositions and textures are best interpreted in terms of closed system crystallization in which the olivines and pyroxenes crystallized in situ from a melt corresponding to the bulk composition of the chondrule. Relict olivine grains are not found in the chondrules. Crystallization probably occurred at a cooling rate of the order of 1000 C/hr. Precursor materials of the chondrules were composed of two components, one refractory Ca-, Al-, and Ti-rich, and one less refractory Si-, Fe-, Cr-, and Mn-rich. The evidence is consistent with Semarkona being one of the least metamorphosed ordinary chondrites.

  8. A CRITICAL EXAMINATION OF THE X-WIND MODEL FOR CHONDRULE AND CALCIUM-RICH, ALUMINUM-RICH INCLUSION FORMATION AND RADIONUCLIDE PRODUCTION

    SciTech Connect

    Desch, S. J.; Morris, M. A.; Connolly, H. C.; Boss, Alan P.

    2010-12-10

    Meteoritic data, especially regarding chondrules and calcium-rich, aluminum-rich inclusions (CAIs), and isotopic evidence for short-lived radionuclides (SLRs) in the solar nebula, potentially can constrain how planetary systems form. Interpretation of these data demands an astrophysical model, and the 'X-wind' model of Shu et al. and collaborators has been advanced to explain the origin of chondrules, CAIs, and SLRs. It posits that chondrules and CAIs were thermally processed <0.1 AU from the protostar, then flung by a magnetocentrifugal outflow to the 2-3 AU region to be incorporated into chondrites. Here we critically examine key assumptions and predictions of the X-wind model. We find a number of internal inconsistencies: theory and observation show no solid material exists at 0.1 AU; particles at 0.1 AU cannot escape being accreted into the star; particles at 0.1 AU will collide at speeds high enough to destroy them; thermal sputtering will prevent growth of particles; and launching of particles in magnetocentrifugal outflows is not modeled, and may not be possible. We also identify a number of incorrect predictions of the X-wind model: the oxygen fugacity where CAIs form is orders of magnitude too oxidizing, chondrule cooling rates are orders of magnitude lower than those experienced by barred olivine chondrules, chondrule-matrix complementarity is not predicted, and the SLRs are not produced in their observed proportions. We conclude that the X-wind model is not relevant to chondrule and CAI formation and SLR production. We discuss more plausible models for chondrule and CAI formation and SLR production.

  9. The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules

    NASA Technical Reports Server (NTRS)

    Huang, S.; Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    Like Semarkona (type 3.0), Krymka (type 3.1) contains two distinct types of chondrule (namely groups A and B) which differ in their bulk compositions, phase compositions, and CL properties. The group A chondrules in both meteorites show evidence for major loss of material by evaporation(i.e. elemental abundance patterns, size, redox state, olivine-pyroxene abundances). Group A and B chondrules probably formed from common or very similar precursors by the same processes acting with different intensities, group A suffering greater mass-loss by evaporation and reduction of FeO and SiO2. While Krymka chondrules share many primary mineralogical and compositional properties with Semarkona chondrules, the minimal metamorphism it has suffered has also had a significant effect on its chondrules.

  10. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Wasson, J. T.

    1986-02-01

    Thirteen of the least aqueously altered chondrules in Murray (CM2) were analyzed for bulk compositions, by means of a broad beam electron microprobe, to explore the compositional differences between the CM-CO, and the ordinary chondrite OC chondrules. The CO chondrules are richer in refractory lithophiles and poorer in Cr, Mn, and volatile lithophiles than the OC chondrules; much lower refractory lithophile abundances in CM chondrules resulted from aqueous alteration. Evidence is found for two important lithophile precursor components of CM-CO chondrite chondrules: (1) pyroxene- and refractory-rich, FeO-poor, and (2) olivine-rich, refractoryand FeO-poor. It is suggested that the pyroxene- and refractory-rich, FeO-poor lithophile precursor component has formed by an incomplete evaporation of presolar silicates that brought these materials into the enstatite stability field.

  11. Lunar and Planetary Science XXXV: Chondrules: The Never-Ending Story

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Chondrules: The Never-Ending Story" included the following reports:Dust Size Distribution in Solar Nebula Inferred from Shock-Wave Heating Model for Chondrule Formation; Collisional Destruction of Chondrules in Shock Waves and Inferred Dust to Gas Mass Ratio; Evaporation and Accompanying Isotopic Fractionation of Sulfur from Fe-S Melt During Shock Wave Heating ; Evaporation During Chondrule Formation, Recondensation as Fine Particles, and the Condensation of S and Other Volatile Elements; Fe Isotopes and the Formation of Chondrules; Pristine and Processed Metal in CR Chondrites: Condensation in the Solar Nebula and Partial Reequilibration During Chondrule Formation; Variation of the Condensation Path of Supercooled Silicate Melt; Volatile and Moderately Volatile Trace Element Composition of Chondrules and Matrix from CM Chondrites: Implications for Chondrule Formation; Opaque Mineral Assemblages at Chondrule Boundaries in the Vigarano CV Chondrite: Evidence for Gas-Solid Reactions Following Chondrule Formation; Forsterite and Olivine in Sahara-97210 (LL3.2) and Chainpur (LL3.4) Chondrules: Compositional Evolution and the Influence of Melting; The Vaguries of Pyroxene Nucleation and the Resulting Chondrule Textures; Contemporaneous Formation of Chondrules in the Al-26-Mg-26 System for Ordinary and CO Chondrites; and Al-Mg Isotopic Systematics in Ferromagnesian Chondrules from the Unequilibrated Ordinary Chondrite.

  12. Kinetics of Melting and Applications to Chondrules

    NASA Astrophysics Data System (ADS)

    Greenwood, James Paul

    1997-12-01

    The congruent melting kinetics of Amelia albite were experimentally determined at 1125o C,/ 1150o C,/ 1175o C, and 1200o C. It was determined that congruent melting is a heterogeneous process. Melting is initiated at external surfaces and cleavage planes. Melting kinetics of albite are best described using a normal growth model. Congruent melting of albite was found to be interface controlled, and rates of melting are directly proportional to the amount of superheat, and inversely proportional to viscosity. Comparison of the results obtained here with previous studies of melting kinetics on other materials (oxides and silicates) finds that the normal growth model can be used to predict melting rates within an order of magnitude. The normal growth model was used to predict congruent melting rates of forsterite and enstatite as well as other minerals which may have been present in the chondrule forming region of the solar nebula. Constraints on the peak temperatures of chondrule formation are thus obtained. Specifically, chondrules containing relict grains of forsteritic olivine and enstatitic pyroxene could not have been heated above 1901o C and 1577o C, respectively, for more than a few seconds. Reanalyses of Na-Al-rich chondrule glasses by EPMA have found that previous EPMA work resulted in loss of Na from the activated volume due to migration in an electrical potential gradient. The Na-Al-rich chondrules have Na/Al ratios of unity, suggesting that they did not lose alkalis during flash heating. Experiments reproduced the chondrule glasses and determined the formational constraints of these chondrules. Specifically, the chondrules needed to have been cooled at low rates (<6o C/hr) at the lower temperature end of chondrule formation.

  13. Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Libourel, Guy; Krot, Alexander N.

    2008-04-01

    We report in situ ion microprobe analyses of the oxygen isotopic composition of the major silicate phases (olivine, low-Ca pyroxene, silica, and mesostasis) of 37 magnesian porphyritic (type I) chondrules from CV (Vigarano USNM 477-2, Vigarano UH5, Mokoia, and Efremovka) and CR (EET 92042, EET 92147, EET 87770, El Djouf 001, MAC 87320, and GRA 95229) carbonaceous chondrites. In spite of significant variations of the modal proportions of major mineral phases in CR and CV chondrules, the same isotopic characteristics are observed: (i) olivines are isotopically homogeneous at the ‰ level within a chondrule although they may vary significantly from one chondrule to another, (ii) low-Ca pyroxenes are also isotopically homogeneous but systematically 16O-depleted relative to olivines of the same chondrule, and (iii) all chondrule minerals analyzed show 16O-enrichments relative to the terrestrial mass fractionation line, enrichments that decrease from olivine (±spinel) to low-Ca pyroxene and to silica and mesostasis. The observation that, in most of the type I chondrules studied, the coexisting olivine and pyroxene crystals and glassy mesostasis have different oxygen isotopic compositions implies that the olivine and pyroxene grains are not co-magmatic and that the glassy mesostasis is not the parent liquid of the olivine. The δ 18O and δ 17O values of pyroxene and olivine appear to be strongly correlated for all the studied CR and CV chondrules according to:

  14. The lack of potassium-isotopic fractionation in Bishunpur chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.; Wang, Jingyuan; Zanda, B.; Bourot-Denise, M.; Hewins, R.H.

    2000-01-01

    In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K-isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s̀). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ∼12% loss of K. The range of L-chondrite-normalized K/Al ratios (a measure of the K-elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L-chondrite-like K abundances and the K loss occurred via Rayleigh fractionation, the most K-depleted chondrules would have had compositions of up to δ41K ≅ 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K-isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K-isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim-matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have

  15. Oxygen Isotope Systematics of Chondrules from the Least Equilibrated H Chondrite

    NASA Technical Reports Server (NTRS)

    Kita, N. T.; Kimura, M.; Ushikubo, T.; Valley, J. W.; Nyquist, L. E.

    2008-01-01

    Oxygen isotope compositions of bulk chondrules and their mineral separates in type 3 ordinary chondrites (UOC) show several % variability in the oxygen three isotope diagram with slope of approx.0.7 [1]. In contrast, ion microprobe analyses of olivine and pyroxene phenocrysts in ferromagnesian chondrules from LL 3.0-3.1 chondrites show mass dependent isotopic fractionation as large as 5% among type I (FeO-poor) chondrules, while type II (FeO-rich) chondrules show a narrow range (less than or equal to 1%) of compositions [2]. The .Delta(exp 17)O (=delta(exp 17)O-0.52xdelta(exp 18)O) values of olivine and pyroxene in these chondrules show a peak at approx.0.7% that are systematically lower than those of bulk chondrule analyses as well as the bulk LL chondrites [2]. Further analyses of glass in Semarkona chondrules show .17O values as high as +5% with highly fractionated d18O (max +18%), implying O-16-poor glass in chondrules were altered as a result of hydration in the parent body at low temperature [3]. Thus, chondrules in LL3.0-3.1 chondrites do not provide any direct evidence of oxygen isotope exchange between solid precursor and O-16-depleted gas during chondrule melting events. To compare the difference and/or similarity between chondrules from LL and H chondrites, we initiated systematic investigations of oxygen isotopes in chondrules from Yamato 793408 (H3.2), one of the least equilibrated H chondrite [4]. In our preliminary study of 4 chondrules, we reported distinct oxygen isotope ratios from dusty olivine and refractory forsterite (RF) grains compared to their host chondrules and confirmed their relict origins [5].

  16. Compound chondrules: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Connolly, H. C., Jr.; Hewins, R. H.; Atre, N.; Lofgren, G. E.

    1994-07-01

    Compound chondrules are considered to be the product of collisions between molten chondrules during chondrule formation Wasson, J. T. et al. (1994) have argued that some compound chondrules are formed when a chondrule with an accretional rim experienced a flash-melting event similar to a chondrule-forming event. We have designed experiments to investigate the formation of compound chondrules by both methods. Experiments were performed on a Deltech vertical muffle tube furnace to form synthetic chondrules to use as accretion rim material. For our experimental conditions, it is clear that compound chondrules can only be made by a collisional event. Our changes maintain their spherical shape and produce distinct boundaries between charges that are similar to natural compound chondrules. Furthermore, collision event(s) between chondrules will cause nucleation if they are molten and undercooled, thus producing chondrule textures. Flash melting chondrules with accretionary rims will not produce compound chondrules but will produce new chondrules with new textures.

  17. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Amelin, Yuri; Krot, Alexander N.

    2005-01-01

    CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).

  18. Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism

    NASA Technical Reports Server (NTRS)

    Mccoy, Timothy J.; Scott, Edward R. D.; Keil, Klaus; Taylor, G. Jeffrey; Jones, Rhian H.

    1991-01-01

    The composition of 75 type-IA and type-II porphyritic olivine chondrules from nine LL type 3 to type 5 chondrites was determined and was compared with that of chondrules from the Semarkona type 3.0 meteorite. Chemical data for silicates in the LL3.3-5 chondrites indicated that porphyritic olivine chondrules in these chondrites could be derived from chondrules similar to those from the Semarkona LL3.0, the least metamorphosed one of the known LL chondrites. It is shown that the chemical trends defined by the minerals of type-IA and type-II chondrules can be satisfactorily accounted for by the process of solid-state diffusive equilibration between minerals in chondrules and the opaque matrix rather than by changes in conditions during chondrule crystallization.

  19. Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Scott, E. R. D.; Jones, R. H.; Keil, K.; Taylor, G. J.

    1991-02-01

    The composition of 75 type-IA and type-II porphyritic olivine chondrules from nine LL type 3 to type 5 chondrites was determined and was compared with that of chondrules from the Semarkona type 3.0 meteorite. Chemical data for silicates in the LL3.3-5 chondrites indicated that porphyritic olivine chondrules in these chondrites could be derived from chondrules similar to those from the Semarkona LL3.0, the least metamorphosed one of the known LL chondrites. It is shown that the chemical trends defined by the minerals of type-IA and type-II chondrules can be satisfactorily accounted for by the process of solid-state diffusive equilibration between minerals in chondrules and the opaque matrix rather than by changes in conditions during chondrule crystallization.

  20. Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite

    NASA Astrophysics Data System (ADS)

    Jones, Rhian H.

    1994-12-01

    The mineralogy and petrology of FeO-poor, porphyritic, pyroxene- and olivine-rich chondrules in the Semarkona (LL3.0) chondrite are described in detail. In an extension of the textural classification scheme, these chondrules are designated types IAB and IB. In type IAB chondrules, the proportion of olivine phenocrysts is between 20-80% and in type IB chondrules, olivine constitutes <20% of the phenocryst assemblage. All the chondrules studied are FeO-poor and contain olivine and low-Ca pyroxene phenocrysts in varying proportions. Olivine is present both as chadacrysts enclosed in low-Ca pyroxene and as larger phenocrysts. Ca-rich pyroxene occurs commonly as rims on low-Ca pyroxene phenocrysts. Lamellar zoning in low-Ca pyroxene, observed in backscattered electron images, is interpreted as a primary growth feature. Apparent partition coefficients between phenocrysts and mesostasis for major and minor elements are consistent with crystallization of an essentially molten chondrule at rapid cooling rates (100-1000°C/h). Within the entire type I series, there are continuous changes in textural and compositional properties that suggest common origins for all chondrules in this series. These properties include proportions of olivine and pyroxene phenocrysts, FeO contents of olivine and pyroxene phenocrysts and a complementary relationship between the proportions of refractory elements and Si-, Fe-rich precursor components in chondrule bulk compositions. Observations of the behavior of Na suggest that evaporation and recondensation of volatile elements was not an important process during formation of type I chondrules and that abundances of volatile elements were largely controlled by the abundance of a volatile-rich precursor component.

  1. The Formation of Chondrules: Petrologic Tests of the Shock Wave Model

    NASA Technical Reports Server (NTRS)

    Connolly, H. C., Jr.; Love, S. G.

    1998-01-01

    Chondrules are mm-sized spheroidal igneous components of chondritic meteorites. They consist of olivine and orthopyroxene set in a glassy mesostasis with varying minor amounts of metals, sulfieds, oxides and carbon phases.

  2. Chondrules in the Qingzhen type-3 enstatite chondrite Possible precursor components and comparison to ordinary chondrite chondrules

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Rubin, A. E.; Rambaldi, E. R.; Rajan, R. S.; Wasson, J. T.

    1985-08-01

    The mineral composition of chondrules from a fragment of Qingzhen (EH3) fall was analyzed by neutron activation method. Unlike the ordinary chondrite (OC) chondrules (Gooding and Keil, 1981), the Qingzhen radial pyroxene (RP) and porphyritic pyroxene (PP) chondrules have similar bulk compositions. Porphyritic olivine-pyroxene (POP) chondrules are richer than PP and RP chondrules in refractory lithophiles and siderophiles. Elements in each of the following sets intercorrelate significantly: (1) Fe-Co-Ni-Ir-Au, probably derived from a metal component; (2) Ca-Eu-Se, which suggests an oldhamite-rich precursor; (3) Al-Sc-Hf, occurring in high concentrations in POP chondrules, this set suggesting the existence of a refractory lithophile-rich and olivine-rich component; (4) Na REE; and (5) Cl-Br. Sets (2) and (4) were not precursors of OC. The interelement ratios of refractory lithophiles such as Ca, Al, Ti, Sc, and REE are similar to CI ratios, suggesting that they originated in the earliest phases as silicates, which were sulfurized before chondrule formation.

  3. Troilite in the Chondrules of Type-3 Ordinary Chondrites: Implications for Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Sailer, Alan L.; Wasson, John T.

    1999-01-01

    The presence of primary troilite in chondrules requires that nebular temperatures were <650 K (the 50% condensation temperature of S) at the time of chondrule formation and that chondrules were molten for periods short enough (less than or equal to 10 s) to avoid significant volatilization of S. We examined 226 intact chondrules of all textural types from eight unshocked to weakly shocked ordinary chondrite falls of low petrologic type to determine the origin of troilite in chondrules; 68 chondrules are from LL3.0 Semarkona. There is a high probability that troilite is primary (i.e , was present among the chondrule precursors) if it is completely embedded in a mafic silicate phenocryst, located within one-half radius of the apparent chondrule center and is part of an opaque assemblage with an igneous texture Based on these criteria, 13% of the chondrules in Semarkona and in the set as a whole contain primary troilite. Most of the remaining chondrules contain troilite that is probably primary, but does not meet all three criteria. Troilite occurs next to tetratacnite in some opaque spherules within low-FeO chondrules in Semarkona, implying that the Ni required to form the tetrataenite came from the troilite Troilite can accommodate 5 mg/g Ni at high temperatures (> 1170 K) but much less Ni at lower temperatures; because this is far higher than the metamorphic temperature inferred for Semarkona (approx. 670 K), the troilite must be primary Primary troilite fitting the three criteria occurs in a smaller fraction of low-FeO [FeO/(FeO + MgO) in olivine and/or low-Ca pyroxene not greater than 0.0751 than high-FeO porphyritic chondrules in Semarkona (9% vs 33%) Coarse-grained low-FeO porphyritic chondrules appear to contain somewhat more troilite on average than those of medium grain size We found a few troilite-free, metallic-Fe-Ni-bearing, low-FeO chondrules that contain Na2O-bearing augite and Na2O- and K2O-rich mesostasis; these chondrules were probably formed after

  4. Compound chondrules fused cold

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2015-07-01

    About 4-5% of chondrules are compound: two separate chondrules stuck together. This is commonly believed to be the result of the two component chondrules having collided shortly after forming, while still molten. This allows high velocity impacts to result in sticking. However, at T ∼ 1100 K, the temperature below which chondrules collide as solids (and hence usually bounce), coalescence times for droplets of appropriate composition are measured in tens of seconds. Even at 1025 K, at which temperature theory predicts that the chondrules must have collided extremely slowly to have stuck together, the coalescence time scale is still less than an hour. These coalescence time scales are too short for the collision of molten chondrules to explain the observed frequency of compound chondrules. We suggest instead a scenario where chondrules stuck together in slow collisions while fully solid; and the resulting chondrule pair was subsequently briefly heated to a temperature in the range of 900-1025 K. In that temperature window the coalescence time is finite but long, covering a span of hours to a decade. This is particularly interesting because those temperatures are precisely the critical window for thermally ionized MRI activity, so compound chondrules provide a possible probe into that vital regime.

  5. Fine, nickel-poor Fe-Ni grains in the olivine of unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rambaldi, E. R.; Wasson, J. T.

    1982-06-01

    Nickel-poor Fe-Ni grains smaller than 2.0 microns are common inclusions in ordinary, unequilibrated chondrites' porphyritic chondrule olivine, where the olivine grains seem to be relicts that survived chondrule formation without melting. This 'dusty' metal, whose most common occurrence is in the core of olivine grains having clear, Fe-poor rims, appears to be the product of the in situ reduction of FeO from the host olivine, with H2 or carbonaceous matter being the most likely reductants. H2 may have been implanted by solar wind or solar flare irradiation, but this requires the dissipation of nebular gas before the end of the chondrule formation process. Carbonaceous matter may have been implanted by shock. The large relict olivine grains may be nebular condensates or fragments broken from earlier chondrule generations.

  6. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  7. Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0) - Origin by closed-system fractional crystallization, with evidence for supercooling

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.

    1990-01-01

    The petrology of type II porphyritic olivine chondrules in Semarkona (LL3.0) has been studied in detail. Olivines in these chondrules are euhedral, Fe-rich, and are strongly zoned from cores to rims of grains in FeO (Fa10-30), Cr2O3 (0.2-0.6 wt pct), MnO (0.2-0.7 wt pct), and CaO (0.1-0.4 wt pct). Interstitial mesostasis is rich in Si, Al, and Ca and is glassy with abundant microcrystallites. Minor minerals include troilite, Fe,Ni metal, and chromite. Some olivine grains contain euhedral, fayalite-rich cores that are probably produced during initial supercooling of the chondrule melt. Rare relict grains of forsteritic olivine have compositions very similar to olivines in type IA chondrules in Semarkona and may result from disaggregation of such chondrules. Apart from these relics, all properties of type II chondrules can be described by closed-system fractional crystallization of droplets which were essentially entirely molten. Type IA chondrules may have formed from type II chondrules by loss of Fe and volatiles. Alternatively, the two chondrule types may have formed in regions of considerable diversity in the solar nebula from precursor materials with different Fe/Mg ratios.

  8. Temperature conditions for chondrule formation

    NASA Technical Reports Server (NTRS)

    Hewins, Roger H.; Radomsky, Patrick M.

    1990-01-01

    An attempt is made to constrain the chondrule-forming process from dynamic crystallization experiments on chondrule analogs and from correlations between texture and bulk composition in natural chondrules. Liquidus temperatures for chondrules from unequilibrated chondrites are calculated using Herzberg's (1979) method. The paper then infers whether each chondrule formed above, at, or below its liquidus based on textures produced in experiments. A range of temperatures to which chondrules may have been initially heated is then derived from the texture-composition-temperature relationships. Finally, the role of dust seeding, or external heterogeneous nucleation, in producing chondrule textures is examined.

  9. Terminal particle from Stardust track 130: Probable Al-rich chondrule fragment from comet Wild 2

    NASA Astrophysics Data System (ADS)

    Joswiak, D. J.; Nakashima, D.; Brownlee, D. E.; Matrajt, G.; Ushikubo, T.; Kita, N. T.; Messenger, S.; Ito, M.

    2014-11-01

    A 4 × 6 μm terminal particle from Stardust track 130, named Bidi, is composed of a refractory assemblage of Fo97 olivine, Al- and Ti-bearing clinopyroxene and anorthite feldspar (An97). Mineralogically, Bidi resembles a number of components found in primitive chondritic meteorites including Al-rich chondrules, plagioclase-bearing type I ferromagnesian chondrules and amoeboid olivine aggregates (AOAs). Measured widths of augite/pigeonite lamellae in the clinopyroxene indicate fast cooling rates suggesting that Bidi is more likely to be a chondrule fragment than an AOA. Bulk element concentrations, including an Al2O3 content of 10.2 wt%, further suggests that Bidi is more akin to Al-rich rather than ferromagnesian chondrules. This is supported by high anorthite content of the plagioclase feldspar, overall bulk composition and petrogenetic analysis using a cosmochemical Al2O3-Ca2SiO4-Mg2SiO4 phase diagram. Measured minor element abundances of individual minerals in Bidi generally support an Al-rich chondrule origin but are not definitive between any of the object types. Oxygen isotope ratios obtained from olivine (+minor high-Ca pyroxene)fall between the TF and CCAM lines and overlap similar minerals from chondrules in primitive chondrites but are generally distinct from pristine AOA minerals. Oxygen isotope ratios are similar to some minerals from both Al-rich and type I ferromagnesian chondrules in unequilibrated carbonaceous, enstatite and ordinary chondrites. Although no single piece of evidence uniquely identifies Bidi as a particular object type, the preponderance of data, including mineral assemblage, bulk composition, mineral chemistry, inferred cooling rates and oxygen isotope ratios, suggest that Bidi is more closely matched to Al-rich chondrules than AOAs or plagioclase-bearing type I ferromagnesian chondrules and likely originated in a chondrule-forming region in the inner solar system.

  10. Amoeboid Olivine Aggregates (AOAs) in the Efremovka (CVR) Chondrite: First SIMS Trace-Element Results

    NASA Astrophysics Data System (ADS)

    Ruzicka, A.; Floss, C.; Hutson, M.

    2008-03-01

    SIMS trace-element results for six inclusions in Efremovka imply that condensation was important in the formation of AOAs and that precursor compositions or mode of origin were different for olivine in AOAs and in chondrules.

  11. A RELICT Spinel Grain in an Allende Ferromagnesian Chondrule

    NASA Astrophysics Data System (ADS)

    Misawa, K.; Fujita, T.; Kitamura, M.; Nakamura, N.; Yurimoto, H.

    1993-07-01

    It is suggested that one of the refractory lithophile precursors in CV-CO chondrules was a hightemperature condensate from the nebular gas and was related to Ca,Al-rich inclusions (CAIs) [1-3]. However, little is known about refractory siderophile precursors in chondrules [4]. Allende barred olivine chondrule R-11 consists mainly of olivine (Fa(sub)7- 18), pyroxene (En(sub)93Fs(sub)1Wo(sub)6, En(sub)66Fs(sub)1Wo(sub)33), plagioclase (An(sub)80), Fe-poor spinel, and alkali-rich glass. The CI- chondrite normalized REE pattern of the chondrule, excluding a spinel grain, are fractionated, HREEdepleted (4.6-7.8 x CI) with a large positive Yb anomaly. The REE abundances are hump-shaped functions of elemental volatility, moderately refractory REE-enriched, suggesting that the refractory lithophile precursor component of R-11 could be a condensate from the nebular gas and related to Group 11 CAIs [1,2]. An interior portion of spinel is almost Fe-free, but in an outer zone (2040 micrometers in width) FeO contents increase rapidly. TiO(sub)2, Cr(sub)2O(sub)3, and V(sub)2O(sub)3 contents in core spinel are less than 0.5%, which is different from the V-rich nature of spinel in fluffy Type A CAIs [5]. The Fe-Mg zoning of spinel may have been generated by diffusional emplacement of Mg and Fe during chondrule-forming events. The spinel contains silicate inclusions and tiny metallic grains. The largest silicate inclusion is composed of Al,Ti-rich pyroxene and Ak 40 melilite. One of the submicrometersized grains was analyzed by SEM-EDS and found to be composed of refractory Pt-group metals with minor amounts of Fe and Ni. This is the first occurrence of refractory Pt-group metal nuggets in a ferromagnesian chondrule from the Allende meteorite. Tungsten, Os, Ir, Mo, and Ru are enriched 2-6 x 10^5 relative to CIs, and abundances of Pt and Rh decrease 2-10 x 10^4 with increasing volatility. In addition, abundances of Fe and Ni in the nugget are equal to or less than that CI chondrites

  12. Oxygen-isotope compositions of chondrule phenocrysts and matrix grains in Kakangari K-grouplet chondrite: Implication to a chondrule-matrix genetic relationship

    NASA Astrophysics Data System (ADS)

    Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.

    2015-02-01

    To investigate a possible relationship between chondrules and matrix, we studied mineralogy, mineral chemistry, and in situ O-isotope compositions of chondrules, clastic matrix grains, and amoeboid olivine aggregates (AOAs) in the Kakangari K-grouplet chondrite. Most olivines and low-Ca pyroxenes in the Kakangari chondrules, matrix, and AOAs have similar magnesium-rich compositions, Fo∼95-97 (∼0.3-0.5 wt% MnO) and En∼90-96, respectively. These rather uniform chemical compositions of the different chondritic components are likely due to partial Fe-Mg-Mn equilibration during thermal metamorphism experienced by the host meteorite. Oxygen-isotope compositions of olivine and low-Ca pyroxene grains in chondrules and matrix plot along a slope-1 line on a three O-isotope diagram and show a range from 16O-enriched composition similar to that of the Sun to 16O-depleted composition similar to the terrestrial O-isotope composition. Most olivines and low-Ca pyroxenes in chondrules are 16O-poor and plot on or close to the terrestrial mass-fractionation line (mean Δ17O values ±2 standard deviations: 0.0 ± 0.8‰ and +0.2 ± 0.9‰ for olivine and pyroxene, respectively), consistent with the previously reported compositions of bulk chondrules (Δ17O = -0.16 ± 0.70‰). In addition to these 16O-poor grains, a coarse-grained igneous rim surrounding a porphyritic chondrule contains abundant 16O-rich relict olivines (Δ17O ∼ -24‰). Oxygen-isotope compositions of olivines and low-Ca pyroxenes in matrix show a bimodal distribution: 12 out of 13 olivine and 4 out of 17 pyroxene grains measured are similarly 16O-rich (Δ17O ∼ -23.5 ± 2.9‰), others are similarly 16O-poor (Δ17O ∼ -0.1 ± 1.7‰). Due to slow oxygen self-diffusion, olivines and low-Ca pyroxenes largely retained their original oxygen-isotope compositions. The nearly identical O-isotope compositions between the chondrule phenocrysts and the 16O-poor matrix grains suggest both chondrules and matrix of

  13. Chondrule Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Hweins, R. H.; Connolly, H. C., Jr.; Lofgren, G. E.; Libourel, G.

    2004-01-01

    Given the great diversity of chondrules, laboratory experiments are invaluable in yielding information on chondrule formation process(es) and for deciphering their initial conditions of formation together with their thermal history. In addition, they provide some critical parameters for astrophysical models of the solar system and of nebular disk evolution in particular (partial pressures, temperature, time, opacity, etc). Most of the experiments simulating chondrules have assumed formation from an aggregate of solid grains, with total pressure of no importance and with virtually no gain or loss of elements from or to the ambient environment. They used pressed pellets attached to wires and suffered from some losses of alkalis and Fe.

  14. Carbon, CAIs and chondrules

    NASA Technical Reports Server (NTRS)

    Ash, R. D.; Russell, S. S.

    1994-01-01

    It has been shown that C is present in CAI's and chondrules. It can be distinguished from matrix C both by its thermal stability and isotopic composition, which implies that it was not introduced after parent body accretion. It is concluded that C must have been present in the chondrule and CAI precursor material. Therefore any models of chondrule and CAI formation and inferences drawn about solar system conditions during these events must take into account the consequences of the presence of C on inclusion chemistry, mineralogy, and oxidation state.

  15. High Cooling Rates of Type-II Chondrules: Limited Overgrowths on Phenocrysts Following the Final Melting Event

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Rubin, Alan E.

    2003-01-01

    In a study of type-II chondrules in Y81020 Wasson and Rubin (2003) described three kinds of evidence indicating that only minor (4-10 m) olivine growth occurred following the final melting event: 1) Nearly all (>90%) type-II chondrules in CO3.0 chondrites contain low-FeO relict grains; overgrowths on these relicts are narrow, in the range of 2-12 m. 2) Most type-II chondrules contain small (10-20 m) FeO-rich olivine grains with decurved surfaces and acute angles between faces indicating that the grains are fragments from an earlier generation of chondrules; the limited overgrowth thicknesses following the last melting event are too thin to disguise the shard-like nature of these small grains. 3) Most type-II chondrules contain many small (<20 m) euhedral or subhedral phenocrysts with central compositions that are much more ferroan than the centers of the large phenocrysts; their small sizes document the small amount of growth that occurred following the final melting event.We have additional data on chondrules in Y81020 and Semarkona, and we have reinterpreted observations of Jones (1990). The striking feature of this chondrule is the large number of tiny fragments. The chondrule precursor initially consisted of crushed olivine.

  16. EH3 matrix mineralogy with major and trace element composition compared to chondrules

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; McDonough, W. F.; NéMeth, P.

    2014-12-01

    We investigated the matrix mineralogy in primitive EH3 chondrites Sahara 97072, ALH 84170, and LAR 06252 with transmission electron microscopy; measured the trace and major element compositions of Sahara 97072 matrix and ferromagnesian chondrules with laser-ablation, inductively coupled, plasma mass spectrometry (LA-ICPMS); and analyzed the bulk composition of Sahara 97072 with LA-ICPMS, solution ICPMS, and inductively coupled plasma atomic emission spectroscopy. The fine-grained matrix of EH3 chondrites is unlike that in other chondrite groups, consisting primarily of enstatite, cristobalite, troilite, and kamacite with a notable absence of olivine. Matrix and pyroxene-rich chondrule compositions differ from one another and are distinct from the bulk meteorite. Refractory lithophile elements are enriched by a factor of 1.5-3 in chondrules relative to matrix, whereas the matrix is enriched in moderately volatile elements. The compositional relation between the chondrules and matrix is reminiscent of the difference between EH3 pyroxene-rich chondrules and EH3 Si-rich, highly sulfidized chondrules. Similar refractory element ratios between the matrix and the pyroxene-rich chondrules suggest the fine-grained material primarily consists of the shattered, sulfidized remains of the formerly pyroxene-rich chondrules with the minor addition of metal clasts. The matrix, chondrule, and metal-sulfide nodule compositions are probably complementary, suggesting all the components of the EH3 chondrites came from the same nebular reservoir.

  17. Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence; Humayun, Munir; Simon, Steven B.; Campbell, Andrew J.

    2015-09-01

    The impact hypothesis for the origin of CB chondrites was tested by performing equilibrium condensation calculations in systems composed of vaporized mixtures of projectile and target materials. When one of the impacting bodies is composed of the metal from CR chondrites and the other is an H chondrite, good agreement can be found between calculated and observed compositions of unzoned metal grains in CB chondrites but the path of composition variation of the silicate condensate computed for the same conditions that reproduce the metal grain compositions does not pass through the measured compositions of barred olivine (BO) or cryptocrystalline (CC) chondrules in the CBs. The discrepancy between measured chondrule compositions and those of calculated silicates is not reduced when diogenite, eucrite or howardite compositions are substituted for H chondrite as the silicate-rich impacting body. If, however, a CR chondrite body is differentiated into core, a relatively CaO-, Al2O3-poor mantle and a CaO-, Al2O3-rich crust, and later accretes significant amounts of water, a collision between it and an identical body can produce the necessary chemical conditions for condensation of CB chondrules. If the resulting impact plume is spatially heterogeneous in its proportions of crust and mantle components, the composition paths calculated for silicate condensates at the same Ptot, Ni/H and Si/H ratios and water abundance that produce good matches to the unzoned metal grain compositions pass through the fields of BO and CC chondrules, especially if high-temperature condensates are fractionated in the case of the CCs. While equilibrium evaporation of an alloy containing solar proportions of siderophiles into a dense impact plume is an equally plausible hypothesis for explaining the compositions of the unzoned metal grains, equilibrium evaporation can explain CB chondrule compositions only if an implausibly large number of starting compositions is postulated. Kinetic models

  18. Chondrule Rims in Murchison, Cathodoluminescence Evidence for In Situ Formation by Aqueous Alteration

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Jie, Lu; Benoit, P. H.

    1992-07-01

    The fine-grained rims on ordinary and carbonaceous chondrite chondrules are often regarded as accretionary, mainly because they are often volatile-rich (King and King, 1981). However, Sears et al. (1991) recently argued that some chondrule rims in CM chondrites may be the result of aqueous alteration. The rims, like many features in primitive chondrites, stand out especially clearly in cathodoluminescence (CL) imagery due to the distinctive bright red CL of their abundant fine-grained forsterite. Chondrules similarly stand out well in CL images. Group A chondrules show the strong red CL of Fe-free olivine, sometimes associated with the bright yellow CL of anorthite- normative mesostases, while group B chondrules containing Fe-rich olivines and quartz-normative mesostases do not produce CL (Sears et al., 1992). Using a CL mosaic, we measured chondrule and rim diameters for every chondrule in a 17x10 mm section of Murchison. 38% of the chondrules were group A, compared with 46% in the Semarkona (LL3.0) and 61% in the Dhajala (H3.8) ordinary chondrites. While both group A and group B chondrules have rims, those on group A chondrules are significantly thicker than those on group B chondrules, the rim-to-diameter ratios being 0.2-0.5 for group A chondrules and 0.1-0.2 for group B chondrules (Fig. 1). There are two reasonable explanations for the relationship between rim thickness and chondrule group. Either (1) the composition of chondrule mainly determines the thickness of the rim, e.g., the rims were produced by the aqueous alteration of the host chondrule, or (2) the two chondrule groups were formed in different environments, say a very dusty locale favoring thick rims versus a less favorable relatively dust-free location. We note that (a) both types of chondrule coexist in the same rock, (b) CL textures at the rim/matrix are sharp while at the rim/chondrule interface they are irregular (see Fig. 7d,e in Sears et al., 1991), (c) all faces on the objects in Murchison

  19. Survey of chondrule average properties in H-, L-, and LL-group chondrites - Are chondrules the same in all unequilibrated ordinary chondrites?

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1983-01-01

    The petrogenetic properties of chondrules in different unequilibrated ordinary chondrites (UOCs) are compared to averaged chondrule-suite values obtained from recent analyses of several H-group, L-group, and LL-group chondrites. The purpose of the study was to develop a data base for future statistical analyses of chondrite characteristics. Mean end-member compositions of olivine (mol percent Fa) and pyroxene (mol percent Fs) were used as indices of the relative degree of 'equilibration' of each chondrule suite. It is found that the bulk chondrule geometric-mean abundances of Na, Mg, and Ni are the same from one UOC to another, and show no major systematic trends related to the H-group, L-group, of LL-group parentage of the host chondrites. The patterns of rare-earth element abundances in the chondrules are also examined, and the results are compared with statistical analyses. It is concluded that multivariate statistical analysis of pooled UOC chondrule data is justified for chondrule bulk compositions, as long as the statistical results are not misinterpreted as the primary petrogenetic features of chondrules.

  20. Oxygen-isotopic Compositions of Relict and Host Grains in Chondrules in the Yamato 81020 CO3.0 Chondrite

    NASA Technical Reports Server (NTRS)

    Kunihiro, Takuya; Rubin, Alan E.; McKeegan, Kevin D.; Wasson, John T.

    2006-01-01

    We report the oxygen-isotope compositions of relict and host olivine grains in six high-FeO porphyritic olivine chondrules in one of the most primitive carbonaceous chondrites, CO3.0 Yamato 81020. Because the relict grains predate the host phenocrysts, microscale in situ analyses of O-isotope compositions can help assess the degree of heterogeneity among chondrule precursors and constrain the nebular processes that caused these isotopic differences. In five of six chondrules studied, the DELTA O-17 (=delta O-17 - 0.52 (raised dot) delta O-18) compositions of host phenocrysts are higher than those in low-FeO relict grains; the one exception is for a chondrule with a moderately high-FeO relict. Both the fayalite compositions as well as the O-isotope data support the view that the low-FeO relict grains formed in a previous generation of low-FeO porphyritic chondrules that were subsequently fragmented. It appears that most low-FeO porphyritic chondrules formed earlier than most high-FeO porphyritic chondrules, although there were probably some low-FeO chondrules that formed during the period when most high-FeO chondrules were forming.

  1. Compound chondrules: An experimental investigation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Connolly, H. C., Jr.; Hewins, R. H.; Atre, N.; Lofgren, G. E.

    1994-01-01

    Compound chondrules are considered to be the product of collisions between molten chondrules during chondrule formation Wasson, J. T. et al. (1994) have argued that some compound chondrules are formed when a chondrule with an accretional rim experienced a flash-melting event similar to a chondrule-forming event. We have designed experiments to investigate the formation of compound chondrules by both methods. Experiments were performed on a Deltech vertical muffle tube furnace to form synthetic chondrules to use as accretion rim material. For our experimental conditions, it is clear that compound chondrules can only be made by a collisional event. Our changes maintain their spherical shape and produce distinct boundaries between charges that are similar to natural compound chondrules. Furthermore, collision event(s) between chondrules will cause nucleation if they are molten and undercooled, thus producing chondrule textures. Flash melting chondrules with accretionary rims will not produce compound chondrules but will produce new chondrules with new textures.

  2. Chondrules and the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Jones, Rhian; Scott, Ed

    2011-03-01

    Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV

  3. Deformation and thermal histories of chondrules in the Chainpur (LL3. 4) chondrite

    SciTech Connect

    Ruzicka, A. )

    1990-06-01

    The results of optical and TEM studies of chondrules in the Chainpur (LL3.4) chondrite are presented. Results were obtained, using a microprobe, from quantitative microchemical analyses for Mg, Fe, Si, and Ca for the chondrule olivine and pyroxene, showing that chondrules in the Chainpur chondrite experienced varied degrees of annealing and deformation. It is suggested that Chainpur may be an agglomerate of a breccia that experienced little overall deformation or heating during and after the final accumulation and compaction of its constituents. 75 refs.

  4. Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Tachibana, S.; Nagahara, H.; Mostefaoui, S.; Kita, N. T.

    2003-06-01

    We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 -0.4/+0.7 Myr after calcium-aluminum-rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene-rich chondrules are younger than olivine-rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.

  5. Mass transfer of Fe during the serpentinization of olivine by SiO2 rich fluid at 300°C, 500 bars: Perspectives from mineral dissolution/precipitation rates and Fe isotope systematics

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Tutolo, B. M.; Borrok, D. M.; Seyfried, W. E., Jr.

    2014-12-01

    High temperature (~300°C) hydrothermal alteration of peridotites can produce an alteration assemblage abundant in Fe-bearing serpentine and magnetite without the presence of brucite. This is particularly so in systems with SiO2-rich fluids derived from the hydration of orthopyroxene in basaltic intrusions and gabbros [1]. Few experimental studies have investigated the effects of aSiO2(aq) on the rate of olivine serpentinization and none that have examined the Fe isotopic composition of olivine hydrolysis products. Thus, this study addresses these problems by using flexible gold cell hydrothermal equipment to react olivine (Fo90) and talc with a NaCl-bearing fluid at 300 °C and 500 bars for ~90 days; providing time-series solution chemistry data coupled with Fe isotope, magnetic susceptibility, and Mössbauer measurements of reactant olivine and the serpentinization product. Talc is used to elevate the aSiO2(aq)above the serpentine-brucite buffer, effectively preventing brucite formation and allowing only the formation of Fe-bearing serpentine and magnetite from olivine alteration. Initial time series solution chemistry data indicate that the net rate of the serpentinization of olivine and talc dissolution is such that the experimental system is poised between the serpentine-brucite and serpentine-talc stability fields, with little H2 generated by the oxidation of Fe2+ upon formation of Fe-serpentine and magnetite. However, as the talc Si-source becomes effectively titrated, the continued hydration of olivine decreases the aSiO2(aq) towards the serpentine-brucite stability field concurrent with an increasing rate of H2 generation. This chemical transition likely reflects an enhanced rate of magnetite formation upon a decrease in the relative stability of Fe-serpentine. Fe isotope data indicate a slight enrichment trend in δ56Fe versus Fe3+/ΣFe of the altered mineral phases, magnetite > Fe-serpentine > olivine, although the observed inter-mineral fractionations

  6. Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2002-01-01

    At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements

  7. Evidence for primitive nebular components in chondrules from the Chainpur chondrite

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Wasson, J. T.

    1982-06-01

    In view of the fact that the least equilibrated ordinary chondrites contain chondrules that have changed little since the time of their formation in the early solar system, and are therefore excellent indicators of the physical and chemical nature of the solar nebula, 36 chondrules were separated from the Chainpur chondrite and analyzed for 20 elements and petrographic properties. The dominant nebular components found are: (1) a mixture of metal and sulfide whose composition is similar to whole rock metal and sulfide, (2) Ir-rich metal, (3) olivine-rich silicates, (4) pyroxene-rich silicates, and possibly (5) a component containing the more volatile lithophiles. Although etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules, a large fraction of the volatiles remains in the unetched interior.

  8. Chondrule transport in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Goldberg, Aaron Z.; Owen, James E.; Jacquet, Emmanuel

    2015-10-01

    Chondrule formation remains one of the most elusive early Solar system events. Here, we take the novel approach of employing numerical simulations to investigate chondrule origin beyond purely cosmochemical methods. We model the transport of generically produced chondrules and dust in a 1D viscous protoplanetary disc model in order to constrain the chondrule formation events. For a single formation event we are able to match analytical predictions of the memory they retain of each other (complementarity), finding that a large mass accretion rate (≳10-7 M⊙ yr-1) allows for delays on the order of the disc's viscous time-scale between chondrule formation and chondrite accretion. Further, we find older discs to be severely diminished of chondrules, with accretion rates ≲10-9 M⊙ yr-1 for nominal parameters. We then characterize the distribution of chondrule origins in both space and time, as functions of disc parameters and chondrule formation rates, in runs with continuous chondrule formation and both static and evolving discs. Our data suggest that these can account for the observed diversity between distinct chondrite classes, if some diversity in accretion time is allowed for.

  9. The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Connolly, Harold C.; Lauretta, Dante S.; Zega, Thomas J.; Davidson, Jemma; Domanik, Kenneth J.

    2015-01-01

    To better understand the formation conditions of ferromagnesian chondrules from the Renazzo-like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO-rich (type II) chondrule, and a representative number of FeO-poor (type I) chondrules, were studied to build a substantial and self-consistent data set. The average abundances and standard deviations of Cr2O3 in FeO-rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S- and Ni-rich liquids at 988-1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni-metal crystallized from the S- and Ni-rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400-600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni-metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole-rock aqueous alteration. The texture and composition of sulfide-bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.

  10. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  11. Chondrule remelting: Evidence from coarse-grained chondrule rims and compound chondrules

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Krot, A. N.

    1994-01-01

    The meteorites that best preserve the nebular record are the type 3 ordinary (OC) and carbonaceous chondrites; their major components include chondrules and chondrule fragments, refractory and mafic inclusions, FeO-rich silicate matrix material. Many chondrules are surrounded by nms; these can be divided into two major types: (1) fine-grained rims, which are composed of matrix material; and (2) igneous or coarse-grained rims, which have igneous textures and larger, less-ferroan mafic silicate grains. Fine-grained rims surround most of the chondrules in the least-equilibrated type 3 ordinary and carbonaceous chondrites. They were most likely derived via collapse of clumps of nebular dust that accreted around coarse objects such as chondrules and inclusions. Coarse-grined or igneous rims surround approximately 10% of the chondrules in type 3 OC and approximately 50% of the chondrules in CV3 chondrites as well as some chondrule fragments and isolated mineral grains. They probably formed by partly melting finer-grained dust-rich precursors and admixed chondrule fragments.

  12. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions.

    PubMed

    Krot, Alexander N; Yurimoto, Hisayoshi; Hutcheon, Ian D; MacPherson, Glenn J

    2005-04-21

    Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules, as well as to the higher abundance of 26Al in CAIs; both observations indicate that CAIs pre-date chondrules by 1-3 million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Delta17O approximately -1 per thousand to -5 per thousand). Spinel and diopside in the CAI cores are 16O-rich (Delta17O up to -20 per thousand), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Delta17O = -8 per thousand to 2 per thousand). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 +/- 1.4) x 10(-6) and <1.2 x 10(-6). We conclude that these CAIs had chondrule material added to them during a re-melting episode approximately 2 Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 x 10(-5). PMID:15846340

  13. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Yurimoto, Hisayoshi; Hutcheon, Ian D.; MacPherson, Glenn J.

    2005-04-01

    Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules, as well as to the higher abundance of 26Al in CAIs; both observations indicate that CAIs pre-date chondrules by 1-3million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Δ17O ~ - 1‰ to -5‰). Spinel and diopside in the CAI cores are 16O-rich (Δ17O up to -20‰), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Δ17O = -8‰ to 2‰). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 +/- 1.4) × 10-6 and <1.2 × 10-6. We conclude that these CAIs had chondrule material added to them during a re-melting episode ~2Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 × 10-5.

  14. Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? - Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula

    NASA Astrophysics Data System (ADS)

    Ebert, Samuel; Bischoff, Addi

    2016-03-01

    Al-rich objects (Ca,Al-rich inclusions (CAIs), Al-rich chondrules, Al-rich fragments) occur in all chondrite classes. These objects can be centimeter-sized in CV3 carbonaceous chondrites, but they are generally much smaller in other chondrite groups and classes. Within the ordinary chondrites, most Al-rich objects are chondrules that vary from Ca- to Na-rich. Here, we have investigated the mineralogy and major element chemistry of 32 Na-rich chondrules and 3 Na-rich fragments from 15 different chondrites. Most objects (chondrules and chondrule fragments) are from ordinary chondrites (petrologic types 3.2-3.8), but two of the chondrules are from two CO3 chondrites, and three of the chondrules are from one Rumuruti (R)-chondrite. We found that these Na-rich objects have bulk Na2O-concentrations between 4.3 and 15.2 wt%. Texturally, they typically consist of euhedral to subhedral (often skeletal) mafic minerals (olivine and pyroxenes) embedded within a nepheline-normative, glassy mesostasis, which is brownish in transmitted light. In addition, some chondrules contain euhedral to subhedral spinel. Bulk chondrule compositions show group II, group III, and ultrarefractory rare earth element (REE) patterns similar to those found in CAIs. These results clearly demonstrate that the Na-rich chondrules must have been formed by melting of precursors containing an (ultra-)refractory element-rich component and Na-rich constituents. The Na-rich chondrules showed Sm and Eu anomalies, indicating that they must have formed at low oxygen fugacities. Based on the chemical composition of the Na-rich objects, we can rule out that they were formed as a result of planetary formation due to metasomatic processes or processes related to collisions between molten planetesimals.

  15. Producing chondrules by recycling and volatile loss

    NASA Technical Reports Server (NTRS)

    Alexander, C. M. O.

    1994-01-01

    Interelement correlations observed in bulk chondrule INAA data, particularly between the refractory lithophiles, have led to the now generally accepted conclusion that the chondrule precursors were nebular condensates. However, it has been recently suggested that random sampling of fragments from a previous generation of chondrules could reproduce much of the observed range of bulk chondrule composition.

  16. Thermal histories of CO3 chondrites - Application of olivine diffusion modelling to parent body metamorphism

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.; Rubie, David C.

    1991-01-01

    The petrologic sequence observed in the CO3 chondrite group has been suggested to be the result of thermal metamorphism on a parent body. A model developed to examine the possibility that chondrule and matrix olivines equilibrated in situ, during parent body metamorphism is presented. The model considers Fe-Mg interdiffusion between chondrule and matrix olivines. Zoning profiles comparable to those observed in chondrule olivines from partially equilibrated members of the series are reproduced successfully. Metamorphism of CO3 chondrites on a parent body is therefore a viable model for the observed equilibration. Results indicate that peak metamorphic temperatures experienced by the CO3 chondrites were around 500 C, and that the range of peak temperatures between unequilibrated and equilibrated subtypes was relatively narrow, around 100 C.

  17. Iodine-xenon, chemical, and petrographic studies of Semarkona chondrules - Evidence for the timing of aqueous alteration

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Grossman, J. N.; Olinger, C. T.; Garrison, D. H.

    1991-01-01

    The relationship of the I-Xe system of the Semarkona meteorite to other measured properties is investigated via INAA, petrographic, and noble-gas analyses on 17 chondrules from the meteorite. A range of not less than 10 Ma in apparent I-Xe ages is observed. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. It is argued that the initial I-129/I-127 ratio (R0) is related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0s than porphyritic and olivine-rich chondrules. Chondrules with sulfides on or near the surface have lower R0s than other chondrules. The He-129/Xe-132 ratio in the trapped Xe component anticorrelates with R0, consistent with the evolution of a chronometer in a closed system or in multiple systems. It is concluded that the variations in R0 represent variations in ages, and that later events, possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules.

  18. Iodine-xenon, chemical, and petrographie studies of Semarkona chondrules: Evidence for the timing of aqueous alteration

    USGS Publications Warehouse

    Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.

    1991-01-01

    We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.

  19. Chondrules in CK carbonaceous chondrites and thermal history of the CV-CK parent body

    NASA Astrophysics Data System (ADS)

    Chaumard, NoëL.; Devouard, Bertrand

    2016-03-01

    CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. It is commonly reported than ~15 vol% of CK4-6 samples are composed of chondrules. The modal abundance of chondrules estimated here for 18 CK3-6 (including five CK3s) ranges from zero (totally recrystallized) to 50.5%. Although almost all chemically re-equilibrated with the host matrix, we recognized in CK3s and Tanezrouft (Tnz) 057 (CK4) up to 85% of chondrules as former type I chondrules. Mean diameters of chondrules range from 0.22 to 1.05 mm for Karoonda (CK4) and Tnz 057 (CK4), respectively. Up to ~60% of chondrules in CK3-4 are surrounded by igneous rims (from ~20 μm to 2 mm width). Zoned olivines were found in unequilibrated chondrules from DaG 431 (CK3-an), NWA 4724 (CK3.8), NWA 4423 (CK3.9), and Tnz 057 (CK4). We modeled Fe/Mg interdiffusion profiles measured in zoned olivines to evaluate the peak metamorphic temperatures and time scales of the CK parent body metamorphism, and proposed a two-stage diffusion process in order to account for the position of inflection points situated within chondrules. Time scales inferred from Fe/Mg interdiffusion in olivine from unequilibrated chondrules are on the order of tens to a hundred thousand years (from 50 to 70,000 years for peak metamorphic temperatures of 1140 and 920 K, respectively). These durations are longer than what is commonly accepted for shock metamorphism and shorter than what is required for nuclide decay. Using the concept of a continuous CV-CK metamorphic series, which is reinforced by this study, we estimated peak metamorphic temperatures <850 K for CV, 850-920 K for CK3, and 920-1140 K for CK4-6 chondrites considering a duration of 70,000 years.

  20. Ubiquitous Low-FeO Relict Grains in Type II Chondrules and Limited Overgrowths on Phenocrysts Following the Final Melting Event

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Rubin, Alan E.

    2006-01-01

    Type II porphyritic chondrules commonly contain several large (>40 microns) olivine phenocrysts; furnace-based cooling rates based on the assumption that these phenocrysts grew in a single-stage melting-cooling event yield chondrule cooling-rate estimates of 0.01-1 K/s. Because other evidence indicates much higher cooling rates, we examined type 11 chondrules in the CO3.0 chondrites that have experienced only minimal parent-body alteration. We discovered three kinds of evidence indicating that only minor (4-10 microns) olivine growth occurred after the final melting event: (1) Nearly all (>90%) type II chondrules in CO3.0 chondrites contain low-FeO relict grains; overgrowths on these relicts are narrow, in the range of 2-12 microns. (2) Most type II chondrules contain some FeO-rich olivine grains with decurved surfaces and acute angles between faces indicating that the grains are fragments from an earlier generation of chondrules; the limited overgrowth thicknesses following the last melting event are too thin to disguise the shard-like nature of these grains. (3) Most type II chondrules contain many small (<20 microns) euhedral or subhedral phenocrysts with central compositions that are much more ferroan than the centers of the large phenocrysts; their small sizes document the small amount of growth that occurred after the final melting event. If overgrowth thicknesses were small (4-10 microns) after the final melting event, it follows that large fractions of coarse (>40 microns) high-FeO phenocrysts are relicts from earlier generations of chondrules, and that cooling rates after the last melting event were much more rapid than indicated by models based on a single melting event. These observations are thus inconsistent with the "classic" igneous model of formation of type II porphyritic chondrules by near-total melting of a precursor mix followed by olivine nucleation on a very limited number of nuclei (say, <10) and by growth to produce the large phenocrysts

  1. Classifying Chondrules Based on Cathodoluminesence

    NASA Astrophysics Data System (ADS)

    Cristarela, T. C.; Sears, D. W.

    2011-03-01

    Sears et al. (1991) proposed a scheme to classify chondrules based on cathodoluminesence color and electron microprobe analysis. This research evaluates that scheme and criticisms received from Grossman and Brearley (2005).

  2. Little Chondrules and Giant Impacts

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2005-10-01

    Alexander (Sasha) Krot (University of Hawaii), Yuri Amelin (University of Toronto), Pat Cassen (SETI Institute), and Anders Meibom (Museum National d'Histoire Naturelle, Paris) studied and then extracted frozen droplets of molten silicate (chondrules) from unusual meteorites rich in metallic iron-nickel. Called CB (Bencubbin-like) chondrites, these rare but fascinating meteorites contain chondrules with different properties than those in other types of chondrites. Most notably, the chondrules contain very small concentrations of volatile elements and variable concentrations of refractory elements. (Volatile elements condense from a gas at a relatively low temperature, or are boiled out of solids or liquids at relatively low temperature. Refractory elements are the opposite.) Some of the metal grains in CB chondrites are chemically zoned, indicating that they formed by condensation in a vapor cloud. The most intriguing feature of chondrules in CB chondrites is their relatively young age. Lead-lead isotopic dating of chondrules separated from two CB chondrites show that they formed 5 million years after formation of the first solids in the solar system (calcium-aluminum-rich inclusions), which is about at least two million years after formation of other chondrules, and after energetic events in the solar nebula stopped. Krot and his colleagues suggest that the CB chondrules formed as the result of an impact between Moon- to Mars-sized protoplanets. Such impacts were so energetic that huge amounts of material were vaporized and then condensed as chondrules or chemically zoned metal grains. This event enriched refractory elements and depleted volatile elements. Such large impacts appear to play important roles in planet formation, including the formation of the Moon.

  3. Strain Measurements of Chondrules and Refraction Inclusion in Allende

    NASA Technical Reports Server (NTRS)

    Tait, Alastair W.; Fisher, Kent R.; Simon, Justin I.

    2013-01-01

    This study uses traditional strain measurement techniques, combined with X-ray computerized tomography (CT), to evaluate petrographic evidence in the Allende CV3 chondrite for preferred orientation and to measure strain in three dimensions. The existence of petrofabrics and lineations was first observed in carbonaceous meteorites in the 1960's. Yet, fifty years later only a few studies have reported that meteorites record such features. Impacts are often cited as the mechanism for this feature, although plastic deformation from overburden and nebular imbrication have also been proposed. Previous work conducted on the Leoville CV3 and the Parnallee LL3 chondrites, exhibited a minimum uniaxial shortening of 33% and 21%, respectively. Petrofabrics in Allende CV3 have been looked at before; previous workers using Electron Back Scatter Diffraction (EBSD) found a major-axis alignment of olivine inside dark inclusions and an "augen"-like preferred orientation of olivine grains around more competent chondrules

  4. Evidence in CO3.0 Chondrules for a drift in the O Isotopic Composition of the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Rubin, Alan E.; Yurimoto, Hisayoshi

    2006-01-01

    Several recent studies have shown that materials such as magnetite that formed in asteroids tend to have higher Delta O-17 (=delta O-17 -0.52 delta O-18) values than those recorded in unaltered chondrules. Other recent studies have shown that, in sets of chondrules from carbonaceous chondrites, Delta O-17 tends to increase as the FeO contents of the silicates increase. We report a comparison of the O isotopic composition of olivine phenocrysts in low-FeO (Fal5) type II porphyritic chondrules in the highly primitive C03.0 chondrite Yamato-81020. In agreement with a similar study of chondrules in C03.0 ALH A77307 by Jones et al., Delta O-17 tends to increase with increasing FeO. We find that Delta O-17 values are resolved (but only marginally) between the two sets of olivine phenocrysts. In two of the high-FeO chondrules, the difference between Delta O-17 of the late-formed, high-FeO phenocryst olivine and those in the low-FeO cores of relict grains is well-resolved (although one of the relicts is interpreted to be a partly melted amoeboid olivine inclusion by Yurimoto and Wasson). It appears that, during much of the chondrule-forming period, there was a small upward drift in the Delta O-17 of nebular solids and that relict cores preserve the record of a different (and earlier) nebular environment.

  5. Thermoluminescence and Compositional Zoning in the Mesostasis of a Semarkona Group A1 Chondrule and New Insights into the Chondrule-Forming Process

    NASA Astrophysics Data System (ADS)

    Matsunami, S.; Ninagawa, K.; Yamamoto, I.; Kohata, M.; Wada, T.; Yamashita, Y.; Lu, J.; Sears, D. W. G.; Nishimura, H.

    1992-07-01

    A large group A1 (Sears et al., 1992) porphyritic olivine chondrule in the Semarkona (LL3.0) chondrite with induced thermoluminescence (TL) and compositional zoning in its mesostasis has been discovered. The presence of both Ca-rich, Fe- poor olivine (CaO 0.36-0.40wt%, Fa(sub)0.3-0.5) and highly anorthite-normative mesostasis (~52.5wt%) is consistent with observations on type-IA chondrules in Semarkona (Jones and Scott, 1989). A TL spatial distribution readout system (Ninagawa et al., 1990) has revealed that the induced TL increases monotonously by a factor of ~6 from center to rim, while SiO2, Na2O and MnO increase by factors of ~1.1, ~3.6, and ~6, respectively. The mesostasis also shows a concentric zoning of yellow cathodoluminescence (CL). The spectrum of the induced TL and the Mn-TL correlation suggest that Mn-activated plagioclase is an important constituent of the refractory mesostases in group A1 chondrules. The zoning may reflect fractional crystallization, Soret diffusion, transport of volatiles into the chondrule by aqueous alteration, a zoned precursor, reduction of precursor dust aggregate, or recondensation of volatiles lost during chondrule formation. The first four possibilities seem unlikely explanations for the zoning of the mesostasis. The formational process of the zoning is suggested as follows: (1) During the temperature rise of chondrule-forming event, a precursor dust aggregate composed of FeO-bearing olivine, Ca-rich plagioclase and Ca-rich pyroxene was reduced through the interaction with a reducing nebular gas. The reduction process caused increase of silica content at the marginal part. (2) During melting of the precursor, Na and Mn evaporated from the chondrule melt. (3) During the cooling, forsterite phenocrysts crystallized in the melt. The residual liquid became rich in anorthite component. (4) Subsequently Na and Mn recondensed onto the surface and diffused into the interior, forming the zoning of Na and Mn. (5) Mn- bearing

  6. The effect of NA vapor on the NA content of chondrules

    NASA Astrophysics Data System (ADS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-12-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the PNa for these experimental conditions to be in the 10-6 atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable of producing

  7. Conference on Chondrules and Their Origins

    NASA Technical Reports Server (NTRS)

    Hrametz, K.

    1983-01-01

    Chondrule parent materials, chondrule formation, and post-formational history are addressed. Contributions involving mineralogy petrology, geochemistry, geochronology, isotopic measurements, physical measurements, experimental studies, and theoretical studies are included.

  8. Constraints on chondrule agglomeration from fine-grained chondrule rims

    NASA Technical Reports Server (NTRS)

    Metzler, K.; Bischoff, A.

    1994-01-01

    Fine-grained rims around chondrules, Ca,Al-rich inclusions, and other coarse-grained components occur in most types of unequilibrated chondrites, most prominently in carbonaceous chondrites of the CM group. Based on mineralogical and petrographic investigations, it was suggested that rim structures in unequilibrated ordinary chondrites could have formed in the solar nebula by accretion of dust on the surfaces of the chondrules. Dust mantles in CM chondrites seem to have formed by accretion of dust on the surfaces of chondrules and other components during their passage through dust-rich regions in the solar nebula. Concentric mantles with compositionally different layers prove the existence of various distinct dust reservoirs in the vicinity of the accreting parent body. Despite mineralogical and chemical differences, fine-grained rims from other chondrite groups principally show striking similarities to dust mantle textures in CM chondrite. This implies that the formation of dust mantles was a cosmically significant event like the chondrule formation itself. Dust mantles seem to have formed chronologically between chondrule-producing transient heating events and the agglomeration of chondritic parent bodies. For this reason the investigation of dust mantle structures may help to answer the question of how a dusty solar nebula was transformed into a planetary system.

  9. Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite

    NASA Technical Reports Server (NTRS)

    Cohen, R. E.; Kornacki, A. S.; Wood, J. A.

    1983-01-01

    The inclusions and chondrules of the Mokoia CV3 chondrite are studied systematically and compared with those in the Allende meteorite. Five polished thin sections of Mokoia were examined by optical microscopy, backscattered scanning electron microscopy, and electronprobe microanalysis, and objects greater than about 100 microns in apparent diameter were measured and classified petrographically. Three major types of olivine chondrules are distinguished: igneous chondrules, which evidently crystallized from droplets of silicate melt; recrystallized chondrules, apparently metamorphosed at relatively high temperatures; and accretional aggregates, which are probably fragments of igneous chondrules. Refractory inclusions in Mokoia are generally similar to those found in Allende, although Mokoia inclusions include phyllosilicates rather than feldspathoids and melilite-rich Ca, Al-rich inclusions (CAIs) are more abundant in Allende. The small, fine-grained CAIs, which are more abundant than coarse-grained CAIs in both meteorites, are observed to represent aggregates of three distinct constituents: concentric objects, chaotic material and inclusion matrix. It is concluded that most of the CAIs probably formed during metamorphism, partial melting, and incomplete distillation of primitive dust aggregates heated in the solar nebula.

  10. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    NASA Technical Reports Server (NTRS)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  11. MAGNESIUM ISOTOPE EVIDENCE FOR SINGLE STAGE FORMATION OF CB CHONDRULES BY COLLIDING PLANETESIMALS

    SciTech Connect

    Olsen, Mia B.; Schiller, Martin; Krot, Alexander N.; Bizzarro, Martin

    2013-10-10

    Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrite groups, implying a markedly distinct formation mechanism. Here, we report high-precision Mg-isotope data for 10 skeletal olivine chondrules from the Hammadah al Hamra 237 (HH237) chondrite to probe the formation history of CB chondrules. The {sup 27}Al/{sup 24}Mg ratios of individual chondrules are positively correlated to their stable Mg-isotope composition (μ{sup 25}Mg), indicating that the correlated variability was imparted by a volatility-controlled process (evaporation/condensation). The mass-independent {sup 26}Mg composition (μ{sup 26}Mg*) of chondrules is consistent with single stage formation from an initially homogeneous magnesium reservoir if the observed μ{sup 25}Mg variability was generated by non-ideal Rayleigh-type evaporative fractionation characterized by a β value of 0.5142, in agreement with experimental work. The magnitude of the mass-dependent fractionation (∼300 ppm) is significantly lower than that suggested by the increase in {sup 27}Al/{sup 24}Mg values, indicating substantial suppression of isotopic fractionation during evaporative loss of Mg, possibly due to evaporation at high Mg partial pressure. Thus, the Mg-isotope data of skeletal chondrules from HH237 are consistent with their origin as melts produced in the impact-generated plume of colliding planetesimals. The inferred μ{sup 26}Mg* value of –3.87 ± 0.93 ppm for the CB parent body is significantly lower than the bulk solar system value of 4.5 ± 1.1 ppm inferred from CI chondrites, suggesting that CB chondrites accreted material comprising an early formed {sup 26}Al-free component.

  12. Chondrule formation in lightning discharges

    NASA Technical Reports Server (NTRS)

    Horanyi, M.

    1994-01-01

    Chondrules represent a significant mass fraction of primitive meteorites. These millimeter-sized glassy droplets appear to be the products of intensive transient heating events. Their size distribution, chemical and mineral composition, texture, isotope composition suggest that chondrules were produced as a result of short-duration melting followed by rapid cooling of solid precursor particles. Gas-dynamics heating, magnetic reconnection, and electrostatic discharges are thought to be the leading candidates to explain chondrule formation. In this paper we summarize our recent theoretical progress on the effects of 'lightning' in the early solar system and also report on preliminary results from our laboratory experiments. Differential settling of various sized dust particles toward the midplane of the nebula is suspected to build large-scale charge separations that episodically relax via the electric breakdown of the nebular gas. The electrostatic discharge os analogous to lightning in the Earth's atmosphere.

  13. Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Beckett, J. R.; Stolper, E. M.

    2016-03-01

    Phosphorus zoning is observed in olivines in high-FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1-H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr3+ charge-balancing P5+ substituting for Si4+. Normal igneous zonation involving the dominant chrome species Cr2+ was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5-H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4-H6 chondrites, P-correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule-matrix interface suggests that this is a response to metasomatic processes. We also observed P-enriched halos near the chondrule-matrix interface in H3.3-H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P-zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.

  14. Impact-Induced Chondrule Deformation and Aqueous Alteration of CM2 Murchison

    NASA Technical Reports Server (NTRS)

    Hanna, R. D.; Zolensky, M.; Ketcham, R. A.; Behr, W. M.; Martinez, J. E.

    2014-01-01

    Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their

  15. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine

    NASA Technical Reports Server (NTRS)

    Choi, B. G.; McKeegan, K. D.; Leshin, L. A.; Wasson, J. T.

    1997-01-01

    Magnetite in the oxidized CV chondrite Allende mainly occurs as spherical nodules in porphyritic-olivine (PO) chondrules, where it is associated with Ni-rich metal and/or sulfides. To help constrain the origin of the magnetite, we measured oxygen isotopic compositions of magnetite and coexisting olivine grains in PO chondrules of Allende by an in situ ion microprobe technique. Five magnetite nodules form a relatively tight cluster in oxygen isotopic composition with delta 18O values from -4.8 to -7.1% and delta 17O values from -2.9 to -6.3%. Seven coexisting olivine grains have oxygen isotopic compositions from -0.9 to -6.3% in delta 18O and from -4.6 to -7.9% in delta 17O. The delta 17O values of the magnetite and coexisting olivine do not overlap; they range from -0.4 to -2.6%, and from -4.0 to -5.7%, respectively. Thus, the magnetite is not in isotopic equilibrium with the olivine in PO chondrules, implying that it formed after the chondrule formation. The delta 17O of the magnetite is somewhat more negative than estimates for the ambient solar nebula gas. We infer that the magnetite formed on the parent asteroid by oxidation of metal by H2O which had previously experienced minor O isotope exchange with fine-grained silicates.

  16. Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville and Vigarano (CV3) chondrites: A record of condensate evolution in the solar nebula

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Floss, Christine; Hutson, Melinda

    2012-02-01

    Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville, and Vigarano CV3 chondrites were studied using petrographic and microanalytical techniques to evaluate the origins of these inclusions and their relationships to other chondrite components. Our data support the idea that the inclusions formed by dust growth in the solar nebula as condensates and that they preserve a record of mineralogical and chemical evolution. Spinel-rich nodules and ribbons in AOAs often show Group II trace element patterns and formed either by fractional condensation or by condensation following partial vaporization. The dominant olivine component in AOAs can be explained as a condensate produced in the same way, but with fractionation occurring at a lower temperature. Other spinel-rich material in AOAs appears to be a vaporization residue. Ca-rich pyroxene + anorthite patches in AOAs show chemical signatures similar to those observed for spinel- or melilite-bearing regions but with lower refractory element and higher Mg and Si contents, supporting the idea that the patches formed by reaction between CAI-like material and Mg-Si-rich gas. Different trace element patterns (Group II and non-Group II refractory) are sometimes found for Al-rich regions (Ca-pyroxene + anorthite, or melilite-bearing) in a given AOA, suggesting that AOAs agglomerated from materials that formed under different conditions and that they did not subsequently homogenize. AOAs appear to have originated in a system with near-canonical solar composition and a low pressure gas (˜10-6-10-4 bar) over a range of temperatures (mainly ˜1200-1384 K) under somewhat non-equilibrium conditions. Relative to predicted equilibrium condensates, most AOAs show an apparent paucity of metal, possibly reflecting differential, density-dependent sorting between olivine and metal grains during aggregate formation. Trace element data are consistent with a simple model involving melting and igneous fractionation of AOA-like olivine to

  17. Chondrule destruction in nebular shocks

    SciTech Connect

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  18. Chondrule Destruction in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-01

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios epsilon >~ 0.1, and possibly even for solar abundances because of "sandblasting" by finer dust. A flow with epsilon >~ 10 requires much smaller shock velocities (~2 versus 8 km s-1) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  19. Olivines and olivine coronas in mesosiderites

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Zucker, S. M.; Harlow, G. E.; Prinz, M.

    1980-01-01

    The paper presents a study of olivines and their surrounding coronas in mesosiderites texturally and compositionally using optical and microprobe methods. Olivine composition ranges from Fo(58-92) and shows no consistent pattern of distribution within and between mesosiderites; olivine occurs as large single crystals or as partially recrystallized mineral clasts, except for two lithic clasts. These are Emery and Vaca Muerta, and both are shock-modified olivine orthopyroxenites. Fine-grained coronas surround olivine, except for those in impact-melt group mesosiderites and those without tridymite in their matrices. Coronas consist largely of orthopyroxene, plagioclase, clinopyroxene, chromite, merillite, and ilmenite, and are similar to the matrix, but lack metal and tridymite. Texturally the innermost parts of the corona can be divided into three stages of development: (1) radiating acicular, (2) intermediate, and (3) granular.

  20. Effect of metamorphism on isolated olivine grains in CO3 chondrites

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.

    1993-01-01

    The presence of a metamorphic sequence in the CO3 chondrite group has been shown previously to result in changes in properties of chondrule silicates. However, the role of isolated olivine grains during metamorphism of these chondrites has not been addressed. Isolated olivine grains in two metamorphosed CO3 chondrites, Lance and Isna, have been investigated in this study in order to assess the compositional properties of isolated olivine grains that may be attributable to metamorphism. Compositional changes in isolated olivines with increasing petrologic subtype are very similar to changes in chondrule olivines in the same chondrites. Olivine compositions from all occurrences (chondrules, isolated grains, and matrix) converge with increasing petrologic subtype. The degree of equilibration of minor elements is qualitatively related to the diffusion rate of each element in olivine, suggesting that diffusion-controlled processes are the most important processes responsible for compositional changes within the metamorphic sequence. The data are consistent with metamorphism taking place in a closed system on the CO3 chondrite parent body. Fe-poor olivine grains in metamorphosed chondrites are characterized by an Fe-rich rim, which is the result of diffusion of Fe into the grains from Fe-rich matrix. In some instances, 'complex', Fe-rich rims have been identified, which appear to have originated as igneous overgrowths and subsequently to have been overprinted by diffusion processes during metamorphism. Processes experienced by CO3 chondrites are more similar to those experienced by the ordinary chondrites than to those encountered by other carbonaceous chondrites, such as the CV3 group.

  1. Stardust to Planetesimals: A Chondrule Connection?

    NASA Technical Reports Server (NTRS)

    Paque, Julie; Bunch, Ted

    1997-01-01

    The unique nature of chondrules has been known for nearly two centuries. Modern techniques of analysis have shown that these millimeter sized silicate objects are among the oldest objects in our solar system. Researchers have devised textural and chemical classification systems for chondrules in an effort to determine their origins. It is agreed that most chondrules were molten at some point in their history, and experimental analogs suggest that the majority of chondrules formed from temperatures below 1600 C at cooling rates in the range of hundreds of degrees per hour. Although interstellar grains are present in chondrite matrices, their contribution as precursors to chondrule formation is unknown. Models for chondrule formation focus on the pre-planetary solar nebula conditions, although planetary impact models have had proponents.

  2. Spinel-bearing, Al-rich chondrules in two chondrite finds from Roosevelt County, New Mexico - Indicators of nebular and parent body processes

    NASA Technical Reports Server (NTRS)

    Mccoy, Timothy J.; Pun, Aurora; Keil, Klaus

    1991-01-01

    Two rare spinel-bearing Al-rich chondrules are identified in chondrite finds from Roosevelt County, New Mexico-RC 071 (L4) and RC 072 (L5). These chondrules have unusual mineralogies dominated by highly and asymmetrically zoned Al-Cr-rich spinels. Two alternatives exist to explain the origin of this zoning-fractional crystallization or metamorphism. Fractional crystallization formed the zoning of the trivalent cations and caused a localized depletion in chromites around the large Al-Cr-rich spinels. Diffusive exchange and partitioning of Fe and Mg between olivine and spinel during parent-body metamorphism can explain the asymmetric zoning of these elements. The bulk compositions of the chondrules suggest affinities with the Na-Al-Cr-rich chondrules, as would be expected from the abundance of Al-Cr-rich spinels. The most important factors are the temperature to which the molten chondrule was heated and the cooling rate during crystallization. These two chondrules cooled rapidly from near the liquidus, as indicated by the zoning, occurrence and sizes of spinels, radiating chondrule textures and localized chromite depletions.

  3. A compositional classification scheme for meteoritic chondrules

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G.; Jie, LU; Benoit, Paul H.; Dehart, John M.; Lofgren, Gary E.

    1992-01-01

    A compositionally based classification scheme for chondrules is proposed that will help in systematizing the wealth of data available and disentangling the effects of nebular and subsequent processes. The classification is not by texture or the composition of a single phase, or a mixture of these two, but rather is a comprehensive, systematic approach which uses the composition of the two main chondrule components. This scheme is applicable to over 95 percent of the chondrules and is easily applied using an electron microprobe. It stresses the original diversity of the chondrules and the complex yet facile way in which they respond to parent-body metamorphism. Results using this classification scheme suggest that arguments against an important role of chondrules in determining the compositional trends of the chondrites have been premature.

  4. A Microanalytical (TEM) Study of Fine-grained Chondrule Rims in NWA 5717

    NASA Technical Reports Server (NTRS)

    Bigolski, J. N.; Frank, D. R.; Zolensky, Michael E.; Weisberg, M. K.; Ebel, D. S.; Rahman, Z.

    2013-01-01

    Northwest Africa (NWA) 5717 is a highly primitive ordinary chondrite of petrologic type 3.05 with ubiquitous fine-grained chondrule rims [1, 2]. Rims appear around approximately 60% of chondrules and are comprised of micron-sized mineral and lithic fragments and microchondrules that are embdedded in an FeO-rich submicron groundmass that compositionally resembles fayalitic olivine. Some rim clasts appear overprinted with FeO-rich material, suggesting secondary alteration that postdates rim formation. Here we present a microanalytical (TEM) study of the submicron component (i.e. the groundmass) of the rims in order to determine the crystal structures and compositions of their constituent phases and decipher the accretion and alteration history recorded in rims.

  5. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  6. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-05-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  7. Spatially resolved NRM of the Bishunpur LL3.1 chondrite measured by scanning SQUID microscopy: implications for chondrule formation

    NASA Astrophysics Data System (ADS)

    Church, N. S.; Andrade Lima, E.; Lappe, S. L.; Russell, S.; Weiss, B. P.; Harrison, R. J.

    2012-12-01

    demagnetization behavior of the chondrules to be directly observed. This work presents the demagnetization sequence of a thin section of Bishunpur as well as rock magnetic measurements acquired on the scanning SQUID microscope and a bulk moment magnetometer. Bulk measurements of the NRM are dominated by signal from the matrix and chondrule rim, but the sensitivity of the scanning SQUID technique allows weak signals from individual chondrules to be identified which are stable in alternating-field demagnetization through 290 mT. These signals can be modeled as single dipoles, which means the magnetization of dusty olivine regions can be quantitatively measured. Calibration curves from synthetic analogues will permit the paleointensity of these regions to be determined and combined with SEM observations of the microstructure, used to provide a unique line of evidence about chondrule formation and the process of accretion in the solar nebula.

  8. Opaque Mineral Assemblages at Chondrule Boundaries in the Vigarano CV Chondrite: Evidence for Gas-Solid Reactions Following Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Lauretta, Dante S.

    2004-01-01

    Recent studies of opaque minerals in primitive ordinary chondrites suggest that metal grains exposed at chondrule boundaries were corroded when volatile elements recondensed after the transient heating event responsible for chondrule formation. Metal grains at chondrule boundaries in the Bishunpur (LL3.1) chondrite are rimmed by troilite and fayalite. If these layers formed by gas solid reaction, then the composition of the corrosion products can provide information on the chondrule formation environment. Given the broad similarities among chondrules from different chondrite groups, similar scale layers should occur on chondrules in other primitive meteorite groups. Here I report on metal grains at chondrule boundaries in Vigarano (CV3).

  9. On the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1979-01-01

    A new mechanism for primordial melting of chondrules based upon heating by relativistic electrons accelerated by reconnecting magnetic field lines is discussed. This mechanism is free of the creation-annihilation problem of collisions used for heating. The basic requirements for reconnection are an interplanetary magnetic field with regions of reversals. An early magnetic field is inferred from the paleomagnetism of meteorites and the requirements of solar spin-down, while the field reversals upon which the reconnection is based are a common property of the present epoch solar wind.

  10. Aluminian Low-Ca Pyroxene in a Ca-Al-rich Chondrule from the Semarkona Meteorite

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    A Ca-AI-rich chondrule (labeled G7) from the Semarkona LL3.0 ordinary chondrite (OC) consists of 73 vol% glassy mesostasis, 22 vol% skeletal forsterite. 3 vol% fassaite (i.e., Al-Ti diopside), and 2 vol% Al-rich, low-Ca pyroxene. The latter phase, which contains up to 16.3 wt% A1203, is among the most AI-rich, low-Ca pyroxene grains ever reported. It is inferred that 20% of the tetrahedral sites and 13% of the octahedral sites in this grain are occupied by Al. Approximately parallel optical extinction implies that the Al-rich, low-Ca pyroxene grains are probably orthorhombic, consistent with literature data that show that A1203 stabilizes the orthoenstatite structure relative to protoenstatite at low pressure. The order of crystallization in the chondrule was forsterite, AI-rich low-Ca pyroxene, and fassaite; the residual liquid vitrified during chondrule quenching. Phase relationships indicate that, for a G7-composition liquid at equilibrium, spinel and anorthite should crystallize early and orthopyroxene should not crystallize at all. The presence of AI-rich orthopyroxene in G7 is due mainly to the kinetic failure of anorthite to crystallize; this failure was caused by quenching of the G7 precursor droplet. Aluminum preferentially enters the relatively large B tetrahedra of orthopyroxene; because only one tetrahedral size occurs in fassaite, this phase contains higher mean concentrations of Al2O3 than the Al-rich orthopyroxene (17.8 and 14.7 wt%, respectively). Chondrule G7 may have formed by remelting an amoeboid olivine inclusion that entered the OC region of the solar nebula during an episode of chondrule formation.

  11. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  12. Olivine-FeS Partial-Melt

    SciTech Connect

    Roberts, J; Siebert, J; Ryerson, F J; Kinney, J

    2006-10-02

    The figure shows Fe-S-filled melt channels in olivine created at high temperature and pressure. The 3D image was obtained on Beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley Laboratory, with a spatial resolution of better than two microns (bar is 10 microns). Permeability of Fe-S melts in olivine at high temperatures and pressures provides an important constraint on models of planetary core formation. Permeability must be inferred from empirical relationships based on microstructure. To date, estimates of permeability have varied by more than five orders of magnitude. To provide more accurate constraints, we used high-resolution synchrotron radiation computed tomography to image the three-dimensional network of melt-containing pores in an olivine matrix, and calculated the permeability directly by solving the equations of Stokes flow through the actual pore network using a lattice-Boltzmann approach. These calculations provide an independent constraint on models of planetary core formation.

  13. Relationships Among Intrinsic Properties of Ordinary Chondrites: Oxidation State, Bulk Chemistry, Oxygen-isotopic Composition, Petrologic Type, and Chondrule Size

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    The properties of ordinary chondrites (OC) reflect both nebular and asteroidal processes. OC are modeled here as having acquired nebular water, probably contained within phyllosilicates, during agglomeration. This component had high Ai70 and acted like an oxidizing agent during thermal metamorphism. The nebular origin of this component is consistent with negative correlations in H, L, and LL chondrites between oxidation state (represented by olivine Fa) and bulk concentration ratios of elements involved in the metal-silicate fractionation (e.g., NdSi, Ir/Si, Ir/Mn, Ir/Cr, Ir/Mg, Ni/Mg, As/Mg, Ga/Mg). LL chondrites acquired the greatest abundance of phyllosilicates with high (delta)O-17 among OC (and thus became the most oxidized group and the one with the heaviest O isotopes); H chondrites acquired the lowest abundance, becoming the most reduced OC group with the lightest O isotopes. Chondrule precursors may have grown larger and more ferroan with time in each OC agglomeration zone. Nebular turbulence may have controlled the sizes of chondrule precursors. H-chondrite chondrules (which are the smallest among OC) formed from the smallest precursors. In each OC region, low-FeO chondrules formed before high-FeO chondrules during repeated episodes of chondrule formation. During thermal metamorphism, phyllosilicates were dehydrated; the liberated water oxidized metallic Fe-Ni. This caused correlated changes with petrologic type including decreases in the modal abundance of metal, increases in olivine Fa and low-Ca pyroxene Fs, increases in the olivine/pyroxene ratio, and increases in the kamacite Co and Ni contents. As water (with its heavy 0 isotopes) was lost during metamorphism, inverse correlations between bulk (delta)O-18 and bulk (delta)O-17 with petrologic type were produced. The H5 chondrites that were ejected from their parent body approx.7.5 Ma ago during a major impact event probably had been within a few kilometers of each other since they accreted approx.4

  14. Flash melting of chondrule precursors in excess of 1600 C. Series 1: Type 2 (B1) chondrule composition experiments

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.; Lofgren, Gary E.

    1993-01-01

    Several questions in chondrule production remain an enigma despite years of experiments. What were the melting temperatures experienced by chondrules? What were the physical characteristics of chondrule precursors? How and why did volatile elements (i.e. Na) found within chondrules survive the formation process? We present the initial results of a series of experiments designed to investigate the above questions by using flash melting to duplicate the melting stage of chondrule formation.

  15. Genetic Relationships Between Chondrules, Rims and Matrix

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  16. The origin of chondrules at jovian resonances

    PubMed

    Weidenschilling; Marzari; Hood

    1998-01-30

    Isotopic dating indicates that chondrules were produced a few million years after the solar nebula formed. This timing is incompatible with dynamical lifetimes of small particles in the nebula and short time scales for the formation of planetesimals. Temporal and dynamical constraints can be reconciled if chondrules were produced by heating of debris from disrupted first-generation planetesimals. Jovian resonances can excite planetesimal eccentricities enough to cause collisional disruption and melting of dust by bow shocks in the nebular gas. The ages of chondrules may indicate the times of Jupiter's formation and dissipation of gas from the asteroidal region. PMID:9445468

  17. Multiplicity of chondrule heating events and the coarsening of chondrule textures

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1993-01-01

    Our studies of compound chondrules show that most chondrules experienced at least two thermal events that produced appreciable amounts of melt. I suggest that chondrules were subjected to a hierarchy of brief heating events, the number increasing exponentially with decreasing intensity, and that some of intermediate intensity deposited enough heat to partially melt mesostasis glass and promote the growth of mafic mineral grains. This scenario can account for textures that require improbably low monotonic cooling rates in laboratory simulations, and also for the rarity of glassy chondrule textures despite the ease with which these are produced in the laboratory.

  18. Metallic Chondrules in NWA1390 (H3-6): Clues to Their History from Metallic Cu

    NASA Technical Reports Server (NTRS)

    LaBlue, A. R.; Lauretta, D. S.

    2004-01-01

    A recent study of ordinary chondrites suggests that many long-recognized shock indicators in olivine and pyroxene minerals may be erased by post-shock annealing. Therefore, the presence of other indicators of shock, which can not be erased by subsequent heating, are important to fully characterize the history of chondritic meteorites. One such proposed indicator is metallic Cu, which occurs in at least 2/3 of ordinary chondrites. Here we present a comparative study of two metallic chondrules in the NWA1390 ordinary chondrite, both of which contain appreciable Cu in the Fe,Ni metal phase and one that is partially rimmed by metallic Cu.

  19. Tungsten isotopic constraints on the age and origin of chondrules

    PubMed Central

    Kleine, Thorsten; Kruijer, Thomas S.; Burkhardt, Christoph; Metzler, Knut

    2016-01-01

    Chondrules may have played a critical role in the earliest stages of planet formation by mediating the accumulation of dust into planetesimals. However, the origin of chondrules and their significance for planetesimal accretion remain enigmatic. Here, we show that chondrules and matrix in the carbonaceous chondrite Allende have complementary 183W anomalies resulting from the uneven distribution of presolar, stellar-derived dust. These data refute an origin of chondrules in protoplanetary collisions and, instead, indicate that chondrules and matrix formed together from a common reservoir of solar nebula dust. Because bulk Allende exhibits no 183W anomaly, chondrules and matrix must have accreted rapidly to their parent body, implying that the majority of chondrules from a given chondrite group formed in a narrow time interval. Based on Hf-W chronometry on Allende chondrules and matrix, this event occurred ∼2 million years after formation of the first solids, about coeval to chondrule formation in ordinary chondrites. PMID:26929340

  20. Tungsten isotopic constraints on the age and origin of chondrules

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Kleine, Thorsten; Kruijer, Thomas S.; Burkhardt, Christoph; Metzler, Knut

    2016-03-01

    Chondrules may have played a critical role in the earliest stages of planet formation by mediating the accumulation of dust into planetesimals. However, the origin of chondrules and their significance for planetesimal accretion remain enigmatic. Here, we show that chondrules and matrix in the carbonaceous chondrite Allende have complementary 183W anomalies resulting from the uneven distribution of presolar, stellar-derived dust. These data refute an origin of chondrules in protoplanetary collisions and, instead, indicate that chondrules and matrix formed together from a common reservoir of solar nebula dust. Because bulk Allende exhibits no 183W anomaly, chondrules and matrix must have accreted rapidly to their parent body, implying that the majority of chondrules from a given chondrite group formed in a narrow time interval. Based on Hf-W chronometry on Allende chondrules and matrix, this event occurred ˜2 million years after formation of the first solids, about coeval to chondrule formation in ordinary chondrites.

  1. Trace elements in rims and interiors of Chainpur chondrules

    NASA Astrophysics Data System (ADS)

    Wilkening, L. L.; Boynton, W. V.; Hill, D. H.

    1984-05-01

    Trace elements were measured in the rims and interiors of nine chondrules separated from the Chainpur LL-3 chondrite. Whole rock samples of Chainpur and samples of separated rims were also measured. Chondrule rims are moderately enriched in siderophile and volatile elements relative to the chondrule interiors. The enriched volatile elements include the lithophilic volatile element Zn. The moderate enrichment of volatiles in chondrule rims and the lack of severe depletion in chondrules can account for the complete volatile inventory in Chainpur. These results support a three-component model of chondrite formation in which metal plus sulfide, chondrules plus rims and matrix silicates are mixed to form chondrites.

  2. An Evaluation of Microcomputer-Based Strain Analysis Techniques on Meteoritic Chondrules

    NASA Astrophysics Data System (ADS)

    Hill, H. G. M.

    1995-09-01

    from macrophotographic tracings of four complete thin-sections (total area 8.2 cm2) and a sawn slab (49.45cm2), were digitally scanned using application Ofoto v. 1.0.0^(TM). Chondrule outline (pict) files were then exported to a fabric analysis program, Image v. 1.44, and Rf values obtained thereafter exported to a spreadsheet environment for manipulation. Fry analysis was undertaken with an interactive program, Fry v. 5.0 [9] using the same pict files as before. Chondrule central points were manually inserted and center-to-center distances, when calculated, were displayed on screen in a way which echoes mean chondrule strain and orientation. Results and Conclusion. 364 chondrule outlines (three thin-sections and a sawn slab) were analysed by R(sub)(f)/phi and Fry techniques. In its present form, the Fry technique was judged to be unsuited to chondrule shape analysis as it is too dependant on grain size, i.e. the smallest grain, and the need for a planar homogenous sample bearing several hundred grains [8]. Recent developments in the Fry technique [10] may make it more suitable for chondrule analysis. Representative strain (Rf) data obtained for parallel thin-sections Bovedy M5385b and M5385c (total of 158 chondrules) were 1.49 and 1.41 respectively. Corresponding phi values were 115.0 degrees and 114.6 degrees respectively (with respect to a fixed reference point). Rf data together with petrographic shock features noted, mostly in olivine (e.g. planar fractures, undulatory extinction and weak mosaicism), were suggestive of shock stage S3 [4]. The degree of chondrule flattening and the nature of the (S3) shock effects observed are comparable with artifically flattened chondrules belonging to the same shock stage [3, 11]. The R(sub)(f)/phi technique evaluated was found to be more precise and quantitative than other methods previously employed for measuring maximum and minimum chondrule axes and orientation. Furthermore, it can provide reliable strain (axial, orientation

  3. Heating during solar nebula formation and Mg isotopic fractionation in precursor grains of CAIs and chondrules

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Nagahara, H.; Kitagami, K.; Nakagawa, Y.

    1994-01-01

    In some Ca-Al-rich inclusion (CAI) grains, mass-dependent isotopic fractionations of Mg, Si, and O are observed and large Mg isotopic fractionation is interpreted to have been produced by cosmochemical processes such as evaporation and condensation. Mass-dependent Mg isotopic fractionation was found in olivine chondrules of Allende meteorites. Presented is an approximate formula for the temperature of the solar nebula that depends on heliocentric distance and the initial gas distribution. Shock heating during solar nebula formation can cause evaporative fractionation within interstellar grains involved in a gas at the inner zone (a less than 3 AU) of the disk. Alternatively collision of late-accreting gas blobs might cause similar heating if Sigma(sub s) and Sigma are large enough. Since the grain size is small, the solid/gas mass ratio is low and solar (low P(sub O2)), and the ambient gas pressure is low, this heating event could not produce chondrules themselves. Chondrule formation should proceed around the disk midplane after dust grains would grow and sediment to increase the solid/gas ratio there. The heating source there is uncertain, but transient rapid accretion through the disk could release a large amount of heat, which would be observed as FU Orionis events.

  4. Microchondrule-bearing clast in the Piancaldoli LL3 meteorite - A new kind of type 3 chondrite and its relevance to the history of chondrules

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Scott, E. R. D.; Keil, K.

    1982-01-01

    Electron microprobe, scanning electron microscope, and petrographic analyses of the microchondritic clast of the Piancaldoli LL3 chondrite are reported and compared with other type three chondrites. The clast, like other type three chondrites, has a fine-grained Fe-rich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si and Cr-bearing metallic Fe, Ni. However, the very high model matrix abundance, unique characteristics of the chondrules, and absence of microscopically observable olivine indicate that the clast is a new type of type three chondrite. It is concluded that the microchondrules were formed by the same process that formed normal-sized chondrules in type three chondrites: melting of preexisting dustballs. It is suggested that dust grains were mineralogically sorted in the nebula before aggregating into dustballs.

  5. Chondrule formation in the radiative accretional shock

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, T. V.; Ip, W.

    1994-01-01

    The physical, mineralogical, and isotopic properties of chondrules strongly indicate that they were formed by the rapid melting and resolidification of preexisting solids composed of primitive material. The chondrule precursors were heated to temperatures of about 1800 K in short high-temperature events, followed by cooling with a rate of 10(exp 2)-10(exp 3) K/hr. A heat input of about 1500 J/g is required to heat chondrule precursors to such a temperature and melt them. Lightning discharges and flares in the solar nebula, and heating of the chondrule precursors by friction with gas decelerated in the accretional shock or in a shock (of unspecified origin) within the solar nebula, have been discussed as possible mechanisms for chondrule formation. One advantage of chondrule formation in large-scale shocks is that a lot of dust material can be processed. An accretional shock, which is produced by infalling gas of the presolar cloud when it collides with the solar nebula, belongs to this type of shock. In 1984 Wood considered the possibility of chondrule formation in the accretional shock by heating of chondrule precursors by gas drag. He concluded that the density in the accreting material is much lower than needed to melt silicates at the distance of the asteroid belt if the accreting matter had the cosmic ratio of dust to gas, and the mass of the solar nebula did not exceed 2 solar mass units. Melting of chondrule precursors is difficult because of their effective cooling by thermal radiation. Suppression of the radiative cooling of individual grains in dust swarms, which are opaque to thermal emission, was considered to be the only possible means of chondrule formation in solar nebula shocks. Previous models of solid grain melting in solar nebula shocks have neglected gas cooling behind the shock front, i.e., they considered adiabatic shocks. In this paper we show that large dust grains could be heated much stronger than was supposed by these authors, because of

  6. On the Lower Limit of Chondrule Cooling Rates: The Significance of Iron Loss in Dynamic Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Connolly, Harold C., Jr.; Lofgren, Gary E.

    1998-01-01

    It is unlikely that the presence of chondrules, and thus their formation, within the protoplanetary nebula would be predicted if it were not for their ubiquitous presence in most chondritic meteorites. The study of these enigmatic, igneous objects has a direct influence on how meteoritic and solar system researchers model the processes operating and the materials present within our protoplanetary nebula. Key to understanding chondrule formation is a determination of constraints on their thermal histories. The three important variables in this history are their peak melting temperatures, the duration of their melting at peak temperatures, and the rate at which these object cool. Although these three variables are interdependent, it is cooling rate that provides the most powerful constraint. Cooling rate has a direct affect on the development of both crystal morphology and the elemental distributions within these grains. To date, experiments have indicated that chondrule cooling rates are in the range of 10's to 100's of degrees per hour for porphyritic chondrules (the most abundant type). The cooling rate for radial and barred chondrules is thought to be more rapid. To generate these cooling rates (rapid relative to the cooling of the nebula as a whole, but slow compared to simple black body radiation) the environment of chondrule formation must have been localized, and the abundance of solid materials must have been greatly enhanced above a gas of solar composition. Thus accurate determinations of chondrule cooling rates is critical in understanding both their formation and the nebular environment in which they formed. In a quest to more accurately determine the lower limit on cooling rates and to determine in more detail the effects of Fe loss from a molten sample to Pt wire loops, Weinbruch et al. have explored this issue experimentally and reevaluated the findings of Radomsky and Hewins in light of their new results. The basic conclusions of their paper are an

  7. Opaque minerals in chondrules and fine-grained chondrule rims in the Bishunpur (LL3.1) chondrite

    NASA Astrophysics Data System (ADS)

    Lauretta, D. S.; Buseck, P. R.

    2003-01-01

    We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P-, Cr-, and Si-bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type-I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal-associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule- derived metal and its corrosion products were incorporated into the fine-grained rims that surround many type-I chondrules, contributing to their Fe-rich compositions. We propose that these fine- grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine-grained mineral fragments and microchondrules.

  8. Compound chondrule formation via collision of supercooled droplets

    NASA Astrophysics Data System (ADS)

    Arakawa, Sota; Nakamoto, Taishi

    2016-09-01

    We present a novel model showing that compound chondrules are formed by collisions of supercooled droplets. This model reproduces two prominent observed features of compound chondrules: the nonporphyritic texture and the size ratio between two components.

  9. Photophoretic Strength on Chondrules. 1. Modeling

    NASA Astrophysics Data System (ADS)

    Loesche, Christoph; Wurm, Gerhard; Teiser, Jens; Friedrich, Jon M.; Bischoff, Addi

    2013-12-01

    Photophoresis is a physical process that transports particles in optically thin parts of protoplanetary disks, especially at the inner edge and at the optical surface. To model the transport and resulting effects in detail, it is necessary to quantify the strength of photophoresis for different particle classes as a fundamental input. Here, we explore photophoresis for a set of chondrules. The composition and surface morphology of these chondrules were measured by X-ray tomography. Based on the three-dimensional models, heat transfer through illuminated chondrules was calculated. The resulting surface temperature map was then used to calculate the photophoretic strength. We found that irregularities in particle shape and variations in composition induce variations in the photophoretic force. These depend on the orientation of a particle with respect to the light source. The variation of the absolute value of the photophoretic force on average over all chondrules is 4.17%. The deviation between the direction of the photophoretic force and illumination is 3.°0 ± 1.°5. The average photophoretic force can be well approximated and calculated analytically assuming a homogeneous sphere with a volume equivalent mean radius and an effective thermal conductivity. We found an analytic expression for the effective thermal conductivity. The expression depends on the two main phases of a chondrule and decreases with the amount of fine-grained devitrified, plagioclase-normative mesostasis up to factor of three. For the chondrule sample studied (Bjurböle chondrite), we found a dependence of the photophoretic force on chondrule size.

  10. Photophoretic strength on chondrules. 1. Modeling

    SciTech Connect

    Loesche, Christoph; Wurm, Gerhard; Teiser, Jens; Friedrich, Jon M.; Bischoff, Addi

    2013-12-01

    Photophoresis is a physical process that transports particles in optically thin parts of protoplanetary disks, especially at the inner edge and at the optical surface. To model the transport and resulting effects in detail, it is necessary to quantify the strength of photophoresis for different particle classes as a fundamental input. Here, we explore photophoresis for a set of chondrules. The composition and surface morphology of these chondrules were measured by X-ray tomography. Based on the three-dimensional models, heat transfer through illuminated chondrules was calculated. The resulting surface temperature map was then used to calculate the photophoretic strength. We found that irregularities in particle shape and variations in composition induce variations in the photophoretic force. These depend on the orientation of a particle with respect to the light source. The variation of the absolute value of the photophoretic force on average over all chondrules is 4.17%. The deviation between the direction of the photophoretic force and illumination is 3.°0 ± 1.°5. The average photophoretic force can be well approximated and calculated analytically assuming a homogeneous sphere with a volume equivalent mean radius and an effective thermal conductivity. We found an analytic expression for the effective thermal conductivity. The expression depends on the two main phases of a chondrule and decreases with the amount of fine-grained devitrified, plagioclase-normative mesostasis up to factor of three. For the chondrule sample studied (Bjurböle chondrite), we found a dependence of the photophoretic force on chondrule size.

  11. Detection of new olivine-rich locations on Vesta

    NASA Astrophysics Data System (ADS)

    Palomba, Ernesto; Longobardo, Andrea; De Sanctis, Maria Cristina; Zinzi, Angelo; Ammannito, Eleonora; Marchi, Simone; Tosi, Federico; Zambon, Francesca; Capria, Maria Teresa; Russell, Christopher T.; Raymond, Carol A.; Cloutis, Edward A.

    2015-09-01

    The discovery of olivine on Vesta's surface by the VIR imaging spectrometer onboard the Dawn space mission has forced us to reconsider our views of Vestan petrogenetic models. Olivines were expected to be present in the interior of Vesta: in the mantle of a vertically layered body as invoked by the magma ocean models, or at the base (or within) the mantle-crust boundary as proposed by fractionation models. Olivines have been detected by VIR-Dawn in two wide areas near Arruntia and Bellicia, regions located in the northern hemisphere. Interestingly, these olivine-rich terrains are far from the Rheasilvia and the more ancient Veneneia basins, which are expected to have excavated the crust down to reach the mantle. In this work we present our attempts to identify other undetected olivine rich areas on Vesta by using spectral parameters sensitive to olivine such as the Band Area Ratio (BAR) and other specific parameters created for the detection of olivines on Mars (forsterite, fayalite and a generic olivine index). As a preliminary step we calibrated these parameters by means of VIS-IR spectra of different HED meteorite samples: behaviors versus sample grain size and albedo were analyzed and discussed. We selected the BAR and the Forsterite Index as the best parameters that can be used on Vesta. A cross-correlation analysis has been applied in order to detect olivine signature on the VIR hyperspectral cubes. These detections have then been confirmed by an anti-correlation analysis between the BAR and one of the olivine parameters, independent of the first method applied. In agreement with the recent discovery, Arruntia and Bellicia were found to be as the most olivine-rich areas, i.e. where the parameter values are strongest. In addition we detected 6 new regions, all but one located in the Vesta north hemisphere. This result confirms again that the old petrogenetic models cannot be straightforwardly applied to Vesta and should be reshaped in the view of these new

  12. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  13. Constraints on chondrule origin from petrology of isotopically characterized chondrules in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.

    1985-09-01

    The petrologic and chemical properties of the ferromagnesian chondrules in the Allende carbonaceous chondrite were examined in terms of the isotopic composition and the correlations between isotopic patterns. Areas of thin sections were studied with a SEM and bulk chemical fractions of 12 constituents were quantified to calculate correlations with petrologic features. A possible correlation between (CaO + Al2O2)/MgO and oxygen isotopes imply the formation of oxygen isotopic compositions in the chondrules by exchanges between isotopically heavy nebular gases and O-16 enriched solids. Different rates of gaseous exchange occurred with the various types of chondrules. Factors which may have controlled the exchanges are discussed.

  14. Constraints on chondrule origin from petrology of isotopically characterized chondrules in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.

    1985-01-01

    The petrologic and chemical properties of the ferromagnesian chondrules in the Allende carbonaceous chondrite were examined in terms of the isotopic composition and the correlations between isotopic patterns. Areas of thin sections were studied with a SEM and bulk chemical fractions of 12 constituents were quantified to calculate correlations with petrologic features. A possible correlation between (CaO + Al2O2)/MgO and oxygen isotopes imply the formation of oxygen isotopic compositions in the chondrules by exchanges between isotopically heavy nebular gases and O-16 enriched solids. Different rates of gaseous exchange occurred with the various types of chondrules. Factors which may have controlled the exchanges are discussed.

  15. Formation of chondrules by electrical discharge heating

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Keil, K.; Scott, E. R. D.

    1994-01-01

    A possible mechanism for making chondrules in the solar nebula is electrical discharge ('lightning') heating, which can create high-temperature (greater than 1600 K), short-duration (approximately 10 s) thermal events as indicated by the chondritic record. Lightning occurs in many diverse terrestrial and planetary settings, and may have occurred in the solar nebula; it is thus worthwhile to investigate its implications for chondrule formation. Nebular discharges do not appear a viable source of heat for melting chondrule precursors, regardless of the uncertainty in the details of the mode. Nonetheless, we believe nebular lightning worthy of further investigation than what is presented here. Experiments analogous to those currently underway to investigate terrestrial thunderstorm lightning could be fruitful in refining nebular lightning models, and would be double interesting in application to nonthunderstorm and planetary lightnings.

  16. A New Astrophysical Setting for Chondrule Formation

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Meibom, Anders; Russell, Sara S.; O'D. Alexander, Conel M.; Jeffries, Timothy E.; Keil, Klaus

    2001-03-01

    Chondrules in the metal-rich meteorites Hammadah al Hamra 237 and QUE 94411 have recorded highly energetic thermal events that resulted in complete vaporization of a dusty region of the solar nebula (dust/gas ratio of about 10 to 50 times solar). These chondrules formed under oxidizing conditions before condensation of iron-nickel metal, at temperatures greater than or equal to 1500 K, and were isolated from the cooling gas before condensation of moderately volatile elements such as manganese, sodium, potassium, and sulfur. This astrophysical environment is fundamentally different from conventional models for chondrule formation by localized, brief, repetitive heating events that resulted in incomplete melting of solid precursors initially residing at ambient temperatures below approximately 650 K.

  17. Partitioning of Trace Elements Between Pyroxene and Liquid in a Porphyritic Pyroxene Chondrule in Semarkona

    NASA Astrophysics Data System (ADS)

    Jones, R. H.; Layne, G. D.

    1993-07-01

    The unequilibrated chondrite Semarkona (LL3.0) enables us to investigate primary properties of chondrules that have not been overprinted by secondary processes. Electron microprobe studies of the compositions and zoning properties of silicate phases in these chondrules have helped to interpret crystallization behavior and, hence, offer important insights into formation conditions [e.g., 1,2]. However, the behavior of trace elements in these systems has not been investigated, largely because of the difficulties encountered in analyzing such elements in chondrule silicates. Here we report preliminary ion microprobe data obtained on coexisting pyroxene and glass phases from a pyroxene-rich chondrule in Semarkona. Trace elements analyzed are REE (La, Ce, Nd, Sm, Eu, Dy, Er, Yb), Sr, Y, and Zr. The chondrule studied is a typical example of textural type IAB [2]. It contains phenocrysts of olivine (Fa(sub)3) and clinoenstatite and a glassy mesostasis occupying approximately 15 vol% of the chondrule. Augite (Fs(sub)3, Wo(sub)44) occurs as narrow (10-micrometer) rims on clinoenstatite phenocrysts. Clinoenstatite is FeO-poor (Fs(sub)3, Wo(sub)0.4) and shows little zoning in major and minor elements. Trace-element analyses have been carried out on clinoenstatite, augite, and glass in this chondrule. REE contents in clinoenstatite are extremely low, lying in the range 0.01-0.1 x CI, and show a smooth increase in abundance from La to Yb. REE abundances are enriched in both augite and glass at levels approximately 4-10 x CI, with a small negative Eu anomaly in augite and a small positive Eu anomaly in glass. Olivine is likely to contain REE abundances similar to low-Ca pyroxene [3]. These relative abundances are consistent with closed-system crystallization of the chondrule, assuming that its bulk composition has chondritic abundances of REE [4]. Trace-element partition coefficients (Ds) for the two pyroxene phases are shown in Fig. 1. Clinoenstatite Ds vary smoothly

  18. Remelting of refractory inclusions in the chondrule-forming regions: Evidence from chondrule-bearing type C calcium-aluminum-rich inclusions from Allende

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Yurimoto, Hisayoshi; Hutcheon, Ian D.; Chaussidon, Marc; MacPherson, Glenn J.; Paque, Julie

    2007-08-01

    We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse-grained, igneous, anorthite-rich (type C) Ca-Al-rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule-like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath-shaped anorthite (An99), Cr-bearing Al-Ti-diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na-rich melilite (Åk63-74, 0.4-0.6 wt% Na2O). TS26 and 93 lack Wark-Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6-8) and low-Ca pyroxene/pigeonite (Fs1Wo1-9). The relict grains are corroded by Al-Ti-diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30-42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse-grained pigeonite (Fs0.5-2Wo5-17), augite (Fs0.5Wo38-42), and anorthitic plagioclase (An84). Relict olivine and low-Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite-augite rim around 93 are 16O-poor (Δ17O ˜ -1‰ to -8‰). Spinel and Al-Ti-diopside in cores of CAIs ABC, TS26, and 93 are 16O-enriched (Δ17O down to -20‰), whereas Al-Ti-diopside in the outer zones, as well as melilite and anorthite, are 16O-depleted to various degrees (Δ17O = -11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ˜5 × 10-5 ABC, 93, and TS26 are 26Al-poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10-6 (1.5 ± 1.8) × 10-6 <1.2 × 10-6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O-poor gaseous reservoir, probably in the chondrule-forming region. This melting episode could

  19. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  20. Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite - Origin, interrelationships, and possible precursor components

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Wasson, J. T.

    1987-07-01

    INAA and broad-beam EMPA are used to determine the bulk compositions of 20 chondrules, 13 coarse-grained chondrule rims, and one nonporphyritic CV chondrule (NPCVC) from CV3 Allende (and of one NPCVC each from Leoville and Vigarano). The data are presented in extensive tables and graphs and analyzed in detail. Five probable chondrule precursor components are deduced, and the solar-nebula processes giving rise to them (and probably to the coarse-grained rims as well) are discussed. It is suggested that the formation of the rimmed chondrules involved nebular reheating in space, after the accretion of dusty coatings.

  1. Uranium isotopic composition and absolute ages of Allende chondrules

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.; Budde, G.; Kleine, T.

    2015-11-01

    A handful of events, such as the condensation of refractory inclusions and the formation of chondrules, represent important stages in the formation and evolution of the early solar system and thus are critical to understanding its development. Compared to the refractory inclusions, chondrules appear to have a protracted period of formation that spans millions of years. As such, understanding chondrule formation requires a catalog of reliable ages, free from as many assumptions as possible. The Pb-Pb chronometer has this potential; however, because common individual chondrules have extremely low uranium contents, obtaining U-corrected Pb-Pb ages of individual chondrules is unrealistic in the vast majority of cases at this time. Thus, in order to obtain the most accurate 238U/235U ratio possible for chondrules, we separated and pooled thousands of individual chondrules from the Allende meteorite. In this work, we demonstrate that no discernible differences exist in the 238U/235U compositions between chondrule groups when separated by size and magnetic susceptibility, suggesting that no systematic U-isotope variation exists between groups of chondrules. Consequently, chondrules are likely to have a common 238U/235U ratio for any given meteorite. A weighted average of the six groups of chondrule separates from Allende results in a 238U/235U ratio of 137.786 ± 0.004 (±0.016 including propagated uncertainty on the U standard [Richter et al. 2010]). Although it is still possible that individual chondrules have significant U isotope variation within a given meteorite, this value represents our best estimate of the 238U/235U ratio for Allende chondrules and should be used for absolute dating of these objects, unless such chondrules can be measured individually.

  2. Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing

    NASA Astrophysics Data System (ADS)

    Varela, M. E.; Sylvester, P.; BrandstäTter, F.; Engler, A.

    2015-08-01

    Sixteen nonporphyritic chondrules and chondrule fragments were studied in polished thin and thick sections in two enstatite chondrites (ECs): twelve objects from unequilibrated EH3 Sahara 97158 and four objects from equilibrated EH4 Indarch. Bulk major element analyses, obtained with electron microprobe analysis (EMPA) and analytical scanning electron microscopy (ASEM), as well as bulk lithophile trace element analyses, determined by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), show that volatile components (K2O + Na2O versus Al2O3) scatter roughly around the CI line, indicating equilibration with the chondritic reservoir. All lithophile trace element abundances in the chondrules from Sahara 97158 and Indarch are within the range of previous analyses of nonporphyritic chondrules in unequilibrated ordinary chondrites (UOCs). The unfractionated (solar-like) Yb/Ce ratio of the studied objects and the mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns indicate an origin by direct condensation. However, the objects possess subchondritic CaO/Al2O3 ratios; superchondritic (Sahara 97158) and subchondritic (Indarch) Yb/Sc ratios; and chondritic-normalized deficits in Nb, Ti, V, and Mn relative to RLTEs. This suggests a unique nebular process for the origin of these ECs, involving elemental fractionation of the solar gas by the removal of oldhamite, niningerite, and/or another phase prior to chondrule condensation. A layered chondrule in Sahara 97158 is strongly depleted in Nb in the core compared to the rim, suggesting that the solar gas was heterogeneous on the time scales of chondrule formation. Late stage metasomatic events produced the compositional diversity of the studied objects by addition of moderately volatile and volatile elements. In the equilibrated Indarch chondrules, this late process has been further disturbed, possibly by a postaccretional process (diffusion?) that preferentially mobilized Rb with

  3. Magnetic reconnection as a chondrule heating mechanism

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel A.

    2010-12-01

    The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.

  4. High C and H Contents of Chondrules

    NASA Astrophysics Data System (ADS)

    Hanon, P.; Chaussidon, M.; Robert, F.

    1996-03-01

    Carbon and hydrogen concentrations (reported hereafter as in ppm C and [H] in ppm H2O) of 33 chondrules of all petrological types and sizes, and belonging to some of the least altered and metamorphosed chondrites were determined with the CRPG Nancy ion-microprobe. Special care was taken in order to efficiently get rid of the terrestrial contamination. Before analysis, each sampling area (0~25 micrometers and ~50 micrometers for the smaller chondrules) was sputtered by the O^2- primary beam (20nA) for 5 minutes. Precise chemical concentrations for H and C were obtained for a -60V offset applied to the sample, along with an energy filtering of +/- 10V. Mass resolution (M/Delta M) of 1800 is sufficient to discriminate the 24Mg++ signal from the 12C+. Mid-ocean ridge basalts were used for calibration of C and H. Major element concentrations in phases were obtained by electron probe analysis. Then, in each chondrule, phase proportions were visually estimated allowing the calculation of a bulk concentration for the major elements. [C] and [H] were obtained by two methods : 1) using internal chondrule correlations between individual ion-probe spots for carbon (or H) and major elements contents or 2) by averaging all ion-probe [C] and [H] determinations. _

  5. Experimental Reproduction of Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2002-01-01

    We have replicated type 1B chondrule textures and compositions with crystallization experiments in which UOC material was melted at 1400 deg.C and cooled at 5-1000 deg.C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment. Additional information is contained in the original extended abstract.

  6. REVISITING JOVIAN-RESONANCE INDUCED CHONDRULE FORMATION

    SciTech Connect

    Nagasawa, M.; Tanaka, K. K.; Tanaka, H.; Nakamoto, T.; Miura, H.; Yamamoto, T.

    2014-10-10

    It is proposed that planetesimals perturbed by Jovian mean-motion resonances are the source of shock waves that form chondrules. It is considered that this shock-induced chondrule formation requires the velocity of the planetesimal relative to the gas disk to be on the order of ≳ 7 km s{sup –1} at 1 AU. In previous studies on planetesimal excitation, the effects of Jovian mean-motion resonance together with the gas drag were investigated, but the velocities obtained were at most 8 km s{sup –1} in the asteroid belt, which is insufficient to account for the ubiquitous existence of chondrules. In this paper, we reexamine the effect of Jovian resonances and take into account the secular resonance in the asteroid belt caused by the gravity of the gas disk. We find that the velocities relative to the gas disk of planetesimals a few hundred kilometers in size exceed 12 km s{sup –1}, and that this is achieved around the 3:1 mean-motion resonance. The heating region is restricted to a relatively narrowband between 1.5 AU and 3.5 AU. Our results suggest that chondrules were produced effectively in the asteroid region after Jovian formation. We also find that many planetesimals are scattered far beyond Neptune. Our findings can explain the presence of crystalline silicate in comets if the scattered planetesimals include silicate dust processed by shock heating.

  7. Evaporation of nebular fines during chondrule formation

    NASA Astrophysics Data System (ADS)

    Wasson, John T.

    2008-06-01

    Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 10 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH 4 at lower

  8. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  9. Origin of plagioclase-olivine inclusions in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Sheng, Y. J.; Hutcheon, I. D.; Wasserburg, G. J.

    1991-02-01

    The origin of plagioclase-olivine inclusions (POIs) from three CV chondrites and one ungrouped chondrite was investigated by examining the chemical, mineralogical, and isotopic characteristics of a group of POIs from these chondrites. Results of these analyses demonstrate that the mixing and the partial melting processes in these inclusions were superimposed on more ancient isotopically heterogeneous material. A comparison of the essential characteristics of POIs and CAIs suggests that the major processes leading to the formation of POIs (such as condensation, dust/gas fractionation, aggregation of chemically and isotopically disparate materials, and partial melting) are common to most CAIs and chondrules. A scenario for the origin of POIs is proposed, showing that the homogeneity of the final assemblage (whether a POI, a CAI, or a chondrite) is primarily a reflection of the thermal history rather than the nature of precursor materials.

  10. Vacuum welding of olivine.

    PubMed

    Bell, P R

    1966-07-22

    Welding of olivine was demonstrated by grinding it in a ball mill in an atmosphere of about 2 x 10(-7) torr. Most of the sample adhered strongly to the container and grinding balls although adhesion in air is only slight. Similar adhesion should be expected on the lunar surface and may account for the roughness needed to explain the optical properties of the moon and the detail of the una 9 photographs. PMID:17839712

  11. "Black-colored olivines" in peridotites: dehydrogenation from hydrous olivines

    NASA Astrophysics Data System (ADS)

    Arai, Shoji; Hoshikawa, Chihiro; Miura, Makoto

    2015-04-01

    Fresh olivines that are black to the naked eye are found in some dunites. Peridotites are easily converted to be black in color, when serpentinized, due to production of secondary fine magnetite particles. The dunites that contain fresh but black-colored olivines are usually coarse-grained. These coarse olivine grains are sometimes very heterogeneous in color; the blackish part grades to whitish parts in single grains. The black color is due to homegeneous distribution of minute (< 10 microns) black particles in olivine. They are rod-like or plate-like in shape in thin section, sometimes being aligned under crystallographic control of the host olivine. Olivines are clear and free of these inclusions around primary chromian spinel inclusions or chromian spinel lamellae (Arai, 1978). Raman spectroscopy indicates the minute black particles are magnetite always associated with diopside. It is interesting to note that olivine in mantle peridotites accompanied by the black-colored dunites is totally free of the black inclusions, giving the ordinary colors (pale yellow to whitish) of Mg-rich olivine. It is not likely that the magnetite inclusions formed through secondary oxidation of olivine by invasion of oxygen, which is possible along cracks or grain boundaries. They most probably formed due to dehydrogenation from primary OH-bearing olivines upon cooling. Hydrogen was quickly diffused out from the olivines to leave magnetite and excess silica. The excess silica was possibly combined with a monticellite component to form diopside. The OH-bearing (hydrous) olivines can be precipitated from hydrous magmas, and the hydrous nature of the magma can promote an increase in grain size due to faster diffusion of elements. The minute inclusions of magnetite + diopside is thus an indicator of primary hydrous character of host olivine.

  12. Silica-merrihueite/roedderite-bearing chondrules and clasts in ordinary chondrites: New occurrences and possible origin

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Wasson, John T.

    1994-01-01

    Merrihueite (K,Na)2(Fe,Mg)5Si12O30 (na less than 0.5, fe greater than 0.5, where na = Na/(Na + K), fe = Fe/(Fe + Mg) in atomic ratio) is a rare mineral described only in several chondrules and irregularly-shaped fragments in the Mezo-Madaras L3 chondrite (Dodd et al., 1965; Wood and Holmberg, 1994). Roedderite (Na,K)2(Mg,Fe)5Si12O30 (na greater than 0.5, fe less than 0.5) has been found only in enstatite chondrites and in the reduced, subchondritic silicate inclusions in IAB irons (Fuchs, 1966; Rambaldi et al., 1984; Olsen, 1967). We described silica-roedderite-bearing clasts in L/LL3.5 ALHA77011 and LL3.7 ALHA77278, a silica-roedderite-bearing chondrule in L3 Mezo-Madaras, and a silica-merrihueite-bearing chondrule in L/LL3.5 ALHA77115. The findings of merrihueite and roedderite in ALHA77011, ALHA77115, ALHA77278 and Mezo-Madaras fill the compositional gap betweeen previously described roedderite in enstatite chondrites and silicate inclusions in IAB irons and merrihueite in Mezo-Madaras, suggesting that there is a complete solid solution of roedderite and merrihueite in meteorites. We infer that the silica- and merrihueite/roedderite-bearing chondrules and clasts experienced a complex formational history including: (a) fractional condensation in the solar nebular that produced Si-rich and Al-poor precursors, (b) melting of fractionated nebular solids resulting in the formation of silica-pyroxene chondrules, (c) in some cases, fragmentation in the nebula or on a parent body, (d) reaction of silica with alkali-rich gas that formed merrihueite/roedderite on a parent body, (e) formation of fayalitic olivine and feerosilite-rich pyroxene due to reaction of silica with oxidized Fe on a parent body, and (f) minor thermal metamorphism, possibly generated by impacts.

  13. Partitioning of Moderately Siderophile Elements Among Olivine, Silicate Melt, and Sulfide Melt: Constraints on Core Formation in the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Gaetani, Glenn A.; Grove, Timothy L.

    1997-01-01

    This study investigates the effects of Variations in the fugacities of oxygen and sulfur on the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni. and Cu) and W among coexisting sulfide melt, silicate melt, and olivine. Experiments were performed at 1 atm pressure, 1350 C, with the fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Starting compositions consisted of a CaO-MgO-Al2O3-SiO2-FeO-Na2O analog for a barred olivine chondrule from an ordinary chondrite and a synthetic komatiite. The f(sub O2)/f(sub S2), conditions ranged from log of f(sub O2) = -7.9 to - 10.6, with log of f(sub S2) values ranging from - 1.0 to -2.5. Our experimental results demonstrate that the f(sub O2)/f(sub S2) dependencies of sulfide melt/silicate melt partition coefficients for the first series transition metals arc proportional to their valence states. The f(sub O2)/f(sub S2) dependencies for the partitioning of Fe, Co, Ni, and Cu are weaker than predicted on the basis of their valence states. Variations in conditions have no significant effect on olivine/melt partitioning other than those resulting from f(sub O2)-induced changes in the valence state of a given element. The strong f(sub O2)/f(sub S2) dependence for the olivine/silicate melt partitioning of V is attributable to a change of valence state, from 4+ to 3+, with decreasing f(sub O2). Our experimentally determined partition coefficients are used to develop models for the segregation of sulfide and metal from the silicate portion of the early Earth and the Shergottite parent body (Mars). We find that the influence of S is not sufficient to explain the overabundance of siderophile and chalcophile elements that remained in the mantle of the Earth following core formation. Important constraints on core formation in Mars are provided by our experimental determination of the partitioning of Cu between silicate and sulfide melts. When combined with existing estimates for siderophile

  14. Applicability of Henry's Law to helium solubility in olivine

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Parman, S. W.; Kelley, S. P.; Cooper, R. F.

    2013-12-01

    Applicability of Henry's Law to helium solubility in olivine We have experimentally determined helium solubility in San Carlos olivine across a range of helium partial pressures (PHe) with the goal of quantifying how noble gases behave during partial melting of peridotite. Helium solubility in olivine correlates linearly with PHe between 55 and 1680 bar. This linear relationship suggests Henry's Law is applicable to helium dissolution into olivine up to 1680 bar PHe, providing a basis for extrapolation of solubility relationships determined at high PHe to natural systems. This is the first demonstration of Henry's Law for helium dissolution into olivine. Averaging all the data of the PHe series yields a Henry's coefficient of 3.8(×3.1)×10-12 mol g-1 bar-1. However, the population of Henry's coefficients shows a positive skew (skewness = 1.17), i.e. the data are skewed to higher values. This skew is reflected in the large standard deviation of the population of Henry's coefficients. Averaging the median values from each experiment yields a lower Henry's coefficient and standard deviation: 3.2(× 2.3)×10-12 mol g-1 bar-1. Combining the presently determined helium Henry's coefficient for olivine with previous determinations of helium Henry's coefficients for basaltic melts (e.g. 1) yields a partition coefficient of ~10-4. This value is similar to previous determinations obtained at higher PHe (2). The applicability of Henry's Law here suggests helium is incorporated onto relatively abundant sites within olivine that are not saturated by 1680 bar PHe or ~5×10-9 mol g-1. Large radius vacancies, i.e. oxygen vacancies, are energetically favorable sites for noble gas dissolution (3). However, oxygen vacancies are not abundant enough in San Carlos olivine to account for this solubility (e.g. 4), suggesting the 3x10-12 mol g-1 bar-1 Henry's coefficient is associated with interstitial dissolution of helium. Helium was dissolved into olivine using an externally heated

  15. Relict Forsterite in Chondrules: Implications for Cooling Rates

    NASA Technical Reports Server (NTRS)

    Greeney, S.; Ruzicka, A.

    2004-01-01

    Forsterite (Fo(sub 99-100)) is often present in chondrules as relict grains that did not crystallize in situ and as isolated grains outside of chondrules; both are surrounded by ferrous overgrowths which clearly formed at a later time, probably during chondrule formation. We performed microprobe analyses across forsterite-overgrowth interfaces in 12 chondrules and 4 isolated grains in the Sahara-97210 LL3.2 (Sahara), Wells LL3.3, and Chainpur LL3.4 chondrites and modelled diffusional exchange between forsterite and overgrowths, with the goal of constraining the thermal histories during chondrule formation. The cooling rates experienced by chondrules provide an important constraint on the origin and setting of these objects.

  16. The Origin of Silica-Rich Chondrules and Clasts in Ordinary and Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Ruzicka, A.; Boynton, W. V.

    1992-07-01

    Chondrules and clasts containing a silica mineral or a silica glass are a minor but important constituent in many ordinary (Planner, 1983; Brigham et al., 1986) and some carbonaceous (Olsen, 1983) chondrites, and have been considered somewhat enigmatic. The recent discovery of a large, silica-rich igneous clast in the Bovedy (L3) chondrite (Ruzicka and Boynton, 1992) sheds light on the possible origin of other silica-rich objects. As discussed in Ruzicka and Boynton (1992), the Bovedy clast probably crystallized from an Lchondrite silicate magma in a relatively large magma body that had previously undergone olivine fractionation. The existence of similar fractionating magmas can also account for the origin of other silica-rich objects, as shown below. Pyroxene-silica objects. Chondrules (drop-formed objects) and clasts (irregularly shaped objects) consisting essentially of a mixture of orthopyroxene (opx) and a silica mineral (SiO2) have been found in various ordinary chondrites (Brigham et al., 1986). Brigham and coworkers (1986) proposed that these objects could be condensates. However, fractional crystallization of a liquid similar in composition to the Bovedy clast (Ruzicka and Boynton, 1992) will produce (Morse, 1980) the following solids: (a) orthopyroxenite, (b) an opx + SiO2 rock, and (c) a feldspar, SiO2 and pyroxene rock. Brecciation or remelting of rock (b), which lies on the opx-SiO2 join in the cristobalite primary crystallization field, could have produced the pyroxene-silica objects of Brigham et al. (1986) and Planner (1983). Fayalite-silica clasts. These clasts consist of SiO2, olivine (ol, Fa(sub)63-96), and highly variable amounts of opx and clinopyroxene (Brigham et al., 1986). Brigham et al. (1986) discussed various origins for these objects and concluded that none were entirely satisfactory, but that an accidental mixture of the various phases in them was probably the best hypothesis. However, a rock mainly containing SiO2 and fayalitic ol (Fa

  17. Determination of silicon in meteoritic chondrules and its significance

    NASA Astrophysics Data System (ADS)

    Yi, W.-X.; Ouyang, Z.-Y.; Hu, G.-H.; Zhong, H.-H.; Xu, H.-Q.

    1984-04-01

    The silicon abundances in 20 chondrules from the Jilin, Xin Yang, Boxian, and Dontai meteorites and their whole rock samples were determined by 14 MeV neutron activation analysis. The silicon abundances were enriched in chondrules compared to whole chondrites. A systematic increase in the silicon abundance of whole chondrites with E, H, L, LL was observed, as was a systematic increase in the silicon abundance of nonmagnetic chondrules from ordinary chondrites with H, L, LL. The results indicate indirectly that chondrule formation occurred earlier than matrix formation.

  18. Porphyritic Olivine-Pyroxene Clast in Kaidun: First Discovery of an Ordinary Chondrite Clast?

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Makishima, J.; Koizumi, E.; Zolensky, M. E.

    2005-01-01

    Kaidun is an enigmatic meteorite showing a micro-brecciated texture composed of variable kinds of lithic clasts and mineral fragments. The constituent components range from primitive chondritic materials to differentiated achondritic materials, and thus believed to have originated from a large parent body accumulating materials from many different bodies in the asteroid belt. One of the interesting observations is that no ordinary chondrite component has been found yet, although C and E chondrites components are abundant. In this abstract, we report mineralogy of the clast (Kaidun #15415- 01.3.13a) showing a porphyritic olivine-pyroxene chondrule-like texture similar to those found in unequilibrated ordinary chondrites.

  19. Minor elements in Marjalahti olivine

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1984-06-01

    Precise microprobe determinations of minor elements in olivine from Marjalahti show averages of 0.0267 percent CaO; 0.0211 percent Cr2O3; less than 0.0045 percent TiO2; 0.288 percent MnO; and 30 ppm Ni. The calcium is as high as in some terrestrial plutonic olivines (e.g. Stillwater) but lower than in terrestrial nodule (high-temperature mantle?) olivines, consistent with very slow cooling to low temperatures. The chromium is discrepant with some earlier determinations, and possibly chromium is zoned in most pallasitic olivines. The Ti, Mn, and Ni data are consistent with previous determinations.

  20. An unusual layered mineral in chondrules and aggregates of the Allende carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1982-01-01

    Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X ray (EDS) and electron energy loss (EELS) spectroscopy examinations of the microstructures and phase relationships of minerals in opaque spherules in the Allende chondrules and aggregates are reported. The studies were carried out on petrographic thin sections which were ion-thinned. A significant metasomatic effect was observed in a highly oxidizing condition of a later cooled stage. An unusually layered Fe-, Ni-, and O-rich mineral related to serpentine was found to occur in the opaque specimen, and was judged to occur by alteration of olivine. It is noted that low temperature and a hydrous condition would have been required for the formation of the serpentine in the spherules, the first observed in Allende. It is suggested that the aqueous conditions occurred before the final stage of the meteorite formation, and proceeded in a nonterrestrial manner.

  1. Olivine in terminal particles of Stardust aerogel tracks and analogous grains in chondrite matrix

    NASA Astrophysics Data System (ADS)

    Frank, David R.; Zolensky, Michael E.; Le, Loan

    2014-10-01

    The dearth of both major and minor element analyses of anhydrous silicate phases in chondrite matrix has thus far hindered their comparison to the Wild 2 samples. We present 68 analyses of olivine (Fa0-97) in the coarse-grained terminal particles of Stardust aerogel tracks and a comprehensive dataset (>103 analyses) of analogous olivine grains (5-30 μm) isolated in CI, CM, CR, CH, CO, CV3-oxidized, CV3-reduced, C3-ungrouped (Acfer 094 and Ningqiang), L/LL 3.0-4, EH3, and Kakangari chondrite matrix. These compositions reveal that Wild 2 likely accreted a diverse assortment of material that was radially transported from various carbonaceous and ordinary chondrite-forming regions. The Wild 2 olivine includes amoeboid olivine aggregates (AOAs), refractory forsterite, type I and type II chondrule fragments and/or microchondrules, and rare relict grain compositions. In addition, we have identified one terminal particle that has no known compositional analog in the meteorite record and may be a signature of low-temperature, aqueous processing in the Kuiper Belt. The generally low Cr content of FeO-rich olivine in the Stardust samples indicates that they underwent mild thermal metamorphism, akin to a petrologic grade of 3.05-3.15.

  2. Magnesium Isotopic Composition of CAIs and Chondrules from CBb Chondrites

    NASA Astrophysics Data System (ADS)

    Gounelle, M.; Young, E. D.; Shahar, A.; Kearsley, A.

    2006-03-01

    We measured magnesium isotope ratios in 17 chondrules and 3 CAIs from the CBb chondrites HH 237 and QUE 94411 by LA-MC-ICPMS. We find no detectable 26Al excesses in the three CAIs and approximately normal (chondritic) d25Mg in CAIs and chondrules.

  3. The origin of non-porphyritic pyroxene chondrules in UOCs: Liquid solar nebula condensates?

    NASA Astrophysics Data System (ADS)

    Engler, Almut; Varela, Maria Eugenia; Kurat, Gero; Ebel, Denton; Sylvester, Paul

    2007-12-01

    A total of 56 non-porphyritic pyroxene and pyroxene/olivine micro-objects from different unequilibrated ordinary chondrites were selected for detailed studies to test the existing formation models. Our studies imply that the non-porphyritic objects represent quickly quenched liquids with each object reflecting a very complex and unique evolutionary history. Bulk major element analyses, obtained with EMPA and ASEM, as well as bulk lithophile trace element analyses, determined by LA-ICP-MS, resulted in unfractionated (solar-like) ratios of CaO/Al 2O 3, Yb/Ce as well as Sc/Yb in many of the studied objects and mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns. These features support an origin by direct condensation from a gas of solar nebula composition. Full equilibrium condensation calculations show that it is theoretically possible that pyroxene-dominated non-porphyritic chondrules with flat REE patterns could have been formed as droplet liquid condensates directly from a nebular gas strongly depleted in olivine. Thus, it is possible to have enstatite as the stable liquidus phase in a 800 × Cl dust-enriched nebular gas at a p of 10 -3 atm, if about 72% of the original Mg is removed (as forsterite?) from the system. Condensation of liquids from vapor (primary liquid condensation) could be considered as a possible formation process of the pyroxene-dominated non-porphyritic objects. This process can produce a large spectrum of chemical compositions, which always have unfractionated RLTE abundances. Late stage and subsolidus metasomatic events appear to have furthered the compositional diversity of chondrules and related objects by addition of moderately volatile and volatile elements to these objects by exchange reactions with the chondritic reservoir (e.g., V, Cr, Mn, FeO as well as K and Na). The strong fractionation displayed by the volatile lithophile elements could be indicative of a variable efficiency of metasomatic processes

  4. Titanium isotopic anomalies in chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Niemeyer, S.

    1988-02-01

    Isotopic analyses of Ti from a suite of eight Allende chondrules were conducted to determine whether any relationship exists between the composition and structure of a chondrule and the Ti isotopic patterns. Four of the eight chondrules displayed well-resolved anomalies with respect to Ti-50/Ti-46 ratio, which ranged from a Ti-50 deficit of two epsilon-units to a T-50 excess of nine epsilon-units. No clear link was found between the structure of the chondrules and the Ti anomalies (although the chondrule with by far the largest Ti isotopic anomaly was also Al-rich, suggesting that there might exist a complicated relationship between the degree of refractory enrichment and the magnitude of Ti isotopic anomalies.

  5. Fractionation of B and Li in the Solar Nebula or in Chondrules: Insight from Chondrule Formation Experiments

    NASA Technical Reports Server (NTRS)

    Xiong, Y.-L.; Hewins, R. H.; Cetiner, Z.; Wood, S. A.

    2002-01-01

    Chondrule formation experiments suggest that the B/Li ratios of synthesized chondrules are always lower than that of the starting material, and that the B/Li ratios systematically decrease with decreasing cooling rates at constant temperature. Additional information is contained in the original extended abstract.

  6. CHONDRULE FORMATION IN BOW SHOCKS AROUND ECCENTRIC PLANETARY EMBRYOS

    SciTech Connect

    Morris, Melissa A.; Desch, Steven J.; Athanassiadou, Themis; Boley, Aaron C.

    2012-06-10

    Recent isotopic studies of Martian meteorites by Dauphas and Pourmand have established that large ({approx}3000 km radius) planetary embryos existed in the solar nebula at the same time that chondrules-millimeter-sized igneous inclusions found in meteorites-were forming. We model the formation of chondrules by passage through bow shocks around such a planetary embryo on an eccentric orbit. We numerically model the hydrodynamics of the flow and find that such large bodies retain an atmosphere with Kelvin-Helmholtz instabilities allowing mixing of this atmosphere with the gas and particles flowing past the embryo. We calculate the trajectories of chondrules flowing past the body and find that they are not accreted by the protoplanet, but may instead flow through volatiles outgassed from the planet's magma ocean. In contrast, chondrules are accreted onto smaller planetesimals. We calculate the thermal histories of chondrules passing through the bow shock. We find that peak temperatures and cooling rates are consistent with the formation of the dominant, porphyritic texture of most chondrules, assuming a modest enhancement above the likely solar nebula average value of chondrule densities (by a factor of 10), attributable to settling of chondrule precursors to the midplane of the disk or turbulent concentration. We calculate the rate at which a planetary embryo's eccentricity is damped and conclude that a single planetary embryo scattered into an eccentric orbit can, over {approx}10{sup 5} years, produce {approx}10{sup 24} g of chondrules. In principle, a small number (1-10) of eccentric planetary embryos can melt the observed mass of chondrules in a manner consistent with all known constraints.

  7. Oxygen-isotopic Compositions of Low-FeO relicts in High-FeO Host Chondrules in Acfer 094, a Type 3.0 Carbonaceous Chondrite Closely Related to CM

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kunihiro, Tak; Wasson, John T.

    2006-01-01

    With one exception, the low-FeO relict olivine grains within high-FeO porphyritic chondrules in the type 3.0 Acfer 094 carbonaceous chondrite have DELTA O-17 ( = delta O-17 - 0.52 X delta O-18) values that are substantially more negative than those of the high-FeO olivine host materials. These results are similar to observations made earlier on chondrules in C03.0 chondrites and are consistent with two independent models: (1) Nebular solids evolved from low-FeO, low-DELTA O-17 compositions towards high-FeO, more positive DELTA O-17 compositions; and (2) the range of compositions resulted from the mixing of two independently formed components. The two models predict different trajectories on a DELTA O-17 vs. log Fe/Mg (olivine) diagram, but our sample set has too few values at intermediate Fe/Mg ratios to yield a definitive answer. Published data showing that Acfer 094 has higher volatile contents than CO chondrites suggest a closer link to CM chondrites. This is consistent with the high modal matrix abundance in Acfer 094 (49 vol.%). Acfer 094 may be an unaltered CM chondrite or an exceptionally matrix-rich CO chondrite. Chondrules in Acfer 094 and in CO and CM carbonaceous chondrites appear to sample the same population. Textural differences between Acfer 094 and CM chondrites are largely attributable to the high degree of hydrothermal alteration that the CM chondrites experienced in an asteroidal setting.

  8. An American on Paris: Extent of aqueous alteration of a CM chondrite and the petrography of its refractory and amoeboid olivine inclusions

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    2015-09-01

    Paris is the least aqueously altered CM chondrite identified to date, classified as subtype 2.7; however, literature data indicate that some regions of this apparently brecciated meteorite may be subtype 2.9. The suite of CAIs in Paris includes 19% spinel-pyroxene inclusions, 19% spinel inclusions, 8% spinel-pyroxene-olivine inclusions, 43% pyroxene inclusions, 8% pyroxene-olivine inclusions, and 3% hibonite-bearing inclusions. Both simple and complex inclusions are present; some have nodular, banded, or distended structures. No melilite was identified in any of the inclusions in the present suite, but other recent studies have found a few rare occurrences of melilite in Paris CAIs. Because melilite is highly susceptible to aqueous alteration, it is likely that it was mostly destroyed during early-stage parent-body alteration. Two of the CAIs in this study are part of compound CAI-chondrule objects. Their presence suggests that there were transient heating events (probably associated with chondrule formation) in the nebula after chondrules and CAIs were admixed. Also present in Paris are a few amoeboid olivine inclusions (AOI) consisting of relatively coarse forsterite rims surrounding fine-grained, porous zones containing diopside and anorthite. The interior regions of the AOIs may represent fine-grained rimless CAIs that were incorporated into highly porous forsterite-rich dustballs. These assemblages were heated by an energy pulse that collapsed and coarsened their rims, but failed to melt their interiors.

  9. The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal

    NASA Technical Reports Server (NTRS)

    Ehlers, Karin; Grove, Timothy L.; Sisson, Thomas W.; Recca, Steven I.; Zervas, Deborah A.

    1992-01-01

    The effect of oxygen fugacity, f(O2), on the partitioning behavior of Ni and Co between olivine, silicate melt, and metal was investigated in the CaO-MgO-Al2O3-SiO2-FeO-Na2O system, an analogue of a chondrule composition from an ordinary chondrite. The conditions were 1350 C and 1 atm, with values of f(O2) varying between 10 exp -5.5 and 10 exp -12.6 atm (i.e., the f(O2) range relevant for crystal/liquid processes in terrestrial planets and meteorite parent bodies). Results of chemical analysis showed that the values of the Ni and Co partitioning coefficients begin to decrease at values of f(O2) that are about 3.9 log units below the nickel-nickel oxide and cobalt-cobalt oxide buffers, respectively, near the metal saturation for the chondrule analogue composition.

  10. On origin of the olivine inclusions from the Kainsaz CO carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Lavrukhina, A. K.; Lavrentjeva, Z. A.; Ljul, A. YU.; Ignatenko, K. I.

    1993-01-01

    Olivine inclusions and chondrules of Kainsaz were formed in a unique process of dust matter melting. The elemental abundances of four fractions of olivine (01) inclusions from Kainsaz were analyzed by INAA. The inclusions of fraction A (160 less than d less than 260 microns) have Fe-Ni grains, the inclusions of fractions B (100 less than d less than 160 microns), C (160 less than d less than 260 microns), and D (260 less than d less than 360 microns) do not. The average elemental enrichment factors relative to CI chondrite for each fraction and chondrules of Kainsaz is shown. The enrichment factors of siderophile Co, Ni, Ir, Au, and non-refractory Na in all fractions are less than 1. The factors of refractory Ca, Sc, La, Sm, and Yb are comparative with the corresponding values of O1 aggregates of Allende CV (average 4.76). For chondrules of Kainsaz these values are lower. Fraction A is enriched in Co, Ir, Au, and relative Ni and CI chondrites: Ir greater than Au greater than Co. The values of (Me/Ni)inc/(Me/Ni)CI are equal to 3.25 for Ir, 2.1 for Au, and 1.2 for Co. The superabundances in Ir and Au relative to Ni witness to formation of Fe-Ni grains of O1 inclusions by agglomeration of grains enriched in refractory metal with grains enriched in non-refractory metal (Au). The enrichments of fraction A in Ca, Sc, La, Sm, and Yb witness about presence of high-temperature phases in O1 inclusions.

  11. Rock magnetic properties of dusty olivine: comparison and calibration of non-heating paleointensity methods

    NASA Astrophysics Data System (ADS)

    Lappe, S. L.; Harrison, R. J.; Feinberg, J. M.

    2012-12-01

    The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' in ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 8-27 mm3 graphite crucible, heated up to 1350°C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in fixed orientation and quenched into water in a range of known magnetic fields from 0.2 mT to 1.5 mT. We present a comparison of all non-heating methods commonly used for paleointensity determination of extraterrestrial material. All samples showed uni-directional, single-component demagnetization behaviour. Saturation REM ratio (NRM/SIRM) and REMc ratio show non-linear behaviour as function of applied field and a saturation value < 1. Using the REM' method the samples showed approximately constant REM' between 100 and 150 mT AF-field. Plotting the average values for this field range again shows non-linear behaviour and a saturation value < 1. Another approach we examined to obtain calibration curves for paleointensity determination is based on ARM measurents. We also present an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal

  12. Olivine flotation in mantle melt

    NASA Astrophysics Data System (ADS)

    Agee, Carl B.; Walker, David

    1993-01-01

    Molten komatiite and peridotite have been compressed in an octahedral multi-anvil device up to 10 GPa. Densities of the melts were measured at pressure intervals in the range 7 to 10 GPa by observing sinking and floating San Carlos olivines and synthetic forsterite marker spheres. The multi-anvil results for komatiite, when combined with piston-cylinder measurements done at 4 to 6 GPa and a calculated reference density at 10 5 Pa, yield a Birch-Murnaghan isothermal bulk modulus of (K 1900C) = 26 GPa and pressure derivative K' = 4.25. The pressure of neutral buoyancy for olivine in komatiite is confirmed to be near 8 GPa as predicted in earlier work. Olivine flotation in the experimental komatiite commences at a pressure close to where the liquidus phase changes from olivine to denser garnet, leading to the possibility of density driven crystal sorting during fractionation. Molten peridotite (KLB-1) shows an isothermal compression (2000°C) of 0.065 g cm -3 GPa -1 in the interval 10 5 Pa to 8.2 GPa. The olivine/liquid peridotite density crossover is predicted to lie between 9 and 11 GPa, indicating that olivine flotation can operate at depths of 300-500 km in a molten peridotitic mantle.

  13. Ca-Al-rich chondrules and inclusions in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1983-01-01

    Ca-Al-rich objects, hitherto mostly found in carbonaceous chondrites, are shown to be widespread, albeit rare, constituents of type 3 ordinary chondrites. Widespread occurrence and textural similarities of Ca-Al-rich chondrules to common, Mg-Fe-rich chondrules suggest that they formed by related processes. It is suggested in this article that Ca-Al-rich chondrules were formed by total melting and crystallization of heterogeneous, submillimeter- to submillimeter-sized dustballs made up of mixtures of high-temperature, Ca-Al-rich and lower-temperature, Na-K-rich components.

  14. Reinvestigation of the olivine-spinel transformation in Ni2SiO4 and the incongruent melting of Ni2SiO4 olivine

    NASA Technical Reports Server (NTRS)

    Ma, C.-B.

    1974-01-01

    The olivine-spinel transformation and the melting behavior of Ni2SiO4 were investigated over the PT ranges of 20-40 kbar, 650-1200 C, and 5-13 kbar, 1600-1700 C, respectively. It was confirmed that Ni2SiO4 olivine melts incongruently at high pressures and that it is a stable phase until melting occurs. The PT slope of the incongruent melting curve is approximately 105 bars/deg. The olivine-spinel transformation curve was shown to be a reversible univariant curve, and could be expressed by the linear equation P(bars) equals 23,300 + 11.8 x T(deg C). The transformation curve determined by Akimoto et al. (1965) is nearly parallel to that of the present work, but lies at pressures about 12% lower.

  15. Experimental constraints on the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    Chrondule formation was an important (perhaps ubiguitous) process in the early solar system, yet their origins remain elusive. Some points, however, are clear. The precursor material of chondules (dust) was rapidly heated at rates of perhaps thousands of degrees per second and was cooled more slowly. It was proposed to investigate chondrule formation in the Space Station environment via a dust-box (a chamber in which dust can be suspended, heated, and cooled. A microgravity environment is conducive to this kind of experiment because of the significant retardation of settling rates compared with a terrestrial laboratory environment. These long-duration experiments might require the development of technologies to counteract even the small, but finite and permanent gravitation field of the Space Station. Simple, but interesting experiments on dust suspensions immediately present themselves.

  16. Silica-Fayalite-bearing Chondrules in Ordinary Chondrites: Evidence of Oxidation in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Wasson, J. T.

    1993-07-01

    Most ordinary chondrite (OC) chondrules have compositions similar to those of bulk OC in terms of lithophile-element abundances. There are only a few rare chondrule classes that deviate significantly from OC-like compositions; these include Al-rich chondrules, chromitic and chromite-bearing silicate chondrules, and silica-rich chondrules. We studied 41 thin sections of unequilibrated OC and found 82 silica-bearing chondrules that can be divided into two major categories: silica-pyroxene chondrules and silica-fayalite- pyroxene chondrules. These chondrules are more common in H (>3/cm^2) than in L and LL chondrites (<1/cm^2). Silica-pyroxene chondrules consist mainly of low-Ca pyroxene and silica and have radial and porphyritic textures. Silica-bearing radial pyroxene (RP) chondrules contain 5-10 vol% silica grains; the low-Ca pyroxene is uniform in individual chondrules but varies from one chondrule to another (Fs(sub)10.2- Fs(sub)31.5). Silica-bearing porphyritic pyroxene (PP) chondrules contain 15- 40 vol% silica; the low-Ca pyroxene varies in composition within individual PP chondrules and tends to be more magnesian than in the silica-bearing RP chondrules (Fs(sub)5.0-Fs(sub)21.1). Petrographic observations suggest that some PP chondrules were not completely molten; they appear to have cooled more slowly than the silica-bearing RP chondrules. Silica-fayalite-pyroxene chondrules consist of silica, fayalite, and low-Ca pyroxene; accessory high-Ca pyroxene, plagioclase mesostasis, troilite, and metallic Fe-Ni are also present. Based on texture and the modal abundances of pyroxene and silica these chondrules can be divided into two types: (1) radial or porphyritic silica-fayalite-pyroxene chondrules containing 5-40 vol% silica and (2) granular silica-fayalite-pyroxene chondrules consisting almost entirely (90-95 vol%) of silica. Silica-fayalite-bearing pyroxene chondrules are texturally and compositionally similar to the silica-bearing pyroxene chondrules described

  17. Mineralogy and Petrology of Amoeboid Olivine Inclusions in CO3 Chondrites: Relationship to Parent-Body Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Chizmadia, Lysa J.; Rubin, Alan E.; Wasson, John T.

    2003-01-01

    Petrographic and mineralogic studies of amoeboid olivine inclusions (AOIs) in CO3 carbonaceous chondrites reveal that they are sensitive indicators of parent-body aqueous and thermal alteration. As the petrologic subtype increases from 3.0 to 3.8, forsteritic olivine (Fa(sub 0-1)) is systematically converted into ferroan olivine (Fa(sub 60-75)). We infer that the Fe, Si and O entered the assemblage along grain boundaries, forming ferroan olivine that filled fractures and voids. As temperatures increased, Fe(+2) from the new olivine exchanged with Mg(+2) from the original AOI to form diffusive haloes around low-FeO cores. Cations of Mn(+2), Ca(+2) and Cr(+3) were also mobilized. The systematic changes in AOI textures and olivine compositional distributions can be used to refine the classification of CO3 chondrites into subtypes. In subtype 3.0, olivine occurs as small forsterite grains (Fa(sub 0-1)), free of ferroan olivine. In petrologic subtype 3.2, narrow veins of FeO-rich olivine have formed at forsterite grain boundaries. With increasing alteration, these veins thicken to form zones of ferroan olivine at the outside AOI margin and within the AOI interior. By subtype 3.7, there is a fairly broad olivine compositional distribution in the range Fa(sub 63-70), and by subtype 3.8, no forsterite remains and the high-Fa peak has narrowed, Fa(sub 64-67). Even at this stage, there is incomplete equilibration in the chondrite as a whole (e.g., data for coarse olivine grains in Isna (CO3.8) chondrules and lithic clasts show a peak at Fa(sub39)). We infer that the mineral changes in A01 identified in the low petrologic types required aqueous or hydrothermal fluids whereas those in subtypes greater than or equal to 3.3 largely reflect diffusive exchange within and between mineral grains without the aid of fluids.

  18. Origin of olivine at Copernicus

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Wilhelms, D. E.

    1985-01-01

    The central peaks of Copernicus are among the few lunar areas where near-infrared telescopic reflectance spectra indicate extensive exposures of olivine. Other parts of Copernicus crater and ejecta, which were derived from highland units in the upper parts of the target site, contain only low-Ca pyroxene as a mafic mineral. The exposure of compositionally distinct layers including the presence of extensive olivine may result from penetration to an anomalously deep layer of the crust or to the lunar mantle. It is suggested that the Procellarum basin and the younger, superposed Insularum basin have provided access to these normally deep-seated crustal or mantle materials by thinning the upper crustal material early in lunar history. The occurrences of olivine in portions of the compositionally heterogeneous Aristarchus Region, in a related geologic setting, may be due to the same sequence of early events.

  19. Extremely Na- and Cl-rich chondrule from the CV3 carbonaceous chondrite Allende

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Hutcheon, I. D.; Aléon, J.; Ramon, E. C.; Krot, A. N.; Nagashima, K.; Brearley, A. J.

    2011-09-01

    We report on a study of Al3509, a large Na- and Cl-rich, radially-zoned object from the oxidized CV carbonaceous chondrite Allende. Al3509 consists of fine-grained ferroan olivine, ferroan Al-diopside, nepheline, sodalite, and andradite, and is crosscut by numerous veins of nepheline, sodalite, and ferroan Al-diopside. Some poorly-characterized phases of fine-grained material are also present; these phases contain no significant H 2O. The minerals listed above are commonly found in Allende CAIs and chondrules and are attributed to late-stage iron-alkali-halogen metasomatic alteration of primary high-temperature minerals. Textural observations indicate that Al3509 is an igneous object. However, no residual crystals that might be relicts of pre-existing CAI or chondrule minerals were identified. To establish the levels of 26Al and 36Cl originally present, 26Al- 26Mg and 36Cl- 36S isotopic systematics in sodalite were investigated. Al3509 shows no evidence of radiogenic 26Mg ∗, establishing an upper limit of the initial 26Al/ 27Al ratio of 3 × 10 -6. All sodalite grains measured show large but variable excesses of 36S, which, however, do not correlate with 35Cl/ 34S ratio. If these excesses are due to decay of 36Cl, local redistribution of radiogenic 36S ∗ after 36Cl had decayed is required. The oxygen-isotope pattern in Al3509 is the same as found in secondary minerals resulting from iron-alkali-halogen metasomatic alteration of Allende CAIs and chondrules and in melilite and anorthite of most CAIs in Allende. The oxygen-isotope data suggest that the secondary minerals precipitated from or equilibrated with a fluid of similar oxygen-isotope composition. These observations suggest that the formation of Al3509 and alteration products in CAIs and chondrules in Allende requires a very similar fluid phase, greatly enriched in volatiles (e.g., Na and Cl) and with Δ 17O ˜ -3‰. We infer that internal heating of planetesimals by 26Al would efficiently transfer

  20. Producing Ni-rich olivine phenocrysts by mixing partial melts of eclogite and peridotite: an alternative to an olivine-free source for Hawaiian shield basalts

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gaetani, G.

    2007-12-01

    It has been posited that presence of unusually Ni-rich (2500-4000 ppm) magnesian olivine phenocrysts in SiO2-enriched Hawaiian shield-building basalts, most notably the Koolau lavas, is inconsistent with a deep, olivine-bearing source rock. Instead, Sobolev et al. (2005) proposed that these lavas are generated by a multi- stage process in which partial melts of eclogite react with peridotite within the plume to form an olivine-free source rock with high Ni concentration. As the plume continues to ascend, partial melts of this "hybrid" pyroxenite mix with peridotite melts to produce SiO2- enriched Hawaiian shield-building lavas that crystallize high-Ni olivine. This model has also been used to argue for significant amounts of "hybrid" pyroxenite in the source regions of lavas from other ocean islands, continental basalts, and even MORB, implying that the upper mantle is highly heterogeneous (Sobolev et al., 2007). New experimental results demonstrate that Ni-rich magnesian olivine crystallizes from mixtures of peridotite partial melt and Ni-poor eclogite partial melt that have equilibrated with mantle olivine. This occurs because the concentration of Ni decreases linearly as eclogite partial melt is added to peridotite partial melt, whereas changing major element composition of the mixed melts causes DNi to increase hyperbolically. Experiments were conducted in which either (1) siliceous partial melt of eclogite or (2) primitive basalt was equilibrated with San Carlos olivines at 1 bar and 1201-1350°C. Experimental results demonstrate that eclogite partial melts in equilibrium with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Theoretical modeling calibrated from these experimental results suggest that reaction of siliceous eclogite melt with mantle olivine at low pressure produces a melt containing ~300 ppm Ni. Despite its low Ni content, mixing of this melt with peridotite partial melt produces a high SiO2 melt that crystallizes Ni

  1. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: the impact of redox and bulk composition on the dissolution kinetics of olivine

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Brunet, F.; Martinez, I.; Guyot, F. J.; Verlaguet, A.; Pinquier, Y.; Garcia, B.; Chardin, M.; Kohler, E.; Daval, D.

    2014-12-01

    Olivine (Mg,Fe)2SiO4, which is one of the major mineral constituents of mafic and ultramafic rocks, has an attractive potential for CO2 mineral sequestration, as it possesses a high content of carbonate-forming divalent cations and exhibits one of the highest dissolution rate amongst rock-forming minerals. This study reports drastic differences in carbonation yields between experiments performed on olivine-rich basalt samples and on olivine separates (a more restricted chemical system). Batch experiments were conducted in water at 150°C and pCO2 = 280 bars on a Mg-rich tholeiitic basalt (9.3 wt.% MgO and 12.2 wt.% CaO), composed of olivine, Ti-magnetite, plagioclase and clinopyroxene. After 45 days of reaction, 56 wt.% of the initial MgO has reacted with CO2 to form Fe-bearing magnesite (Mg0.8Fe0.2)CO3 along with minor calcium carbonates. The substantial decrease of olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt.% MgO) of similar grain size, only 5 wt.% of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt is enhanced by a factor of 40. It could be accounted for by differences in chemical and textural properties of the secondary-silica layer which covers reacted olivine grains in both types of sample. A TEM inspection of mineral surfaces shows that the thin amorphous silica layer (~100 nm) is porous in the case of the basalt sample and that it contains significant amounts of iron and aluminum. Thus, we propose that the composition of the olivine environment itself can strongly influence the olivine dissolution-carbonation process. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks. More

  2. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi

    2016-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue to the origin of our solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that leads to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s-1. Previous simulations have shown that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct N-body simulations. As found in the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-planetesimal collisions can achieve an impact velocity of about 2.5 km s-1 or higher, as protoplanets approach the isolation mass (Mp,iso). Assuming that the ejected mass is a fraction (Fch) of the colliding planetesimals’ mass, we show that the resultant abundance of chondrules is expressed well by FchMp,iso, as long as the formation of protoplanets is completed within a given disk lifetime. We perform a parameter study and examine how the abundance of chondrules and the timing of their formation change. We find that the impact jetting scenario generally works reasonably well for a certain range of parameters, while more dedicated work would be needed to include other physical processes that are neglected in this work and to examine their effects on chondrule formation.

  3. On the possible role of elemental carbon in the formation of reduced chondrules

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.; Ash, Richard D.; Lofgren, Gary E.; Zanda, Brigitte

    1994-01-01

    Recent experiments have been designed to produce chondrule textures via flash melting while simultaneously studying the nature of chondrule precursors. However, these experiments have only been concerned with silicate starting material. This is a preliminary report concerning what effects elemental carbon, when added to the silicate starting material, has on the origin of chondrules produced by flash melting.

  4. Trace Element Distribution in an Al-rich Chondrule from the Mokoia CV3 Chondrite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Shearer, C. K.; Schilk, A. J.

    2001-01-01

    We have studied an Al-rich chondrule from Mokoia. SIMS analyses of plagioclase and pyroxene show that the bulk chondrule REE pattern was originally like group II CAIs. The chondrule must have had precursor material that was a condensation product. Additional information is contained in the original extended abstract.

  5. Compositional evidence regarding the origins of rims on Semarkona chondrules

    USGS Publications Warehouse

    Grossman, J.N.; Wasson, J.T.

    1987-01-01

    The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten. ?? 1987.

  6. Forming chondrules in impact splashes. I. Radiative cooling model

    SciTech Connect

    Dullemond, Cornelis Petrus; Stammler, Sebastian Markus; Johansen, Anders

    2014-10-10

    The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of {sup 26}Al would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfer models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t {sub cool} and then drops with time t approximately as T ≅ T {sub 0}[(3/5)t/t {sub cool} + 2/5]{sup –5/3} for t > t {sub cool}. The time at which this temperature drop starts t {sub cool} depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.

  7. Chondrule Glass Alteration in Type IIA Chondrules in the CR2 Chondrites EET 87770 and EET 92105: Insights into Elemental Exchange Between Chondrules and Matrices

    NASA Technical Reports Server (NTRS)

    Burger, Paul V.; Brearley, Adrian J.

    2004-01-01

    CR2 carbonaceous chondrites are a primitive group of meteorites that preserve evidence of a variety of processes that occurred in the solar nebula as well as on asteroidal parent bodies. CR2 chondrites are distinct from other carbonaceous chondrites by (among other properties) their relatively high abundance of chondrules (50-60 vol. %) and Fe,Ni metal (5-8 vol. %) [1]. Like the CM2 chondrites, the CRs have been affected by aqueous alteration and according to [2] show a range of degrees of alteration. In weakly- altered CR chondrites, fine-grained matrices and chondrule rims have been partially altered and chondrule mesostases show evidence of incipient aqueous alteration. In these meteorites, glassy mesostasis is still common. However, some CR chondrites, (e.g. Renazzo and Al Rais) show evidence of much more extensive alteration with complete replacement of chondrule mesostasis [2] by chlorite and serpentine. Although the general characteristics of alteration of the CR chondrites have been described, the details of alteration reactions in these meteorites remain unclear. In addition, the setting for aqueous alteration is poorly understood: both asteroidal and preaccretionary alteration scenarios have been proposed [2].

  8. Olivine reactivity with CO 2 and H 2O on a microscale: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Bovet, N.; Makovicky, E.; Bechgaard, K.; Balogh, Z.; Stipp, S. L. S.

    2012-01-01

    The silicate mineral olivine, (Mg,Fe)2SiO4, reacts exothermally with CO2 and forms secondary minerals, including carbonates. Therefore olivine reaction is a promising process for carbon sequestration, to convert carbon dioxide from the atmosphere to mineral form. The purpose of this study was (1) to explore the composition, structure and reactivity of olivine surfaces during exposure to air and to water at ambient conditions, (2) to investigate the effect of elevated CO2 pressure and temperature, and (3) to identify the secondary minerals. Olivine surfaces have been examined with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), before and after reaction with CO2. Experiments were carried out in pure water equilibrated with CO2 at total pressures up to 80 bars, at temperatures 25 °C and 120 °C and both in the absence and presence of oxygen. New formation products appeared on the olivine surface as a homogeneous layer of bumps, less than 100 nm in diameter, within hours of exposure to air. Olivine crystals, exposed to water, dissolved and secondary minerals formed within days. Colonies of bacteria populated olivine surfaces on samples stored in water for more than 4 days at room temperature. Loosely attached material formed on olivine surfaces and could easily be scraped away with the AFM tip. A red precipitate formed when crystals where reacted at increased temperatures and CO2 partial pressures for less than 4 days. The new phases were identified as goethite, hematite, silica and carbonate minerals. Olivine surfaces oxidize and iron oxides form even when oxygen is absent, suggesting hydrolysis, where water is converted to hydrogen and oxygen.

  9. Implications of a phase-transition thermostat for chondrule melting

    NASA Technical Reports Server (NTRS)

    Love, S. G.

    1994-01-01

    It is widely accepted that chondrules were formed in brief, localized nebular heating episodes. Given the apparent (at least local) high efficiency of chondrule formation, these thermal events seem to have occurred at a large number of different times and/or azimuthal locations in the solar nebula. It is reasonable to expect that the chondrule-forming events, whatever their underlying cause, were not all identical, but instead occurred with some spread of heating intensities. If this was so, it is puzzling that compositional and textural evidence points to peak temperatures certainly within 1400 - 1750 C, and in most cases within 1500 - 1550 C. This problem is addressed in this article and a possible explanation for this restricted range of peak temperatures is discussed.

  10. Dynamic crystallization experiments on chondrule melts in reduced gravity

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary; Williams, R. J.

    1987-01-01

    Chondrules crystallized during the earliest formational history of the solar system; and, if crystal settling and flotation are indicators of crystallization in the presence of gravity, they formed without the influence of gravity. In fact, attempts to duplicate the crystallization history of chondrules in the laboratory have met with limited success, because of the difficulty of comparing objects formed under the influence of gravity with objects that did not. These comparisons are difficult because there are several recognized features introduced by the presence of gravity and no doubt some which are not yet recognized. As a result there are several microscale and macroscale aspects of chondrule petrology which are difficult to understand quantitatively. Most of the features relate to the settling or flotation of early formed crystals. The proposed experiments are briefly described.

  11. Lithic fragments, glasses and chondrules from Luna 16 fines.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Prinz, M.; Green, J. A.; Kurat, G.

    1972-01-01

    Electron probe determination of the bulk compositions of igneous and microbreccia lithic fragments, glasses and chondrules from Luna 16 fines and of the compositions of minerals in basaltic lithic fragments. It is found that the Luna 16 fines have a composition more similar to that of Apollo 11 than to those of Apollo 12 and 14 materials. The compositions of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D are similar. The glasses are compositional analogs of the lithic fragments and are produced largely from igneous rocks. The Luna 16 chondrules have an anorthositic-noritic-troctolitic composition. Evidence for the presence of ferric iron and water-bearing minerals in the Luna 16 material is not obtained. The occurrence of a great variety of igneous rocks in the material confirms an earlier conclusion that large-scale melting or partial melting to a considerable depth and an extensive igneous differentiation must have occurred on the moon.

  12. Supernova olivine from cometary dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  13. The formation of chondrules at high gas pressures in the solar nebula.

    PubMed

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula. PMID:11099410

  14. Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Rubin, A. E.; Taylor, G. J.; Keil, K.

    1984-09-01

    Variations between mean matrix compositions of individual type 3 ordinary chondrites are nearly fivefold, and partly reflect systematic differences between H, L, and LL matrices. Such variations are probably the result of a nebular separation of feldspathic material and ferromagnesian silicates. While compositions of chondrules and their matrix rims are normally unrelated, rim compositions are correlated with those of matrix lumps inside chondrules. Matrix lumps are as heterogeneous as chondrules, but mean chondrule and matrix compositions differ. Since bulk compositions of matrix lumps and rims have probably not changed significantly since their formation, the present matrix samples cannot represent typical chondrule precursor materials.

  15. Rock magnetic properties of dusty olivine: a potential carrier of pre-accretionary remanence in unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Lappe, S. C. L. L.; Harrison, R. J.; Feinberg, J. M.

    2012-04-01

    The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' grains within ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 2-3 mm3 graphite crucible, heated up to 1350 °C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in a fixed orientation and quenched into water in a range of known magnetic fields, ranging from 0.2 mT to 1.5 mT. We present here for the first time an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal curve (FORC) diagram to generate a Preisach distribution of coercivities and interaction fields within the sample and then physically models the acquisition of TRM as a function of magnetic field, temperature and time using thermal relaxation theory. The comparison of observed and calculated NRM demagnetisation spectra is adversely effected by a large population of particles in the single-vortex state. Comparison of observed and calculated REM' curves, however, yields much closer agreement in the high-coercivity SD-dominated range. Calculated values of the average REM' ratio show excellent agreement with the experimental

  16. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.; Needham, Andrew W.; Armytage, Ros; Georg, Bastian; Abel, Richard L.; Kurahashi, Erika; Coles, Barry J.; Rehkämper, Mark; Russell, Sara S.

    2010-08-01

    We combined micro computer tomography with Fe and Si isotope measurements of Mokoia, Allende and Grosnaja chondrules. Ten Mokoia chondrules contain 0.9 to 11.8 vol.% opaque phases (metal + sulfide), and 6 Allende chondrules contain 0.0 to 6.6 vol.% opaque phases. Hence, the Fe isotope composition of many chondrules is dominated by the Fe isotope composition of their opaque phases. We studied Fe isotopes of 35 bulk chondrules. The range is different for each of the three meteorites studied and largest for Allende with δ56Fe ranging from - 0.82 to + 0.37‰. Six out of seven chondrules analysed for their Si isotope composition in Mokoia and Grosnaja have similar δ29Si of around - 0.12‰. One anomalous chondrule in Mokoia has a δ29Si of + 0.58‰. We exclude isotopically heterogeneous chondrule precursors and different isotopic chondrule reservoirs as the source of the observed Fe isotope variation among bulk chondrules. We conclude that the observed bulk chondrule Fe isotope variation is the result of evaporation and re-condensation processes in a nebula setting with high dust densities, required to explain the comparatively low isotope fractionations. Subsequent parent body alteration slightly overprinted this pre-accretionary Fe isotope variation.

  17. Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite

    SciTech Connect

    Ebel, D.S.; Weisberg, M.K.; Hertz, J.; Campbell, A.J.

    2009-03-31

    We used synchrotron X-ray microtomography to image in 3-dimensions (3D) eight whole chondrules in a {approx}1 cm{sup 3} piece of the Renazzo (CR) chondrite at {approx}17 {micro}m per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole-chondrule Mg/Si ratios with a supra-chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.

  18. Papers presented to the Conference on Chondrules and the Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) producing chondrules; (2) carbons, CAI's, and chondrules; (3) large scale processes in the solar nebula; (4) chondrule-matrix relationships in chondritic meteorites; (5) overview of nebula models; (6) constraints placed on the nature of chondrule precursors; (7) turbulent diffusion and concentration of chondrules in the protoplanetary nebula; (8) heating and cooling in the solar nebula; (9) crystallization trends of precursor pyroxene in ordinary chondrites; (10) precipitation induced vertical lightning in the protoplanetary nebula; (11) the role of chondrules in nebular fractionations of volatiles and other elements; (12) astronomical observations of phenomena in disks; (13) experimental constraints on models for origins of chondrules, and various other topics.

  19. Amoeboid olivine aggregates from CH carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Park, Changkun; Nagashima, Kazuhide

    2014-08-01

    Amoeboid olivine aggregates (AOAs) in CH carbonaceous chondrites are texturally and mineralogically similar to those in other carbonaceous chondrite groups. They show no evidence for alteration and thermal metamorphism in an asteroidal setting and consist of nearly pure forsterite (Fa<3; in wt%, CaO = 0.1-0.8, Cr2O3 = 0.04-0.48; MnO < 0.5), anorthite, Al-diopside (in wt%, Al2O3 = 0.7-8.1; TiO2 < 1), Fe,Ni-metal, spinel, and, occasionally, low-Ca pyroxene (Fs1Wo2-3), and calcium-aluminum-rich inclusions (CAIs). The CAIs inside AOAs are composed of hibonite, grossite, melilite (Åk13-44), spinel, perovskite, Al,Ti-diopside (in wt%, Al2O3 up to 19.6; TiO2 up to 13.9), and anorthite. The CH AOAs, including CAIs within AOAs, have isotopically uniform 16O-rich compositions (average Δ17O = -23.4 ± 2.3‰, 2SD) and on a three-isotope oxygen diagram plot along ∼slope-1 line. The only exception is a low-Ca pyroxene-bearing AOA 1-103 that shows a range of Δ17O values, from -24‰ to -13‰. Melilite, grossite, and hibonite in four CAIs within AOAs show no evidence for radiogenic 26Mg excess (δ26Mg). In contrast, anorthite in five out of six AOAs measured has δ26Mg corresponding to the inferred initial 26Al/27Al ratio of (4.3 ± 0.7) × 10-5, (4.2 ± 0.6) × 10-5, (4.0 ± 0.3) × 10-5, (1.7 ± 0.2) × 10-5, and (3.0 ± 2.6) × 10-6. Anorthite in another AOA shows no resolvable δ26Mg excess; an upper limit on the initial 26Al/27Al ratio is 5 × 10-6. We infer that CH AOAs formed by gas-solid condensation and aggregation of the solar nebula condensates (forsterite and Fe,Ni-metal) mixed with the previously formed CAIs. Subsequently they experienced thermal annealing and possibly melting to a small degree in a 16O-rich gaseous reservoir during a brief epoch of CAI formation. The low-Ca pyroxene-bearing AOA 1-103 may have experienced incomplete melting and isotope exchange in an 16O-poor gaseous reservoir. The lack of resolvable δ26Mg excess in melilite, grossite, and

  20. How to form planetesimals from mm-sized chondrules and chondrule aggregates

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2015-07-01

    The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org

  1. Refractory residues, condensates and chondrules from solar furnace experiments

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1982-01-01

    Vertical access solar furnace experiments have produced refractory residues, condensates and chondrules that are similar to components of chondritic meteorites. In particular, Ca-Al-rich refractory residues similar in chemistry to inclusions in carbonaceous chondrites have been produced by partial evaporation of basaltic bulk rock samples. Fe-Mg-Si-rich condensates with distinctive microbotryoidal morphology have been collected from the same sample runs. Particle coatings and aggregates with virtually identical microbotryoidal morphology and major element chemistry have been identified in both the Allende and Murchison meteorites. Spattered drops from melt beads undergoing heating and partial evaporation resemble some meteoritic chondrules in their mineralogies, textures, grain size, and sorting. The spatter mechanism is highly efficient in the production of chondrules. If any of the refractory inclusions in chondrites are, in fact, partial evaporation residues, many meteoritic fluid drop chondrules must have been formed by this process. The hot central portion of the solar nebula, acting on a cloud of dust and gas, is the probable source of heat required to produce the fractionated chemistry and physical state of many of the components of chondritic meteorites.

  2. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  3. Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: constraints on the chondrule formation environment

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante S.; Buseck, Peter R.; Zega, Thomas J.

    2001-04-01

    The chemistry and mineralogy of a group of opaque mineral assemblages in the matrix of the Bishunpur LL3.1 ordinary chondrite provide insight into the nebular environment in which they formed. The assemblages consist of a kamacite (Fe,Ni) core that is rimmed by troilite (FeS) and fayalite (Fe 2SiO 4). Accessory phases in the rims include silica (SiO 2), chromite (FeCr 2O 4), whitlockite (Ca 3(PO 4) 2), maricite (FeNaPO 4), magnetite (Fe 3O 4), and tetrataenite (FeNi). We suggest that the metal melted in and equilibrated with an igneous chondrule under high-temperature, reducing conditions. In this environment the molten alloys incorporated varied amounts of Si, Ni, P, Cr, and Co, depending on the oxygen fugacity and temperature of the melt. Some of the metal was subsequently expelled from the chondrule interiors into the surrounding nebular gas. As the temperature dropped, the alloy solidified and volatile elements corroded the metal. The main reaction products were troilite and fayalite. Thermodynamic equilibrium calculations are used to constrain the conditions under which these two phases can form simultaneously in the solar nebula. Kinetic factors are used to place a lower limit on the formation temperature. We determine that the metal corroded between 1173 and 1261 K at a total pressure in the range of 10 -5.0 to 10 -4.1 bars and a dust/gas ratio of 302 to 355 x relative to solar composition. These conditions are consistent with our model that the metal corroded in a dust-rich region of the solar nebula that was cooling after a chondrule formation event.

  4. 26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Marhas, K. K.; Krot, A. N.; Goswami, J. N.; Jones, R. H.

    2009-09-01

    The 26Al- 26Mg isotope systematics in 33 petrographically and mineralogically characterized plagioclase-rich chondrules (PRCs) from 13 carbonaceous chondrites (CCs) - one ungrouped (Acfer 094), six CR, five CV, and one CO - reveal large variations in the initial 26Al/ 27Al ratio, ( 26Al/ 27Al) 0. Well-resolved 26Mg excesses (δ 26Mg) from the in situ decay of the short-lived nuclide 26Al ( t1/2 ˜ 0.72 Ma) were found in nine chondrules, two from Acfer 094, five from the CV chondrites, Allende and Efremovka, and one each from the paired CR chondrites, EET 92147 and EET 92042, with ( 26Al/ 27Al) 0 values ranging from ˜3 × 10 -6 to ˜1.5 × 10 -5. Data for seven additional chondrules from three CV and two CR chondrites show evidence suggestive of the presence of 26Al but do not yield well defined values for ( 26Al/ 27Al) 0, while the remaining chondrules do not contain excess radiogenic 26Mg and yield corresponding upper limits of (11-2) × 10 -6 for ( 26Al/ 27Al) 0. The observed range of ( 26Al/ 27Al) 0 in PRCs from CCs is similar to the range seen in chondrules from unequilibrated ordinary chondrites (UOCs) of low metamorphic grade (3.0-3.4). However, unlike the UOC chondrules, there is no clear trend between the ( 26Al/ 27Al) 0 values in PRCs from CCs and the degree of thermal metamorphism experienced by the host meteorites. High and low values of ( 26Al/ 27Al) 0 are found equally in PRCs from both CCs lacking evidence for thermal metamorphism (e.g., CRs) and CCs where such evidence is abundant (e.g., CVs). The lower ( 26Al/ 27Al) 0 values in PRCs from CCs, relative to most CAIs, are consistent with a model in which 26Al was distributed uniformly in the nebula when chondrule formation began, approximately a million years after the formation of the majority of CAIs. The observed range of ( 26Al/ 27Al) 0 values in PRCs from CCs is most plausibly explained in terms of an extended duration of ˜2-3 Ma for the formation of CC chondrules. This interval is in sharp

  5. Multiple origins for olivine at Copernicus crater

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Pieters, Carle M.; Head, James W.

    2015-06-01

    Multiple origins for olivine-bearing lithologies at Copernicus crater are recognized based on integrated analysis of data from Chandrayaan-1 Moon Mineralogy Mapper (M3), Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) and Kaguya Terrain Camera (TC). We report the diverse morphological and spectral character of previously known olivine-bearing exposures as well as the new olivine occurrences identified in this study. Prominent albedo differences exist between olivine-bearing exposures in the central peaks and a northern wall unit (the latter being ∼40% darker). The low-albedo wall unit occurs as a linear mantling deposit and is interpreted to be of impact melt origin, in contrast with the largely unmodified nature of olivine-bearing peaks. Small and localized occurrences of olivine-bearing lithology have also been identified on the impact melt-rich floor, representing a third geologic setting (apart from crater wall and peaks). Recent remote sensing missions have identified olivine-bearing exposures around lunar basins (e.g. Yamamoto et al., 2010; Pieters et al., 2011; Kramer et al., 2013) and at other craters (e.g. Sun and Li, 2014), renewing strong interest in its origin and provenance. A direct mantle exposure has commonly been suggested in this regard. Our detailed observations of the morphological and spectral diversity in the olivine-bearing exposures at Copernicus have provided critical constraints on their origin and source regions, emphasizing multiple formation mechanisms. These findings directly impact the interpretation of olivine exposures elsewhere on the Moon. Olivine can occur in diverse environments including an impact melt origin, and therefore it is unlikely for all olivine exposures to be direct mantle occurrences as has generally been suggested.

  6. Contemporaneous formation of chondrules and refractory inclusions in the early Solar System.

    PubMed

    Itoh, Shoichi; Yurimoto, Hisayoshi

    2003-06-12

    Chondrules and calcium-aluminium-rich inclusions (CAIs) are preserved materials from the early history of the Solar System, where they resulted from thermal processing of pre-existing solids during various flash heating episodes which lasted for several million years. CAIs are believed to have formed about two million years before the chondrules. Here we report the discovery of a chondrule fragment embedded in a CAI. The chondrule's composition is poor in 16O, while the CAI has a 16O-poor melilite (Ca, Mg, Al-Silicate) core surrounded by a 16O-rich igneous mantle. These observations, when combined with the previously reported CAI-bearing chondrules, strongly suggest that the formation of chondrules and CAIs overlapped in time and space, and that there were large fluctuations in the oxygen isotopic compositions in the solar nebula probably synchronizing astrophysical pulses. PMID:12802328

  7. The ascent of kimberlite: Insights from olivine

    NASA Astrophysics Data System (ADS)

    Brett, R. C.; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.

    2015-08-01

    Olivine xenocrysts are ubiquitous in kimberlite deposits worldwide and derive from the disaggregation of mantle-derived peridotitic xenoliths. Here, we provide descriptions of textural features in xenocrystic olivine from kimberlite deposits at the Diavik Diamond Mine, Canada and at Igwisi Hills volcano, Tanzania. We establish a relative sequence of textural events recorded by olivine during magma ascent through the cratonic mantle lithosphere, including: xenolith disaggregation, decompression fracturing expressed as mineral- and fluid-inclusion-rich sealed and healed cracks, grain size and shape modification by chemical dissolution and abrasion, late-stage crystallization of overgrowths on olivine xenocrysts, and lastly, mechanical milling and rounding of the olivine cargo prior to emplacement. Ascent through the lithosphere operates as a "kimberlite factory" wherein progressive upward dyke propagation of the initial carbonatitic melt fractures the overlying mantle to entrain and disaggregate mantle xenoliths. Preferential assimilation of orthopyroxene (Opx) xenocrysts by the silica-undersaturated carbonatitic melt leads to deep-seated exsolution of CO2-rich fluid generating buoyancy and supporting rapid ascent. Concomitant dissolution of olivine produces irregular-shaped relict grains preserved as cores to most kimberlitic olivine. Multiple generations of decompression cracks in olivine provide evidence for a progression in ambient fluid compositions (e.g., from carbonatitic to silicic) during ascent. Numerical modelling predicts tensile failure of xenoliths (disaggregation) and olivine (cracks) over ascent distances of 2-7 km and 15-25 km, respectively, at velocities of 0.1 to >4 m s-1. Efficient assimilation of Opx during ascent results in a silica-enriched, olivine-saturated kimberlitic melt (i.e. SiO2 >20 wt.%) that crystallizes overgrowths on partially digested and abraded olivine xenocrysts. Olivine saturation is constrained to occur at pressures <1 GPa; an

  8. Aligned olivine in the Springwater pallasite

    NASA Astrophysics Data System (ADS)

    Fowler-Gerace, Neva A.; Tait, Kimberly T.; Moser, Desmond E.; Barker, Ivan; Tian, Bob Y.

    2016-04-01

    The mechanism by which olivine grains became embedded within iron-nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Using electron backscatter diffraction, we have collected crystallographic orientation data for 296 crystals within ˜65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally defined domains. Combined with a thorough characterization of large-scale Springwater textures, the definitively nonrandom spatial distribution of olivine orientations provides clues regarding the nature of the olivine's initial formation environment as well as the sequence of events subsequent to metal incorporation.

  9. Aligned olivine in the Springwater pallasite

    NASA Astrophysics Data System (ADS)

    Fowler-Gerace, Neva A.; Tait, Kimberly T.; Moser, Desmond E.; Barker, Ivan; Tian, Bob Y.

    2016-06-01

    The mechanism by which olivine grains became embedded within iron-nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Using electron backscatter diffraction, we have collected crystallographic orientation data for 296 crystals within ˜65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally defined domains. Combined with a thorough characterization of large-scale Springwater textures, the definitively nonrandom spatial distribution of olivine orientations provides clues regarding the nature of the olivine's initial formation environment as well as the sequence of events subsequent to metal incorporation.

  10. Crystallography and magnetic domain states of dusty olivine observed by electron holography: implications for recording of magnetic fields in the proto-planetary disc

    NASA Astrophysics Data System (ADS)

    Church, N. S.; Lappe, S. C. L. L.; Kasama, T.; da Silva Fanta, A. B.; Dunin-Borkowski, R. E.; Feinberg, J. M.; Russell, S.; Harrison, R. J.

    2012-04-01

    Dusty olivines are chondrules found in some L and LL chondrites which contain iron-nickel nanoparticles that are believed to have exsolved from the host olivine in a brief heating event shortly after chondrule formation. Geochemical analyses indicate that the iron particles have not equilibrated with the surrounding material, suggesting that they have the potential to record the magnetic field of the early solar system and hence evaluate proposed mechanisms for the heating event and the chondrules' proximity to the strongly magnetic young sun. However, the ability of these particles to preserve primary magnetic signals over timescales on the order of the age of the solar system is dependent on their crystallography and the domain states of the magnetic carriers. We employ the transmission electron microscopy technique of electron holography to directly observe the magnetic domain states in the iron-nickel particles in synthetic dusty olivine and examine if they have the characteristics required for stable magnetic recording. Particles exhibiting pseudo-single domain (PSD) vortex states are common, but uniformly magnetised single domain (SD) behaviour is observed in elongated particles with a wide range of sizes. These observations of domain state allow the determination of the PSD-SD boundary in iron as a function of particle size and elongation and the location of the boundary as observed in experiments is broadly consistent with theoretical predictions. The holography technique also provides quantitative measurements of the magnetic moment which can be used to accurately calculate the volume of nanoparticles and infer the particle shape in three dimensions from a single measurement. Combining the volume information with constraints on coercivity, the thermal relaxation characteristics of the particles can be calculated and we demonstrate that the high-coercivity component of remanence would remain stable for 4.6 Ga, even at temperatures approaching the Curie

  11. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  12. Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1985-01-01

    The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth.

  13. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  14. Electrical discharge heating of chondrules in the solar nebula

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Keil, Klaus; Scott, Edward R. D.

    1995-01-01

    We present a rudimentary theoretical assessment of electrical discharge heating as a candidate mechanism for the formation of chondrules in the solar nebula. The discharge model combines estimates of the properties of the nebula, a mechanism for terrestrial thunderstorm electrification, and some fundamental electrical properties of gases. Large uncertainties in the model inputs limit these calculations to order-or-magnitude accuracy. Despite the uncertainty, it is possible to estimate an upper limit to the efficiency of nebular discharges at melting millimeter-sized stony objects. We find that electrical arcs analogous to terrestrial lightning could have occurred in the nebula, but that under most conditions these discharges probably could not have melted chondrules. Despite our difficulties, we believe the topic worthy of further investigation and suggest some experiments which could improve our understanding of nebular discharges.

  15. Turbulent Concentration of Chondrules: Size Distribution and Multifractal Scaling

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Paque, Julie M.; Dobrovolskis, Anthony R.

    1999-01-01

    Size-selective concentration of particles in 3D turbulence may be related to collection of chondrules and other constituents into primitive bodies in a weakly turbulent protoplanetary nebula. In the terrestrial planet region, both the characteristic size and narrow size distribution of chondrules are explained, whereas "fluffier" particles would be concentrated in lower density, or more intensely turbulent, regions of the nebula. The spatial distribution of concentrated particle density obeys multifractal scaling, suggesting a dose tie to the turbulent cascade process. This scaling behavior allows predictions of the concentration probabilities to be made in the protoplanetary nebula, which are so large (> 10(exp 3) - 10(exp 4)) that further studies must be made of the role of mass loading.

  16. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    NASA Astrophysics Data System (ADS)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  17. Unambiguous voids in Allende chondrules and refractory inclusions

    SciTech Connect

    Murray, J.; Boesenberg, J.S.; Ebel, D.S.

    2003-03-26

    Void space can be caused by thin section preparation. 3-dimensional tomographic analysis, prior to sectioning, shows that several very different types of voids are abundant in Allende meteorite inclusions. Formation models are proposed for each type. Void spaces in the components of chondritic meteorites have received little attention, perhaps due to ambiguities attendant upon their very existence, and also their origin. Computer-aided microtomography allows the 3-dimensional imaging and analysis of void spaces within solid objects. Several striking examples of void spaces, apparently enclosed by solid material, resulted from our observations of large chondrules and CAIs from the Allende (CV3) meteorite. These voids are 'unambiguous' because their existence cannot be ascribed to plucking during sample preparation, as would be the case in traditional 2-dimensional thin section petrography. Although we focus on large objects in Allende, preliminary observations indicate that void spaces are prevalent in chondrules and refractory inclusions in many meteorites. Voids remain ambiguous, however, because their structure and appearance vary between chondrules and CAIs, suggesting there may be different causes of void formation in particular objects. Some voids appear to have formed as a result of dilation during cooling. Others are evidence of hydrothermal leaching on the parent body followed by partial chemical replacement. Alternatively, vapor-mediated leaching and replacement may have occurred in the nebula. Yet another possibility is internal brecciation caused by impact, while the object was still free floating in the nebula, and perhaps still partially molten.

  18. Crystallization kinetics of olivine-phyric shergottites

    NASA Astrophysics Data System (ADS)

    Ennis, Megan E.; McSween, Harry Y.

    2014-08-01

    Crystal size distribution (CSD) and spatial distribution pattern (SDP) analyses are applied to the early crystallizing phases, olivine and pyroxene, in olivine-phyric shergottites (Elephant moraine [EET] 79001A, Dar al Gani [DaG] 476, and dhofar [Dho] 019) from each sampling locality inferred from Mars ejection ages. Trace element zonation patterns (P and Cr) in olivine are also used to characterize the crystallization history of these Martian basalts. Previously reported 2-D CSDs for these meteorites are re-evaluated using a newer stereographically corrected methodology. Kinks in the olivine CSD plots suggest several populations that crystallized under different conditions. CSDs for pyroxene in DaG 476 and EET 79001A reveal single populations that grew under steady-state conditions; pyroxenes in Dho 019 were too intergrown for CSD analysis. Magma chamber residence times of several days for small grains to several months for olivine megacrysts are calculated using the CSD slopes and growth rates inferred from previous experimental data. Phosphorus imaging in olivines in DaG 476 and Dho 019 indicate rapid growth of skeletal, sector-zoned, or patchy cores, probably in response to delayed nucleation, followed by slow growth, and finally rapid dendritic growth with back-filling to form oscillatory zoning in rims. SPD analyses indicate that olivine and pyroxene crystals grew or accumulated in clusters rather than as randomly distributed grains. These data reveal complex solidification histories for Martian basalts, and are generally consistent with the formation at depth of olivine megacryst cores, which were entrained in ascending magmas that crystallized pyroxenes, small olivines, and oscillatory rims on megacrysts.

  19. Experimental Study of Olivine-rich Troctolites

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2014-12-01

    This experimental study is designed to complement field observations of olivine-rich troctolites in ophiolites and from mid-ocean ridges. The olivine-rich troctolites are characterized by high volume proportion of olivine with interstitial plagioclase and clinopyroxene. Typically the clinopyroxene occurs in the form of few large, poikilitic grains. The primary purpose of this study is to investigate the effects of cooling process on the geometry of the interstitial phases (clinopyroxene and plagioclase). Experiments are conducted in a piston cylinder apparatus by first annealing olivine plus a basaltic melt with a composition designed to be in equilibrium with four phases at ~ 1 GPa and 1250ºC. Initially, we anneal the olivine-basalt aggregates at 1350 °C and 0.7 GPa for one week to produce a steady state microstructure. At this temperature only olivine and minor opx are present as crystalline phases. We then cool the samples over two weeks below their solidus temperature, following different protocols. The post-run samples are sectioned, polished, and imaged at high resolution and analyzed by using a field emission SEM. Initial observations show that under certain conditions clinopyroxene nucleates distributed throughout the aggregate at many sites, forming relatively small, rounded to near euhedral grains. Under certain conditions few cpx grains nucleate and grow with a poikilitic shape, partially or fully enclosing olivine grains, as is observed in natural samples. As for partially molten aggregates quenched form the annealing temperature, the microstructure will be characterized by tracing phase boundaries on screen by using ImageJ software. The geometry of the interstitial phases will be quantified by determining the grain boundary wetness, in this case the ratio of the length of polyphase to single phase (olivine-olivine) boundaries. Compositional data will also be used to study the change in major element compositions before and after the cooling process.

  20. Olivine-dominated asteroids: Mineralogy and origin

    NASA Astrophysics Data System (ADS)

    Sanchez, Juan A.; Reddy, Vishnu; Kelley, Michael S.; Cloutis, Edward A.; Bottke, William F.; Nesvorný, David; Lucas, Michael P.; Hardersen, Paul S.; Gaffey, Michael J.; Abell, Paul A.; Corre, Lucille Le

    2014-01-01

    Olivine-dominated asteroids are a rare type of objects formed either in nebular processes or through magmatic differentiation. The analysis of meteorite samples suggest that at least 100 parent bodies in the main belt experienced partial or complete melting and differentiation before being disrupted. However, only a few olivine-dominated asteroids, representative of the mantle of disrupted differentiated bodies, are known to exist. Due to the paucity of these objects in the main belt their origin and evolution have been a matter of great debate over the years. In this work we present a detailed mineralogical analysis of twelve olivine-dominated asteroids. We have obtained near-infrared (NIR) spectra (0.7-2.4 μm) of asteroids (246) Asporina, (289) Nenetta, (446) Aeternitas, (863) Benkoela, (4125) Lew Allen and (4490) Bamberry. Observations were conducted with the Infrared Telescope Facility (IRTF) on Mauna Kea, Hawai'i. This sample was complemented with spectra of six other olivine-dominated asteroids including (354) Eleonora, (984) Gretia, (1951) Lick, (2501) Lohja, (3819) Robinson and (5261) Eureka obtained by previous workers. Within our sample we distinguish two classes, one that we call monomineralic-olivine asteroids, which are those whose spectra only exhibit the 1 μm feature, and another referred to as olivine-rich asteroids, whose spectra exhibit the 1 μm feature and a weak (Band II depth ˜4%) 2 μm feature. For the monomineralic-olivine asteroids the olivine chemistry was found to range from ˜Fo49 to Fo70, consistent with the values measured for brachinites and R chondrites. In the case of the olivine-rich asteroids we determined their olivine and low-Ca pyroxene abundance using a new set of spectral calibrations derived from the analysis of R chondrites spectra. We found that the olivine abundance for these asteroids varies from 0.68 to 0.93, while the fraction of low-Ca pyroxene to total pyroxene ranges from 0.6 to 0.9. A search for dynamical

  1. Minimum radius of chondrules formed through the shock-wave heating events.

    NASA Astrophysics Data System (ADS)

    Miura, H.; Nakamoto, T.

    Most of chondritic meteorites that fall onto the Earth contain spherical igneous rocks, which have a typical size distribution between about ten microns to a few mm. These are named chondrules. They are considered to have formed through flash heating events in the solar nebula; precursor dust particles were heated and melted, and cooled again to solidify in a short period of time. The characteristic size distribution of chondrule is expected to have a relation to the chondrule formation mechanism. We report that chondrules formed through the shock-wave heating events have minimum size below which no chondrule exists. The shock wave heating is one of the most popular mechanisms for chondrule formation. For example, Iida et al. (2001) numerically simulated the postshock region taking into account many physical and chemical processes and showed that precursor particles can form chondrules if the shock meets a certain density and velocity conditions. They also showed that the formed chondrules in the postshock region are exposed by the hot gas in that region until the gas cools by emission of radiation. The duration of the phase is about a few hundreds seconds for a typical shock wave. In this phase, the temperature of the chondrule is kept very high (more than 1500 K) by the thermal conduction with the hot gas. Then, it is naturally expected that the evaporation from the surface of the chondrule should take place and the radius of the chondrule should shrink. Small chondrules may vanish in the postshock hot gas region. We performed numerical simulations of chondrule formation and evaporation with a shock-wave heating model. And we found that precursor particles with various radii can form chondrules once, but only large particles whose initial radii are larger than about 10 microns can survive in the postshock hot gas. Moreover, the final radii of survived particles are larger than about 10 microns for typical shock velocity vs and gas number density npre (vs = 5 - 30

  2. Clear Evidence for Fe-60 in Silicate from a Semarkona Chondrule

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Tachibana, S.

    2004-01-01

    Fe-60 (t(sub 1/2) = 1.5 Ma) is key to understanding the sources of short-lived radionuclides in the early solar system because it is the only one among those known from meteoritic material that is produced only in stars [1]. Within the last year, it has become clear that Fe-60 was present in sulfides from primitive ordinary and enstatite chondrites in amounts sufficient to require a recent stellar input [2-5]. The sulfide data indicate an initial Fe-60/Fe-56 ratio for the early solar system of between approx. 3 10(exp -7) and approx. 1.6 10(exp -6) [2-4]. However, iron (and nickel?) in sulfides is easily mobilized by very mild heating [e.g., 6], so there is considerable uncertainty over the true initial ratio. To resolve this uncertainty, we have begun a search for evidence of Fe-60 in silicates from primitive chondrites. In olivine from type 3.0-3.1 ordinary chondrites, diffusive exchange of iron and magnesium has not occurred to any significant degree, and diffusive exchange in pyroxene is slower [7]. However, the relatively small elemental fractionation of iron from nickel in silicates, coupled with the fact that the daughter nuclide, Ni-60, makes up approx. 26 % of normal nickel, make detection of excesses of radiogenic Ni-60 very difficult. Fortunately, we have found a fine-grained radiating-pyroxene chondrule in Semarkona (LL3.0) with a very high Fe/Ni ratio that gives clear evidence of Fe-60.

  3. Extremely NA and CL Rich Chondrule AL3509 from the Allende Meteorite

    SciTech Connect

    Wasserburg, G J; Hutcheon, I D; Aleon, J; Ramon, E C; Krot, A N; Nagashima, K; Brearley, A J

    2011-04-07

    We report on the mineralogy, petrology, chemistry, oxygen isotopes, {sup 26}Al-{sup 26}Mg and {sup 36}Cl-{sup 36}S isotope systematics of the Allende chondrule Al3509 discovered and described by [1] and [2]. This spherical object ({approx}1cm {phi}) contains {approx}10% Na and 1% Cl, and nearly pure {sup 129}Xe [({sup 129}Xe/{sup 127}I) = 1.1 x 10{sup -4} (3)]. This high enrichment in halogens makes it of interest in searching for radiogenic {sup 36}S from {sup 36}Cl (t{sub 1/2} {approx} 0.3 Ma) decay. While there is strong evidence for the presence of {sup 36}Cl in sodalite and wadalite in CV CAIs [4,5], some sodalites show no evidence for excesses of {sup 36}S ({sup 36}S*). In contrast, high inferred initial {sup 36}Cl/{sup 35}Cl = 2 x 10{sup -5} has been found in wadalite from the Allende CAI AJEF [5]. The observed {sup 36}S excesses in sodalite are not correlated with radiogenic {sup 26}Mg, decay product of {sup 26}Al (t{sub 1/2} {approx} 0.72 Ma) [4]. From the inferred initial {sup 36}Cl/{sup 35}Cl ratios and consideration of both AGB and SNe stellar sources, {sup 36}Cl must be the product of charged particle irradiation within the early solar system. However, neither the specific nuclear production mechanism nor the irradiation site have been identified. Both sodalite and wadalite are found as late stage alteration products of CAIs together with grossular, monticellite, Al-rich pyroxene, wollastonite, nepheline, ferroan olivine, and ferroan pyroxenes. This late-stage alteration has been found to extensively change some CAIs in Allende, but clear residues of spinel, hibonite and Wark-Lovering rims are recognizable remnants of the original CAIs. The nature of the widespread volatile alteration process as well as that of the fluid phase remain controversial.

  4. Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts

    NASA Astrophysics Data System (ADS)

    Wang, Zhengrong; Gaetani, Glenn A.

    2008-05-01

    Olivine is abundant in Earth’s upper mantle and ubiquitous in basaltic lavas, but rarely occurs in eclogite. Partial melts of eclogite are, therefore, not in equilibrium with olivine, and will react with peridotite as they migrate through the upper mantle. If such melts erupt at Earth’s surface, their compositions will be highly modified and they may be olivine-saturated. We investigated experimentally the reaction between olivine and siliceous eclogite partial melt, and determined element partitioning between olivine and the melt produced by this reaction. Our results demonstrate that mixing of reacted eclogite partial melt with primitive basalt is capable of producing the positive correlation between melt SiO2 content and olivine Ni content observed in some Hawaiian lavas. Experiments were carried out by equilibrating eclogite partial melt or basalt with San Carlos olivine at 1 bar and 1,201 1,350°C. Our results show that eclogite partial melts equilibrated with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Further, olivine-melt partition coefficients for Ni measured in these experiments are significantly larger than for basalt. Mixing of these melts with primitive Hawaiian tholeiitic lavas results in crystallization of high-Ni olivines similar to those in Makapuu-stage Koolau lavas, even though the mixed magmas have only moderate Ni contents. This results from a hyperbolic increase of the Ni partition coefficient with increasing polymerization of the mixed melt. Note that while eclogite partial melt in contact with peridotite will equilibrate with pyroxene as well as olivine, this will have the effect of buffering the activity of SiO2 in the reacted melt at a higher level. Therefore, an eclogite partial melt equilibrated with harzburgite will have higher SiO2 than one equilibrated with dunite, enhancing the effects observed in our experiments. Our results demonstrate that an olivine-free “hybrid” pyroxenite source is not

  5. Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Weisberg, Michael K.; Ebel, Denton S.; Biltz, Alison E.; Corbett, Bernadette M.; Iotzov, Ivan V.; Khan, Wajiha S.; Wolman, Matthew D.

    2015-12-01

    The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data. We include all chondrite chemical groups as well as the acapulcoite primitive achondrites, some of which contain relict chondrules. We also compile and review current literature data for other astrophysically-relevant physical properties (chondrule mass and density). Finally, we briefly examine some additional physical aspects of chondrules such as the frequencies of compound and 'cratered' chondrules. A purpose of this compilation is to provide a useful resource for meteoriticists and astrophysicists alike.

  6. Sorting of Chondrules by Size and Density--Evidence for Radial Transport in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Skinner, W. R.; Leenhouts, J. M.

    1993-07-01

    It has long been recognized that chondrules in individual chondrites have populations with restricted size ranges. Dodd's landmark study [1] quantified this observation for silicate and metal chondrules in ordinary chondrites and argued for an aerodynamic sorting mechanism. Later studies, e.g., [2] and others cited therein, have confirmed and extended these observations. Our work has added a consideration of chondrule shape [3] and extended the data on metal vs. silicate chondrules [4]. These observations lead to conclusions regarding radial transport of material in the solar nebula. Ordinary chondrites contain an intimate mixture of nearly spherical droplet chondrules and angular clastic chondrules that define a single size-sorted population within a given chondrite [3]. Many clastic chondrules preserve an arcuate face that suggests they were once part of a much larger droplet chondrule, indicating that droplet chondrules were formed in a larger range of sizes than are now observed in these chondrites, and that droplet chondrules were broken up in the solar nebula to yield the clastic objects now observed [3]. Chondrites represent restricted "size-bins" of chondrules sampled during accretion of the parent bodies [5], probably by aerodynamic processes in the nebula. The particular "size-bins" we observe sampled a very restricted portion of the range of sizes that once existed in the nebula. It seems unlikely that all the larger chondrules would have been destroyed. Thus the rarity of their appearance in known chondrites suggests that large chondrules were deposited (accreted) into other "size-bins" at heliocentric distances not represented by the known chondrites, and that sorting processes in the solar nebula must have included a radial component. A similar conclusion was reached in the study of an unusual CR2 chondrite, Acfer 059, in which metal chondrules are preserved with their original rounded shapes. Separate size distributions of metal and silicate

  7. Evaporative Loss and Degree of Melting in Semarkona Type I Chondrules

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Zanda, B.; Bourot-Denise, M.

    1996-03-01

    Bulk compositions have been determined by broad beam techniques for Semarkona type I (FeO-poor) chondrules. The finest grained (least melted) approach CI in composition, and abundances of moderately volatile elements (K, Na, Fe, Ni, P, S) decrease as grain size (degree of melting) increases. This is unequivocal evidence of evaporative loss during chondrule formation.

  8. Metamorphism of the H-group chondrites - Implications from compositional and textural trends in chondrules

    NASA Technical Reports Server (NTRS)

    Lux, G.; Keil, K.; Taylor, G. J.

    1980-01-01

    The paper discusses element bulk compositions of 373 chondrules from 18 H3 to H6 chondrites determined by broad-beam electron probe analysis. Bulk chondrule FeO and Al2O3 amounts increase and TiO2 and Cr2O3 decrease with increasing petrologic type; normative faylite, albite, and plagioclase amounts increase through the petrologic sequence. Chondrule diameters correlate with phenocryst sizes in porphyritic chondrules of type 3 chondrites, but this correlation is diminished in the higher petrologic types. The compositional trends in chondrules through the petrologic sequence are attributed to diffusion and equilibration among chondrules, and between chondrules and matrix in response to increasing degrees of thermal metamorphism. It is suggested that H-group chondrites are formed by accretion of high-temperature (chondrules) and low-temperature (matrix) materials. Internal reheating of the parent materials to different temperatures caused compositional equilibration, grain coarsening, and reduction of FeO to Fe(0) by carbon.

  9. Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  10. Pre-Accretionary Distribution of Ca and Al Between Matrix and Chondrules in CV Chondrites

    NASA Astrophysics Data System (ADS)

    Hezel, D. C.; Palme, H.

    2007-03-01

    Ca/Al-ratios in Y-86751 (CV) chondrules are super- and in matrix sub-chondritic. The opposite is true for Allende and Efremovka. Incorporation of spinel in Allende and Efremovka chondrule precursors in a nebular setting can explain this observation.

  11. An Amoeboid Olivine Aggregate in LEW 85300

    NASA Technical Reports Server (NTRS)

    Komatsu, M. D.; Yamaguchi, A.; Fagan, T. J.; Zolensky, M. E.; Shiran, N.; Mikouchi, T.

    2016-01-01

    Amoeboid Olivine aggregates (AOAs) are irregularly shaped objects commonly observed in carbonaceous chondrites. Because they are composed of fine-grained olivine and Ca-Al-rich minerals, they are sensitive indicators for nebular process and parent body alteration of their parent bodies. Recently an AOA was found in a carbonaceous clast in polymict eucrite LEW 85300. The bulk major element composition of the clast matrix in LEW 85300 suggests a relation to CM, CO and CV chondrites, whereas bulk clast trace and major element compositions do not match any carbonaceous chondrite, suggesting they have a unique origin. Here we characterize the mineralogy of AOA in LEW 85300 and discuss the origin of the carbonaceous clasts. Results and Discussion: The AOA is located in an impact melt vein. Half of the aggregate shows recrystallization textures (euhedral pyroxene and molten metal/FeS) due to impact melting, but the remaining part preserves the original texture. The AOA is composed of olivine, FeS and Mg,Al-phyllosilicate. Individual olivine grains measure 1-8 microns, with Fe-rich rims, probably due to impact heating. Olivines in the AOA are highly forsteritic (Fo95-99), indicating that the AOA escaped thermal metamorphism [4]. Although no LIME (Low-Fe, Mn-Enriched) olivine is observed, forsterite composition and the coexistence of Mg,Al-phyllosilicate suggest that the AOA is similar to those in the Bali-type oxidized CV (CVoxB) and CR chondrites. However, it should be noted that fayalitic olivine, which commonly occurs in CVoxB AOA, is not observed in this AOA. Also, the smaller grain size (<8 microns) of olivine suggests they may be related to CM or CO chondrites. Therefore, we cannot exclude the possibility that the AOA originated from a unique carbonaceous chondrite.

  12. Olivine in Almahata Sitta - Curiouser and Curiouser

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Herrin, J.; Mikouchi, T.; Satake, W.; Kurihara, T.; Sandford, S. A.; Milam, S. N.; Hagiya, K.; Ohsumi, K.; Friedrich, J. M.; Jeniskens, P.; Shaddad, M. H.; Le, L.; Robinson, G. A.

    2010-01-01

    Almahata Sitta (hereafter Alma) is an anomalous, polymict ureilite. Anomalous features include low abundance of olivine, large compositional range of silicates, high abundance and large size of pores, crystalline pore wall linings, and overall finegrained texture. Tomography suggests the presence of foliation, which is known from other ureilites. Alma pyroxenes and their interpretation are discussed in two companion abstracts. In this abstract we discuss the composition of olivine in Alma, which is indicative of the complexity of this meteorite.

  13. Aligned Olivine in the Springwater Pallasite

    NASA Astrophysics Data System (ADS)

    Fowler-Gerace, N.; Tait, K.; Moser, D.; Barker, I.; Tian, B. Y.

    2014-12-01

    The mechanism by which olivine grains became embedded within iron-nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Klosterman and Buseck [1] found no crystallographic preferred orientation of olivine in nine pallasites, but the Leitz five-axis universal stage method imposed limitations on precision (estimated within ˜4◦) and sample size (only 10 crystals were measured in the Springwater pallasite, for instance). Using Electron Backscatter Diffraction, we have collected crystallographic orientation data (accurate to ±0.5◦ [2]) for 343 crystals within ˜65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally-defined domains. Combined with our thorough characterization of large-scale Springwater textures, the definitively non-random spatial distribution of olivine orientations reveals the nature of the olivine's initial formation environment as well as the sequence of events subsequent to metal incorporation. [1] Klosterman and Buseck. 1973. J Geophys Res 78(32):7581-7588. [2] Oxford Instruments. 2013. http://www.ebsd.com/.

  14. Chondrules in the LEW85332 Ungrouped Carbonaceous Chondrite: Fractionation Processes in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Kallemeyn, Gregory W.; Rubin, Alan E.

    2000-01-01

    We studied 14 chondrules separated from LEW85332, an ungrouped type-3 carbonaceous chondrite related to CR chondrites; 23 elements were determined by neutron activation and the chondrules were characterized petrographically. Oxygen isotopic compositions were determined by R. N. Clayton and T. K. Mayeda for seven chondrules. Chondrule abundance ratios tend to form one of two distinct patterns. In low FeO chondrules, refractory lithophile patterns are flat (i.e., unfractionated); siderophile abundances are high and show a small decrease with increasing volatility. Although high FeO chondrules also have flat refractory lithophile abundance patterns, siderophile abundances are highly fractionated; refractory Ir is very low and Fe is very high relative to other siderophiles. We suggest that the low FeO chondrules in LEW85332 formed early in nebular history when metal was intimately mixed with silicates in the chondrule precursors, and that the viscosity of the liquid-solid mix was too high to permit expulsion of the metal by centrifugal action; their porphyritic structures are consistent with incomplete melting, which would result in relatively high viscosities. When the high FeO chondrules formed somewhat later, much of the Fe was oxidized and the melting of precursors was more extensive, FeO and other oxidized siderophiles were retained in the silicate liquid, and metal was lost, possibly expelled from low viscosity chondrule melts. The O isotopic compositions of the chondrules form a linear array of slope 0.93 +/- 0.05 on a three-isotope diagram, parallel to the carbonaceous chondrite anhydrous minerals (CCAM) line and a CR chondrule array, but offset from the latter by -1% in (delta)O-18. Some or all of this offset may reflect incorporation of O from Antarctic water during weathering. Chondrule (Delta)O-17 values correlate positively with FeO, possibly indicating that the (Delta)O-17 of the nebular gas composition increased with time. The chemical and O isotopic

  15. The origin and history of the metal and sulfide components of chondrules

    NASA Technical Reports Server (NTRS)

    Grossman, J. N.; Wasson, J. T.

    1985-01-01

    Instrumental and radiochemical neutron activation analysis is used to determine the concentrations of 14 siderophile and other nonlithophilic elements in 31 chondrules from the extremely unequilibrated chondrite Semarkona. The results are presented in tables and graphs, characterized in detail, and compared with the results obtained for lithophile elements in the same samples by Grossman and Wasson (1983). The elements studied are found to be significantly more fractionated than the lithophile elements, with variations in chondrule/whole-rock abundances of up to a factor of 1000, a mean ratio of 0.2, and differences between Ni-rich and Ni-depleted chondrules. It is argued that the metal and sulfides in the chondrules represent the composition of the solar nebula before chondrule formation and already contained the siderophile and chalcophile elements, although some Fe was contained in silicates along with Ni, Co, Au, Ge and Se. The segregation of metals during a molten stage is considered of minor importance.

  16. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules

    PubMed Central

    Marrocchi, Yves; Chaussidon, Marc; Piani, Laurette; Libourel, Guy

    2016-01-01

    Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system. PMID:27419237

  17. Early scattering of the solar protoplanetary disk recorded in meteoritic chondrules.

    PubMed

    Marrocchi, Yves; Chaussidon, Marc; Piani, Laurette; Libourel, Guy

    2016-07-01

    Meteoritic chondrules are submillimeter spherules representing the major constituent of nondifferentiated planetesimals formed in the solar protoplanetary disk. The link between the dynamics of the disk and the origin of chondrules remains enigmatic. Collisions between planetesimals formed at different heliocentric distances were frequent early in the evolution of the disk. We show that the presence, in some chondrules, of previously unrecognized magnetites of magmatic origin implies the formation of these chondrules under impact-generated oxidizing conditions. The three oxygen isotopes systematic of magmatic magnetites and silicates can only be explained by invoking an impact between silicate-rich and ice-rich planetesimals. This suggests that these peculiar chondrules are by-products of the early mixing in the disk of populations of planetesimals from the inner and outer solar system. PMID:27419237

  18. Barred beaches

    NASA Astrophysics Data System (ADS)

    Wijnberg, Kathelijne M.; Kroon, Aart

    2002-11-01

    Seven different bar types are distinguished to provide a framework for comparing morphodynamic studies conducted in different areas. Five types occur in semiprotected or open coast settings, of which two are intertidal and three are subtidal. Two types occur in highly protected settings. The occurrence of a certain bar type is generally determined by the wave energy and tidal range, although the nearshore slope may also be a differentiating boundary condition. The theory behind the generation, evolution and decay of bars has evolved most for the subtidal bars in the semiprotected and open coast settings, for which three types of competing mechanisms have been formulated (breakpoint, infragravity waves, self-organisational). Most research has focused on these processes on the time scale of storm events and post-storm recovery. However, to understand the longer-term behavior of bar systems, knowledge of the role of relaxation time and morphologic feedback is needed as well. At present, such knowledge is very limited. We think it can best be obtained from the analysis of long time series of morphology and forcing conditions, rather than from intensive field experiments. In case of a feedback-dominated response (self-organisational), we expect to find no correlation between the time series of external forcing and the morphologic response. In case of a relaxation time-dominated response, we do expect to find such a correlation, albeit filtered. This discussion is illustrated by a case study of the Dutch coast.

  19. Interdiffusion of deuterium and hydrogen in olivine and enstatite: Initial results

    NASA Astrophysics Data System (ADS)

    Tyburczy, J. A.; Du Frane, W. L.; Sharp, T. G.

    2009-12-01

    Interdiffusion rates of hydrogen and deuterium in olivine and enstatite, the most abundant minerals in the upper mantle, will improve our understanding of point defects, and defect dominated processes such as electrical conductivity. Deuterium is interdiffused into San Carlos olivine and enstatite as a traceable species of hydrogen to simulate the process of hydrogen self diffusion. Experiments were performed on oriented single crystals of olivine, and unoriented grains of olivine and enstatite. The olivine samples underwent two annealing steps before the diffusion experiment. The first anneal was at 1-bar, 1300 °C at NNO oxygen fugacity for 16+ hrs to set the point defects. Olivine samples were then saturated with 75 +/- 15 ppm-wt H2O during a hydrothermal anneal in a H2O(100wt%) bath at temperatures ranging between 750-900 °C, 2 GPa, NNO, with the inclusion of enstatite to buffer silica. Enstatite grains did not undergo a dry 1-atm anneal and were saturated with 300 +/- 100 ppm-wt H2O. Finally, deuterium is interdiffused into the hydrated olivine and enstatite; samples were recovered and brought back to the same P-T conditions as saturation in a D2O(90wt%)/H2O(10wt%) bath. We used the Cameca 6f SIMS at ASU to measure hydrogen and deuterium across samples from each of these experiments, and fit interdiffusion coefficients to the resulting deuterium and hydrogen profiles. In olivine D[100] is 2.0e-12 m^2/s at 800 °C, 2GPa. Diffusion lengths in the [010] and [001] directions were only modestly larger than the spatial resolution of our technique. Using concentration boundary conditions from the better quality data in [100] diffusion profile, we estimate diffusion coefficients for the other orientations as ~3e-13 m^2/s [001] and ~5e-14 m^2/s [010]. These values are roughly 1 ½ -2 orders of magnitude lower than chemical diffusion in San Carlos olivine (Kohlstedt & Mackwell, 1998). Activation energies estimated over the temperature range 750 - 800 °C are

  20. The origin of chondrules and chondrites: Debris from low-velocity impacts between molten planetesimals?

    NASA Astrophysics Data System (ADS)

    Sanders, Ian S.; Scott, Edward R. D.

    2012-12-01

    We investigate the hypothesis that many chondrules are frozen droplets of spray from impact plumes launched when thin-shelled, largely molten planetesimals collided at low speed during accretion. This scenario, here dubbed "splashing," stems from evidence that such planetesimals, intensely heated by 26Al, were abundant in the protoplanetary disk when chondrules were being formed approximately 2 Myr after calcium-aluminum-rich inclusions (CAIs), and that chondrites, far from sampling the earliest planetesimals, are made from material that accreted later, when 26Al could no longer induce melting. We show how "splashing" is reconcilable with many features of chondrules, including their ages, chemistry, peak temperatures, abundances, sizes, cooling rates, indented shapes, "relict" grains, igneous rims, and metal blebs, and is also reconcilable with features that challenge the conventional view that chondrules are flash-melted dust-clumps, particularly the high concentrations of Na and FeO in chondrules, but also including chondrule diversity, large phenocrysts, macrochondrules, scarcity of dust-clumps, and heating. We speculate that type I (FeO-poor) chondrules come from planetesimals that accreted early in the reduced, partially condensed, hot inner nebula, and that type II (FeO-rich) chondrules come from planetesimals that accreted in a later, or more distal, cool nebular setting where incorporation of water-ice with high Δ17O aided oxidation during heating. We propose that multiple collisions and repeated re-accretion of chondrules and other debris within restricted annular zones gave each chondrite group its distinctive properties, and led to so-called "complementarity" and metal depletion in chondrites. We suggest that differentiated meteorites are numerically rare compared with chondrites because their initially plentiful molten parent bodies were mostly destroyed during chondrule formation.

  1. Incompatible Trace Element Abundances in Hawaiian Olivines

    NASA Astrophysics Data System (ADS)

    Yu, G.; Huang, S.; Mukhopadhyay, S.; Jacobsen, S. B.

    2009-12-01

    Our understanding of trace elements partitioning between olivine and silicate melt is clouded by large variations in values of partition coefficients presented in the literature. In general, partition coefficients from phenocryst-matrix results are higher than those from experimental equilibration and in-situ measurements (such as LA-ICP-MS and Ion-probe) (Blard and Farley, 2008; Lee et al., 2007). This discrepancy is possibly caused by the presence of melt or micromineral inclusions in the analyzed phenocrysts, or contamination of grain boundaries by enriched glasses or accessory phases or uranium pick up from alteration of olivines. To further investigate why analysis of natural phenocrysts usually results in relative high apparent D’s for incompatible trace elements, six aliquots of olivine grains from a single sediment sample of Waimea river watershed, on the western side of the island of Kauai, Hawaii, were analyzed by solution ICP-MS at Harvard University for trace element concentrations. Two aliquots of olivines were leached in 1% oxalic acid for 45-60 min at 90 OC before dissolution. Leached and unleached olivines mostly show positive linear correlations in plots of incompatible trace elements versus La, which possibly indicates mixing lines between olivine and one end-member with higher incompatible element concentration (possibly melt inclusion). Assuming La concentration in olivine is zero, we estimate concentration of other incompatible elements in olivines using intercepts of these mixing lines. We obtain that U and Th concentration in the olivines to be about 1 ppb and 0.1 ppb respectively, corresponding to apparent DUol/melt and DThol/melt of 0.003 and 0.0001 if host lave has U of 0.3 ppm and Th of 1ppm (Gayer et al.,2008). Recently, helium isotopic measurements were made in these olivines (Gayer et al., 2008) and the results yield a basin-wide average erosion rate of 0.056 mma-1 for Waimea river watershed. Gayer et al. (2008) argued that

  2. Diffusion of highly charged cations in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Liang, Y.

    2012-12-01

    Diffusion of tungsten, titanium and phosphorus have been measured in natural iron-bearing olivine (~Fo90) and synthetic forsterite. Experiments were run under buffered conditions (with iron-wustite or Ni-NiO buffers) in 1-atm furnaces. The sources of diffusant for experiments were MgWO4 for tungsten diffusion, Mg2TiO4 for Ti diffusion, and AlPO4 for P diffusion; in all cases these compounds were pre-reacted at high temperature with Mg2SiO4 or Fe-bearing olivine prior to diffusion anneals. Samples were placed with the source materials in noble metal or silica capsules, which were sealed under vacuum in silica glass ampoules with solid buffers. Rutherford backscattering spectrometry (RBS) was used to measure depth profiles for all sets of experiments; measurements of P were also made with Nuclear Reaction Analysis using the 31P(α,p)34S reaction. These new data suggest marked differences among diffusivities of these cations, with titanium diffusion faster than diffusion of tungsten, but slower than diffusion of phosphorus over the conditions investigated. Diffusivities of all of these elements appear significantly slower than those of divalent cations in olivine. These results will be discussed in context with extant diffusion data for major, trace and minor elements in olivine. The effects of oxygen fugacity and olivine composition on diffusion, and potential implications for diffusion mechanisms will also be considered.

  3. Chondrule formation in particle-rich nebular regions at least hundreds of kilometres across.

    PubMed

    Cuzzi, Jeffrey N; Alexander, Conel M O'D

    2006-05-25

    Chondrules are millimetre-sized spherules (mostly silicate) that dominate the texture of primitive meteorites. Their formation mechanism is debated, but their sheer abundance suggests that the mechanism was both energetic and ubiquitous in the early inner Solar System. The processes suggested--such as shock waves, solar flares or nebula lightning--operate on different length scales that have been hard to relate directly to chondrule properties. Chondrules are depleted in volatile elements, but surprisingly they show little evidence for the associated loss of lighter isotopes one would expect. Here we report a model in which molten chondrules come to equilibrium with the gas that was evaporated from other chondrules, and which explains the observations in a natural way. The regions within which the chondrules formed must have been larger than 150-6,000 km in radius, and must have had a precursor number density of at least 10 m(-3). These constraints probably exclude nebula lightning, and also make formation far from the nebula midplane problematic. The wide range of chondrule compositions may be the result of different combinations of the local concentrations of precursors and the local abundance of water ice or vapour. PMID:16724060

  4. Reduction, partial evaporation, and spattering - Possible chemical and physical processes in fluid drop chondrule formation

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1983-01-01

    The major chemical differences between fluid drop chondrules and their probable parent materials may have resulted from the loss of volatiles such as S, H2O, Fe, and volatile siderophile elements by partial evaporation during the chondrule-forming process. Vertical access solar furnace experiments in vacuum and hydrogen have demonstrated such chemical fractionation trends using standard rock samples. The formation of immiscible iron droplets and spherules by in situ reduction of iron from silicate melt and the subsequent evaporation of the iron have been observed directly. During the time that the main sample bead is molten, many small spatter spherules are thrown off the main bead, thereby producing many additional chondrule-like melt spherules that cool rapidly and generate a population of spherules with size frequency distribution characteristics that closely approximate some populations of fluid drop chondrules in chondrites. It is possible that spatter-produced fluid drop chondrules dominate the meteoritic fluid drop chondrule populations. Such meteoritic chondrule populations should be chemically related by various relative amounts of iron and other volatile loss by vapor fractionation.

  5. Aluminum-Magnesium and Oxygen Isotope Study of Relict Ca-Al-rich Inclusions in Chondrules

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; McKeegan, Kevin D.; Huss, Gary R.; Liffman, Kurt; Sahijpal, Sandeep; Hutcheon, Ian D.; Srinivasan, Gopalan; Bischoff, Adolph; Keil, Klaus

    2006-03-01

    Relict Ca-Al-rich inclusions (CAIs) in chondrules crystallized before their host chondrules and were subsequently partly melted together with chondrule precursors during chondrule formation. Like most CAIs, relict CAIs are 16O enriched (Δ17O<-20‰) compared to their host chondrules (Δ17O>-9‰). Hibonite in a relict CAI from the ungrouped carbonaceous chondrite Adelaide has a large excess of radiogenic 26Mg (26Mg*) from the decay of 26Al, corresponding to an initial 26Al/27Al ratio [(26Al/27Al)I] of (3.7+/-0.5)×10-5 in contrast, melilite in this CAI and plagioclase in the host chondrule show no evidence for 26Mg* [(26Al/27Al)I of <5×10-6]. Grossite in a relict CAI from the CH carbonaceous chondrite PAT 91546 has little 26Mg*, corresponding to a (26Al/27Al)I of (1.7+/-1.3)×10-6. Three other relict CAIs and their host chondrules from the ungrouped carbonaceous chondrite Acfer 094, CH chondrite Acfer 182, and H3.4 ordinary chondrite Sharps do not have detectable 26Mg* [(26Al/27Al)I<1×10-5, <(4-6)×10-6, and <1.3×10-5, respectively]. Isotopic data combined with mineralogical observations suggest that relict CAIs formed in an 16O-rich gaseous reservoir before their host chondrules, which originated in an 16O-poor gas. The Adelaide CAI was incorporated into its host chondrule after 26Al had mostly decayed, at least 2 Myr after the CAI formed, and this event reset 26Al-26Mg systematics.

  6. Olivines: revelation of tracks of charged particles.

    PubMed

    Krishnaswami, S; Lal, D; Prabhu, N; Tamhane, A S

    1971-10-15

    A one-step, three-component aqueous etchant was developed for revealing the tracks of charged particles in olivine. The etchant reveals tracks of small cone angle, which are equally well developed in all the crystallographic directions. The scope of fossil cosmic-ray track studies in extraterrestrial samples has thus been increased, because olivine is often an abundant constituent and because it has a higher threshold ionization for track registration and has lower uranium, thorium, and trace element concentrations as compared with pyroxenes and feldspars. The etchant does not attack any of the principal rock-forming minerals in normal etching time, which allows a nondestructive study of fossil tracks in thin-section mounts. The study of fossil cosmic-ray tracks in olivine is particularly valuable for investigations of very, very heavy cosmic-ray nuclei and for highly irradiated samples such as those found in the lunar regolith. PMID:17778062

  7. Raman spectra of shocked minerals. I - Olivine

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Celucci, T. A.

    1988-01-01

    The Raman spectra of olivine contained in a chip of the Twin Sisters Peak (Washington) dunite shocked to 22.2 GPa is shown to be identical to that of unshocked olivine in the same rock. The Raman spectra of powder of the rock shocked to 20.1 GPa and of chips shocked to 59.5 GPa and 60.7 GPa display strong and broad low-frequency features with crests at 475/cm, 556/cm, and 572/cm, and broad high-frequency features near 1100/cm. It is suggested that these features are due to the formation of olivine glass with a considerable degree of three-dimensional Si-O-Si linkage having scattered domains of greatly variable grain size, internal structure, and chemical composition.

  8. Shock-produced olivine glass - First observation

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.; Lally, J. S.; Nord, G. L., Jr.; Christie, J. M.; Heuer, A. H.

    1977-01-01

    Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, /Mg(0.88)Fe(0.12)/2SiO4, recovered from peak pressures of about 56 billion pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation of olivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 billion pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.

  9. Water-induced fabric transitions in olivine.

    PubMed

    Jung, H; Karato S

    2001-08-24

    The interpretation of seismic anisotropy in Earth's upper mantle has traditionally been based on the fabrics (lattice-preferred orientation) of relatively water-poor olivine. Here we show that when a large amount of water is added to olivine, the relation between flow geometry and seismic anisotropy undergoes marked changes. Some of the puzzling observations of seismic anisotropy in the upper mantle, including the anomalous anisotropy in the central Pacific and the complicated anisotropy in subduction zones, can be attributed to the enrichment of water in these regions. PMID:11520979

  10. Ion Microprobe Studies of Iodine Contents in Silicate Glasses and in Semarkona Chondrules

    NASA Astrophysics Data System (ADS)

    Goswami, J. N.; Sahijpal, S.; Swindle, T. D.; Musselwhite, D. S.; Grossman, J. N.

    1993-07-01

    prominent signal at mass 133 from Cs was used for local calibration. The initial results obtained from this study showed that an energy filter of >= 50V should be sufficient to suppress most of the molecular interferences excluding the hydrides. Analysis of iodine doped silicate glasses showed that even for an energy filter of 40V, the ion signals at masses 111 and 126 are sufficiently small for any oxide or hydride to contribute effectively to the iodine signal at mass 127. The count rate at mass 127 for the silicate glasses showed a linear relation with the iodine content for both 40V and 50V energy filter. Following the optimization of the instrument parameters and calibration with silicate glasses, we have analyzed iodine content in several well defined phases (FeS, glass, silicates) in several individual chondrules from the Semarkona(LL3) meteorite. These chondrules have been analyzed earlier for their trace- element content and I-Xe systematics. Because of the small size of the analyzed phases we have used a primary beam of 2nA and an energy filter of 40V for analyzing the silicate phases and both 40 and 50V energy filter for the sulphide. The results show that the iodine signal at mass 127 is maximum for the sulphide followed by glass and silicates. If we assume that the iodine ion yield for all the phases (FeS, glass, and silicates) to be similar to that for the iodine doped silicate glasses, the estimated iodine concentration varies from ~2.5 ppm in FeS to <20 ppb in olivines. References: [1] Zinner E. and Crozaz G.(1986) Int. J. Mass Spec. Ion Proc., 69, 17-38.

  11. Mineralogy of Stardust Track 112 Particle: Relation to Amoeboid Olivine Aggregates

    NASA Technical Reports Server (NTRS)

    Komatsu, M.; Fagan, T.; Mikouchi, T.; Miyamoto, M.; Zolensky, M.; Ohsumi, K.

    2012-01-01

    The successful analysis of comet 81P/Wild 2 particles returned by the Stardust mission has revealed that the Wild 2 dust contains abundant silicate grains that are much larger than interstellar grains and appear to have formed in the inner regions of the solar nebula [1]. Wild 2 particles include minerals which are isotopically and mineralogically similar to CAIs [e.g., 2, 3] and chondrules [e.g., 4] in chondrites. In addition, particles similar to amoeboid olivine aggregates (AOAs) also have been discovered [5, 6,7]. C2067,2,112,1 is a terminal particle recovered from track #112 (T112). Nakamura-Messenger et al. [7] showed that the forsterite grain in T112 has O-16 enrichment of approximately 40 0/00 (vs. SMOW) and possibly formed together with AOAs. In this study, we have examined the mineralogy of the T112 particle and compared the possible relationships between T112 and AOAs in primitive meteorites.

  12. Direct Shear of Olivine Single Crystals

    NASA Astrophysics Data System (ADS)

    Tielke, Jacob; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Knowledge of the strength of individual dislocation slip systems in olivine is fundamental to understanding the flow behavior and the development of lattice-preferred orientation in olivine-rich rocks. The most direct measurements of the strengths of individual slip systems are from triaxial compression experiments on olivine single crystals. However, such experiments only allow for determination of flow laws for two of the four dominate slip systems in olivine. In order to measure the strengths of the (001)[100] and (100)[001] slip systems independently, we performed deformation experiments on single crystals of San Carlos olivine in a direct shear geometry. Experiments were carried out at temperatures of 1000° to 1300°C, a confining pressure of 300 MPa, shear stresses of 60 to 334 MPa, and resultant shear strain rates of 7.4 x 10‑6 to 6.7 x 10‑4 s‑1. At high-temperature (≥1200°C) and low-stress (≤200 MPa) conditions, the strain rate of crystals oriented for direct shear on either the (001)[100] or the (100)[001] slip system follows a power law relationship with stress, whereas at lower temperatures and higher stresses, strain rate depends exponentially on stress. The flow laws derived from the mechanical data in this study are consistent with a transition from the operation of a climb-controlled dislocation mechanism during power-law creep to the operation of a glide-controlled dislocation mechanism during exponential creep. In the climb-controlled regime, crystals oriented for shear on the (001)[100] slip system are weaker than crystals orientated for shear on the (100)[001] slip system. In contrast, in the glide-controlled regime the opposite is observed. Extrapolation of flow laws determined for crystals sheared in orientations favorable for slip on these two slip systems to upper mantle conditions reveals that the (001)[100] slip system is weaker at temperatures and stresses that are typical of the asthenospheric mantle, whereas the (100

  13. Homogeneous distribution of 26Al in the solar system from the Mg isotopic composition of chondrules.

    PubMed

    Villeneuve, Johan; Chaussidon, Marc; Libourel, Guy

    2009-08-21

    The timing of the formation of the first solids in the solar system remains poorly constrained. Micrometer-scale, high-precision magnesium (Mg) isotopic analyses demonstrate that Earth, refractory inclusions, and chondrules from primitive meteorites formed from a reservoir in which short-lived aluminum-26 (26Al) and Mg isotopes were homogeneously distributed at +/-10%. This level of homogeneity validates the use of 26Al as a precise chronometer for early solar system events. High-precision chondrule 26Al isochrons show that several distinct chondrule melting events took place from approximately 1.2 million years (My) to approximately 4 My after the first solids condensed from the solar nebula, with peaks between approximately 1.5 and approximately 3 My, and that chondrule precursors formed as early as 0.87(-0.16)(+0.19) My after. PMID:19696348

  14. Lead isotopic ages of chondrules and calcium-aluminum-rich inclusions.

    PubMed

    Amelin, Yuri; Krot, Alexander N; Hutcheon, Ian D; Ulyanov, Alexander A

    2002-09-01

    The lead-lead isochron age of chondrules in the CR chondrite Acfer 059 is 4564.7 +/- 0.6 million years ago (Ma), whereas the lead isotopic age of calcium-aluminum-rich inclusions (CAIs) in the CV chondrite Efremovka is 4567.2 +/- 0.6 Ma. This gives an interval of 2.5 +/- 1.2 million years (My) between formation of the CV CAIs and the CR chondrules and indicates that CAI- and chondrule-forming events lasted for at least 1.3 My. This time interval is consistent with a 2- to 3-My age difference between CR CAIs and chondrules inferred from the differences in their initial 26Al/27Al ratios and supports the chronological significance of the 26Al-26Mg systematics. PMID:12215641

  15. The role of chondrules in nebular fractionations of volatiles and other elements

    NASA Technical Reports Server (NTRS)

    Grossman, J. N.

    1994-01-01

    For at least 30 years, cosmochemists have been grappling with the question of how and why groups of geochemically and volatility related elements became fractionated in the major chondrite groups. At least five relatively independent fractionations are known. Virtually everyone who has thought about these facts has been attempted to attribute at least some of the fractionations to the physical separation or mixing of the visible components. By far the most abundant of these components in meteorites is chondrules, and indeed chondrules have long been suspected of playing a direct role in fractionation of volatile elements. The question addressed here is whether chondrules formed before or after chemical components became separated is of fundamental importance to our understanding of the early solar system, as the answer constrains how, when, where, and from what chondrules formed, and tells us about how materials were processed in the nebula.

  16. Origin of spinel-rich chondrules and inclusions in carbonaceous and ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Kornacki, A. S.; Fegley, B.

    1984-02-01

    The evaluation of three models of the origin of spinel-rich chondrules and inclusions presented here includes new calculations of the major-element refractory mineral condensation sequence from a gas of solar composition over a wide pressure interval. Condensation calculations show that spinel-rich chondrules did not crystallize from metastable liquid condensates, and that spinel-rich inclusions are not aggregates of refractory nebular condensates. It is proposed that spinel-rich objects are fractionated distillation residues of small aggregates of primitive dust that lost Ca, Si-rich partial melts by evaporation, ablation, or splashing during collisions. This model also explains why spinel-rich chondrules and inclusions (1) are usually smaller than melilite-rich chondrules and inclusions; (2) often have highly fractionated trace-element compositions; and (3) usually do not contain Pt-metal nuggets even when they are more enriched in the Pt-group metals than nugget-bearing melilite-rich objects.

  17. Different radiation and metamorphic history of the Kainsaz CO 3.2 chondrules

    NASA Technical Reports Server (NTRS)

    Kashkarov, L. L.; Kalinina, G. V.

    1993-01-01

    Track and thermoluminescence parameters in chondrules from the Kainsaz CO 3.2 chondrite have been studied. Obtained results elucidate their individual shock-thermal history and the early pre-accretion stage of the meteorite parent body formation.

  18. Contrasting Size Distributions of Chondrules and Inclusions in Allende CV3

    NASA Technical Reports Server (NTRS)

    Fisher, Kent R.; Tait, Alastair W.; Simon, Jusin I.; Cuzzi, Jeff N.

    2014-01-01

    There are several leading theories on the processes that led to the formation of chondrites, e.g., sorting by mass, by X-winds, turbulent concentration, and by photophoresis. The juxtaposition of refractory inclusions (CAIs) and less refractory chondrules is central to these theories and there is much to be learned from their relative size distributions. There have been a number of studies into size distributions of particles in chondrites but only on relatively small scales primarily for chondrules, and rarely for both Calcium Aluminum-rich Inclusions (CAIs) and chondrules in the same sample. We have implemented macro-scale (25 cm diameter sample) and high-resolution microscale sampling of the Allende CV3 chondrite to create a complete data set of size frequencies for CAIs and chondrules.

  19. Zn Isotopes in Chondrites, Chondrules, and Matrix: Origin of the Volatile Element Depletion in Chondrites

    NASA Astrophysics Data System (ADS)

    Moynier, F.; Pringle, E.; Hezel, D.

    2015-07-01

    The variations of Zn isotope ratios among carbonaceous chondrites show that the volatile element depletion in solar system material occurred in the solar nebula. We will also present the Zn isotopic composition of chondrules and matrix from carbonaceous chondrites.

  20. Origin of spinel-rich chondrules and inclusions in carbonaceous and ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Kornacki, A. S.; Fegley, B., Jr.

    1984-01-01

    The evaluation of three models of the origin of spinel-rich chondrules and inclusions presented here includes new calculations of the major-element refractory mineral condensation sequence from a gas of solar composition over a wide pressure interval. Condensation calculations show that spinel-rich chondrules did not crystallize from metastable liquid condensates, and that spinel-rich inclusions are not aggregates of refractory nebular condensates. It is proposed that spinel-rich objects are fractionated distillation residues of small aggregates of primitive dust that lost Ca, Si-rich partial melts by evaporation, ablation, or splashing during collisions. This model also explains why spinel-rich chondrules and inclusions (1) are usually smaller than melilite-rich chondrules and inclusions; (2) often have highly fractionated trace-element compositions; and (3) usually do not contain Pt-metal nuggets even when they are more enriched in the Pt-group metals than nugget-bearing melilite-rich objects.

  1. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: reevaluating the potential of CO2 mineral sequestration.

    PubMed

    Sissmann, Olivier; Brunet, Fabrice; Martinez, Isabelle; Guyot, François; Verlaguet, Anne; Pinquier, Yves; Daval, Damien

    2014-05-20

    Batch experiments were conducted in water at 150 °C and PCO2 = 280 bar on a Mg-rich tholeiitic basalt (9.3 wt % MgO and 12.2 wt % CaO) composed of olivine, Ti-magnetite, plagioclase, and clinopyroxene. After 45 days of reaction, 56 wt % of the initial MgO had reacted with CO2 to form Fe-bearing magnesite, (Mg0.8Fe0.2)CO3, along with minor calcium carbonates. The substantial decrease in olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt % MgO) of similar grain size, only 5 wt % of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt was enhanced by a factor of ca. 40. This could be explained by differences in the chemical and textural properties of the secondary silica layer that covers reacted olivine grains in both types of sample. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks. PMID:24735106

  2. A new mechanism for chondrule formation: Radiative heating by hot planetesimals

    NASA Astrophysics Data System (ADS)

    Herbst, William; Greenwood, James P.

    2016-03-01

    We propose that chondrules are formed by radiative heating of pre-existing dust clumps during close fly-bys of planetesimals with incandescent lava at their surfaces. We show that the required temperatures and cooling rates are easily achieved in this scenario and discuss how it is consistent with bulk aspects of chondritic meteorites, including complementarity and the co-mingling of FeO-poor and FeO-rich chondrules.

  3. Magnetite-sulfide chondrules and nodules in CK carbonaceous chondrites - Implications for the timing of CK oxidation

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1993-01-01

    CK carbonaceous chondrites contain rare (about 0.1 vol pct) magnetite-sulfide chondrules that range from about 240 to 500 microns in apparent diameter and have ellipsoidal to spheroidal morphologies, granular textures, and concentric layering. They resemble the magnetite-sulfide nodules occurring inside mafic silicate chondrules in CK chondrites. It seems likely that the magnetite-sulfide chondrules constitute the subset of magnetite-sulfide nodules that escaped as immiscible droplets from their molten silicate chondrule hosts during chondrule formation. The intactness of the magnetite-sulfide chondrules and nodules implies that oxidation of CK metal occurred before agglomeration. Hence, the pervasive silicate darkening of CK chondrites was caused by the shock mobilization of magnetite and sulfide, not metallic Fe-Ni and sulfide as in shock-darkened ordinary chondrites.

  4. I-Xe Dating: The Time Line of Chondrule Formation and Metamorphism in LL Chondrites

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, O. V.; Hohenberg, C. M.; Meshik, A. P.

    2005-01-01

    Refractory inclusions, considered to be the oldest solids formed in the solar nebula. (4567.2 0.6 Ma) [1], are common in many carbonaceous and in some ordinary and enstatite chondrites. High-precision Pb- Pb ages for CAI s and chondrules (from different meteorites) suggested that chondrule formation appeared to have started about 2 Ma later than that of CAIs [1]. However, recent 26Al/26Mg data suggest simultaneous formation of CAI s and chondrules in Allende [2]. The I-Xe ages of CAI s in Allende are about 2 Ma younger than the I-Xe ages of Allende chondrules [3] but, like all chronometers, the I-Xe system records closure time of its particular host phase. In the case of Allende CAI s, the major iodine-bearing phase is sodalite, a secondary phase presumably formed by aqueous alteration, so I-Xe reflects the post-formational processes in these objects. In chondrules the iodine host phases vary and can reflect formation and/or alteration but, to put chondrule ages on a quantative basis, some problems should first be addressed.

  5. Nd Isotope Composition in Single Chondrules from the Tieschitz (H3) Chondrite

    NASA Astrophysics Data System (ADS)

    Krestina, N.; Jagoutz, E.; Kurat, G.

    1995-09-01

    Larger-than-average sized chondrules, separated from the Tieschitz (H3) chondrite (sample no. C793), were cleaned ultrasonically several times in double distilled ethanol, then rinsed in ultra clean water, dried, and weighed. The chondrules were then dissolved in a mixture of five parts HF and one part HClO4. An aliquot of 1/10 of the solution was spiked with a Nd tracer. A second aliquot of 2/10 of the solution was put aside. Nd and Sr were separated from the remaining solution by ion-exchange chromatography. The Nd isotopic composition was measured with a single collector thermal ionization mass spectrometer, utilizing NdO^+ ions. After correction for oxygen, the isotopic ratios were normalized to ^146Nd/^144Nd = 0.7219. The results are summarized in Table 1. So far we succeeded in measuring the contents and isotopic ratios of Nd in two individual chondrules. Both yielded a total of about 10 ng Nd each. The ^143Nd/^144Nd ratio of the two chondrules, however, differs from each other with one being close to the chondritic ratio and the second being non-chondritic with remarkably non-radiogenic Nd. In addition, the abundance of ^142Nd is also significantly different in each of these two chondrules. This may indicate the presence of live ^146Sm (half-life = 1.03*10^8 a) during the formation of the solid components, which aggregated into proto-chondrules.

  6. Water loss from olivine hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Provost, A.; Schiano, P.; Cluzel, N.

    2009-12-01

    Water content in melt inclusions has long been used as an important index for the water content of the hosting magma. However, many studies have shown that post-entrapment diffusive re-equilibration can affect the water content of melt inclusions. This process must be considered when using melt inclusions to infer water content of the hosting magma. Theoretical model on the diffusive re-equilibration between melt inclusions and external melts showed that the re-equilibration rate depends on the diffusivity of the re-equilibrating species in the host mineral, the partition coefficient of this species between the host mineral and melt, and the geometry of the melt inclusion and host mineral. The water diffusivity in olivine and water partition coefficient between melt and olivine have been measured by recent studies, therefore the diffusive re-equilibration model can be tested by experiments. In this study, we carried out in-situ Fourier transform infrared spectroscopy (FTIR) measurements on the water content of olivine hosted melt inclusions at high temperatures. Initial water content of the melt inclusions is about 4 wt%. A heating stage system is combined with a microscope FTIR and the absorption spectrum through the olivine and melt inclusion is repeatedly measured. Although the absorption band at around 3540 cm-1 has not be calibrated at high temperatures, it is assumed that the absorbance is linearly related to the total water concentration in the melt inclusion, and the relative water content can be inferred. Cautions have been exercised to maintain a consistent measurement spot such that the thickness of the melt inclusion within the beam path did not change significantly during each experiment. Oxygen fugacity in the heating stage is controlled by Zr purified Ar gas to be about 7 logarithm units below the QFM buffer and about 1 logarithm unit above the QIF buffer at 1473 K. Preliminary results showed that at 1430 and 1581 K, the total water content of the

  7. Constraints on the Origin of Chondrules and CAIs from Short-Lived and Long-Lived Radionuclides

    SciTech Connect

    Kita, N T; Huss, G R; Tachibana, S; Amelin, Y; Nyquist, L E; Hutcheon, I D

    2005-10-24

    The high time resolution Pb-Pb ages and short-lived nuclide based relative ages for CAIs and chondrules are reviewed. The solar system started at 4567.2 {+-} 0.6Ma inferred from the high precision Pb-Pb ages of CAIs. Time scales of CAIs ({le}0.1Myr), chondrules (1-3Myr), and early asteroidal differentiation ({ge}3Myr) inferred from {sup 26}Al relative ages are comparable to the time scale estimated from astronomical observations of young star; proto star, classical T Tauri star and week-lined T Tauri star, respectively. Pb-Pb ages of chondrules also indicate chondrule formation occur within 1-3 Myr after CAIs. Mn-Cr isochron ages of chondrules are similar to or within 2 Myr after CAI formation. Chondrules from different classes of chondrites show the same range of {sup 26}Al ages in spite of their different oxygen isotopes, indicating that chondrule formed in the localized environment. The {sup 26}Al ages of chondrules in each chondrite class show a hint of correlation with their chemical compositions, which implies the process of elemental fractionation during chondrule formation events.

  8. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2000-01-01

    We present the first detailed study of a population of texturally distinct chondrules previously described by Kurat (1969), Christophe Michel-Levy (1976), and Skinner et al. (1989) that are sharply depleted in alkalis and Al in their outer portions. These 'bleached' chondrules, which are exclusively radial pyroxene and cryptocrystalline in texture, have porous outer zones where mesostasis has been lost. Bleached chondrules are present in all type 3 ordinary chondrites and are present in lower abundances in types 4-6. They are most abundant in the L and LL groups, apparently less common in H chondrites, and absent in enstatite chondrites. We used x-ray mapping and traditional electron microprobe techniques to characterize bleached chondrules in a cross section of ordinary chondrites. We studied bleached chondrules from Semarkona by ion microprobe for trace elements and H isotopes, and by transmission electron microscopy. Chondrule bleaching was the result of low-temperature alteration by aqueous fluids flowing through fine-grained chondrite matrix prior to thermal metamorphism. During aqueous alteration, interstitial glass dissolved and was partially replaced by phyllosilicates, troilite was altered to pentlandite, but pyroxene was completely unaffected. Calcium-rich zones formed at the inner margins of the bleached zones, either as the result of the early stages of metamorphism or because of fluid-chondrule reaction. The mineralogy of bleached chondrules is extremely sensitive to thermal metamorphism in type 3 ordinary chondrites, and bleached zones provide a favorable location for the growth of metamorphic minerals in higher petrologic types. The ubiquitous presence of bleached chondrules in ordinary chondrites implies that they all experienced aqueous alteration early in their asteroidal histories, but there is no relationship between the degree of alteration and metamorphic grade. A correlation between the oxidation state of chondrite groups and their degree of

  9. Shock-produced olivine glass: First observation

    USGS Publications Warehouse

    Jeanloz, R.; Ahrens, T.J.; Lally, J.S.; Nord, G.L., Jr.; Christie, J.M.; Heuer, A.H.

    1977-01-01

    Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg0.88Fe 0.12SiO4 recovered from peak pressures of about 56 ?? 109 pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation ofolivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 ?? 109 pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.

  10. H in olivine: How much and where?

    NASA Astrophysics Data System (ADS)

    Withers, A. C.; Umemoto, K.; Hirschmann, M. M.

    2011-12-01

    Hydrous defects in nominally anhydrous minerals are known to play a fundamental role in influencing the mechanisms and extent of deformation in mantle rocks. The extent of water weakening in olivine, in particular, may dictate the nature of upper mantle deformation, thereby controlling the very processes of tectonism. Infrared spectroscopy (IR) is a powerful tool commonly used to analyze these extrinsic defects. In addition to determining defect concentrations, and in contrast to other analytical techniques such as secondary ion mass spectroscopy (SIMS), IR offers the possibility of determining the location of H atoms in the crystal structure. In the case of olivine, however, the relationships between the IR spectrum and the concentrations and locations of hydrous defects are widely disputed, with recent estimates of calibration coefficients varying by more than a factor of 3, and the same absorption bands being thought variously to represent substitutions on tetrahedral or on octahedral crystallographic sites. New analytical and theoretical results will be used to refine our view of the location and concentration of H in olivine. Elastic recoil detection analysis (ERDA) measurements are used to determine the infrared absorption coefficient (k) for OH bands in Fo90 olivines with 240-2000 ppm H2O, synthesised at 3-10 GPa in multianvil experiments that were optimised for growth of large, homogeneous crystals. On the basis of 20 ERDA and >200 FTIR analyses of olivines from 7 experiments, the H content (in ppm H2O) is given by 0.120±0.008×total integral absorption, corresponding to an integral extinction coefficient of 45,000 L/(mol cm2), i.e. k is ~35% smaller than the value previously derived by Bell et al. (2003)[1] for natural olivines. This implies that the H contents of experimental olivines have been generally overestimated. The samples that were analysed using ERDA are used as SIMS standards, thereby providing a direct calibration that avoids the baseline

  11. Bar dimensions and bar shapes in estuaries

    NASA Astrophysics Data System (ADS)

    Leuven, Jasper; Kleinhans, Maarten; Weisscher, Steven; van der Vegt, Maarten

    2016-04-01

    Estuaries cause fascinating patterns of dynamic channels and shoals. Intertidal sandbars are valuable habitats, whilst channels provide access to harbors. We still lack a full explanation and classification scheme for the shapes and dimensions of bar patterns in natural estuaries, in contrast with bars in rivers. Analytical physics-based models suggest that bar length in estuaries increases with flow velocity, tidal excursion length or estuary width, depending on which model. However, these hypotheses were never validated for lack of data and experiments. We present a large dataset and determine the controls on bar shape and dimensions in estuaries, spanning bar lengths from centimeters (experiments) to 10s of kilometers length. First, we visually identified and classified 190 bars, measured their dimensions (width, length, height) and local braiding index. Data on estuarine geometry and tidal characteristics were obtained from governmental databases and literature on case studies. We found that many complex bars can be seen as simple elongated bars partly cut by mutually evasive ebb- and flood-dominated channels. Data analysis shows that bar dimensions scale with estuary dimensions, in particular estuary width. Breaking up the complex bars in simple bars greatly reduced scatter. Analytical bar theory overpredicts bar dimensions by an order of magnitude in case of small estuarine systems. Likewise, braiding index depends on local width-to-depth ratio, as was previously found for river systems. Our results suggest that estuary dimensions determine the order of magnitude of bar dimensions, while tidal characteristics modify this. We will continue to model bars numerically and experimentally. Our dataset on tidal bars enables future studies on the sedimentary architecture of geologically complex tidal deposits and enables studying effects of man-induced perturbations such as dredging and dumping on bar and channel patterns and habitats.

  12. Na, K-Rich Rim Around a Chondrule in Unequilibrated Ordinary Chondrite Lew 86018 (L3.1)

    NASA Technical Reports Server (NTRS)

    Mishra, R. K.; Simon, J. I.; Ross, D. K.; Needham, A. W.; Messenger, S.; Keller, L. P.; Han, J.; Marhas, K. K.

    2015-01-01

    Ordinary chondrites represent the most abundant early Solar system extra-terrestrial (approximately 85% abundance) material available for laboratory studies and expectedly record the most extensive range of alterations effects from unmetamorphosed chondritic material to the highest temperatures of thermal metamorphism. The least metamorphosed chondrites belonging to petrologic type 3, the so called unequili-brated ordinary chondrites (UOCs), provide insights into alteration that happened during the primeval, ear-liest stage of Solar system formation. The higher grade petrologic types 4-6 ordinary chondrites on the other hand document up to near textural equilibrium (in type 6) extensive thermal metamorphism consisting of minerals and phases providing evidence of equilibration of heterogeneous mineral composition, solid-state recrystallization. Despite being the most abundant, the effect of alteration is less explicitly understood in ordinary chondrites (even less in UOCs) compared to other groups (e.g. CV, CO, CR). Additionally, the relationship between metasomatism (also referred as aqueous alteration or fluid-assisted metamorphism) and metamorphism (primarily thermal driven) has not been studied and alterations in the ordinary chondrites have been considered to have occurred in absence of fluids in general. Despite this conventional view, UOCs of lowest grades (3.0-3.2) show some evidence of low temperature (approximately 200 C), fluid assisted metamorphism in the form of the presence of phyllosilicates, ferroan olivine, and magnetites in their matrices and occasionally in chondrules. Here, we present petrographic and mineralogical studies of UOC, Lewis Hills (LEW) 86018 to further our understanding of the extent and relative importance of metasomatism and/or metamorphism in UOCs.

  13. Exploring exogenic sources for the olivine on Asteroid (4) Vesta

    NASA Astrophysics Data System (ADS)

    Le Corre, Lucille; Reddy, Vishnu; Sanchez, Juan A.; Dunn, Tasha; Cloutis, Edward A.; Izawa, Matthew R. M.; Mann, Paul; Nathues, Andreas

    2015-09-01

    The detection of olivine on Vesta is interesting because it may provide critical insights into planetary differentiation early in our Solar System's history. Ground-based and Hubble Space Telescope (HST) observations of Asteroid (4) Vesta have suggested the presence of olivine on the surface. These observations were reinforced by the discovery of olivine-rich HED meteorites from Vesta in recent years. However, analysis of data from NASA's Dawn spacecraft has shown that this "olivine-bearing unit" is actually impact melt in the ejecta of Oppia crater. The lack of widespread mantle olivine, exposed during the formation of the 19 km deep Rheasilvia basin on Vesta's South Pole, further complicated this picture. Ammannito et al. (Ammannito, E. et al. [2013a]. Nature 504, 122-125) reported the discovery of local scale olivine-rich units in the form of excavated material from the mantle using the Visible and InfraRed spectrometer (VIR) on Dawn. These sites are concentrated in the walls and ejecta of craters Arruntia (10.5 km in diameter) and Bellicia (41.7 km in diameter), located in the northern hemisphere, 350-430 km from Rheasilvia basin's rim. Here we explore alternative sources for the olivine in the northern hemisphere of Vesta by reanalyzing the data from the VIR instrument using laboratory spectral measurements of meteorites. Our rationale for using the published dataset was to bypass calibration issues and ensure a consistent dataset between the two studies. Our analysis of the VIR data shows that while the interpretation of their spectra as an olivine-rich unit is correct, the nature and origin of that olivine could be more complicated. We suggest that these olivine exposures could also be explained by the delivery of olivine-rich exogenic material. This hypothesis is supported by meteoritical evidence in the form of exogenic xenoliths containing significant amount of olivine in some of the HED meteorites from Vesta. Previous laboratory work on HEDs show that

  14. Turbulent Size Selection and Concentration of Chondrule-Sized Objects: Reynolds Number Invariance and Implications

    NASA Technical Reports Server (NTRS)

    Cuzzi, J. N.; Hogan, R.; Dobrovolskis, A.; Paque, J.

    2006-01-01

    It is generally agreed that individual chondrules formed as entities in a gaseous nebula prior to being accumulated into a meteorite parent body, within which they incur various forms of modification before arriving in our labs. While there are major unanswered questions about the properties of the nebula environment in which chondrules formed, the process by which the most primitive meteorites are formed overwhelmingly from chondrules must then be an aspect of "nebula processing". Textures in certain fragments of primitive meteorites might be summarized as being primarily chondrules and clastic, chondrule-sized, fragments of other minerals, each covered with a rim of fine dust with physical and chemical properties which are essentially independent of the composition and mineralogy of the underlying chondrule. This (unfortunately rather rare) texture was called "primary accretionary texture" to reflect their belief that it precedes subsequent stages in which fragmentation, comminution, mixing, heating, and other forms of alteration occur on the parent body(-ies). The size distribution of these chondrules and fragments, and the properties of their dusty rims, are key clues regarding the primary nebula accretion process. Even in the much more abundant meteorites which have clearly suffered internal mixing, abrasion, grinding, and even mineralogical alteration or replacement (due presumably to the collisional growth and heating process itself), key chondrule properties such as mean size and density remain relatively well defined, and well defined rims persist in many cases. It has been our goal to infer the key nebula processes indirectly from the properties of these very earliest primitive meteorites by making use of a theoretical framework in which the nebula possesses a plausible level of isotropic turbulence. We have shown that turbulence has the property of concentrating one particular particle size by orders of magnitude, where the preferentially concentrated

  15. Young chondrules in CB chondrites from a giant impact in the early Solar System.

    PubMed

    Krot, Alexander N; Amelin, Yuri; Cassen, Patrick; Meibom, Anders

    2005-08-18

    Chondrules, which are the major constituent of chondritic meteorites, are believed to have formed during brief, localized, repetitive melting of dust (probably caused by shock waves) in the protoplanetary disk around the early Sun. The ages of primitive chondrules in chondritic meteorites indicate that their formation started shortly after that of the calcium-aluminium-rich inclusions (4,567.2 +/- 0.7 Myr ago) and lasted for about 3 Myr, which is consistent with the dissipation timescale for protoplanetary disks around young solar-mass stars. Here we report the 207Pb-206Pb ages of chondrules in the metal-rich CB (Bencubbin-like) carbonaceous chondrites Gujba (4,562.7 +/- 0.5 Myr) and Hammadah al Hamra 237 (4,562.8 +/- 0.9 Myr), which formed during a single-stage, highly energetic event. Both the relatively young ages and the single-stage formation of the CB chondrules are inconsistent with formation during a nebular shock wave. We conclude that chondrules and metal grains in the CB chondrites formed from a vapour-melt plume produced by a giant impact between planetary embryos after dust in the protoplanetary disk had largely dissipated. These findings therefore provide evidence for planet-sized objects in the earliest asteroid belt, as required by current numerical simulations of planet formation in the inner Solar System. PMID:16107841

  16. Volatile Element Abundances in Chondrules Revisited: An LA-ICP-MS Study of QUE 97008 (LL3.05)

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Alexander, C. M. O'd.; Ash, R. D.; McDonough, W. F.

    2007-03-01

    The interiors of chondrules from QUE 97008 (LL3.05) were analyzed for 36 elements, including Rb, Cs, Bi, Pb, Zn, and Se, by LA-ICP-MS. Even the type I chondrules show only modest depletions in volatiles, constraining models for their formation.

  17. 2D Size Distribution of Chondrules and Chondritic Fragments of an Ordinary Chondrite from Lut Desert (Iran)

    NASA Astrophysics Data System (ADS)

    Pourkhorsandi, H.; Mirnejad, H.

    2014-09-01

    2D size measurement of chondrules and chondiritic fragments of a meteorite from Lut desert of Iran is conducted. Chondrules exhibit a size range of 55-1800 µm (average 437 µm). Chondiritic fragments show a size range of 46-1220 µm (average 261 µm).

  18. Experimental Deformation of Olivine Single Crystals at Mantle Pressures and Temperatures

    SciTech Connect

    Raterron, P.; Amiguet, E; Chen, J; Li, L; Cordier, P

    2008-01-01

    Deformation experiments were carried out in a deformation-DIA high-pressure apparatus (D-DIA) on oriented San Carlos olivine single crystals, at pressure (P) ranging from 3.5 to 8.5 GPa, temperature (T) from 1373 to 1673 K, and in poor water condition. Oxygen fugacity (fO2) was maintained within the olivine stability field and contact with enstatite powder ensured an orthopyroxene activity aopx = 1. Two compression directions were tested, promoting either [1 0 0] slip alone or [0 0 1] slip alone in (0 1 0) crystallographic plane, here called, respectively, a-slip and c-slip. Constant applied stress (s) and specimen strain rates ({bar {var_epsilon}}) were monitored in situ using time-resolved X-ray synchrotron diffraction and radiography, respectively. Transmission electron microscopy (TEM) investigation of run products revealed that dislocation creep was responsible for sample deformation. Comparison of the obtained high-P deformation data with the data obtained at room-P by Bai et al. [Bai, Q., Mackwell, S.L., Kohlstedt D.L., 1991, High-temperature creep of olivine single crystals. 1. Mechanical results for buffered samples, Journal of Geophysical Research, 96, 2441-2463] - on identical materials deformed at comparable T-sefO2-aopx conditions - allowed quantifying the P effect on a-slip and c-slip rheological laws. A slip transition with increasing pressure, from dominant a-slip to dominant c-slip, is documented. a-slip appears sensitive to pressure, which translates into the high activation volume V*{sub a} = 12 {+-} 4 cm{sup 3}/mol in the corresponding rheological law, while pressure has little effect on c-slip with V*{sub c} = 3 {+-} 4 cm{sup 3}/mol. These results may explain the discrepancy between olivine low-P and high-P deformation data which has been debated in the literature for more than a decade.

  19. The elastic constants of San Carlos olivine to 17 GPa

    SciTech Connect

    Abramson, E.H.; Brown, J.M.; Slutsky, L.J.; Zaug, J.

    1997-06-01

    All elastic constants, the average bulk and shear moduli, and the lattice parameters of San Carlos olivine (Fo{sub 90}) (initial density 3.355gm/cm{sup 3}) have been determined to a pressure of 12 GPa at room temperature. Measurements of c{sub 11}, c{sub 33}, c{sub 13}, and c{sub 55} have been extended to 17 GPa. The pressure dependence of the adiabatic, isotropic (Hashin-Shtrikman bounds) bulk modulus, and shear modulus may be expressed as K{sub HS}=129.4+4.29P and by G{sub HS}=78+1.71P{minus}0.027P{sup 2}, where both the pressure and the moduli are in gigapascals. The isothermal compression of olivine is described by a bulk modulus given as K{sub T}=126.3+4.28P. Elastic constants other than c{sub 55} can be adequately represented by a linear relationship in pressure. In the order (c{sub 11},c{sub 12},c{sub 13},c{sub 22},c{sub 23},c{sub 33},c{sub 44},c{sub 55},c{sub 66}) the 1 bar intercepts (gigapascal units) are (320.5, 68.1, 71.6, 196.5, 76.8, 233.5, 64.0, 77.0, 78.7). The first derivatives are (6.54, 3.86, 3.57, 5.38, 3.37, 5.51, 1.67, 1.81, 1.93). The second derivative for c{sub 55} is {minus}0.070GPa{sup {minus}1}. Incompressibilities for the three axes may also be expressed as linear relationships with pressure. In the order of {bold a, b}, and {bold c} axes the intercepts in gigapascals are (547.8, 285.8, 381.8) and the first derivatives are (20.1, 12.3, 14.0).{copyright} 1997 American Geophysical Union

  20. Search for Olivine Spectral Signatures on the Surface of Vesta

    NASA Technical Reports Server (NTRS)

    Palomba, E.; De Sanctis, M. C.; Ammannito, E.; Capaccioni, F.; Capria, M. T.; Farina, M.; Frigeri, A.; Longobardo, A.; Tosi, F.; Zambon, F.; McSween, H. Y.; Mittlefehldt, D. W.; Russell, C. T.; Raymond, C. A.; Sunshine, J.; McCord, T. B.

    2012-01-01

    The occurrence of olivines on Vesta were first postulated from traditional petrogenetic models which suggest the formation of olivine as lower crustal cumulates. An indirect confirmation is given by their presence as a minor component in some samples of diogenite meteorites, the harzburgitic diogenites and the dunitic diogenites, and as olivine mineral clasts in howardites. Another indication for this mineral was given by interpretations of groundbased and Hubble Space Telescope observations that suggested the presence of local olivine-bearing units on the surface of Vesta. The VIR instrument onboard the DAWN mission has been mapping Vesta since July 2011. VIR acquired hyperspectral images of Vesta s surface in the wavelength range from 0.25 to 5.1 m during Approach, Survey and High Altitude Mapping (HAMO) orbits that allowed a 2/3 of the entire asteroid surface to be mapped. The VIR operative spectral interval, resolution and coverage is suitable for the detection and mapping of any olivine rich regions that may occur on the Vesta surface. The abundance of olivine in diogenites is typically lower than 10% but some samples richer in olivine are known. However, we do not expect to have extensive exposures of olivine-rich material on Vesta. Moreover, the partial overlap of olivine and pyroxene spectral signatures will make olivine difficult to detect. Different spectral parameters have been used to map olivine on extraterrestrial bodies, and here we discuss the different approaches used, and develop new ones specifically for Vesta. Our new methods are based on combinations of the spectral parameters relative to the 1 and 2 micron bands (the most prominent spectral features of Vesta surface in the visible and the infrared), such as band center locations, band depths, band areas, band area ratios. Before the direct application to the VIR data, the efficiency of each approach is evaluated by means of analysis of laboratory spectra of HED meteorites, pyroxenes, olivines

  1. Water and Carbon Dioxide Adsorption at Olivine Surfaces

    SciTech Connect

    Kerisit, Sebastien N.; Bylaska, Eric J.; Felmy, Andrew R.

    2013-11-14

    Plane-wave density functional theory (DFT) calculations were performed to simulate water and carbon dioxide adsorption at the (010) surface of five olivine minerals, namely, forsterite (Mg2SiO4), calcio-olivine (Ca2SiO4), tephroite (Mn2SiO4), fayalite (Fe2SiO4), and Co-olivine (Co2SiO4). Adsorption energies per water molecule obtained from energy minimizations varied from -78 kJ mol-1 for fayalite to -128 kJ mol-1 for calcio-olivine at sub-monolayer coverage and became less exothermic as coverage increased. In contrast, carbon dioxide adsorption energies at sub-monolayer coverage ranged from -20 kJ mol-1 for fayalite to -59 kJ mol-1 for calcio-olivine. Therefore, the DFT calculations show a strong driving force for carbon dioxide displacement by water at the surface of all olivine minerals in a competitive adsorption scenario. Additionally, adsorption energies for both water and carbon dioxide were found to be more exothermic for the alkaline-earth (AE) olivines than for the transition-metal (TM) olivines and to not correlate with the solvation enthalpies of the corresponding divalent cations. However, a correlation was obtained with the charge of the surface divalent cation indicating that the more ionic character of the AE cations in the olivine structure relative to the TM cations leads to greater interactions with adsorbed water and carbon dioxide molecules at the surface and thus more exothermic adsorption energies for the AE olivines. For calcio-olivine, which exhibits the highest divalent cation charge of the five olivines, ab initio molecular dynamics simulations showed that this effect leads both water and carbon dioxide to react with the surface and form hydroxyl groups and a carbonate-like species, respectively.

  2. Diffusive Fractionation of Lithium Isotopes in Olivine

    NASA Astrophysics Data System (ADS)

    Homolova, V.; Richter, F. M.; Watson, E. B.; Chaussidon, M.

    2014-12-01

    Systematic lithium isotope variations along concentration gradients found in olivine and pyroxene grains from terrestrial, lunar and martian rocks have been attributed to diffusive isotopic fractionation [Beck et al., 2006; Tang et al., 2007]. In some cases, these isotopic excursions are so large that a single grain may display isotopic variability that spans almost the entire range of documented terrestrial values [Jeffcoate et al., 2007]. In this study, we present the results of experiments to examine diffusive isotopic fractionation of lithium in olivine. The experiments comprised crystallographically oriented slabs of San Carlos olivine juxtaposed with either spodumene powder or a lithium rich pyroxene crystal. Experiments were conducted at 1 GPa and 0.1MPa over a temperature range of 1000 to 1125⁰C. Oxygen fugacity in the 0.1MPa experiments was controlled using the wustite-magnetite and nickel-nickel oxide solid buffer assemblages. Lithium concentrations generally decrease smoothly away from the edges of the grains; however, experiments involving diffusion parallel to the a-axis consistently show peculiar wavy or segmented concentration profiles. Lithium diffusivity parallel to the c-axis is on the order of 1E-14m2/s at 1100⁰C. The diffusivity parallel to the c-axis is more than an order of magnitude faster than diffusion parallel to the b-axis and correlates positively with oxygen fugacity. The lithium isotopic composition, δ7Li = 1000‰ * ((δ7Lisample- δ7Ligrain center)/ δ7Ligrain center), shows a decrease away from the edge of the grain to a minimum value (up to 70‰ lighter) and then an abrupt increase back to the initial isotopic composition of the olivine grain. This isotopic profile is similar to those found in natural grains and an experimental study on diffusive fractionation of lithium isotopes in pyroxene [Richter et al., 2014]. Results from the present study are modeled using the approach of Dohmen et al. [2010], which assumes lithium

  3. Discovery of Olivine in the Nili Fossae Region of Mars

    USGS Publications Warehouse

    Hoefen, T.M.; Clark, R.N.; Bandfield, J.L.; Smith, M.D.; Pearl, J.C.; Christensen, P.R.

    2003-01-01

    We have detected a 30,000-square-kilometer area rich in olivine in the Nili Fossae region of Mars. Nili Fossae has been interpreted as a complex of grabens and fractures related to the formation of the Isidis impact basin. We propose that post-impact faulting of this area has exposed subsurface layers rich in olivine. Linear mixture analysis of Thermal Emission Spectrometer spectra shows surface exposures of 30% olivine, where the composition of the olivine ranges from Fo30 to Fo70.

  4. Vaporization Studies of Olivine via Knudsen Effusion Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Costa, G. C. C.; Jacobson, N. S.

    2014-01-01

    Olivine is the major mineral in the Earth's upper mantle occurring predominantly in igneous rocks and has been identified in meteorites, asteroids, the Moon and Mars. Among many other important applications in planetary and materials sciences, the thermodynamic properties of vapor species from olivine are crucial as input parameters in computational modelling of the atmospheres of hot, rocky exoplanets (lava planets). There are several weight loss studies of olivine vaporization in the literature and one Knudsen Effusion Mass Spectrometry (KEMS) study. In this study, we examine a forsterite-rich olivine (93% forsterite and 7% fayalite, Fo93Fa7) with KEMS to further understand its vaporization and thermodynamic properties.

  5. Olivine diogenites - The mantle of the eucrite parent body

    NASA Technical Reports Server (NTRS)

    Sack, Richard O.; Azeredo, William J.; Lipschutz, Michael E.

    1991-01-01

    Two olivine-rich Antarctic diogenites (ALH A77256 and ALH 84001) of the howardite-eucrite-diogenite (HED) meteorite association have olivine/pyroxene ratios similar to normative ratios in devolatilized ordinary chondrites. Based on chemical data and petrological analysis, these meteorites represent the residuum of partial melting of the mantle in the eucrite parent body (EPB). Mineral assemblages in these olivine-rich diogenites record a continuum in thermal histories from initial partial melting (1150-1200 C) to subsolidus reequilibration (795 + or - 55 C). The small number of olivine-rich diogenites known hints that only the outer portion of the EPB has been sampled.

  6. A scanning electron microscope study of olivine crystal surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, E. J.; Grossman, L.

    1974-01-01

    SEM photographs were taken of euhedral olivine grains from the Murchison C2 chondrite and several terrestrial and lunar occurrences. In general, the crystal faces of the meteorite grains are rough and uneven, with irregular growth patterns. They are very similar to crystal faces on terrestrial olivine grains that formed by sublimation from a vapor phase. They are very different from the relatively smooth and featureless surfaces of magmatic olivine crystals that precipitated from igneous melts. Qualitatively, the surface morphology of the crystal supports the contention that many euhedral crystals of olivine in C2 meteorites condensed from a gas phase.

  7. Meteorite Ablation Rinds as Analogs for the Origin of Rims on Chondrules

    NASA Astrophysics Data System (ADS)

    Bunch, T.; Paque, J. M.; Reynolds, R.; Podolak, M.; Prialnik, D.

    1993-07-01

    Conventional wisdom holds that UOC chondrule rims were formed in the nebula by dust accretion. Following the accretion stage, some investigators suggest that these porous rims were subjected to thermal alteration that ranged from sintering to melting [e. g., 1-3]. To understand the evolutionary history of chondrules we need to ask: (1) What nebular mechanism(s) concentrated the dust for rapid accretion? (Addressed in a companion paper at this meeting [4]). (2) What thermal event(s) welded or melted the dust? (3) Is this dust solely responsible for the rim composition, or are some rims composed, in part, of the parent chondrule? Production and/or modification of rims during atmospheric entry onto a parent body is a scenario that is testable by examination of ablation rinds produced on meteorites during entry into Earth's atmosphere. Comparison of ablation rind features with opaque rims on UOC chondrules will indicate whether this is a viable method for the production of chondrule rims. Terrestrial ablation rinds on UOCs and carbonaceous chondrites have been examined both texturally and chemically. Ablation rinds have these distinct characteristics: (1) The bulk composition of the rind is a reflection of the bulk chemistry of the host object, including Na, K, and P, but with the exception of much lower S. (2) Boundaries between unmelted bulk meteorite and rind silicates are physically sharp over distances of microns, similar to boundaries between rims and their chondrules. However, compositional transition zones extend inward from the boundaries for 10s of microns. (3) Melted meteorite matrix in the rind is compositionally similar to unmelted matrix and is texturally and chemically similar to rims. (4) Mineral texture and chemistry at chondrule/rim and meteorite/rind interfaces indicate significant thermal processing has occurred. For example, sulfides show high concentrations of included, more refractory phases at the melt interface with a corresponding loss of S

  8. Oxygen Isotopic Analyses of Water in Bjurböle Matrix and Chondrules

    NASA Astrophysics Data System (ADS)

    Nunn, M.; Thiemens, M. H.

    2011-12-01

    Past oxygen isotopic analyses of the Bjurböle meteorite have been limited to whole rock and chondrule studies. We present here the first oxygen isotopic measurements of water contained in the matrix and chondrules of the L4 equilibrated ordinary chondrite Bjurböle. Water was extracted by vacuum pyrolysis from samples of separated matrix and chondrules from Bjurböle. A new, low volume, ultra low blank system was built specifically for these measurements. Each fraction was pumped overnight on a vacuum line to remove as much adsorbed terrestrial water as possible before heating step-wise to 150, 350, 600 and 1000°C. While heating, evaporated volatiles were collected in a liquid nitrogen cold trap. Water was quantitatively converted to molecular oxygen with bromine pentafluoride. Isotopic abundances were measured on a double-collecting isotope ratio mass spectrometer. The Δ 17O values obtained from direct fluorination of Bjurböle chondrules and whole rock and UV laser probe analyses of individual Bjurböle chondrules all cluster around one [1, 2]. Compared to these data, water extracted from the Bjurböle matrix and chondrules is isotopically light (Δ 17O = 0.5 and 0.7, respectively), presumably reflecting different equilibration histories of water and oxygen-bearing minerals in each component. Additionally, the proximity of Δ 17O values of water extracted at lower temperatures to zero indicates low-temperature heating is necessary to remove all adsorbed terrestrial water and obtain the true isotopic signature of extraterrestrial water.

  9. Fe and O isotope composition of meteorite fusion crusts: Possible natural analogues to chondrule formation?

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.; Poole, Graeme M.; Hoyes, Jack; Coles, Barry J.; Unsworth, Catherine; Albrecht, Nina; Smith, Caroline; RehkäMper, Mark; Pack, Andreas; Genge, Matthew; Russell, Sara S.

    2015-02-01

    Meteorite fusion crust formation is a brief event in a high-temperature (2000-12,000 K) and high-pressure (2-5 MPa) regime. We studied fusion crusts and bulk samples of 10 ordinary chondrite falls and 10 ordinary chondrite finds. The fusion crusts show a typical layering and most contain vesicles. All fusion crusts are enriched in heavy Fe isotopes, with δ56Fe values up to +0.35‰ relative to the solar system mean. On average, the δ56Fe of fusion crusts from finds is +0.23‰, which is 0.08‰ higher than the average from falls (+0.15‰). Higher δ56Fe in fusion crusts of finds correlate with bulk chondrite enrichments in mobile elements such as Ba and Sr. The δ56Fe signature of meteorite fusion crusts was produced by two processes (1) evaporation during atmospheric entry and (2) terrestrial weathering. Fusion crusts have either the same or higher δ18O (0.9-1.5‰) than their host chondrites, and the same is true for Δ17O. The differences in bulk chondrite and fusion crust oxygen isotope composition are explained by exchange of oxygen between the molten surface of the meteorites with the atmosphere and weathering. Meteorite fusion crust formation is qualitatively similar to conditions of chondrule formation. Therefore, fusion crusts may, at least to some extent, serve as a natural analogue to chondrule formation processes. Meteorite fusion crust and chondrules exhibit a similar extent of Fe isotope fractionation, supporting the idea that the Fe isotope signature of chondrules was established in a high-pressure environment that prevented large isotope fractionations. The exchange of O between a chondrule melt and an 16O-poor nebula as the cause for the observed nonmass dependent O isotope compositions in chondrules is supported by the same process, although to a much lower extent, in meteorite fusion crusts.

  10. Early cosmic ray irradiation of chondrules and prolonged accretion of primitive meteorites

    NASA Astrophysics Data System (ADS)

    Beyersdorf-Kuis, Uta; Ott, Ulrich; Trieloff, Mario

    2015-08-01

    Chondrules, together with Ca-Al-rich inclusions (CAIs) and matrix, are the major constituents of primitive meteorites. It is clear that chondrules formed as molten objects and the conditions under which this happened seem well constrained. Partially overlapping in age, but mostly ∼2-3 million years younger than the CAIs, they appear to have formed over an extended period of time (e.g., Kita et al., 2013). We have analyzed chondrules in two highly primitive CR3 meteorites, QUE 99177 and MET 00426, and find that they contain highly variable amounts of noble gases produced by irradiation with cosmic rays. The lack of implanted solar wind and the composition of the cosmogenic component in QUE 99177 chondrules argue against irradiation in a parent body regolith, which leaves irradiation in the early solar system as the most likely explanation. The cosmogenic composition also points to irradiation primarily by galactic cosmic rays (GCR), not solar cosmic rays (SCR), i.e. not by an active early sun. To allow effective production of cosmogenic isotopes by GCR, but not SCR, this should have happened rather "late" in a largely, but not completely, dust-free environment. Our results support the suggestion that chondrules formed as free-floating objects in the solar nebula; also consistent with the noble gas data is pre-irradiation in small (∼dm-size) aggregates that broke up before or during accretion to the CR parent body. In both cases, chondrules spent an extended period of time before incorporation into the most primitive meteorite parent bodies, which puts constraints on accretion time scales.

  11. Mg isotope evidence for contemporaneous formation of chondrules and refractory inclusions.

    PubMed

    Bizzarro, Martin; Baker, Joel A; Haack, Henning

    2004-09-16

    Primitive or undifferentiated meteorites (chondrites) date back to the origin of the Solar System, and thus preserve a record of the physical and chemical processes that occurred during the earliest evolution of the accretion disk surrounding the young Sun. The oldest Solar System materials present within these meteorites are millimetre- to centimetre-sized calcium-aluminium-rich inclusions (CAIs) and ferromagnesian silicate spherules (chondrules), which probably originated by thermal processing of pre-existing nebula solids. Chondrules are currently believed to have formed approximately 2-3 million years (Myr) after CAIs (refs 5-10)--a timescale inconsistent with the dynamical lifespan of small particles in the early Solar System. Here, we report the presence of excess (26)Mg resulting from in situ decay of the short-lived (26)Al nuclide in CAIs and chondrules from the Allende meteorite. Six CAIs define an isochron corresponding to an initial (26)Al/(27)Al ratio of (5.25 +/- 0.10) x 10(-5), and individual model ages with uncertainties as low as +/- 30,000 years, suggesting that these objects possibly formed over a period as short as 50,000 years. In contrast, the chondrules record a range of initial (26)Al/(27)Al ratios from (5.66 +/- 0.80) to (1.36 +/- 0.52) x 10(-5), indicating that Allende chondrule formation began contemporaneously with the formation of CAIs, and continued for at least 1.4 Myr. Chondrule formation processes recorded by Allende and other chondrites may have persisted for at least 2-3 Myr in the young Solar System. PMID:15372023

  12. Anisotropy of electrical conductivity in dry olivine

    SciTech Connect

    Du Frane, W L; Roberts, J J; Toffelmier, D A; Tyburczy, J A

    2005-04-13

    [1] The electrical conductivity ({sigma}) was measured for a single crystal of San Carlos olivine (Fo{sub 89.1}) for all three principal orientations over oxygen fugacities 10{sup -7} < fO{sub 2} < 10{sup 1} Pa at 1100, 1200, and 1300 C. Fe-doped Pt electrodes were used in conjunction with a conservative range of fO{sub 2}, T, and time to reduce Fe loss resulting in data that is {approx}0.15 log units higher in conductivity than previous studies. At 1200 C and fO{sub 2} = 10{sup -1} Pa, {sigma}{sub [100]} = 10{sup -2.27} S/m, {sigma}{sub [010]} = 10{sup -2.49} S/m, {sigma}{sub [001]} = 10{sup -2.40} S/m. The dependences of {sigma} on T and fO{sub 2} have been simultaneously modeled with undifferentiated mixed conduction of small polarons and Mg vacancies to obtain steady-state fO{sub 2}-independent activation energies: Ea{sub [100]} = 0.32 eV, Ea{sub [010]} = 0.56 eV, Ea{sub [001]} = 0.71 eV. A single crystal of dry olivine would provide a maximum of {approx}10{sup 0.4} S/m azimuthal {sigma} contrast for T < 1500 C. The anisotropic results are combined to create an isotropic model with Ea = 0.53 eV.

  13. Mineralogical Comparison of Olivine in Shergottites and A Shocked L Chondrite: Implications for Shock Histories of Brown Olivine

    NASA Technical Reports Server (NTRS)

    Takenouchi, A.; Mikouchi, T.; Yamaguchi, A.; Zolensky, M. E.

    2015-01-01

    Most Martian meteorites are heavily shocked, exhibiting numerous shock features, for example undulatory extinction of olivine and pyroxene, the presence of diaplectic glass ("maskelynite") and the formation of shock melt. Among these shock features, olivine darkening ("brown" olivine) is unique in Martian meteorites because no other meteorite group shows such a feature. Although the presence of brown olivine in shergottites was reported thirty years ago, detailed observation by TEM has not been performed until the NWA 2737 chassignite was discovered, whose olivine is darkened, being completely black in hand specimen. Fe metal nano-particles were found in NWA 2737 olivine which are considered to have been formed by olivine reduction during heavy shock. Subsequently, magnetite nano-particles were also found in other Martian meteorites and the coexistence of Fe metal and magnetite nano-particles was reported in the NWA 1950 shergottite and some Fe metal nano-particles were mantled by magnetite. Therefore, the formation process of nano-particles seems to be complex. Because "brown" olivine is unique to Martian meteorites, they have a potential to constrain their shock conditions. In order to better understand the shock history of Martian meteorites, we compared olivine in several shergottites with that in a highly-shocked L chondrite which contains ringwoodite.

  14. A secondary origin of chondrule magnetization in the Allende CV carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Carporzen, L.; Fu, R.; Andrade Lima, E.; Weiss, B. P.

    2011-12-01

    Magnetic fields in the solar nebula may have played a key role in the radial transport of angular momentum and mass during the early accretional phase of the solar system. Chondrules and many calcium aluminum inclusions (CAIs), millimeter sized silicate objects found in most chondritic meteorites, were heated to high temperatures and cooled in the nebula and therefore may have recorded a thermoremanent magnetization (TRM) from the nebula field. Additionally, primitive magnetization in chondrules and CAIs may yield constraints about their mode of formation. However, any such primary magnetization may have been significantly altered during subsequent metamorphism and aqueous alteration on the parent asteroid. We performed two tests to determine the nebular origins of remanent magnetization in chondrules and refractory inclusions in the Allende CV3 carbonaceous chondrite: 1) a classic paleomagnetic conglomerate test to identify post-accretional remagnetization events and 2) a unidirectionality test of subsamples taken from individual chondrules and CAIs. We conducted individual measurements of mutually oriented chondrules, CAIs, and matrix as well as SQUID microscope maps of the magnetic fields of 30 μm thin sections. All samples and thin sections were mutually oriented to within 5°. Our results confirm previous findings that all subsamples of the meteorite carry a unidirectional overprint blocked up to 260°-290°C (MT component). Chondrules and CAIs also carry a higher temperature (HT) remanence oriented in scattered directions unrelated to the direction of the MT overprint. We have confirmed that this HT magnetization is not an artifact of the demagnetization procedure but is a preterrestrial component. Measurements of subsamples of single chondrules and CAIs show that the HT magnetization is not unidirectional within each inclusion. Petrographic data suggests that most magnetic minerals in Allende were the product of parent body alteration. These facts suggest

  15. The origin of chromitic chondrules and the volatility of Cr under a range of nebular conditions

    NASA Technical Reports Server (NTRS)

    Krot, Alexander; Ivanova, Marina A.; Wasson, John T.

    1993-01-01

    We characterize ten chromatic chondrules, two spinelian chondrules andd one spinel-bearing chondrule and summarize data for 120 chromitic inclusions discovered in an extensive survey of ordinary chondrites. Compositional and petrographic evidence suggests that chromitic chondrules and inclusions are closely related. The Cr/(Cr + Al) ratios in the spinal of these objects range from 0.5 to 0.9 and bulk Al2O3 contents are uniformly high (greater than 10 wt%, except for one with 8 wt%). No other elements having comparable solar abundances are so stongly enriched, and alkali feldspar and merrillite are more common than in normal chondrules. The Cr/Mg ratios in chromitic chondrules are 180-750 times the ratios in the bulk chondrite. With the possible exception of magnetic clumping of chromite in the presolar cloud, mechanical processes cannot account for this enrichment. Examination of nebular equilibrium processes shows that 50%-condensation temperatures of Cr at pH2/pH2O of 1500 are several tens of degrees below those of Mg as Mg2SiO4; the condensation of Cr is primarily as MgCr2O4 dissolved in MgAl2O4 at nebular pressures of 10(exp -4) atm or below. At pH2 = 10(exp -3) atm condesation as Cr in Fe-Ni is favored. Making the nebula much more oxidizing reduces the difference in condensation temperatures but Mg remains more refractory. We conclude that nebular equilibrium processes are not responsible for the enhanced Cr/Mg ratios. We propose that both Cr and Al became enriched in residues formed by incomplete evaporation of presolar lumps. We suggest that spinals remained as solid phases when the bulk of the silicates were incorporated into the evaporating melt; vaporization of Al and Cr were inhibited by the slow kinetics of diffusion. Subsequent melting and crystallization of these residues fractionated Cr from Al. The resulting materials constituted major components in the precursors of chromitic chondrules. Our model implies that chromitic chondrules and inclusions

  16. Iodine-xenon studies of petrographically and chemically characterized Chainpur chondrules

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Caffee, M. W.; Hohenberg, C. M.; Lindstrom, M. M.; Taylor, G. J.

    1991-01-01

    INAA, noble gas, and petrographic studies conducted on samples of 18 chondrules and matric material from the Chainpur (LL3) indicate that the I-129/I-127 ratio, R(0), varies by a factor of more than 10 among the chondrules. This corresponds to a greater-than-50 Ma span in apparent I-Xe ages. Models which invoke either gas-dust mixing or nebular heterogeneity cannot satisfactorily explain these data, any more than can hypotheses which attribute the variations to differences in formation age, metamorphic rate, or time of aqueous alteration. It is alternatively suggested that the variations represent periods of low-grade shock events.

  17. Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules

    NASA Technical Reports Server (NTRS)

    Lavy, Eugene H.; Araki, Suguru

    1989-01-01

    A possible episodic heating mechanism that could account for chondrule formation is discussed. The mechanism involves the transient release of energy as a result of magnetic flares in the corona of the protosolar nebula. The possible magnetic behavior of the protosolar nebula is outlined, based on meteorite paleomagnetic evidence about the magnetic field of the protoplanetary nebula and observations of the behavior of magnetic fields. The thermal balance in the melting of a chondrule precursor dust ball is examined. Observational evidence supporting the proposed heating mechanism is presented.

  18. Iodine-xenon studies of petrographically and chemically characterized Chainpur chondrules

    NASA Astrophysics Data System (ADS)

    Swindle, T. D.; Caffee, M. W.; Hohenberg, C. M.; Lindstrom, M. M.; Taylor, G. J.

    1991-03-01

    INAA, noble gas, and petrographic studies conducted on samples of 18 chondrules and matric material from the Chainpur (LL3) indicate that the I-129/I-127 ratio, R(0), varies by a factor of more than 10 among the chondrules. This corresponds to a greater-than-50 Ma span in apparent I-Xe ages. Models which invoke either gas-dust mixing or nebular heterogeneity cannot satisfactorily explain these data, any more than can hypotheses which attribute the variations to differences in formation age, metamorphic rate, or time of aqueous alteration. It is alternatively suggested that the variations represent periods of low-grade shock events.

  19. Geobarometry of ultramafic xenoliths from Loihi Seamount, Hawaii, on the basis of CO2 inclusions in olivine

    USGS Publications Warehouse

    Roedder, E.

    1983-01-01

    Abundant fluid inclusions in olivine of dunite xenoliths (???1-3 cm) in basalt dredged from the young Loihi Seamount, 30 km southeast of Hawaii, are evidence for three coexisting immiscible fluid phases-silicate melt (now glass), sulfide melt (now solid), and dense supercritical CO2 (now liquid + gas)-during growth and later fracturing of some of these olivine crystals. Some olivine xenocrysts, probably from disaggregation of xenoliths, contain similar inclusions. Most of the inclusions (2-10 ??m) are on secondary planes, trapped during healing of fractures after the original crystal growth. Some such planes end abruptly within single crystals and are termed pseudosecondary, because they formed during the growth of the host olivine crystals. The "vapor" bubble in a few large (20-60 ??m), isolated, and hence primary, silicate melt inclusions is too large to be the result of simple differential shrinkage. Under correct viewing conditions, these bubbles are seen to consist of CO2 liquid and gas, with an aggregate ??{variant} = ??? 0.5-0.75 g cm-3, and represent trapped globules of dense supercritical CO2 (i.e., incipient "vesiculation" at depth). Some spinel crystals enclosed within olivine have attached CO2 blebs. Spherical sulfide blebs having widely variable volume ratios to CO2 and silicate glass are found in both primary and pseudosecondary inclusions, demonstrating that an immiscible sulfide melt was also present. Assuming olivine growth at ??? 1200??C and hydrostatic pressure from a liquid lava column, extrapolation of CO2 P-V-T data indicates that the primary inclusions were trapped at ??? 220-470 MPa (2200-4700 bars), or ??? 8-17 km depth in basalt magma of ??{variant} = 2.7 g cm-3. Because the temperature cannot change much during the rise to eruption, the range of CO2 densities reveals the change in pressure from that during original olivine growth to later deformation and rise to eruption on the sea floor. The presence of numerous decrepitated inclusions

  20. Fast grain growth of olivine in liquid Fe-S and the formation of pallasites with rounded olivine grains

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio F. D.; Golabek, Gregor J.; Nimmo, Francis; Schmidt, Max W.

    2015-08-01

    Despite their relatively simple mineralogical composition (olivine + Fe-Ni metal + FeS ± pyroxene), the origin of pallasite meteorites remains debated. It has been suggested that catastrophic mixing of olivine fragments with Fe-(Ni)-S followed by various degrees of annealing could explain pallasites bearing solely or prevalently fragmented or rounded olivines. In order to verify this hypothesis, and to quantify the grain growth rate of olivine in a liquid metal matrix, we performed a series of annealing experiments on natural olivine plus synthetic Fe-S mixtures. The best explanation for the observed olivine grain size distributions (GSD) of the experiments are dominant Ostwald ripening for small grains followed by random grain boundary migration for larger grains. Our results indicate that olivine grain growth in molten Fe-S is significantly faster than in solid, sulphur-free metal. We used the experimentally determined grain growth law to model the coarsening of olivine surrounded by Fe-S melt in a 100-600 km radius planetesimal. In this model, an impact is responsible for the mixing of olivine and Fe-(Ni)-S. Numerical models suggest that annealing at depths of up to 50 km allow for (i) average grain sizes consistent with the observed rounded olivine in pallasites, (ii) a remnant magnetisation of Fe-Ni olivine inclusions as measured in natural pallasites and (iii) for the metallographic cooling rates derived from Fe-Ni in pallasites. This conclusion is valid even if the impact occurs several millions of years after the differentiation of the target body was completed.

  1. Olivine in the Southern Isidis Basin

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) took this observation of the transition region between Libya Montes and the Isidis Basin on Mars at 17:16 UTC (12:16 p.m. EST) on January 2, 2007, near 3.6 degrees north latitude, 84.1 degrees east longitude. The image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 18 meters (60 feet) across. The image is about 11 kilometers (7 miles) wide at its narrowest point.

    The Isidis Basin resulted from of a gigantic impact on the surface of Mars early in the planet's history. The southern rim, where this target is located, is a region of complex geology and part of the planetary dichotomy boundary that separates the older southern highlands from the lower, younger northern plains. The image on the left was constructed from three visible wavelengths (RGB: 0.71, 0.60, 0.53 microns) and is a close approximation of how the surface would appear to the human eye. The image on the right was constructed from three infrared wavelengths (RGB: 2.49, 1.52, 1.08 microns) chosen to highlight variations in the mineralogy of the area. Of interest is that features in this image not only differ in color, but also in texture and morphology. The gray areas absorb similarly at all wavelengths used in this image, but display absorptions at other wavelengths related to the iron- and magesium-rich mineral pyroxene. The reddest areas absorb strongly at the wavelengths used for green and blue, which is attributable to another iron- and magesium-rich mineral, olivine. The brownish areas show subdued mineral absorptions and could represent some type of mixture between the other two materials. The presence of the mineral olivine is particularly interesting because olivine easily weathers to other minerals; thus, its presence indicates either the lack of weathering in this region or relatively recent exposure.

    CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal

  2. Microchondrules in two unequilibrated ordinary chondrites: Evidence for formation by splattering from chondrules during stochastic collisions in the solar nebula

    NASA Astrophysics Data System (ADS)

    Dobricǎ, E.; Brearley, A. J.

    2016-05-01

    The diversity of silicate, glassy spherules analogous to chondrules, called microchondrules, and the implications for their presence in unequilibrated ordinary chondrites (UOCs) were investigated using different electron microscope techniques. Our observations show that the abundance of microchondrules in UOCs is much larger than the values proposed by previous studies. We identified two different types of microchondrules, porous and nonporous, embedded within fine-grained matrices and type I chondrule rims. The porous microchondrules are characterized by distinctive textures and chemical compositions that have not been recognized previously. Additionally, we show detailed textures and chemical compositions of protuberances of silicate materials, connected to the chondrules and ending with microchondrules. We suggest that microchondrules and protuberances formed from materials splattered from the chondrules during stochastic collisions when they were still either completely or partially molten. The occurrence and distinct morphologies of microchondrules and protuberances suggest that rather than just a passive flash melting of chondrules, an additional event perturbed the molten chondrules before they underwent cooling. The bulk chemical compositions suggest that (1) nonporous microchondrules and protuberances were formed by splattering of materials that are compositionally similar to the bulk silicate composition of type I chondrules, and (2) the porous microchondrules could represent the splattered melt products of a less evolved, fine-grained dust composition. The preservation of protuberances and microchondrules in the rims suggests that the cooling and accretion rates were exceptionally fast and that they represent the last objects that were formed before the accretion of the parent bodies of OCs.

  3. Development of crystal preferred orientation of olivine during diffusion creep: a matter of olivine crystal shape

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Sueyoshi, K.; Hiraga, T.

    2013-12-01

    Crystalloagraphic preferred orientation (CPO) of olivine produced during dislocation creep is considered the primary cause of elastic anisotropy in the upper mantle of Earth and is used by seismologists to determine the direction of flow. Here we show that synthetic Fe-free olivine aggregates with either diopside or melt develop strong to weak CPO during grain boundary sliding (GBS) accommodated by diffusion. GBS on boundaries that correspond to specific crystallographic planes produces CPO. By combining the CPO patterns developed during tension and compression experiments, we predict formation in the mantle of three different CPO patterns depending on temperature and the presence of melt. Strong radial anisotropy is anticipated for GBS accommodated by diffusion during simple shear deformation at temperatures from 0.92*Ts to Ts (Ts: solidus temperature). These conditions correspond to depths where melting initiates to 50-100 km deeper and where strongly anisotropic and low seismic velocities are detected.

  4. Cotectic proportions of olivine and spinel in olivine-tholeiitic basalt and evaluation of pre-eruptive processes

    USGS Publications Warehouse

    Roeder, P.; Gofton, E.; Thornber, C.

    2006-01-01

    The volume %, distribution, texture and composition of coexisting olivine, Cr-spinel and glass has been determined in quenched lava samples from Hawaii, Iceland and mid-oceanic ridges. The volume ratio of olivine to spinel varies from 60 to 2800 and samples with >0.02% spinel have a volume ratio of olivine to spinel of approximately 100. A plot of wt % MgO vs ppm Cr for natural and experimental basaltic glasses suggests that the general trend of the glasses can be explained by the crystallization of a cotectic ratio of olivine to spinel of about 100. One group of samples has an olivine to spinel ratio of approximately 100, with skeletal olivine phenocrysts and small (100 ??m) spinel crystals that show evidence of two stages of growth, and a volume ratio of olivine to spinel of 100 to well over 1000. The olivine and spinel in this group have crystallized more slowly with little physical interaction, and show evidence that they have accumulated in a magma chamber. ?? 2006 Oxford University Press.

  5. Boron, beryllium, and lithium, partitioning in olivine

    SciTech Connect

    Neroda, Elizabeth

    1996-05-01

    A one atmosphere experimental study was performed to determine the mineral/melt partition coefficients for B, Be, and Li in forsteritic olivine. Two compositions were chosen along the 1350{degrees}C isotherm, 1b (Fo{sub 17.3} Ab{sub 82.7} An{sub 0} by weight) and 8c (Fo{sub 30} Ab{sub 23.3} An{sub 47.8}, by weight) were then combined in equal amounts to form a composition was doped with 25ppm Li, B, Yb, Nb, Zr, Sr, and Hf, 50ppm Sm, and 100ppm Be, Nd, Ce, and Rb. Electron and ion microprobe analyses showed that the olivine crystals and surrounding glasses were homogeneous with respect to major and trace elements. Partition coefficients calculated from these analyses are as follows: 1b: D{sub B} = 4.41 ({+-} 2.3) E-03, D{sub Be} = 2.86 ({+-} 0.45) E-03, D{sub Li} = 1.54 ({+-} 0.21) E-01, 50/50: D{sub B} = 2.86 ({+-} 0.5) E-03, D{sub Be} = 2.07 ({+-} 0.09) E-03, D{sub Li} = 1.51 ({+-} 0.18) E-01, 8c: D{sub B} = 6.05 ({+-} 1.5) E-03, D{sub Be} = 1.81 ({+-} 0.03) E-03, D{sub Li} = 1.31 ({+-} 0.09) E-01. The results of this study will combined with similar data for other minerals as part of a larger study to understand the partitioning behavior of B, Be, and Li in melting of the upper mantle at subduction zones.

  6. Extremely Na and Cl Rich Chondrule Al3509 from the Allende Meteorite

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Hutcheon, I. D.; Aleon, J.; Ramon, E. C.; Krot, A. N.; Nagashima, K.; Brearley, A. J.

    2011-03-01

    This Ca-Al-rich chondrule is not a replacement product. It has ~10% Na and ~1% Cl. Large excesses of 36S were found uncorrelated with Cl and 26Al/27Al < 3 x 10^-6. It represents the fluid responsible for late alteration in volatile-rich outer layers prior to formation of Allende.

  7. INCORPORATION OF A LATE-FORMING CHONDRULE INTO COMET WILD 2

    SciTech Connect

    Ogliore, R. C.; Huss, G. R.; Nagashima, K.; Butterworth, A. L.; Gainsforth, Z.; Stodolna, J.; Westphal, A. J.; Joswiak, D.; Tyliszczak, T.

    2012-02-15

    We report the petrology, O isotopic composition, and Al-Mg isotope systematics of a chondrule fragment from the Jupiter-family comet Wild 2, returned to Earth by NASA's Stardust mission. This object shows characteristics of a type II chondrule that formed from an evolved oxygen isotopic reservoir. No evidence for extinct {sup 26}Al was found, with ({sup 26}Al/{sup 27}Al){sub 0} < 3.0 Multiplication-Sign 10{sup -6}. Assuming homogenous distribution of {sup 26}Al in the solar nebula, this particle crystallized at least 3 Myr after the earliest solar system objects-relatively late compared to most chondrules in meteorites. We interpret the presence of this object in a Kuiper Belt body as evidence of late, large-scale transport of small objects between the inner and outer solar nebula. Our observations constrain the formation of Jupiter (a barrier to outward transport if it formed further from the Sun than this cometary chondrule) to be more than 3 Myr after calcium-aluminum-rich inclusions.

  8. Remote Compositional Analyses of Lunar Olivine-Bearing Lithologies

    NASA Astrophysics Data System (ADS)

    Isaacson, P.; Clark, R. N.; Head, J. W.; Klima, R.; Petro, N. E.; Pieters, C. M.; Staid, M.; Sunshine, J. M.; Taylor, L. A.; Thaisen, K. G.; Tompkins, S.

    2009-12-01

    The Moon Mineralogy Mapper (M3) is a guest instrument on Chandrayaan-1, India’s first mission to the Moon. M3 is an imaging spectrometer covering the wavelength range of 430 nm - 3000 nm, and was designed to map the mineralogy of the lunar surface. The high spectral resolution of M3 enables the diagnostic absorption features of lunar minerals to be identified clearly, while the high spatial resolution of M3 allows the identification and mapping of distinct lithologic units. Olivine is an important mineral with which to interpret the petrologic evolution of igneous rocks. The composition of olivine (Mg#) is used to indicate the degree of evolution of the source magma from which a sample crystallized. Visible to near-infrared reflectance spectroscopy is sensitive to the Mg# of olivine, as the diagnostic olivine absorption features shift in response to changing major element abundances (Mg and Fe) content. These changes in diagnostic absorption features can be detected by modeling the individual absorption bands with the Modified Gaussian Model (MGM). Spectra of lunar olivines differ from spectra of their terrestrial and synthetic counterparts due to the inclusions of Cr-spinel common to lunar olivines; however, analysis of lunar olivine mineral separates in terrestrial laboratories and modeling of the resulting reflectance spectra have been able to unravel the chromite effects on the olivine spectrum. Previous efforts at remote compositional analysis of lunar olivine have been limited by spectral resolution and coverage or by spatial resolution. However, the spatial and spectral resolution provided by M3 enable olivine composition to be determined remotely in a spatial context. We are in the process of identifying olivine-bearing lithologies on the lunar farside and analyzing the olivine composition with the modified MGM approach. Initial compositional analyses have been completed for a crater on the rim of the Moscoviense basin that appears to be largely dominated

  9. Fossil records of high level of 60Fe in chondrules from unequilibrated chondrites

    NASA Astrophysics Data System (ADS)

    Mishra, Ritesh Kumar; Chaussidon, Marc

    2014-07-01

    The short-lived now-extinct nuclide (SLN) 60Fe, which decays to 60Ni with a half-life of 2.62 Ma, is uniquely of stellar origin. Hence, its Solar System initial abundance yields information about the source of SLNs and the astrophysical environment in which the Solar System was born. Only a few chondrules (∼19) from unequilibrated ordinary chondrites have reported resolved 60Ni excesses using in situ secondary ion mass spectrometry implying Fe60/Fe56>∼0.6×10-7 in the early Solar System, and among these very few (3) have higher excesses implying Fe60/Fe56∼7×10-7 (Mishra et al., 2010; Mishra and Goswami, 2014; Telus et al., 2012). At variance, multi-collector inductively coupled plasma mass spectrometer studies of bulk samples and mineral separates from differentiated meteorites, angrites, achondrites, and chondrules suggest a low abundance of 60Fe/56Fe of ∼1.4×10-8 which would rule out the need for an external seeding of the early Solar with stellar 60Fe (Quitté et al., 2011; Tang and Dauphas, 2012). Two Semarkona chondrules and one Efremovka chondrule analyzed in the present study have mass fractionation corrected excess of up to ∼75 permil (‰) and give 60Fe isochrons with initial 60Fe/56Fe ratios of (7.8±3.7)×10-7, (3.8±1.6)×10-7, and (2.2±1.1)×10-7 (2σ), for Efremovka Ch 1, Semarkona Ch 12, and Semarkona Ch J5 respectively. The higher values of 60Fe/56Fe ratios seen in the chondrules of these least altered meteorites samples concur with and lend greater credence to the suggestion of a massive star as the source of 60Fe, and possibly of other short-lived nuclides, to the early Solar System. However, no definitive explanation (e.g. sample bias, effects of metamorphism, 60Fe heterogeneity) to the apparent disagreement with studies of bulk chondrules and chondrule fragments has been found.

  10. The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.; Prinz, Martin; Fogel, Robert A.

    1994-01-01

    FeO-rich (Fs(sub 6)-34) pyroxene lacking cathodoluminescence (CL), hereafter black pyroxene, is a major constituent of some of the chondrules and fragments in unequilibrated (type 3) enstatite chondrites (UECs). It contains structurally oriented zones of Cr-, Mn-, V-rich, FeO-poor enstatite with red CL, associated with mm-sized blebs of low-Ni, Fe-metal and, in some cases, silica. These occurrences represent clear evidence of pyroxene reduction. The black pyroxene is nearly always rimmed by minor element (Cr, Mn, V)-poor enstatite having a blue CL. More commonly, red and blue enstatites, unassociated with black pyroxene, occur as larger grains in chondrules and fragments, and these constitute the major silicate phases in UECs. The rare earth element (REE) abundance patterns of the black pyroxene are LREE-depleted. The blue enstatite rims, however, have a near-flat to LREE-enriched pattern, approx. 0.5-4x chondritic. The petrologic and trace element data indicate that the black pyroxene is from an earlier generation of chondrules that formed in a nebular region that was more oxidizing than that of the enstatite chondrites. Following solidification, these chondrules experienced a more reducing nebular environment and underwent reduction. Some, perhaps most, of the red enstatite that is common throughout the UECs may be the product of solid-state reduction of black pyroxene. The blue enstatite rims grew onto the surfaces of the black pyroxene and red enstatite as a result of condensation from a nebular gas. The evolutionary history of some of the enstatite and chondrules in enstatite chondrites can be expressed in a four-stage model that includes: Stage 1. Formation of chondrules in an oxidizing nebular environment. Stage 2. Solid-state reduction of the more oxidized chondrules and fragments to red enstatite in a more reducing nebular environment. Stage 3. Formation of blue enstatite rims on the black pyroxene as well as on the red enstatite. Stage 4. Reprocessing, by

  11. The effect of multiple particle sizes on cooling rates of chondrules produced in large-scale shocks in the solar nebula

    NASA Astrophysics Data System (ADS)

    Morris, Melissa A.; Weidenschilling, Stuart J.; Desch, Steven J.

    2016-05-01

    Chondrules represent one of the best probes of the physical conditions and processes acting in the early solar nebula. Proposed chondrule formation models are assessed based on their ability to match the meteoritic evidence, especially experimental constraints on their thermal histories. The model most consistent with chondrule thermal histories is passage through shock waves in the solar nebula. Existing models of heating by shocks generally yield a good first-order approximation to inferred chondrule cooling rates. However, they predict prolonged heating in the preshock region, which would cause volatile loss and isotopic fractionation, which are not observed. These models have typically included particles of a single (large) size, i.e., chondrule precursors, or at most, large particles accompanied by micron-sized grains. The size distribution of solids present during chondrule formation controls the opacity of the affected region, and significantly affects the thermal histories of chondrules. Micron-sized grains evaporate too quickly to prevent excessive heating of chondrule precursors. However, isolated grains in chondrule-forming regions would rapidly coagulate into fractal aggregates. Preshock heating by infrared radiation from the shock front would cause these aggregates to melt and collapse into intermediate-sized (tens of microns) particles. We show that inclusion of such particles yields chondrule cooling rates consistent with petrologic and isotopic constraints.

  12. Mineralogy of interplanetary dust particles from the 'olivine' infrared class

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Buseck, P. R.

    1986-01-01

    Analytical electron microscopy observations establish that olivine is abundant and the predominant silicate phase in three interplanetary dust particles (IDPs) from the 'olivine' infrared spectra category. Two of the particles have microstructures resembling those of most nonhydrous chondritic IDPs, consisting of micron to submicron grains together with a matrix composed of amorphous carbonaceous material and sub-500 A grains. In addition to olivine these particles respectively contain enstatite and magnetite, and pentlandite plus Ca-rich clinopyroxene. The third IDP consists mostly of olivine and pyrrhotite with little or no matrix material. Olivine grains in this particle contain prominent solar-flare ion tracks with densities corresponding to a space-exposure age between 1000 to 100,000 years. Although the three particles have olivine-rich mineralogies in common, other aspects of their mineralogies and microstructures suggest that they experienced different formation histories. The differences between the particles indicate that the olivine infrared spectral category is a diverse collection of IDPs that probably incorporates several genetic groups.

  13. The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada

    NASA Astrophysics Data System (ADS)

    Bussweiler, Yannick; Foley, Stephen F.; Prelević, Dejan; Jacob, Dorrit E.

    2015-04-01

    This study presents detailed petrographical and geochemical investigations on remarkably fresh olivines in kimberlites from the EKATI Diamond Mine™ located in the Tertiary/Cretaceous Lac de Gras kimberlite field within the Slave craton of Canada. Olivine, constituting about 42 vol.% of the analyzed samples, can be divided into two textural groups: (i) macrocrystic olivines, > 100 μm sub-rounded crystals and (ii) groundmass olivines, < 100 μm subhedral crystals. Olivines from both populations define two distinct chemical trends; a "mantle trend" with angular cores, showing low Ca (< 0.1 wt.% CaO) and high Ni (0.3-0.4 wt.% NiO) at varying Mg# (0.86-0.93), contrasts with a "melt trend" typified by thin (< 100 μm) rims with increasing Ca (up to 1.0 wt.% CaO) and decreasing Ni (down to 0.1 wt.% NiO) contents at constant Mg# (~ 0.915). These findings are in agreement with recent studies suggesting that virtually all olivine is composed of xenocrystic (i.e. mantle-related) cores with phenocrystic (i.e. melt-related) overgrowths, thereby challenging the traditional view that the origin of kimberlitic olivine can be distinguished based on size and morphology. The two main trends can be further resolved into sub-groups refining the crystallization history of olivine; the mantle trend indicates a multi-source origin that samples the layered lithosphere below the Slave craton, whereas the melt trend represents multi-stage crystallization comprising a differentiation trend starting at mantle conditions and a second trend controlled by the crystallization of additional phases (e.g. chromite) and changing magma conditions (e.g. oxidation). These trends are also seen in the concentrations of trace elements not routinely measured in olivine (e.g. Na, P, Ti, Co, Sc, Zr). Trace element mapping with LA-ICP-MS reveals the distribution of these elements within olivine grains. The trace element distribution between the two trends appears to be consistent with phenocrystic olivine

  14. Relative strengths of orthopyroxene and olivine at asthenospheric conditions

    NASA Astrophysics Data System (ADS)

    Holyoke, C. W., III; Raterron, P.; Girard, J.

    2014-12-01

    Orthopyroxene is the second most common mineral in the Earth's upper mantle. However, very little is known about its strength relative to olivine and clinopyroxene, both of which are well studied. Analyses of microstructures in peridotites containing orthopyroxene and olivine that were deformed at lithospheric conditions (relatively low temperatures and pressures) indicate that the orthopyroxene is stronger than surrounding olivine. In contrast, analyses of microstructures in asthenospheric peridotite xenoliths indicate that olivine and orthopyroxene have similar strengths. In order to better determine the pressure, temperature and strain rate sensitivity of the strength of orthopyroxene aggregates, we have performed an experimental study on stacked cylinders of orthopyroxene aggregates and olivine aggregates in the D-DIA. Cylinders of Bamble orthopyroxene (d~5-30 microns) or San Carlos olivine (d~25 microns) were hot-pressed in-situ at 1300oC for 1 hour prior to deformation. Although the assemblies and powders were dried at >100oC for >12 hours prior to installation in the apparatus, minor concentrations of water were observed (OPx ~ 500 H/106 Si; Ol ~ 200 H/106 Si). Multiple deformation steps were performed in each experiment over a range of strain rates (5x10-6 to 2x10-4/s) at a single temperature and pressure (T = 1000 - 1400oC and P = 2 - 5 GPa). At almost all conditions tested in these experiments, the orthopyroxene aggregates deformed at the same strain rate as the olivine cylinders, indicating both materials have the same stress exponent and very similar activation enthalpy. The microstructures observed in both the orthopyroxene and olivine cylinders are consistent with dislocation creep and lattice preferred orientations consistent with those observed in naturally deformed peridotites. These results indicate that at asthenospheric mantle conditions, the strengths of orthopyroxene and olivine in the dislocation creep field are very similar.

  15. Deciphering magma histories through phosphorus zoning in olivine

    NASA Astrophysics Data System (ADS)

    Ersoy, Ö.; Nikogosian, I.; Mason, P. R. D.; van Bergen, M.

    2015-12-01

    Since olivine is usually the first major phase to crystallize from basaltic magma, its primary chemistry is a sensitive tracer of the early evolution of volcanic systems. However, fast diffusion and homogenization under magmatic conditions frequently modifies the original composition of olivine, which hampers the reconstruction of cooling histories and magma evolution from the chemistry and zoning patterns of phenocrysts in erupted products. Phosphorous is a notable exception due to its sluggish diffusion in olivine crystals and silicate melts, as igneous olivines almost always display complex zoning patterns. Phosphorus zoning in olivine has been linked either to crystallization rate variations and diffusion controlled growth or to strong compositional controls on melt-mineral partitioning. We illuminate the versatility of P-in-olivine with a comprehensive EPMA and LA-ICPMS dataset on olivines from Italian potassium rich mafic lavas and the primitive melt inclusions (MI) that they host. The olivines are characterized by P concentrations from limit of quantification (22 ppm) to 435 ppm P with MIs containing up to 2.2 wt.% P2O5. High resolution (1-2 μm per pixel) element maps show both fine oscillatory and large scale sector zoning in P, which is uncorrelated with zoning in any other element. The MIs are virtually always surrounded by P-depleted zones that are also depleted in Cr and enriched in Al and Ti, which we attribute to a combination of supply-limited slow growth and melt compositional controls on partitioning behavior imposed by the boundary layer. We demonstrate that P zoning carries valuable information on the nature and timing of magmatic events such as mingling/mixing, wall-rock assimilation and subsequent re-equilibration processes. P-in-olivine is most promising to distinguish multiple generations of MIs, as a guide to study their mode of entrapment and to disclose the origin of primary heterogeneities.

  16. Evidence from Chondrule Shapes and Modes for Shock Deformation in Reduced CV3 Chondrites Leoville and Efreomovka

    NASA Astrophysics Data System (ADS)

    Fagan, T. J.; Aoki, R.

    2015-07-01

    The reduced CV3 chondrites Efremovka and Leoville are characterized by (1) more elongate chondrules, and (2) lower matrix abundances compared to the oxidized CV3 Allende. Both observations can be explained by shock deformation of reduced CV3s.

  17. The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario

    NASA Astrophysics Data System (ADS)

    Kendrick, J. L.; Jamieson, R. A.

    2016-09-01

    Orthopyroxene-oxide symplectites after olivine are among the most enigmatic features of corona assemblages in metagabbros. Two coronitic metagabbro bodies from the Algonquin suite in the Grenville Orogen, Ontario, contain exceptionally well preserved orthopyroxene + Fe-Ti oxide symplectite formed during prograde Ottawan (ca. 1060 Ma) granulite-facies metamorphism. Based on textural evidence, we propose a new hypothesis for the formation of these symplectites. Under oxidising conditions associated with fluid infiltration, magmatic olivine and ilmenite underwent a coupled reaction whereby magnetite produced by oxidation of olivine replaced adjacent igneous ilmenite. Ilmenite was re-precipitated as a fine-grained intergrowth with orthopyroxene and some magnetite in the former olivine sites. This hypothesis is supported by textural evidence showing partial replacement of magmatic ilmenite by magnetite and a close spatial association between magmatic oxides and orthopyroxene + Fe-Ti oxide symplectite, which locally radiates from ilmenite into olivine. Measured orthopyroxene/oxide ratios in the symplectite (20-35% oxides) agree with the ratio predicted from the proposed reaction (ca. 30%). Coronas and pseudomorphs formed during high-grade metamorphism, with increasing fO2 interpreted to result from fluid infiltration at near-peak conditions of ca. 13 kbar, 800 °C. The same samples contain red-brown fine-grained aggregates interpreted as iddingsite pseudomorphs after olivine. Raman spectroscopy suggests that the iddingsite consists largely of amorphous silica and Fe-hydroxide; textural evidence indicates that it formed by late-stage oxidation and hydration of olivine that survived earlier metamorphism. The unusual co-occurrence of granulite-facies pseudomorphs after olivine with an alteration product formed at near-surface conditions indicates that some olivine may survive protracted high-grade metamorphism in environments where fluid access is limited.

  18. Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation

    SciTech Connect

    Hamdallah Bearat; Michael J. McKelvy; Andrew V.G. Chizmeshya; Deirdre Gormley; Ryan Nunez; R.W. Carpenter; Kyle Squires; George H. Wolf

    2006-08-01

    CO{sub 2} sequestration via carbonation of widely available low-cost minerals, such as olivine, can permanently dispose of CO{sub 2} in an environmentally benign and a geologically stable form. The paper reports the results of studies of the mechanisms that limit aqueous olivine carbonation reactivity under the optimum sequestration reaction conditions observed to date: 1 M NaCl + 0.64 M NaHCO{sub 3} at T {approx} 185{sup o}C and P{sub CO{sub 2}} {approx} 135 bar. A reaction limiting silica-rich passivating layer (PL) forms on the feedstock grains, slowing carbonate formation and raising process cost. The morphology and composition of the passivating layers are investigated using scanning and transmission electron microscopy and atomic level modeling. Postreaction analysis of feedstock particles, recovered from stirred autoclave experiments at 1500 rpm, provides unequivocal evidence of local mechanical removal (chipping) of PL material, suggesting particle abrasion. This is corroborated by the observation that carbonation increases dramatically with solid particle concentration in stirred experiments. Multiphase hydrodynamic calculations are combined with experiment to better understand the associated slurry-flow effects. Large-scale atomic-level simulations of the reaction zone suggest that the PL possesses a 'glassy' but highly defective SiO{sub 2} structure that can permit diffusion of key reactants. Mitigating passivating layer effectiveness is critical to enhancing carbonation and lowering sequestration process cost. 30 refs., 7 figs.

  19. Dislocation creep of fine-grained olivine

    NASA Astrophysics Data System (ADS)

    Faul, U. H.; Fitz Gerald, J. D.; Farla, R. J. M.; Ahlefeldt, R.; Jackson, I.

    2011-01-01

    Deformation experiments conducted in a gas medium apparatus at temperatures from 1200 to 1350°C with a fine-grained, solution-gelation derived Fe-bearing olivine show a stress dependence of the strain rate at stresses above ˜150 MPa, which is much stronger than previously reported for polycrystalline samples. The data can be fit by a power law with ??σn with n ˜ 7-8, or equally well by a Peierls creep law with exponential stress dependence. Due to the observed strong stress dependence the samples deform at significantly higher strain rates at a given stress than single crystals or coarse-grained polycrystals with n ˜ 3.5. TEM observations indicate the presence of dislocations with at least two different Burgers vectors, with free dislocations predominantly of screw character. Subgrain walls are present but are only weakly developed and have small misorientation angles. Both the rheology and dislocation structures are consistent with creep rate-limited by dislocation glide or cross slip for aggregates with grain sizes smaller than or approaching the recrystallized grain size. Deformation mechanism maps extrapolated to lithospheric temperatures using the melt-free diffusion creep rheology of Faul and Jackson (2007), the dislocation creep rheology of Hirth and Kohlstedt (2003), and the results described here indicate that deformation conditions of ultramylonitic shear zones fall near the triple point of Peierls, dislocation, and diffusion creep.

  20. Kamacite and olivine in ordinary chondrites - Intergroup and intragroup relationships

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1990-05-01

    Results are presented from high-precision electron microprobe analyses of olivine and kamacite in a suite of 134 ordinary chondrites (OCs). The compositional ranges of these phases are defined for each OC group (high total Fe, low total Fe, and low total Fe/low metallic Fe). Anomalous OCs that have olivine and/or kamacite compositions that lie outside the established ranges are identified. The phases in the chondritic clasts of the Netschaevo iron meteorite are characterized to determine the relationship between Netschaevo and OCs. Intragroup variations of olivine and kamacite compositions with petrologic type are examined and OCs that contain olivine and/or kamacite grains with aberrant compositions are identified as fragmental breccias. Also, a search for new metallic Fe-Ni phases with extreme compositions is conducted. As a result of these analyses, several meteorites are reclassified.

  1. Thermo-Reflectance Spectra of Eros: Unambiguous Detection of Olivine

    NASA Technical Reports Server (NTRS)

    Lucey, P. G.; Hinrichs, J. L.; Urquhart-Kelly, M.; Wellnitz, D.; Bell, J. F., III; Clark, B. E.

    2001-01-01

    Olivine is readily detected on 433 Eros using the new thermo-reflectance spectral technique applied to near-IR spectra obtained at Eros by the NEAR spacecraft. Additional information is contained in the original extended abstract.

  2. Applications of dynamic crystallization studies - Lunar olivine-normative basalts

    NASA Technical Reports Server (NTRS)

    Bianco, A. S.; Taylor, L. A.

    1977-01-01

    Dynamic crystallization studies were performed on two synthetic glasses similar in composition to the mare olivine-normative basalt samples 12009 and 15555. The effects of viscosity (primarily a function of FeO) and the initial temperature of cooling on mineral chemistry, texture, and temperature of appearance of phases were investigated. Olivine compositions seem to indicate that, for the two types of melt cooled at the same rate, there are no significant differences in the degree of undercooling at which olivine nucleates, but it is found that olivine-nucleated densities differ. The cooling rate of 15555 is estimated. Since the temperature at which cooling is initiated affects texture, mineral chemistry, and temperature of appearance of phases so greatly, caution is recommended in the application of experimental data to natural rock systems.

  3. Olivine Weathering: Abiotic Versus Biotic Processes as Possible Biosignatures

    NASA Technical Reports Server (NTRS)

    Longazo, T. G.; Wentworth, S. J.; McKay, D. S.; Southam, G.; Clemett, S. J.

    2001-01-01

    A preliminary study to determine how abiotic versus biotic processes affect the weathering of olivine crystals. Perhaps the differences between these weathering processes could be used as biosignatures. Additional information is contained in the original extended abstract.

  4. Olivine and Pyroxene Compositions in Fine-Grained Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Frank, D.

    2011-01-01

    Our analyses of the Wild-2 samples returned by the Stardust Mission have illuminated critical gaps in our understanding of related astromaterials. There is a very large database of olivine and low-calcium pyroxene compositions for coarse-grained components of chondrites, but a sparse database for anhydrous silicate matrix phases. In an accompanying figure, we present comparisons of Wild-2 olivine with the available chondrite matrix olivine major element data. We thus have begun a long-term project measuring minor as well as major element compositions for chondrite matrix and chondritic IDPs, and Wild 2 grains. Finally, we wish to re-investigate the changes to fine-grained olivine and low-Ca pyroxene composition with progressive thermal metamorphism. We have examined the LL3-4 chondrites which because of the Hayabusa Mission have become very interesting.

  5. The Microstructure of a Micrometeorite Impact into Lunar Olivine

    NASA Astrophysics Data System (ADS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2015-11-01

    Through TEM analysis of the cross-section of a ~20 µm diameter crater into an olivine single crystal we can see first-hand the effects of a single impact, including the creation of nanophase iron in the melt.

  6. Systematics of Vanadium in Olivine from Planetary Basalts

    NASA Technical Reports Server (NTRS)

    Karner, J. M.; Papike, J. J.; Shearer, C. K.

    2002-01-01

    The systematics of vanadium in olivines from the Earth, Moon and Mars allows for the comparison of planetary basalt origin and igneous setting and process. Additional information is contained in the original extended abstract.

  7. Aluminum speeds up the hydrothermal alteration of olivine

    NASA Astrophysics Data System (ADS)

    Andreani, Muriel; Daniel, Isabelle; Pollet-Villard, Marion

    2014-05-01

    The reactivity of ultramafic rocks toward hydrothermal fluids controls chemical fluxes at the interface between the internal and external reservoirs of silicate planets. On Earth, hydration of ultramafic rocks is ubiquitous and operates from deep subduction zones to shallow lithospheric environments where it considerably affects the physical and chemical properties of rocks and can interact with the biosphere. This process also has key emerging societal implications, such as the production of hydrogen as a source of carbon-free energy. To date, the chemical model systems used to reproduce olivine hydrothermal alteration lead to the formation of serpentine with sluggish reaction rates. Although aluminum is common in geological environments and in hydrothermal systems in particular, its role in serpentinization or olivine dissolution has not been investigated under hydrothermal conditions. Nevertheless, abundant Al supply is expected in fluids released from dehydration of metapelites in subduction zones as well as during the hydrothermal alteration of gabbros at mid-ocean ridges. Aluminum was also abundant in primitive environments of both the Earth and Mars, stored in either Al-rich minerals like plagioclase or Al-enriched ultramafic lavas. We have investigated the role of Al on the hydrothermal alteration of olivine in a series of experiments performed in a low-pressure diamond anvil cell while following the reaction progress in situ by optical imaging and Raman spectroscopy. Experiments were run for 4.5 to 7.5 days with two olivine grains reacted in saline water (0.5 molal NaCl) at 200°C and 300°C, and P=200 MPa. After two days, olivine crystals were fully transformed to an aluminous serpentine, also enriched in iron. The presence of Al in the hydrothermal fluid increases the rate of olivine serpentinization by more than one order of magnitude by enhancing olivine solubility and serpentine precipitation. The mechanism responsible for this increased solubility

  8. Space Weathering of Olivine: Samples, Experiments and Modeling

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Berger, E. L.; Christoffersen, R.

    2016-01-01

    Olivine is a major constituent of chondritic bodies and its response to space weathering processes likely dominates the optical properties of asteroid regoliths (e.g. S- and many C-type asteroids). Analyses of olivine in returned samples and laboratory experiments provide details and insights regarding the mechanisms and rates of space weathering. Analyses of olivine grains from lunar soils and asteroid Itokawa reveal that they display solar wind damaged rims that are typically not amorphized despite long surface exposure ages, which are inferred from solar flare track densities (up to 10 (sup 7 y)). The olivine damaged rim width rapidly approaches approximately 120 nm in approximately 10 (sup 6 y) and then reaches steady-state with longer exposure times. The damaged rims are nanocrystalline with high dislocation densities, but crystalline order exists up to the outermost exposed surface. Sparse nanophase Fe metal inclusions occur in the damaged rims and are believed to be produced during irradiation through preferential sputtering of oxygen from the rims. The observed space weathering effects in lunar and Itokawa olivine grains are difficult to reconcile with laboratory irradiation studies and our numerical models that indicate that olivine surfaces should readily blister and amorphize on relatively short time scales (less than 10 (sup 3 y)). These results suggest that it is not just the ion fluence alone, but other variable, the ion flux that controls the type and extent of irradiation damage that develops in olivine. This flux dependence argues for caution in extrapolating between high flux laboratory experiments and the natural case. Additional measurements, experiments, and modeling are required to resolve the discrepancies among the observations and calculations involving solar wind processing of olivine.

  9. Dissolution of olivine in basaltic liquids: experimental observations and applications.

    USGS Publications Warehouse

    Thornber, C.R.; Huebner, J.S.

    1985-01-01

    Rates of olivine dissolution in synthetic lunar basalt 77115 and a silica-enriched 77115 composition (Sil-77115) at superliquidus temperatures have been determined. Dissolution-rate data have been applied to the problem of the thermal history of fragment-laden impact-melt rocks of the lunar highlands. Textural and chemical criteria are discussed for the recognition of olivine resorption (and growth) phenomena in igneous rocks. -J.A.Z.

  10. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions

  11. The four bars problem

    NASA Astrophysics Data System (ADS)

    Mauroy, Alexandre; Taslakian, Perouz; Langerman, Stefan; Jungers, Raphaël

    2016-09-01

    A four-bar linkage is a mechanism consisting of four rigid bars which are joined by their endpoints in a polygonal chain and which can rotate freely at the joints (or vertices). We assume that the linkage lies in the 2-dimensional plane so that one of the bars is held horizontally fixed. In this paper we consider the problem of reconfiguring a four-bar linkage using an operation called a pop. Given a four-bar linkage, a pop reflects a vertex across the line defined by its two adjacent vertices along the polygonal chain. Our main result shows that for certain conditions on the lengths of the bars, the neighborhood of any configuration that can be reached by smooth motion can also be reached by pops. The proof relies on the fact that pops are described by a map on the circle with an irrational number of rotation.

  12. Refractory precursor components of Semarkona chondrules and the fractionation of refractory elements among chondrites

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Wasson, J. T.

    1983-04-01

    Instrumental neutron activation analysis has been used to measure about 20 of the lithophile elements in 30 chondrules from the Semarkona chondrite. The amounts of oxidized iron were calculated from other compositional parameters, and Si concentrations are estimated from mass-balance considerations. It is suggested that the refractory component probably forms from fine grained materials that were able to equilibrate down to lower nebular temperatures. The chondrite matrix may have had an origin similar to that of the nonrefractory material. The low abundance of refractories and Mg in ordinary and enstatite chondrites was produced by the loss of materials having a higher refractory element/Mg ratio than that of the refractory element of the chondrules.

  13. Chondrules and Opaque Phases in Unequilibrated R Chondrites: A Comprehensive Assessment of Their Formation

    NASA Technical Reports Server (NTRS)

    Miller, K. E.; Lauretta, D. S.; Connolly, H. C., Jr.; Berger, E. L.; Domanik, K.

    2016-01-01

    Equilibrated Rumuruti (R) chondrites record an oxygen fugacity between 0 and 3.5 log units below the fayalite-magnetite-quartz buffer, and a sulfur fugacity (fS2) 2 log units above the iron-troilite buffer. They are more than an order of magnitude more oxidized than the ordinary chondrites [1], and orders of magnitude more sulfidized than solar values. Although the R chondrites have the highest (delta)O-17 value of any meteorites, analyses of unequilibrated R chondrites indicate chondrule formation in an oxygen isotope reservoir similar to that of the ordinary chondrite chondrules. We present the relationship of the R chondrite parent body to pre-accretionary volatiles O and S based on our analyses of unequilibrated R chondrite material in two thin sections from the meteorite Mount Prestrud (PRE) 95404.

  14. Chondrules in Apollo 14 samples and size analyses of Apollo 14 and 15 fines.

    NASA Technical Reports Server (NTRS)

    King, E. A., Jr.; Butler, J. C.; Carman, M. F.

    1972-01-01

    Chondrules have been observed in several breccia samples and one fines sample returned by the Apollo 14 mission. The chondrules are formed by at least three different processes that appear to be related to large impacts: (1) crystallization of shock-melted spherules and droplets; (2) rounding of rock clasts and mineral grains by abrasion in the base surge; and (3) diffusion and recrystallization around clasts in hot base surge and fall-back deposits. In the case of the Apollo 14 samples, the large impact almost certainly is the Imbrian event. Grain size analyses of undisturbed fines samples from the Apollo 14 site and from the Apollo 15 Apennine Front are almost identical, indicating that the two localities have similar meteoroid bombardment exposure ages, approximately 3.7 x 10 to the 9th yr. This observation is consistent with the interpretation that both the Fra Mauro formation and the Apennine Front material originated as ejecta from the Imbrian event.

  15. Bar Code Labels

    NASA Technical Reports Server (NTRS)

    1988-01-01

    American Bar Codes, Inc. developed special bar code labels for inventory control of space shuttle parts and other space system components. ABC labels are made in a company-developed anodizing aluminum process and consecutively marketed with bar code symbology and human readable numbers. They offer extreme abrasion resistance and indefinite resistance to ultraviolet radiation, capable of withstanding 700 degree temperatures without deterioration and up to 1400 degrees with special designs. They offer high resistance to salt spray, cleaning fluids and mild acids. ABC is now producing these bar code labels commercially or industrial customers who also need labels to resist harsh environments.

  16. Volatile fractionation in the early solar system and chondrule/matrix complementarity.

    PubMed

    Bland, Philip A; Alard, Olivier; Benedix, Gretchen K; Kearsley, Anton T; Menzies, Olwyn N; Watt, Lauren E; Rogers, Nick W

    2005-09-27

    Bulk chondritic meteorites and terrestrial planets show a monotonic depletion in moderately volatile and volatile elements relative to the Sun's photosphere and CI carbonaceous chondrites. Although volatile depletion was the most fundamental chemical process affecting the inner solar nebula, debate continues as to its cause. Carbonaceous chondrites are the most primitive rocks available to us, and fine-grained, volatile-rich matrix is the most primitive component in these rocks. Several volatile depletion models posit a pristine matrix, with uniform CI-like chemistry across the different chondrite groups. To understand the nature of volatile fractionation, we studied minor and trace element abundances in fine-grained matrices of a variety of carbonaceous chondrites. We find that matrix trace element abundances are characteristic for a given chondrite group; they are depleted relative to CI chondrites, but are enriched relative to bulk compositions of their parent meteorites, particularly in volatile siderophile and chalcophile elements. This enrichment produces a highly nonmonotonic trace element pattern that requires a complementary depletion in chondrule compositions to achieve a monotonic bulk. We infer that carbonaceous chondrite matrices are not pristine: they formed from a material reservoir that was already depleted in volatile and moderately volatile elements. Additional thermal processing occurred during chondrule formation, with exchange of volatile siderophile and chalcophile elements between chondrules and matrix. This chemical complementarity shows that these chondritic components formed in the same nebula region. PMID:16174733

  17. Model evaporation of FeO-bearing liquids: Application to chondrules

    NASA Astrophysics Data System (ADS)

    Ebel, Denton S.

    2005-06-01

    Models for thermodynamic behavior of FeO-bearing liquids are required for understanding the separate roles of evaporation, condensation and crystallization in the formation of free-floating silicate liquid droplets in the early solar nebula. These droplets, frozen as chondrules, are common in chondritic meteorites. Evaporation coefficients for Fe and FeO of ˜0.2 are calculated here from existing data using silicate liquid activity models. These models, used to describe gas-liquid-solid equilibria and to constrain kinetic processes, are compared and found similar, and the effects of liquid non-ideality are assessed. A general approach is presented for predicting the evaporation behavior of FeO-bearing Al 2O 3-CaO-SiO 2-MgO liquids in H 2-rich gas above 1400 K at low total pressure. Results are vapor pressure curves for Fe, FeO and other gas species above typical chondrule liquids, suitable for predicting compositional trajectories of residual liquids evaporating in a hydrogen-dominated vapor. These predictions are consistent with chondrule formation in the protoplanetary disk in heating events of short duration, such as those expected from shock wave or current sheet models.

  18. Olivine and pyroxene from the mantle of asteroid 4 Vesta

    NASA Astrophysics Data System (ADS)

    Lunning, Nicole G.; McSween, Harry Y.; Tenner, Travis J.; Kita, Noriko T.; Bodnar, Robert J.

    2015-05-01

    A number of meteorites contain evidence that rocky bodies formed and differentiated early in our solar system's history, and similar bodies likely contributed material to form the planets. These differentiated rocky bodies are expected to have mantles dominated by Mg-rich olivine, but direct evidence for such mantles beyond our own planet has been elusive. Here, we identify olivine fragments (Mg# = 80-92) in howardite meteorites. These Mg-rich olivine fragments do not correspond to an established lithology in the howardite-eucrite-diogenite (HED) meteorites, which are thought to be from the asteroid 4 Vesta; their occurrence in howardite breccias, combined with diagnostic oxygen three-isotope signatures and minor element chemistry, indicates they are vestan. The major element chemistry of these Mg-rich olivines suggests that they formed as mantle residues, in crustal layered intrusions, or in Mg-rich basalts. The trace element chemistry of these Mg-rich olivines supports an origin as mantle samples, but other formation scenarios could be possible. Interpreted as mantle samples, the range of Mg-rich olivine compositions indicates that Vesta's structure differs from that predicted by conventional models: Vesta has a chemically heterogeneous mantle that feeds serial magmatism. The range of olivine major element chemistries is consistent with models of an incompletely melted mantle such as in the model proposed by Wilson and Keil (2013) rather than a whole-mantle magma ocean for Vesta. Trace element chemistries of Mg-rich pyroxenes (Mg# = 85-92) provide support that some of these pyroxenes may represent initial fractional crystallization of mantle partial melts.

  19. Mobility of iron and nickel at low temperatures: Implications for 60Fe-60Ni systematics of chondrules from unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Telus, Myriam; Huss, Gary R.; Ogliore, Ryan C.; Nagashima, Kazuhide; Howard, Daryl L.; Newville, Matthew G.; Tomkins, Andrew G.

    2016-04-01

    The Fe and Ni isotopic composition of ferromagnesian silicates in chondrules from unequilibrated ordinary chondrites (UOCs) have been used to estimate the initial abundance of the short-lived radionuclide, 60Fe, in the early Solar System. However, these estimates vary widely, and there are systematic discrepancies in initial 60Fe/56Fe ratios inferred from in situ and bulk analyses of chondrules. A possible explanation is that the Fe-Ni isotope system in UOC chondrules has not remained closed (a necessary condition for isotopic dating), and Fe and Ni have been redistributed since the chondrules formed. In order to evaluate this, we collected high-spatial-resolution X-ray fluorescence (XRF) maps of UOC chondrules to better understand the distribution and mobility of Fe and Ni at the low metamorphic temperatures of these chondrites. We used synchrotron X-ray-fluorescence microscopy to map the distribution of Fe, Ni and other elements in portions of 71 chondrules from 8 UOCs (types 3.00-3.2). The synchrotron XRF maps show clear enrichment of Fe and/or Ni in fractures ranging down to micrometer scale in chondrules from all UOCs analyzed for this study regardless of petrologic type and regardless of whether fall or find, indicating that there was significant exchange of Fe and Ni between chondrules and matrix and that the Fe-Ni system was not closed. Sixty percent of chondrules in Semarkona (LL3.00) have Fe and Ni enrichment along fractures, while 80-100% of chondrules analyzed from the other UOCs show these enrichments. Mobilization was likely a result of fluid transport of Fe and Ni during aqueous alteration on the parent body and/or during terrestrial weathering. In situ and bulk Fe-Ni analyses that incorporate extraneous Fe and Ni from chondrule fractures will result in lowering the inferred initial 60Fe/56Fe ratios.

  20. Grain boundary diffusion in olivine (Invited)

    NASA Astrophysics Data System (ADS)

    Marquardt, K.; Dohmen, R.

    2013-12-01

    Olivine is the main constituent of Earth's upper mantle. The individual mineral grains are separated by grain boundaries that have very distinct properties compared to those of single crystals and strongly affect large-scale physical and chemical properties of rocks, e.g. viscosity, electrical conductivity and diffusivity. Knowledge on the grain boundary physical and chemical properties, their population and distribution in polycrystalline materials [1] is a prerequisite to understand and model bulk (rock) properties, including their role as pathways for element transport [2] and the potential of grain boundaries as storage sites for incompatible elements [3]. Studies on selected and well characterized single grain boundaries are needed for a detailed understanding of the influence of varying grain boundaries. For instance, the dependence of diffusion on the grain boundary structure (defined by the lattice misfit) and width in silicates is unknown [2, 4], but limited experimental studies in material sciences indicate major effects of grain boundary orientation on diffusion rates. We characterized the effect of grain boundary orientation and temperature on element diffusion in forsterite grain boundaries by transmission electron microscopy (TEM).The site specific TEM-foils were cut using the focused ion beam technique (FIB). To study diffusion we prepared amorphous thin-films of Ni2SiO4 composition perpendicular to the grain boundary using pulsed laser deposition. Annealing (800-1450°C) leads to crystallization of the thin-film and Ni-Mg inter-diffuse into the crystal volume and along the grain boundary. The inter-diffusion profiles were measured using energy dispersive x-ray spectrometry in the TEM, standardized using the Cliff-Lorimer equation and EMPA measurements. We obtain volume diffusion coefficients that are comparable to Ni-Mg inter-diffusion rates in forsterite determined in previous studies at comparable temperatures, with similar activation energies

  1. Bar-biting

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bar biting is regarded as a stereotypic behavior in which the animal carries out repetitive mouthing and biting of the metal bars in its environmental enclosure. It is commonly seen in sows housed in close confinement, in barren environments, and with restricted access to food. However, it has also ...

  2. A Method for the Flux Growth of Intermediate Composition Olivine

    NASA Astrophysics Data System (ADS)

    Deangelis, M. T.; Anovitz, L. M.; Labotka, T. C.; Frederick, D. A.

    2009-05-01

    Though solid solution of iron and magnesium between forsterite (Mg2SiO4) and fayalite (Fe2SiO4) is possible in the olivine crystal structure, the high oxygen fugacity condition of the terrestrial mantle inhibits the widespread crystallization of intermediate (Fo40-Fo60) composition olivine. This limitation is not the same for some other inner solar system bodies (e.g. the Moon and Mars), where conditions are reducing and olivine compositions are wide ranging. Unfortunately, the amount of samples from the Moon and Mars is extremely limited; with only Apollo and Luna mission samples, lunar meteorites, and Martian meteorites available for direct mineralogic and petrologic characterization. These characterizations have provided a useful basis for many spectroscopic and modeling interpretations, but many fundamental questions remain and may only be answerable through either direct observation of rocks or by analog experimentation. The motivation for our work on growth of intermediate olivine crystals, therefore, is to create realistic starting material for use in Mars and Moon analog experiments. A variety of crystal growth methods have been previously used to synthesize olivine, including: the Czochralski-pulling (CZ) method, the floating-zone image furnace (FZ) method, and sol-gel processing techniques. Both the CZ and FZ methods have the advantage of producing large crystals, but the growth apparatus and regulation of reduced atmospheric conditions during growth can make these techniques both time and cost intensive. Sol-gel processing to produces olivine fibers is a useful chemical technique, but obtaining larger grain sizes can be difficult. An alternative method for crystal growth is through the use a flux, which can grow crystals relatively quickly and inexpensively. We have grown synthetic crystals of intermediate composition (Fo30-Fo70) olivine using a lithium borate (B5Li3O9) flux. The starting material was a mixture of magnesite (MgCO3), siderite (FeCO3), and

  3. Extraction of in situ cosmogenic 14C from olivine

    USGS Publications Warehouse

    Pigati, J.S.; Lifton, N.A.; Timothy, Jull A.J.; Quade, Jay

    2010-01-01

    Chemical pretreatment and extraction techniques have been developed previously to extract in situ cosmogenic radiocarbon (in situ 14C) from quartz and carbonate. These minerals can be found in most environments on Earth, but are usually absent from mafic terrains. To fill this gap, we conducted numerous experiments aimed at extracting in situ 14C from olivine ((Fe,Mg)2SiO4). We were able to extract a stable and reproducible in situ 14C component from olivine using stepped heating and a lithium metaborate (LiBO2) flux, following treatment with dilute HNO3 over a variety of experimental conditions. However, measured concentrations for samples from the Tabernacle Hill basalt flow (17.3 ?? 0.3 ka4) in central Utah and the McCarty's basalt flow (3.0 ?? 0.2 ka) in western New Mexico were significantly lower than expected based on exposure of olivine in our samples to cosmic rays at each site. The source of the discrepancy is not clear. We speculate that in situ 14C atoms may not have been released from Mg-rich crystal lattices (the olivine composition at both sites was ~Fo65Fa35). Alternatively, a portion of the 14C atoms released from the olivine grains may have become trapped in synthetic spinel-like minerals that were created in the olivine-flux mixture during the extraction process, or were simply retained in the mixture itself. Regardless, the magnitude of the discrepancy appears to be inversely proportional to the Fe/(Fe+Mg) ratio of the olivine separates. If we apply a simple correction factor based on the chemical composition of the separates, then corrected in situ 14C concentrations are similar to theoretical values at both sites. At this time, we do not know if this agreement is fortuitous or real. Future research should include measurement of in situ 14C concentrations in olivine from known-age basalt flows with different chemical compositions (i.e. more Fe-rich) to determine if this correction is robust for all olivine-bearing rocks. ?? 2010 by the Arizona

  4. Tracing Oxygen Fugacity in Asteroids and Meteorites Through Olivine Composition

    NASA Technical Reports Server (NTRS)

    Sunshine, J. M.; Bus, S. J.; Burbine, T. H.; McCoy, T. J.

    2005-01-01

    Olivine absorptions are known to dominate telescopic spectra of several asteroids. Among the meteorite collection, three groups (excluding Martian meteorites), the pallasites, brachinites, and R group chondrites are plausible analogs to olivine-rich asteroids in that they are dominated by olivine. These meteorite groups have distinct petrologic origins. The primitive achondrite brachinites (which include both depleted and undeleted subgroups) are products of relatively minor differentiation and evolved in oxidizing environments. R chondrites are also thought to have formed in high oxygen states, but are closely related to ordinary chondrites (yet with their own distinct compositions and oxygen isotopic signatures). In contrast, pallasites, widely thought to be mantle components from much more evolved bodies, formed in more reducing environments. Petrologic indicators that are identifiable in spectral data must be used in order to infer the petrologic history of asteroids from surveys of their actual population. As discussed below, olivine composition (e.g. Fa#) can provide key constraints in exploring the origin and significance of olivine dominated asteroids.

  5. B-type Olivine Fabric induced by Grain Boundary Sliding

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Hirth, Greg

    2013-04-01

    Olivine fabric, or Lattice Preferred Orientation (LPO), in naturally deformed peridotite largely contributes to the seismic anisotropy of the upper mantle. LPO usually results from motion of intra-crystalline dislocations during dislocation creep. In this case, experimental and numerical data indicate that the degree of mineral alignment (fabric strength) increases with increasing finite strain. Here, we show an opposite trend suggesting that olivine fabric can also result from a different deformation mechanism. Based on documentation of olivine LPOs in peridotites of a kilometer-scale mantle shear zone in the Ronda massif (Spain), we highlight a transition from a flow-parallel [a]- axis LPO (A-type fabric) to a flow-normal [a]-axis LPO (B-type fabric). While dislocation sub-structures indicate that A-type fabric results from dislocation motion, we conclude that the B-type fabric does not originate from dislocation creep, but instead from grain boundary sliding (GBS) because: (1) dislocation sub-structures remain consistent with the A-type slip system in all samples; (2) the fabric transition from A-type to B-type correlates with decreasing fabric strength despite increasing finite strain; and (3) our observations are supported by experiments that document B-type fabric in olivine aggregates where deformation involves a component of GBS. The B-type olivine fabric has a specific signature in term of seismic anisotropy, and hence, our results may have important implications for interpreting upper mantle structures and deformation processes via seismic observations.

  6. Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine

    NASA Astrophysics Data System (ADS)

    Pieters, Carle M.; Klima, Rachel L.; Hiroi, Takahiro; Dyar, M. Darby; Lane, Melissa D.; Treiman, Allan H.; Noble, Sarah K.; Sunshine, Jessica M.; Bishop, Janice L.

    2008-06-01

    A second Martian meteorite has been identified that is composed primarily of heavily shocked dunite, Northwest Africa (NWA) 2737. This meteorite has several similarities to the Chassigny dunite cumulate, but the olivine is more Mg rich and, most notably, is very dark and visually brown. Carefully coordinated analyses of NWA 2737 whole-rock and olivine separates were undertaken using visible and near-infrared reflectance, midinfrared emission and reflectance, and Mössbauer spectroscopic studies of the same samples along with detailed petrography, chemistry, scanning electron microscopy, and transmission electron microscopy analyses. Midinfrared spectra of this sample indicate that the olivine is fully crystalline and that its molecular structure remains intact. The unusual color and spectral properties that extend from the visible through the near-infrared part of the spectrum are shown to be due to nanophase metallic iron particles dispersed throughout the olivine during a major shock event on Mars. Although a minor amount of Fe3+ is present, it cannot account for the well-documented unusual optical properties of Martian meteorite NWA 2737. Perhaps unique to the Martian environment, this ``brown'' olivine exhibits spectral properties that can potentially be used to remotely explore the pressure-temperature history of surface geology as well as assess surface composition.

  7. Minor elements in lunar olivine as a petrologic indicator

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1975-01-01

    Accurate electron microprobe analyses (approximately 50 ppm) were made for Al, Ca, Ti, Cr, Mn, and Ni in Mg-rich olivines which may derive from early lunar crust or deeper environments. Low-Ca contents consistently occur only in olivines from dunitic and troctolitic breccia: spinel troctolite and other rock types have high-Ca olivines suggesting derivation by near-surface processes. Rock 15445 has olivine with distinctly low CaO (approximately 0.01 wt.%). Chromium ranges to higher values (max.0.2 oxide wt.%) than for terrestrial harzburgites and lherzolites but is similar to the range in terrestrial komatiites. Divalent chromium may be indicated over trivalent Cr because olivines lack sufficient other elements for charge balance of the latter. NiO values in lunar specimens range from 0.00 to 0.07 wt.% and a weak anticorrelation with Cr2O3 suggests an oxidation state effect. Al2O3 values are mostly below 0.04-wt.% and show no obvious correlation with fragment type. TiO2 values lie below 0.13-wt.% and seem to correlate best with crystallization rate and plagioclase content of the host rock. High values of Al2O3 and TiO2 reported by other workers have not been confirmed, and are probably wrong.

  8. Olivine Composite Cathode Materials for Improved Lithium Ion Battery Performance

    SciTech Connect

    Ward, R.M.; Vaughey, J.T.

    2006-01-01

    Composite cathode materials in lithium ion batteries have become the subject of a great amount of research recently as cost and safety issues related to LiCoO2 and other layered structures have been discovered. Alternatives to these layered materials include materials with the spinel and olivine structures, but these present different problems, e.g. spinels have low capacities and cycle poorly at elevated temperatures, and olivines exhibit extremely low intrinsic conductivity. Previous work has shown that composite structures containing spinel and layered materials have shown improved electrochemical properties. These types of composite structures have been studied in order to evaluate their performance and safety characteristics necessary for use in lithium ion batteries in portable electronic devices, particularly hybrid-electric vehicles. In this study, we extended that work to layered-olivine and spinel-olivine composites. These materials were synthesized from precursor salts using three methods: direct reaction, ball-milling, and a coreshell synthesis method. X-ray diffraction spectra and electrochemical cycling data show that the core-shell method was the most successful in forming the desired products. The electrochemical performance of the cells containing the composite cathodes varied dramatically, but the low overpotential and reasonable capacities of the spinel-olivine composites make them a promising class for the next generation of lithium ion battery cathodes.

  9. Slow bars in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.

    2000-11-01

    Here we put forward some arguments in favour of the existence of slow bars. More then a half of spiral galaxies have in their central regions a bar - a structure in the form of triaxial ellipsoid. Historically two models of the bar were developed - those of the so called ``slow'' and ``fast'' bars. In both cases the bar is in some resonance with the galactic disc region near the bar ends - it is the corotation resonance for a fast bar and the inner Lindblad resonance for a slow bar. For the same angular velocity the fast bar would be larger then the slow bar. Alternatively, for the same size the fast bar would have much higher angular velocity, that being the reason for the terminology used. Up till now, the direct measurement of angular velocity of a bar has been an open problem. This is why all arguments on the nature of bar observed in some particular galaxy are inevitably indirect. Despite the fact that the model of slow bars was developed slightly earlier, the main part of attention was focused on the fast bars. Presently many researchers believe in the existence of the fast bars in real galaxies, while discussions on the existence of the slow bars continue so far. In this Letter we demonstrate that the bar detected in the grand design spiral galaxy NGC 157 is the slow bar.

  10. Chondrules of the Very First Generation in Bencubbin/CH-like Meteorites QUE94411 and Hammadah Al Hamra 237: Condensation Origin at High Ambient Nebular Temperatures

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Meibom, Anders; Russell, Sara S.; Young, Edward; Alexander, Conel M.; McKeegan, Kevin D.; Lofgren, Gary; Cuzzi, Jeff; Zipfel, Jutta; Keil, Klaus

    2000-01-01

    Chondrules in QUE94411 and HH 237 formed at high ambient T prior to condensation of Fe,Ni-metal following a large scale thermal event that resulted in complete vaporization of a solar nebula region. These chondrules escaped subsequent remelting.

  11. Effect of Mineralogy on the Rheological Properties of Olivine, Othopyroxene and Olivine/Orthopyroxene Mixtures at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Homburg, J. M.; Mei, S.; Kohlstedt, D. L.

    2013-12-01

    To better understand the influence of mineralogy on the rheological properties of the upper mantle, we have carried out a series of triaxial compressive creep experiments on olivine/orthopyroxene mixtures under high pressures (~6 GPa) and high temperatures (1373 - 1473 K) under anhydrous conditions. Experiments were performed using the deformation-DIA (D-DIA) apparatus on beamline X17B2 at the National Synchrotron Light Source at Brookhaven National Laboratory. Samples of three mineralogical compositions (olivine, orthopyroxene and 50:50 volumetric ratio of olivine:orthopyroxene) were prepared from fine-grained (~10 μm) mineral separates of San Carlos olivine and orthopyroxene. Orthopyroxene and olivine/orthopyroxene samples were cold pressed to attain a cylinder ~1 mm in length and 1.1 mm in diameter. The cold pressed sample was then stacked with a hot-pressed olivine sample of similar size and assembled with alumina pistons, a boron nitride sleeve and graphite resistance heater into a 6.2-mm edge length cubic pressure medium. Nickel disks were placed at the ends of both samples to act as strain markers. During each experiment, in-situ stress and strain measurements were obtained from X-ray diffraction and radiography, respectively. After annealing the samples at the pressure/temperature conditions of deformation for ~2 hours to insure compaction of the cold pressed sample, experiments were conducted at constant strain rates between 2.2x10^-5 and 3.3x10^-5 s^-1 up to axial strains of 5 to 20%. The orthopyroxene and olivine/orthopyroxene mixture deformed at approximately the same rate with the mixed phase system displaying some weakening relative to the single-phase system. This observation suggests that orthopyroxene may be controlling sample behavior in the mixed phase material. In contrast, the orthopyroxene and olivine/orthopyroxene samples crept ~ 2 - 3 times faster than olivine. This contrast in rheological behavior was observed at lower temperatures

  12. Exogenic olivine on Vesta from Dawn Framing Camera color data

    NASA Astrophysics Data System (ADS)

    Nathues, Andreas; Hoffmann, Martin; Schäfer, Michael; Thangjam, Guneshwar; Le Corre, Lucille; Reddy, Vishnu; Christensen, Ulrich; Mengel, Kurt; Sierks, Holger; Vincent, Jean-Baptist; Cloutis, Edward A.; Russell, Christopher T.; Schäfer, Tanja; Gutierrez-Marques, Pablo; Hall, Ian; Ripken, Joachim; Büttner, Irene

    2015-09-01

    In this paper we present the results of a global survey of olivine-rich lithologies on (4) Vesta. We investigated Dawn Framing Camera (FC) High Altitude Mapping Orbit (HAMO) color cubes (∼60 m/pixel resolution) by using a method described in Thangjam et al. (Thangjam, G., Nathues, A., Mengel, K., Hoffmann, M., Schäfer, M., Reddy, V., Cloutis, E.A., Christensen, U., Sierks, H., Le Corre, L., Vincent, J.-B, Russell, C.T. [2014b]. Meteorit. Planet. Sci. arXiv:1408.4687 [astro-ph.EP]). In total we identified 15 impact craters exhibiting olivine-rich (>40 wt.% ol) outcrops on their inner walls, some showing olivine-rich material also in their ejecta and floors. Olivine-rich sites are concentrated in the Bellicia, Arruntia and Pomponia region on Vesta's northern hemisphere. From our multi-color and stratigraphic analysis, we conclude that most, if not all, of the olivine-rich material identified is of exogenic origin, i.e. remnants of A- or/and S-type projectiles. The olivine-rich lithologies in the north are possibly ejecta of the ∼90 km diameter Albana crater. We cannot draw a final conclusion on their relative stratigraphic succession, but it seems that the dark material (Nathues, A., Hoffmann, M., Cloutis, E.A., Schäfer, M., Reddy, V., Christensen, U., Sierks, H., Thangjam, G.S., Le Corre, L., Mengel, K., Vincent, J.-B., Russell, C.T., Prettyman, T., Schmedemann, N., Kneissl, T., Raymond, C., Gutierrez-Marques, P., Hall, I. Büttner, I. [2014b]. Icarus (239, 222--237)) and the olivine-rich lithologies are of a similar age. The origin of some potential olivine-rich sites in the Rheasilvia basin and at crater Portia are ambiguous, i.e. these are either of endogenic or exogenic origin. However, the small number and size of these sites led us to conclude that olivine-rich mantle material, containing more than 40 wt.% of olivine, is basically absent on the present surface of Vesta. In combination with recent impact models of Veneneia and Rheasilvia (Clenet, H

  13. Reversibility of Lpo in Olivine during Deformation at High Pressure

    NASA Astrophysics Data System (ADS)

    Li, L.; Weidner, D. J.

    2014-12-01

    Olivine texture has been reported as an important contributor to the seismic anisotropy in the upper mantle. Experimental studies of deformation of olivine have also shown flow-driven lattice preferred orientation. In this study, we focus on in situ control and monitoring of LPO formation of olivine using synchrotron X-ray radiation coupled with DDIA multi-anvil deformation device. Using an energy-dispersive X-ray coupled a 10-element SSD detector; we apply a sinusoidal stress on the sample, which allows identification of growth of LPO in the specimen with relative robust signal even with small strain fields. Our data show palpable correlations among stress, strain and LPO as well as the variations among sub-grains marked by individual (hkl). This study is to demonstrate the versatile functions of X-ray for characterizing the deformation study of minerals.

  14. The identification of crystalline olivine in cometary silicates

    NASA Technical Reports Server (NTRS)

    Campins, Humberto; Ryan, Eileen V.

    1989-01-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  15. The identification of crystalline olivine in cometary silicates

    NASA Astrophysics Data System (ADS)

    Campins, H.; Ryan, E. V.

    1989-06-01

    An intermediate-resolution spectrum of the 8-13 micron region in comet Halley is obtained which shows a prominent silicate emission feature with structure not observed before in other comets or in interstellar silicates. The presence of a strong 11.3 micron peak reported by Bregman and coworkers is confirmed, and evidence is found for additional structure in the band. By comparison with spectra of interplanetary dust particles and laboratory silicates, it is concluded that small crystalline olivine particles are a major component of the silicates in this comet; other silicates (e.g., amorphous or hydrated) must also be present. The identification of crystalline olivine in this part of the spectrum is supported by the observation of four peaks in 20-50 micron airborne spectra of this comet which have also been attributed to olivine.

  16. Thermal Emission Spectroscopy of 1 Ceres: Evidence for Olivine

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred. C.; Roush, Ted L.; Cohen, Martin

    1999-01-01

    Thermal emission spectra of the largest asteroid, 1 Ceres, obtained from the Kuiper Airborne Observatory display features that may provide information about its surface mineralogy. The emissivity, obtained by dividing the spectra by a standard thermal model, is compared with emissivity spectra of olivines and phyllosilicates deduced via Kirchoff's law from reflectivity measurements. The spectra provide a fairly good match to fine grained olivines (0 to 5 micrometer size range). The smoothness of the spectrum beyond 18 micrometers is an indication of particles smaller than 50 micrometers. While the abrupt rise in emissivity near 8 micrometers matches many silicates, the distinct emissivity minimum centered near 12.8 micrometers is consistant with iron-poor olivines, but not with phyllosilicates. It suggests the presence of opaques and does not exclude a mixture with organics and fine-grained phyllosilicates.

  17. An olivine-free mantle source of Hawaiian shield basalts.

    PubMed

    Sobolev, Alexander V; Hofmann, Albrecht W; Sobolev, Stephan V; Nikogosian, Igor K

    2005-03-31

    More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are inconsistent with a deep olivine-bearing source, because this mineral together with pyroxene buffers both nickel and silicon at lower levels. This can be resolved if the olivine of the mantle peridotite is consumed by reaction with melts derived from recycled oceanic crust, to form a secondary pyroxenitic source. Our modelling shows that more than half of Hawaiian magmas formed during the past 1 Myr came from this source. In addition, we estimate that the proportion of recycled (oceanic) crust varies from 30 per cent near the plume centre to insignificant levels at the plume edge. These results are also consistent with volcano volumes, magma volume flux and seismological observations. PMID:15800614

  18. Effect of water, stress, and pressure on the lattice-preferred orientation (LPO) of olivine and various examples of the LPOs of olivine recently found in nature

    NASA Astrophysics Data System (ADS)

    Jung, Haemyeong

    2010-05-01

    Seismic anisotropy in the upper mantle is often considered to be caused by lattice-preferred orientation (LPO) of olivine. Experimental studies on the deformation of olivine at high pressure and high temperature showed that water, stress, and temperature affect the development of LPO of olivine (Jung & Karato, 2001; Katayama et al., 2004; Jung et al., 2006; Katayama & Karato, 2006). Recent experimental study of harzburgite at high pressure and high temperature under low stress and dry conditions revealed that pressure also affects the development of LPO of olivine (Jung et al., 2009). I will review experimental studies on the deformation of olivine at high pressure and high temperature. And then, I will present various types of olivine LPOs found recently in natural rocks such as type-B, -C, -D and -E which are considered to be caused by water, stress, and pressure. Seismic anisotropy from the LPOs of olivine will be also discussed.

  19. Primary magmas at Oldoinyo Lengai: The role of olivine melilitites

    NASA Astrophysics Data System (ADS)

    Keller, Jörg; Zaitsev, Anatoly N.; Wiedenmann, Daniel

    2006-10-01

    The paper describes olivine melilitites at Oldoinyo Lengai, Tanzania, and from tuff cones from the Tanzanian rift valley in the vicinity of Oldoinyo Lengai. Oldoinyo Lengai is the only active carbonatite volcano and is distinguished by its alkali-rich natrocarbonatites. Lengai is also unique for its extreme peralkaline silicate lavas related directly to the natrocarbonatites. Primitive olivine melilitites are, according to their Mg# and Ni, Cr contents, the only candidates in the Lengai area for primary melt compositions. Incompatible trace elements, including REE, constrain the melting process in their sub-lithospheric sources to very low degrees of partial melting in the garnet stability field. The strong peralkaline trend at Oldoinyo Lengai is already recognisable in these primary or near-primary melts. More evolved olivine melilitites, with Mg# < 60 allow the fractionation line in its major and trace element expressions to be followed. Nevertheless, a large compositional gap separates the olivine melilitites and olivine-poorer melilitites from the phonolites and nephelinites that form the bulk of the Lengai cone. These silicate lavas show a high degree of peralkalinity and are highly evolved with very low Mg, Ni and Cr. Prominent examples of the recent evolution are the combeite-wollastonite nephelinites that are unique for Lengai. In their Sr, Nd, and Pb isotope relationships the olivine melilitites define a distinct group with the most depleted Sr and Nd ratios and the most radiogenic Pb isotopes. They are closest to a supposed HIMU end member of the Lengai evolution, which is characterised by an extreme spread in isotopic ratios, explained as a mixing line between HIMU and EM1-like mantle components.

  20. The Identity of Hydrous Defects Controlling the Rheology of Olivine

    NASA Astrophysics Data System (ADS)

    Faul, U.; David, E. C.; Cline, C. J., II; Berry, A.; Jackson, I.

    2015-12-01

    The reduction of the creep strength of minerals due to the presence of water is well established. The nature of the relevant hydrous defect(s) is perhaps less well understood. Standard treatments examine intrinsic defects of a pure crystal, but impurity-related defects are not usually considered. Natural olivine contains monovalent (Na) and trivalent (e.g. Al) trace elements in concentrations that exceed the concentration of intrinsic defects by up to an order of magnitude. They therefore are potentially important as agents for water-weakening. Hydrated defects - both intrinsic and impurity-related - systematically affect infrared absorption spectra, which can therefore be used for their identification and quantification. Experiments with olivine in contact with a range of buffer assemblages (e.g. MgO and enstatite) have shown that the infrared spectra of natural olivine can only be reproduced experimentally in the presence of titanium. Doping with a range of trivalent cations shows systematics in the infrared spectra related to the ionic radius of the dopants, confirming that the spectra are sensitive to the bonding environment and can be used to identify particular defects. To investigate the relationship between hydrous, titanium-related defects and creep strength we conducted deformation experiments on synthetic Fo90 olivine that was buffered by enstatite and doped with titanium. The infrared spectra of the deformed samples show absorption bands at the same wave numbers and relative intensity as natural olivine, indicating that the experimental samples contain the same hydrous defects. Fitting the creep data from samples with a range of water contents determined from these absorption bands shows a near linear relationship between strain rate and water content, consistent with published observations. The experiments therefore show that the rheology of hydrous olivine is determined by hydrated impurity-related defects rather than intrinsic point defects.

  1. Water Retention and Rheology of Ti-doped, Synthetic Olivine

    NASA Astrophysics Data System (ADS)

    Faul, U.; Jackson, I.; Fitz Gerald, J. D.

    2012-12-01

    Upper mantle flow laws are currently based almost entirely on experiments with olivine from San Carlos in Arizona. Synthetically produced olivine enables the exploration of the effects of trace elements on the rheology. We have conducted a range of experiments in a gas medium apparatus with solution-gelation derived olivine that show that titanium is the most effective in binding water in the olivine structure. The FTIR signature of this structurally bound water is most similar to that of water-undersaturated natural olivine with absorption bands at 3575 and 3525 cm-1. Water added, titanium-free solgel contains little water after hotpressing and shows adsorption bands at wavenumbers near 3200 cm-1. Noble metal capsules such as Pt or AuPd, providing more oxidizing conditions, are more effective in retaining water. Experiments with NiFe-lined welded Pt capsules retain no more water than NiFe lined samples without Pt capsule. Water retention is, however, again dependent on trace element content, with Ti doped samples containing tens of ppm after hotpressing. By comparison undoped samples run under the same conditions contain little water, again with different FTIR spectra to Ti-doped samples. Our experiments suggest that Ti by itself, or with water contents at the FTIR detection limit enhances diffusion creep rates relative to undoped, dry solgel olivine. Water contents around 10 ppm in NiFe wrapped samples show an enhancement of strain rates of more than one order of magnitude. The addition of Ti, together with the presence of water, also enhances grain growth. For more coarse-grained samples in the dislocation creep regime the enhancement of the stain rate as a function of water content is approximately consistent with the flow laws of Hirth and Kohlstedt (2003).

  2. Chemical and physical studies of chondrites. X - Cathodoluminescence and phase composition studies of metamorphism and nebular processes in chondrules of type 3 ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Dehart, John M.; Lofgren, Gary E.; Jie, LU; Benoit, Paul H.; Sears, Derek W. G.

    1992-01-01

    The cathodoluminescence (CL) characteristics of eight type-3 ordinary chondrites and one L5 chondrite were investigated with particular emphasis on detailed compositions of the relevant phases in four of these chondrites: Semarkona (type-3.0); Krymka (3.1); Allan Hills A77214 (3.5); and Dhajala (3.8). By sorting the chondrules into eight groups according to the CL of mesostasis and to certain compositional criteria and by determining the number of chondrules in these groups as a function of petrological type, it was possible to deduce genetic/evolutionary sequences of the chondrules. It is shown that there are major compositional differences in chondrules, which account for their CL properties and the chondrule groups.

  3. Grinding methods to enhance the reactivity of olivine

    SciTech Connect

    Summers, Cathy A.; Dahlin, David C.; Rush, Gilbert E.; O'Connor, William K.; Gerdemann, Stephen J.

    2004-01-01

    The Albany Research Center (ARC) conducted studies of mechanical activation by conventional and ultra-fine grinding techniques to enhance olivine reactivity in mineral carbonation reactions. Activated olivine is one of several solid feed materials used at ARC in reactions with carbon dioxide to form carbonate minerals. This paper compares grinding techniques via energy demand data and product characteristics, including particle size distributions, surface areas, full width at half maximum (FWHM) XRD analyses, and particle morphology by SEM analyses. Reactivity was gauged by percent conversion to carbonate in subsequent carbonation tests.

  4. Factors affecting the direct mineralization of CO2 with olivine.

    PubMed

    Kwon, Soonchul; Fan, Maohong; DaCosta, Herbert F M; Russell, Armistead G

    2011-01-01

    Olivine, one of the most abundant minerals existing in nature, is explored as a CO2 carbonation agent for direct carbonation of CO2 in flue gas. Olivine based CO2 capture is thermodynamically favorable and can form a stable carbonate for long-term storage. Experimental results have shown that water vapor plays an important role in improving CO2 carbonation rate and capacities. Other operation conditions including reaction temperature, initial CO2 concentration, residence time corresponding to the flow rate of CO2 gas stream, and water vapor concentration also considerably affect the performance of the technology. PMID:22128528

  5. Grain Boundary Structurally-Bonded Water in Olivine Aggregates

    NASA Astrophysics Data System (ADS)

    Wang, L.

    2008-12-01

    Water storage capacity of nominally anhydrous olivine has been extensively investigated because of its numerous geophysical and geochemical implications for the Earth's dynamic mantle. However, all previous experimental research has been concentrated on the water solubility in single crystals of olivine. Grain boundary as potential storage sites for water in the mantle has not been experimentally studied, in part because solubility experiments were always performed under water-saturated condition, rendering the examination of grain boundaries nearly impossible due to the presence of free water. In the present study we have conducted annealing experiments on forsterite at 5 - 6 GPa and 1200 °C and at water- undersaturated condition. Duration was typically 2 - 3 hours. A small amount of enstatite or periclase was added to the starting forsterite powder (including a few large olivine grains) to buffer the silica activity, while oxygen fugacity was controlled by using various capsule materials (Re, Fe, or BN). FTIR analyses were performed on both single crystal and polycrystalline olivine in doubly-polished thin section of each experimental charge. The results are as follows: (1) single crystal and polycrystalline olivine in the same charge always yielded similar IR pattern, indicating all absorption peaks are due to similar structurally-bonded water (i.e., hydroxyl); (2) water content of periclase-buffered (i.e., low silica activity) sample is at least one order of magnitude higher than those of enstatite-buffered and unbuffered (pure forsterite) samples; (3) under reducing environment (Fe or BN capsule), water content of polycrystalline olivine is always higher than that of single crystal by at lease a factor of 5, regardless of silica activity buffering. We therefore infer that large amount of structurally-bonded water is stored at grain boundaries; (4) with decreasing oxygen fugacity, IR spectra of olivine are increasingly dominated by an absorption peak centered

  6. The complex relationship between olivine abundance and thermal inertia on Mars

    NASA Astrophysics Data System (ADS)

    Hanna, Romy D.; Hamilton, Victoria E.; Putzig, Nathaniel E.

    2016-07-01

    We examine four olivine-bearing regions at a variety of spatial scales with thermal infrared, visible to near-infrared, and visible imagery data to investigate the hypothesis that the relationship between olivine abundance and thermal inertia (i.e., effective particle size) can be used to infer the occurrence of olivine chemical alteration during sediment production on Mars. As in previous work, Nili Fossae and Isidis Planitia show a positive correlation between thermal inertia and olivine abundance in Thermal Emission Spectrometer (TES) and Thermal Emission Imaging System (THEMIS) data, which could be interpreted as indicating olivine chemical weathering. However, geomorphological analysis reveals that relatively olivine-poor sediments are not derived from adjacent olivine-rich materials, and therefore, chemical weathering cannot be inferred based on the olivine-thermal inertia relationship alone. We identify two areas (Terra Cimmeria and Argyre Planitia) with significant olivine abundance and thermal inertias consistent with sand, but no adjacent rocky (parent) units having even greater olivine abundances. More broadly, global analysis with TES reveals that the most typical olivine abundance on Mars is ~5-7% and that olivine-bearing (5-25%) materials have a wide range of thermal inertias, commonly 25-600 J m-2 K-1 s-1/2. TES also indicates that the majority of olivine-rich (>25%) materials have apparent thermal inertias less than 400 J m-2 K-1 s-1/2. In summary, we find that the relationship between thermal inertia and olivine abundance alone cannot be used in infer olivine weathering in the examined areas, that olivine-bearing materials have a large range of thermal intertias, and therefore that a complex relationship between olivine abundance and thermal inertia exists on Mars.

  7. Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.; Herrin, J. S.

    2010-01-01

    Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous

  8. Mass modeling for bars

    NASA Technical Reports Server (NTRS)

    Butler, Thomas G.

    1987-01-01

    Methods of modeling mass for bars are surveyed. A method for extending John Archer's concept of consistent mass beyond just translational inertia effects is included. Recommendations are given for various types of modeling situations.

  9. Magnetic Paleofield of Avanhandava H4 Chondrite's Matrix and Chondrules - Implications on Magnetic Fields in Early Solar System.

    NASA Astrophysics Data System (ADS)

    Kohout, T.; Pesonen, L. J.

    2005-12-01

    The Avanhandava (H4) fall occurred in 1952 in Brazil. A total of 9.33 kg had been preserved after the meteorite brake up during the impact [1]. The meteorite contains large (0.1 - 2.0 mm) chon-drules that have clearly delineated boundaries with matrix. This characteristic allows us to pick up oriented individual chondrules and study their magnetic properties. The chondrules of the Avanhandava meteorite show a low and randomly oriented NRM (10-2 - 10-1 mAm2/kg). In contrast the matrix is strongly (100 - 101 mAm2/kg) and uniformly magnet-ized [2]. Various methods for paleofield determination have been applied on matrix and individual chondrules in order to determine possi-ble magnetizing processes and paleofields in early solar systems.. The laboratory experiments reveal approximate paleofields for matrix similar to present geomagnetic field. The paleofield de-termined for chondrules is approximately one order of magnitude lower comparing to values obtained for matrix. That suggests that chondrules are not magnetically contaminated by geomagnetic or artificial fields and they acquired their NRM prior their aggregation to Avanhandava parent body (random NRM directions). The matrix shows remarkable traces of terres-trial weathering and is uniformly magnetized. The paleofield re-sult for matrix indicates possible remagnetization caused by ter-restrial weathering. The terrestrial weathering of ordinary chon-drites is observed even on falls stored in museums and can sig-nificantly influence meteorite magnetic records [3, 4]. References: [1] Paar W. et al. 1976. Revista Brasileira de Geo-ciencias 6: 201-210. [2] Kohout T. and Pesonen L. J. 2005. 68th Annual Meteoritical Society Meeting: 5202. [3] Kohout T. et al. 2004. Physics and Chemistry of the Earth 29: 885-897. [4] Lee M. R. and Bland P. A. 2004. Geochimica et Cosmochimica Acta 68: 893-916.

  10. Micromechanical modeling of the viscoplastic behavior of olivine

    NASA Astrophysics Data System (ADS)

    Castelnau, O.; Blackman, D. K.; Lebensohn, R. A.; Ponte CastañEda, P.

    2008-09-01

    Efforts to couple mantle flow models with rheological theories of mineral deformation typically ignore the effect of texture development on flow evolution. The fact that there are only three easy slip systems for dislocation glide in olivine crystals leads to strong mechanical interactions between the grains as the deformation proceeds, and subsequent development of large viscoplastic anisotropy in polycrystals exhibiting pronounced Lattice Preferred Orientations. Using full-field simulations for creep in dry polycrystalline olivine at high temperature and low pressure, it is shown that very large stress and strain rate intragranular heterogeneities can build up with deformation, which increase dramatically with the strength of the hard slip system (included for the purpose of enabling general deformations). Compared with earlier nonlinear extensions of the Self-Consistent mean-field theory to simulate polycrystal deformation, the "Second-Order" method is the only one capable of accurately describing the effect of intraphase stress heterogeneities on the macroscopic flow stress, as well as on the local stress- and strain rate fluctuations in the material. In particular, this approach correctly predicts that olivine polycrystals can deform with only four independent slip systems. The resistance of the fourth system (or accommodation mechanism), which is likely provided by dislocation climb or grain boundary processes as has been observed experimentally, may essentially determine the flow stress of olivine polycrystals. We further show that the "tangent" model, which had been used extensively in prior geophysical studies of the mantle, departs significantly from the full-field reference solutions.

  11. Near-Infrared Optical Constants of Olivine and Pyroxene

    NASA Astrophysics Data System (ADS)

    Trang, D.; Lucey, P. G.; Gillis-Davis, J.; Cahill, J. T.; Klima, R. L.; Isaacson, P.

    2012-12-01

    Producing mineral maps of planetary bodies is useful for petrological studies, future colonization, and resources. Estimating the physical and chemical properties of a surface, however, is complicated due to parameters such as, grain size and shape, mineral chemistry, space weathering, and ambient temperature. Radiative transfer modeling is one method to calculate mineral proportions and chemistry from reflectance spectra. However, radiative transfer modeling requires knowledge of the optical constants of minerals of interest. In this study, we characterized the near-infrared optical constants of two common mafic minerals, olivine and pyroxene, with a wide distribution of chemistries. Particularly, we parameterized the imaginary index of refraction, k, in the near-infrared portion of the spectrum of natural olivines as a function of foresterite content and synthetic pyroxenes as a function of wollastonite and ferrosilite content. For each k-spectrum, we modeled each absorption features and continuum using the Modified Gaussian Model (MGM) with three Gaussians and an inverse linear function respectively. We find that our fitting routine characterizes the k-spectra of olivine and pyroxene consistently. Additionally, we described each parameter of MGM and the continuum with a regression or multiple regressions as a function of mineral chemistry. Thus providing the optical parameters of olivine and pyroxene needed for radiative transfer modeling. Scatter observed between optical parameters and mineral chemistry could be the result of minor cations (e.g., Mn2+), grain size, and cation ordering. Future work will seek to characterize these effects on derived optical parameters.

  12. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    NASA Astrophysics Data System (ADS)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  13. A Study of Olivine Alteration to Iddingsite Using Raman Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kuebler, K. E.; Wang, Alian; Haskin, L. A.; Jolliff, B. L.

    2003-01-01

    A crucial task of Mars surface science is to determine past environmental conditions, especially aqueous environments and their nature. Identification of mineral alteration by water is one way to do this. Recent work interprets TES spectra as indicating altered basalt on Mars. Olivine, a primary basaltic mineral, is easily altered by aqueous solutions. Alteration assemblages of olivine may be specific to deuteric, hydrothermal, surface water, or metamorphic environments. Raman spectra are produced by molecular vibrations and provide direct means for studying and identifying alteration products. Here, we present a combined study of changes in the chemical composition and Raman spectra of an olivine as it alters to iddingsite. Iddingsite is found in some SNC meteorites and is presumably present on Mars. The term 'iddingsite' has been used as a catch-all term to describe reddish alteration products of olivine, although some authors ascribe a narrower definition: an angstrom-scale intergrowth of goethite and smectite (presumably saponite) formed in an oxidizing and fluid-rich environment. Alteration conserves Fe (albeit oxidized) but requires addition of Al and H2O and removal of Mg and Si. The smectite that forms may be removed by continued alteration. Dehydration of the goethite forms hematite. Our purpose is to study the mineral assemblage, determine the structural and chemical variability of the components with respect to the degree of alteration, and to find spectral indicators of alteration that will be useful during in-situ analyses on Mars.

  14. Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Horanyi, M.

    1993-01-01

    Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.

  15. Deformation of olivine in torsion under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, Sylvie; Tommasi, Andréa; Barou, Fabrice; Mainprice, David; Cordier, Patrick

    2012-08-01

    We performed torsional deformation experiments on pre-hydrated fine-grained olivine aggregates using an innovative experimental assembly to investigate water weakening in mantle rocks at high shear strains. San Carlos olivine powder was cold-pressed and then hot-pressed under hydrous conditions, producing aggregates with average grain sizes of 7 or 15 μm. Deformation experiments were performed in a high-resolution gas-medium apparatus equipped with a torsional actuator, under a confining pressure of 300 MPa, a temperature of 1200 °C, and constant shear strain rates ranging from 8 × 10-5 to 1.4 × 10-4 s-1. Maximum shear stresses range from 150 to 195 MPa. These values are 30% lower relative to those determined in previous torsion experiments on dry, fined-grained dunites under similar conditions. Textures and microstructures of the starting and deformed specimens were characterized by scanning and transmission electron microscopy. All deformed aggregates exhibit a shape-preferred orientation marking a foliation and lineation, as well as a reduction in mean grain size from 15 μm down to 3-4 μm due to dynamic recrystallization. Olivine crystallographic fabrics developed rapidly (γ < 0.1), but their strength, characterized by the J-index, is low compared to naturally deformed peridotites or to polycrystalline olivine deformed at similar finite shear strains under dry conditions. The crystallographic fabrics are consistent with deformation by a dislocation accommodated creep mechanism with activation of multiple {0 k l}[1 0 0] systems, among which the (0 1 0)[1 0 0] slip system is dominant, and minor participation of the (0 1 0)[0 0 1] slip system. Transmission electron microscopy confirmed the occurrence of dislocations with [1 0 0] and [0 0 1] Burgers vectors in most grains. Analysis of unpolarized infrared spectra indicates that hydrogen concentration in the olivine lattice is below the saturation level of 18 ppm wt H2O, which is similar to those typically

  16. Low temperature annealing and cathodoluminescence studies of type 1 chondrule compositions

    NASA Technical Reports Server (NTRS)

    Dehart, John M.; Lofgren, Gary E.

    1991-01-01

    Preliminary results indicate that the yellow luminescing mesostases in type I chondrules can be altered by the effects of the low level thermal metamorphism. Although heat alone was insufficient to alter the CL, reheating for geologically relevant periods could have the same results as we obtained in a second series of experiments with water present. It is known that both water and solutions of sodium metasilicate greatly accelerate the devitrification of glasses. The results of the experiments that will be repeated should further clarify how the CL changes with increased thermal alteration.

  17. Diffusive over-hydration of olivine-hosted melt inclusions

    NASA Astrophysics Data System (ADS)

    Hartley, Margaret E.; Neave, David A.; Maclennan, John; Edmonds, Marie; Thordarson, Thor

    2015-09-01

    The pre-eruptive water content of magma is often estimated using crystal-hosted melt inclusions. However, olivine-hosted melt inclusions are prone to post-entrapment modification by H+ diffusion as they re-equilibrate with their external environment. This effect is well established for the case of H+ loss from olivine-hosted inclusions that have cooled slowly in degassed magma. Here we present evidence for the opposite effect: the addition of H+ into inclusions that are held in melts that are enriched in H2O with respect to the trapped melts. The compositional variability in a suite of 211 olivine-hosted inclusions from the Laki and Skuggafjöll eruptions in Iceland's Eastern Volcanic Zone indicates that diffusive H+ gain governs the H2O content of incompatible trace element depleted inclusions. Individual eruptive units contain olivine-hosted inclusions with widely varying incompatible element concentrations but near-constant H2O. Furthermore, over 40% of the inclusions have H2 O /Ce > 380, significantly higher than the H2O/Ce expected in primary Icelandic melts or mid-ocean ridge basalts (150-280). The fact that the highest H2O/Ce ratios are found in the most incompatible element depleted inclusions indicates that hydration is a consequence of the concurrent mixing and crystallisation of compositionally diverse primary melts. Hydration occurs when olivines containing depleted inclusions with low H2O contents are juxtaposed against more hydrous melts during mixing. Melt inclusions from a single eruption may preserve evidence of both diffusive H+ loss and H+ gain. Trace element data are therefore vital for determining H2O contents of melt inclusions at the time of inclusion trapping and, ultimately, the H2O content of the mantle source regions.

  18. Geoengineering potential of artificially enhanced silicate weathering of olivine.

    PubMed

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A

    2010-11-23

    Geoengineering is a proposed action to manipulate Earth's climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO(2) sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1-5 Pg of C per year for the 21st century by this technique. PMID:21059941

  19. Geoengineering potential of artificially enhanced silicate weathering of olivine

    PubMed Central

    Köhler, Peter; Hartmann, Jens; Wolf-Gladrow, Dieter A.

    2010-01-01

    Geoengineering is a proposed action to manipulate Earth’s climate in order to counteract global warming from anthropogenic greenhouse gas emissions. We investigate the potential of a specific geoengineering technique, carbon sequestration by artificially enhanced silicate weathering via the dissolution of olivine. This approach would not only operate against rising temperatures but would also oppose ocean acidification, because it influences the global climate via the carbon cycle. If important details of the marine chemistry are taken into consideration, a new mass ratio of CO2 sequestration per olivine dissolution of about 1 is achieved, 20% smaller than previously assumed. We calculate that this approach has the potential to sequestrate up to 1 Pg of C per year directly, if olivine is distributed as fine powder over land areas of the humid tropics, but this rate is limited by the saturation concentration of silicic acid. In our calculations for the Amazon and Congo river catchments, a maximum annual dissolution of 1.8 and 0.4 Pg of olivine seems possible, corresponding to the sequestration of 0.5 and 0.1 Pg of C per year, but these upper limit sequestration rates come at the environmental cost of pH values in the rivers rising to 8.2. Open water dissolution of fine-grained olivine and an enhancement of the biological pump by the rising riverine input of silicic acid might increase our estimate of the carbon sequestration, but additional research is needed here. We finally calculate with a carbon cycle model the consequences of sequestration rates of 1–5 Pg of C per year for the 21st century by this technique. PMID:21059941

  20. Evidence for equilibrium conditions during the partitioning of nickel between olivine and komatiite liquids.

    USGS Publications Warehouse

    Budahn, J.R.

    1986-01-01

    Olivine-liquid partition coefficients for Ni(DNi), calculated from Ni vs MgO abundance variations in komatiite series basalts, compare favourably with experimentally determined values, if Ni variations in olivine-controlled basalts can be modelled with an equation that assumes equilibrium between the entire olivine crystal and its coexisting liquid.-J.A.Z.

  1. Experimental Deformation of Olivine Single Crystal at Mantle P and T: Pressure Effect on Olivine Dislocation Slip-System Activities

    NASA Astrophysics Data System (ADS)

    Paul, R.; Girard, J.; Chen, J.; Amiguet, E.

    2008-12-01

    Seismic velocity anisotropies observed in the upper mantle are interpreted from lattice preferred orientations (LPO) produced experimentally in olivine, which depends on the dominant dislocation slip systems. At low pressure P<3 GPa, mantle temperature (T) and in dry conditions, olivine [100] dislocation slip dominates the less active [001] slip. This tends to align crystal fast velocity [100] axis with the principal shear direction. Yet recent high-pressure deformation experiments (Couvy et al., 2004, EJM, 16, 877; Raterron et al., 2007, Am. Min., 92, 1436; Raterron et al., 2008, Phys. Earth Planet. Int., doi:10.1016/j.pepi.2008.07.026) show that [001](010) slip system dominates [100](010) system in the (P,T) range of the deep upper mantle. This may promote a shear-parallel slow-velocity [001] axis and may explain the seismic-velocity attenuation observed at depth >200 km (Mainprice et al., 2005, Nature, 433, 731). In order to further constrain the effect of P on olivine slip system activities, which is classically quantified by the activation volume V* in power creep laws, deformation experiments were carried out in poor water condition, at P>5 GPa and T=1400°C, on pure forsterite (Fo100) and San Carlos olivine crystals, using the Deformation-DIA apparatus at the X17B2 beamline of the NSLS (Upton, NY). Ten crystals were oriented in order to active either [100] slip alone or [001] slip alone in (010) plane, or both [100](001) and [001](100) systems together. Constant applied stress σ <300 MPa and specimen strain rates were monitored in situ using time-resolved x-ray diffraction and radiography, respectively, for a total of 27 investigated steady state conditions. The obtained rheological data were compared with data previously obtained in comparable T and σ conditions, but at room P, by Darot and Gueguen (1981, JGR, 86, 6219) for Fo100 and by Bai et al. (1991, JGR, 96, 2441) for San Carlos olivine. This new set of data confirms previous deformation data

  2. Lattice preferred orientations of olivine in the schistosed antigorite serpentinite

    NASA Astrophysics Data System (ADS)

    Soda, Y.; Ando, J.; Mizukami, T.; Morishita, T.

    2011-12-01

    The lattice preferred orientation (LPO) of the schistosed antigorite serpentinite is considered as causes of the seismic anisotropy observed at the subduction zones (Katayama et al., 2009; Jung, 2011) and the natural examples are reported by several researchers (Bezacier et al., 2010; Hirauchi et al., 2010; Soda and Takagi, 2010). Formation process of the antigorite LPO is unclear, especially at primary serpentinized stage. To understand the development of micro-structures of antigorite serpentinite, we made structural analyses of serpentinite schist and the former peridotite fabric. Samples were taken from lenticular serpentinite bodies (< 1km) stack in Jurassic accretionary complex, Toba area, Southwest Japan. The serpentinite consist of olivine, antigorite, meta-clinopyroxene and Cr-spinel. The foliation and lineation of serpentinite is defined by parallel alignment of elongated olivine grain and antigorite blades, which make up mylonitic textures, such as a porphyroclast system and composite planar fabric. Antigorite blades show syn-kinematic growth in pressure shadows and pull-apart of olivine porphyroclast. In the less serpentinized part, antigorite blades are crystallized along the grain boundary of olivine. We measure the LPOs of coarse olivine grains in the serpentinite schist using a u-stage. The X, Y and Z directions represent directions of lineation, normal to lineation within the foliation and normal to foliation, respectively. The LPOs of olivine show point maximum or partial girdle distribution, and these concentrated crystal axes are incongruous with X, Y and Z direction. The a[100] axes of olivine are parallel to the serpentinite foliation, and form a point maximum several degrees away from the Y direction. The b[010] axes and the c[001] axes are concentrated Z and X direction forming a partial girdle normal to Y direction, respectively. Boudier et al. (2010) have reported the topotactic relationship between olivine and antigorite. They show that

  3. Blowing in the Wind: I. Velocities of Chondrule-sized Particles in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Fonda, Mark (Technical Monitor)

    2003-01-01

    Small but macroscopic particles - chondrules, higher temperature mineral inclusions, metal grains, and their like - dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust, and to their diffusion in the nebula, which we explore separately.

  4. Olivine and Carbonate Globules in ALH84001: A Terrestrial Analog, and Implications for Water on Mars

    NASA Technical Reports Server (NTRS)

    Treiman, A. H.

    2005-01-01

    Carbonate globules in ALH84001 are associated with small olivine grains an unexpected finding because the olivines equilibrated at high T while the carbonate is chemically zoned and unequilibrated. A possible explanation comes from a terrestrial analog on Spitsbergen (Norway), where some carbonate globules grew in cavities left by aqueous dissolution of olivine. For ALH84001, the same process may have acted, with larger olivines dissolved out and smaller ones shielded inside orthopyroxene. Carbonate would have been deposited in holes where the olivine had been. Later shocks crushed remaining void space, and mobilized feldspathic glass around the carbonates.

  5. Olivine vitrophyres - A nonpristine high-Mg component in lunar breccia 14321

    NASA Technical Reports Server (NTRS)

    Shervais, John W.; Taylor, Lawrence A.; Lindstrom, Marilyn M.

    1988-01-01

    The presence of olivine vitrophyres in breccia 14321 is discussed, suggesting that olivine vitrophyres could account for the high-Mg component of soils and breccias in the lunar highlands. The olivine vitrophyre clasts from 14321 have high bulk MgO and the Mg/(Mg+Fe) ratio is 78 percent. The olivine vitrophyres are impact melt rocks and are rich in KREEP. The high MgO concentration is manifest by skeletal quench crystals of olivine that constitute about 30 percent of the mode.

  6. Chemical variation and zoning of olivine in lunar dunite 72415 - Near-surface accumulation

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1992-01-01

    Electron microprobe remeasurements have been used to reevaluate the range of olivine compositions, including CaO, in lunar dunite sample 72415 and compare that range with olivines in established plutonic rocks. Olivines from ferroan anorthosite 62237 and samples from the Stillwater intrusion were analyzed; literature data for other lunar and terrestrial plutonic samples were used for comparisons. The analyses show that the lunar dunite 72415 contains a range of olivine compositions, that the olivines are zoned, and that they have CaO abundances that are consistent with shallow hypabyssal rather than deep plutonic accumulation.

  7. Diffusion of REE, Hf and Sr in Olivine

    NASA Astrophysics Data System (ADS)

    Remmert, P.; Dohmen, R.; Chakraborty, S.

    2008-12-01

    We have determined diffusion coefficients of the rare earth elements Ce, Nd, Sm, Eu, Lu, and also of Sr and Hf, in single crystals of natural olivine at atmospheric pressure, at an oxygen fugacity of 10-5 Pa and a temperature of 1275 °C. Sources of diffusants were thin films of olivine composition doped with the relevant elements. Thin films were produced by PLD (pulsed laser deposition) and RBS (Rutherford backscattering) was used to measure thickness and stoichiometry of the films as well as to analyze the concentration profiles. The concentration profiles were numerically fitted to yield the following diffusion coefficients (D, in m2/s): log DCe: -19.61 ± 0.21; log DNd: -19.54 ± 0.11; log DSm: -19.15 ± 0.05; log DEu: -19.10; log DLu: -19.00, log DHf: -20.23 ± 0.07; log DSr: -18.7. Diffusion coefficients of the rare-earth elements increase from Ce to Lu, demonstrating the role of ionic radius in controlling diffusion because all REE are trivalent. The tetravalent and divalent cations hafnium and strontium diffuse an order of magnitude slower and faster, respectively, than the REE in olivine. This highlights the important influence of ionic charge on diffusion rates. The diffusion coefficients of the REE are slower by a few orders of magnitudes than the diffusion rate of Cr in olivine [1]. The rates found in this study are slower than those assumed by a model [2] for compositional modification of melt inclusions in olivine. Use of our data in their calculations indicates that it will take longer to modify the composition of melt inclusions in olivine (millions of years rather than thousands of years) but the fractionation of HREE from LREE will be larger. [1] Ganguly J, Ito M (2006) Geochim Cosmochim Acta, 70, 799-809. [2] Cottrell E, Spiegelman M, Langmuir CH (2002) Geochem Geophys Geosyst, doi:10.1029/2001GC000205

  8. Real Time Pore Structure Evolution during Olivine Mineral Carbonation

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xiao, X.

    2014-12-01

    Aqueous carbonation of ultramafic rocks has been proposed as a promising method for long-term, secure sequestration of carbon dioxide. While chemical kinetics data indicate that carbonation reaction in olivine is one of the fastest among the mg-bearing minerals, in practice, the factors that limit the extent and rate of carbonation in ultramafic rocks are fluid supply and flux. On the one hand, reaction products could produce passivating layer that prohibits further reactions. On the other hand, the increases in solid volume during carbonation could lead to cracking and create new fluid paths. Whether carbonation in ultramafic rocks is self-limiting or self-sustaining has been hotly debated. Experimental evidence of precipitation of reaction products during olivine carbonation was reported. To date, reaction-driven cracking has not been observed. In this paper, we present the first real-time pore structure evolution data using the x-ray synchrotron microtomography. Sodium bicarbonate (NaHCO3) solution was injected into porous olivine aggregates and in-situ pore structure change during olivine carbonation at a constant confining pressure (12 MPa) and a temperature of 200oC was captured at 30 min. interval for ~160 hours. Shortly after the experiment started, filling-in of the existing pores by precipitation of reaction products was visible. The size of the in-fills kept increasing as reactions continued. After ~48 hours, cracking around the in-fill materials became visible. After ~60 hours, these cracks started to show a clear polygonal pattern, similar to the crack patterns usually seen on the surface of drying mud. After ~72 hours, some of the cracks coalesced into large fractures that cut-through the olivine aggregates. New fractures continued to develop and at the end of the experiment, the sample was completely disintegrated by these fractures. We also conducted nanotomography experiments on a sub-volume of the reacted olivine aggregate. Orthogonal sets of

  9. On the Lower Limit of Chondrule Cooling Rates: The Significance of Iron Loss in Dynamic Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Connolly, Harold C., Jr.; Lofgren, Gary E.

    1999-01-01

    Lofgren (1989) and the further analysis of Lofgren's 1989 experiments by Jones and Lofgren (1993) established that cooling rates as slow as 5 C/hour produced analog textures and major and minor element zoning profiles in minerals, implying that a lower limit on chondrule cooling rate may be approximately 5 C/hour These results, however, are in conflict with those reported by Radomsky and Hewins (1990). In their paper, Radomsky and Hewins (1990) established a lower limit on chondrule cooling rates of I 100 C/hour a factor of 20 higher than that suggested by Jones and Lofgren (1993). The higher cooling rates suggested by Radomsky and Hewins (1990) have gained considerable favor within the meteoritic community largely because it appears more consistent with the preservation of Na in chondrules, which tends to volatilize at the slower cooling rates. In their study, however, Radomsky and Hewins (1990) did not use Pt hang wires that were coated or saturated with Fe. The lack of such techniques likely facilitated Fe loss from their experimental chondrules to the hang wire during formation (Jones and Lofgren, 1993). The effect of Fe loss could produce an inaccurate determination of cooling rates since these rates are largely determined by the Mg-Fe distributions in individual crystals.

  10. Early Size Distributions of Chondrule Subgroups Overprinted by the Final Accumulation Process of Particle Components in Allende

    NASA Technical Reports Server (NTRS)

    McCain, K. A.; Simon, J. I.; Cuzzi, J. N

    2015-01-01

    Populations of compositionally distinct particles are fundamental components of undifferentiated chondritic meteorites. Many theories explain the formation of chondrites, one class of which includes mechanisms for sorting the component particles in the solar nebula prior to their accretion. Mechanisms include sorting by mass, turbulent concentration, X-winds, and photophoresis, which will produce characteristic distributions of observable properties such as particle size. Distinguishing processes that occur in specific astrophysical environments requires characterization of particle types, which include refractory Ca-Al-rich Inclusions (CAIs) and less-refractory chondrules. Previous investigations of modal abundances of CAIs and chondrules exist, but differences within and between these two groups, both of which are made up of diverse subgroups with different thermal histories and chemical compositions, remain mostly unstudied. The presence of rims, a significant event occurring after the formation of at least some chondrules, have also yet to be considered with respect to sorting. Here we present the sizes of CAIs and chondrules in Allende with attention to the smallest sizes, subgroups, and particle rims.

  11. Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model

    PubMed Central

    Bollard, Jean; Connelly, James N.; Bizzarro, Martin

    2016-01-01

    The CB chondrites are metal-rich meteorites with characteristics that sharply distinguish them from other chondrite groups. Their unusual chemical and petrologic features and a young formation age of bulk chondrules dated from the CBa chondrite Gujba are interpreted to reflect a single-stage impact origin. Here, we report high-precision internal isochrons for four individual chondrules of the Gujba chondrite to probe the formation history of CB chondrites and evaluate the concordancy of relevant short-lived radionuclide chronometers. All four chondrules define a brief formation interval with a weighted mean age of 4562.49 ± 0.21 Myr, consistent with its origin from the vapor-melt impact plume generated by colliding planetesimals. Formation in a debris disk mostly devoid of nebular gas and dust sets an upper limit for the solar protoplanetary disk lifetime at 4.8 ± 0.3 Myr. Finally, given the well-behaved Pb-Pb systematics of all four chondrules, a precise formation age and the concordancy of the Mn-Cr, Hf-W, and I-Xe short-lived radionuclide relative chronometers, we propose that Gujba may serve as a suitable time anchor for these systems. PMID:27429545

  12. Search for extinct 36Cl: Vigarano CAIs, the Pink Angel from Allende, and a Ningqiang chondrule

    NASA Astrophysics Data System (ADS)

    Nakashima, Daisuke; Ott, Ulrich; Hoppe, Peter; El Goresy, Ahmed

    2008-12-01

    We have searched for excesses of 36S derived from the decay of extinct 36Cl in sodalite, a secondary Cl-rich mineral, in Ca-Al-rich inclusions (CAIs) from the Vigarano and Allende CV3 chondrites and in a chondrule from the Ningqiang carbonaceous chondrite. The presence of sodalite in two CAIs from Vigarano and its absence from surrounding CAI fragments suggests sodalite formation after CAI fragmentation. As for sodalite in the Allende Pink Angel CAI, oxygen isotopic compositions have been interpreted as indicative of high temperature interactions, thus suggesting formation prior to accretion to the parent body, probably in a nebular setting. Sodalite in the Ningqiang chondrule is considered to have formed via alkali-Ca exchange, which is believed to have occurred before accretion to the parent body. Sodalites in the Vigarano CAIs and in the Ningqiang chondrule show no clear evidence for the presence of radiogenic 36S. The inferred 2 σ upper limits for 36Cl/ 35Cl at the time of sodalite formation are 1.6 × 10 -6 (Vigarano CAIs) and 3.3 × 10 -6 (Ningqiang chondrule), respectively. In the Pink Angel CAI sodalite exhibits small 36S excesses which weakly correlate with 35Cl/ 34S ratios. The inferred 36Cl/ 35Cl ratio of (1.8 ± 2.2) × 10 -6 (2 σ error) is lower than that found by Hsu et al. [Hsu, W., Guan, Y., Leshin, L. A., Ushikubo, T. and Wasserburg, G. J. (2006) A late episode of irradiation in the early solar system: Evidence from extinct 36Cl and 26Al in meteorites. Astrophys. J. 640, 525-529], thus indicative of heterogeneous distribution of 36Cl in this CAI. Spallation reactions induced by energetic particles from the young Sun are suggested for the origin of 36Cl, similar to the case of 10Be. While 10Be appears to be present in roughly equal abundance in all studied CAIs, our study indicates the level of 36Cl abundances to be variable so that there seems to be no simple relationship between 10Be and 36Cl. This would be expected if trapped cosmic rays rather

  13. Olivine separates from Murchison and Cold Bokkeveld - Particle tracks and noble gases

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Phinney, D.

    1977-01-01

    Olivine separates from Murchison and Cold Bokkeveld were analyzed for particle tracks and noble gases. The matrix remaining after olivine separation was also analyzed for noble gases. The olivines from both meteorites have comparable fractions of solar-flare-irradiated grains, but the highest track densities in Murchison are an order of magnitude greater than those in Cold Bokkeveld. Solar Ne content in Murchison olivines follows this trend, being at least an order of magnitude higher than that in Cold Bokkeveld. Track gradients in Cold Bokkeveld olivines are flatter than those in Murchison or recently exposed lunar crystals. Relative to the matrix, olivine separates in both meteorites have small enrichments at the heavy and light Xe isotopes and smaller Ar-36/Ar-38 ratios. These noble-gas effects may be related to a chromite impurity in the olivine separates.

  14. Grinding methods to enhance the reactivity of olivine

    SciTech Connect

    Summers, Cathy A.; Dahlin, David C.; Rush, Gilbert E.; O'Connor, William K.; Gerdemann, Stephen J.

    2005-08-01

    The Albany Research Center (ARC) conducted studies of mechanical activation by conventional and ultrafine grinding techniques to enhance olivine reactivity in mineral carbonation reactions. Activated olivine is one of several solid feed materials used at ARC in reactions with carbon dioxide to form carbonate minerals. This paper compares grinding techniques via energy demand data and product characteristics, including particle size distributions, surface areas, full-width-at-half-maximum (FWHM) XRD analyses, and particle morphology by SEM analyses. Reactivity was calculated by percent conversion to carbonate in subsequent carbonation tests. Particle size reduction has the greatest impact on reactivity, and wet grinding is more energy efficient than dry grinding. Large additional inputs of energy to increase surface area or reduce crystallinity do not result in proportional improvements in reactivity.

  15. Helium diffusion in olivine based on first principles calculations

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Brodholt, John; Lu, Xiancai

    2015-05-01

    As a key trace element involved in mantle evolution, the transport properties of helium in the mantle are important for understanding the thermal and chemical evolution of the Earth. However, the mobility of helium in the mantle is still unclear due to the scarcity of measured diffusion data from minerals under mantle conditions. In this study, we used first principles calculations based on density functional theory to calculate the absolute diffusion coefficients of the helium in olivine. Using the climbing images nudged elastic band method, we defined the diffusion pathways, the activation energies (Ea), and the prefactors. Our results demonstrate that the diffusion of helium has moderate anisotropy. The directionally dependent diffusion of helium in olivine can be written in Arrhenius form as follows.

  16. Waveform effects of a metastable olivine tongue in subducting slabs

    NASA Technical Reports Server (NTRS)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  17. High shear strain of olivine aggregates: rheological and seismic consequences.

    PubMed

    Bystricky, M; Kunze, K; Burlini, L; Burg, J

    2000-11-24

    High-pressure and high-temperature torsion experiments on olivine aggregates in dislocation creep show about 15 to 20% strain weakening before steady-state behavior, characterized by subgrain-rotation recrystallization and a strong lattice preferred orientation. Such weakening may provide a way to focus flow in the upper mantle without a change in deformation mechanism. Flow laws derived from low strain data may not be appropriate for use in modeling high strain regions. In such areas, seismic wave propagation will be anisotropic with an axis of approximate rotational symmetry about the shear direction. In contrast to current thinking, the anisotropy will not indicate the orientation of the shear plane in highly strained, recrystallized olivine-rich rocks. PMID:11090352

  18. The solubility of olivine in basaltic liquids - An ionic model

    NASA Technical Reports Server (NTRS)

    Herzberg, C. T.

    1979-01-01

    A model is presented which enables the temperature at which olivine is in equilibrium with any alkali-depleted basaltic compound to be calculated to within + or - 30 C. It is noted that the error increases substantially when applied to terrestrial basalts which contain several weight percent alkalis. In addition the model predicts and quantifies the reduced activity of SiO4(4-) monomers due to increasing SiO2 concentrations in the melt. It is shown that the coordination of alumina in melts which precipitate olivine only appears to be dominantly octahedral, while titanium acts as a polmerizing agent by interconnecting previously isolated SiO4(4-) monomers. It is concluded that the model is sufficiently sensitive to show that there are small repulsive forces between Mg(2+) and calcium ions which are in association with normative diopside in the melt.

  19. BARS/SSC/SPHINX

    SciTech Connect

    Herrmann, W. )

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shock compression of condensed media, high rate deformation of solids, and detonation.

  20. BARS/SSC/SPHINX

    SciTech Connect

    Herrmann, W. )

    1993-06-06

    BARS is a program which allows retrieval of information from suitable bibliographic databases. Two databases are included, SSC and SPHINX, which together list bibliographic information for some 12,000 references related to the fields of shoch compression of condensed media, high rate deformation of solids, and detonation.

  1. Toll Bar on Sea

    ERIC Educational Resources Information Center

    Hunter, Dave

    2008-01-01

    In the summer of 2007 the United Kingdom experienced some of the heaviest rainfall since records began. Toll Bar in South Yorkshire featured prominently in media coverage as the village and the homes surrounding it began to flood. Many people lost everything: their homes, their furniture, their possessions. In an effort to come to terms with what…

  2. Chemical frost weathering of olivine: Experimental study and implications

    NASA Technical Reports Server (NTRS)

    Harris, S. L.; Huguenin, R. L.

    1987-01-01

    New experimental results are reported on the frost weathering of olivine. After first weathering, a decrease in Fe sup 2(+)M(2) absorption bands were noted. This decrease is related to the protonation of O(+) in the mineral. It is contented that this reaction may result in the regolith storage of 100 to 1000 m of H(sub 2) over the history of Mars.

  3. Creep behavior of Fe-bearing olivine under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Zimmerman, Mark E.; Kohlstedt, David L.

    2015-09-01

    To understand the effect of iron content on the creep behavior of olivine, (MgxFe(1 - x))2SiO4, under hydrous conditions, we have conducted tri-axial compressive creep experiments on samples of polycrystalline olivine with Mg contents of x = 0.53, 0.77, 0.90, and 1. Samples were deformed at stresses of 25 to 320 MPa, temperatures of 1050° to 1200°C, a confining pressure of 300 MPa, and a water fugacity of 300 MPa using a gas-medium high-pressure apparatus. Under hydrous conditions, our results yield the following expression for strain rate as a function of iron content for 0.53 ≤ x ≤ 0.90 in the dislocation creep regime: ɛ˙=ɛ˙0.90((1-x/0.1))1/2exp[226×1030.9-x/RT]. In this equation, the strain rate of San Carlos olivine, ɛ˙0.90, is a function of T, σ, and fH2O. As previously shown for anhydrous conditions, an increase in iron content directly increases creep rate. In addition, an increase in iron content increases hydrogen solubility and therefore indirectly increases creep rate. This flow law allows us to extrapolate our results to a wide range of mantle conditions, not only for Earth's mantle but also for the mantle of Mars.

  4. Olivine crystals align during diffusion creep of Earth's upper mantle.

    PubMed

    Miyazaki, Tomonori; Sueyoshi, Kenta; Hiraga, Takehiko

    2013-10-17

    The crystallographic preferred orientation (CPO) of olivine produced during dislocation creep is considered to be the primary cause of elastic anisotropy in Earth's upper mantle and is often used to determine the direction of mantle flow. A fundamental question remains, however, as to whether the alignment of olivine crystals is uniquely produced by dislocation creep. Here we report the development of CPO in iron-free olivine (that is, forsterite) during diffusion creep; the intensity and pattern of CPO depend on temperature and the presence of melt, which control the appearance of crystallographic planes on grain boundaries. Grain boundary sliding on these crystallography-controlled boundaries accommodated by diffusion contributes to grain rotation, resulting in a CPO. We show that strong radial anisotropy is anticipated at temperatures corresponding to depths where melting initiates to depths where strongly anisotropic and low seismic velocities are detected. Conversely, weak anisotropy is anticipated at temperatures corresponding to depths where almost isotropic mantle is found. We propose diffusion creep to be the primary means of mantle flow. PMID:24132289

  5. The effect of water on the electrical conductivity of olivine.

    PubMed

    Wang, Duojun; Mookherjee, Mainak; Xu, Yousheng; Karato, Shun-ichiro

    2006-10-26

    It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals--for example, plastic deformation and melting temperature--and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth's mantle by direct sampling provides only a limited data set from shallow regions (<200 km depth). Geophysical observations such as electrical conductivity are considered to be sensitive to water content, but there has been no experimental study to determine the effect of water on the electrical conductivity of olivine, the most abundant mineral in the Earth's mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873-1,273 K for water contents of 0.01-0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations suggests that the typical oceanic asthenosphere contains approximately 10(-2) wt% water, whereas the water content in the continental upper mantle is less than approximately 10(-3) wt%. PMID:17066032

  6. Si-rich layer formation on olivine surfaces during reaction with water and supercritical carbon dioxide under conditions relevant for geologic carbon storage

    NASA Astrophysics Data System (ADS)

    Johnson, N. C.; Jackson, A.; Maher, K.; Bird, D. K.; Brown, G. E.

    2013-12-01

    The reaction of Mg-silicate minerals (i.e. olivine) with carbon dioxide (CO2) is a promising method for secure, long-term, geologic carbon storage. Several technical challenges must be overcome before implementing mineral carbonation technology on a large scale, one of which is slow reaction kinetics. This study probes surface reaction limitations of olivine carbonation, specifically the formation of a passivating, Si-rich layer on olivine surfaces upon exposure to water and CO2 under sequestration conditions (elevated temperature and pressure). A series of batch reactions were performed at 60°C and 100 bar CO2 pressure in Dickson-style rocker bombs, varying the length of reaction and the amount of mixing (rocking). The initial aqueous phase was spiked with 29Si. Fluid samples were taken periodically and analyzed for cation content, alkalinity, and dissolved inorganic carbon. At the end of each experiment, the solid products were analyzed with a Sensitive High Resolution Ion Microprobe Reverse Geometry (SHRIMP-RG) in order to measure the amount of 29Si incorporated into the Si-rich layer on reacted olivine grains. We also cut cross sections of reacted grains from each experiment using a Focused Ion Beam (FIB) which were thinned to <100nm and imaged using Transmission Electron Microscopy (TEM). SHRIMP-RG results show incorporation of 29Si on olivine grain surfaces reacted for 19 days with no mixing, and TEM images of olivine grains from the same experiment show an amorphous, Si-rich layer that is 30nm thick. Similarly, SHRIMP-RG results for olivine grains reacted for 19 days with mixing indicate 29SiO2 precipitation and TEM images reveal a Si-rich layer 60nm thick. In both experiments, EDS (energy dispersive spectroscopy) data show a step change in composition from the bulk rock to the surface layer in addition to the sharp crystalline/amorphous interface visible in the TEM images. Olivine from the unmixed experiment also has a slow decrease in Mg relative to Si

  7. Low Temperature Plasticity of Olivine Determined by Nano-indentation

    NASA Astrophysics Data System (ADS)

    Skemer, P. A.; Kranjc, K.; Rouse, Z.; Flores, K.

    2015-12-01

    Earth's upper mantle is thought to deform mainly by dislocation creep, during which strain-rate and stress are related by a simple power law equation. However at much higher stresses there is a break-down in the power law relationship and strain-rate depends exponentially on stress. This phenomenon, known as low temperature plasticity, may be important in the shallow ductile or semi-brittle regions of the lithosphere, at the tips of cracks, or during high-stress laboratory experiments. Several studies have attempted to constrain the low-temperature rheology of olivine using micro-indentation or high pressure experiments. In this study we provide the first measurements of olivine rheology at low temperature using instrumented nano-indention. Although nano-indentation has been widely used in the materials sciences, its application in the Earth sciences has been very limited. Nano-indentation methods provide rheological measurements that are significantly more precise than other mechanical tests at high pressure and temperature. Moreover, experiments are rapid and largely non-destructive, so many tests can be conducted in a short amount of time. In this study, olivine single crystal and polycrystalline samples were tested using a Hysitron TI950 TriboIndenter. Temperature was varied using a cooling/heating stage from 0-175°C. Experiments were conducted under quasi-static and constant strain-rate conditions. Indentation hardness measurements were converted to uniaxial rheological properties to facilitate direct comparison with previous studies. Yield strengths for olivine range from 4.19 GPa at 175°C to 4.60 GPa at 0°C. Using various models for obstacles to dislocation motion, data are extrapolated to 0 Kelvin to extract a Peierls stress for olivine (5.32-6.45 GPa), which is at the lower end of the range of values determined in previous studies. This study demonstrates the efficacy of the nano-indentation method for the study of mineral rheology, and opens a

  8. The origin of olivine-rich troctolites/plagioclase-dunites

    NASA Astrophysics Data System (ADS)

    Garapic, G.; Faul, U.; Kruckenberg, S. C.; Wiejaczka, J.; Newton, J. C.

    2015-12-01

    Olivine-rich troctolites or plagioclase dunites are a type of rock commonly found in oceanic crust and peridotite massifs that does not fit into a IUGS classification. Part of the reason is that their origin is poorly constrained, in particular whether these rocks are cumulates or residual mantle rocks. To avoid implications for origin or process Blackman et al. 2006 defined as olivine-rich troctolites rocks that contain > 70% olivine,with plagioclase, cpx and spinel. We examined this type of rock in Krivaja peridotite massif in Bosnia-Herzegovina where it occurs as massive outcrops with an area of several tens of square kilometres. The plagioclase dunites are underlain by peridotites that contain plagioclase patches indicative of melt migration. These peridotites are progressively depleted of pyroxene and cross-cut by gabbro veins. The plagioclase dunites have Mg# predominantly from 89 - 90 and Ni contents from 2500 - 3500 ppm, similar to the peridotites. EBSD mapping of whole thin sections shows orientation distribution functions (odf) that are unlike any of the fabric types observed in naturally or experimentally deformed rocks with a strong maximum in (001) near the foliation plane (although this plane is poorly defined) and weak girdles of the other two axes perpendicular to it. For comparison, we also mapped known cumulates from the Rum and Stillwater layered intrusions with somewhat lower Mg# of 84 - 86. The odf of these samples show a strong maximum of (010) perpendicular to the foliation plane and weak girdles of the other two axes in the plane. This fabric type has been explained by crystal settling and compaction in a magma chamber. Together these observations show that the plagioclase dunites from Krivaja, as well as rocks with similar characteristics e.g. from the Mid-Atlantic Ridge (Drouin et al. 2010) and Italy (Renna and Tribuzio, 2011) are not cumulates but are of mantle origin. An important characteristic of the plagioclase dunites is that the

  9. I-Xe Dating: Comparison of I-Xe and Pb-Pb Ages of Richardton Chondrules and Separated Mineral Phases

    NASA Technical Reports Server (NTRS)

    Pravdivtseva, O. V.; Amelin, Y.; Hohenberg, C. M.; Meshik, A. P.

    2002-01-01

    I-Xe and Pb-Pb ages of individual Richardton chondrules and different mineral phases were compared in order to test the absolute I-Xe age normalization. Additional information is contained in the original extended abstract.

  10. Non-nebular Origin of Dark Mantles Around Chondrules and Inclusions in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Trigo-Rodriquez, Josep M.; Rubin, Alan E.; Wasson, John T.

    2006-01-01

    Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii >35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts

  11. Measurements of vertical bar Vcb vertical bar and vertical bar Vub vertical bar at BaBar

    SciTech Connect

    Rotondo, M.

    2005-10-12

    We report results from the BABAR Collaboration on the semileptonic B decays, highlighting the measurements of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vub and Vcb. We describe the techniques used to obtain the matrix element |Vcb| using the measurement of the inclusive B {yields} Xclv process and a large sample of exclusive B {yields} D*lv decays. The vertical bar Vub vertical bar matrix elements has been measured studying different kinematic variables of the B {yields} Xulv process, and also with the exclusive reconstruction of B {yields} {pi}({rho})lv decays.

  12. Kimberlitic olivines derived from the Cr-poor and Cr-rich megacryst suites

    NASA Astrophysics Data System (ADS)

    Moore, Andy; Costin, Gelu

    2016-08-01

    Reversed-zoned olivines (Fe-richer cores compared to rims), appear to be ubiquitous in kimberlites with a wide distribution. These olivines generally comprise a subordinate population relative to the dominant normally zoned olivines. However, they are notably more abundant in the megacryst-rich mid-Cretaceous Monastery and early Proterozoic Colossus kimberlites, located on the Kaapvaal and Zimbabwe cratons, respectively. The reverse-zoned olivines at these two localities define compositional fields that are closely similar to those for two olivine megacryst populations of the Cr-poor association which have been documented in the Monastery kimberlite. This points to a genetic link between megacrysts and the reversed zoned olivines. The ubiquitous, occurrence of the Fe-rich (relative to the field for rims) olivines in kimberlites with a wide geographic distribution in turn argues for an intimate link between megacrysts and the host kimberlite. Some large olivines have inclusions of rounded Cr-rich clinopyroxenes, garnets and/or spinel, characterized by fine-scale, erratic internal compositional zoning. Olivines with such chemically heterogeneous Cr-rich inclusions are not derived from disaggregated mantle peridotites, but are rather linked to the Cr-rich megacryst suite. Consequently, they cannot be used as evidence that cores of a majority of kimberlitic olivines are derived from disaggregated mantle peridotites.

  13. Effects of organic ligands and temperature variations on the kinetics of olivine carbonation and the formation of associated secondary phases

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Daval, D.; Martinez, I.; Brunet, F.; Verlaguet, A.; Pinquier, Y.; Guyot, F. J.

    2011-12-01

    The slow dissolution kinetics of Mg-rich silicates has become a critical issue for the geologic CO2 sequestration in basic rocks. Previous batch carbonation studies on San Carlos olivine [1] performed in CO2 saturated water (at 90°C and P CO2 = 280 bar) have focused on the role that secondary phases, such as amorphous silica layers (SiO2 (am)), have on the transport of reactants from and to the reactive surfaces. The fluid composition remained roughly constant over the duration of the experiment, close to saturation with respect to amorphous silica and with a [Mg2+]/[SiO2 (aq)] ratio close to stoechiometric release, suggesting a passivation of the olivine surface by the silica layer. In order to accelerate the dissolution process, organic ligands such as citrate and acetate were added to the solutions and tested at 1M and 0.1M concentrations in similar batch experiments. An intrinsic increase of the dissolution rate of olivine was expected [2], [3] prior to the formation of a passivating silica layer. Preliminary results confirm this idea since Mg was released in non-stoechimoetric proportions with respect to SiO2 (aq) (found to be in equilibrium with SiO2 (am)). Similarly, a slight increase of temperature (from 90°C to 120°C) accelerated the reaction kinetics as well, possibly impacting the textural properties of SiO2 (am). Current TEM investigations are directed to confirming a possible link between the observed increase of the rate and textural properties of secondary phases. In addition, because carbonate minerals have a retrograde solubility, thermodynamical modelling suggests that this temperature increase should allow the fluid to reach saturation with respect to carbonates before reaching saturation with respect to SiO2 (am). Enough Mg can therefore be released to initiate the formation of carbonates before the silica precipitates and passivates the olivine surface. [1] Daval et al (2011), Chemical Geology, v.284, p.193-209 [2] Grandstaff, D.E. (1986) In

  14. Calcio-olivine {gamma}-Ca{sub 2}SiO{sub 4}: I. Rietveld refinement of the crystal structure

    SciTech Connect

    Gobechiya, E. R. Yamnova, N. A.; Zadov, A. E.; Gazeev, V. M.

    2008-05-15

    The structure of the natural mineral calcio-olivine ({gamma}-Ca{sub 2}SiO{sub 4}) found in skarn xenoliths in the region of the Lakargi Mountain (North Caucasus, Kabardino-Balkaria, Russia) is refined by the Rietveld method [a = 5.07389(7) A, b = 11.21128(14) A, c = 6.75340(9) A, V = 384.170(5) A{sup 3}, Z = 4, {rho}{sub calcd} = 2.98 g/cm{sup 3}, space group Pbnm]. The X-ray diffraction pattern of a powdered sample is recorded on a STOE STADI MP diffractometer [{lambda}CuK{sub {alpha}1}; Ge(111) primary monochromator; 6.00{sup o} < 2{theta} < 100.88{sup o}; step width, 2.5{sup o} in 2{theta}; number of reflections, 224]. All calculations are performed with the WYRIET (version 3.3) software package. The structural model is refined in the anisotropic approximation to R{sub p} = 6.44, R{sub wp} = 8.52, R{sub exp} = 5.85, R{sub B} = 4.98, R{sub F} = 6.90, and s = 1.46. It is shown that the sample under investigation is a mixture of several mineral phases, among which calcio-olivine (the natural analogue of the {gamma}-Ca{sub 2}SiO{sub 4} compound) (83%), hillebrandite (13%), and wadalite (4%) are dominant. Only the scale factors and the unit cell parameters are refined for hillebrandite Ca{sub 2}SiO{sub 3}(OH){sub 2} [a = 3.63472(16) A, b = 16.4140(10) A, c = 11.7914(8) A, space group Cmc2{sub 1}, Z = 6] and wadalite Ca{sub 6}Al{sub 5}Si{sub 2}O{sub 16}Cl{sub 3} (a = 12.0088 A, space group, I 4 bar 3d, Z = 4). The results of the structure refinement of the main component of the sample confirm that the mineral calcio-olivine is isostructural to the synthetic compound {gamma}-Ca{sub 2}SiO{sub 4}. The structure of this compound is formed by the heteropolyhedral framework composed of Ca octahedra joined together into olivine-like ribbons and isolated Si tetrahedra.

  15. From olivine to ringwoodite: a TEM study of a complex process

    NASA Astrophysics Data System (ADS)

    Pittarello, Lidia; Ji, Gang; Yamaguchi, Akira; Schryvers, Dominique; Debaille, Vinciane; Claeys, Philippe

    2015-05-01

    The study of shock metamorphism of olivine might help to constrain impact events in the history of meteorites. Although shock features in olivine are well known, so far, there are processes that are not yet completely understood. In shock veins, olivine clasts with a complex structure, with a ringwoodite rim and a dense network of lamellae of unidentified nature in the core, have been reported in the literature. A highly shocked (S5-6), L6 meteorite, Asuka 09584, which was recently collected in Antarctica by a Belgian-Japanese joint expedition, contains this type of shocked olivine clasts and has been, therefore, selected for detailed investigations of these features by transmission electron microscopy (TEM). Petrographic, geochemical, and crystallographic studies showed that the rim of these shocked clasts consists of an aggregate of nanocrystals of ringwoodite, with lower Mg/Fe ratio than the unshocked olivine. The clast's core consists of an aggregate of iso-oriented grains of olivine and wadsleyite, with higher Mg/Fe ratio than the unshocked olivine. This aggregate is crosscut by veinlets of nanocrystals of olivine, with extremely low Mg/Fe ratio. The formation of the ringwoodite rim is likely due to solid-state, diffusion-controlled, transformation from olivine under high-temperature conditions. The aggregate of iso-oriented olivine and wadsleyite crystals is interpreted to have formed also by a solid-state process, likely by coherent intracrystalline nucleation. Following the compression, shock release is believed to have caused opening of cracks and fractures in olivine and formation of olivine melt, which has lately crystallized under postshock equilibrium pressure conditions as olivine.

  16. A New Spinel-Olivine Oxybarometer: Near-Liquidus Partitioning of V between Olivine-Melt, Spinel-Melt, and Spinel-Olivine in Martian Basalt Composition Y980459 as a Function of Oxygen Fugacity

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Le, L.; Burger, P. V.; Shearer, C. K.; Bell, A. S.; Jones, J.

    2013-01-01

    Our research on valence state partitioning began in 2005 with a review of Cr, Fe, Ti, and V partitioning among crystallographic sites in olivine, pyroxene, and spinel [1]. That paper was followed by several on QUE94201 melt composition and specifically on Cr, V, and Eu partitioning between pyroxene and melt [2-5]. This paper represents the continuation of our examination of the partitioning of multivalent V between olivine, spinel, and melt in martian olivine-phyric basalts of Y980459 composition [6, 7]. Here we introduce a new, potentially powerful oxybarometer, V partitioning between spinel and olivine, which can be used when no melt is preserved in the meteorite. The bulk composition of QUE94201 was ideal for our study of martian pyroxene-phyric basalts and specifically the partitioning between pyroxene-melt for Cr, V, and Eu. Likewise, bulk composition Y980459 is ideal for the study of martian olivine-phyric basalts and specifically for olivine-melt, spinel-melt, and spinel-olivine partitioning of V as a function of oxygen fugacity.

  17. Dark Matter Trapping by Stellar Bars: The Shadow Bar

    NASA Astrophysics Data System (ADS)

    Petersen, Michael S.; Weinberg, Martin D.; Katz, Neal

    2016-09-01

    We investigate the complex interactions between the stellar disc and the dark-matter halo during bar formation and evolution using N-body simulations with fine temporal resolution and optimally chosen spatial resolution. We find that the forming stellar bar traps dark matter in the vicinity of the stellar bar into bar-supporting orbits. We call this feature the shadow bar. The shadow bar modifies both the location and magnitude of the angular momentum transfer between the disc and dark matter halo and adds 10 per cent to the mass of the stellar bar over 4 Gyr. The shadow bar is potentially observable by its density and velocity signature in spheroid stars and by direct dark matter detection experiments. Numerical tests demonstrate that the shadow bar can diminish the rate of angular momentum transport from the bar to the dark matter halo by more than a factor of three over the rate predicted by dynamical friction with an untrapped dark halo, and thus provides a possible physical explanation for the observed prevalence of fast bars in nature.

  18. Breaking through the Bar

    ERIC Educational Resources Information Center

    Gray, Katti

    2011-01-01

    Howard University School of Law had a problem, and school officials knew it. Over a 20-year period, 40 percent of its graduates who took the Maryland bar exam failed it on their first try. During the next 24 months--the time frame required to determine its "eventual pass rate"--almost 90 percent of the students did pass. What they did not know was…

  19. Chemical energy in cold-cloud aggregates - The origin of meteoritic chondrules

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1980-01-01

    If interstellar particles and molecules accumulate into larger particles during the collapse of a cold cloud, the resulting aggregates contain a large store of internal chemical energy. It is here proposed that subsequent warming of these accumulates leads to a thermal runaway when exothermic chemical reactions begin within the aggregate. These, after cooling, are the crystalline chondrules found so abundantly within chondritic meteorites. Chemical energy can also heat meteoritic parent bodies of any size, and both thermal metamorphism and certain molten meteorites are proposed to have occurred in this way. If this new theory is correct, (1) the model of chemical condensation in a hot gaseous solar system is eliminated, and (2) a new way of studying the chemical evolution of the interstellar medium has been found. A simple dust experiment on a comet flyby is proposed to test some features of this controversy.

  20. Bar coded retroreflective target

    DOEpatents

    Vann, Charles S.

    2000-01-01

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  1. Phosphorus zoning in olivine of Kilauea Iki lava lake, Hawaii

    NASA Astrophysics Data System (ADS)

    Fabbrizio, Alessandro; Beckett, John R.; Baker, Michael B.; Stolper, Edward M.

    2010-05-01

    Kilauea Iki lava lake was formed when the lavas of the 1959 summit eruption of Kilauea volcano ponded in Kilauea Iki pit crater, as described by [1]. The main chamber of this lake has been drilled repeatedly from 1960 to 1981 as the lake has cooled and crystallized and partial descriptions of core can be found in [2-7]. The bulk of the core consists of a gray, olivine-phyric basalt matrix [3]. Rapid diffusion of divalent cations through olivine at magmatic temperatures can delete information on early-formed zoning and thus information on early magmatic history, recorded in olivine during its growth, is often largely lost [8-11]. In the last years many studies [8-11] have shown that natural olivine, terrestrial and extraterrestrial, from several localities and rock types can preserve a complex zoning in P (sometimes associated with Cr and Al). Simple crystallization experiments conducted by [10] and [11] were able to replicate these features (i.e., sector and oscillatory zoning). Here, we describe P, Cr and Al zoning in olivine from the 1981 drilling of Kilauea Iki lava lake hole #1 (KI81-1) [6]. Kα X-ray intensity maps and major and minor element quantitative analyses were obtained using the Caltech JEOL JXA-8200 electron microprobe. We acquired P, Cr, Al, Fe and Ti X-ray maps simultaneously at 15 kV and 400 nA, a beam diameter of 1 μm, pixel spacing of 1-2 μm, and count times of 420-1500 msec/step were used depending on the dimension of the crystal. 15 kV and 40 nA with a beam diameter of 1 μm were used to collect quantitative analyses. P2O5 contents of the Iki olivines range from below detection limit to 0.30 wt%. Zoning in phosphorus, based on X-ray intensity maps, was observed in all olivines we examined. The P zoning patterns of the olivines display several styles. P shows oscillatory zoning comparable to that seen in terrestrial and extraterrestrial igneous olivines and in experimentally grown olivine [8-11]; high P regions, inside the crystals, outline

  2. Water-induced fabrics of olivine in peridotites from the Lindas Nappe, Bergen arc, western Norway

    NASA Astrophysics Data System (ADS)

    Jung, Sejin; Jung, Haemyeong; Austrheim, Hâkon

    2010-05-01

    The Bergen Arc, western Norway is composed of several units distributed in an arc shape. Lindas Nappe is one of these units. Two peridotite outcrops in Lindas Nappe anorthosite complex were studied to understand deformation conditions of olivine. A mylonite zone was found in the peridoties and deformation fabrics of small olivine in the area were also studied. Lattice preferred orientation (LPO) of olivine was determined using the electron backscattered diffraction (EBSD) in SEM. Water content of olivine in the samples was measured using the Fourier transformation infrared (FTIR) spectroscopy. We observed three different types of LPOs (E-, B-, and A-type) of olivine in a large grain area. Sample (372) showed that [100] axes of olivine are aligned subparallel to the lineation and [001] axes aligned normal to the foliation, which is known as E-type LPO of olivine (Jung et al., 2006). Three samples (375, 380, and 381) showed that [001] axes of olivine are aligned subparallel to the lineation and [010] axes aligned normal to the foliation, which is known as B-type LPO of olivine. Another sample (379) in the large grain area showed that [100] axes of olivine are aligned subparallel to the lineation and [010] axes aligned normal to the foliation, which is known as A-type LPO of olivine. On the other hand, we observed two types of LPOs of olivine in a mylonite zone with a small grain-size: B- and C-type. C-type LPO is characterized as [001] axes of olivine aligned subparallel to the lineation and [100] axes of olivine aligned nearly normal to the foliation. Previous experimental study showed that B-, C-, and E-type LPO patterns were observed in a wet condition and A-type LPO was observed in a dry condition (Jung et al., 2006). FTIR analysis of olivine revealed that a sample showing the A-type LPO showed only small IR absorption peaks in the range of wave numbers 3000 - 3750 cm-1. In contrast, samples showing B-, C-, and E-type LPO showed large IR absorption peaks in the

  3. Mineralogical and Raman spectroscopy studies of natural olivines exposed to different planetary environments

    NASA Astrophysics Data System (ADS)

    Weber, I.; Böttger, U.; Pavlov, S. G.; Jessberger, E. K.; Hübers, H.-W.

    2014-12-01

    New lander missions to bodies of our solar system are coming up and thus new techniques are desirable for the in-situ investigation of planetary surface and near surface materials. During the last decade Raman spectroscopy has been developed to become an excellent laboratory tool for fast petrological and mineralogical investigation of terrestrial and extraterrestrial rocks. Consequently, Raman spectroscopy has successfully been proposed for operation on planetary surfaces. In the joint ESA and Roscosmos mission ExoMars a Raman Laser Spectrometer (RLS) will for the first time be applied in space to identify minerals and organic compounds in Martian surface rocks and soils. The present study aims to investigate the possible response of various environmental conditions to Raman spectra in preparation for the ExoMars mission, as well as other space missions in future. For our study we selected five natural olivines with different forsterite (Mg2SiO4) and fayalite (Fe2SiO4) compositions. Olivine as an important rock forming mineral of the Earth upper mantle and an abundant mineral in Martian meteorites is one of the key planetary mineral. The spectra were taken in various environmental conditions that include vacuum down to 10-6 mbar, 8 mbar CO2 atmosphere, and temperatures ranging between room temperature and~8 K resembling those on Mars as well as on the Moon and on asteroids. We have found that forsterite shows only small temperature-related shifts in Raman spectra at very low temperatures indicating relatively weak changes in the lattice modes. Fayalite demonstrates, in addition to temperature dependent changes in the lattice modes found for forsterite, modification of Raman spectra at low Stokes frequencies. This is an effect in the SiO4 internal modes that most probably is caused by the high amount of iron in the mineral structure, which triggers antiferromagnetic transition at low temperatures. No influence of a CO2 atmosphere on Raman spectra for the

  4. Structural Properties of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Taehyun; Gadotti, D. A.; Sheth, K.; Lee, M.; S4G Team

    2014-01-01

    We have performed two-dimensional multicomponent decomposition of 144 local barred spiral galaxies using 3.6 micron images from the Spitzer Survey of Stellar Structure in Galaxies. Our model fit includes up to four components (bulge, disk, bar, and a point source) and, most importantly, takes into account disk breaks. We present that ignoring the disk break and using a single disk scale length in the model fit for Type II (down- bending) disk galaxies can lead to differences of 40% in the disk scale length, 10% in bulge-to-total luminosity ratio (B/T), and 25% in bar-to-total luminosity ratios. We show that for galaxies with B/T > 0.1, the break radius to bar radius, r_br/R_bar, varies between 1 and 3, but as a function of B/T the ratio remains roughly constant. This suggests that in bulge-dominated galaxies the disk break is likely related to the outer Lindblad Resonance (OLR) of the bar, and thus the OLR also moves outwards at the same rate as the bar grows. For galaxies with B/T < 0.1, r_br/R_bar, spans a wide range from 1 to 6. This suggests that the mechanism that produces the break in these galaxies may be different from that in galaxies with more massive bulges. Consistent with previous studies, we conclude that disk breaks in galaxies with small bulges may originate from bar resonances that may be also coupled with the spiral arms, or be related to star formation thresholds. We quantifiy shapes of bar radial surface brightness profiles by measuring their Sersic indices and show that bars in higher B/T galaxies have flatter radial surface brightness profile than bulgeless galaxies do. In particular, bulgeless galaxies mostly have bars with steep profiles. We show that the normalized bar length is correlated with B/T, which is consistent with bars growing longer with time.

  5. [Study on the FTIR spectra of OH in olivines from mengyin kimberlite].

    PubMed

    Ai, Qun; Yang, Zhi-jun; Zeng, Xiang-qing; Zheng, Yun-long; Hu, Piao-ye

    2013-09-01

    The results of FTIR spectra study of OH in olivines from Mengyin kimberlite show that there are more than 60 OH absorption peaks in the range of 3800-3000 cm(-1). We identified four major spectral features in the OH absorption bands of kimberlitic olivines. One is with nuOH in the range of 3800-3700 cm(-1), which is caused by the vapour of the room circumstance, and can not be regarded as intrinsic or non-intrinsic nuOH of the olivines. Another one is with nuOH in the range of 3710-3620 cm(-1), which belongs to three "water"-bearing minerals including serpentine, talc and Mg-bearing amphiboles, which is the non-intrinsic nuOH of the olivines. There is the possibility that H in hydrous minerals mainly entered into olivines during post-emplacement processes of the kimberlite magma. The third one is with nuOH in the range of 3620-3425 cm(-1), which originated from H occupying the Si-defect in the olivine structure, forming humite-like defects, and/or the defects that H occupies (Mg,Fe)-depletion, which is certainly attributed to the intrinsic nuOH of the olivines. In this case, H possibly entered into olivines following its immersion in the high temperature and rich fluid kimberlite magma in the mantle circumstance. The last one is with nuOH in the range of 3425-3000 cm(-1). In this area, nuOH is assigned to fluid inclusions of the olivines, and is the non-intrinsic nuOH of olivines. Fluid inclusions can enter into the olivines either during post-emplacement processes of the kimberlite magma or during the periods that olivines were formed in the mantle. PMID:24369634

  6. LIME silicates in amoeboid olivine aggregates in carbonaceous chondrites: Indicator of nebular and asteroidal processes

    NASA Astrophysics Data System (ADS)

    Komatsu, Mutsumi; Fagan, Timothy J.; Mikouchi, Takashi; Petaev, Michail I.; Zolensky, Michael E.

    2015-07-01

    MnO/FeO ratios in olivine from amoeboid olivine aggregates (AOAs) reflect conditions of nebular condensation and can be used in concert with matrix textures to compare metamorphic conditions in carbonaceous chondrites. LIME (low-iron, Mn-enriched) olivine was identified in AOAs from Y-81020 (CO3.05), Kaba (CV~3.1), and in Y-86009 (CV3), Y-86751 (CV3), NWA 1152 (CR/CV3), but was not identified in AOAs from Efremovka (CV3.1-3.4) or Allende (CV>3.6). According to thermodynamic models of nebular condensation, LIME olivine is stable at lower temperatures than Mn-poor olivine and at low oxygen fugacities (dust enrichment <10× solar). Although this set of samples does not represent a single metamorphic sequence, the higher subtypes tend to have AOA olivine with lower Mn/Fe, suggesting that Mn/Fe decreases during parent body metamorphism. Y-81020 has the lowest subtype and most forsteritic AOA olivine (Fo>95) in our study, whereas Efremovka AOAs are slightly Fe-rich (Fo>92). AOA olivines from Kaba are mostly forsteritic, but rare Fe-rich olivine precipitated from an aqueous fluid. A combination of precipitation of Fe-rich olivine and diffusion of Fe into primary olivine grains resulted in iron-rich compositions (Fo97-59) in Allende AOAs. Variations from fine-grained, nonporous matrix toward higher porosity and coarser lath-like matrix olivine can be divided into six stages represented by (1) Y-81020, Efremovka, NWA 1152; (2) Y-86751 lithology B; (3) Y-86009; (4) Kaba; (5) Y-86751 lithology A; (6) Allende. These stages are inferred to represent general degree of metamorphism, although the specific roles of thermally driven grain growth and diffusion versus aqueous dissolution and precipitation remain uncertain.

  7. Petrogenetic linkages among Martian basalts: Implications based on trace element chemistry of olivine

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Burger, P. V.; Papike, J. J.; Borg, L. E.; Irving, A. J.; Herd, C.

    2008-10-01

    The shergottites exhibit a range of major and trace element compositions, crystallization ages, and initial Sr, Nd, Hf, and Pb isotopic compositions. To constrain the physical mechanisms by which shergottites obtain their compositional characteristics, we examined the major and trace element record preserved in olivine in the more primitive shergottites. Based on such characteristics as the Mg#, V zoning, calculated DNi,Co, the olivine in Y-980459 are most likely phenocrysts. Many of these same characteristics indicate that the olivines in other shergottites are not in equilibrium with the adjacent melt. However, in most cases they are not xenocrystic, but additions of olivine from the same basaltic system. Elephant Moraine (EET) A79001 may be an exception with the olivine data suggesting that it is xenocrystic. In this case, the olivine crystallized from a reduced and LREEdepleted melt and was incorporated into an oxidized and enriched basalt. Vanadium and CaO in olivine appear to record the appearance of spinel and pyroxene on the liquidus of most of the shergottites. Most of the olivine shergottites represent basalts produced by melting of reduced (IW to IW + 1), depleted mantle sources. Olivine data indicate that many of the primary melts derived from this source had similar Ni, Co, and Mn. Shergottites such as Northwest Africa (NWA) 1110/1068 and perhaps Roberts Massif (RBT) 04261 that appear to be derived from more enriched sources have distinctly different olivine. In the case of NWA 1110/1068, the olivine data suggests that the enriched component was added to system prior to olivine crystallization.

  8. Deformation of Olivine at Mantle Pressure using D-DIA

    SciTech Connect

    Li,L.

    2006-01-01

    Knowledge of the rheological properties of mantle materials is critical in modeling the dynamics of the Earth. The high-temperature flow law of olivine defined at mantle conditions is especially important since the pressure dependence of rheology may affect our estimation of the strength of olivine in the Earth's interior. In this study, steady-state high-temperature (up to 1473 K) deformation experiments of polycrystalline olivine (average grain size ? 10 ?m) at pressure up to 9.6 GPa, were conducted using a Deformation-DIA (D-DIA) high-pressure apparatus and synchrotron X-ray radiation. The oxygen fugacity (fo2) during the runs was in-between the iron-wustite and the Ni/NiO buffers' fo2. The water content of the polycrystalline samples was generally about 150 to 200 wt. ppm but was as low as 35 wt ppm. Typically, 30 % strain was generated during the uniaxial compression. Sample lengths during the deformation process as well as the differential stresses were monitored in situ by X-ray radiography and diffraction, respectively. The strain rate was derived with an accuracy of 10?6 s?1. Differential stress was measured at constant strain rate (?10?5 s?1) using a multi-element solid-state detector combined with a conical slit. Recovered specimens were investigated by optical and transmission electron microscopy (TEM). TEM shows that dislocation glide was the dominant deformation mechanism throughout the experiment. Evidence of dislocation climb and cross-slip as active mechanisms are also reported. Deformation data show little or no dependence of the dislocation creep flow with pressure, yielding to an activation volume V* of 0 {+-} 5 cm3/mol. These new data are consistent with the high-temperature rheological laws at lower pressures, as reported previously.

  9. Deformation of olivine single crystals under lithospheric conditions

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Tommasi, A.; Cordier, P.

    2012-12-01

    The rheology of mantle rocks at lithospheric temperatures (<1000°C) remains poorly constrained, in contrast to the extensive experimental data on creep of olivine single crystals and polycrystalline aggregates at high temperature (T > 1200°C). Consequently, we have performed tri-axial compression experiments on oriented single crystals and polycrystalline aggregates of San Carlos olivine at temperatures ranging from 800° to 1090°C. The experiments were carried out at a confining pressure of 300 MPa in a high-resolution gas-medium mechanical testing apparatus at constant strain rates ranging from 7 × 10-6 s-1 to 1 × 10-4 s-1 . Compression was applied along three different crystallographic directions: [101]c, [110]c and [011]c, to activate the several slip systems. Yield differential stresses range from 88 to 1076 MPa. To constrain hardening, stick-and-slip, or strain localization behaviors, all samples were deformed at constant displacement rate for finite strains between 4 to 23 %. Hardening was observed in all experiments and the maximum differential stress often overcame the confining pressure. EBSD mapping highlights macroscale bending of the crystalline network in three crystals. TEM observations on several samples show dislocations with [100] and [001] Burgers vectors in all samples, but dislocation arrangements vary. The results from the present study permit to refining the power-law expressing the strain rate dependence on stress and temperature for olivine, allowing its application to the lithospheric mantle. Our experiments confirm that previous published high-temperature power flow laws overestimate the strength of lithospheric mantle and that the transition to low-temperature creep occurs at higher temperatures than it has previously been established.

  10. Chromium valences in ureilite olivine and implications for ureilite petrogenesis

    NASA Astrophysics Data System (ADS)

    Goodrich, C. A.; Sutton, S. R.; Wirick, S.; Jercinovic, M. J.

    2013-12-01

    Ureilites are a group of ultramafic achondrites commonly thought to be residues of partial melting on a carbon-rich asteroid. They show a large variation in FeO content (olivine Fo values ranging from ∼74 to 95) that cannot be due to igneous fractionation and suggests instead variation in oxidation state. The presence of chromite in only a few of the most ferroan (Fo 75-76) samples appears to support such a model. MicroXANES analyses were used in this study to determine the valence states of Cr (previously unknown) in olivine cores of 11 main group ureilites. The goal of this work was to use a method that is independent of Fo to determine the oxidation conditions under which ureilites formed, in order to evaluate whether the ureilite FeO-variation is correlated with oxidation state, and whether it is nebular or planetary in origin. Two of the analyzed samples, LEW 88774 (Fo 74.2) and NWA 766 (Fo 76.7) contain primary chromite; two others, LAP 03587 (Fo 74.4) and CMS 04048 (Fo 76.2) contain sub-micrometer-sized exsolutions of chromite + Ca-rich pyroxene in olivine; and one, EET 96328 (Fo 85.2) contains an unusual chromite grain of uncertain origin. No chromite has been observed in the remaining six samples (Fo 77.4-92.3). Chromium in olivine in all eleven samples was found to be dominated by the divalent species, with valences ranging from 2.10 ± 0.02 (1σ) to 2.46 ± 0.04. The non-chromite-bearing ureilites have the most reduced Cr, with a weighted mean valence of 2.12 ± 0.01, i.e., Cr2+/Cr3+ = 7.33. All low-Fo chromite-bearing ureilites have more oxidized Cr, with valences ranging from 2.22 ± 0.03 to 2.46 ± 0.04. EET 96328, whose chromite grain we interpret as a late-crystallizing phase, yielded a reduced Cr valence of 2.15 ± 0.07, similar to the non-chromite-bearing samples. Based on the measured Cr valences, magmatic (1200-1300 °C) oxygen fugacities (fO2) of the non-chromite-bearing samples were estimated to be in the range IW-1.9 to IW-2.8 (assuming

  11. Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe

    NASA Astrophysics Data System (ADS)

    Koch-Müller, Monika; Matsyuk, Stanislav S.; Rhede, Dieter; Wirth, Richard; Khisina, Natasha

    2006-06-01

    The incorporation of hydrogen in mantle olivine xenocrysts from the Udachnaya kimberlite pipe was investigated by Fourier-transform infrared spectroscopy and secondary ion mass spectrometry (SIMS). IR spectra were collected in the OH stretching region on oriented single crystals using a conventional IR source at ambient conditions and in situ at temperatures down to -180°C as well as with IR synchrotron radiation. The IR spectra of the samples are complex containing more than 20 strongly polarized OH bands in the range 3,730 3,330 cm-1. Bands at high energies (3,730 3,670 cm-1) were assigned to inclusions of serpentine, talc and the 10 Å phase. All other bands are believed to be intrinsic to olivine. The corresponding point defects are (a) associated with vacant Si sites (3,607 cm-1 E || a, 3,597 E || a, 3,571 cm-1 E || c, 3,567 E || c, and 3,556 E || b), and (b) with vacant M1 sites (most of the bands polarized parallel to a). From the pleochroic behavior and position of the OH bands associated with the vacant M1 sites, we propose two types of hydrogen—one bonded to O1 and another to O2, so that both OH vectors are strongly aligned parallel to a. The O2 H groups may be responsible for the OH bands at higher wavenumbers than those for the O1 H groups. The multiplicity of the corresponding OH bands in the spectra can be explained by different chemical environments and by slightly different distortions of the M1 sites in these high-pressure olivines. Four samples were investigated by SIMS. The calculated integral molar absorption coefficient using the IR and SIMS results of 37,500±5,000 L mol H2O cm-2 is within the uncertainties slightly higher than the value determined by Bell et al. (J Geophys Res 108(B2):2105 2113, 2003) (28,450±1,830 L mol H2O cm-2). The reason for the difference is the different distributions of the absorption intensity of the spectra of both studies (mean wavenumber 3,548 vs. 3,570 cm-1). Olivine samples with a mean wavenumber of about 3

  12. Argon Diffusion in Shocked Pyroxene, Feldspar, and Olivine

    NASA Astrophysics Data System (ADS)

    Weirich, J.; Isachsen, C. E.; Johnson, J. R.; Swindle, T.

    2010-12-01

    Background: The diffusion rate of argon (Ar) in unshocked feldspar has been well studied, but studies on pyroxene and olivine are limited or non-existent. Likewise, the effects of shock on these mineral groups is also limited or non-existent. Understanding how shock affects these mineral groups is important for determining the thermal history of shocked meteorites and collisional impact craters. We have analyzed the Ar diffusion rate of an albitite and a pyroxenite at various experimental shock pressures up to ~60GPa, unshocked high-Ca pyroxene, and an olivine mineral separate from the Springwater meteorite. A previous study of shocked feldspar has shown that Ar diffusion in plagioclase (An67) is unaffected by experimental shock [1]. Re-reduction of data from another study [2] suggests naturally shocked K-rich feldspar is affected, though experimentally shocked oligoclase feldspar (An10-30) is not affected. However, previous shock experiments on feldspar were performed with low temperature resolution and only a single extraction at each temperature. This makes determining the diffusion parameters difficult because the presence of multiple grain sizes can compromise the data. By performing our experiments with a higher temperature resolution and with two extractions at each temperature, we can attain higher quality and more reliable data. The effects of shock on pyroxene and olivine have never been studied. Results: We have found that experimental shock undoubtedly raises the diffusivity of albite (Ab97), and lowers the activation energy required for diffusion. Comparison with previous data indicates that the Ca content may be controlling the response to shock. Pyroxene seems to be somewhat variable regardless of shock pressure, even within the same sample. Shock may have an effect on the diffusion rate of pyroxene, but given the variability it is difficult to delineate. The range of pyroxene diffusion rates is similar to previous studies. Olivine is found to have a

  13. Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas

    NASA Astrophysics Data System (ADS)

    Sakyi, Patrick Asamoah; Tanaka, Ryoji; Kobayashi, Katsura; Nakamura, Eizo

    2012-10-01

    Dislocation textures of olivine grains and Pb isotopic compositions (207Pb/206Pb and 208Pb/206Pb) of olivine-hosted melt inclusions in basaltic lavas from three Hawaiian volcanoes (Kilauea, Mauna Loa, and Koolau) were examined. More than 70% of the blocky olivine grains in the studied samples have a regular-shaped dislocation texture with their dislocation densities exceeding 106 cm-2, and can be considered as deformed olivine. The size distribution of blocky olivine grains shows that more than 99% of blocky olivines coarser than 1.2 mm are identified as deformed olivine. These deformed olivine grains are identified as antecrysts, which originally crystallized from previous stages of magmatism in the same shield, followed by plastic deformation prior to entrainment in the erupted host magmas. This study revealed that entrainment of mantle-derived crystallization products by younger batches of magma is an important part of the evolution of magnesium-rich Hawaiian magma. Lead isotopic compositions of melt inclusions hosted in the olivine antecrysts provide information of the evolutionary history of Hawaiian volcanoes which could not have been accessed if only whole rock analyses were carried out. Antecryst-hosted melt inclusions in Kilauea and Koolau lavas demonstrate that the source components in the melting region changed during shield formation. In particular, evidence of interaction of plume-derived melts and upper mantle was observed in the earliest stage of Koolau magmatism.

  14. Mantle Origin of Olivine-rich Troctolites in a Rift Environment

    NASA Astrophysics Data System (ADS)

    Faul, U.; Garapic, G.; Michibayashi, K.

    2014-12-01

    Olivine-rich troctolites from Krivaja-Konjuh massif in the Dinarides (Bosnia and Herzegovina) represent a unique natural laboratory to study melt segregation and retention in originally fertile rift-related mantle rocks. Petrographic and chemical analyses of coexisting minerals (olivine and interstitial clinopyroxene, spinel and plagioclase) show that olivine and spinel are of mantle origin, and interstitial clinopyroxene and plagioclase are products of crystallization of trapped melt. Geochemical and microstructural observations (dissolution of pyroxene) indicate that this trapped melt started off at larger depth and that it was silica undersaturated when it reached the plagioclase stability field. The original mantle olivine remained and texturally equilibrated with the melt, which is evident from the high Ni content and euhedral crystal habit in thin sections. This suggests that the melt that crystallized the interstitial phases, clinopyroxene and plagioclase, was saturated in olivine and probably similar to MORB-type melt. The interstitial phases show no sign of deformation. A mantle origin of olivine is corroborated by EBSD data that show a progressive misorientation across individual olivine grains due to previous episodes of deformation within the mantle. By contrast, grains originating from cumulate crystallization should show little internal deformation. Therefore we suggest that olivine-rich troctolites are not crystallization products, but rather products of reaction of melt with the lherzolitic mantle. The evidence of trapped melt in those rocks provides a new insight into the crust-mantle transition at slow spreading ridges and continental rifts where olivine-rich troctolites have been observed.

  15. Lamellar olivine in the Divnoe achondrite: Evidence for high-pressure exsolution?

    NASA Technical Reports Server (NTRS)

    Petaev, M. I.

    1993-01-01

    The olivine-rich Divnoe achondrite contains numerous large olivine grains which have a lamellar or banded appearance in back-scattered electron images, caused by minor compositional differences. One such grain, viewed in transmitted light, displays a system of lamellae with the same orientation and scale as the compositional banding. The only process known to produce such structure and chemical variability in olivine grains is high-pressure transformations between alpha-, beta- and gamma-olivines, but in other meteorites and in experimental products the structure is approximately 100 times finer than the Divnoe lamella.

  16. Magmatic history and parental melt composition of olivine-phyric shergottite LAR 06319: Importance of magmatic degassing and olivine antecrysts in Martian magmatism

    NASA Astrophysics Data System (ADS)

    Balta, J. Brian; Sanborn, Matthew; McSween, Harry Y.; Wadhwa, Meenakshi

    2013-08-01

    Several olivine-phyric shergottites contain enough olivine that they could conceivably represent the products of closed-system crystallization of primary melts derived from partial melting of the Martian mantle. Larkman Nunatak (LAR) 06319 has been suggested to represent a close approach to a Martian primary liquid composition based on approximate equilibrium between its olivine and groundmass. To better understand the olivine-melt relationship and the evolution of this meteorite, we report the results of new petrographic and chemical analyses. We find that olivine megacryst cores are generally not in equilibrium with the groundmass, but rather have been homogenized by diffusion to Mg# 72. We have identified two unique grain types: an olivine glomerocryst and an olivine grain preserving a primary magmatic boundary that constrains the time scale of eruption to be on the order of hours. We also report the presence of trace oxide phases and phosphate compositions that suggest that the melt contained approximately 1.1% H2O and lost volatiles during cooling, also associated with an increase in oxygen fugacity upon degassing. We additionally report in situ rare earth element measurements of the various mineral phases in LAR 06319. Based on these reported trace element abundances, we estimate the oxygen fugacity in the LAR 06319 parent melt early in its crystallization sequence (i.e., at the time of crystallization of the low-Ca and high-Ca pyroxenes), the rare earth element composition of the parent melt, and those of melts in equilibrium with later formed phases. We suggest that LAR 06319 represents the product of closed-system crystallization within a shallow magma chamber, with additional olivine accumulated from a cumulate pile. We infer that the olivine megacrysts are antecrysts, derived from a single magma chamber, but not directly related to the host magma, and suggest that mixing of antecrysts within magma chambers may be a common process in Martian magmatic

  17. Dislocation substructure of mantle-derived olivine as revealed by selective chemical etching and transmission electron microscopy

    USGS Publications Warehouse

    Kirby, S.H.; Wegner, M.W.

    1978-01-01

    Cleaved and mechanically polished surfaces of olivine from peridotite xenoliths from San Carlos, Arizona, were chemically etched using the techniques of Wegner and Christie (1974). Dislocation etch pits are produced on all surface orientations and they tend to be preferentially aligned along the traces of subgrain boundaries, which are approximately parallel to (100), (010), and (001). Shallow channels were also produced on (010) surfaces and represent dislocations near the surface that are etched out along their lengths. The dislocation etch channel loops are often concentric, and emanate from (100) subgrain boundaries, which suggests that dislocation sources are in the boundaries. Data on subgrain misorientation and dislocation line orientation and arguments based on subgrain boundary energy minimization are used to characterize the dislocation structures of the subgrain boundaries. (010) subgrain boundaries are of the twist type, composed of networks of [100] and [001] screw dislocations. Both (100) and (001) subgrain boundaries are tilt walls composed of arrays of edge dislocation with Burgers vectors b=[100] and [001], respectively. The inferred slip systems are {001} ???100???, {100} ???001???, and {010} ???100??? in order of diminishing importance. Exploratory transmission electron microscopy is in accord with these identifications. The flow stresses associated with the development of the subgrain structure are estimated from the densities of free dislocations and from the subgrain dimensions. Inferred stresses range from 35 to 75 bars using the free dislocation densities and 20 to 100 bars using the subgrain sizes. ?? 1978 Springer-Verlag.

  18. Shock-wave heating model for chondrule formation: Hydrodynamic simulation of molten droplets exposed to gas flows

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi; Nakamoto, Taishi

    2007-05-01

    Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of the dust particles in the protoplanetary disk. One of the most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity gas flow (shock-wave heating model). We developed the non-linear, time-dependent, and three-dimensional hydrodynamic simulation code for analyzing the dynamics of molten droplets exposed to the gas flow. We confirmed that our simulation results showed a good agreement in a linear regime with the linear solution analytically derived by Sekyia et al. [Sekyia, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728]. We found that the non-linear terms in the hydrodynamical equations neglected by Sekiya et al. [Sekiya, M., Uesugi, M., Nakamoto, T., 2003. Prog. Theor. Phys. 109, 717-728] can cause the cavitation by producing negative pressure in the droplets. We discussed that the fragmentation through the cavitation is a new mechanism to determine the upper limit of chondrule sizes. We also succeeded to reproduce the fragmentation of droplets when the gas ram pressure is stronger than the effect of the surface tension. Finally, we compared the deformation of droplets in the shock-wave heating with the measured data of chondrules and suggested the importance of other effects to deform droplets, for example, the rotation of droplets. We believe that our new code is a very powerful tool to investigate the hydrodynamics of molten droplets in the framework of the shock-wave heating model and has many potentials to be applied to various problems.

  19. The Iodine-Xenon System in Outer and Inner Portions of Chondrules from the Unnamed Antarctic LL3 Chondrite

    NASA Technical Reports Server (NTRS)

    Meshik, A. P.; Pravdivtseva, O. V.; Hohenberg, C. M.; Amelin, Y.

    2004-01-01

    Alteration processes may affect I-Xe system in unequilibrated ordinary chondrites. It was shown that at the edges, where a contribution is made by matrix material around the rim, *Xe-129/Xe-128 values are generally lower (later apparent ages) than in the main chondrule mass. In this work we attempted to investigate whether thermal metamorphism can affect the I-Xe system in LL3 chondrites which did not experienced aqueous alteration.

  20. SXRF determination of trace elements in chondrule rims in the unequilibrated CO3 chondrite, ALH A77307

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Bajt, Sasa; Sutton, Steve R.; Papike, J. J.

    1993-01-01

    The concentrations of Ni, Cu, Zn, Ga, Ge, and Se in five chondrule rims in the CO3 chondrite ALH A77307 (3.0) using the synchrotron x-ray fluorescence (SXRF) microprobe at Brookhaven National Laboratory were determined. The data show that the trace element chemistry of rims on different chondrules is remarkably similar, consistent with data obtained for the major elements by electron microprobe. These results support the idea that rims are not genetically related to individual chondrules, but all sampled the same reservoir of homogeneously mixed dust. Of the trace elements analyzed Zn and Ga show depletions relative to CI chondrite values, but in comparison with bulk CO chondrites all the elements are enriched by approximately 1.5 to 3.5 x CO. The high concentrations of the highly volatile elements Se and Ga and moderately volatile Zn (1.5 to 2 x CO) in rims show that matrix is the major reservoir of volatile elements in ALH A77307.

  1. {sup 60}Fe AND {sup 26}Al IN CHONDRULES FROM UNEQUILIBRATED CHONDRITES: IMPLICATIONS FOR EARLY SOLAR SYSTEM PROCESSES

    SciTech Connect

    Mishra, R. K.; Goswami, J. N.; Rudraswami, N. G.; Tachibana, S.; Huss, G. R.

    2010-05-10

    The presence of about a dozen short-lived nuclides in the early solar system, including {sup 60}Fe and {sup 26}Al, has been established from isotopic studies of meteorite samples. An accurate estimation of solar system initial abundance of {sup 60}Fe, a distinct product of stellar nucleosynthesis, is important to infer the stellar source of this nuclide. Previous studies in this regard suffered from the lack of exact knowledge of the time of formation of the analyzed meteorite samples. We present here results obtained from the first combined study of {sup 60}Fe and {sup 26}Al records in early solar system objects to remove this ambiguity. Chondrules from unequilibrated ordinary chondrites belonging to low petrologic grades were analyzed for their Fe-Ni and Al-Mg isotope systematics. The Al-Mg isotope data provide the time of formation of the analyzed chondrules relative to the first solar system solids, the Ca-Al-rich inclusions. The inferred initial {sup 60}Fe/{sup 56}Fe values of four chondrules, combined with their time of formation based on Al-Mg isotope data, yielded a weighted mean value of (6.3 {+-} 2) x 10{sup -7} for solar system initial {sup 60}Fe/{sup 56}Fe. This argues for a high-mass supernova as the source of {sup 60}Fe along with {sup 26}Al and several other short-lived nuclides present in the early solar system.

  2. TEMPERATURE-DEPENDENT INFRARED OPTICAL CONSTANTS OF OLIVINE AND ENSTATITE

    SciTech Connect

    Zeidler, S.; Mutschke, H.; Posch, Th. E-mail: harald.mutschke@uni-jena.de

    2015-01-10

    Since the Infrared Space Observatory (ISO) mission, it has become clear that dust in circumstellar disks and outflows consists partly of crystalline silicates of pyroxene and olivine type. An exact mineralogical analysis of the dust infrared emission spectra relies on laboratory spectra, which, however, have been mostly measured at room temperature so far. Given that infrared spectral features depend on the thermal excitation of the crystal's vibrational modes, laboratory spectra measured at various (low and high) temperatures, corresponding to the thermal conditions at different distances from the star, can improve the accuracy of such analyses considerably. We have measured the complex refractive index in a temperature range of 10-973 K for one mineral of each of those types of silicate, i.e., for an olivine and an enstatite of typical (terrestrial) composition. Thus, our data extend the temperature range of previous data to higher values and the compositional range to higher iron contents. We analyze the temperature dependence of oscillator frequencies and damping parameters governing the spectral characteristics of the bands and calculate absorption cross-sectional spectra that can be compared with astronomical emission spectra. We demonstrate the usefulness of our new data by comparing spectra calculated for a 100 K dust temperature with the ISO SWS spectrum of IRAS 09425-6040.

  3. Low-temperature plastic rheology of olivine determined by nanoindentation

    NASA Astrophysics Data System (ADS)

    Kranjc, Kelly; Rouse, Zachary; Flores, Katharine M.; Skemer, Philip

    2016-01-01

    Low-temperature plasticity is a deformation mechanism that occurs mainly at high stress and low temperatures and may be important in the shallow lithosphere, at the tips of cracks, and in laboratory experiments. Previous studies investigating the low-temperature plasticity of the mineral olivine have exhibited wide variability in their extrapolations to the athermal flow strength or Peierls stress. To better constrain the rheology of olivine, nanoindentation tests were performed on samples in the temperature range of 0-175°C. The indentation properties were converted to uniaxial properties using a finite element-based method. The data were fit to a standard flow law for low-temperature plasticity, and Peierls stresses between 5.32 and 6.45 GPa were obtained. These results provide increased confidence in the extrapolation of high-pressure and high-temperature laboratory experiments to low-temperature conditions and illustrate the applicability of nanoindentation methods to the study of mineral rheology.

  4. B-type olivine fabric induced by grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Précigout, Jacques; Hirth, Greg

    2014-06-01

    Mineral Lattice Preferred Orientation (LPO) in naturally deformed peridotite is typically interpreted to result from the motion of intra-crystalline dislocations during dislocation creep. The degree of mineral alignment (fabric strength) is often assumed to increase with increasing finite strain. Here, we document olivine LPOs in peridotites in a kilometer-scale mantle shear zone in the Ronda massif (Spain) that demonstrate a transition from a flow-parallel [100]-axis LPO (A-type fabric) to a flow-normal [100]-axis LPO (B-type fabric). We conclude that the B-type fabric in the Ronda peridotite results from the enhancement of grain boundary sliding (GBS) with decreasing grain size, rather than a change in the dominant dislocation slip system because: (1) dislocation sub-structures remain consistent with the A-type slip system in all samples; (2) the fabric transition correlates with decreasing fabric strength despite increasing finite strain; (3) the analysis of deformation conditions in Ronda is inconsistent with the experimental conditions, including water content, inferred to promote the dominance of (010)[001] slip in laboratory samples, and (4) our observations are supported by experiments that document B-type fabric in olivine aggregates where deformation involves a component of GBS. Our results have important implications for interpreting the rheological properties of shear zones and upper mantle structures via micro-structural and seismic observations.

  5. Thermoelasticity of olivine to 8 GPa 1073K

    SciTech Connect

    Liu,W.; Li, B.

    2006-01-01

    In situ synchrotron X-ray diffraction measurements have been carried out on San Carlos olivine (Mg0.9Fe0.1)2SiO4 up to 8 GPa and 1073 K. Data analysis using the high-temperature Birch-Murnaghan (HTBM) equation of state (EoS) yields the temperature derivative of the bulk modulus ({partial_derivative}KT/{partial_derivative}T)P = -0.019 {+-} 0.002 GPa K-1. The thermal pressure (TH) approach gives aKT = 4.08 {+-} 0.10 x 10-3 GPa K-1, from which ({partial_derivative}KT/{partial_derivative}T)P = -0.019 {+-} 0.001 GPa K-1 is derived. Fitting the present data to the Mie-Grueneisen-Debye (MGD) formalism, the Grueneisen parameter at ambient conditions 0 is constrained to be 1.14 {+-} 0.02 with fixed volume dependence q = 1. Combining the present data with previous results on iron-bearing olivine and fitting to MGD EoS, we obtain 0 = 1.11 {+-} 0.01 and q = 0.54 {+-} 0.36. In this study the thermoelastic parameters obtained from various approaches are in good agreement with one another and previous results.

  6. Temperature-dependent Infrared Optical Constants of Olivine and Enstatite

    NASA Astrophysics Data System (ADS)

    Zeidler, S.; Mutschke, H.; Posch, Th.

    2015-01-01

    Since the Infrared Space Observatory (ISO) mission, it has become clear that dust in circumstellar disks and outflows consists partly of crystalline silicates of pyroxene and olivine type. An exact mineralogical analysis of the dust infrared emission spectra relies on laboratory spectra, which, however, have been mostly measured at room temperature so far. Given that infrared spectral features depend on the thermal excitation of the crystal's vibrational modes, laboratory spectra measured at various (low and high) temperatures, corresponding to the thermal conditions at different distances from the star, can improve the accuracy of such analyses considerably. We have measured the complex refractive index in a temperature range of 10-973 K for one mineral of each of those types of silicate, i.e., for an olivine and an enstatite of typical (terrestrial) composition. Thus, our data extend the temperature range of previous data to higher values and the compositional range to higher iron contents. We analyze the temperature dependence of oscillator frequencies and damping parameters governing the spectral characteristics of the bands and calculate absorption cross-sectional spectra that can be compared with astronomical emission spectra. We demonstrate the usefulness of our new data by comparing spectra calculated for a 100 K dust temperature with the ISO SWS spectrum of IRAS 09425-6040.

  7. Constraints on the cooling history of the H-chondrite parent body from phosphate and chondrule Pb-isotopic dates from Estacado

    NASA Astrophysics Data System (ADS)

    Blinova, Alexandra; Amelin, Yuri; Samson, Claire

    2007-08-01

    To constrain the metamorphic history of the H-chondrite parent body, we dated phosphates and chondrules from four H6 chondritic meteorites using U-Pb systematics. Reconnaissance analyses revealed that only Estacado had a sufficiently high 206Pb/204Pb ratio suitable for our purposes. The Pb-Pb isochron date for Estacado phosphates is measured to be 4492 ± 15 Ma. The internal residue-second leachate isochron for Estacado chondrules yielded the chondrule date of 4546 ± 18 Ma. An alternative age estimate for Estacado chondrules of 4527.6 ± 6.3 Ma is obtained from an isochron including two chondrules, two magnetically separated fractions, and four bulk chondrite analyses. This isochron date might represent the age of termination of Pb diffusion from the chondrules to the matrix. From these dates and previously established closure temperatures for Pb diffusion in phosphates and chondrules, we estimate an average cooling rate for Estacado between 5.5 ± 3.2 Myr/°C and 8.3 ± 5.0 Myr/°C. Using previously published results for Ste. Marguerite (H4) and Richardton (H5), our data reveal that the cooling rates of H chondrites decrease markedly with increasing metamorphic grade, in agreement with the predictions of the "onion-shell" asteroid model. Several issues, however, need to be addressed before confirming this model for the H-chondrite parent body: the discrepancies between peak metamorphic temperatures established by various mineral thermometers need to be resolved, diffusion and other mechanisms of element migration in polycrystalline solids must be better understood, and dating techniques should be further improved.

  8. Type-C olivine LPOs in garnet peridotites in North Qaidam UHP collision belt, NW China

    NASA Astrophysics Data System (ADS)

    Jung, H.; Lee, J.; Ko, B.; Jung, S.; Park, M.; Cao, Y.; Song, S.

    2013-12-01

    Water is known to change the lattice-preferred orientation (LPO) of olivine, which significantly affects seismic anisotropy in the Earth's upper mantle. Research into the LPO of olivine in the deep interior of the Earth has been limited due to inadequate specimens. We report both the water-induced LPOs of olivine and the presence of large quantities of water inside olivine, enstatite, and garnet in garnet peridotites from the North Qaidam ultrahigh-pressure (UHP) collision belt in NW China. We show that the [001] axis of olivine is aligned subparallel to the lineation and that the [100] axis is strongly aligned subnormal to the foliation. This alignment is a known feature of type-C LPO of olivine formed experimentally under water-rich conditions (≥700 ppm H/Si) at high pressure and temperature. Enstatite possessed an LPO with the [001] axis aligned parallel to the lineation and the [100] axis aligned normal to the foliation. FTIR analysis of this specimen revealed that olivine contained concentrations of water up to 1130 × 50 ppm H/Si in clean areas, whereas olivine, enstatite, and garnet contained considerably more water, i.e., 2600 × 100 ppm H/Si, 5000 × 100 ppm H/Si, and 21000 × 200 ppm H/Si, respectively, when exsolved inclusions were visible. Confocal micro-Raman spectroscopy of these exsolved inclusions revealed that they were composed of hornblende and amphiboles. Straight dislocations were also commonly observed in olivine and are characteristic of olivine that had been experimentally deformed under hydrous conditions. These observations suggest that the type-C LPO of olivine in the North Qaidam UHP belt formed under water-rich conditions.

  9. Phosphorus as indicator of magmatic olivine residence time, morphology and growth rate

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander; Batanova, Valentina

    2015-04-01

    Phosphorus is among of slowest elements by diffusion rate in silicate melts and crystals (e.g. Spandler et al, 2007). In the same time it is moderately incompatible to compatible with olivine (Brunet & Chazot, 2001; Grant & Kohn, 2013). This makes phosphorus valuable tracer of olivine crystallization in natural conditions. Indeed, it is shown that natural magmatic olivine crystals commonly posses strong and complicated zoning in phosphorus (Milman-Barris et al, 2008; Welsch et al, 2014). In this paper we intend to review phosphorus behavior in olivine in published experimental and natural olivine studies and present large set of new EPMA data on phosphorus zoning in olivine phenocrysts from MORBs, OIBs, komatiites and kimberlites. We will show that sharp olivine zones enriched in phosphorus by a factor of 10-20 over prediction by equilibrium partition may be due to formation of P-rich boundary layer on the interface of fast growing olivine. This is proved by finding of small-size (normally 10 mkm or less) exceptionally P-rich melt inclusions in olivine, which are otherwise similar in composition to typical melt. These observations could provide potential olivine growth speedometer. We will also demonstrate, that sharp zoning in phosphorus may provide valuable information on the residence time of olivine crystals in different environments: magma chambers and conduits as well as mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491. References: Spandler, et al, 2007, Nature, v. 447, p. 303-306; Brunet & Chazot, 2001, Chemical Geology, v. 176, p. 51-72; Grant & Kohn, 2013, American Mineralogist, v. 98, p. 1860-1869; Milman-Barris et al, 2008, Contr. Min. Petrol. v. 155, p.739-765; Welsch et al, 2014, Geology, v. 42, p.867-870.

  10. Bar-Code-Scribing Tool

    NASA Technical Reports Server (NTRS)

    Badinger, Michael A.; Drouant, George J.

    1991-01-01

    Proposed hand-held tool applies indelible bar code to small parts. Possible to identify parts for management of inventory without tags or labels. Microprocessor supplies bar-code data to impact-printer-like device. Device drives replaceable scribe, which cuts bar code on surface of part. Used to mark serially controlled parts for military and aerospace equipment. Also adapts for discrete marking of bulk items used in food and pharmaceutical processing.

  11. The importance of defining chemical potentials, substitution mechanisms and solubility in trace element diffusion studies: the case of Zr and Hf in olivine

    NASA Astrophysics Data System (ADS)

    Jollands, Michael C.; O'Neill, Hugh St. C.; Hermann, Jörg

    2014-09-01

    The diffusion, substitution mechanism and solubility limits of Zr and Hf in synthetic forsterite (Mg2SiO4) and San Carlos olivine (Mg0.9Fe0.1)2SiO4 have been investigated between 1,200 and 1,500 °C as a function of the chemical potentials of the components in the system MgO(FeO)-SiO2-ZrO2(HfO2). The effect of oxygen fugacity and crystallographic orientation were also investigated. The solubilities of Zr in forsterite are highest and diffusion fastest when the coexisting three-phase source assemblage includes ZrSiO4 (zircon) or HfSiO4 (hafnon), and lower and slower, respectively, when the source assemblage includes MgO (periclase). This indicates that Zr and Hf substitute on the octahedral sites in olivine, charge balanced by magnesium vacancies. Diffusion is anisotropic, with rates along the crystal axes increasing in the order a < b < c. The generalized diffusion relationship as a function of chemical activity (as ), orientation and temperature is: where the values of log D 0 are -3.8(±0.5), -3.4(±0.5) and -3.1(±0.5) along the a, b and c axes, respectively. Most experiments were conducted in air ( fO2 = 10-0.68 bars), but one at fO2 = 10-11.2 bars at 1,400 °C shows no resolvable effect of oxygen fugacity on Zr diffusion. Hf is slightly more soluble in olivine than Zr, but diffuses slightly slower. Diffusivities of Zr in experiments in San Carlos olivine at 1,400 °C, fO2 = 10-6.6 bars are similar to those in forsterite at the same conditions, showing that the controls on diffusivities are adequately captured by the simple system (nominally iron-free) experiments. Diffusivities are in good agreement with those measured by Spandler and O'Neill (Contrib Miner Petrol 159:791-818, 2010) in San Carlos olivine using silicate melt as the source at 1,300 °C, and fall within the range of most measurements of Fe-Mg inter-diffusion in olivine at this temperature. Forsterite-melt partitioning experiments in the CaO-MgO-Al2O3-SiO2-ZrO2/HfO2 show that the interface

  12. Ladder supported ring bar circuit

    NASA Technical Reports Server (NTRS)

    Kosmahl, H. G. (Inventor)

    1983-01-01

    An improved slow wave circuit especially useful in backward wave oscillators includes a slow wave circuit in a waveguide. The slow wave circuit is comprised of rings disposed between and attached to respective stubs. The stubs are attached to opposing sidewalls of the waveguide. To the end that opposed, interacting magnetic fields will be established to provide a very high coupling impedance for the slow wave structure, axially orientated bars are connected between rings in alternate spaces and adjacent to the attachment points of stubs. Similarly, axial bars are connected between rings in the spaces which do not include bars and at points adjacent to the attachment of bars.

  13. Olivine and Carbonate Globules in ALH84001: A Terrestrial Analog, and Implications for Water on Mars

    NASA Astrophysics Data System (ADS)

    Treiman, A. H.

    2005-03-01

    Low-temperature carbonate globules in ALH84001 are found near olivine grains that equilibrated at T>800° C. Terrestrial analogs from Spitsbergen (Norway) suggest an explanation of this association; the carbonate globules may have been deposited in cavities where olivine had been dissolved out.

  14. Olivine-mica pyroxenite xenoliths from northern Tanzania: metasomatic products of upper-mantle peridotite

    NASA Astrophysics Data System (ADS)

    Dawson, J. B.; Smith, J. V.

    1992-04-01

    Olivine-mica-pyroxene blocks in Neogene pyroclastics from Oldoinyo Lengai and Loluni, Tanzania, result from K, Ca, Fe, Ti, Al, REE, Cl, F and OH metasomatism of upper-mantle peridotite. Deformed olivine relicts and high Cr and Ni in bulk-rock analyses indicate a peridotite precursor.

  15. Experimental modeling of the cooling history of Apollo 12 olivine basalts

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.; Usselman, T. M.; Williams, R. J.; Lofgren, G. E.

    1975-01-01

    An analog of the Apollo 12 olivine vitrophyres has been crystallized in a 1-atm gas-mixing furnace at cooling rates ranging between 1250 and 0.7 C/hr and isothermally at degrees of supercooling ranging from 10 C to 325 C. Mineral chemistry, crystal shapes, grain sizes and textures are systematically related to cooling rate and degree of supercooling. At linear cooling rates not exceeding 40 C/hr the texture is porphyritic - large olivine crystals are set in a groundmass of finer-grained pyroxene, plagioclase, and ilmenite; a later generation of olivine never crystallizes. There are three shapes of olivine crystals in the Apollo 12 olivine vitrophyres: glomerocrysts of subhedral crystals, large subequant skeletons, and highly elongate skeletons. These result from three generations of nucleation and a two-stage cooling history - a slow preeruption stage and a rapid continuously increasing posteruption stage. It seems likely that the Apollo 12 olivine basalt magmas were erupted with olivine crystals in suspension. The nucleation temperature of olivine in cooling-rate experiments is dependent on the experimental technique, and hence results of cooling experiments should be applied with caution.

  16. Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere.

    PubMed

    Yoshino, Takashi; Matsuzaki, Takuya; Yamashita, Shigeru; Katsura, Tomoo

    2006-10-26

    The oceanic asthenosphere is observed to have high electrical conductivity, which is highly anisotropic in some locations. In the directions parallel and normal to the plate motion, the conductivity is of the order of 10(-1) and 10(-2) S m(-1), respectively, which cannot be explained by the conductivity of anhydrous olivine. But because hydrogen can be incorporated in olivine at mantle pressures, this observation has been attributed to olivine hydration, which might cause anisotropically high conductivity by proton migration. To examine this hypothesis, here we report the effect of water on electrical conductivity and its anisotropy for hydrogen-doped and undoped olivine at 500-1,500 K and 3 GPa. The hydrous olivine has much higher conductivity and lower activation energy than anhydrous olivine in the investigated temperature range. Nevertheless, extrapolation of the experimental results suggests that conductivity of hydrous olivine at the top of the asthenosphere should be nearly isotropic and only of the order of 10(-2) S m(-1). Our data indicate that the hydration of olivine cannot account for the geophysical observations, which instead may be explained by the presence of partial melt elongated in the direction of plate motion. PMID:17066031

  17. Systematics of Ni, Co, Cr and V in Olivine from Planetary Melt Systems: Martian Basalts

    NASA Technical Reports Server (NTRS)

    Herd, C. D. K.; Jones, J. H.; Shearer, C. K.; Papike, J. J.

    2001-01-01

    Secondary Ion Mass Spectrometry (SIMS) data for Ni, Co, Cr, and V in olivine in martian basalts is compared to data from lunar and terrestrial basalts. We use experimentally-derived and published D values to calculate as-yet unsampled, olivine-bearing, non-cumulus melt compositions. Additional information is contained in the original extended abstract.

  18. Magmatic plumbing at Lucky Strike volcano based on olivine-hosted melt inclusion compositions

    NASA Astrophysics Data System (ADS)

    Wanless, V. D.; Shaw, A. M.; Behn, M. D.; Soule, S. A.; Escartín, J.; Hamelin, C.

    2015-01-01

    we present volatile, major, and trace element concentrations of 64 olivine-hosted melt inclusions from the Lucky Strike segment on the mid-Atlantic ridge. Lucky Strike is one of two locations where a crustal melt lens has been seismically imaged on a slow-spreading ridge. Vapor-saturation pressures, calculated from CO2 and H2O contents of Lucky Strike melt inclusions, range from approximately 300-3000 bars, corresponding to depths of 0.5-9.9 km below the seafloor. Approximately 50% of the melt inclusions record crystallization depths of 3-4 km, corresponding to the seismically imaged melt lens depth, while an additional ˜35% crystallize at depths > 4 km. This indicates that while crystallization is focused within the melt lens, significant crystallization also occurs in the lower crust and/or upper mantle. The melt inclusions span a range of major and trace element concentrations from normal to enriched basalts. Trace element ratios at all depths are heterogeneous, suggesting that melts are not efficiently homogenized in the mantle or crust, despite the presence of a melt lens. This is consistent with the transient nature of magma chambers proposed for slower-spreading ridges. To investigate the petrogenesis of the melt inclusion compositions, we compare the measured trace element compositions to theoretical melting calculations that consider variations in the melting geometry and heterogeneities in the mantle source. The full range of compositions can be produced by slight variations in the proportion of an Azores plume and depleted upper mantle components and changes in the total extent of melting.

  19. Effects of Magnetic Fields on Bar Substructures in Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae

    2015-03-01

    To study the effects of magnetic fields on the properties of bar substructures, we run two-dimensional, ideal MHD simulations of barred galaxies under the influence of a non-axisymmetric bar potential. In the bar</