Science.gov

Sample records for barred olivine chondrules

  1. Barred olivine 'chondrules' in lunar spinel troctolite 62295

    NASA Technical Reports Server (NTRS)

    Roedder, E.; Weiblen, P. W.

    1977-01-01

    Several objects have been found in sections of lunar igneous spinel troctolite 62295 that resemble certain meteoritic barred olivine chondrules. Each consists of an apparently spherical single crystal of Fo90 olivine, approximately 0.6-0.8 mm in diameter, containing a set of approximately 30-40 subparallel stringers of An95 plagioclase, whereas the stringers in ordinary meteoritic chondrules consist of glass. The olivine of the 62295 chondrules is also more magnesian, and is radially zoned, having a relatively iron-rich core and rim and an iron-poor intermediate zone. Several possible origins are proposed: impact-generated melt globules solidified in flight, spherical phenocrysts, and meteoritic chondrules, but none of these seems adequate to explain the detailed observations.

  2. Implications for the evolution of chondrules from Agglomeratic olivine chondrules

    NASA Technical Reports Server (NTRS)

    Weisberg, M. K.; Prinz, M.

    1994-01-01

    There is considerable evidence that chondrules formed by the melting of solid materials and, by default, the early solar nebula is the preferred location for chondrule formation. Agglomeratic olivine (AO) chondrules supply perhaps the most intriguing, direct evidence for chondrule formation from agglomeration of solids. We review the characteristics of AO chondrules and discuss their implications for understanding chondrule precursors and chondrule evolution.

  3. The origin of ferrous zoning in Allende chondrule olivines

    NASA Astrophysics Data System (ADS)

    Peck, J. A.; Wood, J. A.

    1987-06-01

    Very similar major and minor element compositions are noted in the ferrous olivine occurring in chondrules at olivine grain boundaries, along cracks in olivine grains, interleaved with enstatite, and in the inner portions of exposed olivine grain surface rims; simultaneous formation by a single process is therefore suggested. The ferrous chondrule olivine probably formed by the reaction of chondrules with very hot nebular vapors over a period of several hours, followed by the condensation of residual metal vapors onto those olivine surfaces that were in direct contact with the gas as the system cooled. The ferrous chondrule olivine that occurs interleaved with enstatite in Allende does not have a composition identical to, and is not the precursor of, matrix olivine.

  4. Experimental Reproduction of Olivine rich Type-I Chondrules

    NASA Technical Reports Server (NTRS)

    Smith, Robert K.

    2005-01-01

    Ordinary chondritic meteorites are an abundant type of stony meteorite characterized by the presence of chondrules. Chondrules are small spheres consisting of silicate, metal, and sulfide minerals that experienced melting in the nebula before incorporation into chondritic meteorite parent bodies. Therefore, chondrules record a variety of processes that occurred in the early solar nebula. Two common types of unequilibrated chondrules with porphyritic textures include FeO-poor (type I) and FeO-rich (type II) each subdivided into an A (SiO2-poor) and B (SiO2-rich) series. Type IA chondrules include those with high proportions of olivine phenocrysts (>80% olivine) and type IB chondrules include those with high proportions of pyroxene phenocrysts (<20% olivine). An intermediate composition, type IAB chondrules include those chondrules in which the proportion of olivine phenocrysts is between 20-80%. We conducted high-temperature laboratory experiments (melting at 1550 C) to produce type I chondrules from average unequilibrated ordinary chondrite (UOC) material mixed with small amounts of additional olivine. The experiments were conducted by adding forsteritic rich olivine (San Carlos olivine, Fo 91) to UOC material (GRO 95544) in a 30/70 ratio, respectively. Results of these high temperature experiments suggest that we have replicated type IA chondrule textures and compositions with dynamic crystallization experiments in which a heterogeneous mixture of UOC (GRO 95544) and olivine (San Carlos olivine) were melted at 1550 C for 1 hr. and cooled at 5-1000 C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment.

  5. Laboratory Experiments Bearing on the Origin and Evolution of Olivine-rich Chondrules

    SciTech Connect

    Richter, Frank M.; Mendybaev, Ruslan A.; Christensen, John N.; Ebel, Denton; Gaffney, Amy

    2011-06-24

    Evaporation rates of K2O, Na2O, and FeO from chondrule-like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine-rich Type IA and Type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule-like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the Type IIA and Type IA chondrules compared with what is found in the vacuum and one-bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule-like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK>2-10-4cm2/s at 1650-C) that diffusion-limited evaporation cannot explain why, despite their having been molten, the Type IIA and Type IA chondrules show no systematic potassium isotopic fractionation.

  6. Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules

    NASA Technical Reports Server (NTRS)

    Miyamoto, Masamichi; Mckay, David S.; Mckay, Gordon A.; Duke, Michael B.

    1986-01-01

    The extent and degree of homogenization of chemical zoning of olivines in type 3 ordinary chondrites is studied in order to obtain some constraints on cooling histories of chondrites. Based on Mg-Fe and CaO zoning, olivines in type 3 chondrites are classified into four types. A single chondrule usually contains olivines with the same type of zoning. Microporphyritic olivines show all four zoning types. Barred olivines usually show almost homogenized chemical zoning. The cooling rates or burial depths needed to homogenize the chemical zoning are calculated by solving the diffusion equation, using the zoning profiles as an initial condition. Mg-Fe zoning of olivine may be altered during initial cooling, whereas CaO zoning is hardly changed. Barred olivines may be homogenized during initial cooling because their size is relatively small. To simulated microporphyritic olivine chondrules, cooling from just below the liquidus at moderately high rates is preferable to cooling from above the liquidus at low rates. For postaccumulation metamorphism of type 3 chondrites to keep Mg-Fe zoning unaltered, the maximum metamorphic temperature must be less than about 400 C if cooling rates based on Fe-Ni data are assumed. Calculated cooling rates for both Fa and CaO homogenization are consistent with those by Fe-Ni data for type 4 chondrites. A hot ejecta blanket several tens of meters thick on the surface of a parent body is sufficient to homogenize Mg-Fe zoning if the temperature of the blanket is 600-700 C. Burial depths for petrologic types of ordinary chondrites in a parent body heated by Al-26 are broadly consistent with those previously proposed.

  7. The influence of bulk composition and dynamic melting conditions on olivine chondrule textures

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.

    1991-01-01

    The effects of the bulk composition and the dynamic melting conditions on the texture of olivine chondrules were investigated in a series of heating experiments. It is shown that variations in the olivine chondrule textures can be produced by varying the FeO/(FeO + MgO) ratio between the average Type IA and Type II chondrule compositions, could affect the texture of a chondrule at a constant initial melting temperature and heating time. A range of the heating times and the masses of precursor spheres caused variations in the degree of melting and in chondrule textures. Chondrule textures were distributed on a graph of initial temperatures vs. FeO/(FeO + MgO) ratios as bands parallel to the olivine disappearance curve. This graph could be used to predict chondrule textures from Fe/(FeO + MgO) ratios at specific initial melting temperatures.

  8. Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines

    NASA Astrophysics Data System (ADS)

    Uehara, Minoru; Nakamura, Norihiro

    2006-10-01

    Dynamic crystallization experiments are conducted under a magnetic field to determine both magnetic and mineralogical properties of chondrules. The experiment reproduced synthetic dusty olivine samples that were formed by a high temperature reduction of an initially fayalitic olivine. Backscattered-electron microscopy observations confirmed that synthetic dusty olivine contains abundant fine, submicron-sized Ni-poor Fe inclusions in the cores of MgO-rich olivine grains, similar to that in natural chondrules. Alternating field demagnetization experiments of dusty olivine samples indicate mean destructive fields of up to 80 mT, suggesting the submicron-sized Fe inclusions are a carrier of stable remanence. In natural chondrules, fine Fe inclusions in the dusty olivine may have been armored against chemical alteration by surrounding host olivine crystals. Since the fine Fe inclusions were probably heated above the Curie temperature during the last chondrule forming events, the fine Fe inclusions in dusty olivine can acquire thermal remanent magnetization during the chondrule formation event. Theoretical time-temperature relation of such fine-grained Fe (kamacite) grains suggested that a paleomagnetic data observed above 490 °C in thermal demagnetization experiments of dusty olivines is reliable despite the low-grade metamorphism of unequilibrated ordinary chondrites (e.g., LL3.0). Therefore, the presence of fine Fe inclusions in dusty olivine in unequilibrated ordinary chondrites constrains that such dusty olivine in chondrules is a good candidate as an un-altered and stable magnetic recorder of the early solar magnetic field.

  9. Dynamic crystallization of chondrule melts of porphyritic olivine composition - Textures experimental and natural

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary

    1989-01-01

    A full range of textures characteristic for porphyritic olivine chondrules was reproduced in melts of the same composition, crystallized under dynamic crystallization conditions (under controlled cooling), as determined by electron microprobe analyses. The primary differences between the natural and experimentally produced porphyritic olivine textures were the nature and the extent of matrix crystallization, which reflected the subsolidus or low-temperature cooling history. The most confining limits on the chondrule-forming process were found to be the presence of crystalline precursors for the chondrule melts and the upper temperature limit of melting.

  10. Porphyritic versus nonporphyritic chondrules

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Weisberg, M. K.; Prinz, M.

    1994-01-01

    Chondrules can be divided into two broad textural types: porphyritic and nonporphyritic. Porphyritic chondrules are the most common in most chondrites and range texturally from olivine-rich (PO) to intermediate (POP) to pyroxene-rich (PP). Barred olivine (BO) chondrules can be considered a special case of porphyritic. Compositionally they can be divided into type I and II. Nonporphyritic are less abundant than porphyritic chondrules in most chondrites -- they make up approximately 125% of the chondrules in ordinary chondrites -- and range texturally from glassy (g) to cryptocrystalline (C) to radial pyroxene (RP). Compositionally nonporphyritic differ from porphyritic chondrules and within this group they are very similar to one another. Here we (1) review and contrast the characteristics of the nonporphyritic and porphyritic chondrules; (2) specify some of the problems associated with the origins of the textural and compositional differences between them; and (3) suggest a possible scenario for their origin, which may have important implications for the evolution of chondrules.

  11. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Prasad, M. Shyam; Nagashima, K.; Jones, R. H.

    2015-09-01

    Most olivine relict grains in cosmic spherules selected for the present study are pristine and have not been disturbed during their atmospheric entry, thereby preserving their chemical, mineralogical and isotopic compositions. In order to understand the origin of the particles, oxygen isotope compositions of relict olivine grains in twelve cosmic spherules collected from deep sea sediments of the Indian Ocean were studied using secondary ion mass spectrometry. Most of the data lie close to the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line, with Δ17O ranging from -5‰ to 0‰. The data overlap oxygen isotopic compositions of chondrules from carbonaceous chondrites such as CV, CK, CR and CM, which suggests that chondrules from carbonaceous chondrites are the source of relict grains in cosmic spherules. Chemical compositions of olivine in cosmic spherules are also very similar to chondrule olivine from carbonaceous chondrites. Several olivine relict grains in three cosmic spherules are 16O-rich (Δ17O -21.9‰ to -18.7‰), similar to oxygen isotopic compositions observed in calcium aluminum rich inclusions (CAIs), amoeboid olivine aggregates (AOAs), and some porphyritic chondrules from carbonaceous chondrites. These grains appear to have recorded the initial oxygen isotopic composition of the inner solar nebula. Three olivine grains from two cosmic spherules have δ18O values >+20‰, which could be interpreted as mixing with stratospheric oxygen during atmospheric entry.

  12. Olivine-rich rims surrounding chondrules in the Mokoia CV3 carbonaceous chondrite: Further evidence for parent-body processes

    NASA Astrophysics Data System (ADS)

    Tomeoka, Kazushige; Ohnishi, Ichiro

    2014-07-01

    Fine-grained rims surrounding chondrules and inclusions in the Mokoia CV3 carbonaceous chondrite can be divided into phyllosilicate-rich and olivine-rich types. We present a petrographic and electron microscopic study of the olivine-rich rims and their host objects (referred to as chondrules/olivine-rich rims). The olivine-rich rims consist mainly of Fe-rich olivine and very minor phyllosilicate (saponite). Their host chondrules contain minor saponite and phlogopite, which resulted from aqueous alteration of anhydrous silicates. Mineralogical and compositional characteristics of the chondrules/olivine-rich rims suggest that they experienced mild thermal metamorphic effects. The rims commonly contain veins of coarse-grained Fe-rich olivine, magnetite, and Fe-(Ni) sulfides. The chondrules show abundant evidence of alteration along their peripheries, and the alteration textures suggest a mechanism for rim formation by replacement of the chondrules. Initially, enstatite and opaque nodules preferentially reacted to form coarse, platy, Fe-rich olivine crystals, which were subsequently divided into finer grains. Forsterite was also replaced by Fe-rich olivine. As the alteration advanced, these Fe-rich olivines were disaggregated, mixed with simultaneously produced saponite, and formed rims. In contrast, the surrounding matrix shows no evidence of such alteration and metamorphism. These observations indicate that the chondrules/olivine-rich rims did not experience these secondary processes in their present setting. The results suggest that the chondrules/olivine-rich rims experienced extensive replacement reactions in an environment in which aqueous fluids existed but only in minor amounts. They have probably also undergone simultaneous and/or subsequent mild thermal metamorphism. We suggest that the chondrules/olivine-rich rims are actually clasts transported from a relatively dry region in the parent body that was different from the region where Mokoia was finally

  13. Experimental Replication of Relict "Dusty" Olivine in Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary E.; Le, L.

    2002-01-01

    Introduction: Relict "dusty" olivine is considered to be a remnants of previous chondrule forming events based on petrographic and chemical evidence. Dynamic crystallization experiments confirm that dusty olivine can be produced by reduction of FeO-rich olivine in Unequilibrated Ordinary Chondrite (UOC) material. The results of these experiments compliment those of who also produced dusty olivine, but from synthetic starting materials. Techniques: Dynamic crystallization experiments were conducted in which UOC material was reduced in presence of graphite. Starting material was coarsely ground GR095554 or WSG95300 that contained olivine of Fo 65-98. Approximately 75 mg. of UOC material was placed in a graphite crucible and sealed in an evacuated silica tube. The tube was suspended in a gas-mixing furnace operated at 1 log unit below the IW buffer. The experiments were as brief as 1.5 hrs up to 121 hrs. Results: Dusty olivine was produced readily in experiments melted at 1400 C for I hr. and cooled between 5 and 100 C/hr or melted at 1300-1400 C for 24 hours. Fe-rich olivine (dusty olivine precursors) that have been partially reduced were common in the experiments melted at 1400 C and cooled at 1000 C/hr or melted at 1200 C for 24 hrs. Relict olivine is absent in experiments melted at 1400 for 24 hrs, melted above 1400 C, or cooled more slowly than 10 C/hr. Relict olivine in the experiments has minimum Fo value of 83 . Thus even in the shortest experiments the most Fe-rich olivine has been altered significantly. The precursor olivine disappears in a few to many hours depending on temperature. The experiments show Fe-rich olivine in all stages of transition to the new dusty form. The olivine is reduced to form dusty olivine in a matter of a few hours at temperatures less than 1400 C and in minutes at higher temperatures. The reduction appears to proceed from the rim of the crystal inward with time. The reduction appears initially rectilinear as if controlled by

  14. Evidence for the three-stage cooling history of olivine-porphyritic fluid droplet chondrules

    NASA Astrophysics Data System (ADS)

    Planner, H. N.; Keil, K.

    1982-03-01

    A three-stage model for the cooling of olivine-porphyritic fluid droplet chondrules found in ordinary chondrites is proposed, in light of an experimental examination of three haplochondritic melts to determine thermal parameters in a pre-accretionary chondrule environment. The model encompasses: (1) initial continuous cooling from at least liquidus temperatures, at 300-4000 C/hour, to about 1300 C, over approximately 5-60 min; (2) interruption of the initial cooling by a short-duration isothermal event at about 1300 C; and (3) quenching. This thermal model, in which the entire history of fluid droplet chondrules is only a brief process in the early history of the solar system, suggests a specific and restricted physical origin for chondrules which is not likely to have been achieved by such repetitive, small-scale events as planetary surface impact splattering or volcanism. A single, large-scale event is postulated.

  15. Forsterite and Olivine in Sahara-97210 (LL3.2) and Chainpur (LL3.4) Chondrules: Compositional Evolution and the Influence of Melting

    NASA Technical Reports Server (NTRS)

    Ruzicka, A.; Floss, C.

    2004-01-01

    It is generally accepted that chondrules contain relict grains that did not crystallize in situ, and that forsterite is one type of relict grain which is a likely precursor for chondrules. Chemically and morphologically similar forsterite is also found as "isolated grains", especially in carbonaceous chondrites. Using SIMS, we analyzed forsterite, ferrous overgrowths around forsterite, and coexisting normal olivine in 5 chondrules and 2 isolated grains in the Sahara-97210 ('Sahara") LL3.2 chondrite. We earlier used the same methods to study olivine in 3 Chainpur chondrules that contain relict forsterite. Our new data for Sahara provide additional insight into the processes affecting chondrules and their precursors.

  16. Condensation of Chondrules: Conditions for "Fiery Rain"

    NASA Astrophysics Data System (ADS)

    Grossman, L.; Fedkin, A. V.

    2012-09-01

    Equilibrium calculations at total pressures ≥1 bar in systems with CI dust enrichments of 1000 relative to solar composition, yield condensate assemblages whose olivine and coexisting silicate liquid have compositions found in primitive chondrules.

  17. An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules - Equilibrium values and kinetic effects

    NASA Technical Reports Server (NTRS)

    Kennedy, A. K.; Lofgren, G. E.; Wasserburg, G. J.

    1993-01-01

    Mineral/melt partition coefficients were measured using an ion microprobe for 32 elements in orthopyroxene and olivine in equilibrium and dynamic crystallization experiments on compositions corresponding to chondrules. The mineral/melt partition coefficients calculated from the measured concentrations for both olivine and orthopyroxene show very little change between equilibrium experiments and dynamic experiments with cooling rates of up to 100 C/h. The results provide a self-consistent set of partition coefficients that can be used in thermodynamic models of equilibrium and kinetic partitioning between olivine, orthopyroxene, and melt. These data can be used in models of partial melting and crystal fractionation in olivine- and orthopyroxene-rich systems, such as chondrules. The results may also be applicable to mantle peridotites, komatiitic and picritic lavas, and ultramafic intrusions.

  18. Amoeboid olivine aggregates with low-Ca pyroxenes: a genetic link between refractory inclusions and chondrules?

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Petaev, Michail I.; Yurimoto, Hisayoshi

    2004-04-01

    Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ 17O ˜ -20‰) and consist of forsterite (Fa <2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk <15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ˜10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules. Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg

  19. Chromite and olivine in type II chondrules in carbonaceous and ordinary chondrites - Implications for thermal histories and group differences

    NASA Technical Reports Server (NTRS)

    Johnson, Craig A.; Prinz, Martin

    1991-01-01

    Unequilibrated chromite and olivine margin compositions in type II chondrules are noted to differ systematically among three of the chondrite groups, suggesting that type II liquids differed in composition among the groups. These differences may be interpreted as indicators of different chemical compositions of the precursor solids which underwent melting, or, perhaps, as differences in the extent to which immiscible metal sulfide droplets were lost during chondrule formation. Because zinc is detectable only in type II chromites which have undergone reequilibration, the high zinc contents reported for chondritic chromites in other studies probably reflect redistribution during thermal metamorphism.

  20. Evidence for fractional crystallization of wadsleyite and ringwoodite from olivine melts in chondrules entrained in shock-melt veins

    PubMed Central

    Miyahara, Masaaki; El Goresy, Ahmed; Ohtani, Eiji; Nagase, Toshiro; Nishijima, Masahiko; Vashaei, Zahra; Ferroir, Tristan; Gillet, Philippe; Dubrovinsky, Leonid; Simionovici, Alexandre

    2008-01-01

    Peace River is one of the few shocked members of the L-chondrites clan that contains both high-pressure polymorphs of olivine, ringwoodite and wadsleyite, in diverse textures and settings in fragments entrained in shock-melt veins. Among these settings are complete olivine porphyritic chondrules. We encountered few squeezed and flattened olivine porphyritic chondrules entrained in shock-melt veins of this meteorite with novel textures and composition. The former chemically unzoned (Fa24–26) olivine porphyritic crystals are heavily flattened and display a concentric intergrowth with Mg-rich wadsleyite of a very narrow compositional range (Fa6–Fa10) in the core. Wadsleyite core is surrounded by a Mg-poor and chemically stark zoned ringwoodite (Fa28–Fa38) belt. The wadsleyite–ringwoodite interface denotes a compositional gap of up to 32 mol % fayalite. A transmission electron microscopy study of focused ion beam slices in both regions indicates that the wadsleyite core and ringwoodite belt consist of granoblastic-like intergrowth of polygonal crystallites of both ringwoodite and wadsleyite, with wadsleyite crystallites dominating in the core and ringwoodite crystallites dominating in the belt. Texture and compositions of both high-pressure polymorphs are strongly suggestive of formation by a fractional crystallization of the olivine melt of a narrow composition (Fa24–26), starting with Mg-rich wadsleyite followed by the Mg-poor ringwoodite from a shock-induced melt of olivine composition (Fa24–26). Our findings could erase the possibility of the resulting unrealistic time scales of the high-pressure regime reported recently from other shocked L-6 chondrites. PMID:18562280

  1. Relative abundances of chondrule primary textural types in ordinary chondrites and their bearing on conditions of chondrule formation

    NASA Astrophysics Data System (ADS)

    Gooding, J. L.; Keil, K.

    1981-03-01

    A petrographic survey of > 1600 chondrules in thin-sections of 12 different mildly to highly unequilibrated H-, L-, and Li-chondrites, as well as morphological and textural study of 141 whole chondrules separated from 11 of the same chondrites, was used to determine the relative abundances of definable chondrule primary textural types. Percentage abundances of various chondrule types are remarkably similar in all chondrites studied and are ˜47-52 porphyritic olivine-pyroxene (POP), 15-27 porphyritic olivine (P 0), 9-11 porphyritic pyroxene (PP), 34 barred olivine (BO), 7-9 radial pyroxene (RP), 2-5 granular olivine-pyroxene (GOP), 3-5 cryptocrystalline (C), and ≥ 1 metallic (M). Neither chondrule size nor shape is strongly correlated with textural type. Compound and cratered chondrules, which are interpreted as products of collisions between plastic chondrules, comprise ˜2-28% of non-porphyritic (RP, GOP, C) but only ˜2-9% of porphyritic (POP, PO, PP, BO) chondrules, leading to a model-dependent implication that non-porphyritic chondrules evolved at number densities (chondrules per unit volume of space) which were 102 to 104 times greater than those which prevailed during porphyritic chondrule formation (total range of ˜1 to ˜106 m-3. Distinctive "rims" of fine-grained sulfides and/or silicates occur on both porphyritic and non-porphyritic types and appear to post-date chondrule formation. Apparently, either the same process(es) contributed chondrules to all unequilibrated ordinary chondrites or, if genetically different, the various chondrule types were well mixed before incorporation into chondrites. Melting of pre-existing materials is the mechanism favored for chondrule formation.

  2. A new estimate of the chondrule cooling rate deduced from an analysis of compositional zoning of relict olivine

    SciTech Connect

    Miura, H.; Yamamoto, T.

    2014-03-01

    Compositional zoning in chondrule phenocrysts records the crystallization environments in the early solar nebula. We modeled the growth of olivine phenocrysts from a silicate melt and proposed a new fractional crystallization model that provides a relation between the zoning profile and the cooling rate. In our model, we took elemental partitioning at a growing solid-liquid interface and time-dependent solute diffusion in the liquid into consideration. We assumed a local equilibrium condition, namely, that the compositions at the interface are equal to the equilibrium ones at a given temperature. We carried out numerical simulations of the fractional crystallization in one-dimensional planar geometry. The simulations revealed that under a constant cooling rate the growth velocity increases exponentially with time and a linear zoning profile forms in the solid as a result. We derived analytic formulae of the zoning profile, which reproduced the numerical results for wide ranges of crystallization conditions. The formulae provide a useful tool to estimate the cooling rate from the compositional zoning. Applying the formulae to low-FeO relict olivine grains in type II porphyritic chondrules observed by Wasson and Rubin, we estimate the cooling rate to be ∼200-2000 K s{sup –1}, which is greater than that expected from furnace-based experiments by orders of magnitude. Appropriate solar nebula environments for such rapid cooling conditions are discussed.

  3. Extremely rapid cooling of a carbonaceous-chondrite chondrule containing very 16O-rich olivine and a 26Mg-excess

    NASA Astrophysics Data System (ADS)

    Yurimoto, Hisayoshi; Wasson, John T.

    2002-12-01

    We describe a phenocryst in a CO-chondrite type-II chondrule that we infer to have formed by melting an amoeboid olivine aggregate (AOA). This magnesian olivine phenocryst has an extremely 16O-rich composition Δ 17O (=δ 17O - 0.52 · δ 18O) = -23‰. It is present in one of the most pristine carbonaceous chondrites, the CO3.0 chondrite Yamato 81020. The bulk of the chondrule has a very different Δ 17O of -1‰, thus the Δ 17O range within this single chondrule is 22‰, the largest range encountered in a chondrule. We interpret the O isotopic and Fe-Mg distributions to indicate that a fine-grained AOA assemblage was incompletely melted during the flash melting that formed the chondrule. Some Fe-Mg exchange but negligible O-isotopic exchange occurred between its core and the remainder of the chondrule. A diffusional model to account for the observed Fe-Mg and O-isotopic exchange yields a cooling rate of 10 5 to 10 6 K hr -1. This estimate is much higher than the cooling rates of 10 1 to 10 3 K hr -1 inferred from furnace simulations of type-II chondrule textures (e.g. Lofgren, 1996); however, our cooling-rate applies to higher temperatures (near 1900 K) than are modeled by the crystal-growth based cooling rates. We observed a low 26Al/ 27Al initial ratio ((4.6 ± 3.0) · 10 -6) in the chondrule mesostasis, a value similar to those in ordinary chondrites (Kita et al., 2000). If the 26Al/ 27Al system is a good chronometer, then chondrule I formed about 2 Ma after the formation of refractory inclusions.

  4. The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3)

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Alard, Olivier; Gounelle, Matthieu

    2015-09-01

    We report in situ LA-ICP-MS trace element analyses of silicate phases in olivine-bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance of opaque nodules found outside them in EH chondrites. In two chondrules, olivine and enstatite exhibit negatively sloped REE patterns, which may be an extreme manifestation of a general phenomenon (possibly linked to near-liquidus partitioning) underlying the overabundance of light REE observed in most chondrule silicates relative to equilibrium predictions. The silicate phases in one of these two chondrules show complementary Eu, Yb, and Sm anomalies providing direct evidence for the postulated occurrence of the divalent state for these elements at some stage in the formation reservoir of enstatite chondrites. Our work supports the idea that the peculiarities of enstatite chondrites may not require a condensation sequence at high C/O ratios as has long been believed.

  5. Variations in the O-isotope composition of gas during the formation of chondrules from the CR chondrites

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Nagashima, Kazuhide; Krot, Alexander N.; Ogliore, Ryan C.; Hellebrand, Eric

    2014-05-01

    To better understand the environment of chondrule formation and constrain the O-isotope composition of the ambient gas in the Renazzo-like carbonaceous (CR) chondrite chondrule-forming region, we studied the mineralogy, petrology, and in situ O-isotope compositions of olivine in 11 barred olivine (BO) chondrules and pyroxene and silica in three type I porphyritic chondrules from the CR chondrites Gao-Guenie (b), Graves Nunataks (GRA) 95229, Pecora Escarpment (PCA) 91082, and Shişr 033. BO chondrules experienced a higher degree of melting than porphyritic chondrules, and therefore, it has been hypothesized that they more accurately recorded the O-isotope composition of the gas in chondrule-forming regions. We studied the O-isotope composition of silica as it has been hypothesized to have formed via direct condensation from the gas.

  6. Using the Fe/Mn Ratio of FeO-Rich Olivine In WILD 2, Chondrite Matrix, and Type IIA Chondrules to Disentangle Their Histories

    NASA Technical Reports Server (NTRS)

    Frank, David R.; Le, L.; Zolensky, M. E.

    2012-01-01

    The Stardust Mission returned a large abundance of impactors from Comet 81P/Wild2 in the 5-30 m range. The preliminary examination of just a limited number of these particles showed that the collection captured abundant crystalline grains with a diverse mineralogy [1,2]. Many of these grains resemble those found in chondrite matrix and even contain fragments of chondrules and CAIs [1-3]. In particular, the olivine found in Wild 2 exhibits a wide compositional range (Fa0-97) with minor element abundances similar to the matrix olivine found in many carbonaceous chondrites (CCs) and unequilibrated ordinary chondrites (UOCs). Despite the wide distribution of Fa content, the olivine found in the matrices of CCs, UOCs, and Wild 2 can be roughly lumped into two types based solely on fayalite content. In fact, in some cases, a distinct bi-modal distribution is observed.

  7. RELICT and other anomalous grains in chondrules - Implications for chondrule formation

    NASA Astrophysics Data System (ADS)

    Kracher, A.; Scott, E. R. D.; Keil, K.

    1984-02-01

    Relict olivine and pyroxene grains have been identified in chondrules from ordinary and carbonaceous chondrites that probably did not crystallize in situ. Some of these olivines are clear, but others contain fine-grained Fe, Ni ('dusty olivines') and resemble previously described occurrences in ordinary chondrites. There are also chondrules in which all olivine is dusty. It is concluded that: (1) not all relict olivines are dusty, (2) not all dusty olivines crystallized outside the chondrule in which they occur, and (3) some dusty olivines were produced during chondrule formation by a reduction process that affected the whole chondrule. The occurrence of dusty olivines and relict pyroxenes and olivines in chondrules from carbonaceous as well as ordinary chondrites supports the argument that chondrules from all chondrites had similar origins and histories. It is proposed that chondrules and mineral fragments were transported across f(O2) gradients in the solar nebula while they were hot, or were reheated in an environment different from the one in which they formed. Partially molten chondrules sometimes incorporated mineral grains or chondrules with different redox states, producing compound chondrules and chondrules containing anomalous grains. Dusty olivines may also have formed when hot chondrules were transported to regions of lower oxygen fugacity.

  8. Relict grains in chondrules: Evidence for chondrule recycling

    NASA Technical Reports Server (NTRS)

    Jones, R. H.

    1994-01-01

    The presence of relict grains in chondrules, which offers some insight into the degree to which chondrule material was recycled in the chondrule-forming region, is discussed in this report. Relics are grains that clearly did not crystallize in situ in the host chondrule. They represent coarse-grained precursor material that did not melt during chondrule formation, and provide the only tangible record of chondrule precursor grains. Relics are commonly identified by a large difference in size, textural differences, and/or significant compositional differences compared with normal grains in the host chondrule. Two important types of relics are: (1) 'dusty,' metal-bearing grains of olivine and pyroxene; and (2) forsterite (Mg-rich olivine) grains present in FeO-rich chondrules.

  9. The Relationship Between Metal and Silicates in Type I Chondrules

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Zanda, B.

    1992-07-01

    There is wide agreement that chondrules were formed by melting of pre-existing minerals, but there is still controversy over how, when, and from exactly what they were formed. Much work on chondrules has emphasized magnesian granular/microporphyritic type I chondrules, but metal-rich type I chondrules are even more abundant in carbonaceous chondrites (McSween, 1977). The observation that metal is homogeneous within one chondrule but differs from chondrule to chondrule (Zanda et al., 1991) suggests some systematic relationship may exist between metal and silicates. It is the purpose of this paper to investigate those relationships for Renazzo and Semarkona. We observe a strong correlation between the silicate texture of chondrules, which falls in a fine-coarse granular-porphyritic-barred sequence related to degree of melting, and the nature of the metal. Where olivine grains are small and/or closely packed, metal occurs as tiny spherules. Where grain size and melt channels are larger, metal forms coalescing blebs or chains. With distinctly microporphyritic textures metal occurs mostly near the periphery of the chondrule and with truly porphyritic and barred chondrules it forms a rim or crown around the chondrule. Similar metal coalescence and expulsion textures have been observed for Bishunpur chondrules (Rambaldi and Wasson, 1981) and geochemical evidence shows that metal rims on Semarkona chondrules were derived from their interiors (Grossman and Wasson, 1987). There appears to be a continuous gradation between metal-rich and ordinary type I chondrules as a function of degree of melting, which suggests that many type I chondrules passed through a stage of being metal-rich during formation. If chondrules were manufactured from homogeneous interstellar dust, there is a very short time period for metal-silicate fractionation. If chondrules were formed from condensate aggregates, this constraint can be relaxed as condensates aggregated over different temperature

  10. Chromite-rich mafic silicate chondrules in ordinary chondrites: Formation by impact melting

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Rubin, Alan E.

    1993-01-01

    Chromium-rich chondrules constitute less than 0.1 percent of all ordinary chondrite (OC) chondrules and comprise three groups: chromian-spinel chondrules, chromian-spinel inclusions, and chromite-rich mafic silicate (CRMS) chondrules. Chromian-spinel chondrules (typically 100-300 microns in apparent diameter) exhibit granular, porphyritic and unusual textures and occur mainly in H chondrites. Their morphologies are distinct from the irregularly shaped chromian-spinel inclusions of similar mineralogy. Chromian-spinel chondrules and inclusions consist of grains of chromian-spinel embedded in plagioclase (Pl) or mesostasis of Pl composition. Many also contain accessory ilmenite (Ilm), high-Ca pyroxene (Px), merrillite (Mer), and rare olivine (Ol); some exhibit concentric mineral and chemical zoning. CRMS chondrules (300-1100 microns in apparent diameter) are generally larger than chromian-spinel chondrules and occur in all metamorphosed OC groups. Most CRMS chondrules are nearly spherical although a few are ellipsoidal with a/b aspect ratios ranging up to 1.7. Textures include cryptocrystalline, granular, radial, barred, and porphyritic varieties; some contain apparently relict grains. The chondrules consist of chromite (Chr), Ol and Pl, along with accessory Mer, troilite (Tr), metallic Fe-Ni (Met), Px and Ilm. The mesostasis in CRMS chondrules is nearly opaque in transmitted light; thus, they can be easily recognized in the optical microscope. Based on the similarity of mineralogy and chemistry between CRMS chondrules of different textures (opaque chromite-rich mesostasis, skeletal morphology of Ol grains, similar bulk compositions) we suggest that these chondrules form a genetically related population.

  11. Chondrule synthesis using fine-grained precursors

    NASA Astrophysics Data System (ADS)

    Fox, George Ernest

    2002-11-01

    High temperature petrologic experiments have been used in order to reproduce the textures of chondrules, which are rounded to irregularly shaped ferromagnesion silicate objects. Such experiments shed light on the conditions that existed and mechanisms that operated in the early solar nebula, as natural chondrules are believed to have formed there due to some type of heating event. The exact nature of this heating event and the conditions that existed at the time of the formation of the solar nebula are not completely understood. Chondrules, which are believed to be composed of some of the oldest remnants of the solar system, nebular condensates, are the basic components of chondrites. Chondrites comprise ˜82% of all meteorites. Despite years of petrographic examination and experimental petrology, the thermal history of chondrules still remains uncertain. Natural chondrules exhibit a variety of different textures ranging from glassy, barred, porphyritic, microporphyritc to protoporphyritc. Petrologic experiments in a muffle tube furnace under controlled fugacity conditions using type IAB bulk composition analogs have been successful in reproducing each of these textures in the laboratory. Charges are prepared, heated, water quenched, mounted, polished and photographed using back-scattered electron imagery. Subsequent analysis provides numerical data, which can then be used to calculate the nominal grain size of the olivine crystals in each charge. Porphyritic chondrules are the most abundant in nature by far and any model for chondrule formation must be capable of producing porphyritic textures. To reproduce this texture in the laboratory, however, seems to require a very narrow range of maximum temperature and soak time parameters even when using a variety of different types of fine-grained and agglomerated olivine precursor material. Experiments undertaken in this study bring into question some of the basic assumptions of various classical models of chondrule

  12. Timing of Formation of a Wassonite-bearing Chondrule

    NASA Technical Reports Server (NTRS)

    Needham, A. W.; Nakamura-Messenger, K.; Rubin, A. E.; Choi, B.-G.; Messenger, S.

    2014-01-01

    Wassonite, ideally stoichiometric TiS, is a titanium monosulfide recently discovered in the Yamato 691 EH3 enstatite chondrite. Wassonite grains were located within the mesostasis of a single barred olivine chondrule. Such chondrules likely formed in the solar nebula by melting of fine grained precursor dust. The reduced nature of enstatite chondrites, and the wassonite-bearing chondrule in particular, may suggest precursor materials included Ti-bearing troilite, metallic Fe-Ni, and possibly graphite. Under the reducing conditions present in enstatite chondrites S can partition more readily into silicate melt, leading to raised Ti content of the residual Fe-FeS melt. By the time sulfide crystallized from the melt, the Ti concentration was high enough to form small grains of pure TiS - wassonite. As a mineral not previously observed in nature wassonite and its host chondrule may provide additional constraints on physical and chemical conditions in the solar nebula at a specific time and location relevant to planetary formation. Enstatite chondrites and Earth share similar isotopic compositions of Cr, Ni, Ti, O and N. Understanding the formation conditions of enstatite chondrite chondrules may therefore have wider relevance for terrestrial planet accretion and other early inner solar system processes. Here we present preliminary results of an investigation of the Al-Mg systematics of the only known wassonite-bearing chondrule. The goal of this study is to determine whether this chondrule's formation was contemporaneous with other enstatite chondrite chondrules and to establish its place in the broader timeline of solar system events.

  13. The Vaguries of Pyroxene Nucleation and the Resulting Chondrule Textures

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2004-01-01

    Pyroxene is a major phase in chondrules, but often follows olivine in the crystallization sequence and depending on the melting temperature and time may not nucleate readily upon cooling. Dynamic crystallization experiments based on total or near total melting were used to study PO (porphyritic olivine) and PP (Porphyritic pyroxene) compositions as defined by. The experiments showed that pyroxene nucleated only at subliquidus temperatures in the PP melts and rarely in the PO melts. Porphyritic chondrules with phenocrysts of both olivine and pyroxene (POP chondrules) were not easily produced in the experiments. POP chondrules are common and it is important for deciphering their formation that we understand pyroxene nucleation properties of chondrule melts.

  14. The conditions of chondrule formation, Part II: Open system

    NASA Astrophysics Data System (ADS)

    Friend, Pia; Hezel, Dominik C.; Mucerschi, Daniel

    2016-01-01

    We studied the texture of 256 chondrules in thin sections of 16 different carbonaceous (CV, CR, CO, CM, CH) and Rumuruti chondrites. In a conservative count ∼75% of all chondrules are mineralogically zoned, i.e. these chondrules have an olivine core, surrounded by a low-Ca pyroxene rim. A realistic estimate pushes the fraction of zoned chondrules to >90% of all chondrules. Mineralogically zoned chondrules are the dominant and typical chondrule type in carbonaceous and Rumuruti chondrites. The formation of the mineralogical zonation represents a fundamentally important process of chondrule formation. The classic typification of chondrules into PO, POP and PP might in fact represent different sections through mineralogically zoned chondrules. On average, the low-Ca pyroxene rims occupy 30 vol.% of the entire chondrule. The low-Ca pyroxene most probably formed by reaction of an olivine rich chondrule with SiO from the surrounding gas. This reaction adds 3-15 wt.% of material, mainly SiO2, to the chondrule. Chondrules were open systems and interacted substantially with the surrounding gas. This is in agreement with many previous studies on chondrule formation. This open system behaviour and the exchange of material with the surrounding gas can explain bulk chondrule compositional variations in a single meteorite and supports the findings from complementarity that chondrules and matrix formed from the same chemical reservoir.

  15. Refractory precursor components in an Allende ferromagnesian chondrule

    NASA Technical Reports Server (NTRS)

    Misawa, Keiji; Fujita, Takashi; Kitamura, Masao; Nakamura, Noboru

    1993-01-01

    Chemical and petrological studies of chondrules revealed that they were formed through melting of pre-existing solid precursor materials, and that one of the refractory lithophile precursors was a high temperature condensate from the nebular gas and related to Ca, Al-rich inclusions (CAIs). Sheng et al. found relict spinel grains with isotopically fractionated Mg in plagioclase-olivine inclusions from CV chondrites and suggested that the major fractionation processes were common to CAIs and chondrules. We have determined the Mg isotopic compositon of five barred olivine chondrules and one coarse-grained rim from the Allende (CV3) meteorite. A reproducibility of instrumental isotope fractionation is plus or minus 2 per thousand per amu. The precision of the Mg-26/Mg-24 data after normalization for mass fractionation can be as good as 0.5 per thousand (2 sigma(mean)). The Mg analytical results are given and indicate that delta Mg-25/Mg-24 and sigma Mg-26 of the chondrules are normal within errors.

  16. Reduction of CO2 during serpentinization of olivine at 300 °C and 500 bar

    NASA Astrophysics Data System (ADS)

    Berndt, Michael E.; Allen, Douglas E.; Seyfried, William E., Jr.

    1996-04-01

    CO2 reduction processes occurring during experimental serpentinization of olivine at 300 °C and 500 bar confirm that ultramafic rocks can play an important role in the generation of abiogenic hydrocarbon gas. Data reveal that conversion of Fe(II) in olivine to Fe(III) in magnetite during serpentinization leads to production of H2 and conversion of dissolved CO2 to reduced-C species including methane, ethane, propane, and an amorphous carbonaceous phase. Hydrocarbon gases generated in the process fit a Schulz-Flory distribution consistent with catalysis by mineral reactants or products. Magnetite is inferred to be the catalyst for methanization during serpentinization, because it has been previously shown to accelerate Fischer-Tropsch synthesis of methane in industrial applications involving mixtures of H2 and CO2. The carbonaceous phase was predominantly aliphatic, but had a significant aromatic component. Although this phase should ultimately be converted to hydrocarbon gases and graphite, if full thermodynamic equilibrium were established, its formation in these experiments indicates that the pathway for reduction of CO2 during serpentinization processes is complex and involves a series of metastable intermediates.

  17. Retention of sodium during chondrule melting

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.

    1991-04-01

    Using published data, the differences in Na concentrations in different groups of porphyritic olivine chondrules are analyzed. The results show that Na was incorporated into type II chondrule precursors as albite and was not significantly lost during melting. Type I chondrules, which contain very low concentrations of Na, were also not depleted in Na during melting, as indicated by the lack of correlation between the Na/Al ratios and the liquidus temperatures in type I chondrules. It is concluded that the difference in Na concentration is caused by the abundance of precursor albite in type II chondrules, rather than the loss of Na from the melt.

  18. Textural evidence bearing on the origin of isolated olivine crystals in C2 carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Richardson, S. M.; Mcsween, H. Y., Jr.

    1978-01-01

    In some cases the mechanical competence of chondrules in carbonaceous chondrites has been reduced by alteration of their mesostasis glass to friable phyllosilicate, providing a mechanism by which euhedral olivines can be separated from chondrules. Morphological features of isolate olivine grains found in carbonaceous chondrites are similar to those of olivine phenocrysts in chondrules. These observations suggest that the isolated olivine grains formed in chondrules, by crystallization from a liquid, rather than by condensation from a vapor.

  19. Congruent Melting Kinetics: Constraints on Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Greenwood, James P.; Hess, Paul C.

    1995-01-01

    The processes and mechanisms of melting and their applications to chondrule formation are discussed A model for the kinetics of congruent melting is developed and used to place constraints on the duration and maximum temperature experienced by the interiors of relict-bearing chondrules. Specifically, chondrules containing relict forsteritic olivine or enstatitic pyroxene cannot have been heated in excess of 1901 C or 1577 C, respectively, for more than a few seconds.

  20. Chondrule formation, metamorphism, brecciation, an important new primary chondrule group, and the classification of chondrules

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G.; Shaoxiong, Huang; Benoit, Paul H.

    1995-01-01

    The recently proposed compositional classification scheme for meteoritic chondrules divides the chondrules into groups depending on the composition of their two major phases, olivine (or pyroxene) and the mesostasis, both of which are genetically important. The scheme is here applied to discussions of three topics: the petrographic classification of Roosevelt County 075 (the least-metamorphosed H chondrite known), brecciation (an extremely important and ubiquitous process probably experienced by greater than 40% of all unequilibrated ordinary chondrites), and the group A5 chondrules in the least metamorphosed ordinary chondrites which have many similarities to chondrules in the highly metamorphosed 'equilibrated' chondrites. Since composition provides insights into both primary formation properties of the chondruies and the effects of metamorphism on the entire assemblage it is possible to determine the petrographic type of RC075 as 3.1 with unique certainty. Similarly, the near scheme can be applied to individual chondrules without knowledge of the petrographic type of the host chondrite, which makes it especially suitable for studying breccias. Finally, the new scheme has revealed the existence of chondrules not identified by previous techniques and which appear to be extremely important. Like group A1 and A2 chondrules (but unlike group B1 chondrules) the primitive group A5 chondruies did not supercool during formation, but unlike group A1 and A2 chondrules (and like group B1 chondrules) they did not suffer volatile loss and reduction during formation. It is concluded that the compositional classification scheme provides important new insights into the formation and history of chondrules and chondrites which would be overlooked by previous schemes.

  1. Crystal-bearing lunar spherules: Impact-melting of the Moon's crust and implications for the origin of meteoritic chondrules

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Snyder, Gregory A.; Taylor, Lawrence A.

    2000-01-01

    Crystal-bearing lunar spherules (CLSs) in lunar breccia (14313, 14315, 14318), soil (68001, 24105), and impact-melt-rock (62295) samples can be classified into two types: feldspathic and olivine-rich. Feldspathic CLSs contain equant, tabular, or acicular plagioclase grains set in glass or a pyroxene-olivine mesostasis; the less common olivine-rich CLSs contain euhedral or skeletal olivine set in glass, or possess a barred-olivine texture. Bulk-chemical and mineral-chemical data strongly suggest that feldspathic CLSs formed by impact-melting of mixtures of ferroan anorthosite and Mg-suite rocks that compose the feldspathic crust of the Moon. It is probable that olivine-rich CLSs also formed by impact-melting, but some appear to have been derived from distinctively magnesian lunar materials, atypical of the Moon's crust. Some CLSs contain reversely-zoned "relict" plagioclase grains that were not entirely melted during CLS formation, thin (?5 ?m thick) rims of troilite or phosphate, and chemical gradients in glassy mesostases attributed to metasomatism in a volatile-rich (Na-K-P-rich) environment. CLSs were rimmed and metasomatized prior to brecciation. Compound CLS objects are also present; these formed by low-velocity collisions in an environment, probably an ejecta plume, that contained numerous melt droplets. Factors other than composition were responsible for producing the crystallinity of the CLSs. We agree with previous workers that relatively slow cooling rates and long ballistic travel times were critical features that enabled these impact-melt droplets to partially or completely crystallize in free-flight. Moreover, incomplete melting of precursor materials formed nucleation sites that aided subsequent crystallization. Clearly, CLSs do not resemble meteoritic chondrules in all ways. The two types of objects had different precursors and did not experience identical rimming processes, and vapor-fractionation appears to have played a less important role in

  2. Major element chemical compositions of chondrules in unequilibrated chondrites

    NASA Technical Reports Server (NTRS)

    Ikeda, Y.

    1984-01-01

    The chemical compositions (except for metals and sulfides in chondrules) of more than 500 chondrules from unequilibrated E, H, L, LL, and C chondrites were measured using a broad beam of an electron-probe microanalyzer. The compositions of chondrules can be represented by various mixtures of normative compositions of olivine, low-Ca pyroxene, plagioclase, and high-Ca pyroxene with minor amounts of spinel, feldspathoid, SiO2-minerals, etc., indicating that the chondrule precursor materials consisted of aggregates of these minerals. The Al, Na, and K contents of most chondrules reflect the compositions of the ternary feldspar (An-Ab-Kf) of the chondrule precursor materials, and chemical types of chondrules (KF, SP, IP, and CP) are defined on the basis of the atomic proportion of Al, Na, and K.

  3. Impact jetting as the origin of chondrules.

    PubMed

    Johnson, Brandon C; Minton, David A; Melosh, H J; Zuber, Maria T

    2015-01-15

    Chondrules are the millimetre-scale, previously molten, spherules found in most meteorites. Before chondrules formed, large differentiating planetesimals had already accreted. Volatile-rich olivine reveals that chondrules formed in extremely solid-rich environments, more like impact plumes than the solar nebula. The unique chondrules in CB chondrites probably formed in a vapour-melt plume produced by a hypervelocity impact with an impact velocity greater than 10 kilometres per second. An acceptable formation model for the overwhelming majority of chondrules, however, has not been established. Here we report that impacts can produce enough chondrules during the first five million years of planetary accretion to explain their observed abundance. Building on a previous study of impact jetting, we simulate protoplanetary impacts, finding that material is melted and ejected at high speed when the impact velocity exceeds 2.5 kilometres per second. Using a Monte Carlo accretion code, we estimate the location, timing, sizes, and velocities of chondrule-forming impacts. Ejecta size estimates indicate that jetted melt will form millimetre-scale droplets. Our radiative transfer models show that these droplets experience the expected cooling rates of ten to a thousand kelvin per hour. An impact origin for chondrules implies that meteorites are a byproduct of planet formation rather than leftover building material. PMID:25592538

  4. Vapor saturation of sodium: Key to unlocking the origin of chondrules

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence

    2013-07-01

    Sodium saturation of the vapor coexisting with chondrules at their liquidus temperatures implies that vapor-condensed phase equilibrium was reached at those temperatures for all elements more refractory than sodium. In order to investigate the possibility that chondrules formed in impact-generated plumes, equilibrium calculations were applied to droplets made from two different target compositions. Combinations of dust enrichment and Ptot were found that lead to sodium saturation, and the subsequent chemical and mineralogical evolution of the droplets was explored at those conditions. If an impact on a body of CI composition caused instantaneous heating, melting and devolatilization of the target rock and ejection of a plume of gaseous, liquid and solid matter that mixed with residual nebular gas at conditions where 50% or 90% of the sodium was retained by the resulting droplets at their liquidus temperature, their mineralogical and chemical properties would strongly resemble those of Type II chondrules. If the droplets cooled and equilibrated with the mixture of residual nebular gas and their devolatilized water, sulfur and alkalis, the fayalite content of the olivine and the chemical compositions of the bulk droplets and their glasses would closely resemble those of Types IIA and IIAB chondrules at CI dust enrichments between 400× and 800×. For 50% sodium retention, the corresponding values of Ptot are 2 bars (for 400×) and 1 bar (for 800×). For 90% retention, they are 25 and 10 bars, respectively. If, instead, the target has an anhydrous, ordinary chondrite-like composition, called H', the ejected droplets are bathed in a gas mix consisting mostly of devolatilized sulfur and alkalis with residual nebular gas, a much more reducing plume. If the conditions were such that sodium were retained by the resulting droplets at their liquidus temperature, the fayalite contents of the olivine and the chemical compositions of the bulk droplets and their glasses would

  5. Sulfur and sulfides in chondrules

    NASA Astrophysics Data System (ADS)

    Marrocchi, Yves; Libourel, Guy

    2013-10-01

    suggest the occurrence of an external source of iron, very likely gaseous, during chondrule formation. We therefore propose that enrichments in sulfur (and other volatile and moderately volatile elements) from PO to PP type I bulk chondrule compositions towards chondritic values result from progressive reaction between partially depleted olivine-bearing precursors and a volatile-rich gas phase.

  6. Relationships between type I and type II chondrules: Implications on chondrule formation processes

    NASA Astrophysics Data System (ADS)

    Villeneuve, Johan; Libourel, Guy; Soulié, Camille

    2015-07-01

    In unequilibrated chondrites, the ferromagnesian silicates in chondrules exhibit wide ranges of mg# = Mg/(Mg + Fe), allowing to sub-divide porphyritic chondrules into either type I (mg# > 0.9) or type II (mg# < 0.9). Although both chondrule types formed under oxidizing conditions relative to the canonical solar nebula, it is generally inferred that type II chondrules formed in more oxidizing conditions than type I. In order to check whether this redox difference was established during chondrule formation, or reflects differences in their precursors, we have undertaken a set of experiments aimed at heating type I olivine-rich (A) chondrule proxy, i.e. forsterite + Fe metal + Ca-Mg-Si-Al glass mixtures, under oxidizing conditions. We show that high temperature (isothermal) oxidation of type IA-like assemblages is a very efficient and rapid process (e.g. few tens of minutes) to form textures similar to type IIA chondrules. Due to the rapid dissolution of Fe metal blebs, a FeO increase in the melt and in combination with the dissolution of magnesian olivine allows the melt to reach ferroan olivine saturation. Crystallization of ferroan olivine occurs either as new crystal in the mesostasis or as overgrowths on the remaining unresorbed forsterite grains (relicts). Interruption of this process at any time before its completion by rapid cooling allows to reproduce the whole range of textures and chemical diversity observed in type A chondrules, i.e. from type I to type II. Several implications on chondrule formation processes can be inferred from the presented experiments. Type I chondrules or fragments of type I chondrules are very likely the main precursor material involved in the formation of most type II chondrules. Formation of porphyritic olivine type II chondrules is very likely the result of processes generating crystal growth by chemical disequilibrium at high temperature rather than processes generating crystallization only by cooling rates. This questions the

  7. Petrology and thermal history of type IA chondrules in the Semarkona (LL3.0) chondrite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Scott, E. R. D.

    1989-01-01

    Detailed petrologic studies have been made of 15 type IA, Fe-poor, porphyritic olivine chondrules in Semarkona (LL3.0). Major and minor element concentrations in olivines, pyroxenes, and mesostases, and bulk composition so the chondrules are measured along with zoning profiles in the olivine and pyroxene crystals. The mineral compositions and textures are best interpreted in terms of closed system crystallization in which the olivines and pyroxenes crystallized in situ from a melt corresponding to the bulk composition of the chondrule. Relict olivine grains are not found in the chondrules. Crystallization probably occurred at a cooling rate of the order of 1000 C/hr. Precursor materials of the chondrules were composed of two components, one refractory Ca-, Al-, and Ti-rich, and one less refractory Si-, Fe-, Cr-, and Mn-rich. The evidence is consistent with Semarkona being one of the least metamorphosed ordinary chondrites.

  8. A CRITICAL EXAMINATION OF THE X-WIND MODEL FOR CHONDRULE AND CALCIUM-RICH, ALUMINUM-RICH INCLUSION FORMATION AND RADIONUCLIDE PRODUCTION

    SciTech Connect

    Desch, S. J.; Morris, M. A.; Connolly, H. C.; Boss, Alan P.

    2010-12-10

    Meteoritic data, especially regarding chondrules and calcium-rich, aluminum-rich inclusions (CAIs), and isotopic evidence for short-lived radionuclides (SLRs) in the solar nebula, potentially can constrain how planetary systems form. Interpretation of these data demands an astrophysical model, and the 'X-wind' model of Shu et al. and collaborators has been advanced to explain the origin of chondrules, CAIs, and SLRs. It posits that chondrules and CAIs were thermally processed <0.1 AU from the protostar, then flung by a magnetocentrifugal outflow to the 2-3 AU region to be incorporated into chondrites. Here we critically examine key assumptions and predictions of the X-wind model. We find a number of internal inconsistencies: theory and observation show no solid material exists at 0.1 AU; particles at 0.1 AU cannot escape being accreted into the star; particles at 0.1 AU will collide at speeds high enough to destroy them; thermal sputtering will prevent growth of particles; and launching of particles in magnetocentrifugal outflows is not modeled, and may not be possible. We also identify a number of incorrect predictions of the X-wind model: the oxygen fugacity where CAIs form is orders of magnitude too oxidizing, chondrule cooling rates are orders of magnitude lower than those experienced by barred olivine chondrules, chondrule-matrix complementarity is not predicted, and the SLRs are not produced in their observed proportions. We conclude that the X-wind model is not relevant to chondrule and CAI formation and SLR production. We discuss more plausible models for chondrule and CAI formation and SLR production.

  9. The group A3 chondrules of Krymka: Further evidence for major evaporative loss during the formation of chondrules

    NASA Technical Reports Server (NTRS)

    Huang, S.; Benoit, P. H.; Sears, D. W. G.

    1993-01-01

    Like Semarkona (type 3.0), Krymka (type 3.1) contains two distinct types of chondrule (namely groups A and B) which differ in their bulk compositions, phase compositions, and CL properties. The group A chondrules in both meteorites show evidence for major loss of material by evaporation(i.e. elemental abundance patterns, size, redox state, olivine-pyroxene abundances). Group A and B chondrules probably formed from common or very similar precursors by the same processes acting with different intensities, group A suffering greater mass-loss by evaporation and reduction of FeO and SiO2. While Krymka chondrules share many primary mineralogical and compositional properties with Semarkona chondrules, the minimal metamorphism it has suffered has also had a significant effect on its chondrules.

  10. Chondrules in the Murray CM2 meteorite and compositional differences between CM-CO and ordinary chondrite chondrules

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Wasson, J. T.

    1986-02-01

    Thirteen of the least aqueously altered chondrules in Murray (CM2) were analyzed for bulk compositions, by means of a broad beam electron microprobe, to explore the compositional differences between the CM-CO, and the ordinary chondrite OC chondrules. The CO chondrules are richer in refractory lithophiles and poorer in Cr, Mn, and volatile lithophiles than the OC chondrules; much lower refractory lithophile abundances in CM chondrules resulted from aqueous alteration. Evidence is found for two important lithophile precursor components of CM-CO chondrite chondrules: (1) pyroxene- and refractory-rich, FeO-poor, and (2) olivine-rich, refractoryand FeO-poor. It is suggested that the pyroxene- and refractory-rich, FeO-poor lithophile precursor component has formed by an incomplete evaporation of presolar silicates that brought these materials into the enstatite stability field.

  11. Lunar and Planetary Science XXXV: Chondrules: The Never-Ending Story

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Chondrules: The Never-Ending Story" included the following reports:Dust Size Distribution in Solar Nebula Inferred from Shock-Wave Heating Model for Chondrule Formation; Collisional Destruction of Chondrules in Shock Waves and Inferred Dust to Gas Mass Ratio; Evaporation and Accompanying Isotopic Fractionation of Sulfur from Fe-S Melt During Shock Wave Heating ; Evaporation During Chondrule Formation, Recondensation as Fine Particles, and the Condensation of S and Other Volatile Elements; Fe Isotopes and the Formation of Chondrules; Pristine and Processed Metal in CR Chondrites: Condensation in the Solar Nebula and Partial Reequilibration During Chondrule Formation; Variation of the Condensation Path of Supercooled Silicate Melt; Volatile and Moderately Volatile Trace Element Composition of Chondrules and Matrix from CM Chondrites: Implications for Chondrule Formation; Opaque Mineral Assemblages at Chondrule Boundaries in the Vigarano CV Chondrite: Evidence for Gas-Solid Reactions Following Chondrule Formation; Forsterite and Olivine in Sahara-97210 (LL3.2) and Chainpur (LL3.4) Chondrules: Compositional Evolution and the Influence of Melting; The Vaguries of Pyroxene Nucleation and the Resulting Chondrule Textures; Contemporaneous Formation of Chondrules in the Al-26-Mg-26 System for Ordinary and CO Chondrites; and Al-Mg Isotopic Systematics in Ferromagnesian Chondrules from the Unequilibrated Ordinary Chondrite.

  12. Kinetics of Melting and Applications to Chondrules

    NASA Astrophysics Data System (ADS)

    Greenwood, James Paul

    1997-12-01

    The congruent melting kinetics of Amelia albite were experimentally determined at 1125o C,/ 1150o C,/ 1175o C, and 1200o C. It was determined that congruent melting is a heterogeneous process. Melting is initiated at external surfaces and cleavage planes. Melting kinetics of albite are best described using a normal growth model. Congruent melting of albite was found to be interface controlled, and rates of melting are directly proportional to the amount of superheat, and inversely proportional to viscosity. Comparison of the results obtained here with previous studies of melting kinetics on other materials (oxides and silicates) finds that the normal growth model can be used to predict melting rates within an order of magnitude. The normal growth model was used to predict congruent melting rates of forsterite and enstatite as well as other minerals which may have been present in the chondrule forming region of the solar nebula. Constraints on the peak temperatures of chondrule formation are thus obtained. Specifically, chondrules containing relict grains of forsteritic olivine and enstatitic pyroxene could not have been heated above 1901o C and 1577o C, respectively, for more than a few seconds. Reanalyses of Na-Al-rich chondrule glasses by EPMA have found that previous EPMA work resulted in loss of Na from the activated volume due to migration in an electrical potential gradient. The Na-Al-rich chondrules have Na/Al ratios of unity, suggesting that they did not lose alkalis during flash heating. Experiments reproduced the chondrule glasses and determined the formational constraints of these chondrules. Specifically, the chondrules needed to have been cooled at low rates (<6o C/hr) at the lower temperature end of chondrule formation.

  13. Oxygen isotopic constraints on the origin of magnesian chondrules and on the gaseous reservoirs in the early Solar System

    NASA Astrophysics Data System (ADS)

    Chaussidon, Marc; Libourel, Guy; Krot, Alexander N.

    2008-04-01

    We report in situ ion microprobe analyses of the oxygen isotopic composition of the major silicate phases (olivine, low-Ca pyroxene, silica, and mesostasis) of 37 magnesian porphyritic (type I) chondrules from CV (Vigarano USNM 477-2, Vigarano UH5, Mokoia, and Efremovka) and CR (EET 92042, EET 92147, EET 87770, El Djouf 001, MAC 87320, and GRA 95229) carbonaceous chondrites. In spite of significant variations of the modal proportions of major mineral phases in CR and CV chondrules, the same isotopic characteristics are observed: (i) olivines are isotopically homogeneous at the ‰ level within a chondrule although they may vary significantly from one chondrule to another, (ii) low-Ca pyroxenes are also isotopically homogeneous but systematically 16O-depleted relative to olivines of the same chondrule, and (iii) all chondrule minerals analyzed show 16O-enrichments relative to the terrestrial mass fractionation line, enrichments that decrease from olivine (±spinel) to low-Ca pyroxene and to silica and mesostasis. The observation that, in most of the type I chondrules studied, the coexisting olivine and pyroxene crystals and glassy mesostasis have different oxygen isotopic compositions implies that the olivine and pyroxene grains are not co-magmatic and that the glassy mesostasis is not the parent liquid of the olivine. The δ 18O and δ 17O values of pyroxene and olivine appear to be strongly correlated for all the studied CR and CV chondrules according to:

  14. The lack of potassium-isotopic fractionation in Bishunpur chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.; Wang, Jingyuan; Zanda, B.; Bourot-Denise, M.; Hewins, R.H.

    2000-01-01

    In a search for evidence of evaporation during chondrule formation, the mesostases of 11 Bishunpur chondrules and melt inclusions in olivine phenocrysts in 7 of them have been analyzed for their alkali element abundances and K-isotopic compositions. Except for six points, all areas of the chondrules that were analyzed had δ41K compositions that were normal within error (typically ±3%, 2s̀). The six “anomalous” points are probably all artifacts. Experiments have shown that free evaporation of K leads to large 41K enrichments in the evaporation residues, consistent with Rayleigh fractionation. Under Rayleigh conditions, a 3% enrichment in δ41K is produced by ∼12% loss of K. The range of L-chondrite-normalized K/Al ratios (a measure of the K-elemental fractionation) in the areas analyzed vary by almost three orders of magnitude. If all chondrules started out with L-chondrite-like K abundances and the K loss occurred via Rayleigh fractionation, the most K-depleted chondrules would have had compositions of up to δ41K ≅ 200%. Clearly, K fractionation did not occur by evaporation under Rayleigh conditions. Yet experiments and modeling indicate that K should have been lost during chondrule formation under currently accepted formation conditions (peak temperature, cooling rate, etc.). Invoking precursors with variable alkali abundances to produce the range of K/Al fractionation in chondrules does not explain the K-isotopic data because any K that was present should still have experienced sufficient loss during melting for there to have been a measurable isotopic fractionation. If K loss and isotopic fractionation was inevitable during chondrule formation, the absence of K-isotopic fractionation in Bishunpur chondrules requires that they exchanged K with an isotopically normal reservoir during or after formation. There is evidence for alkali exchange between chondrules and rim-matrix in all unequilibrated ordinary chondrites. However, melt inclusions can have

  15. Oxygen Isotope Systematics of Chondrules from the Least Equilibrated H Chondrite

    NASA Technical Reports Server (NTRS)

    Kita, N. T.; Kimura, M.; Ushikubo, T.; Valley, J. W.; Nyquist, L. E.

    2008-01-01

    Oxygen isotope compositions of bulk chondrules and their mineral separates in type 3 ordinary chondrites (UOC) show several % variability in the oxygen three isotope diagram with slope of approx.0.7 [1]. In contrast, ion microprobe analyses of olivine and pyroxene phenocrysts in ferromagnesian chondrules from LL 3.0-3.1 chondrites show mass dependent isotopic fractionation as large as 5% among type I (FeO-poor) chondrules, while type II (FeO-rich) chondrules show a narrow range (less than or equal to 1%) of compositions [2]. The .Delta(exp 17)O (=delta(exp 17)O-0.52xdelta(exp 18)O) values of olivine and pyroxene in these chondrules show a peak at approx.0.7% that are systematically lower than those of bulk chondrule analyses as well as the bulk LL chondrites [2]. Further analyses of glass in Semarkona chondrules show .17O values as high as +5% with highly fractionated d18O (max +18%), implying O-16-poor glass in chondrules were altered as a result of hydration in the parent body at low temperature [3]. Thus, chondrules in LL3.0-3.1 chondrites do not provide any direct evidence of oxygen isotope exchange between solid precursor and O-16-depleted gas during chondrule melting events. To compare the difference and/or similarity between chondrules from LL and H chondrites, we initiated systematic investigations of oxygen isotopes in chondrules from Yamato 793408 (H3.2), one of the least equilibrated H chondrite [4]. In our preliminary study of 4 chondrules, we reported distinct oxygen isotope ratios from dusty olivine and refractory forsterite (RF) grains compared to their host chondrules and confirmed their relict origins [5].

  16. Compound chondrules: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Connolly, H. C., Jr.; Hewins, R. H.; Atre, N.; Lofgren, G. E.

    1994-07-01

    Compound chondrules are considered to be the product of collisions between molten chondrules during chondrule formation Wasson, J. T. et al. (1994) have argued that some compound chondrules are formed when a chondrule with an accretional rim experienced a flash-melting event similar to a chondrule-forming event. We have designed experiments to investigate the formation of compound chondrules by both methods. Experiments were performed on a Deltech vertical muffle tube furnace to form synthetic chondrules to use as accretion rim material. For our experimental conditions, it is clear that compound chondrules can only be made by a collisional event. Our changes maintain their spherical shape and produce distinct boundaries between charges that are similar to natural compound chondrules. Furthermore, collision event(s) between chondrules will cause nucleation if they are molten and undercooled, thus producing chondrule textures. Flash melting chondrules with accretionary rims will not produce compound chondrules but will produce new chondrules with new textures.

  17. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Amelin, Yuri; Krot, Alexander N.

    2005-01-01

    CB (Bencubbin-type) carbonaceous chondrites differ in many ways from more familiar CV and CO carbonaceous chondrites and from ordinary chondrites. CB chondrites are very rich in Fe-Ni metal (50-70 vol%) and contain magnesian silicates mainly as angular to sub-rounded clasts (or chondrules) with barred olivine (BO) or cryptocrystalline (CC) textures. Both metal and silicates appear to have formed by condensation. The sizes of silicate clasts vary greatly between the two subgroups of CB chondrites: large (up to one cm) in CB(sub a) chondrites, and typically to much much less than 1 mm in CB(sub b) chondrites. The compositional and mineralogical differences between these subgroups and between the CB(sub s) and other types of chondrites suggest different environment and possibly different timing of chondrule formation. In order to constrain the timing of chondrule forming processes in CB(sub s) and understand genetic relationship between their subgroups, we have determined Pb-isotopic ages of silicate material from the CB(sub a) chondrite Gujba and CB(sub b) chondrite Hammadah al Hamra 237 (HH237 hereafter).

  18. Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism

    NASA Astrophysics Data System (ADS)

    McCoy, T. J.; Scott, E. R. D.; Jones, R. H.; Keil, K.; Taylor, G. J.

    1991-02-01

    The composition of 75 type-IA and type-II porphyritic olivine chondrules from nine LL type 3 to type 5 chondrites was determined and was compared with that of chondrules from the Semarkona type 3.0 meteorite. Chemical data for silicates in the LL3.3-5 chondrites indicated that porphyritic olivine chondrules in these chondrites could be derived from chondrules similar to those from the Semarkona LL3.0, the least metamorphosed one of the known LL chondrites. It is shown that the chemical trends defined by the minerals of type-IA and type-II chondrules can be satisfactorily accounted for by the process of solid-state diffusive equilibration between minerals in chondrules and the opaque matrix rather than by changes in conditions during chondrule crystallization.

  19. Composition of chondrule silicates in LL3-5 chondrites and implications for their nebular history and parent body metamorphism

    NASA Technical Reports Server (NTRS)

    Mccoy, Timothy J.; Scott, Edward R. D.; Keil, Klaus; Taylor, G. Jeffrey; Jones, Rhian H.

    1991-01-01

    The composition of 75 type-IA and type-II porphyritic olivine chondrules from nine LL type 3 to type 5 chondrites was determined and was compared with that of chondrules from the Semarkona type 3.0 meteorite. Chemical data for silicates in the LL3.3-5 chondrites indicated that porphyritic olivine chondrules in these chondrites could be derived from chondrules similar to those from the Semarkona LL3.0, the least metamorphosed one of the known LL chondrites. It is shown that the chemical trends defined by the minerals of type-IA and type-II chondrules can be satisfactorily accounted for by the process of solid-state diffusive equilibration between minerals in chondrules and the opaque matrix rather than by changes in conditions during chondrule crystallization.

  20. Petrology of FeO-poor, porphyritic pyroxene chondrules in the Semarkona chondrite

    NASA Astrophysics Data System (ADS)

    Jones, Rhian H.

    1994-12-01

    The mineralogy and petrology of FeO-poor, porphyritic, pyroxene- and olivine-rich chondrules in the Semarkona (LL3.0) chondrite are described in detail. In an extension of the textural classification scheme, these chondrules are designated types IAB and IB. In type IAB chondrules, the proportion of olivine phenocrysts is between 20-80% and in type IB chondrules, olivine constitutes <20% of the phenocryst assemblage. All the chondrules studied are FeO-poor and contain olivine and low-Ca pyroxene phenocrysts in varying proportions. Olivine is present both as chadacrysts enclosed in low-Ca pyroxene and as larger phenocrysts. Ca-rich pyroxene occurs commonly as rims on low-Ca pyroxene phenocrysts. Lamellar zoning in low-Ca pyroxene, observed in backscattered electron images, is interpreted as a primary growth feature. Apparent partition coefficients between phenocrysts and mesostasis for major and minor elements are consistent with crystallization of an essentially molten chondrule at rapid cooling rates (100-1000°C/h). Within the entire type I series, there are continuous changes in textural and compositional properties that suggest common origins for all chondrules in this series. These properties include proportions of olivine and pyroxene phenocrysts, FeO contents of olivine and pyroxene phenocrysts and a complementary relationship between the proportions of refractory elements and Si-, Fe-rich precursor components in chondrule bulk compositions. Observations of the behavior of Na suggest that evaporation and recondensation of volatile elements was not an important process during formation of type I chondrules and that abundances of volatile elements were largely controlled by the abundance of a volatile-rich precursor component.

  1. The Formation of Chondrules: Petrologic Tests of the Shock Wave Model

    NASA Technical Reports Server (NTRS)

    Connolly, H. C., Jr.; Love, S. G.

    1998-01-01

    Chondrules are mm-sized spheroidal igneous components of chondritic meteorites. They consist of olivine and orthopyroxene set in a glassy mesostasis with varying minor amounts of metals, sulfieds, oxides and carbon phases.

  2. Chondrules in the Qingzhen type-3 enstatite chondrite Possible precursor components and comparison to ordinary chondrite chondrules

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Rubin, A. E.; Rambaldi, E. R.; Rajan, R. S.; Wasson, J. T.

    1985-08-01

    The mineral composition of chondrules from a fragment of Qingzhen (EH3) fall was analyzed by neutron activation method. Unlike the ordinary chondrite (OC) chondrules (Gooding and Keil, 1981), the Qingzhen radial pyroxene (RP) and porphyritic pyroxene (PP) chondrules have similar bulk compositions. Porphyritic olivine-pyroxene (POP) chondrules are richer than PP and RP chondrules in refractory lithophiles and siderophiles. Elements in each of the following sets intercorrelate significantly: (1) Fe-Co-Ni-Ir-Au, probably derived from a metal component; (2) Ca-Eu-Se, which suggests an oldhamite-rich precursor; (3) Al-Sc-Hf, occurring in high concentrations in POP chondrules, this set suggesting the existence of a refractory lithophile-rich and olivine-rich component; (4) Na REE; and (5) Cl-Br. Sets (2) and (4) were not precursors of OC. The interelement ratios of refractory lithophiles such as Ca, Al, Ti, Sc, and REE are similar to CI ratios, suggesting that they originated in the earliest phases as silicates, which were sulfurized before chondrule formation.

  3. Troilite in the Chondrules of Type-3 Ordinary Chondrites: Implications for Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Sailer, Alan L.; Wasson, John T.

    1999-01-01

    The presence of primary troilite in chondrules requires that nebular temperatures were <650 K (the 50% condensation temperature of S) at the time of chondrule formation and that chondrules were molten for periods short enough (less than or equal to 10 s) to avoid significant volatilization of S. We examined 226 intact chondrules of all textural types from eight unshocked to weakly shocked ordinary chondrite falls of low petrologic type to determine the origin of troilite in chondrules; 68 chondrules are from LL3.0 Semarkona. There is a high probability that troilite is primary (i.e , was present among the chondrule precursors) if it is completely embedded in a mafic silicate phenocryst, located within one-half radius of the apparent chondrule center and is part of an opaque assemblage with an igneous texture Based on these criteria, 13% of the chondrules in Semarkona and in the set as a whole contain primary troilite. Most of the remaining chondrules contain troilite that is probably primary, but does not meet all three criteria. Troilite occurs next to tetratacnite in some opaque spherules within low-FeO chondrules in Semarkona, implying that the Ni required to form the tetrataenite came from the troilite Troilite can accommodate 5 mg/g Ni at high temperatures (> 1170 K) but much less Ni at lower temperatures; because this is far higher than the metamorphic temperature inferred for Semarkona (approx. 670 K), the troilite must be primary Primary troilite fitting the three criteria occurs in a smaller fraction of low-FeO [FeO/(FeO + MgO) in olivine and/or low-Ca pyroxene not greater than 0.0751 than high-FeO porphyritic chondrules in Semarkona (9% vs 33%) Coarse-grained low-FeO porphyritic chondrules appear to contain somewhat more troilite on average than those of medium grain size We found a few troilite-free, metallic-Fe-Ni-bearing, low-FeO chondrules that contain Na2O-bearing augite and Na2O- and K2O-rich mesostasis; these chondrules were probably formed after

  4. Compound chondrules fused cold

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2015-07-01

    About 4-5% of chondrules are compound: two separate chondrules stuck together. This is commonly believed to be the result of the two component chondrules having collided shortly after forming, while still molten. This allows high velocity impacts to result in sticking. However, at T ∼ 1100 K, the temperature below which chondrules collide as solids (and hence usually bounce), coalescence times for droplets of appropriate composition are measured in tens of seconds. Even at 1025 K, at which temperature theory predicts that the chondrules must have collided extremely slowly to have stuck together, the coalescence time scale is still less than an hour. These coalescence time scales are too short for the collision of molten chondrules to explain the observed frequency of compound chondrules. We suggest instead a scenario where chondrules stuck together in slow collisions while fully solid; and the resulting chondrule pair was subsequently briefly heated to a temperature in the range of 900-1025 K. In that temperature window the coalescence time is finite but long, covering a span of hours to a decade. This is particularly interesting because those temperatures are precisely the critical window for thermally ionized MRI activity, so compound chondrules provide a possible probe into that vital regime.

  5. Fine, nickel-poor Fe-Ni grains in the olivine of unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rambaldi, E. R.; Wasson, J. T.

    1982-06-01

    Nickel-poor Fe-Ni grains smaller than 2.0 microns are common inclusions in ordinary, unequilibrated chondrites' porphyritic chondrule olivine, where the olivine grains seem to be relicts that survived chondrule formation without melting. This 'dusty' metal, whose most common occurrence is in the core of olivine grains having clear, Fe-poor rims, appears to be the product of the in situ reduction of FeO from the host olivine, with H2 or carbonaceous matter being the most likely reductants. H2 may have been implanted by solar wind or solar flare irradiation, but this requires the dissipation of nebular gas before the end of the chondrule formation process. Carbonaceous matter may have been implanted by shock. The large relict olivine grains may be nebular condensates or fragments broken from earlier chondrule generations.

  6. Chondrule magnetic properties

    NASA Technical Reports Server (NTRS)

    Wasilewski, P. J.; Obryan, M. V.

    1994-01-01

    The topics discussed include the following: chondrule magnetic properties; chondrules from the same meteorite; and REM values (the ratio for remanence initially measured to saturation remanence in 1 Tesla field). The preliminary field estimates for chondrules magnetizing environments range from minimal to a least several mT. These estimates are based on REM values and the characteristics of the remanence initially measured (natural remanence) thermal demagnetization compared to the saturation remanence in 1 Tesla field demagnetization.

  7. Petrology and mineralogy of Type II, FeO-rich chondrules in Semarkona (LL3.0) - Origin by closed-system fractional crystallization, with evidence for supercooling

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.

    1990-01-01

    The petrology of type II porphyritic olivine chondrules in Semarkona (LL3.0) has been studied in detail. Olivines in these chondrules are euhedral, Fe-rich, and are strongly zoned from cores to rims of grains in FeO (Fa10-30), Cr2O3 (0.2-0.6 wt pct), MnO (0.2-0.7 wt pct), and CaO (0.1-0.4 wt pct). Interstitial mesostasis is rich in Si, Al, and Ca and is glassy with abundant microcrystallites. Minor minerals include troilite, Fe,Ni metal, and chromite. Some olivine grains contain euhedral, fayalite-rich cores that are probably produced during initial supercooling of the chondrule melt. Rare relict grains of forsteritic olivine have compositions very similar to olivines in type IA chondrules in Semarkona and may result from disaggregation of such chondrules. Apart from these relics, all properties of type II chondrules can be described by closed-system fractional crystallization of droplets which were essentially entirely molten. Type IA chondrules may have formed from type II chondrules by loss of Fe and volatiles. Alternatively, the two chondrule types may have formed in regions of considerable diversity in the solar nebula from precursor materials with different Fe/Mg ratios.

  8. Temperature conditions for chondrule formation

    NASA Technical Reports Server (NTRS)

    Hewins, Roger H.; Radomsky, Patrick M.

    1990-01-01

    An attempt is made to constrain the chondrule-forming process from dynamic crystallization experiments on chondrule analogs and from correlations between texture and bulk composition in natural chondrules. Liquidus temperatures for chondrules from unequilibrated chondrites are calculated using Herzberg's (1979) method. The paper then infers whether each chondrule formed above, at, or below its liquidus based on textures produced in experiments. A range of temperatures to which chondrules may have been initially heated is then derived from the texture-composition-temperature relationships. Finally, the role of dust seeding, or external heterogeneous nucleation, in producing chondrule textures is examined.

  9. Terminal particle from Stardust track 130: Probable Al-rich chondrule fragment from comet Wild 2

    NASA Astrophysics Data System (ADS)

    Joswiak, D. J.; Nakashima, D.; Brownlee, D. E.; Matrajt, G.; Ushikubo, T.; Kita, N. T.; Messenger, S.; Ito, M.

    2014-11-01

    A 4 × 6 μm terminal particle from Stardust track 130, named Bidi, is composed of a refractory assemblage of Fo97 olivine, Al- and Ti-bearing clinopyroxene and anorthite feldspar (An97). Mineralogically, Bidi resembles a number of components found in primitive chondritic meteorites including Al-rich chondrules, plagioclase-bearing type I ferromagnesian chondrules and amoeboid olivine aggregates (AOAs). Measured widths of augite/pigeonite lamellae in the clinopyroxene indicate fast cooling rates suggesting that Bidi is more likely to be a chondrule fragment than an AOA. Bulk element concentrations, including an Al2O3 content of 10.2 wt%, further suggests that Bidi is more akin to Al-rich rather than ferromagnesian chondrules. This is supported by high anorthite content of the plagioclase feldspar, overall bulk composition and petrogenetic analysis using a cosmochemical Al2O3-Ca2SiO4-Mg2SiO4 phase diagram. Measured minor element abundances of individual minerals in Bidi generally support an Al-rich chondrule origin but are not definitive between any of the object types. Oxygen isotope ratios obtained from olivine (+minor high-Ca pyroxene)fall between the TF and CCAM lines and overlap similar minerals from chondrules in primitive chondrites but are generally distinct from pristine AOA minerals. Oxygen isotope ratios are similar to some minerals from both Al-rich and type I ferromagnesian chondrules in unequilibrated carbonaceous, enstatite and ordinary chondrites. Although no single piece of evidence uniquely identifies Bidi as a particular object type, the preponderance of data, including mineral assemblage, bulk composition, mineral chemistry, inferred cooling rates and oxygen isotope ratios, suggest that Bidi is more closely matched to Al-rich chondrules than AOAs or plagioclase-bearing type I ferromagnesian chondrules and likely originated in a chondrule-forming region in the inner solar system.

  10. Amoeboid Olivine Aggregates (AOAs) in the Efremovka (CVR) Chondrite: First SIMS Trace-Element Results

    NASA Astrophysics Data System (ADS)

    Ruzicka, A.; Floss, C.; Hutson, M.

    2008-03-01

    SIMS trace-element results for six inclusions in Efremovka imply that condensation was important in the formation of AOAs and that precursor compositions or mode of origin were different for olivine in AOAs and in chondrules.

  11. A RELICT Spinel Grain in an Allende Ferromagnesian Chondrule

    NASA Astrophysics Data System (ADS)

    Misawa, K.; Fujita, T.; Kitamura, M.; Nakamura, N.; Yurimoto, H.

    1993-07-01

    It is suggested that one of the refractory lithophile precursors in CV-CO chondrules was a hightemperature condensate from the nebular gas and was related to Ca,Al-rich inclusions (CAIs) [1-3]. However, little is known about refractory siderophile precursors in chondrules [4]. Allende barred olivine chondrule R-11 consists mainly of olivine (Fa(sub)7- 18), pyroxene (En(sub)93Fs(sub)1Wo(sub)6, En(sub)66Fs(sub)1Wo(sub)33), plagioclase (An(sub)80), Fe-poor spinel, and alkali-rich glass. The CI- chondrite normalized REE pattern of the chondrule, excluding a spinel grain, are fractionated, HREEdepleted (4.6-7.8 x CI) with a large positive Yb anomaly. The REE abundances are hump-shaped functions of elemental volatility, moderately refractory REE-enriched, suggesting that the refractory lithophile precursor component of R-11 could be a condensate from the nebular gas and related to Group 11 CAIs [1,2]. An interior portion of spinel is almost Fe-free, but in an outer zone (2040 micrometers in width) FeO contents increase rapidly. TiO(sub)2, Cr(sub)2O(sub)3, and V(sub)2O(sub)3 contents in core spinel are less than 0.5%, which is different from the V-rich nature of spinel in fluffy Type A CAIs [5]. The Fe-Mg zoning of spinel may have been generated by diffusional emplacement of Mg and Fe during chondrule-forming events. The spinel contains silicate inclusions and tiny metallic grains. The largest silicate inclusion is composed of Al,Ti-rich pyroxene and Ak 40 melilite. One of the submicrometersized grains was analyzed by SEM-EDS and found to be composed of refractory Pt-group metals with minor amounts of Fe and Ni. This is the first occurrence of refractory Pt-group metal nuggets in a ferromagnesian chondrule from the Allende meteorite. Tungsten, Os, Ir, Mo, and Ru are enriched 2-6 x 10^5 relative to CIs, and abundances of Pt and Rh decrease 2-10 x 10^4 with increasing volatility. In addition, abundances of Fe and Ni in the nugget are equal to or less than that CI chondrites

  12. Oxygen-isotope compositions of chondrule phenocrysts and matrix grains in Kakangari K-grouplet chondrite: Implication to a chondrule-matrix genetic relationship

    NASA Astrophysics Data System (ADS)

    Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.

    2015-02-01

    To investigate a possible relationship between chondrules and matrix, we studied mineralogy, mineral chemistry, and in situ O-isotope compositions of chondrules, clastic matrix grains, and amoeboid olivine aggregates (AOAs) in the Kakangari K-grouplet chondrite. Most olivines and low-Ca pyroxenes in the Kakangari chondrules, matrix, and AOAs have similar magnesium-rich compositions, Fo∼95-97 (∼0.3-0.5 wt% MnO) and En∼90-96, respectively. These rather uniform chemical compositions of the different chondritic components are likely due to partial Fe-Mg-Mn equilibration during thermal metamorphism experienced by the host meteorite. Oxygen-isotope compositions of olivine and low-Ca pyroxene grains in chondrules and matrix plot along a slope-1 line on a three O-isotope diagram and show a range from 16O-enriched composition similar to that of the Sun to 16O-depleted composition similar to the terrestrial O-isotope composition. Most olivines and low-Ca pyroxenes in chondrules are 16O-poor and plot on or close to the terrestrial mass-fractionation line (mean Δ17O values ±2 standard deviations: 0.0 ± 0.8‰ and +0.2 ± 0.9‰ for olivine and pyroxene, respectively), consistent with the previously reported compositions of bulk chondrules (Δ17O = -0.16 ± 0.70‰). In addition to these 16O-poor grains, a coarse-grained igneous rim surrounding a porphyritic chondrule contains abundant 16O-rich relict olivines (Δ17O ∼ -24‰). Oxygen-isotope compositions of olivines and low-Ca pyroxenes in matrix show a bimodal distribution: 12 out of 13 olivine and 4 out of 17 pyroxene grains measured are similarly 16O-rich (Δ17O ∼ -23.5 ± 2.9‰), others are similarly 16O-poor (Δ17O ∼ -0.1 ± 1.7‰). Due to slow oxygen self-diffusion, olivines and low-Ca pyroxenes largely retained their original oxygen-isotope compositions. The nearly identical O-isotope compositions between the chondrule phenocrysts and the 16O-poor matrix grains suggest both chondrules and matrix of

  13. Chondrule Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Hweins, R. H.; Connolly, H. C., Jr.; Lofgren, G. E.; Libourel, G.

    2004-01-01

    Given the great diversity of chondrules, laboratory experiments are invaluable in yielding information on chondrule formation process(es) and for deciphering their initial conditions of formation together with their thermal history. In addition, they provide some critical parameters for astrophysical models of the solar system and of nebular disk evolution in particular (partial pressures, temperature, time, opacity, etc). Most of the experiments simulating chondrules have assumed formation from an aggregate of solid grains, with total pressure of no importance and with virtually no gain or loss of elements from or to the ambient environment. They used pressed pellets attached to wires and suffered from some losses of alkalis and Fe.

  14. Carbon, CAIs and chondrules

    NASA Technical Reports Server (NTRS)

    Ash, R. D.; Russell, S. S.

    1994-01-01

    It has been shown that C is present in CAI's and chondrules. It can be distinguished from matrix C both by its thermal stability and isotopic composition, which implies that it was not introduced after parent body accretion. It is concluded that C must have been present in the chondrule and CAI precursor material. Therefore any models of chondrule and CAI formation and inferences drawn about solar system conditions during these events must take into account the consequences of the presence of C on inclusion chemistry, mineralogy, and oxidation state.

  15. High Cooling Rates of Type-II Chondrules: Limited Overgrowths on Phenocrysts Following the Final Melting Event

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Rubin, Alan E.

    2003-01-01

    In a study of type-II chondrules in Y81020 Wasson and Rubin (2003) described three kinds of evidence indicating that only minor (4-10 m) olivine growth occurred following the final melting event: 1) Nearly all (>90%) type-II chondrules in CO3.0 chondrites contain low-FeO relict grains; overgrowths on these relicts are narrow, in the range of 2-12 m. 2) Most type-II chondrules contain small (10-20 m) FeO-rich olivine grains with decurved surfaces and acute angles between faces indicating that the grains are fragments from an earlier generation of chondrules; the limited overgrowth thicknesses following the last melting event are too thin to disguise the shard-like nature of these small grains. 3) Most type-II chondrules contain many small (<20 m) euhedral or subhedral phenocrysts with central compositions that are much more ferroan than the centers of the large phenocrysts; their small sizes document the small amount of growth that occurred following the final melting event.We have additional data on chondrules in Y81020 and Semarkona, and we have reinterpreted observations of Jones (1990). The striking feature of this chondrule is the large number of tiny fragments. The chondrule precursor initially consisted of crushed olivine.

  16. EH3 matrix mineralogy with major and trace element composition compared to chondrules

    NASA Astrophysics Data System (ADS)

    Lehner, S. W.; McDonough, W. F.; NéMeth, P.

    2014-12-01

    We investigated the matrix mineralogy in primitive EH3 chondrites Sahara 97072, ALH 84170, and LAR 06252 with transmission electron microscopy; measured the trace and major element compositions of Sahara 97072 matrix and ferromagnesian chondrules with laser-ablation, inductively coupled, plasma mass spectrometry (LA-ICPMS); and analyzed the bulk composition of Sahara 97072 with LA-ICPMS, solution ICPMS, and inductively coupled plasma atomic emission spectroscopy. The fine-grained matrix of EH3 chondrites is unlike that in other chondrite groups, consisting primarily of enstatite, cristobalite, troilite, and kamacite with a notable absence of olivine. Matrix and pyroxene-rich chondrule compositions differ from one another and are distinct from the bulk meteorite. Refractory lithophile elements are enriched by a factor of 1.5-3 in chondrules relative to matrix, whereas the matrix is enriched in moderately volatile elements. The compositional relation between the chondrules and matrix is reminiscent of the difference between EH3 pyroxene-rich chondrules and EH3 Si-rich, highly sulfidized chondrules. Similar refractory element ratios between the matrix and the pyroxene-rich chondrules suggest the fine-grained material primarily consists of the shattered, sulfidized remains of the formerly pyroxene-rich chondrules with the minor addition of metal clasts. The matrix, chondrule, and metal-sulfide nodule compositions are probably complementary, suggesting all the components of the EH3 chondrites came from the same nebular reservoir.

  17. Condensates from vapor made by impacts between metal-, silicate-rich bodies: Comparison with metal and chondrules in CB chondrites

    NASA Astrophysics Data System (ADS)

    Fedkin, Alexei V.; Grossman, Lawrence; Humayun, Munir; Simon, Steven B.; Campbell, Andrew J.

    2015-09-01

    The impact hypothesis for the origin of CB chondrites was tested by performing equilibrium condensation calculations in systems composed of vaporized mixtures of projectile and target materials. When one of the impacting bodies is composed of the metal from CR chondrites and the other is an H chondrite, good agreement can be found between calculated and observed compositions of unzoned metal grains in CB chondrites but the path of composition variation of the silicate condensate computed for the same conditions that reproduce the metal grain compositions does not pass through the measured compositions of barred olivine (BO) or cryptocrystalline (CC) chondrules in the CBs. The discrepancy between measured chondrule compositions and those of calculated silicates is not reduced when diogenite, eucrite or howardite compositions are substituted for H chondrite as the silicate-rich impacting body. If, however, a CR chondrite body is differentiated into core, a relatively CaO-, Al2O3-poor mantle and a CaO-, Al2O3-rich crust, and later accretes significant amounts of water, a collision between it and an identical body can produce the necessary chemical conditions for condensation of CB chondrules. If the resulting impact plume is spatially heterogeneous in its proportions of crust and mantle components, the composition paths calculated for silicate condensates at the same Ptot, Ni/H and Si/H ratios and water abundance that produce good matches to the unzoned metal grain compositions pass through the fields of BO and CC chondrules, especially if high-temperature condensates are fractionated in the case of the CCs. While equilibrium evaporation of an alloy containing solar proportions of siderophiles into a dense impact plume is an equally plausible hypothesis for explaining the compositions of the unzoned metal grains, equilibrium evaporation can explain CB chondrule compositions only if an implausibly large number of starting compositions is postulated. Kinetic models

  18. Chondrule Rims in Murchison, Cathodoluminescence Evidence for In Situ Formation by Aqueous Alteration

    NASA Astrophysics Data System (ADS)

    Sears, D. W. G.; Jie, Lu; Benoit, P. H.

    1992-07-01

    The fine-grained rims on ordinary and carbonaceous chondrite chondrules are often regarded as accretionary, mainly because they are often volatile-rich (King and King, 1981). However, Sears et al. (1991) recently argued that some chondrule rims in CM chondrites may be the result of aqueous alteration. The rims, like many features in primitive chondrites, stand out especially clearly in cathodoluminescence (CL) imagery due to the distinctive bright red CL of their abundant fine-grained forsterite. Chondrules similarly stand out well in CL images. Group A chondrules show the strong red CL of Fe-free olivine, sometimes associated with the bright yellow CL of anorthite- normative mesostases, while group B chondrules containing Fe-rich olivines and quartz-normative mesostases do not produce CL (Sears et al., 1992). Using a CL mosaic, we measured chondrule and rim diameters for every chondrule in a 17x10 mm section of Murchison. 38% of the chondrules were group A, compared with 46% in the Semarkona (LL3.0) and 61% in the Dhajala (H3.8) ordinary chondrites. While both group A and group B chondrules have rims, those on group A chondrules are significantly thicker than those on group B chondrules, the rim-to-diameter ratios being 0.2-0.5 for group A chondrules and 0.1-0.2 for group B chondrules (Fig. 1). There are two reasonable explanations for the relationship between rim thickness and chondrule group. Either (1) the composition of chondrule mainly determines the thickness of the rim, e.g., the rims were produced by the aqueous alteration of the host chondrule, or (2) the two chondrule groups were formed in different environments, say a very dusty locale favoring thick rims versus a less favorable relatively dust-free location. We note that (a) both types of chondrule coexist in the same rock, (b) CL textures at the rim/matrix are sharp while at the rim/chondrule interface they are irregular (see Fig. 7d,e in Sears et al., 1991), (c) all faces on the objects in Murchison

  19. Survey of chondrule average properties in H-, L-, and LL-group chondrites - Are chondrules the same in all unequilibrated ordinary chondrites?

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1983-01-01

    The petrogenetic properties of chondrules in different unequilibrated ordinary chondrites (UOCs) are compared to averaged chondrule-suite values obtained from recent analyses of several H-group, L-group, and LL-group chondrites. The purpose of the study was to develop a data base for future statistical analyses of chondrite characteristics. Mean end-member compositions of olivine (mol percent Fa) and pyroxene (mol percent Fs) were used as indices of the relative degree of 'equilibration' of each chondrule suite. It is found that the bulk chondrule geometric-mean abundances of Na, Mg, and Ni are the same from one UOC to another, and show no major systematic trends related to the H-group, L-group, of LL-group parentage of the host chondrites. The patterns of rare-earth element abundances in the chondrules are also examined, and the results are compared with statistical analyses. It is concluded that multivariate statistical analysis of pooled UOC chondrule data is justified for chondrule bulk compositions, as long as the statistical results are not misinterpreted as the primary petrogenetic features of chondrules.

  20. Oxygen-isotopic Compositions of Relict and Host Grains in Chondrules in the Yamato 81020 CO3.0 Chondrite

    NASA Technical Reports Server (NTRS)

    Kunihiro, Takuya; Rubin, Alan E.; McKeegan, Kevin D.; Wasson, John T.

    2006-01-01

    We report the oxygen-isotope compositions of relict and host olivine grains in six high-FeO porphyritic olivine chondrules in one of the most primitive carbonaceous chondrites, CO3.0 Yamato 81020. Because the relict grains predate the host phenocrysts, microscale in situ analyses of O-isotope compositions can help assess the degree of heterogeneity among chondrule precursors and constrain the nebular processes that caused these isotopic differences. In five of six chondrules studied, the DELTA O-17 (=delta O-17 - 0.52 (raised dot) delta O-18) compositions of host phenocrysts are higher than those in low-FeO relict grains; the one exception is for a chondrule with a moderately high-FeO relict. Both the fayalite compositions as well as the O-isotope data support the view that the low-FeO relict grains formed in a previous generation of low-FeO porphyritic chondrules that were subsequently fragmented. It appears that most low-FeO porphyritic chondrules formed earlier than most high-FeO porphyritic chondrules, although there were probably some low-FeO chondrules that formed during the period when most high-FeO chondrules were forming.

  1. Compound chondrules: An experimental investigation. [Abstract only

    NASA Technical Reports Server (NTRS)

    Connolly, H. C., Jr.; Hewins, R. H.; Atre, N.; Lofgren, G. E.

    1994-01-01

    Compound chondrules are considered to be the product of collisions between molten chondrules during chondrule formation Wasson, J. T. et al. (1994) have argued that some compound chondrules are formed when a chondrule with an accretional rim experienced a flash-melting event similar to a chondrule-forming event. We have designed experiments to investigate the formation of compound chondrules by both methods. Experiments were performed on a Deltech vertical muffle tube furnace to form synthetic chondrules to use as accretion rim material. For our experimental conditions, it is clear that compound chondrules can only be made by a collisional event. Our changes maintain their spherical shape and produce distinct boundaries between charges that are similar to natural compound chondrules. Furthermore, collision event(s) between chondrules will cause nucleation if they are molten and undercooled, thus producing chondrule textures. Flash melting chondrules with accretionary rims will not produce compound chondrules but will produce new chondrules with new textures.

  2. Chondrules and the Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Jones, Rhian; Scott, Ed

    2011-03-01

    Part I. Introduction: 1. Chondrules and the protoplanetary disk: An overview R. H. Hewins; Part. II. Chonrules, Ca-Al-Rich Inclusions and Protoplanetary Disks: 2. Astronomical observations of phenomena in protostellar disks L. Hartmann; 3. Overview of models of the solar nebula: potential chondrule-forming environments P. Cassen; 4. Large scale processes in the solar nebula A. P. Boss; 5. Turbulence, chondrules and planetisimals J. N. Cuzzi, A. R. Dobrovolskis and R. C. Hogan; 6. Chondrule formation: energetics and length scales J. T. Wasson; 7. Unresolved issues in the formation of chondrules and chondrites J. A. Wood; 8. Thermal processing in the solar nebula: constraints from refractory inclusions A. M. Davis and G. J. MacPherson; 9. Formation times of chondrules and Ca-Al-Rich inclusions: constraints from short-lived radionuclides T. D. Swindle, A. M. Davis, C. M. Hohenberg, G. J. MacPherson and L. E. Nyquist; 10. Formation of chondrules and chondrites in the protoplanetary nebula E. R. D. Scott, S. G. Love and A. N. Krot; Part III. Chondrule precursors and multiple melting: 11. Origin of refractory precursor components of chondrules K. Misawa and N. Nakamura; 12. Mass-independent isotopic effects in chondrites: the role of chemical processes M. H. Thiemens; 13. Agglomeratic chondrules: implications for the nature of chondrule precursors and formation by incomplete melting M. K. Weisberg and M. Prinz; 14. Constraints on chondrule precursors from experimental Data H. C. Connolly Jr. and R. H. Hewins; 15. Nature of matrix in unequilibrated chondrites and its possible relationship to chondrules A. J. Brearly; 16. Constraints on chondrite agglomeration from fine-grained chondrule Rims K. Metzler and A. Bischoff; 17. Relict grains in chondrules: evidence for chondrule recycling R. H. Jones; 18. Multiple heating of chondrules A. E. Rubin and A. N. Krot; 19. Microchondrule-bearing chondrule rims: constraints on chondrule formation A. N. Krot and A. E. Rubin; Part IV

  3. Deformation and thermal histories of chondrules in the Chainpur (LL3. 4) chondrite

    SciTech Connect

    Ruzicka, A. )

    1990-06-01

    The results of optical and TEM studies of chondrules in the Chainpur (LL3.4) chondrite are presented. Results were obtained, using a microprobe, from quantitative microchemical analyses for Mg, Fe, Si, and Ca for the chondrule olivine and pyroxene, showing that chondrules in the Chainpur chondrite experienced varied degrees of annealing and deformation. It is suggested that Chainpur may be an agglomerate of a breccia that experienced little overall deformation or heating during and after the final accumulation and compaction of its constituents. 75 refs.

  4. Correlation between relative ages inferred from 26Al and bulk compositions of ferromagnesian chondrules in least equilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Tachibana, S.; Nagahara, H.; Mostefaoui, S.; Kita, N. T.

    2003-06-01

    We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 -0.4/+0.7 Myr after calcium-aluminum-rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene-rich chondrules are younger than olivine-rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.

  5. Mass transfer of Fe during the serpentinization of olivine by SiO2 rich fluid at 300°C, 500 bars: Perspectives from mineral dissolution/precipitation rates and Fe isotope systematics

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Tutolo, B. M.; Borrok, D. M.; Seyfried, W. E., Jr.

    2014-12-01

    High temperature (~300°C) hydrothermal alteration of peridotites can produce an alteration assemblage abundant in Fe-bearing serpentine and magnetite without the presence of brucite. This is particularly so in systems with SiO2-rich fluids derived from the hydration of orthopyroxene in basaltic intrusions and gabbros [1]. Few experimental studies have investigated the effects of aSiO2(aq) on the rate of olivine serpentinization and none that have examined the Fe isotopic composition of olivine hydrolysis products. Thus, this study addresses these problems by using flexible gold cell hydrothermal equipment to react olivine (Fo90) and talc with a NaCl-bearing fluid at 300 °C and 500 bars for ~90 days; providing time-series solution chemistry data coupled with Fe isotope, magnetic susceptibility, and Mössbauer measurements of reactant olivine and the serpentinization product. Talc is used to elevate the aSiO2(aq)above the serpentine-brucite buffer, effectively preventing brucite formation and allowing only the formation of Fe-bearing serpentine and magnetite from olivine alteration. Initial time series solution chemistry data indicate that the net rate of the serpentinization of olivine and talc dissolution is such that the experimental system is poised between the serpentine-brucite and serpentine-talc stability fields, with little H2 generated by the oxidation of Fe2+ upon formation of Fe-serpentine and magnetite. However, as the talc Si-source becomes effectively titrated, the continued hydration of olivine decreases the aSiO2(aq) towards the serpentine-brucite stability field concurrent with an increasing rate of H2 generation. This chemical transition likely reflects an enhanced rate of magnetite formation upon a decrease in the relative stability of Fe-serpentine. Fe isotope data indicate a slight enrichment trend in δ56Fe versus Fe3+/ΣFe of the altered mineral phases, magnetite > Fe-serpentine > olivine, although the observed inter-mineral fractionations

  6. Zoned chondrules in Semarkona: Evidence for high-and low-temperature processing

    USGS Publications Warehouse

    Grossman, J.N.; Alexander, C.M. O'D.; Wang, Jingyuan; Brearley, A.J.

    2002-01-01

    At least 15% of the low-FeO chondrules in Semarkona (LL3.0) have mesostases that are concentrically zoned in Na, with enrichments near the outer margins. We have studied zoned chondrules using electron microprobe methods (x-ray mapping plus quantitative analysis), ion micropobe analysis for trace elements and hydrogen isotopes, cathodoluminescence imaging, and transmission electron microscopy in order to determine what these objects can tell us about the environment in which chondrules formed and evolved. Mesostases in these chondrules are strongly zoned in all moderately volatile elements and H (interpreted as water). Calcium is depleted in areas of volatile enrichment. Titanium and Cr generally decrease toward the chondrule surfaces, whereas Al and Si may either increase or decrease, generally in opposite directions to one another; Mn follows Na in some chondrules but not in others; Fe and Mg are unzoned. D/H ratios increase in the water-rich areas of zoned chondrules. Mesostasis shows cathodoluminescence zoning in most zoned chondrules, with the brightest yellow color near the outside. Mesostasis in zoned chondrules appears to be glassy, with no evidence for devitrification. Systematic variations in zoning patterns among pyroxene- and olivine-rich chondrules may indicate that fractionation of low- and high-Ca pyroxene played some role in Ti, Cr, Mn, Si, Al, and some Ca zoning. But direct condensation of elements into hot chondrules, secondary melting of late condensates into the outer portions of chondrules, and subsolidus diffusion of elements into warm chondrules cannot account for the sub-parallel zoning profiles of many elements, the presence of H2O, or elemental abundance patterns. Zoning of moderately volatile elements and Ca may have been produced by hydration of chondrule glass without devitrification during aqueous alteration on the parent asteroid. This could have induced structural changes in the glass allowing rapid diffusion and exchange of elements

  7. Evidence for primitive nebular components in chondrules from the Chainpur chondrite

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Wasson, J. T.

    1982-06-01

    In view of the fact that the least equilibrated ordinary chondrites contain chondrules that have changed little since the time of their formation in the early solar system, and are therefore excellent indicators of the physical and chemical nature of the solar nebula, 36 chondrules were separated from the Chainpur chondrite and analyzed for 20 elements and petrographic properties. The dominant nebular components found are: (1) a mixture of metal and sulfide whose composition is similar to whole rock metal and sulfide, (2) Ir-rich metal, (3) olivine-rich silicates, (4) pyroxene-rich silicates, and possibly (5) a component containing the more volatile lithophiles. Although etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules, a large fraction of the volatiles remains in the unetched interior.

  8. Chondrule transport in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Goldberg, Aaron Z.; Owen, James E.; Jacquet, Emmanuel

    2015-10-01

    Chondrule formation remains one of the most elusive early Solar system events. Here, we take the novel approach of employing numerical simulations to investigate chondrule origin beyond purely cosmochemical methods. We model the transport of generically produced chondrules and dust in a 1D viscous protoplanetary disc model in order to constrain the chondrule formation events. For a single formation event we are able to match analytical predictions of the memory they retain of each other (complementarity), finding that a large mass accretion rate (≳10-7 M⊙ yr-1) allows for delays on the order of the disc's viscous time-scale between chondrule formation and chondrite accretion. Further, we find older discs to be severely diminished of chondrules, with accretion rates ≲10-9 M⊙ yr-1 for nominal parameters. We then characterize the distribution of chondrule origins in both space and time, as functions of disc parameters and chondrule formation rates, in runs with continuous chondrule formation and both static and evolving discs. Our data suggest that these can account for the observed diversity between distinct chondrite classes, if some diversity in accretion time is allowed for.

  9. The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules

    NASA Astrophysics Data System (ADS)

    Schrader, Devin L.; Connolly, Harold C.; Lauretta, Dante S.; Zega, Thomas J.; Davidson, Jemma; Domanik, Kenneth J.

    2015-01-01

    To better understand the formation conditions of ferromagnesian chondrules from the Renazzo-like carbonaceous (CR) chondrites, a systematic study of 210 chondrules from 15 CR chondrites was conducted. The texture and composition of silicate and opaque minerals from each observed FeO-rich (type II) chondrule, and a representative number of FeO-poor (type I) chondrules, were studied to build a substantial and self-consistent data set. The average abundances and standard deviations of Cr2O3 in FeO-rich olivine phenocrysts are consistent with previous work that the CR chondrites are among the least thermally altered samples from the early solar system. Type II chondrules from the CR chondrites formed under highly variable conditions (e.g., precursor composition, redox conditions, cooling rate), with each chondrule recording a distinct igneous history. The opaque minerals within type II chondrules are consistent with formation during chondrule melting and cooling, starting as S- and Ni-rich liquids at 988-1350 °C, then cooling to form monosulfide solid solution (mss) that crystallized around olivine/pyroxene phenocrysts. During cooling, Fe,Ni-metal crystallized from the S- and Ni-rich liquid, and upon further cooling mss decomposed into pentlandite and pyrrhotite, with pentlandite exsolving from mss at 400-600 °C. The composition, texture, and inferred formation temperature of pentlandite within chondrules studied here is inconsistent with formation via aqueous alteration. However, some opaque minerals (Fe,Ni-metal versus magnetite and panethite) present in type II chondrules are a proxy for the degree of whole-rock aqueous alteration. The texture and composition of sulfide-bearing opaque minerals in Graves Nunataks 06100 and Grosvenor Mountains 03116 suggest that they are the most thermally altered CR chondrites.

  10. A Parent Magma for the Nakhla Martian Meteorite: Reconciliation of Estimates from 1-Bar Experiments, Magmatic Inclusions in Olivine, and Magmatic Inclusions in Augite

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.; Goodrich, Cyrena Anne

    2001-01-01

    The composition of the parent magma for the Nakhla (martian) meteorite has been estimated from mineral-melt partitioning and from magmatic inclusions in olivine and in augite. These independent lines of evidence have converged on small range of likely compositions. Additional information is contained in the original extended abstract.

  11. Chondrule remelting: Evidence from coarse-grained chondrule rims and compound chondrules

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Krot, A. N.

    1994-01-01

    The meteorites that best preserve the nebular record are the type 3 ordinary (OC) and carbonaceous chondrites; their major components include chondrules and chondrule fragments, refractory and mafic inclusions, FeO-rich silicate matrix material. Many chondrules are surrounded by nms; these can be divided into two major types: (1) fine-grained rims, which are composed of matrix material; and (2) igneous or coarse-grained rims, which have igneous textures and larger, less-ferroan mafic silicate grains. Fine-grained rims surround most of the chondrules in the least-equilibrated type 3 ordinary and carbonaceous chondrites. They were most likely derived via collapse of clumps of nebular dust that accreted around coarse objects such as chondrules and inclusions. Coarse-grined or igneous rims surround approximately 10% of the chondrules in type 3 OC and approximately 50% of the chondrules in CV3 chondrites as well as some chondrule fragments and isolated mineral grains. They probably formed by partly melting finer-grained dust-rich precursors and admixed chondrule fragments.

  12. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Yurimoto, Hisayoshi; Hutcheon, Ian D.; MacPherson, Glenn J.

    2005-04-01

    Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules, as well as to the higher abundance of 26Al in CAIs; both observations indicate that CAIs pre-date chondrules by 1-3million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Δ17O ~ - 1‰ to -5‰). Spinel and diopside in the CAI cores are 16O-rich (Δ17O up to -20‰), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Δ17O = -8‰ to 2‰). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 +/- 1.4) × 10-6 and <1.2 × 10-6. We conclude that these CAIs had chondrule material added to them during a re-melting episode ~2Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 × 10-5.

  13. Chronology of the early Solar System from chondrule-bearing calcium-aluminium-rich inclusions.

    PubMed

    Krot, Alexander N; Yurimoto, Hisayoshi; Hutcheon, Ian D; MacPherson, Glenn J

    2005-04-21

    Chondrules and Ca-Al-rich inclusions (CAIs) are high-temperature components of meteorites that formed during transient heating events in the early Solar System. A major unresolved issue is the relative timing of CAI and chondrule formation. From the presence of chondrule fragments in an igneous CAI, it was concluded that some chondrules formed before CAIs (ref. 5). This conclusion is contrary to the presence of relict CAIs inside chondrules, as well as to the higher abundance of 26Al in CAIs; both observations indicate that CAIs pre-date chondrules by 1-3 million years (Myr). Here we report that relict chondrule material in the Allende meteorite, composed of olivine and low-calcium pyroxene, occurs in the outer portions of two CAIs and is 16O-poor (Delta17O approximately -1 per thousand to -5 per thousand). Spinel and diopside in the CAI cores are 16O-rich (Delta17O up to -20 per thousand), whereas diopside in their outer zones, as well as melilite and anorthite, are 16O-depleted (Delta17O = -8 per thousand to 2 per thousand). Both chondrule-bearing CAIs are 26Al-poor with initial 26Al/27Al ratios of (4.7 +/- 1.4) x 10(-6) and <1.2 x 10(-6). We conclude that these CAIs had chondrule material added to them during a re-melting episode approximately 2 Myr after formation of CAIs with the canonical 26Al/27Al ratio of 5 x 10(-5). PMID:15846340

  14. Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? - Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula

    NASA Astrophysics Data System (ADS)

    Ebert, Samuel; Bischoff, Addi

    2016-03-01

    Al-rich objects (Ca,Al-rich inclusions (CAIs), Al-rich chondrules, Al-rich fragments) occur in all chondrite classes. These objects can be centimeter-sized in CV3 carbonaceous chondrites, but they are generally much smaller in other chondrite groups and classes. Within the ordinary chondrites, most Al-rich objects are chondrules that vary from Ca- to Na-rich. Here, we have investigated the mineralogy and major element chemistry of 32 Na-rich chondrules and 3 Na-rich fragments from 15 different chondrites. Most objects (chondrules and chondrule fragments) are from ordinary chondrites (petrologic types 3.2-3.8), but two of the chondrules are from two CO3 chondrites, and three of the chondrules are from one Rumuruti (R)-chondrite. We found that these Na-rich objects have bulk Na2O-concentrations between 4.3 and 15.2 wt%. Texturally, they typically consist of euhedral to subhedral (often skeletal) mafic minerals (olivine and pyroxenes) embedded within a nepheline-normative, glassy mesostasis, which is brownish in transmitted light. In addition, some chondrules contain euhedral to subhedral spinel. Bulk chondrule compositions show group II, group III, and ultrarefractory rare earth element (REE) patterns similar to those found in CAIs. These results clearly demonstrate that the Na-rich chondrules must have been formed by melting of precursors containing an (ultra-)refractory element-rich component and Na-rich constituents. The Na-rich chondrules showed Sm and Eu anomalies, indicating that they must have formed at low oxygen fugacities. Based on the chemical composition of the Na-rich objects, we can rule out that they were formed as a result of planetary formation due to metasomatic processes or processes related to collisions between molten planetesimals.

  15. Producing chondrules by recycling and volatile loss

    NASA Technical Reports Server (NTRS)

    Alexander, C. M. O.

    1994-01-01

    Interelement correlations observed in bulk chondrule INAA data, particularly between the refractory lithophiles, have led to the now generally accepted conclusion that the chondrule precursors were nebular condensates. However, it has been recently suggested that random sampling of fragments from a previous generation of chondrules could reproduce much of the observed range of bulk chondrule composition.

  16. Thermal histories of CO3 chondrites - Application of olivine diffusion modelling to parent body metamorphism

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.; Rubie, David C.

    1991-01-01

    The petrologic sequence observed in the CO3 chondrite group has been suggested to be the result of thermal metamorphism on a parent body. A model developed to examine the possibility that chondrule and matrix olivines equilibrated in situ, during parent body metamorphism is presented. The model considers Fe-Mg interdiffusion between chondrule and matrix olivines. Zoning profiles comparable to those observed in chondrule olivines from partially equilibrated members of the series are reproduced successfully. Metamorphism of CO3 chondrites on a parent body is therefore a viable model for the observed equilibration. Results indicate that peak metamorphic temperatures experienced by the CO3 chondrites were around 500 C, and that the range of peak temperatures between unequilibrated and equilibrated subtypes was relatively narrow, around 100 C.

  17. Iodine-xenon, chemical, and petrographic studies of Semarkona chondrules - Evidence for the timing of aqueous alteration

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Grossman, J. N.; Olinger, C. T.; Garrison, D. H.

    1991-01-01

    The relationship of the I-Xe system of the Semarkona meteorite to other measured properties is investigated via INAA, petrographic, and noble-gas analyses on 17 chondrules from the meteorite. A range of not less than 10 Ma in apparent I-Xe ages is observed. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. It is argued that the initial I-129/I-127 ratio (R0) is related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0s than porphyritic and olivine-rich chondrules. Chondrules with sulfides on or near the surface have lower R0s than other chondrules. The He-129/Xe-132 ratio in the trapped Xe component anticorrelates with R0, consistent with the evolution of a chronometer in a closed system or in multiple systems. It is concluded that the variations in R0 represent variations in ages, and that later events, possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules.

  18. Iodine-xenon, chemical, and petrographie studies of Semarkona chondrules: Evidence for the timing of aqueous alteration

    USGS Publications Warehouse

    Swindle, T.D.; Grossman, J.N.; Olinger, C.T.; Garrison, D.H.

    1991-01-01

    We have performed INAA, petrographie, and noble gas analyses on seventeen chondrules from the Semarkona meteorite (LL3.0) primarily to study the relationship of the I-Xe system to other measured properties. We observe a range of ???10 Ma in apparent I-Xe ages. The three latest apparent ages fall in a cluster, suggesting the possibility of a common event. The initial 129I/127I ratio (R0) is apparently related to chondrule type and/or mineralogy, with nonporphyritic and pyroxene-rich chondrules showing evidence for lower R0'S (later apparent I-Xe ages) than porphyritic and olivine-rich chondrules. In addition, chondrules with sulfides on or near the surface have lower R0S than other chondrules. The 129Xe/132Xe ratio in the trapped Xe component anticorrelates with R0, consistent with evolution of a chronometer in a closed system or in multiple similar systems. On the basis of these correlations, we conclude that the variations in R0 represent variations in ages, and that later event(s), possibly aqueous alteration, preferentially affected chondrules with nonporphyritic textures and/or sulfide-rich exteriors about 10 Ma after the formation of the chondrules. ?? 1991.

  19. Chondrules in CK carbonaceous chondrites and thermal history of the CV-CK parent body

    NASA Astrophysics Data System (ADS)

    Chaumard, NoëL.; Devouard, Bertrand

    2016-03-01

    CK chondrites are the only group of carbonaceous chondrites with petrologic types ranging from 3 to 6. It is commonly reported than ~15 vol% of CK4-6 samples are composed of chondrules. The modal abundance of chondrules estimated here for 18 CK3-6 (including five CK3s) ranges from zero (totally recrystallized) to 50.5%. Although almost all chemically re-equilibrated with the host matrix, we recognized in CK3s and Tanezrouft (Tnz) 057 (CK4) up to 85% of chondrules as former type I chondrules. Mean diameters of chondrules range from 0.22 to 1.05 mm for Karoonda (CK4) and Tnz 057 (CK4), respectively. Up to ~60% of chondrules in CK3-4 are surrounded by igneous rims (from ~20 μm to 2 mm width). Zoned olivines were found in unequilibrated chondrules from DaG 431 (CK3-an), NWA 4724 (CK3.8), NWA 4423 (CK3.9), and Tnz 057 (CK4). We modeled Fe/Mg interdiffusion profiles measured in zoned olivines to evaluate the peak metamorphic temperatures and time scales of the CK parent body metamorphism, and proposed a two-stage diffusion process in order to account for the position of inflection points situated within chondrules. Time scales inferred from Fe/Mg interdiffusion in olivine from unequilibrated chondrules are on the order of tens to a hundred thousand years (from 50 to 70,000 years for peak metamorphic temperatures of 1140 and 920 K, respectively). These durations are longer than what is commonly accepted for shock metamorphism and shorter than what is required for nuclide decay. Using the concept of a continuous CV-CK metamorphic series, which is reinforced by this study, we estimated peak metamorphic temperatures <850 K for CV, 850-920 K for CK3, and 920-1140 K for CK4-6 chondrites considering a duration of 70,000 years.

  20. Ubiquitous Low-FeO Relict Grains in Type II Chondrules and Limited Overgrowths on Phenocrysts Following the Final Melting Event

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Rubin, Alan E.

    2006-01-01

    Type II porphyritic chondrules commonly contain several large (>40 microns) olivine phenocrysts; furnace-based cooling rates based on the assumption that these phenocrysts grew in a single-stage melting-cooling event yield chondrule cooling-rate estimates of 0.01-1 K/s. Because other evidence indicates much higher cooling rates, we examined type 11 chondrules in the CO3.0 chondrites that have experienced only minimal parent-body alteration. We discovered three kinds of evidence indicating that only minor (4-10 microns) olivine growth occurred after the final melting event: (1) Nearly all (>90%) type II chondrules in CO3.0 chondrites contain low-FeO relict grains; overgrowths on these relicts are narrow, in the range of 2-12 microns. (2) Most type II chondrules contain some FeO-rich olivine grains with decurved surfaces and acute angles between faces indicating that the grains are fragments from an earlier generation of chondrules; the limited overgrowth thicknesses following the last melting event are too thin to disguise the shard-like nature of these grains. (3) Most type II chondrules contain many small (<20 microns) euhedral or subhedral phenocrysts with central compositions that are much more ferroan than the centers of the large phenocrysts; their small sizes document the small amount of growth that occurred after the final melting event. If overgrowth thicknesses were small (4-10 microns) after the final melting event, it follows that large fractions of coarse (>40 microns) high-FeO phenocrysts are relicts from earlier generations of chondrules, and that cooling rates after the last melting event were much more rapid than indicated by models based on a single melting event. These observations are thus inconsistent with the "classic" igneous model of formation of type II porphyritic chondrules by near-total melting of a precursor mix followed by olivine nucleation on a very limited number of nuclei (say, <10) and by growth to produce the large phenocrysts

  1. Classifying Chondrules Based on Cathodoluminesence

    NASA Astrophysics Data System (ADS)

    Cristarela, T. C.; Sears, D. W.

    2011-03-01

    Sears et al. (1991) proposed a scheme to classify chondrules based on cathodoluminesence color and electron microprobe analysis. This research evaluates that scheme and criticisms received from Grossman and Brearley (2005).

  2. Little Chondrules and Giant Impacts

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2005-10-01

    Alexander (Sasha) Krot (University of Hawaii), Yuri Amelin (University of Toronto), Pat Cassen (SETI Institute), and Anders Meibom (Museum National d'Histoire Naturelle, Paris) studied and then extracted frozen droplets of molten silicate (chondrules) from unusual meteorites rich in metallic iron-nickel. Called CB (Bencubbin-like) chondrites, these rare but fascinating meteorites contain chondrules with different properties than those in other types of chondrites. Most notably, the chondrules contain very small concentrations of volatile elements and variable concentrations of refractory elements. (Volatile elements condense from a gas at a relatively low temperature, or are boiled out of solids or liquids at relatively low temperature. Refractory elements are the opposite.) Some of the metal grains in CB chondrites are chemically zoned, indicating that they formed by condensation in a vapor cloud. The most intriguing feature of chondrules in CB chondrites is their relatively young age. Lead-lead isotopic dating of chondrules separated from two CB chondrites show that they formed 5 million years after formation of the first solids in the solar system (calcium-aluminum-rich inclusions), which is about at least two million years after formation of other chondrules, and after energetic events in the solar nebula stopped. Krot and his colleagues suggest that the CB chondrules formed as the result of an impact between Moon- to Mars-sized protoplanets. Such impacts were so energetic that huge amounts of material were vaporized and then condensed as chondrules or chemically zoned metal grains. This event enriched refractory elements and depleted volatile elements. Such large impacts appear to play important roles in planet formation, including the formation of the Moon.

  3. Strain Measurements of Chondrules and Refraction Inclusion in Allende

    NASA Technical Reports Server (NTRS)

    Tait, Alastair W.; Fisher, Kent R.; Simon, Justin I.

    2013-01-01

    This study uses traditional strain measurement techniques, combined with X-ray computerized tomography (CT), to evaluate petrographic evidence in the Allende CV3 chondrite for preferred orientation and to measure strain in three dimensions. The existence of petrofabrics and lineations was first observed in carbonaceous meteorites in the 1960's. Yet, fifty years later only a few studies have reported that meteorites record such features. Impacts are often cited as the mechanism for this feature, although plastic deformation from overburden and nebular imbrication have also been proposed. Previous work conducted on the Leoville CV3 and the Parnallee LL3 chondrites, exhibited a minimum uniaxial shortening of 33% and 21%, respectively. Petrofabrics in Allende CV3 have been looked at before; previous workers using Electron Back Scatter Diffraction (EBSD) found a major-axis alignment of olivine inside dark inclusions and an "augen"-like preferred orientation of olivine grains around more competent chondrules

  4. Evidence in CO3.0 Chondrules for a drift in the O Isotopic Composition of the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Wasson, John T.; Rubin, Alan E.; Yurimoto, Hisayoshi

    2006-01-01

    Several recent studies have shown that materials such as magnetite that formed in asteroids tend to have higher Delta O-17 (=delta O-17 -0.52 delta O-18) values than those recorded in unaltered chondrules. Other recent studies have shown that, in sets of chondrules from carbonaceous chondrites, Delta O-17 tends to increase as the FeO contents of the silicates increase. We report a comparison of the O isotopic composition of olivine phenocrysts in low-FeO (Fal5) type II porphyritic chondrules in the highly primitive C03.0 chondrite Yamato-81020. In agreement with a similar study of chondrules in C03.0 ALH A77307 by Jones et al., Delta O-17 tends to increase with increasing FeO. We find that Delta O-17 values are resolved (but only marginally) between the two sets of olivine phenocrysts. In two of the high-FeO chondrules, the difference between Delta O-17 of the late-formed, high-FeO phenocryst olivine and those in the low-FeO cores of relict grains is well-resolved (although one of the relicts is interpreted to be a partly melted amoeboid olivine inclusion by Yurimoto and Wasson). It appears that, during much of the chondrule-forming period, there was a small upward drift in the Delta O-17 of nebular solids and that relict cores preserve the record of a different (and earlier) nebular environment.

  5. Thermoluminescence and Compositional Zoning in the Mesostasis of a Semarkona Group A1 Chondrule and New Insights into the Chondrule-Forming Process

    NASA Astrophysics Data System (ADS)

    Matsunami, S.; Ninagawa, K.; Yamamoto, I.; Kohata, M.; Wada, T.; Yamashita, Y.; Lu, J.; Sears, D. W. G.; Nishimura, H.

    1992-07-01

    A large group A1 (Sears et al., 1992) porphyritic olivine chondrule in the Semarkona (LL3.0) chondrite with induced thermoluminescence (TL) and compositional zoning in its mesostasis has been discovered. The presence of both Ca-rich, Fe- poor olivine (CaO 0.36-0.40wt%, Fa(sub)0.3-0.5) and highly anorthite-normative mesostasis (~52.5wt%) is consistent with observations on type-IA chondrules in Semarkona (Jones and Scott, 1989). A TL spatial distribution readout system (Ninagawa et al., 1990) has revealed that the induced TL increases monotonously by a factor of ~6 from center to rim, while SiO2, Na2O and MnO increase by factors of ~1.1, ~3.6, and ~6, respectively. The mesostasis also shows a concentric zoning of yellow cathodoluminescence (CL). The spectrum of the induced TL and the Mn-TL correlation suggest that Mn-activated plagioclase is an important constituent of the refractory mesostases in group A1 chondrules. The zoning may reflect fractional crystallization, Soret diffusion, transport of volatiles into the chondrule by aqueous alteration, a zoned precursor, reduction of precursor dust aggregate, or recondensation of volatiles lost during chondrule formation. The first four possibilities seem unlikely explanations for the zoning of the mesostasis. The formational process of the zoning is suggested as follows: (1) During the temperature rise of chondrule-forming event, a precursor dust aggregate composed of FeO-bearing olivine, Ca-rich plagioclase and Ca-rich pyroxene was reduced through the interaction with a reducing nebular gas. The reduction process caused increase of silica content at the marginal part. (2) During melting of the precursor, Na and Mn evaporated from the chondrule melt. (3) During the cooling, forsterite phenocrysts crystallized in the melt. The residual liquid became rich in anorthite component. (4) Subsequently Na and Mn recondensed onto the surface and diffused into the interior, forming the zoning of Na and Mn. (5) Mn- bearing

  6. The effect of NA vapor on the NA content of chondrules

    NASA Astrophysics Data System (ADS)

    Lewis, R. Dean; Lofgren, Gary E.; Franzen, Hugo F.; Windom, Kenneth E.

    1993-12-01

    Chondrules contain higher concentrations of volatiles (Na) than expected for melt droplets in the solar nebula. Recent studies have proposed that chondrules may have formed under non-canonical nebular conditions such as in particle/gas-rich clumps. Such chondrule formation areas may have contained significant Na vapor. To test the hypothesis of whether a Na-rich vapor would minimize Na volatilization reaction rates in a chondrule analog and maintain the Na value of the melt, experiments were designed where a Na-rich vapor could be maintained around the sample. A starting material with a melting point lower that typical chondrules was required to keep the logistics of working with Na volatilization from NaCl within the realm of feasibility. The Knippa basalt, a MgO-rich alkali olivine basalt with a melting temperature of 1325 +/- 5 C and a Na2O content of 3.05 wt%, was used as the chondrule analog. Experiments were conducted in a 1 atm, gas-mixing furnace with the fO2 controlled by a CO/CO2 gas mixture and fixed at the I-W buffer curve. To determine the extent of Na loss from the sample, initial experiments were conducted at high temperatures (1300 C - 1350 C) for duration of up to 72 h without a Na-rich vapor present. Almost all (up to 98%) Na was volatilized in runs of 72 h. Subsequent trials were conducted at 1330 C for 16 h in the presence of a Na-rich vapor, supplied by a NaCl-filled crucible placed in the bottom of the furnace. Succeeding Knudsen cell weight-loss mass-spectrometry analysis of NaCl determined the PNa for these experimental conditions to be in the 10-6 atm range. This value is considered high for nebula conditions but is still plausible for non-canonical environments. In these trials the Na2O content of the glass was maintained or in some cases increased; Na2O values ranged from 2.62% wt to 4.37% wt. The Na content of chondrules may be controlled by the Na vapor pressure in the chondrule formation region. Most heating events capable of producing

  7. Conference on Chondrules and Their Origins

    NASA Technical Reports Server (NTRS)

    Hrametz, K.

    1983-01-01

    Chondrule parent materials, chondrule formation, and post-formational history are addressed. Contributions involving mineralogy petrology, geochemistry, geochronology, isotopic measurements, physical measurements, experimental studies, and theoretical studies are included.

  8. Constraints on chondrule agglomeration from fine-grained chondrule rims

    NASA Technical Reports Server (NTRS)

    Metzler, K.; Bischoff, A.

    1994-01-01

    Fine-grained rims around chondrules, Ca,Al-rich inclusions, and other coarse-grained components occur in most types of unequilibrated chondrites, most prominently in carbonaceous chondrites of the CM group. Based on mineralogical and petrographic investigations, it was suggested that rim structures in unequilibrated ordinary chondrites could have formed in the solar nebula by accretion of dust on the surfaces of the chondrules. Dust mantles in CM chondrites seem to have formed by accretion of dust on the surfaces of chondrules and other components during their passage through dust-rich regions in the solar nebula. Concentric mantles with compositionally different layers prove the existence of various distinct dust reservoirs in the vicinity of the accreting parent body. Despite mineralogical and chemical differences, fine-grained rims from other chondrite groups principally show striking similarities to dust mantle textures in CM chondrite. This implies that the formation of dust mantles was a cosmically significant event like the chondrule formation itself. Dust mantles seem to have formed chronologically between chondrule-producing transient heating events and the agglomeration of chondritic parent bodies. For this reason the investigation of dust mantle structures may help to answer the question of how a dusty solar nebula was transformed into a planetary system.

  9. Mineralogy and petrology of chondrules and inclusions in the Mokoia CV3 chondrite

    NASA Technical Reports Server (NTRS)

    Cohen, R. E.; Kornacki, A. S.; Wood, J. A.

    1983-01-01

    The inclusions and chondrules of the Mokoia CV3 chondrite are studied systematically and compared with those in the Allende meteorite. Five polished thin sections of Mokoia were examined by optical microscopy, backscattered scanning electron microscopy, and electronprobe microanalysis, and objects greater than about 100 microns in apparent diameter were measured and classified petrographically. Three major types of olivine chondrules are distinguished: igneous chondrules, which evidently crystallized from droplets of silicate melt; recrystallized chondrules, apparently metamorphosed at relatively high temperatures; and accretional aggregates, which are probably fragments of igneous chondrules. Refractory inclusions in Mokoia are generally similar to those found in Allende, although Mokoia inclusions include phyllosilicates rather than feldspathoids and melilite-rich Ca, Al-rich inclusions (CAIs) are more abundant in Allende. The small, fine-grained CAIs, which are more abundant than coarse-grained CAIs in both meteorites, are observed to represent aggregates of three distinct constituents: concentric objects, chaotic material and inclusion matrix. It is concluded that most of the CAIs probably formed during metamorphism, partial melting, and incomplete distillation of primitive dust aggregates heated in the solar nebula.

  10. An Evaluation of Quantitative Methods of Determining the Degree of Melting Experienced by a Chondrule

    NASA Technical Reports Server (NTRS)

    Nettles, J. W.; Lofgren, G. E.; Carlson, W. D.; McSween, H. Y., Jr.

    2004-01-01

    Many workers have considered the degree to which partial melting occurred in chondrules they have studied, and this has led to attempts to find reliable methods of determining the degree of melting. At least two quantitative methods have been used in the literature: a convolution index (CVI), which is a ratio of the perimeter of the chondrule as seen in thin section divided by the perimeter of a circle with the same area as the chondrule, and nominal grain size (NGS), which is the inverse square root of the number density of olivines and pyroxenes in a chondrule (again, as seen in thin section). We have evaluated both nominal grain size and convolution index as melting indicators. Nominal grain size was measured on the results of a set of dynamic crystallization experiments previously described, where aliquots of LEW97008(L3.4) were heated to peak temperatures of 1250, 1350, 1370, and 1450 C, representing varying degrees of partial melting of the starting material. Nominal grain size numbers should correlate with peak temperature (and therefore degree of partial melting) if it is a good melting indicator. The convolution index is not directly testable with these experiments because the experiments do not actually create chondrules (and therefore they have no outline on which to measure a CVI). Thus we had no means to directly test how well the CVI predicted different degrees of melting. Therefore, we discuss the use of the CVI measurement and support the discussion with X-ray Computed Tomography (CT) data.

  11. MAGNESIUM ISOTOPE EVIDENCE FOR SINGLE STAGE FORMATION OF CB CHONDRULES BY COLLIDING PLANETESIMALS

    SciTech Connect

    Olsen, Mia B.; Schiller, Martin; Krot, Alexander N.; Bizzarro, Martin

    2013-10-10

    Chondrules are igneous spherical objects preserved in chondritic meteorites and believed to have formed during transient heating events in the solar protoplanetary disk. Chondrules present in the metal-rich CB chondrites show unusual chemical and petrologic features not observed in other chondrite groups, implying a markedly distinct formation mechanism. Here, we report high-precision Mg-isotope data for 10 skeletal olivine chondrules from the Hammadah al Hamra 237 (HH237) chondrite to probe the formation history of CB chondrules. The {sup 27}Al/{sup 24}Mg ratios of individual chondrules are positively correlated to their stable Mg-isotope composition (μ{sup 25}Mg), indicating that the correlated variability was imparted by a volatility-controlled process (evaporation/condensation). The mass-independent {sup 26}Mg composition (μ{sup 26}Mg*) of chondrules is consistent with single stage formation from an initially homogeneous magnesium reservoir if the observed μ{sup 25}Mg variability was generated by non-ideal Rayleigh-type evaporative fractionation characterized by a β value of 0.5142, in agreement with experimental work. The magnitude of the mass-dependent fractionation (∼300 ppm) is significantly lower than that suggested by the increase in {sup 27}Al/{sup 24}Mg values, indicating substantial suppression of isotopic fractionation during evaporative loss of Mg, possibly due to evaporation at high Mg partial pressure. Thus, the Mg-isotope data of skeletal chondrules from HH237 are consistent with their origin as melts produced in the impact-generated plume of colliding planetesimals. The inferred μ{sup 26}Mg* value of –3.87 ± 0.93 ppm for the CB parent body is significantly lower than the bulk solar system value of 4.5 ± 1.1 ppm inferred from CI chondrites, suggesting that CB chondrites accreted material comprising an early formed {sup 26}Al-free component.

  12. Chondrule formation in lightning discharges

    NASA Technical Reports Server (NTRS)

    Horanyi, M.

    1994-01-01

    Chondrules represent a significant mass fraction of primitive meteorites. These millimeter-sized glassy droplets appear to be the products of intensive transient heating events. Their size distribution, chemical and mineral composition, texture, isotope composition suggest that chondrules were produced as a result of short-duration melting followed by rapid cooling of solid precursor particles. Gas-dynamics heating, magnetic reconnection, and electrostatic discharges are thought to be the leading candidates to explain chondrule formation. In this paper we summarize our recent theoretical progress on the effects of 'lightning' in the early solar system and also report on preliminary results from our laboratory experiments. Differential settling of various sized dust particles toward the midplane of the nebula is suspected to build large-scale charge separations that episodically relax via the electric breakdown of the nebular gas. The electrostatic discharge os analogous to lightning in the Earth's atmosphere.

  13. Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona

    NASA Astrophysics Data System (ADS)

    McCanta, M. C.; Beckett, J. R.; Stolper, E. M.

    2016-03-01

    Phosphorus zoning is observed in olivines in high-FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1-H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr3+ charge-balancing P5+ substituting for Si4+. Normal igneous zonation involving the dominant chrome species Cr2+ was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5-H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4-H6 chondrites, P-correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule-matrix interface suggests that this is a response to metasomatic processes. We also observed P-enriched halos near the chondrule-matrix interface in H3.3-H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P-zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules.

  14. Impact-Induced Chondrule Deformation and Aqueous Alteration of CM2 Murchison

    NASA Technical Reports Server (NTRS)

    Hanna, R. D.; Zolensky, M.; Ketcham, R. A.; Behr, W. M.; Martinez, J. E.

    2014-01-01

    Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their

  15. Origin of magnetite in oxidized CV chondrites: in situ measurement of oxygen isotope compositions of Allende magnetite and olivine

    NASA Technical Reports Server (NTRS)

    Choi, B. G.; McKeegan, K. D.; Leshin, L. A.; Wasson, J. T.

    1997-01-01

    Magnetite in the oxidized CV chondrite Allende mainly occurs as spherical nodules in porphyritic-olivine (PO) chondrules, where it is associated with Ni-rich metal and/or sulfides. To help constrain the origin of the magnetite, we measured oxygen isotopic compositions of magnetite and coexisting olivine grains in PO chondrules of Allende by an in situ ion microprobe technique. Five magnetite nodules form a relatively tight cluster in oxygen isotopic composition with delta 18O values from -4.8 to -7.1% and delta 17O values from -2.9 to -6.3%. Seven coexisting olivine grains have oxygen isotopic compositions from -0.9 to -6.3% in delta 18O and from -4.6 to -7.9% in delta 17O. The delta 17O values of the magnetite and coexisting olivine do not overlap; they range from -0.4 to -2.6%, and from -4.0 to -5.7%, respectively. Thus, the magnetite is not in isotopic equilibrium with the olivine in PO chondrules, implying that it formed after the chondrule formation. The delta 17O of the magnetite is somewhat more negative than estimates for the ambient solar nebula gas. We infer that the magnetite formed on the parent asteroid by oxidation of metal by H2O which had previously experienced minor O isotope exchange with fine-grained silicates.

  16. Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville and Vigarano (CV3) chondrites: A record of condensate evolution in the solar nebula

    NASA Astrophysics Data System (ADS)

    Ruzicka, Alex; Floss, Christine; Hutson, Melinda

    2012-02-01

    Amoeboid olivine aggregates (AOAs) in the Efremovka, Leoville, and Vigarano CV3 chondrites were studied using petrographic and microanalytical techniques to evaluate the origins of these inclusions and their relationships to other chondrite components. Our data support the idea that the inclusions formed by dust growth in the solar nebula as condensates and that they preserve a record of mineralogical and chemical evolution. Spinel-rich nodules and ribbons in AOAs often show Group II trace element patterns and formed either by fractional condensation or by condensation following partial vaporization. The dominant olivine component in AOAs can be explained as a condensate produced in the same way, but with fractionation occurring at a lower temperature. Other spinel-rich material in AOAs appears to be a vaporization residue. Ca-rich pyroxene + anorthite patches in AOAs show chemical signatures similar to those observed for spinel- or melilite-bearing regions but with lower refractory element and higher Mg and Si contents, supporting the idea that the patches formed by reaction between CAI-like material and Mg-Si-rich gas. Different trace element patterns (Group II and non-Group II refractory) are sometimes found for Al-rich regions (Ca-pyroxene + anorthite, or melilite-bearing) in a given AOA, suggesting that AOAs agglomerated from materials that formed under different conditions and that they did not subsequently homogenize. AOAs appear to have originated in a system with near-canonical solar composition and a low pressure gas (˜10-6-10-4 bar) over a range of temperatures (mainly ˜1200-1384 K) under somewhat non-equilibrium conditions. Relative to predicted equilibrium condensates, most AOAs show an apparent paucity of metal, possibly reflecting differential, density-dependent sorting between olivine and metal grains during aggregate formation. Trace element data are consistent with a simple model involving melting and igneous fractionation of AOA-like olivine to

  17. Chondrule destruction in nebular shocks

    SciTech Connect

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ε ≳ 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ε ≳ 10 requires much smaller shock velocities (∼2 versus 8 km s{sup –1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  18. Chondrule Destruction in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-01

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios epsilon >~ 0.1, and possibly even for solar abundances because of "sandblasting" by finer dust. A flow with epsilon >~ 10 requires much smaller shock velocities (~2 versus 8 km s-1) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  19. Olivines and olivine coronas in mesosiderites

    NASA Technical Reports Server (NTRS)

    Nehru, C. E.; Zucker, S. M.; Harlow, G. E.; Prinz, M.

    1980-01-01

    The paper presents a study of olivines and their surrounding coronas in mesosiderites texturally and compositionally using optical and microprobe methods. Olivine composition ranges from Fo(58-92) and shows no consistent pattern of distribution within and between mesosiderites; olivine occurs as large single crystals or as partially recrystallized mineral clasts, except for two lithic clasts. These are Emery and Vaca Muerta, and both are shock-modified olivine orthopyroxenites. Fine-grained coronas surround olivine, except for those in impact-melt group mesosiderites and those without tridymite in their matrices. Coronas consist largely of orthopyroxene, plagioclase, clinopyroxene, chromite, merillite, and ilmenite, and are similar to the matrix, but lack metal and tridymite. Texturally the innermost parts of the corona can be divided into three stages of development: (1) radiating acicular, (2) intermediate, and (3) granular.

  20. Effect of metamorphism on isolated olivine grains in CO3 chondrites

    NASA Technical Reports Server (NTRS)

    Jones, Rhian H.

    1993-01-01

    The presence of a metamorphic sequence in the CO3 chondrite group has been shown previously to result in changes in properties of chondrule silicates. However, the role of isolated olivine grains during metamorphism of these chondrites has not been addressed. Isolated olivine grains in two metamorphosed CO3 chondrites, Lance and Isna, have been investigated in this study in order to assess the compositional properties of isolated olivine grains that may be attributable to metamorphism. Compositional changes in isolated olivines with increasing petrologic subtype are very similar to changes in chondrule olivines in the same chondrites. Olivine compositions from all occurrences (chondrules, isolated grains, and matrix) converge with increasing petrologic subtype. The degree of equilibration of minor elements is qualitatively related to the diffusion rate of each element in olivine, suggesting that diffusion-controlled processes are the most important processes responsible for compositional changes within the metamorphic sequence. The data are consistent with metamorphism taking place in a closed system on the CO3 chondrite parent body. Fe-poor olivine grains in metamorphosed chondrites are characterized by an Fe-rich rim, which is the result of diffusion of Fe into the grains from Fe-rich matrix. In some instances, 'complex', Fe-rich rims have been identified, which appear to have originated as igneous overgrowths and subsequently to have been overprinted by diffusion processes during metamorphism. Processes experienced by CO3 chondrites are more similar to those experienced by the ordinary chondrites than to those encountered by other carbonaceous chondrites, such as the CV3 group.

  1. Stardust to Planetesimals: A Chondrule Connection?

    NASA Technical Reports Server (NTRS)

    Paque, Julie; Bunch, Ted

    1997-01-01

    The unique nature of chondrules has been known for nearly two centuries. Modern techniques of analysis have shown that these millimeter sized silicate objects are among the oldest objects in our solar system. Researchers have devised textural and chemical classification systems for chondrules in an effort to determine their origins. It is agreed that most chondrules were molten at some point in their history, and experimental analogs suggest that the majority of chondrules formed from temperatures below 1600 C at cooling rates in the range of hundreds of degrees per hour. Although interstellar grains are present in chondrite matrices, their contribution as precursors to chondrule formation is unknown. Models for chondrule formation focus on the pre-planetary solar nebula conditions, although planetary impact models have had proponents.

  2. Spinel-bearing, Al-rich chondrules in two chondrite finds from Roosevelt County, New Mexico - Indicators of nebular and parent body processes

    NASA Technical Reports Server (NTRS)

    Mccoy, Timothy J.; Pun, Aurora; Keil, Klaus

    1991-01-01

    Two rare spinel-bearing Al-rich chondrules are identified in chondrite finds from Roosevelt County, New Mexico-RC 071 (L4) and RC 072 (L5). These chondrules have unusual mineralogies dominated by highly and asymmetrically zoned Al-Cr-rich spinels. Two alternatives exist to explain the origin of this zoning-fractional crystallization or metamorphism. Fractional crystallization formed the zoning of the trivalent cations and caused a localized depletion in chromites around the large Al-Cr-rich spinels. Diffusive exchange and partitioning of Fe and Mg between olivine and spinel during parent-body metamorphism can explain the asymmetric zoning of these elements. The bulk compositions of the chondrules suggest affinities with the Na-Al-Cr-rich chondrules, as would be expected from the abundance of Al-Cr-rich spinels. The most important factors are the temperature to which the molten chondrule was heated and the cooling rate during crystallization. These two chondrules cooled rapidly from near the liquidus, as indicated by the zoning, occurrence and sizes of spinels, radiating chondrule textures and localized chromite depletions.

  3. A compositional classification scheme for meteoritic chondrules

    NASA Technical Reports Server (NTRS)

    Sears, Derek W. G.; Jie, LU; Benoit, Paul H.; Dehart, John M.; Lofgren, Gary E.

    1992-01-01

    A compositionally based classification scheme for chondrules is proposed that will help in systematizing the wealth of data available and disentangling the effects of nebular and subsequent processes. The classification is not by texture or the composition of a single phase, or a mixture of these two, but rather is a comprehensive, systematic approach which uses the composition of the two main chondrule components. This scheme is applicable to over 95 percent of the chondrules and is easily applied using an electron microprobe. It stresses the original diversity of the chondrules and the complex yet facile way in which they respond to parent-body metamorphism. Results using this classification scheme suggest that arguments against an important role of chondrules in determining the compositional trends of the chondrites have been premature.

  4. A Microanalytical (TEM) Study of Fine-grained Chondrule Rims in NWA 5717

    NASA Technical Reports Server (NTRS)

    Bigolski, J. N.; Frank, D. R.; Zolensky, Michael E.; Weisberg, M. K.; Ebel, D. S.; Rahman, Z.

    2013-01-01

    Northwest Africa (NWA) 5717 is a highly primitive ordinary chondrite of petrologic type 3.05 with ubiquitous fine-grained chondrule rims [1, 2]. Rims appear around approximately 60% of chondrules and are comprised of micron-sized mineral and lithic fragments and microchondrules that are embdedded in an FeO-rich submicron groundmass that compositionally resembles fayalitic olivine. Some rim clasts appear overprinted with FeO-rich material, suggesting secondary alteration that postdates rim formation. Here we present a microanalytical (TEM) study of the submicron component (i.e. the groundmass) of the rims in order to determine the crystal structures and compositions of their constituent phases and decipher the accretion and alteration history recorded in rims.

  5. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-05-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  6. Cosmic-ray exposure ages of chondrules

    NASA Astrophysics Data System (ADS)

    Roth, Antoine S. G.; Metzler, Knut; Baumgartner, Lukas P.; Leya, Ingo

    2016-07-01

    If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf-Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X-ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present-day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.

  7. Spatially resolved NRM of the Bishunpur LL3.1 chondrite measured by scanning SQUID microscopy: implications for chondrule formation

    NASA Astrophysics Data System (ADS)

    Church, N. S.; Andrade Lima, E.; Lappe, S. L.; Russell, S.; Weiss, B. P.; Harrison, R. J.

    2012-12-01

    demagnetization behavior of the chondrules to be directly observed. This work presents the demagnetization sequence of a thin section of Bishunpur as well as rock magnetic measurements acquired on the scanning SQUID microscope and a bulk moment magnetometer. Bulk measurements of the NRM are dominated by signal from the matrix and chondrule rim, but the sensitivity of the scanning SQUID technique allows weak signals from individual chondrules to be identified which are stable in alternating-field demagnetization through 290 mT. These signals can be modeled as single dipoles, which means the magnetization of dusty olivine regions can be quantitatively measured. Calibration curves from synthetic analogues will permit the paleointensity of these regions to be determined and combined with SEM observations of the microstructure, used to provide a unique line of evidence about chondrule formation and the process of accretion in the solar nebula.

  8. Opaque Mineral Assemblages at Chondrule Boundaries in the Vigarano CV Chondrite: Evidence for Gas-Solid Reactions Following Chondrule Formation

    NASA Technical Reports Server (NTRS)

    Lauretta, Dante S.

    2004-01-01

    Recent studies of opaque minerals in primitive ordinary chondrites suggest that metal grains exposed at chondrule boundaries were corroded when volatile elements recondensed after the transient heating event responsible for chondrule formation. Metal grains at chondrule boundaries in the Bishunpur (LL3.1) chondrite are rimmed by troilite and fayalite. If these layers formed by gas solid reaction, then the composition of the corrosion products can provide information on the chondrule formation environment. Given the broad similarities among chondrules from different chondrite groups, similar scale layers should occur on chondrules in other primitive meteorite groups. Here I report on metal grains at chondrule boundaries in Vigarano (CV3).

  9. On the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Sonett, C. P.

    1979-01-01

    A new mechanism for primordial melting of chondrules based upon heating by relativistic electrons accelerated by reconnecting magnetic field lines is discussed. This mechanism is free of the creation-annihilation problem of collisions used for heating. The basic requirements for reconnection are an interplanetary magnetic field with regions of reversals. An early magnetic field is inferred from the paleomagnetism of meteorites and the requirements of solar spin-down, while the field reversals upon which the reconnection is based are a common property of the present epoch solar wind.

  10. Aluminian Low-Ca Pyroxene in a Ca-Al-rich Chondrule from the Semarkona Meteorite

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    A Ca-AI-rich chondrule (labeled G7) from the Semarkona LL3.0 ordinary chondrite (OC) consists of 73 vol% glassy mesostasis, 22 vol% skeletal forsterite. 3 vol% fassaite (i.e., Al-Ti diopside), and 2 vol% Al-rich, low-Ca pyroxene. The latter phase, which contains up to 16.3 wt% A1203, is among the most AI-rich, low-Ca pyroxene grains ever reported. It is inferred that 20% of the tetrahedral sites and 13% of the octahedral sites in this grain are occupied by Al. Approximately parallel optical extinction implies that the Al-rich, low-Ca pyroxene grains are probably orthorhombic, consistent with literature data that show that A1203 stabilizes the orthoenstatite structure relative to protoenstatite at low pressure. The order of crystallization in the chondrule was forsterite, AI-rich low-Ca pyroxene, and fassaite; the residual liquid vitrified during chondrule quenching. Phase relationships indicate that, for a G7-composition liquid at equilibrium, spinel and anorthite should crystallize early and orthopyroxene should not crystallize at all. The presence of AI-rich orthopyroxene in G7 is due mainly to the kinetic failure of anorthite to crystallize; this failure was caused by quenching of the G7 precursor droplet. Aluminum preferentially enters the relatively large B tetrahedra of orthopyroxene; because only one tetrahedral size occurs in fassaite, this phase contains higher mean concentrations of Al2O3 than the Al-rich orthopyroxene (17.8 and 14.7 wt%, respectively). Chondrule G7 may have formed by remelting an amoeboid olivine inclusion that entered the OC region of the solar nebula during an episode of chondrule formation.

  11. Relationships Among Intrinsic Properties of Ordinary Chondrites: Oxidation State, Bulk Chemistry, Oxygen-isotopic Composition, Petrologic Type, and Chondrule Size

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    The properties of ordinary chondrites (OC) reflect both nebular and asteroidal processes. OC are modeled here as having acquired nebular water, probably contained within phyllosilicates, during agglomeration. This component had high Ai70 and acted like an oxidizing agent during thermal metamorphism. The nebular origin of this component is consistent with negative correlations in H, L, and LL chondrites between oxidation state (represented by olivine Fa) and bulk concentration ratios of elements involved in the metal-silicate fractionation (e.g., NdSi, Ir/Si, Ir/Mn, Ir/Cr, Ir/Mg, Ni/Mg, As/Mg, Ga/Mg). LL chondrites acquired the greatest abundance of phyllosilicates with high (delta)O-17 among OC (and thus became the most oxidized group and the one with the heaviest O isotopes); H chondrites acquired the lowest abundance, becoming the most reduced OC group with the lightest O isotopes. Chondrule precursors may have grown larger and more ferroan with time in each OC agglomeration zone. Nebular turbulence may have controlled the sizes of chondrule precursors. H-chondrite chondrules (which are the smallest among OC) formed from the smallest precursors. In each OC region, low-FeO chondrules formed before high-FeO chondrules during repeated episodes of chondrule formation. During thermal metamorphism, phyllosilicates were dehydrated; the liberated water oxidized metallic Fe-Ni. This caused correlated changes with petrologic type including decreases in the modal abundance of metal, increases in olivine Fa and low-Ca pyroxene Fs, increases in the olivine/pyroxene ratio, and increases in the kamacite Co and Ni contents. As water (with its heavy 0 isotopes) was lost during metamorphism, inverse correlations between bulk (delta)O-18 and bulk (delta)O-17 with petrologic type were produced. The H5 chondrites that were ejected from their parent body approx.7.5 Ma ago during a major impact event probably had been within a few kilometers of each other since they accreted approx.4

  12. Olivine-FeS Partial-Melt

    SciTech Connect

    Roberts, J; Siebert, J; Ryerson, F J; Kinney, J

    2006-10-02

    The figure shows Fe-S-filled melt channels in olivine created at high temperature and pressure. The 3D image was obtained on Beamline 8.3.2 at the Advanced Light Source, Lawrence Berkeley Laboratory, with a spatial resolution of better than two microns (bar is 10 microns). Permeability of Fe-S melts in olivine at high temperatures and pressures provides an important constraint on models of planetary core formation. Permeability must be inferred from empirical relationships based on microstructure. To date, estimates of permeability have varied by more than five orders of magnitude. To provide more accurate constraints, we used high-resolution synchrotron radiation computed tomography to image the three-dimensional network of melt-containing pores in an olivine matrix, and calculated the permeability directly by solving the equations of Stokes flow through the actual pore network using a lattice-Boltzmann approach. These calculations provide an independent constraint on models of planetary core formation.

  13. Flash melting of chondrule precursors in excess of 1600 C. Series 1: Type 2 (B1) chondrule composition experiments

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.; Lofgren, Gary E.

    1993-01-01

    Several questions in chondrule production remain an enigma despite years of experiments. What were the melting temperatures experienced by chondrules? What were the physical characteristics of chondrule precursors? How and why did volatile elements (i.e. Na) found within chondrules survive the formation process? We present the initial results of a series of experiments designed to investigate the above questions by using flash melting to duplicate the melting stage of chondrule formation.

  14. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  15. Genetic Relationships Between Chondrules, Rims and Matrix

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Alexander, C. M. OD.; Palme, H.; Bland, P. A.; Wasson, J. T.

    2004-01-01

    The most primitive chondrites are composed of chondrules and chondrule fragments, various types of inclusions, discrete mineral grains, metal, sulfides, and fine-grained materials that occur as interchondrule matrix and as chondrule/inclusion rims. Understanding how these components are related is essential for understanding how chondrites and their constituents formed and were processed in the solar nebula. For example, were the first generations of chondrules formed by melting of matrix or matrix precursors? Did chondrule formation result in appreciable transfer of chondrule material into the matrix? Here, we consider three types of data: 1) compositional data for bulk chondrites and matrix, 2) mineralogical and textural information, and 3) the abundances and characteristics of presolar materials that reside in the matrix and rims. We use these data to evaluate the roles of evaporation and condensation, chondrule formation, mixing of different nebular components, and secondary processing both in the nebula and on the parent bodies. Our goal is to identify the things that are reasonably well established and to point out the areas that need additional work.

  16. The origin of chondrules at jovian resonances

    PubMed

    Weidenschilling; Marzari; Hood

    1998-01-30

    Isotopic dating indicates that chondrules were produced a few million years after the solar nebula formed. This timing is incompatible with dynamical lifetimes of small particles in the nebula and short time scales for the formation of planetesimals. Temporal and dynamical constraints can be reconciled if chondrules were produced by heating of debris from disrupted first-generation planetesimals. Jovian resonances can excite planetesimal eccentricities enough to cause collisional disruption and melting of dust by bow shocks in the nebular gas. The ages of chondrules may indicate the times of Jupiter's formation and dissipation of gas from the asteroidal region. PMID:9445468

  17. Multiplicity of chondrule heating events and the coarsening of chondrule textures

    NASA Technical Reports Server (NTRS)

    Wasson, John T.

    1993-01-01

    Our studies of compound chondrules show that most chondrules experienced at least two thermal events that produced appreciable amounts of melt. I suggest that chondrules were subjected to a hierarchy of brief heating events, the number increasing exponentially with decreasing intensity, and that some of intermediate intensity deposited enough heat to partially melt mesostasis glass and promote the growth of mafic mineral grains. This scenario can account for textures that require improbably low monotonic cooling rates in laboratory simulations, and also for the rarity of glassy chondrule textures despite the ease with which these are produced in the laboratory.

  18. Metallic Chondrules in NWA1390 (H3-6): Clues to Their History from Metallic Cu

    NASA Technical Reports Server (NTRS)

    LaBlue, A. R.; Lauretta, D. S.

    2004-01-01

    A recent study of ordinary chondrites suggests that many long-recognized shock indicators in olivine and pyroxene minerals may be erased by post-shock annealing. Therefore, the presence of other indicators of shock, which can not be erased by subsequent heating, are important to fully characterize the history of chondritic meteorites. One such proposed indicator is metallic Cu, which occurs in at least 2/3 of ordinary chondrites. Here we present a comparative study of two metallic chondrules in the NWA1390 ordinary chondrite, both of which contain appreciable Cu in the Fe,Ni metal phase and one that is partially rimmed by metallic Cu.

  19. Tungsten isotopic constraints on the age and origin of chondrules

    NASA Astrophysics Data System (ADS)

    Budde, Gerrit; Kleine, Thorsten; Kruijer, Thomas S.; Burkhardt, Christoph; Metzler, Knut

    2016-03-01

    Chondrules may have played a critical role in the earliest stages of planet formation by mediating the accumulation of dust into planetesimals. However, the origin of chondrules and their significance for planetesimal accretion remain enigmatic. Here, we show that chondrules and matrix in the carbonaceous chondrite Allende have complementary 183W anomalies resulting from the uneven distribution of presolar, stellar-derived dust. These data refute an origin of chondrules in protoplanetary collisions and, instead, indicate that chondrules and matrix formed together from a common reservoir of solar nebula dust. Because bulk Allende exhibits no 183W anomaly, chondrules and matrix must have accreted rapidly to their parent body, implying that the majority of chondrules from a given chondrite group formed in a narrow time interval. Based on Hf-W chronometry on Allende chondrules and matrix, this event occurred ˜2 million years after formation of the first solids, about coeval to chondrule formation in ordinary chondrites.

  20. Tungsten isotopic constraints on the age and origin of chondrules

    PubMed Central

    Kleine, Thorsten; Kruijer, Thomas S.; Burkhardt, Christoph; Metzler, Knut

    2016-01-01

    Chondrules may have played a critical role in the earliest stages of planet formation by mediating the accumulation of dust into planetesimals. However, the origin of chondrules and their significance for planetesimal accretion remain enigmatic. Here, we show that chondrules and matrix in the carbonaceous chondrite Allende have complementary 183W anomalies resulting from the uneven distribution of presolar, stellar-derived dust. These data refute an origin of chondrules in protoplanetary collisions and, instead, indicate that chondrules and matrix formed together from a common reservoir of solar nebula dust. Because bulk Allende exhibits no 183W anomaly, chondrules and matrix must have accreted rapidly to their parent body, implying that the majority of chondrules from a given chondrite group formed in a narrow time interval. Based on Hf-W chronometry on Allende chondrules and matrix, this event occurred ∼2 million years after formation of the first solids, about coeval to chondrule formation in ordinary chondrites. PMID:26929340

  1. Trace elements in rims and interiors of Chainpur chondrules

    NASA Astrophysics Data System (ADS)

    Wilkening, L. L.; Boynton, W. V.; Hill, D. H.

    1984-05-01

    Trace elements were measured in the rims and interiors of nine chondrules separated from the Chainpur LL-3 chondrite. Whole rock samples of Chainpur and samples of separated rims were also measured. Chondrule rims are moderately enriched in siderophile and volatile elements relative to the chondrule interiors. The enriched volatile elements include the lithophilic volatile element Zn. The moderate enrichment of volatiles in chondrule rims and the lack of severe depletion in chondrules can account for the complete volatile inventory in Chainpur. These results support a three-component model of chondrite formation in which metal plus sulfide, chondrules plus rims and matrix silicates are mixed to form chondrites.

  2. Heating during solar nebula formation and Mg isotopic fractionation in precursor grains of CAIs and chondrules

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Nagahara, H.; Kitagami, K.; Nakagawa, Y.

    1994-01-01

    In some Ca-Al-rich inclusion (CAI) grains, mass-dependent isotopic fractionations of Mg, Si, and O are observed and large Mg isotopic fractionation is interpreted to have been produced by cosmochemical processes such as evaporation and condensation. Mass-dependent Mg isotopic fractionation was found in olivine chondrules of Allende meteorites. Presented is an approximate formula for the temperature of the solar nebula that depends on heliocentric distance and the initial gas distribution. Shock heating during solar nebula formation can cause evaporative fractionation within interstellar grains involved in a gas at the inner zone (a less than 3 AU) of the disk. Alternatively collision of late-accreting gas blobs might cause similar heating if Sigma(sub s) and Sigma are large enough. Since the grain size is small, the solid/gas mass ratio is low and solar (low P(sub O2)), and the ambient gas pressure is low, this heating event could not produce chondrules themselves. Chondrule formation should proceed around the disk midplane after dust grains would grow and sediment to increase the solid/gas ratio there. The heating source there is uncertain, but transient rapid accretion through the disk could release a large amount of heat, which would be observed as FU Orionis events.

  3. An Evaluation of Microcomputer-Based Strain Analysis Techniques on Meteoritic Chondrules

    NASA Astrophysics Data System (ADS)

    Hill, H. G. M.

    1995-09-01

    from macrophotographic tracings of four complete thin-sections (total area 8.2 cm2) and a sawn slab (49.45cm2), were digitally scanned using application Ofoto v. 1.0.0^(TM). Chondrule outline (pict) files were then exported to a fabric analysis program, Image v. 1.44, and Rf values obtained thereafter exported to a spreadsheet environment for manipulation. Fry analysis was undertaken with an interactive program, Fry v. 5.0 [9] using the same pict files as before. Chondrule central points were manually inserted and center-to-center distances, when calculated, were displayed on screen in a way which echoes mean chondrule strain and orientation. Results and Conclusion. 364 chondrule outlines (three thin-sections and a sawn slab) were analysed by R(sub)(f)/phi and Fry techniques. In its present form, the Fry technique was judged to be unsuited to chondrule shape analysis as it is too dependant on grain size, i.e. the smallest grain, and the need for a planar homogenous sample bearing several hundred grains [8]. Recent developments in the Fry technique [10] may make it more suitable for chondrule analysis. Representative strain (Rf) data obtained for parallel thin-sections Bovedy M5385b and M5385c (total of 158 chondrules) were 1.49 and 1.41 respectively. Corresponding phi values were 115.0 degrees and 114.6 degrees respectively (with respect to a fixed reference point). Rf data together with petrographic shock features noted, mostly in olivine (e.g. planar fractures, undulatory extinction and weak mosaicism), were suggestive of shock stage S3 [4]. The degree of chondrule flattening and the nature of the (S3) shock effects observed are comparable with artifically flattened chondrules belonging to the same shock stage [3, 11]. The R(sub)(f)/phi technique evaluated was found to be more precise and quantitative than other methods previously employed for measuring maximum and minimum chondrule axes and orientation. Furthermore, it can provide reliable strain (axial, orientation

  4. Microchondrule-bearing clast in the Piancaldoli LL3 meteorite - A new kind of type 3 chondrite and its relevance to the history of chondrules

    NASA Technical Reports Server (NTRS)

    Rubin, A. E.; Scott, E. R. D.; Keil, K.

    1982-01-01

    Electron microprobe, scanning electron microscope, and petrographic analyses of the microchondritic clast of the Piancaldoli LL3 chondrite are reported and compared with other type three chondrites. The clast, like other type three chondrites, has a fine-grained Fe-rich opaque silicate matrix, sharply defined chondrules, abundant low-Ca clinopyroxene and minor troilite and Si and Cr-bearing metallic Fe, Ni. However, the very high model matrix abundance, unique characteristics of the chondrules, and absence of microscopically observable olivine indicate that the clast is a new type of type three chondrite. It is concluded that the microchondrules were formed by the same process that formed normal-sized chondrules in type three chondrites: melting of preexisting dustballs. It is suggested that dust grains were mineralogically sorted in the nebula before aggregating into dustballs.

  5. Chondrule formation in the radiative accretional shock

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, T. V.; Ip, W.

    1994-01-01

    The physical, mineralogical, and isotopic properties of chondrules strongly indicate that they were formed by the rapid melting and resolidification of preexisting solids composed of primitive material. The chondrule precursors were heated to temperatures of about 1800 K in short high-temperature events, followed by cooling with a rate of 10(exp 2)-10(exp 3) K/hr. A heat input of about 1500 J/g is required to heat chondrule precursors to such a temperature and melt them. Lightning discharges and flares in the solar nebula, and heating of the chondrule precursors by friction with gas decelerated in the accretional shock or in a shock (of unspecified origin) within the solar nebula, have been discussed as possible mechanisms for chondrule formation. One advantage of chondrule formation in large-scale shocks is that a lot of dust material can be processed. An accretional shock, which is produced by infalling gas of the presolar cloud when it collides with the solar nebula, belongs to this type of shock. In 1984 Wood considered the possibility of chondrule formation in the accretional shock by heating of chondrule precursors by gas drag. He concluded that the density in the accreting material is much lower than needed to melt silicates at the distance of the asteroid belt if the accreting matter had the cosmic ratio of dust to gas, and the mass of the solar nebula did not exceed 2 solar mass units. Melting of chondrule precursors is difficult because of their effective cooling by thermal radiation. Suppression of the radiative cooling of individual grains in dust swarms, which are opaque to thermal emission, was considered to be the only possible means of chondrule formation in solar nebula shocks. Previous models of solid grain melting in solar nebula shocks have neglected gas cooling behind the shock front, i.e., they considered adiabatic shocks. In this paper we show that large dust grains could be heated much stronger than was supposed by these authors, because of

  6. On the Lower Limit of Chondrule Cooling Rates: The Significance of Iron Loss in Dynamic Crystallization Experiments

    NASA Technical Reports Server (NTRS)

    Paque, Julie M.; Connolly, Harold C., Jr.; Lofgren, Gary E.

    1998-01-01

    It is unlikely that the presence of chondrules, and thus their formation, within the protoplanetary nebula would be predicted if it were not for their ubiquitous presence in most chondritic meteorites. The study of these enigmatic, igneous objects has a direct influence on how meteoritic and solar system researchers model the processes operating and the materials present within our protoplanetary nebula. Key to understanding chondrule formation is a determination of constraints on their thermal histories. The three important variables in this history are their peak melting temperatures, the duration of their melting at peak temperatures, and the rate at which these object cool. Although these three variables are interdependent, it is cooling rate that provides the most powerful constraint. Cooling rate has a direct affect on the development of both crystal morphology and the elemental distributions within these grains. To date, experiments have indicated that chondrule cooling rates are in the range of 10's to 100's of degrees per hour for porphyritic chondrules (the most abundant type). The cooling rate for radial and barred chondrules is thought to be more rapid. To generate these cooling rates (rapid relative to the cooling of the nebula as a whole, but slow compared to simple black body radiation) the environment of chondrule formation must have been localized, and the abundance of solid materials must have been greatly enhanced above a gas of solar composition. Thus accurate determinations of chondrule cooling rates is critical in understanding both their formation and the nebular environment in which they formed. In a quest to more accurately determine the lower limit on cooling rates and to determine in more detail the effects of Fe loss from a molten sample to Pt wire loops, Weinbruch et al. have explored this issue experimentally and reevaluated the findings of Radomsky and Hewins in light of their new results. The basic conclusions of their paper are an

  7. Opaque minerals in chondrules and fine-grained chondrule rims in the Bishunpur (LL3.1) chondrite

    NASA Astrophysics Data System (ADS)

    Lauretta, D. S.; Buseck, P. R.

    2003-01-01

    We present a detailed petrographic and electron microprobe study of metal grains and related opaque minerals in the chondrule interiors and rims of the Bishunpur (LL3.1) ordinary chondrite. There are distinct differences between metal grains that are completely encased in chondrule interiors and those that have some portion of their surface exposed outside of the chondrule boundary, even though the two types of metal grains can be separated by only a few microns. Metal grains in chondrule interiors exhibit minor alteration in the form of oxidized P-, Cr-, and Si-bearing minerals. Metal grains at chondrule boundaries and in chondrule rims are extensively altered into troilite and fayalite. The results of this study suggest that many metal grains in Bishunpur reacted with a type-I chondrule melt and incorporated significant amounts of P, Cr, and Si. As the system cooled, some metal oxidation occurred in the chondrule interior, producing metal-associated phosphate, chromite, and silica. Metal that migrated to chondrule boundaries experienced extensive corrosion as a result of exposure to the external atmosphere present during chondrule formation. It appears that chondrule- derived metal and its corrosion products were incorporated into the fine-grained rims that surround many type-I chondrules, contributing to their Fe-rich compositions. We propose that these fine- grained rims formed by a combination of corrosion of metal expelled from the chondrule interior and accretion of fine-grained mineral fragments and microchondrules.

  8. Compound chondrule formation via collision of supercooled droplets

    NASA Astrophysics Data System (ADS)

    Arakawa, Sota; Nakamoto, Taishi

    2016-09-01

    We present a novel model showing that compound chondrules are formed by collisions of supercooled droplets. This model reproduces two prominent observed features of compound chondrules: the nonporphyritic texture and the size ratio between two components.

  9. Photophoretic Strength on Chondrules. 1. Modeling

    NASA Astrophysics Data System (ADS)

    Loesche, Christoph; Wurm, Gerhard; Teiser, Jens; Friedrich, Jon M.; Bischoff, Addi

    2013-12-01

    Photophoresis is a physical process that transports particles in optically thin parts of protoplanetary disks, especially at the inner edge and at the optical surface. To model the transport and resulting effects in detail, it is necessary to quantify the strength of photophoresis for different particle classes as a fundamental input. Here, we explore photophoresis for a set of chondrules. The composition and surface morphology of these chondrules were measured by X-ray tomography. Based on the three-dimensional models, heat transfer through illuminated chondrules was calculated. The resulting surface temperature map was then used to calculate the photophoretic strength. We found that irregularities in particle shape and variations in composition induce variations in the photophoretic force. These depend on the orientation of a particle with respect to the light source. The variation of the absolute value of the photophoretic force on average over all chondrules is 4.17%. The deviation between the direction of the photophoretic force and illumination is 3.°0 ± 1.°5. The average photophoretic force can be well approximated and calculated analytically assuming a homogeneous sphere with a volume equivalent mean radius and an effective thermal conductivity. We found an analytic expression for the effective thermal conductivity. The expression depends on the two main phases of a chondrule and decreases with the amount of fine-grained devitrified, plagioclase-normative mesostasis up to factor of three. For the chondrule sample studied (Bjurböle chondrite), we found a dependence of the photophoretic force on chondrule size.

  10. Photophoretic strength on chondrules. 1. Modeling

    SciTech Connect

    Loesche, Christoph; Wurm, Gerhard; Teiser, Jens; Friedrich, Jon M.; Bischoff, Addi

    2013-12-01

    Photophoresis is a physical process that transports particles in optically thin parts of protoplanetary disks, especially at the inner edge and at the optical surface. To model the transport and resulting effects in detail, it is necessary to quantify the strength of photophoresis for different particle classes as a fundamental input. Here, we explore photophoresis for a set of chondrules. The composition and surface morphology of these chondrules were measured by X-ray tomography. Based on the three-dimensional models, heat transfer through illuminated chondrules was calculated. The resulting surface temperature map was then used to calculate the photophoretic strength. We found that irregularities in particle shape and variations in composition induce variations in the photophoretic force. These depend on the orientation of a particle with respect to the light source. The variation of the absolute value of the photophoretic force on average over all chondrules is 4.17%. The deviation between the direction of the photophoretic force and illumination is 3.°0 ± 1.°5. The average photophoretic force can be well approximated and calculated analytically assuming a homogeneous sphere with a volume equivalent mean radius and an effective thermal conductivity. We found an analytic expression for the effective thermal conductivity. The expression depends on the two main phases of a chondrule and decreases with the amount of fine-grained devitrified, plagioclase-normative mesostasis up to factor of three. For the chondrule sample studied (Bjurböle chondrite), we found a dependence of the photophoretic force on chondrule size.

  11. Detection of new olivine-rich locations on Vesta

    NASA Astrophysics Data System (ADS)

    Palomba, Ernesto; Longobardo, Andrea; De Sanctis, Maria Cristina; Zinzi, Angelo; Ammannito, Eleonora; Marchi, Simone; Tosi, Federico; Zambon, Francesca; Capria, Maria Teresa; Russell, Christopher T.; Raymond, Carol A.; Cloutis, Edward A.

    2015-09-01

    The discovery of olivine on Vesta's surface by the VIR imaging spectrometer onboard the Dawn space mission has forced us to reconsider our views of Vestan petrogenetic models. Olivines were expected to be present in the interior of Vesta: in the mantle of a vertically layered body as invoked by the magma ocean models, or at the base (or within) the mantle-crust boundary as proposed by fractionation models. Olivines have been detected by VIR-Dawn in two wide areas near Arruntia and Bellicia, regions located in the northern hemisphere. Interestingly, these olivine-rich terrains are far from the Rheasilvia and the more ancient Veneneia basins, which are expected to have excavated the crust down to reach the mantle. In this work we present our attempts to identify other undetected olivine rich areas on Vesta by using spectral parameters sensitive to olivine such as the Band Area Ratio (BAR) and other specific parameters created for the detection of olivines on Mars (forsterite, fayalite and a generic olivine index). As a preliminary step we calibrated these parameters by means of VIS-IR spectra of different HED meteorite samples: behaviors versus sample grain size and albedo were analyzed and discussed. We selected the BAR and the Forsterite Index as the best parameters that can be used on Vesta. A cross-correlation analysis has been applied in order to detect olivine signature on the VIR hyperspectral cubes. These detections have then been confirmed by an anti-correlation analysis between the BAR and one of the olivine parameters, independent of the first method applied. In agreement with the recent discovery, Arruntia and Bellicia were found to be as the most olivine-rich areas, i.e. where the parameter values are strongest. In addition we detected 6 new regions, all but one located in the Vesta north hemisphere. This result confirms again that the old petrogenetic models cannot be straightforwardly applied to Vesta and should be reshaped in the view of these new

  12. Artificial meteor ablation studies: Olivine

    NASA Technical Reports Server (NTRS)

    Blanchard, M. B.; Cunningham, G. G.

    1973-01-01

    Artificial meteor ablation was performed on a Mg-rich olivine sample using an arc-heated plasma of ionized air. Experimental conditions simulated a meteor traveling about 12 km/sec at an altitude of 70 km. The mineral content of the original olivine sample was 98% olivine (including traces of olivine alteration products) and 2% chromite. Forsterite content of the original olivine was Fo-89. After ablation, the forsterite content had increased to Fo-94 in the recrystallized olivine. In addition, lamella-like intergrowths of magnetite were prevalent constituents. Wherever magnetite occurred, there was an increase in Mg and a corresponding decrease in Fe for the recrystallized olivine. The Allende fusion crust consisted of a recrystallized olivine, which was more Mg-rich and Fe-deficient than the original meteorite's olivine, and abundant magnetite grains. Although troilite and pentlandite were the common opaque mineral constituents in this meteorite, magnetite was the principal opaque mineral found in the fusion crust.

  13. Constraints on chondrule origin from petrology of isotopically characterized chondrules in the Allende meteorite

    NASA Astrophysics Data System (ADS)

    McSween, H. Y., Jr.

    1985-09-01

    The petrologic and chemical properties of the ferromagnesian chondrules in the Allende carbonaceous chondrite were examined in terms of the isotopic composition and the correlations between isotopic patterns. Areas of thin sections were studied with a SEM and bulk chemical fractions of 12 constituents were quantified to calculate correlations with petrologic features. A possible correlation between (CaO + Al2O2)/MgO and oxygen isotopes imply the formation of oxygen isotopic compositions in the chondrules by exchanges between isotopically heavy nebular gases and O-16 enriched solids. Different rates of gaseous exchange occurred with the various types of chondrules. Factors which may have controlled the exchanges are discussed.

  14. Constraints on chondrule origin from petrology of isotopically characterized chondrules in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcsween, H. Y., Jr.

    1985-01-01

    The petrologic and chemical properties of the ferromagnesian chondrules in the Allende carbonaceous chondrite were examined in terms of the isotopic composition and the correlations between isotopic patterns. Areas of thin sections were studied with a SEM and bulk chemical fractions of 12 constituents were quantified to calculate correlations with petrologic features. A possible correlation between (CaO + Al2O2)/MgO and oxygen isotopes imply the formation of oxygen isotopic compositions in the chondrules by exchanges between isotopically heavy nebular gases and O-16 enriched solids. Different rates of gaseous exchange occurred with the various types of chondrules. Factors which may have controlled the exchanges are discussed.

  15. Formation of chondrules by electrical discharge heating

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Keil, K.; Scott, E. R. D.

    1994-01-01

    A possible mechanism for making chondrules in the solar nebula is electrical discharge ('lightning') heating, which can create high-temperature (greater than 1600 K), short-duration (approximately 10 s) thermal events as indicated by the chondritic record. Lightning occurs in many diverse terrestrial and planetary settings, and may have occurred in the solar nebula; it is thus worthwhile to investigate its implications for chondrule formation. Nebular discharges do not appear a viable source of heat for melting chondrule precursors, regardless of the uncertainty in the details of the mode. Nonetheless, we believe nebular lightning worthy of further investigation than what is presented here. Experiments analogous to those currently underway to investigate terrestrial thunderstorm lightning could be fruitful in refining nebular lightning models, and would be double interesting in application to nonthunderstorm and planetary lightnings.

  16. A New Astrophysical Setting for Chondrule Formation

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Meibom, Anders; Russell, Sara S.; O'D. Alexander, Conel M.; Jeffries, Timothy E.; Keil, Klaus

    2001-03-01

    Chondrules in the metal-rich meteorites Hammadah al Hamra 237 and QUE 94411 have recorded highly energetic thermal events that resulted in complete vaporization of a dusty region of the solar nebula (dust/gas ratio of about 10 to 50 times solar). These chondrules formed under oxidizing conditions before condensation of iron-nickel metal, at temperatures greater than or equal to 1500 K, and were isolated from the cooling gas before condensation of moderately volatile elements such as manganese, sodium, potassium, and sulfur. This astrophysical environment is fundamentally different from conventional models for chondrule formation by localized, brief, repetitive heating events that resulted in incomplete melting of solid precursors initially residing at ambient temperatures below approximately 650 K.

  17. Partitioning of Trace Elements Between Pyroxene and Liquid in a Porphyritic Pyroxene Chondrule in Semarkona

    NASA Astrophysics Data System (ADS)

    Jones, R. H.; Layne, G. D.

    1993-07-01

    The unequilibrated chondrite Semarkona (LL3.0) enables us to investigate primary properties of chondrules that have not been overprinted by secondary processes. Electron microprobe studies of the compositions and zoning properties of silicate phases in these chondrules have helped to interpret crystallization behavior and, hence, offer important insights into formation conditions [e.g., 1,2]. However, the behavior of trace elements in these systems has not been investigated, largely because of the difficulties encountered in analyzing such elements in chondrule silicates. Here we report preliminary ion microprobe data obtained on coexisting pyroxene and glass phases from a pyroxene-rich chondrule in Semarkona. Trace elements analyzed are REE (La, Ce, Nd, Sm, Eu, Dy, Er, Yb), Sr, Y, and Zr. The chondrule studied is a typical example of textural type IAB [2]. It contains phenocrysts of olivine (Fa(sub)3) and clinoenstatite and a glassy mesostasis occupying approximately 15 vol% of the chondrule. Augite (Fs(sub)3, Wo(sub)44) occurs as narrow (10-micrometer) rims on clinoenstatite phenocrysts. Clinoenstatite is FeO-poor (Fs(sub)3, Wo(sub)0.4) and shows little zoning in major and minor elements. Trace-element analyses have been carried out on clinoenstatite, augite, and glass in this chondrule. REE contents in clinoenstatite are extremely low, lying in the range 0.01-0.1 x CI, and show a smooth increase in abundance from La to Yb. REE abundances are enriched in both augite and glass at levels approximately 4-10 x CI, with a small negative Eu anomaly in augite and a small positive Eu anomaly in glass. Olivine is likely to contain REE abundances similar to low-Ca pyroxene [3]. These relative abundances are consistent with closed-system crystallization of the chondrule, assuming that its bulk composition has chondritic abundances of REE [4]. Trace-element partition coefficients (Ds) for the two pyroxene phases are shown in Fig. 1. Clinoenstatite Ds vary smoothly

  18. Remelting of refractory inclusions in the chondrule-forming regions: Evidence from chondrule-bearing type C calcium-aluminum-rich inclusions from Allende

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Yurimoto, Hisayoshi; Hutcheon, Ian D.; Chaussidon, Marc; MacPherson, Glenn J.; Paque, Julie

    2007-08-01

    We describe the mineralogy, petrology, oxygen, and magnesium isotope compositions of three coarse-grained, igneous, anorthite-rich (type C) Ca-Al-rich inclusions (CAIs) (ABC, TS26, and 93) that are associated with ferromagnesian chondrule-like silicate materials from the CV carbonaceous chondrite Allende. The CAIs consist of lath-shaped anorthite (An99), Cr-bearing Al-Ti-diopside (Al and Ti contents are highly variable), spinel, and highly åkermanitic and Na-rich melilite (Åk63-74, 0.4-0.6 wt% Na2O). TS26 and 93 lack Wark-Lovering rim layers; ABC is a CAI fragment missing the outermost part. The peripheral portions of TS26 and ABC are enriched in SiO2 and depleted in TiO2 and Al2O3 compared to their cores and contain relict ferromagnesian chondrule fragments composed of forsteritic olivine (Fa6-8) and low-Ca pyroxene/pigeonite (Fs1Wo1-9). The relict grains are corroded by Al-Ti-diopside of the host CAIs and surrounded by haloes of augite (Fs0.5Wo30-42). The outer portion of CAI 93 enriched in spinel is overgrown by coarse-grained pigeonite (Fs0.5-2Wo5-17), augite (Fs0.5Wo38-42), and anorthitic plagioclase (An84). Relict olivine and low-Ca pyroxene/pigeonite in ABC and TS26, and the pigeonite-augite rim around 93 are 16O-poor (Δ17O ˜ -1‰ to -8‰). Spinel and Al-Ti-diopside in cores of CAIs ABC, TS26, and 93 are 16O-enriched (Δ17O down to -20‰), whereas Al-Ti-diopside in the outer zones, as well as melilite and anorthite, are 16O-depleted to various degrees (Δ17O = -11‰ to 2‰). In contrast to typical Allende CAIs that have the canonical initial 26Al/27Al ratio of ˜5 × 10-5 ABC, 93, and TS26 are 26Al-poor with (26Al/27Al)0 ratios of (4.7 ± 1.4) × 10-6 (1.5 ± 1.8) × 10-6 <1.2 × 10-6 respectively. We conclude that ABC, TS26, and 93 experienced remelting with addition of ferromagnesian chondrule silicates and incomplete oxygen isotopic exchange in an 16O-poor gaseous reservoir, probably in the chondrule-forming region. This melting episode could

  19. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  20. Chondrules, matrix and coarse-grained chondrule rims in the Allende meteorite - Origin, interrelationships, and possible precursor components

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.; Wasson, J. T.

    1987-07-01

    INAA and broad-beam EMPA are used to determine the bulk compositions of 20 chondrules, 13 coarse-grained chondrule rims, and one nonporphyritic CV chondrule (NPCVC) from CV3 Allende (and of one NPCVC each from Leoville and Vigarano). The data are presented in extensive tables and graphs and analyzed in detail. Five probable chondrule precursor components are deduced, and the solar-nebula processes giving rise to them (and probably to the coarse-grained rims as well) are discussed. It is suggested that the formation of the rimmed chondrules involved nebular reheating in space, after the accretion of dusty coatings.

  1. Uranium isotopic composition and absolute ages of Allende chondrules

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.; Budde, G.; Kleine, T.

    2015-11-01

    A handful of events, such as the condensation of refractory inclusions and the formation of chondrules, represent important stages in the formation and evolution of the early solar system and thus are critical to understanding its development. Compared to the refractory inclusions, chondrules appear to have a protracted period of formation that spans millions of years. As such, understanding chondrule formation requires a catalog of reliable ages, free from as many assumptions as possible. The Pb-Pb chronometer has this potential; however, because common individual chondrules have extremely low uranium contents, obtaining U-corrected Pb-Pb ages of individual chondrules is unrealistic in the vast majority of cases at this time. Thus, in order to obtain the most accurate 238U/235U ratio possible for chondrules, we separated and pooled thousands of individual chondrules from the Allende meteorite. In this work, we demonstrate that no discernible differences exist in the 238U/235U compositions between chondrule groups when separated by size and magnetic susceptibility, suggesting that no systematic U-isotope variation exists between groups of chondrules. Consequently, chondrules are likely to have a common 238U/235U ratio for any given meteorite. A weighted average of the six groups of chondrule separates from Allende results in a 238U/235U ratio of 137.786 ± 0.004 (±0.016 including propagated uncertainty on the U standard [Richter et al. 2010]). Although it is still possible that individual chondrules have significant U isotope variation within a given meteorite, this value represents our best estimate of the 238U/235U ratio for Allende chondrules and should be used for absolute dating of these objects, unless such chondrules can be measured individually.

  2. Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing

    NASA Astrophysics Data System (ADS)

    Varela, M. E.; Sylvester, P.; BrandstäTter, F.; Engler, A.

    2015-08-01

    Sixteen nonporphyritic chondrules and chondrule fragments were studied in polished thin and thick sections in two enstatite chondrites (ECs): twelve objects from unequilibrated EH3 Sahara 97158 and four objects from equilibrated EH4 Indarch. Bulk major element analyses, obtained with electron microprobe analysis (EMPA) and analytical scanning electron microscopy (ASEM), as well as bulk lithophile trace element analyses, determined by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS), show that volatile components (K2O + Na2O versus Al2O3) scatter roughly around the CI line, indicating equilibration with the chondritic reservoir. All lithophile trace element abundances in the chondrules from Sahara 97158 and Indarch are within the range of previous analyses of nonporphyritic chondrules in unequilibrated ordinary chondrites (UOCs). The unfractionated (solar-like) Yb/Ce ratio of the studied objects and the mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns indicate an origin by direct condensation. However, the objects possess subchondritic CaO/Al2O3 ratios; superchondritic (Sahara 97158) and subchondritic (Indarch) Yb/Sc ratios; and chondritic-normalized deficits in Nb, Ti, V, and Mn relative to RLTEs. This suggests a unique nebular process for the origin of these ECs, involving elemental fractionation of the solar gas by the removal of oldhamite, niningerite, and/or another phase prior to chondrule condensation. A layered chondrule in Sahara 97158 is strongly depleted in Nb in the core compared to the rim, suggesting that the solar gas was heterogeneous on the time scales of chondrule formation. Late stage metasomatic events produced the compositional diversity of the studied objects by addition of moderately volatile and volatile elements. In the equilibrated Indarch chondrules, this late process has been further disturbed, possibly by a postaccretional process (diffusion?) that preferentially mobilized Rb with

  3. High C and H Contents of Chondrules

    NASA Astrophysics Data System (ADS)

    Hanon, P.; Chaussidon, M.; Robert, F.

    1996-03-01

    Carbon and hydrogen concentrations (reported hereafter as in ppm C and [H] in ppm H2O) of 33 chondrules of all petrological types and sizes, and belonging to some of the least altered and metamorphosed chondrites were determined with the CRPG Nancy ion-microprobe. Special care was taken in order to efficiently get rid of the terrestrial contamination. Before analysis, each sampling area (0~25 micrometers and ~50 micrometers for the smaller chondrules) was sputtered by the O^2- primary beam (20nA) for 5 minutes. Precise chemical concentrations for H and C were obtained for a -60V offset applied to the sample, along with an energy filtering of +/- 10V. Mass resolution (M/Delta M) of 1800 is sufficient to discriminate the 24Mg++ signal from the 12C+. Mid-ocean ridge basalts were used for calibration of C and H. Major element concentrations in phases were obtained by electron probe analysis. Then, in each chondrule, phase proportions were visually estimated allowing the calculation of a bulk concentration for the major elements. [C] and [H] were obtained by two methods : 1) using internal chondrule correlations between individual ion-probe spots for carbon (or H) and major elements contents or 2) by averaging all ion-probe [C] and [H] determinations. _

  4. Experimental Reproduction of Type 1B Chondrules

    NASA Technical Reports Server (NTRS)

    Lofgren, G. E.; Le, L.

    2002-01-01

    We have replicated type 1B chondrule textures and compositions with crystallization experiments in which UOC material was melted at 1400 deg.C and cooled at 5-1000 deg.C/hr using graphite crucibles in evacuated silica tubes to provide a reducing environment. Additional information is contained in the original extended abstract.

  5. REVISITING JOVIAN-RESONANCE INDUCED CHONDRULE FORMATION

    SciTech Connect

    Nagasawa, M.; Tanaka, K. K.; Tanaka, H.; Nakamoto, T.; Miura, H.; Yamamoto, T.

    2014-10-10

    It is proposed that planetesimals perturbed by Jovian mean-motion resonances are the source of shock waves that form chondrules. It is considered that this shock-induced chondrule formation requires the velocity of the planetesimal relative to the gas disk to be on the order of ≳ 7 km s{sup –1} at 1 AU. In previous studies on planetesimal excitation, the effects of Jovian mean-motion resonance together with the gas drag were investigated, but the velocities obtained were at most 8 km s{sup –1} in the asteroid belt, which is insufficient to account for the ubiquitous existence of chondrules. In this paper, we reexamine the effect of Jovian resonances and take into account the secular resonance in the asteroid belt caused by the gravity of the gas disk. We find that the velocities relative to the gas disk of planetesimals a few hundred kilometers in size exceed 12 km s{sup –1}, and that this is achieved around the 3:1 mean-motion resonance. The heating region is restricted to a relatively narrowband between 1.5 AU and 3.5 AU. Our results suggest that chondrules were produced effectively in the asteroid region after Jovian formation. We also find that many planetesimals are scattered far beyond Neptune. Our findings can explain the presence of crystalline silicate in comets if the scattered planetesimals include silicate dust processed by shock heating.

  6. Magnetic reconnection as a chondrule heating mechanism

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel A.

    2010-12-01

    The origin of chondrules (sub-millimeter inclusions found in stony meteorites) remains today an open question despite over century of examination. The age of these proto-solar relics shows a well defined cutoff of around 4.5 billion years ago. This places them as the oldest solids in the solar system. Chemical examination indicates that they experienced heating events on the order of 5000 K/hr for periods of around 30 minutes, followed by extending periods of cooling. Additional examination indicates the presence of large magnetic fields during their formation. Most attempts to explain chondrule formation in the proto-solar nebula neglect the existence of a plasma environment, with even less mention of dust being a charge carrier (dusty plasma). Simulations of magnetic reconnection in a dusty plasma are forwarded as a mechanism for chondrule formation in the proto-solar nebula. Here large dust-neutral relative velocities are found in the reconnection region. These flows are associated with the dynamics of reconnection. The high Knudsen number of the dust particles allows for a direct calculation of frictional heating due to collisions with neutrals (allowing for the neglect of boundary layer formation around the particle). Test particle simulations produce heating equivalent to that recorded in the chondrule mineral record. It is shown that magnetic reconnection in a dusty plasma is of fundamental importance to the formation of the most primitive solids in the solar system.

  7. Evaporation of nebular fines during chondrule formation

    NASA Astrophysics Data System (ADS)

    Wasson, John T.

    2008-06-01

    Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 10 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH 4 at lower

  8. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  9. Silica-merrihueite/roedderite-bearing chondrules and clasts in ordinary chondrites: New occurrences and possible origin

    NASA Technical Reports Server (NTRS)

    Krot, Alexander N.; Wasson, John T.

    1994-01-01

    Merrihueite (K,Na)2(Fe,Mg)5Si12O30 (na less than 0.5, fe greater than 0.5, where na = Na/(Na + K), fe = Fe/(Fe + Mg) in atomic ratio) is a rare mineral described only in several chondrules and irregularly-shaped fragments in the Mezo-Madaras L3 chondrite (Dodd et al., 1965; Wood and Holmberg, 1994). Roedderite (Na,K)2(Mg,Fe)5Si12O30 (na greater than 0.5, fe less than 0.5) has been found only in enstatite chondrites and in the reduced, subchondritic silicate inclusions in IAB irons (Fuchs, 1966; Rambaldi et al., 1984; Olsen, 1967). We described silica-roedderite-bearing clasts in L/LL3.5 ALHA77011 and LL3.7 ALHA77278, a silica-roedderite-bearing chondrule in L3 Mezo-Madaras, and a silica-merrihueite-bearing chondrule in L/LL3.5 ALHA77115. The findings of merrihueite and roedderite in ALHA77011, ALHA77115, ALHA77278 and Mezo-Madaras fill the compositional gap betweeen previously described roedderite in enstatite chondrites and silicate inclusions in IAB irons and merrihueite in Mezo-Madaras, suggesting that there is a complete solid solution of roedderite and merrihueite in meteorites. We infer that the silica- and merrihueite/roedderite-bearing chondrules and clasts experienced a complex formational history including: (a) fractional condensation in the solar nebular that produced Si-rich and Al-poor precursors, (b) melting of fractionated nebular solids resulting in the formation of silica-pyroxene chondrules, (c) in some cases, fragmentation in the nebula or on a parent body, (d) reaction of silica with alkali-rich gas that formed merrihueite/roedderite on a parent body, (e) formation of fayalitic olivine and feerosilite-rich pyroxene due to reaction of silica with oxidized Fe on a parent body, and (f) minor thermal metamorphism, possibly generated by impacts.

  10. Origin of plagioclase-olivine inclusions in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Sheng, Y. J.; Hutcheon, I. D.; Wasserburg, G. J.

    1991-02-01

    The origin of plagioclase-olivine inclusions (POIs) from three CV chondrites and one ungrouped chondrite was investigated by examining the chemical, mineralogical, and isotopic characteristics of a group of POIs from these chondrites. Results of these analyses demonstrate that the mixing and the partial melting processes in these inclusions were superimposed on more ancient isotopically heterogeneous material. A comparison of the essential characteristics of POIs and CAIs suggests that the major processes leading to the formation of POIs (such as condensation, dust/gas fractionation, aggregation of chemically and isotopically disparate materials, and partial melting) are common to most CAIs and chondrules. A scenario for the origin of POIs is proposed, showing that the homogeneity of the final assemblage (whether a POI, a CAI, or a chondrite) is primarily a reflection of the thermal history rather than the nature of precursor materials.

  11. Vacuum welding of olivine.

    PubMed

    Bell, P R

    1966-07-22

    Welding of olivine was demonstrated by grinding it in a ball mill in an atmosphere of about 2 x 10(-7) torr. Most of the sample adhered strongly to the container and grinding balls although adhesion in air is only slight. Similar adhesion should be expected on the lunar surface and may account for the roughness needed to explain the optical properties of the moon and the detail of the una 9 photographs. PMID:17839712

  12. "Black-colored olivines" in peridotites: dehydrogenation from hydrous olivines

    NASA Astrophysics Data System (ADS)

    Arai, Shoji; Hoshikawa, Chihiro; Miura, Makoto

    2015-04-01

    Fresh olivines that are black to the naked eye are found in some dunites. Peridotites are easily converted to be black in color, when serpentinized, due to production of secondary fine magnetite particles. The dunites that contain fresh but black-colored olivines are usually coarse-grained. These coarse olivine grains are sometimes very heterogeneous in color; the blackish part grades to whitish parts in single grains. The black color is due to homegeneous distribution of minute (< 10 microns) black particles in olivine. They are rod-like or plate-like in shape in thin section, sometimes being aligned under crystallographic control of the host olivine. Olivines are clear and free of these inclusions around primary chromian spinel inclusions or chromian spinel lamellae (Arai, 1978). Raman spectroscopy indicates the minute black particles are magnetite always associated with diopside. It is interesting to note that olivine in mantle peridotites accompanied by the black-colored dunites is totally free of the black inclusions, giving the ordinary colors (pale yellow to whitish) of Mg-rich olivine. It is not likely that the magnetite inclusions formed through secondary oxidation of olivine by invasion of oxygen, which is possible along cracks or grain boundaries. They most probably formed due to dehydrogenation from primary OH-bearing olivines upon cooling. Hydrogen was quickly diffused out from the olivines to leave magnetite and excess silica. The excess silica was possibly combined with a monticellite component to form diopside. The OH-bearing (hydrous) olivines can be precipitated from hydrous magmas, and the hydrous nature of the magma can promote an increase in grain size due to faster diffusion of elements. The minute inclusions of magnetite + diopside is thus an indicator of primary hydrous character of host olivine.

  13. Partitioning of Moderately Siderophile Elements Among Olivine, Silicate Melt, and Sulfide Melt: Constraints on Core Formation in the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Gaetani, Glenn A.; Grove, Timothy L.

    1997-01-01

    This study investigates the effects of Variations in the fugacities of oxygen and sulfur on the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni. and Cu) and W among coexisting sulfide melt, silicate melt, and olivine. Experiments were performed at 1 atm pressure, 1350 C, with the fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Starting compositions consisted of a CaO-MgO-Al2O3-SiO2-FeO-Na2O analog for a barred olivine chondrule from an ordinary chondrite and a synthetic komatiite. The f(sub O2)/f(sub S2), conditions ranged from log of f(sub O2) = -7.9 to - 10.6, with log of f(sub S2) values ranging from - 1.0 to -2.5. Our experimental results demonstrate that the f(sub O2)/f(sub S2) dependencies of sulfide melt/silicate melt partition coefficients for the first series transition metals arc proportional to their valence states. The f(sub O2)/f(sub S2) dependencies for the partitioning of Fe, Co, Ni, and Cu are weaker than predicted on the basis of their valence states. Variations in conditions have no significant effect on olivine/melt partitioning other than those resulting from f(sub O2)-induced changes in the valence state of a given element. The strong f(sub O2)/f(sub S2) dependence for the olivine/silicate melt partitioning of V is attributable to a change of valence state, from 4+ to 3+, with decreasing f(sub O2). Our experimentally determined partition coefficients are used to develop models for the segregation of sulfide and metal from the silicate portion of the early Earth and the Shergottite parent body (Mars). We find that the influence of S is not sufficient to explain the overabundance of siderophile and chalcophile elements that remained in the mantle of the Earth following core formation. Important constraints on core formation in Mars are provided by our experimental determination of the partitioning of Cu between silicate and sulfide melts. When combined with existing estimates for siderophile

  14. Applicability of Henry's Law to helium solubility in olivine

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Parman, S. W.; Kelley, S. P.; Cooper, R. F.

    2013-12-01

    Applicability of Henry's Law to helium solubility in olivine We have experimentally determined helium solubility in San Carlos olivine across a range of helium partial pressures (PHe) with the goal of quantifying how noble gases behave during partial melting of peridotite. Helium solubility in olivine correlates linearly with PHe between 55 and 1680 bar. This linear relationship suggests Henry's Law is applicable to helium dissolution into olivine up to 1680 bar PHe, providing a basis for extrapolation of solubility relationships determined at high PHe to natural systems. This is the first demonstration of Henry's Law for helium dissolution into olivine. Averaging all the data of the PHe series yields a Henry's coefficient of 3.8(×3.1)×10-12 mol g-1 bar-1. However, the population of Henry's coefficients shows a positive skew (skewness = 1.17), i.e. the data are skewed to higher values. This skew is reflected in the large standard deviation of the population of Henry's coefficients. Averaging the median values from each experiment yields a lower Henry's coefficient and standard deviation: 3.2(× 2.3)×10-12 mol g-1 bar-1. Combining the presently determined helium Henry's coefficient for olivine with previous determinations of helium Henry's coefficients for basaltic melts (e.g. 1) yields a partition coefficient of ~10-4. This value is similar to previous determinations obtained at higher PHe (2). The applicability of Henry's Law here suggests helium is incorporated onto relatively abundant sites within olivine that are not saturated by 1680 bar PHe or ~5×10-9 mol g-1. Large radius vacancies, i.e. oxygen vacancies, are energetically favorable sites for noble gas dissolution (3). However, oxygen vacancies are not abundant enough in San Carlos olivine to account for this solubility (e.g. 4), suggesting the 3x10-12 mol g-1 bar-1 Henry's coefficient is associated with interstitial dissolution of helium. Helium was dissolved into olivine using an externally heated

  15. Relict Forsterite in Chondrules: Implications for Cooling Rates

    NASA Technical Reports Server (NTRS)

    Greeney, S.; Ruzicka, A.

    2004-01-01

    Forsterite (Fo(sub 99-100)) is often present in chondrules as relict grains that did not crystallize in situ and as isolated grains outside of chondrules; both are surrounded by ferrous overgrowths which clearly formed at a later time, probably during chondrule formation. We performed microprobe analyses across forsterite-overgrowth interfaces in 12 chondrules and 4 isolated grains in the Sahara-97210 LL3.2 (Sahara), Wells LL3.3, and Chainpur LL3.4 chondrites and modelled diffusional exchange between forsterite and overgrowths, with the goal of constraining the thermal histories during chondrule formation. The cooling rates experienced by chondrules provide an important constraint on the origin and setting of these objects.

  16. The Origin of Silica-Rich Chondrules and Clasts in Ordinary and Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Ruzicka, A.; Boynton, W. V.

    1992-07-01

    Chondrules and clasts containing a silica mineral or a silica glass are a minor but important constituent in many ordinary (Planner, 1983; Brigham et al., 1986) and some carbonaceous (Olsen, 1983) chondrites, and have been considered somewhat enigmatic. The recent discovery of a large, silica-rich igneous clast in the Bovedy (L3) chondrite (Ruzicka and Boynton, 1992) sheds light on the possible origin of other silica-rich objects. As discussed in Ruzicka and Boynton (1992), the Bovedy clast probably crystallized from an Lchondrite silicate magma in a relatively large magma body that had previously undergone olivine fractionation. The existence of similar fractionating magmas can also account for the origin of other silica-rich objects, as shown below. Pyroxene-silica objects. Chondrules (drop-formed objects) and clasts (irregularly shaped objects) consisting essentially of a mixture of orthopyroxene (opx) and a silica mineral (SiO2) have been found in various ordinary chondrites (Brigham et al., 1986). Brigham and coworkers (1986) proposed that these objects could be condensates. However, fractional crystallization of a liquid similar in composition to the Bovedy clast (Ruzicka and Boynton, 1992) will produce (Morse, 1980) the following solids: (a) orthopyroxenite, (b) an opx + SiO2 rock, and (c) a feldspar, SiO2 and pyroxene rock. Brecciation or remelting of rock (b), which lies on the opx-SiO2 join in the cristobalite primary crystallization field, could have produced the pyroxene-silica objects of Brigham et al. (1986) and Planner (1983). Fayalite-silica clasts. These clasts consist of SiO2, olivine (ol, Fa(sub)63-96), and highly variable amounts of opx and clinopyroxene (Brigham et al., 1986). Brigham et al. (1986) discussed various origins for these objects and concluded that none were entirely satisfactory, but that an accidental mixture of the various phases in them was probably the best hypothesis. However, a rock mainly containing SiO2 and fayalitic ol (Fa

  17. Determination of silicon in meteoritic chondrules and its significance

    NASA Astrophysics Data System (ADS)

    Yi, W.-X.; Ouyang, Z.-Y.; Hu, G.-H.; Zhong, H.-H.; Xu, H.-Q.

    1984-04-01

    The silicon abundances in 20 chondrules from the Jilin, Xin Yang, Boxian, and Dontai meteorites and their whole rock samples were determined by 14 MeV neutron activation analysis. The silicon abundances were enriched in chondrules compared to whole chondrites. A systematic increase in the silicon abundance of whole chondrites with E, H, L, LL was observed, as was a systematic increase in the silicon abundance of nonmagnetic chondrules from ordinary chondrites with H, L, LL. The results indicate indirectly that chondrule formation occurred earlier than matrix formation.

  18. Porphyritic Olivine-Pyroxene Clast in Kaidun: First Discovery of an Ordinary Chondrite Clast?

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Makishima, J.; Koizumi, E.; Zolensky, M. E.

    2005-01-01

    Kaidun is an enigmatic meteorite showing a micro-brecciated texture composed of variable kinds of lithic clasts and mineral fragments. The constituent components range from primitive chondritic materials to differentiated achondritic materials, and thus believed to have originated from a large parent body accumulating materials from many different bodies in the asteroid belt. One of the interesting observations is that no ordinary chondrite component has been found yet, although C and E chondrites components are abundant. In this abstract, we report mineralogy of the clast (Kaidun #15415- 01.3.13a) showing a porphyritic olivine-pyroxene chondrule-like texture similar to those found in unequilibrated ordinary chondrites.

  19. Minor elements in Marjalahti olivine

    NASA Astrophysics Data System (ADS)

    Ryder, G.

    1984-06-01

    Precise microprobe determinations of minor elements in olivine from Marjalahti show averages of 0.0267 percent CaO; 0.0211 percent Cr2O3; less than 0.0045 percent TiO2; 0.288 percent MnO; and 30 ppm Ni. The calcium is as high as in some terrestrial plutonic olivines (e.g. Stillwater) but lower than in terrestrial nodule (high-temperature mantle?) olivines, consistent with very slow cooling to low temperatures. The chromium is discrepant with some earlier determinations, and possibly chromium is zoned in most pallasitic olivines. The Ti, Mn, and Ni data are consistent with previous determinations.

  20. An unusual layered mineral in chondrules and aggregates of the Allende carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Tomeoka, K.; Buseck, P. R.

    1982-01-01

    Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X ray (EDS) and electron energy loss (EELS) spectroscopy examinations of the microstructures and phase relationships of minerals in opaque spherules in the Allende chondrules and aggregates are reported. The studies were carried out on petrographic thin sections which were ion-thinned. A significant metasomatic effect was observed in a highly oxidizing condition of a later cooled stage. An unusually layered Fe-, Ni-, and O-rich mineral related to serpentine was found to occur in the opaque specimen, and was judged to occur by alteration of olivine. It is noted that low temperature and a hydrous condition would have been required for the formation of the serpentine in the spherules, the first observed in Allende. It is suggested that the aqueous conditions occurred before the final stage of the meteorite formation, and proceeded in a nonterrestrial manner.

  1. Olivine in terminal particles of Stardust aerogel tracks and analogous grains in chondrite matrix

    NASA Astrophysics Data System (ADS)

    Frank, David R.; Zolensky, Michael E.; Le, Loan

    2014-10-01

    The dearth of both major and minor element analyses of anhydrous silicate phases in chondrite matrix has thus far hindered their comparison to the Wild 2 samples. We present 68 analyses of olivine (Fa0-97) in the coarse-grained terminal particles of Stardust aerogel tracks and a comprehensive dataset (>103 analyses) of analogous olivine grains (5-30 μm) isolated in CI, CM, CR, CH, CO, CV3-oxidized, CV3-reduced, C3-ungrouped (Acfer 094 and Ningqiang), L/LL 3.0-4, EH3, and Kakangari chondrite matrix. These compositions reveal that Wild 2 likely accreted a diverse assortment of material that was radially transported from various carbonaceous and ordinary chondrite-forming regions. The Wild 2 olivine includes amoeboid olivine aggregates (AOAs), refractory forsterite, type I and type II chondrule fragments and/or microchondrules, and rare relict grain compositions. In addition, we have identified one terminal particle that has no known compositional analog in the meteorite record and may be a signature of low-temperature, aqueous processing in the Kuiper Belt. The generally low Cr content of FeO-rich olivine in the Stardust samples indicates that they underwent mild thermal metamorphism, akin to a petrologic grade of 3.05-3.15.

  2. Magnesium Isotopic Composition of CAIs and Chondrules from CBb Chondrites

    NASA Astrophysics Data System (ADS)

    Gounelle, M.; Young, E. D.; Shahar, A.; Kearsley, A.

    2006-03-01

    We measured magnesium isotope ratios in 17 chondrules and 3 CAIs from the CBb chondrites HH 237 and QUE 94411 by LA-MC-ICPMS. We find no detectable 26Al excesses in the three CAIs and approximately normal (chondritic) d25Mg in CAIs and chondrules.

  3. The origin of non-porphyritic pyroxene chondrules in UOCs: Liquid solar nebula condensates?

    NASA Astrophysics Data System (ADS)

    Engler, Almut; Varela, Maria Eugenia; Kurat, Gero; Ebel, Denton; Sylvester, Paul

    2007-12-01

    A total of 56 non-porphyritic pyroxene and pyroxene/olivine micro-objects from different unequilibrated ordinary chondrites were selected for detailed studies to test the existing formation models. Our studies imply that the non-porphyritic objects represent quickly quenched liquids with each object reflecting a very complex and unique evolutionary history. Bulk major element analyses, obtained with EMPA and ASEM, as well as bulk lithophile trace element analyses, determined by LA-ICP-MS, resulted in unfractionated (solar-like) ratios of CaO/Al 2O 3, Yb/Ce as well as Sc/Yb in many of the studied objects and mostly unfractionated refractory lithophile trace element (RLTE) abundance patterns. These features support an origin by direct condensation from a gas of solar nebula composition. Full equilibrium condensation calculations show that it is theoretically possible that pyroxene-dominated non-porphyritic chondrules with flat REE patterns could have been formed as droplet liquid condensates directly from a nebular gas strongly depleted in olivine. Thus, it is possible to have enstatite as the stable liquidus phase in a 800 × Cl dust-enriched nebular gas at a p of 10 -3 atm, if about 72% of the original Mg is removed (as forsterite?) from the system. Condensation of liquids from vapor (primary liquid condensation) could be considered as a possible formation process of the pyroxene-dominated non-porphyritic objects. This process can produce a large spectrum of chemical compositions, which always have unfractionated RLTE abundances. Late stage and subsolidus metasomatic events appear to have furthered the compositional diversity of chondrules and related objects by addition of moderately volatile and volatile elements to these objects by exchange reactions with the chondritic reservoir (e.g., V, Cr, Mn, FeO as well as K and Na). The strong fractionation displayed by the volatile lithophile elements could be indicative of a variable efficiency of metasomatic processes

  4. Titanium isotopic anomalies in chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Niemeyer, S.

    1988-02-01

    Isotopic analyses of Ti from a suite of eight Allende chondrules were conducted to determine whether any relationship exists between the composition and structure of a chondrule and the Ti isotopic patterns. Four of the eight chondrules displayed well-resolved anomalies with respect to Ti-50/Ti-46 ratio, which ranged from a Ti-50 deficit of two epsilon-units to a T-50 excess of nine epsilon-units. No clear link was found between the structure of the chondrules and the Ti anomalies (although the chondrule with by far the largest Ti isotopic anomaly was also Al-rich, suggesting that there might exist a complicated relationship between the degree of refractory enrichment and the magnitude of Ti isotopic anomalies.

  5. Fractionation of B and Li in the Solar Nebula or in Chondrules: Insight from Chondrule Formation Experiments

    NASA Technical Reports Server (NTRS)

    Xiong, Y.-L.; Hewins, R. H.; Cetiner, Z.; Wood, S. A.

    2002-01-01

    Chondrule formation experiments suggest that the B/Li ratios of synthesized chondrules are always lower than that of the starting material, and that the B/Li ratios systematically decrease with decreasing cooling rates at constant temperature. Additional information is contained in the original extended abstract.

  6. CHONDRULE FORMATION IN BOW SHOCKS AROUND ECCENTRIC PLANETARY EMBRYOS

    SciTech Connect

    Morris, Melissa A.; Desch, Steven J.; Athanassiadou, Themis; Boley, Aaron C.

    2012-06-10

    Recent isotopic studies of Martian meteorites by Dauphas and Pourmand have established that large ({approx}3000 km radius) planetary embryos existed in the solar nebula at the same time that chondrules-millimeter-sized igneous inclusions found in meteorites-were forming. We model the formation of chondrules by passage through bow shocks around such a planetary embryo on an eccentric orbit. We numerically model the hydrodynamics of the flow and find that such large bodies retain an atmosphere with Kelvin-Helmholtz instabilities allowing mixing of this atmosphere with the gas and particles flowing past the embryo. We calculate the trajectories of chondrules flowing past the body and find that they are not accreted by the protoplanet, but may instead flow through volatiles outgassed from the planet's magma ocean. In contrast, chondrules are accreted onto smaller planetesimals. We calculate the thermal histories of chondrules passing through the bow shock. We find that peak temperatures and cooling rates are consistent with the formation of the dominant, porphyritic texture of most chondrules, assuming a modest enhancement above the likely solar nebula average value of chondrule densities (by a factor of 10), attributable to settling of chondrule precursors to the midplane of the disk or turbulent concentration. We calculate the rate at which a planetary embryo's eccentricity is damped and conclude that a single planetary embryo scattered into an eccentric orbit can, over {approx}10{sup 5} years, produce {approx}10{sup 24} g of chondrules. In principle, a small number (1-10) of eccentric planetary embryos can melt the observed mass of chondrules in a manner consistent with all known constraints.

  7. Oxygen-isotopic Compositions of Low-FeO relicts in High-FeO Host Chondrules in Acfer 094, a Type 3.0 Carbonaceous Chondrite Closely Related to CM

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Kunihiro, Tak; Wasson, John T.

    2006-01-01

    With one exception, the low-FeO relict olivine grains within high-FeO porphyritic chondrules in the type 3.0 Acfer 094 carbonaceous chondrite have DELTA O-17 ( = delta O-17 - 0.52 X delta O-18) values that are substantially more negative than those of the high-FeO olivine host materials. These results are similar to observations made earlier on chondrules in C03.0 chondrites and are consistent with two independent models: (1) Nebular solids evolved from low-FeO, low-DELTA O-17 compositions towards high-FeO, more positive DELTA O-17 compositions; and (2) the range of compositions resulted from the mixing of two independently formed components. The two models predict different trajectories on a DELTA O-17 vs. log Fe/Mg (olivine) diagram, but our sample set has too few values at intermediate Fe/Mg ratios to yield a definitive answer. Published data showing that Acfer 094 has higher volatile contents than CO chondrites suggest a closer link to CM chondrites. This is consistent with the high modal matrix abundance in Acfer 094 (49 vol.%). Acfer 094 may be an unaltered CM chondrite or an exceptionally matrix-rich CO chondrite. Chondrules in Acfer 094 and in CO and CM carbonaceous chondrites appear to sample the same population. Textural differences between Acfer 094 and CM chondrites are largely attributable to the high degree of hydrothermal alteration that the CM chondrites experienced in an asteroidal setting.

  8. An American on Paris: Extent of aqueous alteration of a CM chondrite and the petrography of its refractory and amoeboid olivine inclusions

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    2015-09-01

    Paris is the least aqueously altered CM chondrite identified to date, classified as subtype 2.7; however, literature data indicate that some regions of this apparently brecciated meteorite may be subtype 2.9. The suite of CAIs in Paris includes 19% spinel-pyroxene inclusions, 19% spinel inclusions, 8% spinel-pyroxene-olivine inclusions, 43% pyroxene inclusions, 8% pyroxene-olivine inclusions, and 3% hibonite-bearing inclusions. Both simple and complex inclusions are present; some have nodular, banded, or distended structures. No melilite was identified in any of the inclusions in the present suite, but other recent studies have found a few rare occurrences of melilite in Paris CAIs. Because melilite is highly susceptible to aqueous alteration, it is likely that it was mostly destroyed during early-stage parent-body alteration. Two of the CAIs in this study are part of compound CAI-chondrule objects. Their presence suggests that there were transient heating events (probably associated with chondrule formation) in the nebula after chondrules and CAIs were admixed. Also present in Paris are a few amoeboid olivine inclusions (AOI) consisting of relatively coarse forsterite rims surrounding fine-grained, porous zones containing diopside and anorthite. The interior regions of the AOIs may represent fine-grained rimless CAIs that were incorporated into highly porous forsterite-rich dustballs. These assemblages were heated by an energy pulse that collapsed and coarsened their rims, but failed to melt their interiors.

  9. The effect of oxygen fugacity on the partitioning of nickel and cobalt between olivine, silicate melt, and metal

    NASA Technical Reports Server (NTRS)

    Ehlers, Karin; Grove, Timothy L.; Sisson, Thomas W.; Recca, Steven I.; Zervas, Deborah A.

    1992-01-01

    The effect of oxygen fugacity, f(O2), on the partitioning behavior of Ni and Co between olivine, silicate melt, and metal was investigated in the CaO-MgO-Al2O3-SiO2-FeO-Na2O system, an analogue of a chondrule composition from an ordinary chondrite. The conditions were 1350 C and 1 atm, with values of f(O2) varying between 10 exp -5.5 and 10 exp -12.6 atm (i.e., the f(O2) range relevant for crystal/liquid processes in terrestrial planets and meteorite parent bodies). Results of chemical analysis showed that the values of the Ni and Co partitioning coefficients begin to decrease at values of f(O2) that are about 3.9 log units below the nickel-nickel oxide and cobalt-cobalt oxide buffers, respectively, near the metal saturation for the chondrule analogue composition.

  10. On origin of the olivine inclusions from the Kainsaz CO carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Lavrukhina, A. K.; Lavrentjeva, Z. A.; Ljul, A. YU.; Ignatenko, K. I.

    1993-01-01

    Olivine inclusions and chondrules of Kainsaz were formed in a unique process of dust matter melting. The elemental abundances of four fractions of olivine (01) inclusions from Kainsaz were analyzed by INAA. The inclusions of fraction A (160 less than d less than 260 microns) have Fe-Ni grains, the inclusions of fractions B (100 less than d less than 160 microns), C (160 less than d less than 260 microns), and D (260 less than d less than 360 microns) do not. The average elemental enrichment factors relative to CI chondrite for each fraction and chondrules of Kainsaz is shown. The enrichment factors of siderophile Co, Ni, Ir, Au, and non-refractory Na in all fractions are less than 1. The factors of refractory Ca, Sc, La, Sm, and Yb are comparative with the corresponding values of O1 aggregates of Allende CV (average 4.76). For chondrules of Kainsaz these values are lower. Fraction A is enriched in Co, Ir, Au, and relative Ni and CI chondrites: Ir greater than Au greater than Co. The values of (Me/Ni)inc/(Me/Ni)CI are equal to 3.25 for Ir, 2.1 for Au, and 1.2 for Co. The superabundances in Ir and Au relative to Ni witness to formation of Fe-Ni grains of O1 inclusions by agglomeration of grains enriched in refractory metal with grains enriched in non-refractory metal (Au). The enrichments of fraction A in Ca, Sc, La, Sm, and Yb witness about presence of high-temperature phases in O1 inclusions.

  11. Rock magnetic properties of dusty olivine: comparison and calibration of non-heating paleointensity methods

    NASA Astrophysics Data System (ADS)

    Lappe, S. L.; Harrison, R. J.; Feinberg, J. M.

    2012-12-01

    The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' in ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 8-27 mm3 graphite crucible, heated up to 1350°C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in fixed orientation and quenched into water in a range of known magnetic fields from 0.2 mT to 1.5 mT. We present a comparison of all non-heating methods commonly used for paleointensity determination of extraterrestrial material. All samples showed uni-directional, single-component demagnetization behaviour. Saturation REM ratio (NRM/SIRM) and REMc ratio show non-linear behaviour as function of applied field and a saturation value < 1. Using the REM' method the samples showed approximately constant REM' between 100 and 150 mT AF-field. Plotting the average values for this field range again shows non-linear behaviour and a saturation value < 1. Another approach we examined to obtain calibration curves for paleointensity determination is based on ARM measurents. We also present an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal

  12. Olivine flotation in mantle melt

    NASA Astrophysics Data System (ADS)

    Agee, Carl B.; Walker, David

    1993-01-01

    Molten komatiite and peridotite have been compressed in an octahedral multi-anvil device up to 10 GPa. Densities of the melts were measured at pressure intervals in the range 7 to 10 GPa by observing sinking and floating San Carlos olivines and synthetic forsterite marker spheres. The multi-anvil results for komatiite, when combined with piston-cylinder measurements done at 4 to 6 GPa and a calculated reference density at 10 5 Pa, yield a Birch-Murnaghan isothermal bulk modulus of (K 1900C) = 26 GPa and pressure derivative K' = 4.25. The pressure of neutral buoyancy for olivine in komatiite is confirmed to be near 8 GPa as predicted in earlier work. Olivine flotation in the experimental komatiite commences at a pressure close to where the liquidus phase changes from olivine to denser garnet, leading to the possibility of density driven crystal sorting during fractionation. Molten peridotite (KLB-1) shows an isothermal compression (2000°C) of 0.065 g cm -3 GPa -1 in the interval 10 5 Pa to 8.2 GPa. The olivine/liquid peridotite density crossover is predicted to lie between 9 and 11 GPa, indicating that olivine flotation can operate at depths of 300-500 km in a molten peridotitic mantle.

  13. Ca-Al-rich chondrules and inclusions in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Bischoff, A.; Keil, K.

    1983-01-01

    Ca-Al-rich objects, hitherto mostly found in carbonaceous chondrites, are shown to be widespread, albeit rare, constituents of type 3 ordinary chondrites. Widespread occurrence and textural similarities of Ca-Al-rich chondrules to common, Mg-Fe-rich chondrules suggest that they formed by related processes. It is suggested in this article that Ca-Al-rich chondrules were formed by total melting and crystallization of heterogeneous, submillimeter- to submillimeter-sized dustballs made up of mixtures of high-temperature, Ca-Al-rich and lower-temperature, Na-K-rich components.

  14. Reinvestigation of the olivine-spinel transformation in Ni2SiO4 and the incongruent melting of Ni2SiO4 olivine

    NASA Technical Reports Server (NTRS)

    Ma, C.-B.

    1974-01-01

    The olivine-spinel transformation and the melting behavior of Ni2SiO4 were investigated over the PT ranges of 20-40 kbar, 650-1200 C, and 5-13 kbar, 1600-1700 C, respectively. It was confirmed that Ni2SiO4 olivine melts incongruently at high pressures and that it is a stable phase until melting occurs. The PT slope of the incongruent melting curve is approximately 105 bars/deg. The olivine-spinel transformation curve was shown to be a reversible univariant curve, and could be expressed by the linear equation P(bars) equals 23,300 + 11.8 x T(deg C). The transformation curve determined by Akimoto et al. (1965) is nearly parallel to that of the present work, but lies at pressures about 12% lower.

  15. Experimental constraints on the origin of chondrules

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    Chrondule formation was an important (perhaps ubiguitous) process in the early solar system, yet their origins remain elusive. Some points, however, are clear. The precursor material of chondules (dust) was rapidly heated at rates of perhaps thousands of degrees per second and was cooled more slowly. It was proposed to investigate chondrule formation in the Space Station environment via a dust-box (a chamber in which dust can be suspended, heated, and cooled. A microgravity environment is conducive to this kind of experiment because of the significant retardation of settling rates compared with a terrestrial laboratory environment. These long-duration experiments might require the development of technologies to counteract even the small, but finite and permanent gravitation field of the Space Station. Simple, but interesting experiments on dust suspensions immediately present themselves.

  16. Silica-Fayalite-bearing Chondrules in Ordinary Chondrites: Evidence of Oxidation in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Wasson, J. T.

    1993-07-01

    Most ordinary chondrite (OC) chondrules have compositions similar to those of bulk OC in terms of lithophile-element abundances. There are only a few rare chondrule classes that deviate significantly from OC-like compositions; these include Al-rich chondrules, chromitic and chromite-bearing silicate chondrules, and silica-rich chondrules. We studied 41 thin sections of unequilibrated OC and found 82 silica-bearing chondrules that can be divided into two major categories: silica-pyroxene chondrules and silica-fayalite- pyroxene chondrules. These chondrules are more common in H (>3/cm^2) than in L and LL chondrites (<1/cm^2). Silica-pyroxene chondrules consist mainly of low-Ca pyroxene and silica and have radial and porphyritic textures. Silica-bearing radial pyroxene (RP) chondrules contain 5-10 vol% silica grains; the low-Ca pyroxene is uniform in individual chondrules but varies from one chondrule to another (Fs(sub)10.2- Fs(sub)31.5). Silica-bearing porphyritic pyroxene (PP) chondrules contain 15- 40 vol% silica; the low-Ca pyroxene varies in composition within individual PP chondrules and tends to be more magnesian than in the silica-bearing RP chondrules (Fs(sub)5.0-Fs(sub)21.1). Petrographic observations suggest that some PP chondrules were not completely molten; they appear to have cooled more slowly than the silica-bearing RP chondrules. Silica-fayalite-pyroxene chondrules consist of silica, fayalite, and low-Ca pyroxene; accessory high-Ca pyroxene, plagioclase mesostasis, troilite, and metallic Fe-Ni are also present. Based on texture and the modal abundances of pyroxene and silica these chondrules can be divided into two types: (1) radial or porphyritic silica-fayalite-pyroxene chondrules containing 5-40 vol% silica and (2) granular silica-fayalite-pyroxene chondrules consisting almost entirely (90-95 vol%) of silica. Silica-fayalite-bearing pyroxene chondrules are texturally and compositionally similar to the silica-bearing pyroxene chondrules described

  17. Mineralogy and Petrology of Amoeboid Olivine Inclusions in CO3 Chondrites: Relationship to Parent-Body Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Chizmadia, Lysa J.; Rubin, Alan E.; Wasson, John T.

    2003-01-01

    Petrographic and mineralogic studies of amoeboid olivine inclusions (AOIs) in CO3 carbonaceous chondrites reveal that they are sensitive indicators of parent-body aqueous and thermal alteration. As the petrologic subtype increases from 3.0 to 3.8, forsteritic olivine (Fa(sub 0-1)) is systematically converted into ferroan olivine (Fa(sub 60-75)). We infer that the Fe, Si and O entered the assemblage along grain boundaries, forming ferroan olivine that filled fractures and voids. As temperatures increased, Fe(+2) from the new olivine exchanged with Mg(+2) from the original AOI to form diffusive haloes around low-FeO cores. Cations of Mn(+2), Ca(+2) and Cr(+3) were also mobilized. The systematic changes in AOI textures and olivine compositional distributions can be used to refine the classification of CO3 chondrites into subtypes. In subtype 3.0, olivine occurs as small forsterite grains (Fa(sub 0-1)), free of ferroan olivine. In petrologic subtype 3.2, narrow veins of FeO-rich olivine have formed at forsterite grain boundaries. With increasing alteration, these veins thicken to form zones of ferroan olivine at the outside AOI margin and within the AOI interior. By subtype 3.7, there is a fairly broad olivine compositional distribution in the range Fa(sub 63-70), and by subtype 3.8, no forsterite remains and the high-Fa peak has narrowed, Fa(sub 64-67). Even at this stage, there is incomplete equilibration in the chondrite as a whole (e.g., data for coarse olivine grains in Isna (CO3.8) chondrules and lithic clasts show a peak at Fa(sub39)). We infer that the mineral changes in A01 identified in the low petrologic types required aqueous or hydrothermal fluids whereas those in subtypes greater than or equal to 3.3 largely reflect diffusive exchange within and between mineral grains without the aid of fluids.

  18. Extremely Na- and Cl-rich chondrule from the CV3 carbonaceous chondrite Allende

    NASA Astrophysics Data System (ADS)

    Wasserburg, G. J.; Hutcheon, I. D.; Aléon, J.; Ramon, E. C.; Krot, A. N.; Nagashima, K.; Brearley, A. J.

    2011-09-01

    We report on a study of Al3509, a large Na- and Cl-rich, radially-zoned object from the oxidized CV carbonaceous chondrite Allende. Al3509 consists of fine-grained ferroan olivine, ferroan Al-diopside, nepheline, sodalite, and andradite, and is crosscut by numerous veins of nepheline, sodalite, and ferroan Al-diopside. Some poorly-characterized phases of fine-grained material are also present; these phases contain no significant H 2O. The minerals listed above are commonly found in Allende CAIs and chondrules and are attributed to late-stage iron-alkali-halogen metasomatic alteration of primary high-temperature minerals. Textural observations indicate that Al3509 is an igneous object. However, no residual crystals that might be relicts of pre-existing CAI or chondrule minerals were identified. To establish the levels of 26Al and 36Cl originally present, 26Al- 26Mg and 36Cl- 36S isotopic systematics in sodalite were investigated. Al3509 shows no evidence of radiogenic 26Mg ∗, establishing an upper limit of the initial 26Al/ 27Al ratio of 3 × 10 -6. All sodalite grains measured show large but variable excesses of 36S, which, however, do not correlate with 35Cl/ 34S ratio. If these excesses are due to decay of 36Cl, local redistribution of radiogenic 36S ∗ after 36Cl had decayed is required. The oxygen-isotope pattern in Al3509 is the same as found in secondary minerals resulting from iron-alkali-halogen metasomatic alteration of Allende CAIs and chondrules and in melilite and anorthite of most CAIs in Allende. The oxygen-isotope data suggest that the secondary minerals precipitated from or equilibrated with a fluid of similar oxygen-isotope composition. These observations suggest that the formation of Al3509 and alteration products in CAIs and chondrules in Allende requires a very similar fluid phase, greatly enriched in volatiles (e.g., Na and Cl) and with Δ 17O ˜ -3‰. We infer that internal heating of planetesimals by 26Al would efficiently transfer

  19. Origin of olivine at Copernicus

    NASA Technical Reports Server (NTRS)

    Pieters, C. M.; Wilhelms, D. E.

    1985-01-01

    The central peaks of Copernicus are among the few lunar areas where near-infrared telescopic reflectance spectra indicate extensive exposures of olivine. Other parts of Copernicus crater and ejecta, which were derived from highland units in the upper parts of the target site, contain only low-Ca pyroxene as a mafic mineral. The exposure of compositionally distinct layers including the presence of extensive olivine may result from penetration to an anomalously deep layer of the crust or to the lunar mantle. It is suggested that the Procellarum basin and the younger, superposed Insularum basin have provided access to these normally deep-seated crustal or mantle materials by thinning the upper crustal material early in lunar history. The occurrences of olivine in portions of the compositionally heterogeneous Aristarchus Region, in a related geologic setting, may be due to the same sequence of early events.

  20. Producing Ni-rich olivine phenocrysts by mixing partial melts of eclogite and peridotite: an alternative to an olivine-free source for Hawaiian shield basalts

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Gaetani, G.

    2007-12-01

    It has been posited that presence of unusually Ni-rich (2500-4000 ppm) magnesian olivine phenocrysts in SiO2-enriched Hawaiian shield-building basalts, most notably the Koolau lavas, is inconsistent with a deep, olivine-bearing source rock. Instead, Sobolev et al. (2005) proposed that these lavas are generated by a multi- stage process in which partial melts of eclogite react with peridotite within the plume to form an olivine-free source rock with high Ni concentration. As the plume continues to ascend, partial melts of this "hybrid" pyroxenite mix with peridotite melts to produce SiO2- enriched Hawaiian shield-building lavas that crystallize high-Ni olivine. This model has also been used to argue for significant amounts of "hybrid" pyroxenite in the source regions of lavas from other ocean islands, continental basalts, and even MORB, implying that the upper mantle is highly heterogeneous (Sobolev et al., 2007). New experimental results demonstrate that Ni-rich magnesian olivine crystallizes from mixtures of peridotite partial melt and Ni-poor eclogite partial melt that have equilibrated with mantle olivine. This occurs because the concentration of Ni decreases linearly as eclogite partial melt is added to peridotite partial melt, whereas changing major element composition of the mixed melts causes DNi to increase hyperbolically. Experiments were conducted in which either (1) siliceous partial melt of eclogite or (2) primitive basalt was equilibrated with San Carlos olivines at 1 bar and 1201-1350°C. Experimental results demonstrate that eclogite partial melts in equilibrium with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Theoretical modeling calibrated from these experimental results suggest that reaction of siliceous eclogite melt with mantle olivine at low pressure produces a melt containing ~300 ppm Ni. Despite its low Ni content, mixing of this melt with peridotite partial melt produces a high SiO2 melt that crystallizes Ni

  1. Enhanced olivine carbonation within a basalt as compared to single-phase experiments: the impact of redox and bulk composition on the dissolution kinetics of olivine

    NASA Astrophysics Data System (ADS)

    Sissmann, O.; Brunet, F.; Martinez, I.; Guyot, F. J.; Verlaguet, A.; Pinquier, Y.; Garcia, B.; Chardin, M.; Kohler, E.; Daval, D.

    2014-12-01

    Olivine (Mg,Fe)2SiO4, which is one of the major mineral constituents of mafic and ultramafic rocks, has an attractive potential for CO2 mineral sequestration, as it possesses a high content of carbonate-forming divalent cations and exhibits one of the highest dissolution rate amongst rock-forming minerals. This study reports drastic differences in carbonation yields between experiments performed on olivine-rich basalt samples and on olivine separates (a more restricted chemical system). Batch experiments were conducted in water at 150°C and pCO2 = 280 bars on a Mg-rich tholeiitic basalt (9.3 wt.% MgO and 12.2 wt.% CaO), composed of olivine, Ti-magnetite, plagioclase and clinopyroxene. After 45 days of reaction, 56 wt.% of the initial MgO has reacted with CO2 to form Fe-bearing magnesite (Mg0.8Fe0.2)CO3 along with minor calcium carbonates. The substantial decrease of olivine content upon carbonation supports the idea that ferroan magnesite formation mainly follows from olivine dissolution. In contrast, in experiments performed under similar run durations and P/T conditions with a San Carlos olivine separate (47.8 wt.% MgO) of similar grain size, only 5 wt.% of the initial MgO content reacted to form Fe-bearing magnesite. The overall carbonation kinetics of the basalt is enhanced by a factor of 40. It could be accounted for by differences in chemical and textural properties of the secondary-silica layer which covers reacted olivine grains in both types of sample. A TEM inspection of mineral surfaces shows that the thin amorphous silica layer (~100 nm) is porous in the case of the basalt sample and that it contains significant amounts of iron and aluminum. Thus, we propose that the composition of the olivine environment itself can strongly influence the olivine dissolution-carbonation process. Consequently, laboratory data obtained on olivine separates might yield a conservative estimate of the true carbonation potential of olivine-bearing basaltic rocks. More

  2. Chondrule Formation via Impact Jetting Triggered by Planetary Accretion

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yasuhiro; Wakita, Shigeru; Matsumoto, Yuji; Oshino, Shoichi

    2016-01-01

    Chondrules are one of the most primitive elements that can serve as a fundamental clue to the origin of our solar system. We investigate a formation scenario of chondrules that involves planetesimal collisions and the resultant impact jetting. Planetesimal collisions are the main agent to regulate planetary accretion that leads to the formation of terrestrial planets and cores of gas giants. The key component of this scenario is that ejected materials can melt when the impact velocity between colliding planetesimals exceeds about 2.5 km s-1. Previous simulations have shown that the process is efficient enough to reproduce the primordial abundance of chondrules. We examine this scenario carefully by performing semi-analytical calculations that are developed based on the results of direct N-body simulations. As found in the previous work, we confirm that planetesimal collisions that occur during planetary accretion can play an important role in forming chondrules. This arises because protoplanet-planetesimal collisions can achieve an impact velocity of about 2.5 km s-1 or higher, as protoplanets approach the isolation mass (Mp,iso). Assuming that the ejected mass is a fraction (Fch) of the colliding planetesimals’ mass, we show that the resultant abundance of chondrules is expressed well by FchMp,iso, as long as the formation of protoplanets is completed within a given disk lifetime. We perform a parameter study and examine how the abundance of chondrules and the timing of their formation change. We find that the impact jetting scenario generally works reasonably well for a certain range of parameters, while more dedicated work would be needed to include other physical processes that are neglected in this work and to examine their effects on chondrule formation.

  3. Trace Element Distribution in an Al-rich Chondrule from the Mokoia CV3 Chondrite

    NASA Technical Reports Server (NTRS)

    Jones, R. H.; Shearer, C. K.; Schilk, A. J.

    2001-01-01

    We have studied an Al-rich chondrule from Mokoia. SIMS analyses of plagioclase and pyroxene show that the bulk chondrule REE pattern was originally like group II CAIs. The chondrule must have had precursor material that was a condensation product. Additional information is contained in the original extended abstract.

  4. On the possible role of elemental carbon in the formation of reduced chondrules

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Hewins, Roger H.; Ash, Richard D.; Lofgren, Gary E.; Zanda, Brigitte

    1994-01-01

    Recent experiments have been designed to produce chondrule textures via flash melting while simultaneously studying the nature of chondrule precursors. However, these experiments have only been concerned with silicate starting material. This is a preliminary report concerning what effects elemental carbon, when added to the silicate starting material, has on the origin of chondrules produced by flash melting.

  5. Compositional evidence regarding the origins of rims on Semarkona chondrules

    USGS Publications Warehouse

    Grossman, J.N.; Wasson, J.T.

    1987-01-01

    The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten. ?? 1987.

  6. Forming chondrules in impact splashes. I. Radiative cooling model

    SciTech Connect

    Dullemond, Cornelis Petrus; Stammler, Sebastian Markus; Johansen, Anders

    2014-10-10

    The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of {sup 26}Al would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfer models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t {sub cool} and then drops with time t approximately as T ≅ T {sub 0}[(3/5)t/t {sub cool} + 2/5]{sup –5/3} for t > t {sub cool}. The time at which this temperature drop starts t {sub cool} depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.

  7. Chondrule Glass Alteration in Type IIA Chondrules in the CR2 Chondrites EET 87770 and EET 92105: Insights into Elemental Exchange Between Chondrules and Matrices

    NASA Technical Reports Server (NTRS)

    Burger, Paul V.; Brearley, Adrian J.

    2004-01-01

    CR2 carbonaceous chondrites are a primitive group of meteorites that preserve evidence of a variety of processes that occurred in the solar nebula as well as on asteroidal parent bodies. CR2 chondrites are distinct from other carbonaceous chondrites by (among other properties) their relatively high abundance of chondrules (50-60 vol. %) and Fe,Ni metal (5-8 vol. %) [1]. Like the CM2 chondrites, the CRs have been affected by aqueous alteration and according to [2] show a range of degrees of alteration. In weakly- altered CR chondrites, fine-grained matrices and chondrule rims have been partially altered and chondrule mesostases show evidence of incipient aqueous alteration. In these meteorites, glassy mesostasis is still common. However, some CR chondrites, (e.g. Renazzo and Al Rais) show evidence of much more extensive alteration with complete replacement of chondrule mesostasis [2] by chlorite and serpentine. Although the general characteristics of alteration of the CR chondrites have been described, the details of alteration reactions in these meteorites remain unclear. In addition, the setting for aqueous alteration is poorly understood: both asteroidal and preaccretionary alteration scenarios have been proposed [2].

  8. Implications of a phase-transition thermostat for chondrule melting

    NASA Technical Reports Server (NTRS)

    Love, S. G.

    1994-01-01

    It is widely accepted that chondrules were formed in brief, localized nebular heating episodes. Given the apparent (at least local) high efficiency of chondrule formation, these thermal events seem to have occurred at a large number of different times and/or azimuthal locations in the solar nebula. It is reasonable to expect that the chondrule-forming events, whatever their underlying cause, were not all identical, but instead occurred with some spread of heating intensities. If this was so, it is puzzling that compositional and textural evidence points to peak temperatures certainly within 1400 - 1750 C, and in most cases within 1500 - 1550 C. This problem is addressed in this article and a possible explanation for this restricted range of peak temperatures is discussed.

  9. Dynamic crystallization experiments on chondrule melts in reduced gravity

    NASA Technical Reports Server (NTRS)

    Lofgren, Gary; Williams, R. J.

    1987-01-01

    Chondrules crystallized during the earliest formational history of the solar system; and, if crystal settling and flotation are indicators of crystallization in the presence of gravity, they formed without the influence of gravity. In fact, attempts to duplicate the crystallization history of chondrules in the laboratory have met with limited success, because of the difficulty of comparing objects formed under the influence of gravity with objects that did not. These comparisons are difficult because there are several recognized features introduced by the presence of gravity and no doubt some which are not yet recognized. As a result there are several microscale and macroscale aspects of chondrule petrology which are difficult to understand quantitatively. Most of the features relate to the settling or flotation of early formed crystals. The proposed experiments are briefly described.

  10. Lithic fragments, glasses and chondrules from Luna 16 fines.

    NASA Technical Reports Server (NTRS)

    Keil, K.; Prinz, M.; Green, J. A.; Kurat, G.

    1972-01-01

    Electron probe determination of the bulk compositions of igneous and microbreccia lithic fragments, glasses and chondrules from Luna 16 fines and of the compositions of minerals in basaltic lithic fragments. It is found that the Luna 16 fines have a composition more similar to that of Apollo 11 than to those of Apollo 12 and 14 materials. The compositions of lithic fragments, glasses and chondrules from Luna 16 core tube layers A and D are similar. The glasses are compositional analogs of the lithic fragments and are produced largely from igneous rocks. The Luna 16 chondrules have an anorthositic-noritic-troctolitic composition. Evidence for the presence of ferric iron and water-bearing minerals in the Luna 16 material is not obtained. The occurrence of a great variety of igneous rocks in the material confirms an earlier conclusion that large-scale melting or partial melting to a considerable depth and an extensive igneous differentiation must have occurred on the moon.

  11. Olivine reactivity with CO 2 and H 2O on a microscale: Implications for carbon sequestration

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Bovet, N.; Makovicky, E.; Bechgaard, K.; Balogh, Z.; Stipp, S. L. S.

    2012-01-01

    The silicate mineral olivine, (Mg,Fe)2SiO4, reacts exothermally with CO2 and forms secondary minerals, including carbonates. Therefore olivine reaction is a promising process for carbon sequestration, to convert carbon dioxide from the atmosphere to mineral form. The purpose of this study was (1) to explore the composition, structure and reactivity of olivine surfaces during exposure to air and to water at ambient conditions, (2) to investigate the effect of elevated CO2 pressure and temperature, and (3) to identify the secondary minerals. Olivine surfaces have been examined with atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), before and after reaction with CO2. Experiments were carried out in pure water equilibrated with CO2 at total pressures up to 80 bars, at temperatures 25 °C and 120 °C and both in the absence and presence of oxygen. New formation products appeared on the olivine surface as a homogeneous layer of bumps, less than 100 nm in diameter, within hours of exposure to air. Olivine crystals, exposed to water, dissolved and secondary minerals formed within days. Colonies of bacteria populated olivine surfaces on samples stored in water for more than 4 days at room temperature. Loosely attached material formed on olivine surfaces and could easily be scraped away with the AFM tip. A red precipitate formed when crystals where reacted at increased temperatures and CO2 partial pressures for less than 4 days. The new phases were identified as goethite, hematite, silica and carbonate minerals. Olivine surfaces oxidize and iron oxides form even when oxygen is absent, suggesting hydrolysis, where water is converted to hydrogen and oxygen.

  12. Matrix material in type 3 chondrites - Occurrence, heterogeneity and relationship with chondrules

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Rubin, A. E.; Taylor, G. J.; Keil, K.

    1984-09-01

    Variations between mean matrix compositions of individual type 3 ordinary chondrites are nearly fivefold, and partly reflect systematic differences between H, L, and LL matrices. Such variations are probably the result of a nebular separation of feldspathic material and ferromagnesian silicates. While compositions of chondrules and their matrix rims are normally unrelated, rim compositions are correlated with those of matrix lumps inside chondrules. Matrix lumps are as heterogeneous as chondrules, but mean chondrule and matrix compositions differ. Since bulk compositions of matrix lumps and rims have probably not changed significantly since their formation, the present matrix samples cannot represent typical chondrule precursor materials.

  13. The formation of chondrules at high gas pressures in the solar nebula.

    PubMed

    Galy, A; Young, E D; Ash, R D; O'Nions, R K

    2000-12-01

    High-precision magnesium isotope measurements of whole chondrules from the Allende carbonaceous chondrite meteorite show that some aluminum-rich Allende chondrules formed at or near the time of formation of calcium-aluminum-rich inclusions and that some others formed later and incorporated precursors previously enriched in magnesium-26. Chondrule magnesium-25/magnesium-24 correlates with [magnesium]/[aluminum] and size, the aluminum-rich, smaller chondrules being the most enriched in the heavy isotopes of magnesium. These relations imply that high gas pressures prevailed during chondrule formation in the solar nebula. PMID:11099410

  14. Supernova olivine from cometary dust

    NASA Technical Reports Server (NTRS)

    Messenger, Scott; Keller, Lindsay P.; Lauretta, Dante S.

    2005-01-01

    An interplanetary dust particle contains a submicrometer crystalline silicate aggregate of probable supernova origin. The grain has a pronounced enrichment in 18O/16O (13 times the solar value) and depletions in 17O/16O (one-third solar) and 29Si/28Si (<0.8 times solar), indicative of formation from a type II supernova. The aggregate contains olivine (forsterite 83) grains <100 nanometers in size, with microstructures that are consistent with minimal thermal alteration. This unusually iron-rich olivine grain could have formed by equilibrium condensation from cooling supernova ejecta if several different nucleosynthetic zones mixed in the proper proportions. The supernova grain is also partially encased in nitrogen-15-rich organic matter that likely formed in a presolar cold molecular cloud.

  15. Rock magnetic properties of dusty olivine: a potential carrier of pre-accretionary remanence in unequilibrated ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Lappe, S. C. L. L.; Harrison, R. J.; Feinberg, J. M.

    2012-04-01

    The mechanism of chondrule formation is an important outstanding question in cosmochemistry. Magnetic signals recorded by Fe-Ni nanoparticles in chondrules could carry clues to their origin. Recently, research in this area has focused on 'dusty olivine' grains within ordinary chondrites as potential carriers of pre-accretionary remanence. Dusty olivine is characterised by the presence of sub-micron Fe-Ni inclusions within the olivine host. These metal particles form via subsolidus reduction of the olivine during chondrule formation and are thought to be protected from subsequent chemical and thermal alteration by the host olivine. Three sets of synthetic dusty olivines have been produced, using natural olivine (average Ni-content of 0.3 wt%), synthetic Ni-containing olivine (0.1wt% Ni) and synthetic Ni-free olivine as starting materials. The starting materials were ground to powders, packed into a 2-3 mm3 graphite crucible, heated up to 1350 °C under a pure CO gas flow and kept at this temperature for 10 minutes. After this the samples were held in a fixed orientation and quenched into water in a range of known magnetic fields, ranging from 0.2 mT to 1.5 mT. We present here for the first time an analysis of a new FORC-based method of paleointensity determination applied to metallic Fe-bearing samples [1, 2]. The method uses a first-order reversal curve (FORC) diagram to generate a Preisach distribution of coercivities and interaction fields within the sample and then physically models the acquisition of TRM as a function of magnetic field, temperature and time using thermal relaxation theory. The comparison of observed and calculated NRM demagnetisation spectra is adversely effected by a large population of particles in the single-vortex state. Comparison of observed and calculated REM' curves, however, yields much closer agreement in the high-coercivity SD-dominated range. Calculated values of the average REM' ratio show excellent agreement with the experimental

  16. Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite

    SciTech Connect

    Ebel, D.S.; Weisberg, M.K.; Hertz, J.; Campbell, A.J.

    2009-03-31

    We used synchrotron X-ray microtomography to image in 3-dimensions (3D) eight whole chondrules in a {approx}1 cm{sup 3} piece of the Renazzo (CR) chondrite at {approx}17 {micro}m per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole-chondrule Mg/Si ratios with a supra-chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.

  17. A nebula setting as the origin for bulk chondrule Fe isotope variations in CV chondrites

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.; Needham, Andrew W.; Armytage, Ros; Georg, Bastian; Abel, Richard L.; Kurahashi, Erika; Coles, Barry J.; Rehkämper, Mark; Russell, Sara S.

    2010-08-01

    We combined micro computer tomography with Fe and Si isotope measurements of Mokoia, Allende and Grosnaja chondrules. Ten Mokoia chondrules contain 0.9 to 11.8 vol.% opaque phases (metal + sulfide), and 6 Allende chondrules contain 0.0 to 6.6 vol.% opaque phases. Hence, the Fe isotope composition of many chondrules is dominated by the Fe isotope composition of their opaque phases. We studied Fe isotopes of 35 bulk chondrules. The range is different for each of the three meteorites studied and largest for Allende with δ56Fe ranging from - 0.82 to + 0.37‰. Six out of seven chondrules analysed for their Si isotope composition in Mokoia and Grosnaja have similar δ29Si of around - 0.12‰. One anomalous chondrule in Mokoia has a δ29Si of + 0.58‰. We exclude isotopically heterogeneous chondrule precursors and different isotopic chondrule reservoirs as the source of the observed Fe isotope variation among bulk chondrules. We conclude that the observed bulk chondrule Fe isotope variation is the result of evaporation and re-condensation processes in a nebula setting with high dust densities, required to explain the comparatively low isotope fractionations. Subsequent parent body alteration slightly overprinted this pre-accretionary Fe isotope variation.

  18. Papers presented to the Conference on Chondrules and the Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The following topics are covered in the presented papers: (1) producing chondrules; (2) carbons, CAI's, and chondrules; (3) large scale processes in the solar nebula; (4) chondrule-matrix relationships in chondritic meteorites; (5) overview of nebula models; (6) constraints placed on the nature of chondrule precursors; (7) turbulent diffusion and concentration of chondrules in the protoplanetary nebula; (8) heating and cooling in the solar nebula; (9) crystallization trends of precursor pyroxene in ordinary chondrites; (10) precipitation induced vertical lightning in the protoplanetary nebula; (11) the role of chondrules in nebular fractionations of volatiles and other elements; (12) astronomical observations of phenomena in disks; (13) experimental constraints on models for origins of chondrules, and various other topics.

  19. Amoeboid olivine aggregates from CH carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Krot, Alexander N.; Park, Changkun; Nagashima, Kazuhide

    2014-08-01

    Amoeboid olivine aggregates (AOAs) in CH carbonaceous chondrites are texturally and mineralogically similar to those in other carbonaceous chondrite groups. They show no evidence for alteration and thermal metamorphism in an asteroidal setting and consist of nearly pure forsterite (Fa<3; in wt%, CaO = 0.1-0.8, Cr2O3 = 0.04-0.48; MnO < 0.5), anorthite, Al-diopside (in wt%, Al2O3 = 0.7-8.1; TiO2 < 1), Fe,Ni-metal, spinel, and, occasionally, low-Ca pyroxene (Fs1Wo2-3), and calcium-aluminum-rich inclusions (CAIs). The CAIs inside AOAs are composed of hibonite, grossite, melilite (Åk13-44), spinel, perovskite, Al,Ti-diopside (in wt%, Al2O3 up to 19.6; TiO2 up to 13.9), and anorthite. The CH AOAs, including CAIs within AOAs, have isotopically uniform 16O-rich compositions (average Δ17O = -23.4 ± 2.3‰, 2SD) and on a three-isotope oxygen diagram plot along ∼slope-1 line. The only exception is a low-Ca pyroxene-bearing AOA 1-103 that shows a range of Δ17O values, from -24‰ to -13‰. Melilite, grossite, and hibonite in four CAIs within AOAs show no evidence for radiogenic 26Mg excess (δ26Mg). In contrast, anorthite in five out of six AOAs measured has δ26Mg corresponding to the inferred initial 26Al/27Al ratio of (4.3 ± 0.7) × 10-5, (4.2 ± 0.6) × 10-5, (4.0 ± 0.3) × 10-5, (1.7 ± 0.2) × 10-5, and (3.0 ± 2.6) × 10-6. Anorthite in another AOA shows no resolvable δ26Mg excess; an upper limit on the initial 26Al/27Al ratio is 5 × 10-6. We infer that CH AOAs formed by gas-solid condensation and aggregation of the solar nebula condensates (forsterite and Fe,Ni-metal) mixed with the previously formed CAIs. Subsequently they experienced thermal annealing and possibly melting to a small degree in a 16O-rich gaseous reservoir during a brief epoch of CAI formation. The low-Ca pyroxene-bearing AOA 1-103 may have experienced incomplete melting and isotope exchange in an 16O-poor gaseous reservoir. The lack of resolvable δ26Mg excess in melilite, grossite, and

  20. How to form planetesimals from mm-sized chondrules and chondrule aggregates

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2015-07-01

    The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org

  1. Refractory residues, condensates and chondrules from solar furnace experiments

    NASA Technical Reports Server (NTRS)

    King, E. A.

    1982-01-01

    Vertical access solar furnace experiments have produced refractory residues, condensates and chondrules that are similar to components of chondritic meteorites. In particular, Ca-Al-rich refractory residues similar in chemistry to inclusions in carbonaceous chondrites have been produced by partial evaporation of basaltic bulk rock samples. Fe-Mg-Si-rich condensates with distinctive microbotryoidal morphology have been collected from the same sample runs. Particle coatings and aggregates with virtually identical microbotryoidal morphology and major element chemistry have been identified in both the Allende and Murchison meteorites. Spattered drops from melt beads undergoing heating and partial evaporation resemble some meteoritic chondrules in their mineralogies, textures, grain size, and sorting. The spatter mechanism is highly efficient in the production of chondrules. If any of the refractory inclusions in chondrites are, in fact, partial evaporation residues, many meteoritic fluid drop chondrules must have been formed by this process. The hot central portion of the solar nebula, acting on a cloud of dust and gas, is the probable source of heat required to produce the fractionated chemistry and physical state of many of the components of chondritic meteorites.

  2. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  3. Opaque minerals in the matrix of the Bishunpur (LL3.1) chondrite: constraints on the chondrule formation environment

    NASA Astrophysics Data System (ADS)

    Lauretta, Dante S.; Buseck, Peter R.; Zega, Thomas J.

    2001-04-01

    The chemistry and mineralogy of a group of opaque mineral assemblages in the matrix of the Bishunpur LL3.1 ordinary chondrite provide insight into the nebular environment in which they formed. The assemblages consist of a kamacite (Fe,Ni) core that is rimmed by troilite (FeS) and fayalite (Fe 2SiO 4). Accessory phases in the rims include silica (SiO 2), chromite (FeCr 2O 4), whitlockite (Ca 3(PO 4) 2), maricite (FeNaPO 4), magnetite (Fe 3O 4), and tetrataenite (FeNi). We suggest that the metal melted in and equilibrated with an igneous chondrule under high-temperature, reducing conditions. In this environment the molten alloys incorporated varied amounts of Si, Ni, P, Cr, and Co, depending on the oxygen fugacity and temperature of the melt. Some of the metal was subsequently expelled from the chondrule interiors into the surrounding nebular gas. As the temperature dropped, the alloy solidified and volatile elements corroded the metal. The main reaction products were troilite and fayalite. Thermodynamic equilibrium calculations are used to constrain the conditions under which these two phases can form simultaneously in the solar nebula. Kinetic factors are used to place a lower limit on the formation temperature. We determine that the metal corroded between 1173 and 1261 K at a total pressure in the range of 10 -5.0 to 10 -4.1 bars and a dust/gas ratio of 302 to 355 x relative to solar composition. These conditions are consistent with our model that the metal corroded in a dust-rich region of the solar nebula that was cooling after a chondrule formation event.

  4. 26Al in plagioclase-rich chondrules in carbonaceous chondrites: Evidence for an extended duration of chondrule formation

    NASA Astrophysics Data System (ADS)

    Hutcheon, I. D.; Marhas, K. K.; Krot, A. N.; Goswami, J. N.; Jones, R. H.

    2009-09-01

    The 26Al- 26Mg isotope systematics in 33 petrographically and mineralogically characterized plagioclase-rich chondrules (PRCs) from 13 carbonaceous chondrites (CCs) - one ungrouped (Acfer 094), six CR, five CV, and one CO - reveal large variations in the initial 26Al/ 27Al ratio, ( 26Al/ 27Al) 0. Well-resolved 26Mg excesses (δ 26Mg) from the in situ decay of the short-lived nuclide 26Al ( t1/2 ˜ 0.72 Ma) were found in nine chondrules, two from Acfer 094, five from the CV chondrites, Allende and Efremovka, and one each from the paired CR chondrites, EET 92147 and EET 92042, with ( 26Al/ 27Al) 0 values ranging from ˜3 × 10 -6 to ˜1.5 × 10 -5. Data for seven additional chondrules from three CV and two CR chondrites show evidence suggestive of the presence of 26Al but do not yield well defined values for ( 26Al/ 27Al) 0, while the remaining chondrules do not contain excess radiogenic 26Mg and yield corresponding upper limits of (11-2) × 10 -6 for ( 26Al/ 27Al) 0. The observed range of ( 26Al/ 27Al) 0 in PRCs from CCs is similar to the range seen in chondrules from unequilibrated ordinary chondrites (UOCs) of low metamorphic grade (3.0-3.4). However, unlike the UOC chondrules, there is no clear trend between the ( 26Al/ 27Al) 0 values in PRCs from CCs and the degree of thermal metamorphism experienced by the host meteorites. High and low values of ( 26Al/ 27Al) 0 are found equally in PRCs from both CCs lacking evidence for thermal metamorphism (e.g., CRs) and CCs where such evidence is abundant (e.g., CVs). The lower ( 26Al/ 27Al) 0 values in PRCs from CCs, relative to most CAIs, are consistent with a model in which 26Al was distributed uniformly in the nebula when chondrule formation began, approximately a million years after the formation of the majority of CAIs. The observed range of ( 26Al/ 27Al) 0 values in PRCs from CCs is most plausibly explained in terms of an extended duration of ˜2-3 Ma for the formation of CC chondrules. This interval is in sharp

  5. Multiple origins for olivine at Copernicus crater

    NASA Astrophysics Data System (ADS)

    Dhingra, Deepak; Pieters, Carle M.; Head, James W.

    2015-06-01

    Multiple origins for olivine-bearing lithologies at Copernicus crater are recognized based on integrated analysis of data from Chandrayaan-1 Moon Mineralogy Mapper (M3), Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) and Kaguya Terrain Camera (TC). We report the diverse morphological and spectral character of previously known olivine-bearing exposures as well as the new olivine occurrences identified in this study. Prominent albedo differences exist between olivine-bearing exposures in the central peaks and a northern wall unit (the latter being ∼40% darker). The low-albedo wall unit occurs as a linear mantling deposit and is interpreted to be of impact melt origin, in contrast with the largely unmodified nature of olivine-bearing peaks. Small and localized occurrences of olivine-bearing lithology have also been identified on the impact melt-rich floor, representing a third geologic setting (apart from crater wall and peaks). Recent remote sensing missions have identified olivine-bearing exposures around lunar basins (e.g. Yamamoto et al., 2010; Pieters et al., 2011; Kramer et al., 2013) and at other craters (e.g. Sun and Li, 2014), renewing strong interest in its origin and provenance. A direct mantle exposure has commonly been suggested in this regard. Our detailed observations of the morphological and spectral diversity in the olivine-bearing exposures at Copernicus have provided critical constraints on their origin and source regions, emphasizing multiple formation mechanisms. These findings directly impact the interpretation of olivine exposures elsewhere on the Moon. Olivine can occur in diverse environments including an impact melt origin, and therefore it is unlikely for all olivine exposures to be direct mantle occurrences as has generally been suggested.

  6. Contemporaneous formation of chondrules and refractory inclusions in the early Solar System.

    PubMed

    Itoh, Shoichi; Yurimoto, Hisayoshi

    2003-06-12

    Chondrules and calcium-aluminium-rich inclusions (CAIs) are preserved materials from the early history of the Solar System, where they resulted from thermal processing of pre-existing solids during various flash heating episodes which lasted for several million years. CAIs are believed to have formed about two million years before the chondrules. Here we report the discovery of a chondrule fragment embedded in a CAI. The chondrule's composition is poor in 16O, while the CAI has a 16O-poor melilite (Ca, Mg, Al-Silicate) core surrounded by a 16O-rich igneous mantle. These observations, when combined with the previously reported CAI-bearing chondrules, strongly suggest that the formation of chondrules and CAIs overlapped in time and space, and that there were large fluctuations in the oxygen isotopic compositions in the solar nebula probably synchronizing astrophysical pulses. PMID:12802328

  7. The ascent of kimberlite: Insights from olivine

    NASA Astrophysics Data System (ADS)

    Brett, R. C.; Russell, J. K.; Andrews, G. D. M.; Jones, T. J.

    2015-08-01

    Olivine xenocrysts are ubiquitous in kimberlite deposits worldwide and derive from the disaggregation of mantle-derived peridotitic xenoliths. Here, we provide descriptions of textural features in xenocrystic olivine from kimberlite deposits at the Diavik Diamond Mine, Canada and at Igwisi Hills volcano, Tanzania. We establish a relative sequence of textural events recorded by olivine during magma ascent through the cratonic mantle lithosphere, including: xenolith disaggregation, decompression fracturing expressed as mineral- and fluid-inclusion-rich sealed and healed cracks, grain size and shape modification by chemical dissolution and abrasion, late-stage crystallization of overgrowths on olivine xenocrysts, and lastly, mechanical milling and rounding of the olivine cargo prior to emplacement. Ascent through the lithosphere operates as a "kimberlite factory" wherein progressive upward dyke propagation of the initial carbonatitic melt fractures the overlying mantle to entrain and disaggregate mantle xenoliths. Preferential assimilation of orthopyroxene (Opx) xenocrysts by the silica-undersaturated carbonatitic melt leads to deep-seated exsolution of CO2-rich fluid generating buoyancy and supporting rapid ascent. Concomitant dissolution of olivine produces irregular-shaped relict grains preserved as cores to most kimberlitic olivine. Multiple generations of decompression cracks in olivine provide evidence for a progression in ambient fluid compositions (e.g., from carbonatitic to silicic) during ascent. Numerical modelling predicts tensile failure of xenoliths (disaggregation) and olivine (cracks) over ascent distances of 2-7 km and 15-25 km, respectively, at velocities of 0.1 to >4 m s-1. Efficient assimilation of Opx during ascent results in a silica-enriched, olivine-saturated kimberlitic melt (i.e. SiO2 >20 wt.%) that crystallizes overgrowths on partially digested and abraded olivine xenocrysts. Olivine saturation is constrained to occur at pressures <1 GPa; an

  8. Aligned olivine in the Springwater pallasite

    NASA Astrophysics Data System (ADS)

    Fowler-Gerace, Neva A.; Tait, Kimberly T.; Moser, Desmond E.; Barker, Ivan; Tian, Bob Y.

    2016-04-01

    The mechanism by which olivine grains became embedded within iron-nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Using electron backscatter diffraction, we have collected crystallographic orientation data for 296 crystals within ˜65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally defined domains. Combined with a thorough characterization of large-scale Springwater textures, the definitively nonrandom spatial distribution of olivine orientations provides clues regarding the nature of the olivine's initial formation environment as well as the sequence of events subsequent to metal incorporation.

  9. Aligned olivine in the Springwater pallasite

    NASA Astrophysics Data System (ADS)

    Fowler-Gerace, Neva A.; Tait, Kimberly T.; Moser, Desmond E.; Barker, Ivan; Tian, Bob Y.

    2016-06-01

    The mechanism by which olivine grains became embedded within iron-nickel alloy in pallasite meteorites continues to be a matter of scientific debate. Geochemical and textural observations have failed to fully elucidate the origin and history of the olivine crystals; however, little research attention has been devoted to their crystallographic orientations within the metal matrix. Using electron backscatter diffraction, we have collected crystallographic orientation data for 296 crystals within ˜65 cm2 sample surface from Springwater. Though no global crystallographic preferred orientation exists, very low misorientations are observed among [100] axes of olivine crystals within specific texturally defined domains. Combined with a thorough characterization of large-scale Springwater textures, the definitively nonrandom spatial distribution of olivine orientations provides clues regarding the nature of the olivine's initial formation environment as well as the sequence of events subsequent to metal incorporation.

  10. Crystallography and magnetic domain states of dusty olivine observed by electron holography: implications for recording of magnetic fields in the proto-planetary disc

    NASA Astrophysics Data System (ADS)

    Church, N. S.; Lappe, S. C. L. L.; Kasama, T.; da Silva Fanta, A. B.; Dunin-Borkowski, R. E.; Feinberg, J. M.; Russell, S.; Harrison, R. J.

    2012-04-01

    Dusty olivines are chondrules found in some L and LL chondrites which contain iron-nickel nanoparticles that are believed to have exsolved from the host olivine in a brief heating event shortly after chondrule formation. Geochemical analyses indicate that the iron particles have not equilibrated with the surrounding material, suggesting that they have the potential to record the magnetic field of the early solar system and hence evaluate proposed mechanisms for the heating event and the chondrules' proximity to the strongly magnetic young sun. However, the ability of these particles to preserve primary magnetic signals over timescales on the order of the age of the solar system is dependent on their crystallography and the domain states of the magnetic carriers. We employ the transmission electron microscopy technique of electron holography to directly observe the magnetic domain states in the iron-nickel particles in synthetic dusty olivine and examine if they have the characteristics required for stable magnetic recording. Particles exhibiting pseudo-single domain (PSD) vortex states are common, but uniformly magnetised single domain (SD) behaviour is observed in elongated particles with a wide range of sizes. These observations of domain state allow the determination of the PSD-SD boundary in iron as a function of particle size and elongation and the location of the boundary as observed in experiments is broadly consistent with theoretical predictions. The holography technique also provides quantitative measurements of the magnetic moment which can be used to accurately calculate the volume of nanoparticles and infer the particle shape in three dimensions from a single measurement. Combining the volume information with constraints on coercivity, the thermal relaxation characteristics of the particles can be calculated and we demonstrate that the high-coercivity component of remanence would remain stable for 4.6 Ga, even at temperatures approaching the Curie

  11. Chondrule-like particles provide evidence of early Archean meteorite impacts, South Africa and western Australia

    NASA Technical Reports Server (NTRS)

    Lowe, D. R.; Byerly, G. R.

    1985-01-01

    The evolution of the Earth and the Earth crust was studied. Two layers, that contain abundant unusual spherical particles which closely resemble chondroules were identified. Chondrules occur on small quantities in lunar soil, however, they are rare in terrestrial settings. Some chondrules in meteorites were formed on the surfaces of planet sized bodies during impact events. Similar chondrule like objects are extremely rare in the younger geologic record and these abundances are unknown in ancient deposits, except in meteorites. It is suggested that a part of the Earth's terminal bombardment history, and conditions favoring chondrule formation existed on the early Earth.

  12. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion.

    PubMed

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-04-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag-assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars's size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  13. Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion

    PubMed Central

    Johansen, Anders; Low, Mordecai-Mark Mac; Lacerda, Pedro; Bizzarro, Martin

    2015-01-01

    Chondrules are millimeter-sized spherules that dominate primitive meteorites (chondrites) originating from the asteroid belt. The incorporation of chondrules into asteroidal bodies must be an important step in planet formation, but the mechanism is not understood. We show that the main growth of asteroids can result from gas drag–assisted accretion of chondrules. The largest planetesimals of a population with a characteristic radius of 100 km undergo runaway accretion of chondrules within ~3 My, forming planetary embryos up to Mars’s size along with smaller asteroids whose size distribution matches that of main belt asteroids. The aerodynamical accretion leads to size sorting of chondrules consistent with chondrites. Accretion of millimeter-sized chondrules and ice particles drives the growth of planetesimals beyond the ice line as well, but the growth time increases above the disc lifetime outside of 25 AU. The contribution of direct planetesimal accretion to the growth of both asteroids and Kuiper belt objects is minor. In contrast, planetesimal accretion and chondrule accretion play more equal roles in the formation of Moon-sized embryos in the terrestrial planet formation region. These embryos are isolated from each other and accrete planetesimals only at a low rate. However, the continued accretion of chondrules destabilizes the oligarchic configuration and leads to the formation of Mars-sized embryos and terrestrial planets by a combination of direct chondrule accretion and giant impacts. PMID:26601169

  14. Turbulent Concentration of Chondrules: Size Distribution and Multifractal Scaling

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Paque, Julie M.; Dobrovolskis, Anthony R.

    1999-01-01

    Size-selective concentration of particles in 3D turbulence may be related to collection of chondrules and other constituents into primitive bodies in a weakly turbulent protoplanetary nebula. In the terrestrial planet region, both the characteristic size and narrow size distribution of chondrules are explained, whereas "fluffier" particles would be concentrated in lower density, or more intensely turbulent, regions of the nebula. The spatial distribution of concentrated particle density obeys multifractal scaling, suggesting a dose tie to the turbulent cascade process. This scaling behavior allows predictions of the concentration probabilities to be made in the protoplanetary nebula, which are so large (> 10(exp 3) - 10(exp 4)) that further studies must be made of the role of mass loading.

  15. Electrical discharge heating of chondrules in the solar nebula

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Keil, Klaus; Scott, Edward R. D.

    1995-01-01

    We present a rudimentary theoretical assessment of electrical discharge heating as a candidate mechanism for the formation of chondrules in the solar nebula. The discharge model combines estimates of the properties of the nebula, a mechanism for terrestrial thunderstorm electrification, and some fundamental electrical properties of gases. Large uncertainties in the model inputs limit these calculations to order-or-magnitude accuracy. Despite the uncertainty, it is possible to estimate an upper limit to the efficiency of nebular discharges at melting millimeter-sized stony objects. We find that electrical arcs analogous to terrestrial lightning could have occurred in the nebula, but that under most conditions these discharges probably could not have melted chondrules. Despite our difficulties, we believe the topic worthy of further investigation and suggest some experiments which could improve our understanding of nebular discharges.

  16. Unambiguous voids in Allende chondrules and refractory inclusions

    SciTech Connect

    Murray, J.; Boesenberg, J.S.; Ebel, D.S.

    2003-03-26

    Void space can be caused by thin section preparation. 3-dimensional tomographic analysis, prior to sectioning, shows that several very different types of voids are abundant in Allende meteorite inclusions. Formation models are proposed for each type. Void spaces in the components of chondritic meteorites have received little attention, perhaps due to ambiguities attendant upon their very existence, and also their origin. Computer-aided microtomography allows the 3-dimensional imaging and analysis of void spaces within solid objects. Several striking examples of void spaces, apparently enclosed by solid material, resulted from our observations of large chondrules and CAIs from the Allende (CV3) meteorite. These voids are 'unambiguous' because their existence cannot be ascribed to plucking during sample preparation, as would be the case in traditional 2-dimensional thin section petrography. Although we focus on large objects in Allende, preliminary observations indicate that void spaces are prevalent in chondrules and refractory inclusions in many meteorites. Voids remain ambiguous, however, because their structure and appearance vary between chondrules and CAIs, suggesting there may be different causes of void formation in particular objects. Some voids appear to have formed as a result of dilation during cooling. Others are evidence of hydrothermal leaching on the parent body followed by partial chemical replacement. Alternatively, vapor-mediated leaching and replacement may have occurred in the nebula. Yet another possibility is internal brecciation caused by impact, while the object was still free floating in the nebula, and perhaps still partially molten.

  17. Planetary Embryo Bow Shocks as a Mechanism for Chondrule Formation

    NASA Astrophysics Data System (ADS)

    Mann, Christopher R.; Boley, Aaron C.; Morris, Melissa A.

    2016-02-01

    We use radiation hydrodynamics with direct particle integration to explore the feasibility of chondrule formation in planetary embryo bow shocks. The calculations presented here are used to explore the consequences of a Mars-size planetary embryo traveling on a moderately excited orbit through the dusty, early environment of the solar system. The embryo’s eccentric orbit produces a range of supersonic relative velocities between the embryo and the circularly orbiting gas and dust, prompting the formation of bow shocks. Temporary atmospheres around these embryos, which can be created via volatile outgassing and gas capture from the surrounding nebula, can non-trivially affect thermal profiles of solids entering the shock. We explore the thermal environment of solids that traverse the bow shock at different impact radii, the effects that planetoid atmospheres have on shock morphologies, and the stripping efficiency of planetoidal atmospheres in the presence of high relative winds. Simulations are run using adiabatic and radiative conditions, with multiple treatments for the local opacities. Shock speeds of 5, 6, and 7 km s-1 are explored. We find that a high-mass atmosphere and inefficient radiative conditions can produce peak temperatures and cooling rates that are consistent with the constraints set by chondrule furnace studies. For most conditions, the derived cooling rates are potentially too high to be consistent with chondrule formation.

  18. Experimental Study of Olivine-rich Troctolites

    NASA Astrophysics Data System (ADS)

    Mu, S.; Faul, U.

    2014-12-01

    This experimental study is designed to complement field observations of olivine-rich troctolites in ophiolites and from mid-ocean ridges. The olivine-rich troctolites are characterized by high volume proportion of olivine with interstitial plagioclase and clinopyroxene. Typically the clinopyroxene occurs in the form of few large, poikilitic grains. The primary purpose of this study is to investigate the effects of cooling process on the geometry of the interstitial phases (clinopyroxene and plagioclase). Experiments are conducted in a piston cylinder apparatus by first annealing olivine plus a basaltic melt with a composition designed to be in equilibrium with four phases at ~ 1 GPa and 1250ºC. Initially, we anneal the olivine-basalt aggregates at 1350 °C and 0.7 GPa for one week to produce a steady state microstructure. At this temperature only olivine and minor opx are present as crystalline phases. We then cool the samples over two weeks below their solidus temperature, following different protocols. The post-run samples are sectioned, polished, and imaged at high resolution and analyzed by using a field emission SEM. Initial observations show that under certain conditions clinopyroxene nucleates distributed throughout the aggregate at many sites, forming relatively small, rounded to near euhedral grains. Under certain conditions few cpx grains nucleate and grow with a poikilitic shape, partially or fully enclosing olivine grains, as is observed in natural samples. As for partially molten aggregates quenched form the annealing temperature, the microstructure will be characterized by tracing phase boundaries on screen by using ImageJ software. The geometry of the interstitial phases will be quantified by determining the grain boundary wetness, in this case the ratio of the length of polyphase to single phase (olivine-olivine) boundaries. Compositional data will also be used to study the change in major element compositions before and after the cooling process.

  19. Crystallization kinetics of olivine-phyric shergottites

    NASA Astrophysics Data System (ADS)

    Ennis, Megan E.; McSween, Harry Y.

    2014-08-01

    Crystal size distribution (CSD) and spatial distribution pattern (SDP) analyses are applied to the early crystallizing phases, olivine and pyroxene, in olivine-phyric shergottites (Elephant moraine [EET] 79001A, Dar al Gani [DaG] 476, and dhofar [Dho] 019) from each sampling locality inferred from Mars ejection ages. Trace element zonation patterns (P and Cr) in olivine are also used to characterize the crystallization history of these Martian basalts. Previously reported 2-D CSDs for these meteorites are re-evaluated using a newer stereographically corrected methodology. Kinks in the olivine CSD plots suggest several populations that crystallized under different conditions. CSDs for pyroxene in DaG 476 and EET 79001A reveal single populations that grew under steady-state conditions; pyroxenes in Dho 019 were too intergrown for CSD analysis. Magma chamber residence times of several days for small grains to several months for olivine megacrysts are calculated using the CSD slopes and growth rates inferred from previous experimental data. Phosphorus imaging in olivines in DaG 476 and Dho 019 indicate rapid growth of skeletal, sector-zoned, or patchy cores, probably in response to delayed nucleation, followed by slow growth, and finally rapid dendritic growth with back-filling to form oscillatory zoning in rims. SPD analyses indicate that olivine and pyroxene crystals grew or accumulated in clusters rather than as randomly distributed grains. These data reveal complex solidification histories for Martian basalts, and are generally consistent with the formation at depth of olivine megacryst cores, which were entrained in ascending magmas that crystallized pyroxenes, small olivines, and oscillatory rims on megacrysts.

  20. Minimum radius of chondrules formed through the shock-wave heating events.

    NASA Astrophysics Data System (ADS)

    Miura, H.; Nakamoto, T.

    Most of chondritic meteorites that fall onto the Earth contain spherical igneous rocks, which have a typical size distribution between about ten microns to a few mm. These are named chondrules. They are considered to have formed through flash heating events in the solar nebula; precursor dust particles were heated and melted, and cooled again to solidify in a short period of time. The characteristic size distribution of chondrule is expected to have a relation to the chondrule formation mechanism. We report that chondrules formed through the shock-wave heating events have minimum size below which no chondrule exists. The shock wave heating is one of the most popular mechanisms for chondrule formation. For example, Iida et al. (2001) numerically simulated the postshock region taking into account many physical and chemical processes and showed that precursor particles can form chondrules if the shock meets a certain density and velocity conditions. They also showed that the formed chondrules in the postshock region are exposed by the hot gas in that region until the gas cools by emission of radiation. The duration of the phase is about a few hundreds seconds for a typical shock wave. In this phase, the temperature of the chondrule is kept very high (more than 1500 K) by the thermal conduction with the hot gas. Then, it is naturally expected that the evaporation from the surface of the chondrule should take place and the radius of the chondrule should shrink. Small chondrules may vanish in the postshock hot gas region. We performed numerical simulations of chondrule formation and evaporation with a shock-wave heating model. And we found that precursor particles with various radii can form chondrules once, but only large particles whose initial radii are larger than about 10 microns can survive in the postshock hot gas. Moreover, the final radii of survived particles are larger than about 10 microns for typical shock velocity vs and gas number density npre (vs = 5 - 30

  1. Olivine-dominated asteroids: Mineralogy and origin

    NASA Astrophysics Data System (ADS)

    Sanchez, Juan A.; Reddy, Vishnu; Kelley, Michael S.; Cloutis, Edward A.; Bottke, William F.; Nesvorný, David; Lucas, Michael P.; Hardersen, Paul S.; Gaffey, Michael J.; Abell, Paul A.; Corre, Lucille Le

    2014-01-01

    Olivine-dominated asteroids are a rare type of objects formed either in nebular processes or through magmatic differentiation. The analysis of meteorite samples suggest that at least 100 parent bodies in the main belt experienced partial or complete melting and differentiation before being disrupted. However, only a few olivine-dominated asteroids, representative of the mantle of disrupted differentiated bodies, are known to exist. Due to the paucity of these objects in the main belt their origin and evolution have been a matter of great debate over the years. In this work we present a detailed mineralogical analysis of twelve olivine-dominated asteroids. We have obtained near-infrared (NIR) spectra (0.7-2.4 μm) of asteroids (246) Asporina, (289) Nenetta, (446) Aeternitas, (863) Benkoela, (4125) Lew Allen and (4490) Bamberry. Observations were conducted with the Infrared Telescope Facility (IRTF) on Mauna Kea, Hawai'i. This sample was complemented with spectra of six other olivine-dominated asteroids including (354) Eleonora, (984) Gretia, (1951) Lick, (2501) Lohja, (3819) Robinson and (5261) Eureka obtained by previous workers. Within our sample we distinguish two classes, one that we call monomineralic-olivine asteroids, which are those whose spectra only exhibit the 1 μm feature, and another referred to as olivine-rich asteroids, whose spectra exhibit the 1 μm feature and a weak (Band II depth ˜4%) 2 μm feature. For the monomineralic-olivine asteroids the olivine chemistry was found to range from ˜Fo49 to Fo70, consistent with the values measured for brachinites and R chondrites. In the case of the olivine-rich asteroids we determined their olivine and low-Ca pyroxene abundance using a new set of spectral calibrations derived from the analysis of R chondrites spectra. We found that the olivine abundance for these asteroids varies from 0.68 to 0.93, while the fraction of low-Ca pyroxene to total pyroxene ranges from 0.6 to 0.9. A search for dynamical

  2. Extremely NA and CL Rich Chondrule AL3509 from the Allende Meteorite

    SciTech Connect

    Wasserburg, G J; Hutcheon, I D; Aleon, J; Ramon, E C; Krot, A N; Nagashima, K; Brearley, A J

    2011-04-07

    We report on the mineralogy, petrology, chemistry, oxygen isotopes, {sup 26}Al-{sup 26}Mg and {sup 36}Cl-{sup 36}S isotope systematics of the Allende chondrule Al3509 discovered and described by [1] and [2]. This spherical object ({approx}1cm {phi}) contains {approx}10% Na and 1% Cl, and nearly pure {sup 129}Xe [({sup 129}Xe/{sup 127}I) = 1.1 x 10{sup -4} (3)]. This high enrichment in halogens makes it of interest in searching for radiogenic {sup 36}S from {sup 36}Cl (t{sub 1/2} {approx} 0.3 Ma) decay. While there is strong evidence for the presence of {sup 36}Cl in sodalite and wadalite in CV CAIs [4,5], some sodalites show no evidence for excesses of {sup 36}S ({sup 36}S*). In contrast, high inferred initial {sup 36}Cl/{sup 35}Cl = 2 x 10{sup -5} has been found in wadalite from the Allende CAI AJEF [5]. The observed {sup 36}S excesses in sodalite are not correlated with radiogenic {sup 26}Mg, decay product of {sup 26}Al (t{sub 1/2} {approx} 0.72 Ma) [4]. From the inferred initial {sup 36}Cl/{sup 35}Cl ratios and consideration of both AGB and SNe stellar sources, {sup 36}Cl must be the product of charged particle irradiation within the early solar system. However, neither the specific nuclear production mechanism nor the irradiation site have been identified. Both sodalite and wadalite are found as late stage alteration products of CAIs together with grossular, monticellite, Al-rich pyroxene, wollastonite, nepheline, ferroan olivine, and ferroan pyroxenes. This late-stage alteration has been found to extensively change some CAIs in Allende, but clear residues of spinel, hibonite and Wark-Lovering rims are recognizable remnants of the original CAIs. The nature of the widespread volatile alteration process as well as that of the fluid phase remain controversial.

  3. Clear Evidence for Fe-60 in Silicate from a Semarkona Chondrule

    NASA Technical Reports Server (NTRS)

    Huss, G. R.; Tachibana, S.

    2004-01-01

    Fe-60 (t(sub 1/2) = 1.5 Ma) is key to understanding the sources of short-lived radionuclides in the early solar system because it is the only one among those known from meteoritic material that is produced only in stars [1]. Within the last year, it has become clear that Fe-60 was present in sulfides from primitive ordinary and enstatite chondrites in amounts sufficient to require a recent stellar input [2-5]. The sulfide data indicate an initial Fe-60/Fe-56 ratio for the early solar system of between approx. 3 10(exp -7) and approx. 1.6 10(exp -6) [2-4]. However, iron (and nickel?) in sulfides is easily mobilized by very mild heating [e.g., 6], so there is considerable uncertainty over the true initial ratio. To resolve this uncertainty, we have begun a search for evidence of Fe-60 in silicates from primitive chondrites. In olivine from type 3.0-3.1 ordinary chondrites, diffusive exchange of iron and magnesium has not occurred to any significant degree, and diffusive exchange in pyroxene is slower [7]. However, the relatively small elemental fractionation of iron from nickel in silicates, coupled with the fact that the daughter nuclide, Ni-60, makes up approx. 26 % of normal nickel, make detection of excesses of radiogenic Ni-60 very difficult. Fortunately, we have found a fine-grained radiating-pyroxene chondrule in Semarkona (LL3.0) with a very high Fe/Ni ratio that gives clear evidence of Fe-60.

  4. Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts

    NASA Astrophysics Data System (ADS)

    Wang, Zhengrong; Gaetani, Glenn A.

    2008-05-01

    Olivine is abundant in Earth’s upper mantle and ubiquitous in basaltic lavas, but rarely occurs in eclogite. Partial melts of eclogite are, therefore, not in equilibrium with olivine, and will react with peridotite as they migrate through the upper mantle. If such melts erupt at Earth’s surface, their compositions will be highly modified and they may be olivine-saturated. We investigated experimentally the reaction between olivine and siliceous eclogite partial melt, and determined element partitioning between olivine and the melt produced by this reaction. Our results demonstrate that mixing of reacted eclogite partial melt with primitive basalt is capable of producing the positive correlation between melt SiO2 content and olivine Ni content observed in some Hawaiian lavas. Experiments were carried out by equilibrating eclogite partial melt or basalt with San Carlos olivine at 1 bar and 1,201 1,350°C. Our results show that eclogite partial melts equilibrated with mantle olivine retain their high SiO2, low FeO and MgO characteristics. Further, olivine-melt partition coefficients for Ni measured in these experiments are significantly larger than for basalt. Mixing of these melts with primitive Hawaiian tholeiitic lavas results in crystallization of high-Ni olivines similar to those in Makapuu-stage Koolau lavas, even though the mixed magmas have only moderate Ni contents. This results from a hyperbolic increase of the Ni partition coefficient with increasing polymerization of the mixed melt. Note that while eclogite partial melt in contact with peridotite will equilibrate with pyroxene as well as olivine, this will have the effect of buffering the activity of SiO2 in the reacted melt at a higher level. Therefore, an eclogite partial melt equilibrated with harzburgite will have higher SiO2 than one equilibrated with dunite, enhancing the effects observed in our experiments. Our results demonstrate that an olivine-free “hybrid” pyroxenite source is not

  5. Chondrule size and related physical properties: A compilation and evaluation of current data across all meteorite groups

    NASA Astrophysics Data System (ADS)

    Friedrich, Jon M.; Weisberg, Michael K.; Ebel, Denton S.; Biltz, Alison E.; Corbett, Bernadette M.; Iotzov, Ivan V.; Khan, Wajiha S.; Wolman, Matthew D.

    2015-12-01

    The examination of the physical properties of chondrules has generally received less emphasis than other properties of meteorites such as their mineralogy, petrology, and chemical and isotopic compositions. Among the various physical properties of chondrules, chondrule size is especially important for the classification of chondrites into chemical groups, since each chemical group possesses a distinct size-frequency distribution of chondrules. Knowledge of the physical properties of chondrules is also vital for the development of astrophysical models for chondrule formation, and for understanding how to utilize asteroidal resources in space exploration. To examine our current knowledge of chondrule sizes, we have compiled and provide commentary on available chondrule dimension literature data. We include all chondrite chemical groups as well as the acapulcoite primitive achondrites, some of which contain relict chondrules. We also compile and review current literature data for other astrophysically-relevant physical properties (chondrule mass and density). Finally, we briefly examine some additional physical aspects of chondrules such as the frequencies of compound and 'cratered' chondrules. A purpose of this compilation is to provide a useful resource for meteoriticists and astrophysicists alike.

  6. Sorting of Chondrules by Size and Density--Evidence for Radial Transport in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Skinner, W. R.; Leenhouts, J. M.

    1993-07-01

    It has long been recognized that chondrules in individual chondrites have populations with restricted size ranges. Dodd's landmark study [1] quantified this observation for silicate and metal chondrules in ordinary chondrites and argued for an aerodynamic sorting mechanism. Later studies, e.g., [2] and others cited therein, have confirmed and extended these observations. Our work has added a consideration of chondrule shape [3] and extended the data on metal vs. silicate chondrules [4]. These observations lead to conclusions regarding radial transport of material in the solar nebula. Ordinary chondrites contain an intimate mixture of nearly spherical droplet chondrules and angular clastic chondrules that define a single size-sorted population within a given chondrite [3]. Many clastic chondrules preserve an arcuate face that suggests they were once part of a much larger droplet chondrule, indicating that droplet chondrules were formed in a larger range of sizes than are now observed in these chondrites, and that droplet chondrules were broken up in the solar nebula to yield the clastic objects now observed [3]. Chondrites represent restricted "size-bins" of chondrules sampled during accretion of the parent bodies [5], probably by aerodynamic processes in the nebula. The particular "size-bins" we observe sampled a very restricted portion of the range of sizes that once existed in the nebula. It seems unlikely that all the larger chondrules would have been destroyed. Thus the rarity of their appearance in known chondrites suggests that large chondrules were deposited (accreted) into other "size-bins" at heliocentric distances not represented by the known chondrites, and that sorting processes in the solar nebula must have included a radial component. A similar conclusion was reached in the study of an unusual CR2 chondrite, Acfer 059, in which metal chondrules are preserved with their original rounded shapes. Separate size distributions of metal and silicate

  7. Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling

    NASA Astrophysics Data System (ADS)

    Hubbard, Alexander

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  8. Pre-Accretionary Distribution of Ca and Al Between Matrix and Chondrules in CV Chondrites

    NASA Astrophysics Data System (ADS)

    Hezel, D. C.; Palme, H.

    2007-03-01

    Ca/Al-ratios in Y-86751 (CV) chondrules are super- and in matrix sub-chondritic. The opposite is true for Allende and Efremovka. Incorporation of spinel in Allende and Efremovka chondrule precursors in a nebular setting can explain this observation.

  9. Evaporative Loss and Degree of Melting in Semarkona Type I Chondrules

    NASA Astrophysics Data System (ADS)

    Hewins, R. H.; Zanda, B.; Bourot-Denise, M.

    1996-03-01

    Bulk compositions have been determined by broad beam techniques for Semarkona type I (FeO-poor) chondrules. The finest grained (least melted) approach CI in composition, and abundances of moderately volatile elements (K, Na, Fe, Ni, P, S) decrease as grain size (degree of melting) increases. This is unequivocal evidence of evaporative loss during chondrule formation.

  10. Metamorphism of the H-group chondrites - Implications from compositional and textural trends in chondrules

    NASA Technical Reports Server (NTRS)

    Lux, G.; Keil, K.; Taylor, G. J.

    1980-01-01

    The paper discusses element bulk compositions of 373 chondrules from 18 H3 to H6 chondrites determined by broad-beam electron probe analysis. Bulk chondrule FeO and Al2O3 amounts increase and TiO2 and Cr2O3 decrease with increasing petrologic type; normative faylite, albite, and plagioclase amounts increase through the petrologic sequence. Chondrule diameters correlate with phenocryst sizes in porphyritic chondrules of type 3 chondrites, but this correlation is diminished in the higher petrologic types. The compositional trends in chondrules through the petrologic sequence are attributed to diffusion and equilibration among chondrules, and between chondrules and matrix in response to increasing degrees of thermal metamorphism. It is suggested that H-group chondrites are formed by accretion of high-temperature (chondrules) and low-temperature (matrix) materials. Internal reheating of the parent materials to different temperatures caused compositional equilibration, grain coarsening, and reduction of FeO to Fe(0) by carbon.